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Abstract—By analogy with internet of things (IoT), internet of
vehicles (IoV) which enables ubiquitous information exchange
and content sharing among vehicles with little or no human
intervention is a key enabler for the intelligent transportation
industry. In this paper, we study how to combine both the
physical and social layer information for realizing rapid content
dissemination in device-to-device vehicle-to-vehicle (D2D-V2V)
based IoV networks. In the physical layer, headway distance of
vehicles is modeled as a Wiener process, and the connection
probability of D2D-V2V links is estimated by employing the
Kolmogorov equation. In the social layer, the social relation-
ship tightness that represents content selection similarities is
obtained by Bayesian nonparametric learning based on real-
world social big data, which are collected from the largest Chi-
nese microblogging service Sina Weibo and the largest Chinese
video-sharing site Youku. Then, a price-rising based iterative
matching algorithm is proposed to solve the formulated joint
peer discovery, power control, and channel selection problem
under various quality of service (QoS) requirements. Finally,
numerical results demonstrate the effectiveness and superiority
of the proposed algorithm from the perspectives of weighted sum
rate and matching satisfaction gains.

Index Terms—internet of things, internet of vehicles, D2D-V2V,
content dissemination, social big data, matching theory, Youku,
Sina Weibo.

I. INTRODUCTION

A. Background and Motivation

W ITH the evolutionary growth of internet of things (IoT),
it is estimated that almost 50 billion devices will be

interconnected by 2020, and the generated data traffic will
grow by another 1000 times [1], [2]. As a typical example
of IoT, internet of vehicles (IoV) which supports ubiquitous
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information exchange and content sharing among vehicles
with little or no human intervention is a key enabler for the
intelligent transportation industry. It provides unprecedented
opportunities and capability for vehicle vendors and service
providers to develop new applications with multimedia-rich
contents such as route planning, collision warning, online
games, traffic monitoring, and so on. However, IoV also raises
new challenges to vehicle-to-vehicle (V2V) communication
technologies. The gap between the rapidly growing demands
of data rate and the limited network bandwidth has become
ever prominent.

There are two major V2V solutions, i.e., the ad-hoc-
based IEEE 802.11p standard and infrastructure-based cel-
lular technologies such as long term evolution (LTE) [3].
On one hand, the IEEE 802.11p adopts the legacy carrier
sense multiple access with collision avoidance (CSMA/CA)
mechanism for access control, which is originally designed
for wireless local area network type communications and is
not optimized for fast moving vehicles. It is difficult to realize
reliable service delivery and coordinated resource allocation
in ad-hoc fashioned V2V communications due to the lack of
centralized intelligence. On the other hand, LTE-based V2V
solution poses a heavy burden on the capacity and delay
constrained backhaul links, and may even worsen the cell
overload problem. Hence, new V2V technologies which can
leverage widespread cellular infrastructures and underutilized
frequency spectrums are urgently required.

Device-to-device (D2D) communication, which allows di-
rect data transmission over proximate peer-to-peer links with
the assistance of centralized infrastructures, has emerged as
a promising candidate for future IoV networks. D2D-V2V
(D2D-V2V) communication can significantly reduce trans-
mission latency and improve spectrum efficiency due to the
proximity gain, hop gain, and reusing gain [4]. In particularly,
effective vehicle-to-infrastructure (V2I) data offloading can be
achieved through D2D links. For an instance, multiple vehic-
ular users heading toward the same direction usually request
very similar contents such as road and traffic information,
which have to be transmitted by the base station through
multiple repeated transmissions. In comparison, D2D-V2V
allows direct content sharing or pushing among vehicles with
similar interests without going through the base station.

However, the successful implementation of D2D-V2V based
content dissemination remains nontrivial. First of all, the
diverse content preferences of vehicular users have to be
taken into consideration during the D2D-V2V peer discovery
process in order to realize effective content dissemination and
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achieve high content matching satisfactions. In this paper,
we use social relationship tightness to reflect the content
selection similarities of different vehicular users. Secondly, the
fast mobility features of vehicles make the D2D-V2V links
highly dynamic and unreliable. A critical challenge is how to
explore long-lasting and reliable D2D-V2V connections for
effective content dissemination. Last but not least, co-channel
interference caused by cellular spectrum reusing must be
well managed to optimize system performance while meeting
quality of service (QoS) requirements. Combining the above
three aspects, it is intuitive to combine both social and physical
layer information for optimizing D2D-V2V based content
dissemination.

