
RESEARCH ARTICLE

MR findings of microvascular perfusion in

infarcted and remote myocardium early after

successful primary PCI

Anne BethkeID
1,2*, Limalanathan Shanmuganathan3,4, Christian Shetelig2,4,5,6,

David Swanson7, GeirØystein Andersen3, Jan Eritsland3, Nils Einar KløwID
1,6,

Pavel Hoffmann8

1 Department of Radiology and Nuclear Medicine, Division of Diagnostics and Intervention, Oslo University

Hospital, Ullevål, Oslo, Norway, 2 Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo,

Norway, 3 Feiring Heart Clinic, Feiring, Norway, 4 Department of Cardiology, Oslo University Hospital,

Ullevål, Oslo, Norway, 5 Center for Heart Failure Research, Oslo, Norway, 6 Center for Clinical Heart

Research, Oslo University Hospital, Oslo, Norway, 7 Institute of Basic Medical Sciences, Department of

Biostatistics, University of Oslo, Oslo, Norway, 8 Section for Interventional Cardiology, Department of

Cardiology, Oslo University Hospital, Ullevål, Oslo, Norway

* annbet@ous-hf.no

Abstract

Objectives

The aim of the study was to evaluate CMR myocardial first-pass perfusion in the injured

region as well as the non-infarcted area in ST-elevation myocardial infarction (STEMI)

patients few days after successful primary percutaneous coronary intervention (PCI).

Materials and methods

220 patients with first time STEMI successfully treated with PCI (with or without postcondi-

tioning) were recruited from the Postconditioning in STEMI study. Contrast enhanced CMR

was performed at a 1.5 T scanner 2 (1–5) days after PCI. On myocardial first-pass perfusion

imaging signal intensity (SI) was measured in the injured area and in the remote myocar-

dium and maximum contrast enhancement index (MCE) was calculated. MCE = (peak SI

after contrast—SI at baseline) / SI at baseline x 100.

Results

There were no significant differences in first-pass perfusion between patients treated with

standard PCI and patients treated with additional postconditioning. The injured myocardium

showed a significantly lower MCE compared to remote myocardium (94 ± 55 vs. 113 ± 49;

p < 0.001). When patients were divided into four quartiles of MCE in the injured myocardium

(MCE injured myocardium), patients with low MCE injured myocardium had: significantly

lower ejection fraction (EF) than patients with high MCE injured myocardium, larger infarct

size and area at risk, smaller myocardial salvage and more frequent occurrence of micro-

vascular obstruction on late gadolinium enhancement. MCE in the remote myocardium
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revealed that patients with larger infarction also had significantly decreased MCE in the non-

infarcted, remote area.

Conclusion

CMR first-pass perfusion can be impaired in both injured and remote myocardium in STEMI

patients treated with primary PCI. These findings indicate that CMR first-pass perfusion

may be a feasible method to evaluate myocardial injury after STEMI in addition to conven-

tional CMR parameters.

Introduction

In patients with acute ST-elevation myocardial infarction (STEMI) the recommended treat-

ment to restore coronary blood flow is percutaneous coronary intervention (PCI) within the

first 120 minutes after the STEMI diagnosis has been made [1]. After successful PCI, normal

TIMI (Thrombolysis in Myocardial Infarction) flow in the infarct related artery (IRA) post

procedure does not always translate into sufficient microcirculation at the myocardial level [2,

3]. Thus, visualization of the patency of the IRA alone is not sufficient for scheduling treatment

and physiological aspects are essential. Previous studies have shown that TIMI myocardial per-

fusion (TMP) may provide additional prognostic information to TIMI flow grade [2, 4, 5].

Cardiac magnetic resonance (CMR) imaging is a sensitive method for evaluation of the

microcirculation with high spatial resolution [6, 7]. Over the last two decades CMR imaging

has been used in STEMI patients to evaluate treatment and to predict and measure final out-

come after the infarction [8–10]. Common CMR parameters reported are left-ventricular end-

diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF), infarct size (IS)

by late gadolinium enhancement (LGE), microvascular obstruction (MVO), area at risk (AaR)

and myocardial salvage [11]. LGE is regarded as the gold standard to predict left ventricular

remodeling [12–14] and MVO is associated with the outcome in STEMI patients [15]. First-

pass perfusion has been shown to be more sensitive to detect alteration of the microvascular

perfusion than early and late gadolinium enhancement [16, 17]. First-pass perfusion is there-

fore suitable as a supplementary method to LGE and MVO as it might also detect less pro-

nounced microvascular damage missed by other methods [18].

