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Inflammation is a complicated biological and pathophysiological cascade of responses to 
infections and injuries, and inflammatory mechanisms are closely related to many diseases. 
The magnitude, the complicated network of pro- and anti-inflammatory factors, and the 
direction of the inflammatory response can impact on the development and progression 
of various disorders. The currently available treatment strategies often target the symp-
toms and not the causes of inflammatory disease and may often be ineffective. Since the 
onset and termination of inflammation are crucial to prevent tissue damage, a range of 
mechanisms has evolved in nature to regulate the process including negative and positive 
feedback loops. In this regard, microRNAs (miRNAs) have emerged as key gene regulators 
to control inflammation, and it is speculated that they are fine-tune signaling regulators to 
allow for proper resolution and prevent uncontrolled progress of inflammatory reactions. 
In this review, we discuss recent findings related to significant roles of miRNAs in immune 
regulation, especially the potential utility of these molecules as novel anti-inflammatory 
agents to treat inflammatory diseases. Furthermore, we discuss the possibilities of using 
miRNAs as drugs in the form of miRNA mimics or miRNA antagonists.
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INTRODUCTION

MicroRNAs (miRNAs) are short non-coding RNA molecules usually composed of 18–25 nucleotides 
that originates inter- or intragenicaly by the action of RNA pol III and II, respectively (1–3). After 
initial processing by RNase Drosha in the nucleus, the pre-miRNA is transported to the cytoplasm, 
where the miRNA hairpin is cleaved by the endoribonuclease Dicer, forming an miRNA duplex.  

Abbreviations: microRNAs, miRNAs, or miRs, short non-coding ribonucleic acid molecules; RISC, RNA inducing silencing 
complex; TLR, toll-like receptor; PRR, pattern-recognition receptors; DCs, dendritic cells; NK, natural killer; Th, T helper; Treg, 
regulatory T; RA, rheumatoid arthritis; IBD, inflammatory bowel disease; TNF-α, tumor necrosis factor alpha; IL, interleukin; 
NF-κB, nuclear factor-κB; IκB, inhibitor κB; IRAK4, interleukin-1 receptor-associated kinase 4; TGF-β, transforming growth 
factor beta; TAK1, TGF-β-activated kinase 1; β-TrCP, beta-transducin repeat containing E3 ubiquitin ligase; MAP3K7, mitogen-
activated protein 3 kinase 7; PDCD4, programmed cell death 4; LPS, lipopolysaccharide; IFN, interferon; PTEN, phosphatase 
and tensin homolog; HMGB1, high mobility group box 1; Chi3l1, chitinase 3-like 1; STAT, signal transducer and activator of 
transcription; TACE, TNF-α converting enzyme; TRAF6, TNF receptor-associated factor 6; USP, ubiquitin-specific protein; C/
EBP-α, CCAAT/enhancer-binding protein alpha; PPARγ, peroxisome proliferator-activated receptor gamma; SMAD3, moth-
ers against decapentaplegic homolog 3; TIRAP, toll/interleukin-1 receptor domain-containing adaptor protein; AP, adaptor 
protein; ADA2, adenosine deaminase 2; IRF5, IFN regulatory factor 5; CARHSP1, calcium-regulated heat stable protein 1; 
IKKε, inhibitor-κB kinase ε; TAB2, TGF-β-activated kinase-1-binding protein 2; TNFRSF-4, TNF-α superfamily member 4.
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FIGURE 1 | The biogenesis and function of microRNAs (miRNAs). miRNA is a short non-coding ribonucleic acid originated inter- or intragenicaly by RNA pol III and 
II, respectively. After initial processing by RNase Drosha in the nucleus, the pre-miRNA is transported to the cytoplasm where the miRNA hairpin is cleaved by 
endoribonuclease Dicer, forming an miRNA duplex. One of the miRNA strands loads into the RNA inducing silencing complex (RISC) that regulates mRNA 
transcription and protein translation through various ways. The miRNA binding to its target usually results in mRNA degradation, decreased mRNA stability,  
or translational inhibition, and hence they can influence transcriptional regulation of target genes. Alternatively miRNAs occasionally can enhance RNA stability  
and even upregulate transcription and translation of their certain targets. Some evidence also indicated that miRNAs can target long-non-coding RNAs  
(lncRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), and small nuclear RNAs (snRNAs), and regulate expression of other miRNAs.
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One of the miRNA strands is loaded into the RNA inducing silen-
cing complex (RISC), which regulates mRNA transcription and 
protein translation through various ways (Figure 1). The miRNA 
binding to its target usually results in mRNA degradation or trans-
lational inhibition, and hence they can influence transcriptional 
regulation of target genes (4). Alternatively, miRNAs occasionally 
can enhance RNA stability and even upregulate transcription and 

translation of their specific targets (5–7). There are also evidence 
indicating that miRNAs can target long-non-coding RNAs (lncR-
NAs), ribosomal RNAs, transfer RNAs, and small nuclear RNAs, 
and regulate expression of other miRNAs (8, 9). However, the 
functional consequences of such actions remain unknown.