B. State of the Art

Two major bottlenecks of implementing D2D communica-
tions are limited frequency spectrum and constrained battery
capacity. Hence, conventional studies mainly aim at optimizing
either spectrum efficiency or energy efficiency. Spectrum-
efficient resource allocation problems have been investigated
in various application scenarios such as relay-aided D2D
networks [5], mobile content delivery [6], and mobile social
networks [7], etc. For energy-efficient resource allocation
design, matching theory and game theory have been widely
employed to optimize power control [8], [9]. Energy harvest-
ing technologies such as simultaneous wireless information
and power transfer (SWIPT) were utilized to improve energy
efficiency by exploring external energy sources [10]. The
tradeoff between energy efficiency and spectrum efficiency of
D2D communications was analyzed in [11], [12].

For D2D-V2V based IoV networks, performance analysis
in terms of outage probability and spectrum efficiency was
performed in [13], [14]. Given the latency and reliability
constraints, cluster-based and separate resource block sharing
and power allocation algorithms for D2D-V2V communica-
tions were proposed in [15] and [4], respectively. In [3], the
authors proposed a greedy-based resource allocation algorithm
to minimize the end-to-end delay by exploring both D2D and
IEEE 802.11p. A D2D-V2V framework which consists of
vehicle grouping, channel selection, and power allocation was
proposed in [16]. In [17], two distributed resource allocation
schemes were proposed for D2D-based safety-critical vehicu-
lar network with unlicensed band access. A matrix game based
resource sharing approach was proposed in [18] to optimize
geodistributed cloudlet resource management and allocation
in D2D-based vehicular networks. In [19], the authors in-
vestigated the user-priority-based power control problem by
optimizing individual channel rates with the consideration
of cross-tier interference and electromagnetic interference in
D2D-assisted IoV network. These works mainly focus on the
physical layer information, and the utilization of social layer
information has not been well investigated.

There exist some works on V2I data offloading by in-
tegrating IoV networks with social layer information [20]–
[24]. In vehicular social applications such as “Road Speak”
[20], “Road Sense” [21], and “Social Drive” [22], etc., social
connections among users are employed to recommend chat

groups with similar interests, and to share real-time road
traffic, road conditions, and driving experience. In [23], the
authors presented an review of social IoV networks, and
proposed a communication message structure based on SAE
J2735. A social-aware friend recommendation system named
Verse was proposed in [24], which is based on keywords of
interests and requires no Internet connection. A cooperative
delay-tolerant content dissemination strategy was proposed
in [25] for vehicular networks with the aim of minimizing
cellular traffic load. Both Wi-Fi based V2I and ac-hoc based
V2V communications were employed to offload a significant
portion of cellular data traffic. In [26], the authors investigated
energy-efficient multimedia data dissemination problem in
a vehicular cloud environment by formulating a stochastic
reward nets-based coalition game, in which a demand- and
supply-based payoff mechanism was proposed for each vehicle
in the game.

However, most of the above works were developed based on
IEEE 802.11 serial standards, and the specific characteristics
of D2D-V2V communications have been largely neglected.
D2D-based content delivery problem with parked vehicles
was studied in [27]. The authors presented detailed intro-
duction about interest sending, content distribution, and con-
tent replacement. By analogy with the concept of biologic
swarms, a swarm-based social-aware IoV framework was
proposed in [28]. The authors presented typical application
scenarios of social vehicle swarms, and identified several key
technologies including D2D, mobile edge computing, deep
reinforcement learning, and privacy preserving data mining.
In [29], the authors proposed a D2D-based vehicular social
network architecture named VeShare by exploring data-control
plane separation. The control plane determines social network
association and resource allocation, while the data plane is
only responsible for data collection and transmission. In [30],
a heterogeneous offloading framework was designed to deliver
delay-tolerant smart grid data in a store-carry-forward fashion
by exploring vehicle-assisted D2D networks. A dynamic mode
selection and resource allocation algorithm was developed to
optimize the total average delivery ratio while guaranteeing the
smart grid user fairness. Different from these works, real-world
social big data is not incorporated in [27]–[30], and the joint
optimization of peer discovery, power control, and channel
selection involved in D2D-V2V based content dissemination
has not been well investigated.

C. Contribution

The major contributions of this paper are summarized as
follows.

• We propose a social big data-based content dissemination
approach for offloading V2I data traffic through D2D-
V2V links. We combine both the physical and social
layer information in IoV networks for the optimization
of content dissemination. In the physical layer, the head-
way distance of vehicles traveling in the same direction
is modeled as a Wiener process, and the connection
probability of D2D-V2V links is estimated by exploring
the Kolmogorov equation. In the social layer, the social
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relationship tightness in terms of content selection sim-
ilarity is obtained by Bayesian nonparametric learning
(BNL) based on real-world social big data, which are
collected from the largest Chinese microblogging service
Sina Weibo and the largest Chinese video-sharing site
Youku.

