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ABSTRACT. In this paper we show how to approximate a Heath-Jarrow-Morton dynam-
ics for the forward prices in commodity markets with arbitrage-free models which have a
finite dimensional state space. Moreover, we recover a closed form representation of the
forward price dynamics in the approximation models and derive the rate of convergence
uniformly over an interval of time to maturity to the true dynamics under certain addi-
tional smoothness conditions. In the Markovian case we can strengthen the convergence
to be uniform over time as well. Our results are based on the construction of a convenient
Riesz basis on the state space of the term structure dynamics.

1. INTRODUCTION

We develop arbitrage-free approximations to the forward term structure dynamics in
commodity markets. The approximating term structure models have finite dimensional
state space, and therefore tractable for further analysis and numerical simulation. We
provide results on the convergence of the approximating term structures and characterize
the speed under reasonable smoothness properties of the true term structure. Our results
are based on the construction of a convenient Riesz basis on the state space of the term
structure dynamics.

In the context of fixed-income markets, Heath, Jarrow and Morton [22] propose to
model the entire term structure of interest rates. Filipović [19] reinterprets this approach
in the so-called Musiela parametrisation, i.e., studying the so-called forward rates as solu-
tions of first-order stochastic partial differential equations. This class of stochastic partial
differential equations is often referred to as the Heath-Jarrow-Morton-Musiela (HJMM)
dynamics. This highly successful method has been transferred to other markets, including
commodity and energy futures markets (see Clewlow and Strickland [14] and Benth, Šal-
tytė Benth and Koekebakker [7]), where the term structure of forward and futures prices
are modelled by similar stochastic partial differential equations.

An important stream of research in interest rate modelling has been so-called finite di-
mensional realizations of the solutions of the HJMM dynamics (see e.g., Björk and Svens-
son [11], Björk and Landen [10], Filipovic and Teichmann [21] and Tappe [33]). Starting
out with an equation for the forward rates driven by a d-dimensional Wiener process, the
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question has been under what conditions on the volatility and drift do we get solutions
which belong to a finite dimensional space, that is, when can the dynamics of the whole
curve be decomposed into a finite number of factors. This property has a close connec-
tion with principal component analysis (see Carmona and Tehranchi [12, Ch. 1]), but is
also convenient when it comes to further analysis like estimation, simulation, pricing and
portfolio management (see Benth and Lempa [6] for the latter).

In energy markets like power and gas, there is empirical and economical evidence for
high-dimensional noise. Moreover, the noise shows clear leptokurtic signs (see Benth,
Šaltytė Benth and Koekebakker [7, Ch. 8] and references therein). These empirical
insights motivate the use of infinite dimensional Lévy processes driving the noise in
the HJMM-dynamics modelling the forward term structure. We refer to Carmona and
Tehranchi [12] for a thorough analysis of HJMM-models with infinite dimensional Gauss-
ian noise in interest rate markets. Benth and Krühner [4] introduced a convenient class of
infinite dimensional Lévy processes via subordination of Gaussian processes in infinite
dimensions. These models were used in analysing stochastic partial differential equa-
tions with infinite dimensional Lévy noise in Benth and Krühner [3]. Further, pricing and
hedging of derivatives in energy markets based on such models were studied in Benth and
Krühner [5].

The present paper is motivated by the need of an arbitrage-free approximation of Heath,
Jarrow, Morton style models – using the Musiela parametrisation – in electricity finance.
Related research has been carried out by Henseler, Peters and Seydel [24] who construct
a finite-dimensional affine model where a refined principle component analysis (PCA)
method yields an arbitrage-free approximation of the term structure model. Arbitrage-free
approximating models are desirable since they allow for the use of the arbitrage theory to
price and hedge options, say, by applying the approximating model instead of the original
model. This would come at the cost of a (hopefully) small approximation error, without
incurring arbitrage in the analysis.

For the approximation procedure proposed by us, we ask for the following:

(i) A given (arbitrage-free) model f with values in a suitable curve space H is ap-
proximated by a sequence {fn}n∈N of stochastic models, i.e. fn → f in a suitable
way.

(ii) fn should have a finite dimensional state space, i.e. there is finite dimensional
space Hn such that fn(t) ∈ Hn.

(iii) fn itself is asked to be an arbitrage-free HJM-type model.
(iv) Finally, the dynamics of fn should have a structure which is as simple as possible.

If we think of models {fn}n∈N satisfying (ii) and (iii) and being a solution to a stochastic
partial differential equation (SPDE)

dfn(t) = (µP (t))dt+ σ(t)dWn(t)

where Wn is an Hn-valued Brownian motion and µP , σ are suitable coefficients under
some probability measure P , then, the no-arbitrage condition yields that there is an equiv-
alent measure Q ∼ P such that

dfn(t) = ∂xfn(t)dt+ σ(t)dWQ
n (t)
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for some Qn-Brownian motion WQ
n . Thus, fn is a finite dimensional realisation (FDR)

which have been discussed in Filipovic [18], Björk [9] and Filipovic and Teichmann [21].
For those, the possible state spaces are rather limited imposing strong conditions on the
volatility σ. This restricts the possibilities of approximations in (i) (a more detailed dis-
cussion is provided in Section 3). To overcome this problem we adapt a specific Galerkin
method which is tailored to the specific Hilbert space in our setup as well as being an
FDR, cf. Section 4.

Our main result Theorem 5.1 states that the arbitrage-free models for the underlying
forward curve process f(t, x), x ≥ 0 being time to maturity and t ≥ 0 is current time, can
be approximated with processes of the form

fk(t, x) = Sk(t) +
k∑

n=−k

Un(t)gn(x) ,

where Sk denotes the spot prices in the approximation model, g−k, . . . , gk are determin-
istic functions and U−k, . . . , Uk are one-dimensional Ornstein-Uhlenbeck type processes.
Obviously, models of this type are much easier to handle in applications than general so-
lutions for the HJMM equation. The approximation fk is again a solution of an HJMM
equation, and as such being an arbitrage-free model for the forward term structure. We
prove a uniform convergence in space of fk to the "real" forward price curve f , pointwise
in time. The convergence rate is of order k−1/2 when the forward curve x 7→ f(t, x) is
twice continuously differentiable. Our approach is an alternative to numerical approx-
imations of the HJMM dynamics based on finite difference schemes or finite element
methods, where arbitrage-freeness of the approximating dynamics is not automatically
ensured. We refer to Barth [1] for an analysis of finite element methods applied to sto-
chastic partial differential equations of the type we study.

We refine our results to the Markovian case, where the convergence is slightly strength-
ened to be uniform over time as well. Our approach goes via the explicit construction of a
Riesz basis for a subspace of the so-called Filipović space (see Filipović [19]), a separa-
ble Hilbert space of absolutely continuous functions on the positive real line with (weak)
derivative disappearing at a certain speed at infinity. The basis will be the functions gn
in the approximation fk, and the subspace is defined by concentrating the functions in
the Filipović space to a finite time horizon x ≤ T . This space was defined in Benth
and Krühner [3], and we extend the analysis here to accomodate the arbitrage-free fi-
nite dimensional approximation of the HJMM-dynamics. We rest on properties of C0-
semigroups and stochastic integration with respect to infinite dimensional Lévy processes
(see Peszat and Zabczyk [28]) in the analysis.