This study included patients from the Postconditioning in STEMI (POSTEMI) study. Com-

pared with conventional primary PCI, PCI combined with ischemic postconditioning did not

influence the primary endpoint of infarct size nor the secondary endpoints of MVO, myocar-

dial salvage and ejection fraction, as determined by CMR [19]. The aim of the present study

was to evaluate CMR myocardial first-pass perfusion in the injured as well as the non-infarcted

area in STEMI patients few days after successful primary PCI.

Material and methods

Study population and treatment protocol

The study population was recruited from the POSTEMI study (ClinicalTrials.gov Po1506) on

patients with acute STEMI treated with PCI with or without a postconditioning procedure

[20]. The study protocol was approved by the Regional Committee for Medical Research Eth-

ics, South-East Norway and all patients gave written informed consent to participate in the

study.

CMR first-pass perfusion in STEMI
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The study protocol is described in detail elsewhere [19, 20]. In brief, patients with acute

STEMI with symptoms of less than 6 hours duration and occlusion of a proximal or mid-coro-

nary artery with TIMI flow 0 or 1 before PCI were included in the POSTEMI study. Main

exclusion criteria were previous myocardial infarction, occlusion of other coronary arteries

than the IRA, ongoing treatment for angina pectoris, thrombolysis given as primary reperfu-

sion treatment, cardiogenic shock, pulmonary congestion, severe hypotension, renal failure

(serum creatinine >200 mmol/L) and general contraindication to MRI.

Patients were treated with primary PCI (standard treatment) or primary PCI with postcondi-

tioning. The postconditioning was performed with balloon inflations, 4 cycles of 1 min reocclu-

sion and 1 min reperfusion, starting 1 min after opening of the occluded coronary artery [21].

All patients were treated with a stent in the IRA and received a GPIIb/IIIa inhibitor.

Of the 272 patients randomized in the POSTEMI trial, 220 patients were included in the

present study (Fig 1). Reasons for not performing an early CMR examination (n = 32) were:

not scanner capacity before patient discharge (n = 14); claustrophobia (n = 4); reduced clinical

presentation (n = 3); reduced compliance (n = 3); death (n = 2); MRI contraindications

(n = 2), high body weight (n = 1) or unknown (n = 3). Of the remaining 240 patients five

patients had TIMI flow 0–1 post PCI or non diagnostic first-pass perfusion imaging (n = 15)

and were excluded. 220 patients with a CMR examination of diagnostic quality were included

in this substudy.

Clinical follow-up data

Clinical data were collected at one year and a composite endpoint was defined as death, myo-

cardial infarction, unscheduled revascularization >3 months after the index infarction, rehos-

pitalization for heart failure, or stroke.

CMR protocol

CMR was performed within 2 (1–5) days after the STEMI on a 1.5 T scanner (Philips Intera,

release 11 or Philips Achieva, release 3.2.1.1; Philips Healthcare, Best, The Netherlands), using

Fig 1. Study flow diagram. CMR (cardiac MRI), PCI (percutaneous coronary intervention), TIMI (Thrombolysis in

Myocardial Infarction).

https://doi.org/10.1371/journal.pone.0206723.g001
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five-element synergy-cardiac coil or Sense-cardiac coil, respectively, and vector-based electro-

cardiography (ECG).

For cine imaging the left ventricle was scanned in two-, three- and four-chamber long axis

view using balanced fast-field echo sequences for functional analysis, and short axis images

were acquired for complete left ventricular volume analysis. T2-weighted imaging was per-

formed with five short axis slices, covering the ventricle from basis to apex using black blood

inversion recovery fast spin echo sequences. The most apical and the most basal slices were

rejected and the three mid slices were used for analyses.