• We formulate a joint peer discovery, power control, and
channel selection problem for the optimization of content
dissemination. The objective is to maximize the D2D-
V2V sum rate which is weighted by social relationship
tightness and connection probability. Since the formulated
joint optimization problem involves a three-dimensional
matching among vehicular content providers, content
consumers, and cellular spectrum resources, it is NP-hard
due to the combinatorial nature. To provide a tractable
solution, spectrum resources and content consumers are
combined to reduce matching dimensionality. We mod-
el the preference of a content provider over a com-
bined resource-consumer unit as the maximum achievable
weighted rate, which can be obtained by solving a power
control problem under QoS constraints of both cellular
and D2D-V2V links. Then, a price rising strategy is
proposed to resolve the contention when multiple content
providers prefer to be matched with the same spectrum
resource or content consumer.

• We analyze the proposed algorithm from the perspectives
of stability, convergence, optimality, and computational
complexity. The proposed algorithm is compared with
exhaustive and random matching algorithms from the per-
spectives of weighted sum rate and matching satisfaction
under different scenarios. Numerical results demonstrate
that significant performance gains can be achieved by
incorporating social big data into vehicular content dis-
semination.

The remaining parts of this paper are organized as fol-
lows. Section II presents the system model of both physical
and social layers. The formulation of content dissemination
problem is provided in section III. Section IV describes the
preference modeling and the proposed price-rising based three-
dimensional iterative matching algorithm. Simulation results
and relative discussions are presented in section V. Section VI
concludes the paper and identifies future research directions.

II. SYSTEM MODEL

Fig. 1 shows the D2D-V2V based IoV network, which
consists of one base station, multiple cellular user equipments
(CUEs) and potential D2D-V2V pairs. CUEs which include
both vehicles and smart phones can communicate with the
base station by using orthogonal spectrum resource blocks
(RBs). In this paper, we assume that the mode selection
process is already finished, and there exist some D2D-V2V
based vehicular transmitters (content providers) and receivers
(content consumers), which are denoted as V-TXs and V-RXs,
respectively. We focus on how to match V-TXs and V-RXs,
allocate transmission power, and select RB to maximize the
transmission rate, which involves the joint optimization of peer
discovery, power control, and channel selection.

Fig. 1: The physical layer and social layer models of D2D-
V2V based IoV networks.

A V-TX and a V-RX are allowed to form a D2D-V2V pair
for content dissemination if and only if certain physical and
social layer requirements are satisfied. In the physical layer, the
establishment of a D2D-V2V link depends on the connection
probability due to the dynamic and unreliable connections
caused by high mobility of vehicles [4], [14]. In the social
layer, the preferences of contents are reflected by vehicular
users’ behaviors in social networks, from which real-world
social big data can be obtained to estimate the content selection
similarities between V-TXs and V-RXs in terms of social re-
lationship tightness. In general, it is intuitive to allow vehicles
with good channel conditions, long-lasting connections, and
similar content preferences to form D2D-V2V pairs. Hence,
both the physical and social layer information should be
utilized to optimize content dissemination. In this section, the
physical layer models including channel model and connection
probability estimation are described firstly in subsection II-A,
and then the social relationship tightness between vehicles is
quantified in subsection II-B.

A. Physical Layer Model

In this subsection, we introduce the channel model and
connection probability estimation.

1) Channel Model: We consider the uplink spectrum
sharing scenario where each D2D-V2V pair can reuse
at most one uplink orthogonal RB allocated to a CUE
for data transmission. We assume that there exist M V-
TXs and M V-RXs in the IoV network, which are de-
noted by the sets VT = {V T

1 , V T
2 , · · · , V T

i , · · · , V T
M}

and VR = {V R
1 , V R

2 , · · · , V R
j , · · · , V R

M}, respectively. The
K RBs and the corresponding CUEs are denoted by
the sets C = {C1, C2, · · · , Ck, · · · , CK}, and CV =
{CV

1 , CV
2 , · · · , CV

k , · · · , CV
K}, respectively. Owing to spec-

trum reusing, V-TXs cause co-channel interference to the
base station, and V-RXs receive co-channel interference from
CUEs.

It is extremely difficult to estimate real-time channel state
information (CSI) due to the fast channel variations caused
by vehicle mobility. Previous works have demonstrated that
the mere consideration of large-scale fading effects such as
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pathloss results in little performance degradation [4], [13],
[14]. Hence, we only consider the free space propagation
pathloss and ignore the small-scale fading effects.