This paper is organised as follows. In Section 2 we start with the mathematical for-
mulation of the HJMM dynamics for forward rates set in the Filipović space. The fol-
lowing section provides a motivation for our paper by discussing in more detail the prob-
lem of arbitrage-free approximations. The Riesz basis that will make the foundation for
our proposed approximation scheme is defined and analysed in detail in Section 4. The
arbitrage-free finite dimensional approximation to term structure modelling is constructed
in Section 5, where we study convergence properties. The Markovian case is analysed in
the last Section 6.
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2. THE MODEL OF THE FORWARD PRICE DYNAMICS

By N we denote the set of non-negative integers, C the set of complex numbers, and
R+ the set of non-negative real numbers. Throughout this paper we use the Hilbert space

Hα :=

{
f ∈ AC(R+,C) :

∫ ∞
0

|f ′(x)|2eαxdx <∞
}
,

where AC(R+,C) denotes the space of complex-valued absolutely continuous functions
on R+ and α > 0 is some fixed parameter. We endow Hα with the scalar product
〈f, g〉α := f(0)g(0) +

∫∞
0
f ′(x)g′(x)eαxdx, and denote the associated norm by ‖ · ‖α.

Filipović [19, Section 5] shows that (Hα, ‖ · ‖α) is a separable Hilbert space. For x ≥ 0,
the evaluation map δx : Hα → C defined by δx(f) = f(x) for f ∈ Hα is a continuous
linear functional, cf. [19, Theorem 5.1]. The space Hα has been used in Filipović [19] for
term structure modelling of bonds and many mathematical properties have been derived
therein. We will frequently refer to Hα as the Filipović space. Note that Filipović [19]
considers real-valued functions instead. In our context, this minor extension is convenient,
as will become clear later.

We next introduce our dynamics for the term structure of forward prices in a commodity
market. Denote by f(t, x) the price at time t of a forward contract where time to delivery
of the underlying commodity is x ≥ 0. We treat f as a stochastic process in time with
values in the Filipović space Hα. More specifically, we assume that the process {f(t)}t≥0

follows the HJM-Musiela model which we formalize next.
On a complete filtered probability space (Ω, {Ft}t≥0,F , P ), where the filtration is as-

sumed to be complete and right continuous, we work with an Hα-valued Lévy process
{L(t)}t≥0 (cf. Peszat and Zabczyk [28, Theorem 4.27(i)] for the construction of Hα-
valued Lévy processes). We assume that L has finite variance and mean equal to zero
and we denote its covariance operator by Q, cf. [28, Definition 4.45]. For t ≥ 0, denote
by Ut the shift semigroup on Hα defined by Utf = f(t + ·) for f ∈ Hα. It is shown in
Filipović [19, Thm. 5.1.1] that {Ut}t≥0 is a C0-semigroup on Hα, with generator ∂x given
by ∂xf = f ′ for any f ∈ Hα which is continuously differentiable with derivative f ′ in
Hα. Let f0 ∈ Hα and f be the solution of the SPDE

df(t) = ∂xf(t)dt+ β(t)dt+ Ψ(t)dL(t), t ≥ 0, f(0) = f0 (1)

where β ∈ L1((Ω × R+,P , P ⊗ λ), Hα), P denotes the predictable σ-field and we have
Ψ ∈ L2

L(Hα) :=
⋃
T>0 L2

L,T (Hα) where the spaces L2
L,T (Hα) are defined in Peszat and

Zabczyk [28, page 113]. Recall, that any C0-semigroup admits the bound ‖Ut‖op ≤Mewt

for some w,M > 0 and any t ≥ 0. Here, ‖ · ‖op denotes the operator norm. In fact, in
Filipović [19, Equation (5.10)] and Benth and Krühner [5, Lemma 3.4] it is shown that
‖Ut‖op ≤ CU for any t ≥ 0 and the constant CU :=

√
2(1 ∧ α−1). Thus s 7→ Ut−sβ(s)

is Bochner-integrable and s 7→ Ut−sΨ(s) is integrable with respect to L. The unique mild
solution of (1) is

f(t) = Utf0 +

∫ t

0

Ut−sβ(s) ds+

∫ t

0

Ut−sΨ(s) dL(s) , (2)

which has a càdlàg version according to Tappe [34, Theorem 4.5, Remark 4.6]. We will
always refer to a càdlàg version of f .
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If we model the forward price dynamics f directly in a risk-neutral setting, the drift
coefficient β(t) must be equal to zero in order to ensure the (local) martingale property
of the process t 7→ f(t, τ − t), where τ ≥ t is the time of delivery of the forward. In
this case, the probability P is to be interpreted as the equivalent martingale measure (also
called the pricing measure). However, with a non-zero drift, the forward model is stated
under the market probability and β can be related to the risk premium in the market.

We remark in passing that in energy markets like power and gas, the forward contracts
deliver over a period, and forward prices can be expressed by integral operators on the
Filipović space applied on f (see Benth and Krühner [3, 5] for more details).

The dynamics of f can be considered as a model for the forward rate in fixed-income
theory, see Filipović [19]. This is indeed the traditional application area and point of
analysis of the SPDE in (1). Note, however, that the no-arbitrage condition in the HJM
approach for interest rate markets is different from and more complex than the condition
we use here in the commodity market context. If f is understood as the forward rate
modelled in the risk-neutral setting, there is a nonlinear relationship between the drift
β, the volatility σ and the covariance of the driving noise L. We refer to Carmona and
Tehranchi [12] for a detailed analysis.

3. THE PROBLEM OF ARBITRAGE-FREE APPROXIMATION.

In this section we provide some motivation and background for the problem we are
going to address in this article. To make the problem we study more precise, we start out
with a model for the futures curve dynamics set in Hα under the Musiela parametrisation.
Considering a sequence of approximation models restricted to have a finite dimensional
state space, we identify certain conditions that must be fulfilled and discuss these in view
of existing numerical methods and the approach proposed in this paper.