First-pass perfusion at rest was performed using ECG triggered fast T1 enhanced gradient-

echo technique with segmented K-space and saturation pre-pulse. Three short axis slices were

acquired during breath hold, scanning for one minute. The parameters were: TR (time to

repeat) 3.2 ms, TE (time to echo) 1.26 ms, flip angle 20˚ and saturation prepulse delay 200 ms,

trigger delay approximately 210 ms, matrix 128 and field of view 350 mm, slice thickness 10

mm, gap 20 mm.

The LGE study was performed 15 minutes after the first-pass study in short axis and two-

and four-chamber long axis view, using 3D turbo-field-echo technique with inversion pre-

pulses, covering the whole left ventricle. The imaging parameters were: TR 4.5 ms, TE 1.44 ms,

flip angle 15˚ and trigger delay 375–1226 ms, chosen according to the ECG RR interval to fit

end-diastole. The optimal T1 for suppression of the myocardium was achieved by the Look-

Locker sequence before the diagnostic sequences was performed [22].

In all patients, gadolinium-DTPA (Magnevist, Schering AG, Germany) was injected using

Spectris power injector. For the first-pass perfusion imaging, 0.05 mmol/kg body weight was

injected at the rate of 3 ml/s into the left brachial vein, followed by 25 ml of saline infused at

the same speed [23]. For LGE imaging, an additional dose of 0.1 mmol/kg of Magnevist was

injected 15 minutes before acquisition.

CMR analysis

All image analysis was performed offline on a View Forum workstation, Philips Intera

extended MR workspace R2.6.3.1. (Philips Medical Systems, The Netherlands). First-pass per-

fusion imaging was analyzed by one reader (AB) with 5 years experience. All other parameters

were analyzed by another reader (PH) with an experience >10 years within the field.

EF was calculated by assessment of the volumes of the endocardial contours in diastole and

systole of the short axis images as per standard practice [11].

AaR was assessed in the T2 images as myocardium with a SI of more than 2 standard devia-

tions above the signal intensity (SI) in remote myocardium. The contour of the area with

hyperintense signal was than manually drawn in the central 3 of the 5 short axis slices. As the

remote area, myocardium supplied by other arteries than the IRA remote to the infarction was

chosen. High-grade stenosis in the remote area was ruled out via coronary angiography find-

ings. Myocardial hemorrhage was assessed visually as a hypoenhanced region within the AaR

on T2 imagages. The size of the hemorrhage was not assessed.

Myocardial first-pass perfusion was analyzed semi-quantitatively by measuring the SI versus

time [11]. SI was measured with manually traced regions of interest in the lumen of the left ventri-

cle, the area of the injured myocardium and in a myocardial area remote to the infarction [6] (Fig

2). The region of the injured myocardium was specified by visual comparison with the LGE study,

also including the MVO area. The short axis slice with the greatest infarct extension was consid-

ered being the most representative of the infarction. For the lumen of the left ventricle maximum

SI was given. The following parameters were calculated for injured and remote myocardium:

Maximum contrast enhancement index MCEð Þ ¼
ðpeak SI after contrast� SI at baselineÞ

SI at baseline � 100 [24–26].

CMR first-pass perfusion in STEMI
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Time to peak contrast enhancement (TTP) was visually assessed and measured from entry of the

contrast medium into the left ventricle to peak myocardial SI [27]. Additionally, MCE
TTP was calculated

for each region.

The IS was assessed as a volume in the LGE images by manually drawing the contour of the

hyperenhanced area in short axis slices [11]. The volume of the infarction was also related to

the total left ventricular myocardial volume and given in percentage. Presence of MVO was

defined as a hypointense area in the center of the hyperintense area representing infarcted

myocardium, assessed in LGE images. The size of MVO was not measured. Myocardial salvage

was defined as
ðAaR� ISÞ

AaR � 100 [28].

The readers were blinded to treatment strategy and clinical outcome. The intraobserver

reliability estimated by the intraclass correlation coefficients for myocardium at risk and

infarct size were 0.876, 95% CI (0.628 to 0.963) and 0.985, 95% CI (0.963 to 0.994), respectively

[19].