The miRNAs are expressed in a wide variety of organs and cells, 
and regulate both pro- and anti-inflammatory actions. The latter  
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FIGURE 2 | The broad function of microRNAs (miRNAs) in immune regulation. miRNAs are expressed in immune cells and function as “fine-tuners” for innate and 
adaptive immune responses. They establish an integrated part of the regulatory networks in innate immunity and regulate functions of immune cells such as 
monocytes, dendritic cells (DCs), macrophages, neutrophils, natural killer (NK) cells, megakaryocytes, and granulocytes. In adaptive immunity, they are implicated  
in every biological process including pathways involved in the T and B cells development, differentiation, central and peripheral tolerance, as well as their function.
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is the focus of this review. It has been estimated that there are 
nearly 5,000–10,000 miRNAs in mammals, together forming 
an miRNA network, which controls the expression of over two-
thirds all protein-coding genes (www.mirBase.com). This system 
acts as a complex regulatory network, where a single miRNA may 
be involved in regulating many mRNA targets, and one mRNA 
can also be targeted by more than one miRNA (10–12). The 
miRNA network plays a critical role in regulating gene expres-
sion in health and disease, is crucial for normal mammalian 
development, and regulates biological processes such as the cell 
cycle, proliferation, and apoptosis (13). miRNAs are essential 
regulators of hematopoiesis, immune cell development, immune  
responses, inflammation, and autoimmunity, providing a new the-
rapeutic window (14). Dysregulation of miRNAs expression has 
been linked to a wide spectrum of human diseases such as deve-
lopmental abnormalities, cancer, and autoimmune diseases (15).  

Here, we review recent findings on the role of miRNAs as anti-
inflammatory agents, and their potential utility as novel thera-
peutics for the treatment of inflammatory diseases.

miRNAs AND IMMUNE REGULATION

Over the past decade, studies demonstrate that miRNAs func-
tion as “fine-tuners” of the immune system, playing a central 
role in the development and homeostasis of immune cells, which 
is important for the normal function of the immune responses 
(Figure  2). Importantly, some miRNAs such as miR-146 and 
miR-155 impact on activation of host defense pathways, which 
are linked to the control of immunity and the inflammatory 
sequelae (16). Previous studies elegantly demonstrated that a 
single miRNA can have a pivotal role in the development of both 
innate and adaptive immunity, and under some conditions might 
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act as a negative feedback pathway, that modulates and impacts 
on immune dysfunction and disease (17). The mechanistic stud-
ies have suggested that this critical function is dependent upon 
interactions between miRNAs and transcription factors and 
targeting signaling proteins as well as regulators of cell death 
(18). Alternatively, the immune system can regulate biogenesis of 
miRNAs at multiple levels from transcription and microprocess-
ing to loading into the RISC and localization of their action (19). 
Besides the essential role of miRNAs in directing the immune 
system, these molecules are also capable of acting as direct intra-
cellular agent to combat against pathogens (20).

MicroRNAs are an integrated part of the regulatory networks  
in the innate immune response, acting as the first line of immu-
nity. Activation of innate defense pathways such as toll-like 
receptor (TLR) signaling results in alterations in the expression 
of miRNAs that can regulate inflammatory gene expression (21). 
The dysregulated miRNAs can modulate translation of transcripts 
resulting in a decrease in the levels of immunomodulating factors 
that can inhibit or initiate the inflammatory response, thus acting 
as “on-off ” brakes to regulate inflammation (22). Of particular 
interest is the central role that miR-146 plays in the control of  
TLRs and cytokine signaling through a negative feedback regu-
lation loop (23). miRNAs can directly modulate the levels of 
molecules involved in the pattern-recognition receptors (PRR)-
induced signaling, giving negative feedback in the PRR pathway 
(24). miRNAs also participate in the modulation of epithelial  
cell function (25), macrophages and dendritic cells (DCs) matu-
ration (26, 27), granulocytes and monocytes proliferation (28), 
and natural killer (NK) cell function (29). Furthermore, miRNAs 
can regulate the expression of several cytokines/chemokines invo-
lved in the innate immune response (30).

MicroRNAs are key regulators of the development and gene-
ration of different T helper lineages and CD4+ T  cell function 
(31). They also play a central role in the development, prolifera-
tion, survival, migration, differentiation, and effector functions 
of CD8+ T cells and regulatory T (Treg) cells (32, 33). In B cells, 
miRNAs appear to have a key role in the early and effector differ-
entiation including isotype switching and affinity maturation as 
well as mature and memory cell responses (34, 35). Interestingly 
and related to autoimmune disease development, miRNAs are 
involved in receptor editing and clonal deletion to maintain T and 
B cells tolerance against self-antigens, thus their aberrant expres-
sion correlates with the onset and prognosis of many autoimmune 
conditions (15). As an example, dicer-deficient B cells produce 
high titers of autoreactive antibodies, which correlate with the 
presence of autoimmune features in animal models (36). miRNAs 
are also implicated in cytokine production by lymphocytes and 
antigen presentation by DCs (37). Moreover, miRNAs have the 
ability to regulate epigenetic condition in lymphocytes such as 
methylation, and amplify the strength and sensitivity of T- and 
B-cell receptor signaling (38).