Assuming that V-TX V T
i and V-RX V R

j form a D2D-V2V
pair Vij by reusing the RB Ck allocated to CUE CV

k , the
spectrum efficiency (defined as bits/Hz/s) performances of
D2D-V2V pair Vij and CUE CV

k are given by

rVij ,k = log2

(
1 +

PVij ,kd
−αv
ij

Pkd
−αcv

kj +N0

)
, (1)

rk,i = log2

(
1 +

Pkd
−αc

k

PVij ,kd
−αvc

iB +N0

)
, (2)

where PVij ,k and Pk are the transmission power of V T
i and

CV
k , respectively. dij and dk denote the transmission distance

of the D2D-V2V link and the cellular link, respectively. dkj
denotes the transmission distance between CUE CV

k and V-RX
V R
j , while diB is the transmission distance between V-TX V T

i

and the base station. We use different pathloss components for
cellular and D2D-V2V links. That is, the pathloss exponents
corresponding to the cellular link, the D2D-V2V link, the
interfering link from CUEs to V-RXs, and the interfering link
from V-TXs to the base station are represented as αc, αv , αcv,
αvc, respectively. N0 is the one-sided power spectral density
of additive white Gaussian noise (AWGN).

2) Connection Probability Estimation: The mobility pattern
of vehicles and the connection probability estimation have
been intensively studied in previous works [24], [31]. We
adopt the method proposed in [24] to predict the connection
probability between two vehicles. The approach is briefly
introduced here, and more details can be found in [24] and
the references therein.

Taking D2D-V2V pair Vij as an example, the mean and
variance of velocities corresponding to V T

i and V R
j are

denoted as vi, σ2
i and vj , σ2

j , respectively. The D2D-V2V
communication range is assumed to be L. The headway
distance from V T

i to V R
j after time t is denoted as H(t),

e.g., H(t) > 0 represents that V-TX V T
i is ahead of V-RX

V R
j , and H(t) ≤ 0 otherwise. The initial value of H(t) is set

as h0.
The connection time is evaluated by the mean first passage

time T , which is a random variable depending on initial
headway distance and velocity differences. T is given by

T = {min t | H(t) = h0,−L < H(x) < L, 0 ≤ x ≤ t}. (3)

In order to evaluate T , the headway distance H(t) is modeled
as a Wiener process. The drift and variance are denoted as
µ = vi − vj and σ2 = σ2

i + σ2
j , respectively. The increment

of H(t) within the infinitesimal interval ∆t follows a normal
distribution, which is given by

∆H(t) = H(t+∆t)−H(t) = µ∆t+ σW, (4)

where W obeys the normal distribution with mean zero and
variance ∆t, i.e., W ∼ N (0,∆t). Since time evolution of the
probability density function (PDF) of a particle’s velocity in

Winer Process can be described by the Kolmogorov equation,
we have

∂p(τ | h0, t)

∂t
= −µ

∂p(τ | h0, t)

∂τ
+

1

2
σ2 ∂2

∂τ2
p(τ | h0, t), (5)

where −L ≤ τ ≤ L, and p(τ | h0, t) is the PDF of H(t)
conditioned on H(0) = h0. Define δ(.) as the Dirac delta
function, the initial and boundary conditions are given by

p(τ | h0, 0) = δ(h0), (6)
p(−L | h0, t) = p(L | h0, t) = 0, t > 0. (7)

By combing (5) ∼ (7), p(τ | h0, t) is obtained as

p(τ|h0, t)=
1√

2πσ2t

∞∑
y=−∞

[
exp

{
4yµL

σ2
−[(τ − h0)−4yL−µt]2

2σ2t

}
−exp

{
2µL(1−2y)

σ2
−[(τ−h0)−2L(1−2y)−µt]2

2σ2t

}]
.

(8)

The cumulative distribution function (CDF) of the connection
time T can be derived based on (3),

Fij(t) = Pr{T ≤ t} = 1−
∫ L

−L

p(τ | h0, t)dτ, (9)

which is defined as the probability that V T
i and V R

j are
connected within duration t.

The evaluation of vehicle connection time depends on initial
headway distance and velocity difference, which in essence
are closely related to key mobility features including vehicle
density, velocity and traffic dynamic. For example, considering
the traffic jam scenario with ultra-high vehicle density, the
velocity difference between two vehicles that are stuck in the
middle of a long queue tends to be decrease. This effect can be
well captured in simulations by adjusting mean and variance
values of vehicle velocities, which results in longer connection
time and larger probability of establishing more long-lasting
and reliable D2D-V2V connections. Hence, the impacts of
vehicle density, velocity, and traffic dynamic on numerical
results are reflected through connection probability, and the
solution derived in this work can be applied for numerous
IoV application scenarios.