To this end, let f be given as in (2) and assume for simplicity that L = W is a Wiener
process and β, Ψ are bounded càdlàg processes. Furthermore, we assume that {fn}n∈N
areHα-valued processes such that fn(t) ∈ Hn,α P -a.s. for all t ≥ 0, for finite dimensional
complex subspaces Hn,α ⊆ Hα. Also, we assume that Hn,α are chosen minimal in the
sense that for any proper subspace G ⊆ Hn,α there is t ≥ 0 such that P (fn(t) /∈ G) > 0.
Note that the traded assets in the n-th approximation are forward contracts with forward
prices Fn(t, τ) := fn(t, τ − t), 0 ≤ t ≤ τ , which we suppose to be arbitrage-free in the
sense of "NAFLVR" as defined by Cuchiero et al. [13] and we assume to be of the form
Fn(t, τ) = Fn(0, τ) +Bn,τ (t) +

∫ t
0

Σn(s)dWn(s) for some Wiener process Wn, bounded
càdlàg integrand Σn and some adapted finite variation process Bn,τ . Then, Cuchiero et
al. [13, Theorem 1.1] yields the existence of a probability measure Qn ∼ P such that the
price processes

Fn(t, τ) = Uτ−tfn(t), 0 ≤ t ≤ τ,

are local Qn-martingales. In particular we have

dfn(t) = ∂xfn(t)dt+ Σn(t)dWQ
n (t), t ≥ 0,

for some and a Qn-Wiener process WQ
n .

Remark 3.1. Galerkin methods generate dynamics fn such that fn → f in a suitable way
and such that the spaces Hn,α are finite dimensional. For the use of Galerkin methods to
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SPDEs, we refer to Greksch and Kloeden [23] and the books by da Prato and Röckner [30]
and Kruse [26] (as well as references therein). The finite element method also satisfies
the finite dimensional state space requirement (we refer to Barth [1] for the finite element
method applied to SPDEs). However, methods based on finite difference approximations
directly discretise in space and time, and the approximation is not an Hα-valued process
anymore unless one applies a suitable interpolation in space.

We recall the following important result of Filipović [18, Theorem 4].

Proposition 3.2. The vector space Hn,α is invariant under ∂x.

This key insight leads immediately to a restrictive structural condition on the space
Hn,α.

Corollary 3.3. For given n ∈ N, denote by d ∈ N the dimension of Hn,α. Then there are
constants a1, . . . , ad ∈ C and polynomials p1, . . . , pd : C→ C such that

{x 7→ pj(x)eajx}j=1,...,d

is a vector space basis of Hn,α.

Proof. Let g1, . . . , gd be a vector space basis for Hn,α. Proposition 3.2 implies that we
have g′1, . . . , g

′
d ∈ Hn,α and hence there is C ∈ Cd×d such that

g′ = Cg.

Choose D ∈ Cd×d such that C̃ := DCD−1 is in Jordan normal form. Then

(Dg)′ = C̃(Dg).

The claim follows trivially for the basis hj := (Dg)j , j = 1, . . . , d. �

The following example illustrates Corollary 3.3 in view of the Galerkin approximation
method:

Example 3.4. Let e∗(x) := 1 and

en,k(x) :=


0 x < n,
e(2πik−α/2)x−e−nα/2

2πik−α/2 x ∈ [n, n+ 1],
e−(n+1)α/2−e−nα/2

2πik−α/2 x > n+ 1,

for any k ∈ Z, n ∈ N. Clearly, we have

e′n,k(x) = 1x∈[n,n+1]e
(2πk−α/2)x, x ≥ 0

for any n ∈ N, k ∈ Z, and {e∗, {en,k}n∈N,k∈Z} is an orthonormal basis on Hα which
is local in the following sense: if h1, h2 ∈ Hα, n ∈ N, k ∈ Z and h1(x) = h2(x) for
x ∈ [n, n + 1], then 〈h1, en,k〉α = 〈h2, en,k〉α. One could use as an approximation for
f the orthonormal expansion relative to any finite enumeration of {e∗, {en,k}n∈N,k∈Z},
which is a local Galerkin method. However, the only finite dimensional spaces generated
by a finite selection of the functions en,k as described in Corollary 3.3 are span{e∗} and
{0}. Thus the approximating models cannot be arbitrage-free (unless x 7→ f(t, x) is
constant for any t ≥ 0.).
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We understand from Corollary 3.3 that the subspacesHn,α have to be spanned by curves
which can be expressed as polynomial times exponential functions. Two special cases are
immediately apparent: either to select subspaces Hn,α spanned by polynomial functions,
or select subspaces Hn,α spanned by exponential functions. Since all polynomials p ∈
Hα are constants, it is obvious that Hα is unsuitable for approximation with polynomial
functions.

Therefore, we will focus on approximations based on exponential basis functions. We
believe that the case where the noise term W has a positive definite covariance matrix and
where one uses a Galerkin method projecting to finite dimensional subspaces generated
by exponential functions does lead to arbitrage-free approximations in most situations.
Indeed, in the next section we will identify a Riesz basis consisting of simple and explicit
exponential functions for a ’rich’ subspace of Hα, cf. Theorem 4.4 below. This Riesz
basis is then used for a basis expansion for the coefficients which appear in the SPDE (1).
However, unlike the Galerkin approach, we will not discretise the differential operator
∂x. We emphasise that if the differential operator is discretised, then option prices in the
approximation models have to be calculated under an equivalent local martingale measure
Qn depending on n, and the convergence rate of option prices becomes non-obvious (see
e.g. Mishura and Munchak [27] and references therein). Therefore, it is additionally
desirable that we can use the same pricing measure Q for the initial model f and all the
approximation models fn.

Finally, we like to highlight that our approximations are in fact FDRs of the SPDE with
the projected coefficients, and as such our method combines a Galerkin type approxima-
tion with FDR. Moreover, if the martingale part Ψ(t)dL(t) is a Lévy process, then our
approximating models are affine in the sense of Duffie et al. [17], cf. Theorem 5.1.

4. A RIESZ BASIS FOR THE FILIPOVIĆ SPACE

In Section 5 we want to employ the spectral method to an approximation of the SPDE
in (1) involving the differential operator on the Filipović space Hα. Thus, it would be
convenient to have available the eigenvector basis for the differential operator. However,
its eigenvectors do not seem to have nice basis properties, and instead we propose to use a
system of vectors which forms a Riesz basis. It turns out that this basis has neat analytical
properties and is close to form an eigenvector system for the differential operator.

In this section we introduce such a Riesz basis for a suitable subspace of Hα defined
in Benth and Krühner [3, Appendix A] and recall some of its properties. Moreover, we
give refined statements for this basis and also identify new results. In particular, we make
precise the connection between our suggested Riesz basis and the differential operator,
as well as quantifying the convergence speed of the basis expansion. We recall from
Young [35, Sect. 1, Theorem 9] that any Riesz basis {gn}n∈N on a separable Hilbert
space can be expressed by gn = T en where {en}n∈N is an orthonormal basis and T is a
bounded invertible linear operator. For further properties and definitions of Riesz bases,
see Young [35].

Fix λ > 0, T > 0, and introduce

cut : R+ → [0, T ) , x 7→ x−max{Tz : z ∈ Z : Tz ≤ x} , (3)
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and

A : L2([0, T ),C)→ L2(R+,C) , f 7→
(
x 7→ e−λxf(cut(x))

)
. (4)

Here, L2(A,C) is the space of complex-valued square integrable functions on the Borel
set A ⊂ R+ equipped with the Lebesgue measure. The inner product of L2(A,C) will be
denoted (·, ·)2 and the corresponding norm | · |2. We remark that the set A will be clear
from the context and thus not indicated in the notation for norm and inner product.