The above facts indicate that the miRNA system has emerged 
as a critical regulatory network in several biological processes  
and involves both the innate and adaptive immune responses. 
This is illustrated in Figure 2, but it is beyond the scope of this 
review to discuss each miRNA and its relation to each immune 
cell in detail [for detail information please read the following 

articles (17, 39, 40)]. Below we focus on miRNAs that impact  
on inflammation through their anti-inflammatory properties.

miRNAs AND INFLAMMATION

Inflammation is a complex biological and pathophysiological res-
ponse induced by infection and/or tissue damage and involves 
a network of pro- and anti-inflammatory mediating molecules 
and effects (41, 42). The inflammatory response to a wide range 
of stimuli is a “double edged sword.” In its absence homeostasis 
cannot be resumed. On the other hand, inflammation may cause 
tissue damage, reversible or permanent, and induces disease pro-
cesses (43, 44). Inflammation involves a harmonized, consecutive, 
and often self-limiting sequence of events controlled by posi-
tive and negative regulatory networks (41). Thus, the molecular 
networks that regulate the initiation, spread, and resolution of 
inflammation must be appropriately tuned for optimization of the 
innate immune response (40). Besides protein regulatory factors, 
miRNAs have emerged as key regulators of inflammation, and  
it is likely that they modulate signaling of onset and termination 
of inflammation. Depending upon the target mRNAs, miRNAs 
may either promote or suppress inflammation (40, 45). There-
fore, the immune system utilizes multiple miRNAs to properly 
regulate its functional capacity thus establishing a fine balance 
between activation and inhibition (45). The interaction between 
miRNA function and inflammatory response is highlighted 
because this interaction can contribute to a better understanding 
on how depletion or downregulated immune homeostasis can  
be associated with autoimmunity conditions (46, 47).

The regulation of inflammation by miRNAs is primarily 
through altered expression of specific miRNAs in stimulated 
immune- or bystander cells (48). There is also evidence that the 
biogenesis of miRNAs is regulated as part of the inflammatory 
response, by altering the transcription, processing or stabilization 
of mature or precursor miRNA transcripts (40, 49). The initia-
tion, spread, and resolution steps of inflammation are subject to 
both positive and negative regulatory events via miRNAs (50). 
The positive feedback initiates a cascade of molecular events that 
serve to combat against invasion of microbial pathogens and suc-
cessful repair of tissue damage. The negative feedback, which is 
activated only during severe inflammation, is vital for preven ting 
potentially damaging end-stage processes and maintaining tissue 
homeostasis (Figure 3). miRNA exerts their anti-inflammatory 
functions via multiple pathways, which are discussed in details 
below (Figure 4).

miR-10a
This miRNA and its actions are well conserved among verteb-
rates and found to be an important posttranscriptional mediator 
in the control of inflammation (51). Importantly, its downregu-
lation has been reported in inflammatory disorders such as 
rheumatoid arthritis (RA), inflammatory bowel disease (IBD), 
colitis, acute pancreatitis, and atherosclerosis (52–56).

In RA patients, miR-10a is downregulated by tumor necrosis 
factor alpha (TNF-α) and interleukin (IL)-1β, through promoting 
the production of the transcription factor YY1, a downstream 
gene of nuclear factor-κB (NF-κB). The downregulated miR-10a 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FIGURE 3 | The spectrum of microRNA (miRNA) effects during inflammation. Inflammation is a complex biological and pathophysiological response in vascular 
tissues to noxious stimuli, such as infection and tissue damage. The initiation, spread, and resolution steps of inflammation are subject to both positive and negative 
regulatory events via miRNAs to achieve an optimal immune response (green arrow). The positive feedback is activated to initiate a cascade of molecular events that 
leads to combat invading microbial pathogens and successful repair of tissue damage. The negative feedback is only activated during severe inflammation and may 
be vital in preventing potentially dangerous and excessive inflammation. Lack of appropriate initiation or spread impedes the innate immune response, and lack of 
correct resolution can lead to uncontrolled condition and disease (red arrow). Thus, the molecular networks based on miRNAs that regulate the initiation, spread, 
and resolution of inflammation must be appropriately tuned for optimization of the innate immune response.
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accelerates inhibitor κB (IκB) degradation and NF-κB activation. 
This is via targeting interleukin-1 receptor-associated kinase 4,  
transforming growth factor beta (TGF-β)-activated kinase 1 
(TAK1), the beta-transducin repeat containing E3 ubiquitin ligase 
(β-TrCP), and mitogen-activated protein 3 kinase 7 (MAP3K7) 
that are key regulators of NF-κB signal transduction (56). In IBD 
patients, miR-10a regulates the pathogenesis by inhibiting DCs 
expression of IL-12/IL-23p40 and NOD2, as well as by inhibit-
ing Th1 and Th17 cell function, thereby its aberrant expression 
plays a role in the progression of IBD (55). This miRNA is 
predominantly expressed in the intestines and contributes to the 
maintenance of intestinal homeostasis as described earlier. Mice 
with colitis express higher levels of IL-12/IL-23p40 and lower 