Within observer consistency and agreement was 0.902, 95% CI (0.716–0.972) and 0.906,

95% CI (0.705–0.972) for MCE injured myocardium and 0.878, 95% CI (0.782–0.962) and

0.883, 95% CI (0.774–0.963) for MCE remote myocardium. The Pearson‘s correlation coeffi-

cient between observers was 0.960, 95% CI (0.903–0.984) for MCE injured myocardium and

0.759, 95% CI (0.488–0.897).

Consistency and agreement between observers was: 0.958, 95% CI (0.919–0.981) and 0.960,

95% CI (0.915–0,980) for MCE injured myocardium and 0.741, 95% CI (0.395–0.981) and

0.741, 95% CI (0.381–0.981) for MCE remote myocardium, respectively.

Fig 2. Analysis of first-pass perfusion CMR. Fig 2A shows perfusion analysis of a patient with an inferior wall infarction with high MCE in the injured and

remote myocardium. Fig 2B shows decreased perfusion in the injured myocardium in the inferior wall compared to the remote area. On the LGE study a

hypointens area in the endocardium indicates MVO. Green line: ROI blood pool in the left ventricle, blue line: ROI injured myocardium, red line: ROI remote

myocardium. Because of the different magnitude of the signal in the blood pool and myocardium a secondary vertical axis has been implemented.

https://doi.org/10.1371/journal.pone.0206723.g002
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Design and statistical analysis

This substudy was a cohort study of exposed (standard treatment and postconditioning) versus

unexposed (standard treatment) patients.

Peak troponin is given as median (interquartile range) as the distribution was right skewed.

Other continuous data were approximately normally distributed and are presented as

mean ± standard deviation, binary data as distribution of categories.

To compare patients with different perfusion levels, MCE data of injured myocardium

(MCE injured myocardium) were divided into 4 quartiles where quartile 1 represents the high-

est and quartile 4 the lowest perfusion level. The one-way ANOVA or the chi-square test for

categorical variables were used to compare the means of the groups.

Normality and homoscedasticity of the residuals was confirmed for MCE injured myocar-

dium (S1 Fig). Therefore, linear regression analysis was performed for continuous outcomes

(dependent variable: EF, ESV, EDV, IS, AaR, myocardial salvage) and logistic regression for

binary outcomes (dependent variables: MVO, myocardial hemorrhage). We additionally

adjusted for confounding by including age, sex, symptom-to-balloon time, IRA, smoking sta-

tus, diabetes, treatment for dyslipidemia into all our models. Examination of residual plots of

MCE show approximately normally distributed and homoskedastic errors as well as linearity

in the explanatory variable, making further variable transformation unnecessary.

Correlation between MCE injured myocardium and the composite endpoint was done with

Spearman´s rho.

A p-value <0.05 was considered statistically significant. We used IBM SPSS Statistics 24 for

all analysis.

Results

Baseline characteristics of the 220 patients included in this substudy are shown in Table 1.

Except for patient age (standard treatment 58.4 ± 10.1; postconditioning 61.6 ±11, p = 0.026)

there were no significant differences in baseline parameters, or in CMR parameters, including

first-pass perfusion, between the two treatment groups (MCE injured myocardium: standard

Table 1. Patient baseline characteristics.

n (total) 220

Age (years) 60 ± 11

Female gender 37 (17)

Peak troponin T, ng/l 5643 (2311 to 8974)

Infarct related artery LAD 108 (49)

LCX 23 (10)

RCA 89 (40)

1-vessel disease 140 (64)

2-vessel disease 55 (25)

3-vessel disease 25 (11)

Current and former smoking 146 (66)

Treated hypertension 60 (27)

Diabetes 13 (5.9)

Dyslipidemia 23 (10)

Peak troponin is presented in median (interquartile range); age is presented as mean ± standard deviation, other data

as n (%). LAD (left anterior descending artery), LCX (left circumflex artery), RCA (right coronary artery)

https://doi.org/10.1371/journal.pone.0206723.t001
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treatment 92 ± 84; postconditioning 95 ± 74, p = 0.659). Therefore, groups were merged for

further analysis.