We define

g∗(x) := 1, (5)

gn(x) :=
1

λn
√
T

(exp (λnx)− 1) , (6)

where

λn :=
2πi

T
n− λ− α

2
, (7)

for any n ∈ Z, x ≥ 0. It is simple to verify that gn ∈ Hα for any n ∈ Z and g∗ ∈ Hα. As
we will see, the system of vectors {g∗, {gn}n∈Z} forms a Riesz basis and we will use this
basis expansion to obtain arbitrage-free finite-dimensional approximations of the forward
price dynamics (1). The remainder of this Section is devoted to the study of the system of
vectors {g∗, {gn}n∈Z}.

We start our analysis with some elementary properties of the operator A defined in (4)
which have been proven in Benth and Krühner [3].

Lemma 4.1. A is a bounded linear operator and its range is closed in L2(R+,C). More-
over,

e−2Tλ

1− e−2Tλ
|f |22 ≤ |Af |22 ≤

1

1− e−2Tλ
|f |22

for any f ∈ L2([0, T ),C).

Proof. This proof can be found in Benth and Krühner [3, Lemma A.1]. �

In the following Proposition 4.3, we calculate a Riesz basis of the space ran(A) and its
biorthogonal system. The Riesz basis will be given as the image of an orthonormal basis
of L2([0, T ),C). Consequently, its biorthogonal system is given by the image of (A−1)∗,
which we calculate in the Lemma below:

Lemma 4.2. The dual (A−1)∗ of the inverse of A : L2([0, T ),C)→ ran(A) is given by

(A−1)∗ : L2([0, T ),C)→ ran(A),

(A−1)∗f(x) = (1− e−2λT )e−λx
(
e2λcut(x)f(cut(x))

)
= (1− e−2λT )e2λcut(x)Af(x), x ≥ 0 .
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Proof. Let f, g ∈ L2([0, T ],C) and define h(x) := (1 − e−2λT )e2λcut(x)Af(x) for any
x ≥ 0. Then we have

(h,Ag)2 =

∫ ∞
0

h(y)Ag(y)dy

= (1− e−2λT )
∞∑
n=0

∫ (n+1)T

nT

e2λ(x−nT )(e−λxf(x− nT ))(e−λxg(x− nT ))dx

= (1− e−2λT )
∞∑
n=0

e−2λnT

∫ (n+1)T

nT

f(x− nT )g(x− nT )dx

=

∫ T

0

f(y)g(y)dy .

On the other hand,

((A−1)∗f,Ag)2 = (f, g)2 =

∫ T

0

f(y)g(y)dy .

Since g is arbitrary, we have h = (A−1)∗f as claimed. �

In the next Proposition we introduce a Riesz basis on the closed subspace ran(A) of
L2(R+,C) and identify its biorthogonal system {e∗n}n∈Z. Linked to this basis is a projec-
tor PA which we also introduce and provide some properties of. We remark that parts of
the next proposition can be found in Benth and Krühner [3, Lemma 4.22].

Proposition 4.3. Define

en(x) :=
1√
T

exp

((
2πin

T
− λ
)
x

)
, x ≥ 0, n ∈ Z.

Then {en}n∈Z is a Riesz basis on the closed subspace ran(A) of L2(R+,C) and

F := {f ∈ L2(R+,C) : f(x) = 0, x ∈ [0, T )}

is a closed vector space compliment of ran(A). The continuous linear projector PA with

range ran(A) and kernel F has operator norm
√

1
1−e−2λT and we have

PAf(x) = f(x), x ∈ [0, T ], f ∈ L2(R+,C).

The biorthogonal system {en}∗n∈Z for the Riesz basis {en}n∈Z is given by

e∗n(x) =
(
1− e−2λT

)
e2λcut(x)en(x), x ≥ 0.

Proof. Recall that the range of A is a closed subspace of L2(R+,C) due to Lemma 4.1.
Furthermore, {bn}n∈Z with

bn(x) :=
1√
T

exp

(
2πin

T
x

)
, n ∈ Z, x ∈ [0, T )

is an orthonormal basis of L2([0, T ),C). Observe, that en = Abn and hence {en}n∈Z is a
Riesz basis of ran(A).
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Define the continuous linear operators

Mλ : L2([0, T ),C)→ L2([0, T ),C),Mλf(x) := eλxf(x),

C : L2(R+,C)→ L2([0, T ),C), f 7→ f |[0,T )

and PA := AMλC. Observe, thatMλCA is the identity operator on L2([0, T ),C) and
hence P2

A = PA. Therefore, PA is a continuous linear projection with kernel F and range
ran(A).

Let f ∈ L2(R+,C) be orthogonal to any element of the kernel of PA. Then f(x) = 0
Lebesgue-a.e. for any x ≥ T . Hence, we have

|PAf |22 =
∑
n∈N

∫ nT+T

nT

(e−λxeλ(x−nT ))2|f(x− nT )|2dx

=
∑
n∈N

e−2nλT |f |22

=
1

1− e−2λT
|f |22

and it follows that ‖PA‖op =
√

1
1−e−2λT .

According to Lemma 4.2, we have

e∗n(x) = (A−1)∗bn(x)

= (1− e−2λT )e−λx
(
e2λcut(x)bn(cut(x))

)
=
(
1− e−2λT

)
e2λcut(x)en(x) ,

for any n ∈ Z, x ≥ 0, as required. �

The statements collected in this section have so far been about the space L2(R+,C).
However, our main interest is the space Hα, which has a natural and simple isometry
to C × L2(R+,C). In the next theorem we translate the L2(R+,C)-statements above to
Hα, and thus concluding the first part of this Section. But before stating the theorem, we
introduce an operator which will turn out to be convenient here and in the sequel: Define

Θ : Hα → C× L2(R+,C), f 7→ (f(0), wαf
′) , (8)

where wα(x) := exα/2 for x ≥ 0. Then Θ is an isometry of Hilbert spaces with the inverse
given by

Θ−1 : C× L2(R+,C)→ Hα, (z, f) 7→ z +

∫ (·)

0

w−1
α (y)f(y)dy . (9)

We use the operator Θ and its inverse to prove:

Theorem 4.4. The system {g∗, {gn}n∈Z} defined in (5)-(6) is a Riesz basis of a closed
subspace HT

α of Hα. Indeed, HT
α is the space generated by {g∗, {gn}n∈Z}. Moreover,

there is a continuous linear projector Π : Hα → Hα with range HT
α and operator norm√

1
1−e−2λT such that

Πh(x) = h(x), h ∈ Hα, x ∈ [0, T ].

Consequently, ΠUth(x) = UtΠh(x) = h(x+ t) for any t ∈ [0, T ] and any x ∈ [0, T − t].
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The biorthogonal system {g∗∗, {g∗n}n∈Z} is given by

g∗∗(x) = g∗(x) = 1

g∗n(x) =

∫ x

0

e−y
α
2 e∗n(y)dy

where e∗n is given in Proposition 4.3 for any n ∈ Z, x ≥ 0.