levels of intestinal miR-10a compared with control mice. In the 
era of much focus on the gut microbiome and its relation to dis-
ease development, it is interesting that an unbalanced intestinal 
microbiota may negatively regulate DCs miR-10a expression  
via TLR–TLR ligand interactions through the MyD88-dependent 
pathway (53). In acute pancreatitis, the decreased serum level of 
miR-10a may be related to the changes of immune homeostasis 
during disease progression (54). Furthermore, the differential 
exp ression of miR-10a contributes to the regulation of pro-
inflammatory endothelial phenotypes in regions susceptible for 
atherosclerosis in  vitro and in  vivo by targeting MAP3K7 and 
β-TrCP (52). miR-10a is also expressed in Treg cells, indicating a 
role of this miRNA in Treg stability and function (57).
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FIGURE 4 | The way anti-inflammatory microRNAs (miRNAs) exert their action to control inflammatory response. miRNAs serve in important negative feedback 
loops in inflammation processes and inflammatory diseases. By targeting signal transduction proteins involved in the initiation of innate immune response, and by 
directly targeting mRNAs that encode specific inflammatory mediators, miRNAs can have an important impact on the magnitude of the ensuing inflammatory 
response.
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Considering that miR-10a inhibits multiple target genes 
involved in NF-κB signaling and is important in the patho-
genesis of inflammatory diseases, manipulation of this miRNA 
expression level may provide a clinically applicable therapy. As it 
is downregulated in inflammatory conditions, targeting inflam-
matory responses through miR-10 mimic could be effective. 
Furthermore, we speculate that the expression level of miR-10a 

potentially can be used as a prognostic indicator for uncontrolled 
inflammation, but this would need more research.

miR-21
Recent studies have revealed an essential role for miR-21 in the 
resolution of inflammation by negative feedback of inflammatory 
pathways (58–60). miR-21 acts as a negative modulator of TLR4 
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signaling by targeting the programmed cell death 4 (PDCD4) 
(58). Overexpression of miR-21 in macrophages leads to reduced 
secretion of IL-6 and increased IL-10 production, implying an 
anti-inflammatory effect (59). Importantly, miR-21 has a role in 
establishing the fine balance between Th1 and Th2 responses; 
treatment of miR-21-deficient DCs with lipopolysaccharide 
(LPS) resulted in an enhanced production of IL-12. Similarly, 
stimulation of miR-21-deficient CD4+ T  cells with ovalbumin 
increased interferon (IFN)-γ and decreased IL-4 production (61). 
miR-21 also negatively regulates LPS-induced lipid accumulation 
and inflammatory responses in macrophages by modulating the 
TLR4–NF-κB pathway, indicating its potential application as a 
therapeutic agent for prevention and treatment of atherosclerosis 
(59). In line with that, deficiency of miR-21 in macrophages 
promotes endothelial inflammation during atherogenesis (62). 
Likewise, overexpression of miR-21 suppresses the macrophage 
inflammatory M1 phenotype and enhances the anti-inflammatory 
M2 phenotype (63). Importantly, elevated miR-21 expression 
promotes resolving inflammation following macrophage-medi-
ated injury by targeting the phosphatase and tensin homolog and 
PDCD4 genes, which results in an anti-inflammatory phenotype 
and elevated production of IL-10 (64). This miRNA could poten-
tially serve as translational biomarkers for detection of kidney 
injury and could be involved in the inflammatory response in 
relation to the pathogenesis of renal disease and tissue repair pro-
cess (65). In this regard, miR-21 inhibits TNF-α-induced CD40 
expression in renal cells via the SIRT1–NF-κB signaling pathway 
(60) and inhibits autophagy by targeting Rab11a in an in  vivo 
model (66). These findings highlight miR-21 as one of the factors 
that controls the magnitude of inflammation and adds to our 
understanding of the regulation of the inflammatory processes. 
This might ultimately lead to targeted therapy for inflammatory 
disorders, particularly in diseases where macrophages have a 
central role. Application of miR-21 mimics and applies novel 
delivery methods that can be helpful to target macrophages in 
inflammatory diseases. Successful delivery of miRNAs is still a 
challenging task. However, novel approaches have improved the 
potential to deliver oligonucleotides that mimic miRNA expres-
sion and provide small molecules to improve and upregulate 
miRNA function.

miR-24
miR-24 belongs to the miR-23~27~24 cluster and decreases 
NF-κB nuclear translocation and DNA binding, and TNF-α and 
IL-6 production mainly through suppressing the high mobility 
group box 1 (HMGB1)/NF-κB-associated inflammatory signal-
ing (67). In murine models and human aortic tissue, miR-24  
acts as a key regulator of endothelial inflammation and limits  
aortic vascular inflammation in a chitinase 3-like 1 (Chi3l1)-
dependent modulation (68). This miRNA also regulates cytokine 
production in macrophages through targeting Chi3l1 (68). 
According to Jingjing et al., miR-24 overexpression significantly 
decreases the production of M1 phenotype markers such as 
iNOS, IL-6, TNF-α, CD86, and CD80 but increases the produc-
tion of M2 markers such as Arg1, CCL17, CCL22, CD163, and 
CD206 in stimulated macrophages (69). Moreover, miR-24 
exerts anti-inflammatory action by inhibition the production 

of pro-inflammatory cytokines in LPS-stimulated macrophages  
(70), and secretion of inflammatory mediators including TNF-α, 
IL-6, and IL-12p40, in response to infection through modula-
tion of various genes involved in pathogen recognition and 
downstream signaling (71). In a mice model of asthma, miR-24 
expression restricts Th2 cell differentiation over a wide range of 
IL-4 doses, and in mice without miR-24, T cells show enhanced 
allergic airway hypersensitivity and inflammatory responses (72). 
These results suggest that overexpression of miR-24 by using 
miRNA mimics may, in the future, be of therapeutic benefit in 
vascular inflammation, and inflammatory disorders associated 
with macrophages, as well as allergic airway hypersensitive 
inflammation. However, altering the expression level of a single 
miRNA can lead to changes of hundreds of genes, suggesting 
careful consideration of unwanted side effects.