CMR first-pass perfusion revealed significantly reduced MCE and delayed TTP in the

injured myocardium compared to remote myocardium (MCE: 94 ± 55 vs. 113 ± 49, p< 0.001;

TTP 15.8 ± 4.9 sec vs. 14.8 ± 4.1 sec, p< 0.001).

When MCE data of the injured myocardium were divided into four quartiles, peak tropo-

nin T was higher for patients with lower MCE. However, there were no significant differences

in the angiographic data like symptom-to-balloon time, door-to-balloon time, IRA, multi ves-

sel disease, TIMI flow post PCI or the use of thrombectomy related to the level of MCE

(Table 2).

Comparing the level of MCE to the functional CMR parameters, patients with high MCE

injured myocardium (1. quartile) had significantly smaller EDV and ESV and higher EF com-

pared to patients with low MCE injured myocardium (4. quartile) (Table 3). Comparing the

level of MCE injured myocardium to the other CMR parameters of infarction, patients with

high MCE injured myocardium had smaller IS, smaller AaR and larger myocardial salvage. In

patients with high MCE injured myocardium, myocardial hemorrhage and MVO on LGE was

significantly less frequent than in patients with low MCE injured myocardium. The differences

were significant also when controlled for confounders (age, sex, symptom-to-balloon time,

IRA, smoking status, treated dyslipidemia) (Table 4).

Peak SI in the lumen of the left ventricle was not significantly different between the four

groups (quartile 1: 2823; quartile 2: 2535; quartile 3: 2524, quartile 4: 2359; p = 0.102).

Analyzes of MCE in the remote myocardium showed that in the 1. quartile MCE in the

remote myocardium tended to be lower (not significant) than in the injured myocardium. In

all the other quartiles of MCE injured myocardium, MCE remote myocardium was higher

than MCE injured myocardium. Data also showed that MCE remote myocardium decreased

significantly from the 1. to the 4. quartile (161 ± 47 vs. 76 ± 31, p =< 0.001).

Clinical events were few. Of the 220 patients included in the present substudy 13 patients

had a clinical event as defined in the composite endpoint. There was no significant difference

between the four groups of MCE injured myocardium (Table 5).

Table 2. Clinical, biochemical and coronary angiographic data according to quartiles of MCE in the injured myocardium. Quartile 1 represents the highest MCE and

quartile 4 the lowest MCE level.

Quartiles of MCE in the injured

myocardium

1 2 3 4 p value

Peak Troponin T, ng/l 4446 (2075 to 6817) 5297 (2286 to 8308) 6508 (2913 to 10103) 7760 (3913 to 11608) <0.001

Symptom-to-balloon time, minutes 186 ± 89 200 ± 95 208 ± 89 193 ± 75 0.590

Door-to-balloon time, minutes 31 ± 8.3 35 ± 15 36 ± 11 35 ± 11 0.169

Infarct related artery LAD 26 (47) 32 (58) 23 (42) 27 (49) 0.331

LCX 4 (7.3) 3 (5.5) 7 (13) 9 (16)

RCA 25 (46) 20 (36) 25 (46) 19 (35)

1-vessel disease 31 (56) 38 (69) 35 (64) 36 (66) 0.832

2-vessel disease 18 (33) 11 (20) 13 (24) 13 (24)

3-vessel disease 6 (11) 6 (11) 7 (13) 6 (11)

TIMI flow post PCI 2 2 (3.6) 3 (5.5) 4 (7.3) 1 (1.8) 0.553

3 53 (96) 52 (95) 51 (93) 54 (98)

Thrombectomy 13 (24) 11 (20) 12 (22) 12 (22) 0.975

Peak troponin is presented in median (interquartile range). Other data are presented mean ± standard deviation or as n (% within the MCE groups). MCE (maximum

contrast enhancement index), LAD (left anterior descending artery), LCX (left circumflex artery), RCA (right coronary artery), TIMI (Thrombolysis in Myocardial

Infarction). p-values indicate level of significance between the 4 quartiles

https://doi.org/10.1371/journal.pone.0206723.t002
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Discussion

In the present study, the results on CMR first-pass perfusion at rest showed no significant dif-

ferences between patients treated with PCI with or without postconditioning, which is in

accordance with the findings in the main study [19, 29].