Proof. Let {en}n∈Z be the Riesz basis from Proposition 4.3, V the linear vector space
generated by {en}n∈Z (which is in fact ran(A)) and PA the projector from that proposi-
tion. Then {(1, 0), {(0, en)}n∈Z} is a Riesz basis of C × V . Furthermore, {g∗, {gn}n∈Z}
is a Riesz basis of Θ−1(C × V ) because g∗ = Θ−1(1, 0) and gn = Θ−1(0, en). Define
Π := Θ−1(Id,PA)Θ. Then Π is a linear projector with the same bound as PA where

(Id,PA)(z, f) := (z,PAf), z ∈ C, f ∈ L2(R+,C) .

Let h ∈ Hα and x ∈ [0, T ]. Then cut(y) = y for any y ∈ [0, x]. We have from the
definition of the various operators that

Πh(x) = Θ−1(Id,PA)(h(0), exp(α · /2)h′)(x)

= Θ−1
(
(h(0), (exp((λ+ α/2)·)h′)|[0,T )(cut(·)) exp(−λ·)

)
(x)

= h(0) +

∫ x

0

e−(λ+α/2)ye(λ+α/2)cut(y)h′(cut(y)) dy

= h(0) +

∫ x

0

h′(y) dy = h(x) .

Hence, Πh(x) = h(x) for any x ∈ [0, T ]. �

In the next proposition we compute the action of the shifting semigroup {Ut}t≥0 on the
Riesz basis of Theorem 4.4 and the dual semigroup on the biorthogonal system.

Proposition 4.5. For the Riesz basis {g∗, {gn}n∈Z} in (5)-(6) and its biorthogonal system
{g∗∗, {g∗n}n∈Z} derived in Theorem 4.4, it holds

(1) Utgn = eλntgn + gn(t)g∗ and
(2) U∗t g∗n = eλntg∗n,

for any n ∈ Z.

Proof. Claim (1) follows from a straightforward computation. For claim (2), we compute

U∗t g∗n = g∗〈U∗t g∗n, g∗〉α +
∑
k∈Z

g∗k〈U∗t g∗n, gk〉α

= g∗〈g∗n,Utg∗〉α +
∑
k∈Z

g∗k〈g∗n,Utgk〉α

= eλntg∗n

for any n ∈ Z, t ≥ 0. Thus, the Proposition follows. �

Proposition 4.5 shows that the system {g∗, {gn}n∈Z} is close to form a set of eigenvec-
tors for the shift operator Ut. On the other hand, the biorthogonal system {g∗n}n∈Z is a set
of eigenvectors for the adjoint operator U∗t , but U∗t g∗ = g∗ +

∑
n∈Z gn(t)g∗n. This explicit
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and simple relationship between the shift operator and the Riesz basis is very attractive in
our further analysis.

Let k ∈ N and introduce the finite dimensional subspace HT,k
α

HT,k
α := span{g∗, g−k, . . . , gk} . (10)

Here, {g∗, {gn}n∈Z} is the Riesz basis defined in (5)-(6) on the closed subspaceHT
α (recall

Theorem 4.4). HT,k
α will be the space where we will study finite dimensional approxima-

tions of the SPDE (1). To this end, define the projection operator

Πk : HT
α → HT,k

α , h 7→ h(0)g∗ +
k∑

n=−k

gn〈h, g∗n〉α, (11)

where the biorthogonal system to our Riesz basis {g∗∗, {g∗n}n∈Z} is given in Theorem 4.4.

Proposition 4.6. For the operator Πk defined in (11), ‖Πk‖op is bounded uniformly in
k ∈ N and Πkh→ h when k →∞ for any h ∈ HT

α .

Proof. Let h ∈ HT
α . Since {g∗, {gn}n∈Z} is a Riesz basis of HT

α we have

h = g∗〈h, g∗〉α +
∑
n∈Z

gn〈h, g∗n〉α ,

and hence we get Πkh→ h for k →∞.
We prove that the operator norm of Πk is uniformly bounded in k ∈ N. Recall from

Theorem 4.4 and (9) gn = Θ−1(0,Abn), n ∈ Z and g∗ = Θ−1(1, 0), where A is defined
in (4) and {bn}n∈Z is an orthonormal basis of L2([0, T ],C). Without loss of generality,
we assume h(0) = 0 for h ∈ HT

α , and find that

Πkh =
k∑

n=−k

gn〈h, g∗n〉α =
k∑

n=−k

T bn(T −1h, bn)2 = T
k∑

n=−k

bn(T −1h, bn)2 .

Here, T f := Θ−1(0,Af) ∈ Hα for f ∈ L2([0, T ],C), which is a bounded linear operator.
Hence, since

∑k
n=−k bn(T −1h, bn)2 is the projection of T −1h ∈ L2([0, T ],C) down to its

first 2k + 1 coordinates,

‖Πkh‖α ≤ ‖T ‖op

∣∣∣∣∣
k∑

n=−k

bn(T −1h, bn)2

∣∣∣∣∣
2

≤ ‖T ‖op|T −1h|2

But since T −1 also is a bounded operator, it follows that ‖Πk‖op ≤ ‖T ‖op‖T −1‖op. �

In the analysis of approximative solutions of SPDE (1) in the space HT,k
α , the Lie com-

mutator [Πk,Ut] plays a crucial role. We recall that [Πk,Ut] = ΠkUt − UtΠk. In the next
proposition, we derive an explicit formula for the Lie commutator, as well as showing an
essential convergence result that will be applied in Section 5 in the analysis of approxi-
mations of the SPDE (1).

Proposition 4.7. Let k ∈ N and t ≥ 0. It holds that [Πk,Ut] = Ck,t where

Ck,t : HT
α → span{g∗}, h 7→ 〈h, ck,t〉αg∗.
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for
ck,t :=

∑
|n|>k

gn(t)g∗n.

Moreover, sups∈[0,t] ‖Ck,sh‖α → 0 for k →∞ and any h ∈ HT
α .