miR-124
Recently, miR-124 was discovered as a negative regulator of 
inflammation by targeting several pathways such as the signal 
transducer and activator of transcription (STAT) and TLRs. 
Its downregulation has also been reported in RA patients (73). 
The expression of miR-124 is significantly reduced in intestinal 
macrophages in pediatric intestinal failure patients in contrast 
to overexpression when miR-124 inhibits intestinal inflamma-
tion through attenuating production of IL-6 and TNF-α via 
targeting STAT3, a major factor in inflammatory response, and 
acetylcholinesterase, a negatively regulator of the cholinergic 
anti-inflammatory signal (74). Sun et al. reported that miR-124 
targets STAT3 to decrease IL-6 production and TNF-α converting 
enzyme believed to reduce TNF-α release in response to LPS (75). 
Importantly, children with active ulcerative colitis have reduced 
levels of miR-124 and elevated levels of STAT3 in their colon tis-
sues, which promote inflammation and pathogenesis of the dis-
ease (76). The miR-124 expression is enhanced in the peripheral 
leukocytes of patients with pulmonary tuberculosis, and MyD88 
overexpression and/or infection induce its expression in  vitro. 
Conversely, miR-124 negatively regulates multiple components 
of the TLR signaling, including TLR6, MyD88, TNF-α, and TNF 
receptor-associated factor 6 (TRAF6) (77), indicating an underly-
ing negative feedback loop between miR-124 and TLRs signaling 
to prevent excessive inflammation (78). A decrease in miR-124 
expression also contributes to an epigenetically reprogrammed, 
highly proliferative, migratory, and inflammatory phenotype 
of hypertensive pulmonary adventitial fibroblasts in calves and 
humans (79).

Interestingly, miR-124 expression is enhanced during allergic  
inflammation, thereby contributing to the development and 
maintenance of anti-inflammatory M2 phenotype (80). Further-
more, this miRNA negatively regulates LPS-induced TNF-α pro-
duction in mouse macrophages by targeting ubiquitin-specific 
protein (USP) 2 and USP14, which control protein stability (81). 
Moreover, miR-124 inhibits experimental autoimmune encepha-
lomyelitis and reduces neuroinflammation through inactivation 
of macrophages, and myelin-specific T  cells via the C/EBP-α– 
PU.1 pathway (82). Importantly, peroxisome proliferator-acti-
vated receptor gamma (PPARγ), a member of the nuclear receptor 
superfamily, exerts its anti-inflammatory effects by upregulation 
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of miR-124 through binding to its promoter region. This is 
important for PPARγ-mediated inhibition of pro-inflammatory 
cytokines production such as TNF-α and IL-6 (83). miR-124 also 
seems to be involved in morphine inhibition of innate immunity 
by directly targeting NF-κB and TRAF6 (84).

These data suggest that miR-124 may be of diagnostic value for 
inflammatory disease detection and severity prediction. Further 
investigations are needed to confirm and elucidate miR-124 
implication in human immune-associated diseases, and hope-
fully, in the future, it may be possible to develop new therapeutic 
methods for treatment of inflammatory disorders.

miR-145
A recent report found that loss of miR-145-induced pro-
inflammatory signals in the innate immune response and was 
downregulated in ulcerative colitis (85). This miRNA inhibits 
release of IL-6 and CXCL8 in airway smooth muscle cells in 
patients with chronic obstructive pulmonary disease by target-
ing the mothers against decapentaplegic homolog 3 (SMAD3), a  
key element of the TGF-β1 inflammatory pathway (86). Fur-
thermore, miR-145 functions to modulate expression of SMAD3 
changes in downstream target genes expression, and IL-1β-
induced extracellular membrane degradation in chondrocytes 
from osteoarthritis patients (87). The toll/interleukin-1 receptor 
domain-containing adaptor protein and TRAF6 are also targets 
for miR-145 suggesting an anti-inflammatory action for this 
miRNA (88). Interestingly, miR-145 seems to be involved in the 
anti-inflammatory effects of aspirin in atherosclerosis disease 
as seen in vitro by inhibiting the expression of CD40 (89). Inhi-
bition of CD40 suppresses inflammatory factor production that 
is triggered by hypoxia such as IL-1β, TNF-α, and IL-6 (90). 
Besides, pomegranate polyphenolics attenuate inflammation and 
ulceration in experimental intestinal colitis by suppressing the 
p70S6K1/HIF1α signaling pathway, which is mediated in part 
through upregulation of miR-145 (91).

miR-146
The miR-146 family comprises two genes, miR-146a and  
miR-146b, which are expressed in response to pro-inflammatory 
stimuli as negative feedback to control excessive inflammation 
(92). Their aberrant expression is associated with various inflam-
matory disorders such as RA, lupus disease, psoriasis, and osteo-
arthritis (93). Pharmacological studies have shown that NF-κB 
plays a critical role in the induction of miR-146 transcription,  
and MEK-1/2 and JNK-1/2 act in posttranscriptional process-
ing to mature miRNA (94). Both miR-146a and miR-146b can 
regulate the inflammatory process by directly targeting TLRs and 
their downstream effectors, IRAK1 and TRAF6 (95). Importantly, 
miR-146a negatively regulates the IFN response (96), and the 
adaptive immunity by targeting adaptor protein (AP)-1 activity 
and IL-2 expression (97), as well as immune cell activation and  
cytokines production (98). Furthermore, miR-146b regulates 
diabetes-related retinal inflammation by suppressing adenosine 
deaminase 2 (99).