Normalized flow in the epicardial arteries, in the absence of high-grade stenosis, gives a

comparable blood supply to the entire myocardium. Still, microvascular perfusion in the

injured myocardium was significantly lower than in the remote area of the left ventricle. The

Table 3. CMR data according to quartiles of MCE of the injured myocardium.

Quartiles of MCE injured myocardium 1 2 3 4

n = 220 55 55 55 55 p-value

MCE injured myocardium 171 ± 38 101 ± 12 67 ± 7.5 36 ± 13

MCE remote myocardium 161 ± 47 119 ± 36 97 ± 36 76 ± 31 < 0.001

TTP injured myocardium 15 ± 3.8 16 ±5.4 16 ± 5.9 16 ± 4.4 0.545

TTP remote myocardium 12 ± 3.4 15 ± 5 15 ± 3.8 16 ± 3.9 0.323

MCE/TTP injured myocardium 12 ±4.1 7 ±2 4.5 ±1.2 2.3 ± 1 < 0.001

MCE/TTP remote myocardium 12 ± 4.4 8.8 ± 3.7 7.3 ±3.7 5.3 ± 2.9 < 0.001

EDV 152 ± 37 172 ± 46 178 ± 47 182 ± 36 0.001

ESV 69 ± 27 89 ± 46 90 ± 39 95 ± 31 0.001

EF 55 ± 8.9 50 ± 13 51 ± 11 48 ± 11 0.009

Total infarct volume 18 ± 14 27 ± 20 31 ± 24 37 ± 25 < 0.001

Relative infarct volume, (%) 14 ± 9.5 20 ± 14 21 ± 13 24 ± 14 0.001

Area at risk, (%) 37 ± 13 44 ± 16 45 ± 15 44 ±12 0.023

Myocardial salvage 39 ± 29 37 ± 19 28 ± 18 28 ± 22 0.016

MVO on LGE, n (%) 12 (23) 23 (43) 27 (49) 40 (74) < 0.001

Myocardial hemorrhage, n (%) 8 (16) 15 (29) 26 (49) 30 (57) < 0.001

Days between PCI and CMR 2.1 ± 1.2 2.1 ± 0.9 2.1 ± 1.1 2.2 ± 1 0.963

Data are presented as mean ± standard deviation, except MVO and hemorrhage, n (%). TTP (time to peak), MCE (maximum contrast enhancement index), EDV (end-

diastolic volume), ESV (end-systolic volume), EF (ejection fraction), MVO on LGE (microvascular obstruction on late gadolinium enhancement images). p-values

indicate level of significance between the 4 quartiles

https://doi.org/10.1371/journal.pone.0206723.t003

Table 4. Regression analysis to control for confounding effects on the association between MCE injured myocar-

dium and other CMR outcome variables (dependent variable).

Dependent variable B p-value

EDV -0.133 0.007

ESV -0.11 0.009

EF 0.027 0.032

Relative infarct volume -0.047 0.001

Area at risk -0.041 0.014

Myocardial salvage 0.068 0.025

MVO on LGE -0.015 <0.001

Myocardial hemorrhage -0.015 <0.001

Independent variable: MCE injured myocardium. Variables controlled for were: age, sex, symptom-to-balloon time,

infarct related artery, smoking status, diabetes and treatment dyslipidemia. EDV (end-diastolic volume), ESV (end-

systolic volume), EF (ejection fraction), MVO on LGE (microvascular obstruction on late gadolinium enhancement

images)

https://doi.org/10.1371/journal.pone.0206723.t004
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main findings of the present study are, that the level of MCE injured myocardium was associ-

ated with EDV, ESV and EF as well as the IS, AaR, myocardial salvage and the occurrence of

MVO at LGE imaging. Furthermore, in patients with low perfusion in the injured myocar-

dium also perfusion in the remote myocardium was significantly impaired. Semiquantitative

parameters do not depend on the relative difference between injured and remote myocardium

and therefore minor changes in remote myocardium can be detected. Recently, research on

STEMI patients has focused more on the remote myocardium [30] and parameters evaluating

the remote myocardium in an early state after STEMI may be of value when new treatments

are tested.