B. Social Layer Model

In the social layer, we employ BNL to obtain the social
relationship tightness in terms of content selection similarity
by exploring social big data obtained from Sina Weibo and
Youku, which are real-world data corresponding to IoV users.
Actually, since the content preferences of IoV users gener-
ally change slowly compared to channel variations, it is not
necessary to collect and process social big data in real time,
which is both time consuming and costly. Hence, the social big
data can be collected and analyzed in an off-line manner, e.g.,
even when an IoV user is not in a vehicle. Although this work
only involves social big data from Sina Weibo and Youku, it
also sheds lights into future works which incorporate multi-
dimensional big data from a large number of mobile Internet
applications for finer granularity analysis.
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Fig. 2: The BNL-based social relationship estimation by
exploring real-world social big data from Sina Weibo and
Youku.

1) Data Collection and Preprocessing: We have crawled
the Sina Weibo site and retrieved billions of tweets from one
thousand active users within a time span of two years. It is
interesting to note that Sina Weibo users frequently share their
preferred video clips on their microblogs via a short URL,
which links to the video entry on Youku. The features of
each video in Youku can be extracted from the profile page
through Youku’s API, which contains video title, category,
view numbers (popularity), interest tags, and related videos.

Upon collecting the huge volume of data, data preprocessing
is performed to improve the data quality. We apply data
cleaning to remove noise and resolve inconsistencies. For
an instance, Weibo users with too little information on their
public profiles should be filtered out to avoid confusion [32].
Video tags from Youku have to be augmented with semantic
knowledge to solve the challenges raised by tag ambiguity
and heterogeneity [33]. Afterwards, important features relat-
ed to content preference in terms of demographic attribute
(gender, marital status, education level, career, hobby, etc.),
text attribute (topic distribution, word contextual semantics),
network attribute (social connections), and temporal attribute
(daily/weekly/monthly activity distribution) are extracted to
form the dataset.

2) Social Relationship Estimation: Due to the huge dimen-
sionality and high complexity of user content preferences,
parametric learning approaches with a fixed parameter space
are not suitable. Hence, we adopt a nonparametric and unsu-
pervised learning scheme, i.e., BNL, in which the complexity

of the model is allowed to grow and the accuracy of the
estimation will be improved as the size of observed data
becomes larger [34]. BNL places a prior distribution on an
infinite dimensional parameter space to avoid overfitting or
underfitting of the data, and estimates the posterior distribution
directly by invoking only a finite subset of available parame-
ters.

Denoting the set of users as U = {1, · · · , U}, for any
user u∈U , we assume that S observation sets which contain
the probability of selecting similar contents can be obtained
from the dataset. The set of observation sets is defined as
S = {1, · · · , S}. For any observation set s∈S , the probability
of selecting similar contents for user u is denoted as psu,
which is a random variable with a PDF Psu(psu) over the
space Θ=[0, 1]. Dirichlet process, which is a flexible and non-
parametric prior over an infinite dimensional parameter space
in BNL model, is employed to model the prior information
of the probability distribution [35]. For any observation set
s ∈ S, we perform Nsu observations, which are denoted as
Nsu = {p1su, p2su, · · · , pNsu

su }. Based on Nsu, the PDF of the
next observation pNsu+1

su is calculated as

Psu(p
Nsu+1
su ∈ε|p1su, p2su, · · ·,pNsu

su )=
1

ς+Nsu
(ςA(ε)+

Nsu∑
n=1

ϖpn
su
(ε)).

(10)

ε is a measurable partition of Θ. A and ς are the base distri-
bution and concentration parameter of the Dirichlet process,
respectively. Since A and ς are unknown, Psu(p

Nsu+1
su ∈ ε |

p1su, p
2
su, · · · , pNsu

su ) can be calculated as

Psu(p
Nsu+1
su ∈ε|p1su, p2su, · · · , pNsu

su ) =

∑Nsu

n=1 ϖpn
su
(ε)

Nsu
, (11)

where ϖpn
su

is the point mass at pnsu. ϖpn
su
(ε) = 1 when

pnsu ∈ ε, and ϖpn
su
(ε) = 0, otherwise.

The estimation accuracy can be further improved by incor-
porating new observations from the subset Q ∈ S . Denoting
Qsu=Q\{Q∩s} as the observation sets in Q excluding Q∩s,
the PDF of the next observation pNsu+1

su can be calculated by
combining both s and Qsu as

PQ
su = ϱsP̃su(ε) +

∑
z∈Qsu

ϱzP̃zu(ε). (12)

ϱs and ϱz are the weights corresponding to the contribution
of s and z (z∈Qsu), respectively. Due to the unbiased nature
of each observation set, we have Pu = PQ

su, where Pu repre-
sents the PDF corresponding to the probability distribution of
selecting similar contents for user u.