A recent study revealed downregulation of miR-146a in renal 
tissues of lupus nephritis, which was associated with increased 
expression of TRAF6 and NF-κB. miR-146a inhibits NF-κB 

transcriptional activity, biosynthesis of IL-1β, IL-6, IL-8, and 
TNF-α, and alleviates chemotactic effects toward macrophages 
via inhibition of TRAF6 activity (100). Tang et al. found that low 
expression of miR-146a contributed to lupus pathogenesis by 
overactivation of the IFN pathway. This miRNA directly inhibits 
the transactivation downstream of IFN such as IFN regulatory 
factor 5 and STAT1 (101). In addition, miR-146a attenuates 
sepsis-induced cardiac dysfunction by preventing NF-κB activa-
tion, inflammatory cell infiltration, and cytokine production 
via targeting of IRAK and TRAF6 in both cardiomyocytes and 
macrophages (102).

miR-146a and miR-146b expression in IL-β-stimulated human 
alveolar epithelial cells attenuate the release of IL-8 and RANTES 
after their transcription and not through targeting IRAK1 and 
TRAF6, which implies their action upon chemokine transla-
tion (25). miR-146a and miR-146b expression also induced in 
endothelial cells upon exposure to pro-inflammatory cytokines 
that inhibit the endothelial inflammatory response by inhibition of 
pro-inflammatory transcription activation, including the NF-κB, 
AP-1, and MAPK/EGR pathways. In addition, they modulate 
posttranscriptional pro-inflammatory pathways in endothelial 
cells via targeting the RNA binding protein HuR, indicating 
another way to control inflammation (103). Importantly, miR-
146a is highly expressed in Treg cells and may therefore be critical 
for the ability of Treg to restrain IFN-γ-mediated pathogenic 
Th1 inflammatory responses. In these cells, miR-146a mediates 
downregulation of STAT1, a key transcription factor required for 
Th1 effector cell differentiation, and necessary for Treg ability to 
suppress Th1 responses (104).

According to Echavarria et al., prolonged exposure to angio-
poietin-1, a vascular growth factor, leads to upregulation of  
miR-146b that inhibits angiopoietin-1 through selective target-
ing of IRAK1 and TRAF6. Also, it inhibits a wide array of LPS- 
induced responses such as leukocyte adhesion molecule expres-
sion, pro-inflammatory cytokine production, p38 and SAPK/JNK  
phosphorylation, and NF-κB activation (105). Moreover, apolipo-
protein that binds lipids to form lipoproteins like LPS, suppress  
NF-κB-mediated inflammation and atherosclerosis by increasing 
miR-146a in damaged monocytes and macrophages leading to  
irreversible arrest of proliferation, via enhancement of trans-
cription factor PU.1 (106). Also, miR-146a modulates pro-
inflammatory signaling negatively via inhibition IL-6 and 
VEGF-A expression, at least in pigment epithelial cells (107), and 
by IL-6 and IL-8 in human fibroblasts (108).

miR-146a expression is induced both in macrophages and 
in mice after mycobacterial infection, and further suppresses 
the iNOS expression and NO generation via NF-κB and MAPK 
signaling and TRAF6 (109). This upregulation of miR-146a 
induces negative feedback of NF-κB signaling through targeting 
IRAK1 and TRAF6 (110). Thereby, levels of pro-inflammatory 
cytokines TNF-α, IL-1β, IL-6, and chemokine MCP-1 are 
reduced with subsequently facilitated replication of microbes 
such as mycobacteria (111). Also, the upregulation of miR-146a 
induced by viruses in human microglial cells leads to suppres-
sion of NF-κB activity and disruption of antiviral JAK–STAT 
signaling, which besides the anti-inflammatory activity helps 
the virus to evade from the immune response (112). miR-146a 
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upregulation in viral infection acts as a negative regulator for  
the RIG-I-dependent type I IFN production by targeting TRAF6, 
IRAK1, and IRAK2 (113).