Proof. Let h ∈ HT
α . Benth and Krühner [3, Lemma 3.2] yields that convergence in Hα

implies local uniform convergence. From Proposition 4.7 we know h − Πkh → 0, and
thus it holds

sup
s∈[0,t]

|h(s)− Πkh(s)| → 0 ,

for k →∞. Hence, we find

sup
s∈[0,t]

∣∣∣∣∣∣
∑
|n|>k

gn(s)〈h, g∗n〉α

∣∣∣∣∣∣ = sup
s∈[0,t]

|h(s)− Πkh(s)| → 0 ,

for k →∞. Therefore, sups∈[0,t] ‖Ck,sh‖α → 0 for k →∞.
Let n ∈ Z. Then, by Proposition 4.5

[Πk,Ut]gn = Πk(e
λntgn + gn(t)g∗)− 1{|n|≤k}Utgn

= 1{|n|≤k}e
λntgn + gn(t)g∗ − 1{|n|≤k}(e

λntgn + gn(t)g∗)

= 1{|n|>k}gn(t)g∗

= Ck,tgn
for any t ≥ 0. Moreover,

[Πk,Ut]g∗ = Πkg∗ − Utg∗ = 0 = Ck,tg∗.
The proof is complete. �

The next result concerns convergence of stochastic integrals of the Lie commutator:

Proposition 4.8. Let X be a stochastic process with values in HT
α such that X(t) =

Y (t) + M(t) for some square integrable process Y of finite variation and a square inte-
grable martingale M . Then,

lim
k→∞

∫ t

0

[Πk,Ut−s] dX(s) = 0 ,

where the convergence is in L2(Ω, Hα), the space of Hα-valued random variables Z with
E[‖Z‖2

α] <∞.

Proof. Recall from Proposition 4.7 that [Πk,Ut−s] = Ck,t−s.
Let 〈〈M,M〉〉(t) =

∫ t
0
Qsd〈M,M〉(s) be the quadratic variation processes of the mar-

tingaleM given in Peszat and Zabczyk [28, Theorem 8.2]1. Then, Peszat and Zabczyk [28,
Theorem 8.7(ii)] yields

E
[
‖
∫ t

0

Ck,t−sdM(s)‖2
α

]
= E

[∫ t

0

Tr(Ck,t−sQsC∗k,t−s)d〈M,M〉(s)
]
.

1In Peszat and Zabczyk [28], 〈〈·, ·〉〉 is called the operator angle bracket process, while 〈·, ·〉 is the angle
bracket process and the operator-valued process Q is introduced in that statement as well.
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Recall that for h ∈ HT
α , we find Ck,th = 〈h, ck,t〉αg∗. Thus,

〈h, C∗k,tg∗〉α = 〈Ck,th, g∗〉α = 〈h, ck,t〉α ,

which gives that C∗k,tg∗ = ck,t, with ck,t defined in Proposition 4.7. For g ∈ HT
α orthogonal

to g∗ we have
〈h, C∗k,tg〉α = 〈Ck,th, g〉α = 〈h, ck,t〉α〈g∗, g〉α = 0

for any h ∈ HT
α and hence C∗k,tg = 0. We get

Tr(Ck,t−sQsC∗k,t−s) = 〈Ck,t−sQsC∗k,t−sg∗, g∗〉α
= 〈Qsck,t−s, ck,t−s〉α
≤ ‖ck,t−s‖2

αTr(Qs) .

Hence,

E

[∥∥∥∥∫ t

0

Ck,t−sdM(s)

∥∥∥∥2

α

]
= E

[∫ t

0

Tr(Ck,t−sQsC∗k,t−s)d〈M,M〉(s)
]

≤ sup
s∈[0,t]

‖ck,s‖2
αE
[∫ t

0

Tr(Qs)d〈M,M〉(s)
]

= sup
s∈[0,t]

‖ck,s‖2
αE
[
‖M(t)−M(0)‖2

α

]
→ 0

for k →∞. Similarily, we get∥∥∥∥∫ t

0

Ck,t−sdY (s)

∥∥∥∥2

α

≤ sup
s∈[0,t]

‖ck,s‖2
α

(∫ t

0

‖dY ‖α(s)

)2

→ 0

as k → 0, where ‖dY ‖α denotes the total variation measure associated with dY (see
Dinculeanu [16, Definition §2.1]). The claim follows. �

Our next aim is to identify the convergence speed of approximations in HT,k
α of certain

smooth elements f ∈ HT
α , that is, how close is Πkf to f in terms of number of Riesz

basis functions. We show a couple of technical results first.

Lemma 4.9. Let f ∈ HT
α . Then, we have

e−2λT

1− e−2λT

(
|f(0)|2 +

∑
n∈Z
|〈f, g∗n〉α|2

)
≤ ‖f‖2α ≤

1

1− e−2λT

(
|f(0)|2 +

∑
n∈Z
|〈f, g∗n〉α|2

)
.

Proof. Theorem 4.4 states that {g∗, {gn}n∈Z} is a Riesz basis ofHT
α . Moreover, it is given

by g∗ = Θ−1(1, 0), gn = Θ−1(0, en) for any n ∈ Z where Θ is the isometry given in (9)
and {en}n∈Z is the Riesz basis given in Proposition 4.3. Moreover, Lemma 4.1 yields
that en = Abn for any n ∈ Z where {bn}n∈Z is an orthonormal basis of L2([0, T ],C)
and ‖A‖2

op ≤ 1
1−e−2λT . Thus, we can construct a Hilbert space with orthonormal basis

{b∗, {bn}n∈Z} and a bounded linear operator B with ‖B‖2
op ≤ 1

1−e−2λT , such that g∗ = Bb∗,
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gn = Bbn. Thus, we have

‖f‖2
α = ‖g∗〈f, g∗〉α +

∑
n∈Z

gn〈f, g∗n〉α‖2
α

= ‖Bb∗〈f, g∗〉α +
∑
n∈Z

Bbn〈f, g∗n〉α‖2
α

≤ 1

1− e−2λT

(
|〈f, g∗〉α|2 +

∑
n∈Z

|〈f, g∗n〉α|2
)

where {g∗, {g∗n}n∈Z} denotes the biorthogonal system to {g∗, {gn}n∈Z} given in Theo-
rem 4.4. The lower inequality simply uses the lower inequality of Lemma 4.1 instead. �

It is more convenient to work with an orthonormal basis rather than a Riesz basis. It is
known that for any Riesz basis on a Hilbert space there is a scalar product whose norm is
equivalent to the original norm such that the Riesz basis is an orthonormal basis relative
to the new scalar product, cf. [35, Section 1, Theorem 9]. It is interesting to note that in
our setup the scalar product can be identified explicitly, as the next result shows.

Proposition 4.10. Define for fixed parameters λ, α > 0

〈f, h〉λ,α := f(0)h(0) +

∫ T

0

e(2λ+α)xf ′(x)h
′
(x)dx, f, h ∈ HT

α .

Then 〈·, ·〉λ,α defines a scalar product onHT
α whose norm ‖·‖λ,α is equivalent to the norm

‖ · ‖α and we have that {g∗, {gn}n∈Z} is an orthonormal basis of (HT
α , ‖ · ‖λ,α). We also

have
e−2λT

1− e−2λT
‖f‖2

λ,α ≤ ‖f‖2
α ≤

1

1− e−2λT
‖f‖2

λ,α, f ∈ HT
α .

Proof. The definition of 〈·, ·〉λ,α makes sense for all elements of HT
α because their abso-

lutely continuous derivatives are locally square-integrable. Also, 〈·, ·〉λ,α is obviously a
hermitian form and hence generates a semi-norm ‖ · ‖λ,α on HT

α .
We have 〈g∗, g∗〉λ,α = 1. Let n ∈ Z. Then we have 〈g∗, gn〉λ,α = 0 which shows that

g∗ is normed and orthogonal to {gn}n∈Z for the hermitian form 〈·, ·〉λ,α. Let m ∈ Z. A
direct calculation reveals,

〈gn, gm〉λ,α =
1

T

∫ T

0

e(2λ+α+λn+λm)xdx = 1{n=m}.