3) Social Relationship Tightness: For V-TX V T
i and V-RX

V R
j , the social relationship tightness is calculated as

δij = (corr(pi, pj) + 1)/2. (13)

We have pi ∼ Pi(p) and pj ∼ Pj(p), where Pi and Pj are
the estimated correlative PDFs based on (12). δij varies from
0 to 1, i.e., δij ∈ [0, 1].
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C. Physical and Social Layer Requirements

The physical and social layer requirements for D2D-V2V
link establishment are defined in terms of connection proba-
bility and social relationship tightness. V-TX V T

i and V-RX
V R
j are allowed to form a D2D-V2V pair Vij if and only

if both the connection probability and the social relationship
tightness are no less than some predefined thresholds, which
are denoted as η and δ, respectively. We define Γ(x | x0) as an
indicator function of x such that Γ(x | x0) = 1 if x ≥ x0, and
otherwise, Γ(x | x0) = 0. We denote ρij as the physical-social
score of Vij ,which is calculated as

ρij = Γ[Fij(t) | η]Γ(δij | δ)Fij(t)δij . (14)

ρij varies from 0 to 1, i.e., ρij ∈ [0, 1]. ρij = 0 represents
that V-TX V T

i and V-RX V R
j cannot form a D2D-V2V link.

III. PROBLEM FORMULATION

In order to achieve effective content dissemination, both
physical and social layer information are utilized to char-
acterize the impacts of connection probability and social
relationship tightness on the transmission rate. Hence, the
objective function is defined as a weighted transmission rate,
i.e., the transmission rate is weighted by the physical-social
score. The optimization of the weighted transmission rate
requires solving a joint peer discovery, power control, and
channel selection problem, which involves a three-dimensional
matching among V-TXs, V-RXs, and RBs. Thus, a three-
dimensional M × M × K matrix O = {Oi,j,k} is utilized
to denote the set of peer discovery and channel selection
strategies, in which Oi,j,k∈{0, 1} is a binary variable. Oi,j,k=1
represents that V-TX V T

i and V-RX V R
j form a D2D-V2V

pair Vij by reusing RB Ck. The transmission power variable
is defined as PVij ,k. The joint peer discovery, power control,
and channel selection problem is formulated as

max
{O,PVij,k

}

K∑
k=1

M∑
j=1

M∑
i=1

Oi,j,kρijrVij ,k

s.t. C1 : Oi,j,k ∈ {0, 1},∀V T
i ∈ VT , V

R
j ∈ VR, Ck ∈ C,

C2 :
∑

V R
j ∈VR,Ck∈C

Oi,j,k ≤ 1, ∀V T
i ∈ VT ,

∑
V T
i ∈VT ,Ck∈C

Oi,j,k ≤ 1,∀V R
j ∈ VR,

∑
V T
i ∈VT ,V R

j ∈VR

Oi,j,k ≤ 1, ∀Ck ∈ C,

C3 : 0 ≤ PVij ,k ≤ Pmax, ∀V T
i ∈ VT , V

R
j ∈ VR, Ck ∈ C,

C4 : rVij ,k ≥ rmin, ∀V T
i ∈ VT , V

R
j ∈ VR, Ck ∈ C,

C5 : rk,i ≥ rmin, ∀V T
i ∈ VT , V

R
j ∈ VR, Ck ∈ C. (15)

Constraints C1 and C2 ensure that each V-TX can be paired
with at most one V-RX and vice versa, while each RB can
be reused by at most one D2D-V2V pair and vice versa. C3
specifies the transmission power constraint. C4 and C5 ensure
that the QoS requirements of both D2D-V2V links and cellular
links should be guaranteed simultaneously.

IV. A PRICE-RISING BASED ITERATIVE MATCHING
ALGORITHM

In this section, a price-rising based iterative matching al-
gorithm is proposed to solve the joint optimization problem
formulated in (15). Firstly, we introduce how to reduce match-
ing dimensionality and how to establish preference lists based
on the weighted transmission rate. Then, the details of the
proposed price-rising based iterative matching algorithm is
presented. Finally, we analyze the theoretical properties and
discuss the relevant implementation details.

A. Matching Dimensionality Reduction and Preference Estab-
lishment

The problem (15) is NP-hard due to the combinatorial
nature. To provide a tractable solution, matching dimension-
ality is reduced to simplify the original three-dimensional
matching problem. We combine one V-RX and one RB to
form a V-RX-RB (VR) combination. Since there are M V-
RXs and K RBs, the set of M×K VR combinations is
denoted as VR={V Rjk}j=M,k=K

j=1,k=1 . Hence, we transform the
original three-dimensional matching into a two-dimensional
matching which involves M V-TXs on one side and M×K VR
combinations on the other side. The two-dimensional matching
is defined as follows.