The identified actions indicate that an enhanced miR-146a and 
miR-146b expression may have, could identify a future therapeu-
tic possibility for treatment of inflammatory disorders, as well as a 
potential target for control of viral or bacterial infections through 
inhibition of immune suppressive effects. The application of 
nanotechnology paves a new path in the development of effective 
delivery involving miRNAs.

miR-149
miR-149 is a novel immune modulator of the innate immune 
responses. Its overexpression in macrophages has been linked to 
a significant decrease in MyD88 protein expression, as well as a 
reduced production of inflammatory mediators such as NF-κB, 
TNF-α, and IL-6 in response to infection or LPS stimulation 
(114). In addition, miR-149 inhibits the hepatic inflammatory 
response through STAT3-mediated signaling pathway (115). 
TNF-α induces endothelial activation through downregula-
tion of miR-149, and its mimic transfection counteracted the 
TNF-α-induced expression of MMP-9, iNOS, and IL-6 (116). 
Consistently, downregulation of miR-149 has been linked to 
osteoarthritis chondrocytes; a joint disease that is caused by 
uncontrolled inflammatory immune responses (117). These find-
ings give relevant ideas for future treatment strategies and in the 
diagnosis of immune disorders related to TNF-α.

miR-155
miR-155 exhibits both anti- and pro-inflammatory functions, 
depending on the simulant involved (118). Upregulation of this 
miRNA leads to attenuation of inflammatory pathways, and 
adjustment to lower inflammatory intensity (118). For example, 
the TNF-α-induced miR-155 serves as a negative feedback regu-
lator in endothelial inflammation involved in atherosclerosis by  
targeting NF-κB P65 (119). Furthermore, overexpression of 
miR-155 reduces chronic inflammation and provides protec-
tion against atherosclerosis-associated foam cell formation by 
targeting calcium-regulated heat stable protein 1, which in turn 
diminishes the stability of TNF-α mRNA (120). miR-155 also 
inhibits inflammatory response in vitro by translational inhibi-
tion of MyD88 and the inositol 5′-phosphatase SHIP-1 in infected 
macrophages (121).

Various inflammatory mediators such as TNF-α and IL-6 are 
markedly increased in mice liver cells when miR-155 is lacking. 
Moreover, NF-κB signaling is activated when miR-155 is absent, 
via enhancing p65 and inhibitor-κB kinase ε expression (122). 
In mature DCs, miR-155 downregulates inflammatory cytokines 
production in response to microbial stimuli. This miRNA also 
targets the TLR/IL-1 inflammatory pathway and TGF-β-activated 
kinase-1-binding protein 2 (TAB2), an adaptor in the TLR/IL-1 
signaling cascade (123). Activation of miR-155 during septic lung 
injury alleviates inflammation through inhibition of TAB2, which 
in turn triggers autophagy (124). In addition, miR-155 inhibits 
IL-13-induced expression of eosinophilic chemokines CCL11 
and CCL26 in human bronchial epithelial cells (125). miR-
155-deficient mice have reduced numbers of Treg cells, both in 

the thymus and periphery, possibly due to impaired development 
(126). These data demonstrate a broad function of miR-155 in 
inflammation and a potential utility as therapeutic target.

miR-181 Family
Accumulating evidence indicates an essential role for the miR-
181 family (miR-181a, miR-181b, miR-181c, and miR-181d) 
in endothelial inflammation via regulating critical signaling 
pathways, such as downstream NF-κB (127). This is relevant 
in endothelial cell activation and immune cell homeostasis. 
miR-181b targets importin-α3, a protein critical for NF-κB 
nuclear translocation in in vitro and in vivo models of vascular 
endothelium (128). In addition, miR-181 family negatively 
regulates TNF-α mRNA stability (129). This miRNA family 
seems to be important in neuroinflammation as observed in 
experimental models. Knockdown of miR-181 enhanced LPS-
induced production of pro-inflammatory cytokines such as 
TNF-α, IL-6, IL-1β, and IL-8, while their overexpression resulted 
in a significant increase in the anti-inflammatory cytokine IL-10 
(130). Importantly, miR-181a regulates inflammatory responses 
by directly targeting IL-1α and inhibition the production of 
inflammatory factors such as IL-1β, IL-6, and TNF-α in THP-1 
cells (131). miR-181a also modulates IL-8, another important 
inflammatory cytokine of early immune responses (132). These 
results suggest that therapeutic targeting of the miR-181 family 
might be an effective way to control excessive inflammation, 
especially in vascular and neurological tissue.