In patients with acute STEMI and restored TIMI 3 flow in the IRA, TMP grade assessed at

final angiography has been shown to have prognostic value [2, 4]. The present study focuses

on the association between microvascular perfusion assessed with CMR first-pass perfusion

and the early outcome in STEMI patients. MVO on CMR is widely regarded as a manifestation

of reperfusion injury after STEMI [31, 32]. However, MVO is reported in over 50% of patients

post STEMI reperfused by PCI irrespective of post procedural TIMI flow grade [3, 10]. CMR

first-pass perfusion is a suitable tool to evaluate microperfusion, as it is more sensitive than

MVO on LGE regarding the blood supply to the microvasculature [16, 18].

Despite standardized contrast media dose and infusion rate as well as examination tech-

nique and TIMI 3 flow after PCI in the majority of the patients (95.5%), there were significant

differences in CMR first-pass perfusion at rest. In the present study, patients with high MCE

injured myocardium performed better on functional CMR parameters and presented with sig-

nificantly smaller IS, and even though they had smaller AaR, they also had higher myocardial

salvage. This is in agreement with the findings of Hopp et al. [7], who also found a correlation

between peak enhancement in the infarcted myocardium and the presence of MVO at LGE.

Ørn et al. also demonstrated larger infarct sizes at six months in the presence of impaired first-

pass perfusion [33]. CMR first-pass perfusion might therefore be a more sensitive parameter

for evaluation of new treatment strategies [18, 34]. In a recent study Lombardo and coworkers

showed a correlation between the extent and transmurality of MVO on first-pass perfusion

imaging and left ventricular remodeling [35].

The present study also shows that MCE remote myocardium may be impaired after STEMI

treated with PCI. As none of the other CMR parameters in our study, such as T2, LGE or cine

sequences showed alterations in the myocardium supplied of other than the target vessel, first-

pass perfusion appears to be a more sensitive parameter for evaluating the microvasculature.

Also previous CMR studies have found alterations in perfusion of the myocardium adjacent to

the infarction and also in the remote myocardium. For instance, Bodi et al. found hypoperfu-

sion in the non-infarcted myocardium in 13% of the myocardial segments adjacent to the

infarction [36] and Taylor et al. describes longer TTP in myocardial areas surrounding the

infarcted area [37]. Further, Nagao et al. found reduced myocardial perfusion in the remote

myocardium in patients with anterior wall infarction [38]. Rogers et al. [39] showed a non-sig-

nificant improvement of perfusion in the non-infarcted myocardium after myocardial infarc-

tion from week one to week seven by 24% in a small study of 17 patients. Stunning might be

Table 5. Composite endpoints according to quartiles of MCE of the injured myocardium.

Quartiles of MCE injured myocardium 1 2 3 4 Spearman correlation coefficient p-value

Composite endpoint 3 (5,5) 6 (10,9) 2 (3,6) 2 (3,6) -0,06 0,373

Data are presented as n (%). Composite endpoints were composed of death, myocardial infarction, unscheduled revascularization >3 months after the index infarction,

rehospitalization for heart failure, or stroke.

https://doi.org/10.1371/journal.pone.0206723.t005
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considered as a possible explanation for these findings [9]. Based on a PET/MRI animal study

Lee and colleagues assume a correlation of inflammation in the remote myocardium post

STEMI and left ventricular remodeling [40]. Another potential cause could be earlier unno-

ticed infarction in other vascular territories, although previous infarction and occlusion of a

non-infarct related artery was an exclusion criterion in our study. Furthermore, there was no

evidence of other infarction on LGE. Non-culprit lesion or collateral flow reduction might

cause deprived first-pass perfusion in the remote myocardium [16, 41]. However, coronary

stenosis do normally not reduce resting myocardial perfusion [42]. The differences in MCE

injured myocardium and MCE remote myocardium were not caused by a more complex coro-

nary disease in patients with lower MCE injured myocardium as the percentage of two- and

three-vessel disease was similar between the groups and also TIMI flow post PCI was not sig-

nificantly different between the groups. As indicated by similar maximum SI in the blood pool

in the left ventricle, the differences in MCE between groups were not due to infusion variations

or because of individual hemodynamics.