Thus, {gn}n∈Z is an orthonormal system relative to the hermitian form 〈·, ·〉λ,α. Let f ∈
HT
α . Then we know that f = f(0)g∗ +

∑
n∈Z〈f, g∗n〉αgn and, hence

‖f‖2
λ,α = |f(0)|2 +

∑
n∈Z

|〈f, g∗n〉α|2.

Lemma 4.9 yields

e−2λT

1− e−2λT
‖f‖2

λ,α ≤ ‖f‖2
α ≤

1

1− e−2λT
‖f‖2

λ,α, f ∈ HT
α .
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In particular, the norm ‖ ·‖α is equivalent to ‖ ·‖λ,α. Thus, (HT
α , ‖ ·‖λ,α) is a Hilbert space

with scalar product 〈·, ·〉λ,α. �

The next technical result connects the inner product of elements in HT
α with the bi-

orthogonal basis functions to a simple Fourier-like integral on [0, T ]:

Lemma 4.11. Assume f ∈ HT
α . Then, for any n ∈ Z,

〈f, g∗n〉α =
1√
T

∫ T

0

f ′(x) exp

((
−2πin

T
+ λ+ α/2

)
x

)
dx

Proof. Both 〈·, g∗n〉α and 〈·, gn〉λ,α are the coefficient functionals for the n-th vector of the
Riesz basis {g∗, {gn}n∈Z} where 〈·, ·〉λ,α is the scalar product given in Proposition 4.10.
Thus, 〈·, g∗n〉α = 〈·, gn〉λ,α. We conclude

〈f, g∗n〉α = 〈f, gn〉λ,α =
1√
T

∫ T

0

f ′(x)e(−
2πin
T

+λ+α/2)x dx.

�

With these results at hand, we can prove a convergence rate of order 1/
√
k for suffi-

ciently smooth functions in HT
α .

Proposition 4.12. Assume f ∈ HT
α is such that f |[0,T ] is twice continuously differentiable.

Then, we have

‖f − Πkf‖2
α ≤

C1

k
,

for any k ∈ N, where

C1 =
T
∣∣f ′(T )eT (λ+α/2) − f ′(0)

∣∣2 + (
∫ T

0
|f ′′(x)|ex(λ+α/2) dx)2

π2(1− e−2λT )
,

and we recall the projection operator Πk from (11).

Proof. Lemma 4.9 yields

‖f − Πkf‖2
α = ‖

∑
|n|>k

gn〈f, g∗n〉α‖2
α ≤ C

∑
|n|>k

|〈f, g∗n〉α|2

where C := (1 − e−2λT )−1. Define hn(x) := exp(ξnx), x ≥ 0, where we denote ξn =
−2πi

T
n+ λ+ α

2
. Then, by Lemma 4.11 and integration-by-parts we find

|〈f, g∗n〉α|2 = T−1

∣∣∣∣∫ T

0

f ′(x)hn(x)dx

∣∣∣∣2
= T−1 1

|ξn|2

∣∣∣∣f ′(T )hn(T )− f ′(0)hn(0)−
∫ T

0

f ′′(x)hn(x) dx

∣∣∣∣2
≤ 2

T

1

|ξn|2
Af ,

for any n ∈ Z\{0}, where the constant Af is

Af :=
∣∣f ′(T )eT (λ+α/2) − f ′(0)

∣∣2 + (

∫ T

0

|f ′′(x)|ex(λ+α/2) dx)2 .
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Moreover, we have ∑
|n|>k

1

|ξn|2
= 2

∑
n>k

1

|ξn|2
≤ T 2

2π2k
.

Putting the estimates together, we get

‖f − Πkf‖2
α ≤ Af

CT

π2k
,

as claimed. �

We can find a similar convergence rate for the series ck,t defined in Proposition 4.7, a
result which becomes useful later:

Lemma 4.13. Let ck,t be given as in Proposition 4.7. Then,

‖ck,t‖2
α ≤

C2

k
,

for any k ∈ N, where C2 = T/π2(1− exp(−2λT )).

Proof. We appeal to Lemma 4.9, using {g∗n}n∈Z as the Riesz basis with biorthogonal
system {gn}n∈Z, to find

‖ck,t‖2
α = ‖

∑
|n|>k

gn(t)g∗n‖2
α

≤ C
∑
|n|>k

|gn(t)|2

=
C

T

∑
|n|>k

1

|λn|2
∣∣eλnt − 1

∣∣2
≤ 2C

T
(1 + e−(2λ+α)t)

∑
|n|>k

1

|λn|2

≤ CT

π2

1

k
,

for C = (1− exp(−2λT ))−1. Hence, the result follows. �

With these results at hand we are now in the position to study arbitrage-free approxi-
mations of the forward dynamics in (1).

5. ARBITRAGE-FREE APPROXIMATION OF FORWARD TERM STRUCTURE MODELS

In this section we find an arbitrage-free approximation of a forward term structure
model (1)– stated in the Heath-Jarrow-Morton-type setup with the Musiela parametriza-
tion – which lives in the finite dimensional state space HT,k

α . We furthermore derive the
convergence speed of the approximation, and extend the results to account for forward
contracts delivering the underlying commodity over a period which is the case for elec-
tricity and gas.

Consider the SPDE (1) with a mild solution f ∈ Hα given by (2). We recall from (5)-
(6) and Theorem 4.4 the Riesz basis {g∗, {gn}n∈Z} on the spaceHT

α with the biorthogonal
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system {g∗, {g∗n}n∈Z}. Furthermore, we recall from (10) and (11) the projection Πk ofHT
α

on HT,k
α , and the operator Ck,t for k ∈ N, t ≥ 0 defined in Proposition 4.7.

Let us define the continuous linear operator Λk : Hα → HT,k
α by

Λk = ΠkΠ (12)

for any k ∈ N, where Π is the projection from Hα onto HT
α given in Theorem 5.1. The

following theorem is one of the main results of the paper:

Theorem 5.1. For k ∈ N, let fk be the mild solution of the SPDE

dfk(t) = ∂xfk(t)dt+ Λkβ(t)dt+ ΛkΨ(t)dL(t), t ≥ 0, fk(0) = Λkf0 . (13)

Then, we have
(1) E

[
supx∈[0,T−t] |fk(t, x)− f(t, x)|2

]
→ 0 for k →∞ and any t ∈ [0, T ],

(2) fk takes values in the finite dimensional space HT,k
α , moreover, fk is a strong

solution to the SPDE (13), i.e. fk ∈ dom(∂x), t 7→ ∂xfk(t) is P -a.s. Bochner-
integrable and

fk(t) = fk(0) +

∫ t

0

(∂xfk(s) + Λkβ(s))ds+

∫ t

0

ΛkΨ(s)dL(s) ,

(3) and,

fk(t) = Sk(t) +
k∑

n=−k

(
eλnt〈fk(0), g∗n〉α +

∫ t

0

eλn(t−s)dXn(s)

)
gn ,

where Sk(t) = δ0(fk(t)) and Xn(t) :=
∫ t

0
〈Πβ(s)ds + ΠΨ(s)dL(s), g∗n〉α for any

n ∈ Z, t ≥ 0.