Definition 1: A matching Ψ is a one-to-one correspondence
VT ∪ VR → VT ∪ VR ∪ {∅}, and Ψ(i) = V Rjk represents
that V-TX V T

i is matched with the combination V Rjk.
When Ψ(i) = V Rjk, for ∀V T

i′
∈ VT , Ψ(i

′
) = {VR \

{V Rjk}} ∪ {∅}. The matching Ψ is stable when there exists
no V-TX-VR pair consisting of V T

i and V Rjk that are not
paired with each other but prefer each other to be their partner
under matching Ψ, i.e., blocking pair.

In the two-dimensional matching, M V-TXs and MK VRs
are paired with each other based on the preference lists. The
preference of V-TX V T

i towards VR combination V Rjk is
modeled as the maximum achievable weighted transmission
rate under the matching Oi,j,k = 1, which can be obtained by
solving the following power control problem:

max
{PVij,k

}
ρijrVij ,k

s.t. C1 : 0 ≤ PVij ,k ≤ Pmax,

C2 : rVij ,k ≥ rmin,

C3 : rk,i ≥ rmin. (16)

The above problem can be easily solved by using standard
convex optimization. After obtaining the preference of V T

i

towards any V Rjk ∈ VR, the preference list of V T
i is estab-

lished by sorting all of VR combinations in a descending order
according to the achievable maximum weighted transmission
rates.

B. Price-Rising based Iterative Matching

After obtaining the preference lists of V-TXs, a price-rising
based iterative matching algorithm is proposed to match V-
TXs, V-RXs and RBs. The price rising strategy is employed
to resolve the contention when multiple V-TXs prefer to be
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matched with the same V-RX or RB. The proposed algorithm
is briefly described as follows.

In the initial step, each VR combination is assigned with
a virtual price to reflect its matching cost for V-TXs. The
initial value of the virtual price is set as zero. We de-
note PR={PR1, · · · , PRj , · · · , PRM}, ∀V R

j ∈ VR and
PC={PC1, · · · , PCk, · · · , PCK}, ∀Ck ∈ C as the price sets
of V-RXs and RBs, respectively. Then, PV={PV jk}j=M,k=K

j=1,k=1

is denoted as the set of prices corresponding to VR combina-
tions, where PVjk is the sum of V-RX V R

j ’s price PRj and
RB Ck’s price PCk.

In each iteration, V-TXs that have not been matched with
any VR combination propose to their most preferred VR
combination in updated preference lists based on their payoffs,
which is calculated as the difference between the achievable
maximum weighted rate and the current matching cost of
the VR combination. A stable matching is formed if any V-
RX or RB receives request from only one V-TX. Otherwise,
contention arises when more than one V-TX send requests to
the same V-RX or RB. Let B denote the set of V-RXs and RBs
that receive multiple requests. Then, the V-RXs or RBs in B
can raise their virtual prices with a step of e, which depends
on the minimum value of the differences between any two
neighboring preferences. Accordingly, V-TXs that compete for
the same V-RX or RB have to update their preference lists
based on the current virtual prices of VR combinations. The
price rising process terminates when there remains only one
V-TX.

In the final step, the algorithm ends when either all of the
V-TXs have been matched if M ≤ K, or all of the RBs have
been matched if K ≤ M .

C. Property Analysis and Implementation

The following properties of the proposed algorithm can be
easily proved according to [36], [37]. In particularly, the proof
of convergence is very similar to the proof of Theorem 1 in
[38] (page 20, Appendix B). Interested readers can refer to it
and references therein for more details.

Theorem 1: The proposed price-rising based iterative
matching algorithm converges to a stale matching within finite
iterations.

Theorem 2: The content dissemination matching Ψ is weak
Pareto optimal for V-TXs.

In preference establishment process, the computational com-
plexity for each V-TX to acquire the preferences is O(MK),
and to establish the preference list is O(MK log(MK)).
Furthermore, the computational complexity of the proposed
algorithm is O(MNl) when M ≥ K and O(KMNl) when
K ≥ M , where MNl is the required iterations of the price
rising process [39].

Our work complies with the future hierarchical comput-
ing architecture, in which both centralized and network-edge
intelligence can be combined to support applications with
diverse QoS requirements. Some delay-tolerant tasks with
high computing demands such as social relationship estimation
can be processed by the centralized computing infrastructure,
while delay-sensitive tasks such as connection probability

TABLE I: Simulation Parameters.

Simulation Parameter Value
Cell radius 500 m
Length and width of road segment 100 m, 10m
Distance from the base station to the road segment 100 m
Max D2D-V2V transmission distance L 100 m
Pathloss exponent αc, αv , αcv , αvc 3, 3.5, 4, 3
Max V-TX transmission power Pmax 500 mW
Cellular transmission power Pk 200 mW
Noise power N0 -110 dBm
Number of V-TXs and V-RXs M 1 ∼ 6
Number of RBs and CUEs K 1 ∼ 6
Vehicle speed ≤ 50km/h
QoS requirement rmin 0.5 bit/s/Hz
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Fig. 3: Weighted sum rate of D2D-V2V pairs versus number
of matching iterations ((δ = 0.5, η = 0.5)).

estimation can be executed locally without going through the
delay-prone backhaul links.