Evolving techniques like T1 mapping have also shown changes in the remote myocardium

[30, 43, 44]. Carberry and colleagues demonstrated an association between the extracellular

volumes in the remote zone and left ventricular EF [30]. As the changes in ECV in the remote

zone were consistent over six months and not accompanied by T2 changes they concluded

that underlying replacement fibrosis is a probable explanation. Further, Reinstadler and col-

leagues found a correlation of native T1 values in the remote zone and major adverse cardiac

events [43].

The remote myocardium in patients with STEMI has also been evaluated in a series of stud-

ies applying other methods than CMR. In a recent study in patients with acute myocardial

infarction, Cheng et al. [45] showed a correlation between impaired coronary flow reserve

measured by contrast enhanced echocardiography in the non-infarcted myocardium and left

ventricular remodeling and function. Decreased microvascular density and activation of the

renin-angiotensin system were proposed as underlying mechanism [45, 46]. Another theory

implies that in the situation of an acute infarction the remote myocardium initiates compensa-

tory metabolic reactions [47]. Other studies reveal reduced coronary flow reserve in the

infarcted as well as in the remote myocardium in the acute phase of AMI, both with intracor-

onary measurements [48] and by [15O]H2O positron emission tomography [49]. Impaired

vasodilation capacity [47] and dysfunctional autoregulation of the microvasculature caused by

neurohumoral activation might in part explain these findings [48].

Echocardiography with circumferential strain could as well show a significant correlation

between alterations in the non-infarcted myocardium and diastolic function [50]. It was

assumed that compensatory hypercontractility in the remote myocardium in case of STEMI

contributes essentially to these findings.

Several histological studies, both in animals and patients found alterations like focal necro-

sis not only in the infarcted but also in the remote myocardium early after myocardial infarc-

tion [51, 52]. Olivetti et al. for instance found apoptosis in 12% of the cardiomyocytes in the

AaR and in about 1% in the remote myocardium in a study on patients with large infarctions

[53]. These changes in the remote myocardium might contribute to the alterations seen in the

present study of CMR first-pass perfusion. However, the data of the present study does not

imply a clear explanation and the findings in the remote myocardium remain an observation.

STEMI patients treated with primary PCI do generally have a good prognosis [54, 55]. In

our study only 5,9% of the patients had an adverse clinical event within the first year and no

significant difference between the MCE groups was found. However, the study was not pow-

ered to detect differences in clinical events and one has to be cautious to draw conclusions. As

clinical events are rare, reliable surrogate endpoints are needed in studies evaluating treatment

CMR first-pass perfusion in STEMI
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regimes in STEMI patients. MCE of the injured and remote myocardium may be used in

future trials as a surrogate to reduce sample size.

However, to prevent left ventricular remodeling patients at high risk and in need for inten-

sified therapy need to be identified at an early point in time. The results of the present study

indicate that changes in the remote and injured myocardium are related to outcome. As LGE

normally does not show alteration in the remote myocardium, we additionally to the standard

parameters propose MCE in the injured and remote myocardium as an early marker for risk

stratification in STEMI patients treated with primary PCI. However, more standardization of

perfusion in the remote myocardium is needed before clinical application. This can be an

interesting research area for future investigations.

Limitations

In the present study first-pass perfusion CMR covers only 3 slices and not the entire left ventri-

cle, which can lead to inaccuracy [16]. Great care was taken to standardize contrast infusion,

but we cannot completely exclude some variations in infusion and hemodynamics between

individual patients.

SI can vary within different distances to the coil. We accounted for that by relating peak SI

to baseline SI. Moreover, IRA was evenly distributed between the different groups.

We applied a semiquantitative analysis for the evaluation of first-pass perfusion imaging

instead of analyzing the absolute values. However, semiquantitative approaches have been

shown to be valuable in STEMI patients [7, 37].

Conclusion

CMR first-pass perfusion can be impaired in both injured and remote myocardium in STEMI

patients treated with primary PCI. Impaired first-pass perfusion in the remote myocardium

was particularly seen when impairment was larger in the injured myocardium. First-pass per-

fusion provided additional information to TIMI flow at angiography.
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