Other Anti-Inflammatory miRNAs
miR-9 expression increases in human monocytes and neutro-
phils upon NF-κB activation and acts as a feedback control of 
the NF-κB-dependent responses (133). This miRNA inhibits 
formation of the inflammasome and attenuates atherosclerosis-
related inflammation, likely via targeting JAK1/STAT1 signaling 
(134). Furthermore, overexpression of miR-9 in the cerebral 
cortex around the infarcted area is associated with reduced 
NF–κB signaling pathway-related factors such as NF-κB p65, 
TNF-α, and IL-1β (135). Downregulation of miR-9 results in 
increased synthesis of pro-inflammatory mediators such as 
IL-1β, TNF-α, IL-6, and MCP-1 (136). Other miRNAs induced 
by TNF-α are miR-17-3p and miR-31 that target adhesion mol-
ecules E-selectin and ICAM-1, respectively (137). Lai et al. have 
recently shown that miR-92a negatively regulates TLR-triggered 
inflammation in macrophages by targeting MKK4 kinase, and 
that stimulation by TLR ligands decreases its expression (138). 
miR-99b targets TNF-α and TNF-α superfamily member 4 
receptor genes and thereby regulates expression of various pro-
inflammatory cytokines such as IL-6, IL-12, and IL-1β (139). 
In myelodysplastic syndromes both miR-99b and miR-125b 
levels correlate negatively with TLR2 and MyD88 expression 
(140). Overexpression of miR-126 significantly abrogates high 
glucose-induced secretion of pro-inflammatory cytokines such 
as IL-6, TNF-α, and CCL2 in human gingival fibroblasts, and 
promotes the production of IL-10 through targeting TRAF6 
(141). Moreover, miR-126 suppresses inflammation and ROS 
production in human endothelial cells in a milieu of high glucose 
through modulating the HMGB1 expression (142).
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Another miRNA, miR-132, potentiates cholinergic anti-
inflammatory signaling by targeting acetylcholinesterase in 
LPS-treated alveolar macrophages (143). In the presence of acetyl-
choline, upregulation of miR-132 suppresses LPS-induced NF-κB 
nuclear translocation and production of STAT3 and phospho-
rylated STAT3, while its downregulation enhances NF-κB nuclear 
translocation (144). miR-142-3p regulates murine macrophages 
synthesis of pro-inflammatory NF-κB1, TNF-α, and IL-6, at least 
in part, through targeting IRAK1 gene and posttranscriptionally 
imposing an anti-inflammatory effect by downregulation IRAK1 
protein expression (145). miR-187 expression is induced by the 
potent anti-inflammatory cytokine IL-10 in TLR4-stimulated 
monocytes that impacts on TNF-α mRNA stability and transla-
tion and decreases IL-6 and IL-12p40 expression via downregula-
tion of IκBζ, a master regulator of the transcription of these latter 
two cytokines (146). In murine macrophages, miR-210 negatively 
regulates LPS-induced production of pro-inflammatory cytokines 
such as IL-6 and TNF-α by targeting NF-κB1 (147). miR-210 
also imposes an anti-inflammatory effect in articular cavities in 
rats with osteoarthritis by targeting DR6 and inhibiting NF-κB 
signaling (148). Besides, TLR3 activation induces placental miR-
210 via HIF-1a and NF-κBp50 leading to decreased STAT6 and 
IL-4 levels. This function may contribute to the development of 
preeclampsia (149). miR-223, the last miRNA presented here, 
modulates the inflammatory response in human gingival fibro-
blasts via targeting IKKα and MKP5 (150). It further suppresses 
TLR4 signaling in macrophages (151) and regulates intestinal 
inflammation via repression of inflammasome formation (152).

SUMMARY AND FUTURE DIRECTIONS

Through the last years, we have experienced a growing interest in 
how miRNAs may act as modulators of inflammatory pathways 
and regulate host immune responses. Some miRNAs impact on 
important negative feedback loops, while others serve to amplify 
the response of the immune system by depressing inhibitors of the 
response. miRNAs target signal transduction proteins involved 
in the initiation of innate immune responses, and the variety of 
different miRNAs impact on the intensity of the inflammatory 
response. Identifying functionally relevant miRNAs associated 
with processes that attenuate inflammation, and their target 
networks should produce new knowledge that could provide new 
therapeutic strategies for inflammatory diseases.

MicroRNAs may be developed as potential targets for new 
therapeutic strategies in inflammatory diseases. Such miRNA-
based therapies may be achieved through manipulation of 
endogenous miRNA levels by the delivery of miRNA inhibitors or 
mimic to change expression of target genes. Therapeutic modu-
lation of miRNAs may have several advantages over alternative 
gene/protein targeting strategies, notably the ease with which 
these sequences can be synthesized. Moreover, one miRNA 
can have multiple target genes, which may be more beneficial 

than targeting multiple different genes individually. Alongside, 
the critical role of miRNAs in the regulation of inflammation 
and their potential to be targeted by new therapeutics, caution 
must be taken because excessive inhibition or overexpression 
of miRNAs might predispose patients to cellular abnormalities, 
impaired immunity, or even cancer.

Despite the advancement in miRNA-based therapies in clin-
ical trials, there is still much to learn about how to transform 
these into effective, patient-compliant, and targeted drug delivery 
therapies. Importantly, it is risky to invest in miRNA therapeutics 
due to biological challenges, the cost of production and scale-up, 
and the anticipated clinical approval challenges. The main bar-
rier to miRNA-based therapy is development of pharmaceutical 
strategies of low toxicity for targeted delivery to specific sites.  
In support of this, novel nanotechnologies and delivery methods 
are under development for efficient and effective delivery. While 
extracellular circulating miRNAs have shown a high level of 
stability in human blood and other body fluids, an ideal delivery 
method should protect the miRNAs from the circulatory nucle-
ases and deliver mRNAs intact to the target site.

In summary, we have discussed a set of unique miRNAs with 
anti-inflammatory properties and their regulatory pathways 
(Table S1 in Supplementary Material). The expression levels of 
these miRNAs may offer promising diagnostic value and sever-
ity prediction of different inflammatory diseases since miRNAs 
are stable in human blood, detectable with high sensitivity/
specificity methods and measurable via miRNA microarrays 
and qRT-PCR arrays. Their diagnostic value must be further 
investigated to elucidate the molecular mechanisms underlying 
miRNAs implication in inflammatory disease pathogenesis, 
and possibly to develop new therapeutic methods in the future. 
Further knowledge from in vivo animal models of inflammatory 
diseases and clinical studies will be valuable. Although miRNA-
based therapy will have limitations, we anticipate that it will be 
considered in future strategies aimed at diagnosing and treating 
acute and chronic inflammatory disorders.
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