V. SIMULATION RESULTS
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Fig. 4: The weighted sum rate performance of D2D-V2V pairs:
(a) weighted sum rate versus different numbers of V-TXs and
RBs; (b) weighted sum rate versus different numbers of V-
TXs. (δ = 0.5, η = 0.5)

In this section, the proposed algorithm is compared with ex-
haustive and random matching algorithms, which are utilized
as the upper and lower performance bounds, respectively. The
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Fig. 5: The matching satisfaction of V-RXs versus different
satisfaction thresholds.

exhaustive matching algorithm searches through all of possible
combinations to find the optimum solution. We consider one
unidirectional lane of a road segment, in which two lanes
with bidirectional vehicular traffic exist. Table I presents the
simulation parameters [14], [16].

Fig. 3 shows the convergence performance of the proposed
algorithm. The numbers of V-TXs, V-RXs and RBs have an
obvious impact on the convergence speed, i.e., more iterations
are required when K and M increase. Nevertheless, the
proposed algorithm converges in only a few iterations and
approaches the exhaustive matching algorithm. For instance,
given K = 6, the proposed algorithm takes 3 and 6 iterations
to converge when M = 3 and M = 6, respectively.

Fig. 4 (a) shows the weighted sum rate of V2V pairs with
different numbers of V-TXs and RBs. It is observed that the
sum rate performance increases along with the numbers of
both V-TXs and RBs. When the number of RBs is fixed,
adding more D2D-V2V pairs can contribute to higher sum
rate performance due to proximity gain and spectrum reusing
gain. On the other hand, since more D2D-V2V links can
be supported by increasing the number of RBs, the overall
network can benefit from diversity gain by exploring D2D-
V2V links with longer connection time and higher preference
similarity. Fig. 4 (b) compares the proposed algorithm with
both the upper and lower performance bounds. It is observed
that the performance achieved by the proposed algorithm is
approximate to the optimum performance and significantly
outperforms that of the random matching algorithm. For in-
stance, the proposed algorithm can achieve up to 93.76% of the
optimal performance and outperforms the random performance
by 77.32%, when M = 6, K = 6.

Fig. 5 shows the matching satisfaction of V-RXs, which is
defined as the CDF of the physical-social score. The impacts
of physical-social score on V-RX satisfaction are evaluated
by varying the thresholds of connection probability and social
relationship tightness. It is observed that the satisfaction per-
formance increases along with the thresholds. This is due to
the fact that physical-social score is dramatically improved by
allowing V-TXs and V-RXs with longer connection time and
stronger social relationship tightness to form D2D-V2V pairs.
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Fig. 6: The relationship between weighted sum rate of D2D-
V2V pairs and the weighted average rate per D2D-V2V pair
(N=6, K=6).
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Fig. 7: Percentage of connected vehicles versus the threshold
of connection probability η (N=6, K=6).

Fig. 6 shows the relationship between the weighted sum
rate and the weighted average rate per D2D-V2V pair. The
threshold of social relationship tightness δ is set as 0.7, and
M = K = 6. When the threshold of connection probability
η increases, the weighted average rate per D2D-V2V pair is
improved at the expenses of the weighted sum rate. The reason
is shown in Fig. 7, which demonstrates that percentage of
connected vehicles decreases significantly as η increases. The
weighted average rate gain is not enough to compensate for
the sum rate loss caused by lower percentage of connection.

VI. CONCLUSION

In this paper, we investigated the content dissemination
problem in D2D-V2V based IoV networks. Both the physical
and social layer information in terms of connection probability
and social relationship tightness were employed to solve the
formulated joint peer discovery, power control, and channel
selection problem. In particularly, we modeled the headway
distance of vehicles as a Wiener process and estimated the con-
nection probability of V2V pairs by exploiting Kolmogorov
equation. The social relationship tightness was measured by
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employing BNL based on the real-word social big data col-
lected from Sina Weibo and Youku. Then, a price-rising based
iterative matching algorithm was proposed to maximize the
sum rate of D2D-V2V pairs weighted by physical-social scores
under the QoS constraints of both cellular and D2D-V2V links.
The proposed algorithm was compared with two heuristic
algorithms, and its effectiveness and superiority in improving
sum rate and content satisfaction were validated through
numerical results. In the future, we will consider the multi-
hop D2D-V2V scenarios and study the joint optimization of
content caching and dissemination.
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