Remark 5.2. Assume that the model f is stated in the arbitrage-free framework, that is,
that P is such that {F (t, τ)}t∈[0,τ ] is a local P -martingale for any τ > 0. Then the
dynamics of f are given by

df(t) = ∂xf(t)dt+ Ψ(t)dL(t),

i.e. β = 0 and L is a local martingale. Consequently, the dynamics of fk in Theorem 5.1
are given by

dfk(t) = ∂xfk(t)dt+ ΛkΨ(t)dL(t).

Thus the forward prices Fk(t, τ) := fk(t, τ − t) in the approximation models are local
martingales as well. Indeed, the set of local martingale measures for the approxima-
tion models is larger than the set of local martingale measures for the initial model. In
particular, one can work with the same pricing measure for the initial and the approx-
imation models. Note that the existence of local martingale measures is connected to
economically meaningful notions of no-arbitrage, cf. the fundamental work of Delbaen
and Schachermayer [15, Theorem 1.1] and the related work of Cuchiero, Klein and Teich-
mann [13, Theorem 1.1]. From these considerations we conclude that {fk}k∈N satisfies
requirements (i) to (iii) set out in Section 1. For requirement (iv), we will prove in the
next statement, Corollary 5.3 below, that the solution essentially is a superposition of
OU-process driven by some martingales.
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Proof of Theorem 5.1. (1) Define

fΠ(t) := UtΠf0 +

∫ t

0

Ut−s(Πβ(s)ds+ ΠΨ(s)dL(s))), t ≥ 0.

Since fk is a mild solution, we have

fk(t) = UtΠkΠf0 +

∫ t

0

Ut−sΠk(Πβ(s)ds+ ΠΨ(s)dL(s))

= ΠkUtΠf0 +

∫ t

0

ΠkUt−s(Πβ(s)ds+ ΠΨ(s)dL(s))

− Ck,tΠf0 −
∫ t

0

Ck,t−s(Πβ(s)ds+ ΠΨ(s)dL(s))

= Πk

(
UtΠf0 +

∫ t

0

Ut−s(Πβ(s)ds+ ΠΨ(s)dL(s)))

)
− Ck,tΠf0 −

∫ t

0

Ck,t−s(Πβ(s)ds+ ΠΨ(s)dL(s))

= Πk(fΠ(t))− Ck,tΠf0 −
∫ t

0

Ck,t−s(Πβ(s)ds+ ΠΨ(s)dL(s))

for any t ≥ 0. From Benth and Krühner [3, Lemma 3.2] the sup-norm is dominated by
the Hα-norm. Thus, there is a constant c > 0 such that

E

[
sup

x∈[0,T−t]
|Πk(fΠ(t, x))− fΠ(t, x)|2

]
≤ cE

[
‖(Πk − I)fΠ(t)‖2

α

]
for any t ≥ 0 where I denotes the identity operator on Hα. The dominated convergence
theorem yields that the right-hand side converges to 0 for k →∞. Lemma 4.13 yields

sup
x∈[0,T−t]

|Ck,tfΠ(0, x)| ≤ c‖Ck,tfΠ(0)‖α ≤ c‖ck,t‖α‖fΠ(0)‖α → 0 ,

for k →∞. Proposition 4.8 states that

E

[∥∥∥∥∫ t

0

Ck,t−s(Πβ(s)ds+ ΠΨ(s)dL(s))

∥∥∥∥2

α

]
→ 0 ,

for k → 0. Hence, we have

E

[
sup

x∈[0,T−t]
|fk(t, x)− fΠ(t, x)|2

]
→ 0 ,

for k →∞ and any t ∈ [0, T ]. Since fΠ(t, x) = f(t, x) for any t ∈ [0, T ], x ∈ [0, T − t]
the first part follows.

(2) Note first that ∂xgn(x) = exp(λnx)/
√
T = λngn(x)+g∗(x)/

√
T , and hence ∂xgn ∈

HT,k
α whenever |n| ≤ k. Thus, HT,k

α is invariant under the generator ∂x, and its restriction
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to HT,k
α is continuous and bounded. We find that fk takes values only in HT,k

α because

fk(t) = Πk

(
UtΠf0 +

∫ t

0

Ut−s(Πβ(s)ds+ ΠΨ(s)dL(s)))

)
− Ck,tΠf0 −

∫ t

0

Ck,t−s(Πβ(s)ds+ ΠΨ(s)dL(s)) ,

where all summands are clearly in HT,k
α .

(3) As fk(t) ∈ HT,k
α , we have the representation

fk(t) = 〈fk(t), g∗∗〉αg∗ +
k∑

n=−k

〈fk(t), g∗n〉αgn .

Since g∗∗ = 1, we find that 〈fk(t), g∗∗〉α = fk(t, 0). Thus, from the mild solution of (13)
we find, using Proposition 4.5

fk(t) = Sk(t) +
k∑

n=−k

〈
Utfk(0) +

∫ t

0

Ut−s(Λkβ(s)ds+ ΛkΨ(s)dL(s)), g∗n

〉
α

gn

= Sk(t) +
k∑

n=−k

〈fk(0),U∗t g∗n〉αgn

+
k∑

n=−k

∫ t

0

〈Λkβ(s)ds+ ΛkΨ(s)dL(s),U∗t−sg∗n〉αgn

= Sk(t) +
k∑

n=−k

eλnt〈fk(0), g∗n〉αgn

+
k∑

n=−k

∫ t

0

eλn(t−s)〈Λkβ(s)ds+ ΛkΨ(s)dL(s), g∗n〉αgn .

Observe that for any f ∈ Hα,

Λkf = Πk(Πf) = (Πf)(0)g∗ +
k∑

m=−k

〈Πf, g∗m〉αgm ,

and since {g∗, {gn}n∈Z}, {g∗∗, {g∗n}n∈Z} are biorthogonal systems

〈Λkf, g
∗
n〉α = (Πf)(0)〈g∗, g∗n〉α +

k∑
m=−k

〈Πf, g∗m〉α〈gm, g∗n〉α = 〈Πf, g∗n〉α1{|n|≤k} .

Hence, the claim follows. �

Another view on Theorem 5.1 is that all processes in the k-th approximation of f can
be expressed in terms of the factor processes X∗, X−k, . . . , Xk, as stated below.
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Corollary 5.3. Under the assumptions and notations of Theorem 5.1, we have for k ∈ N,

fk(t, x) = Sk(t) +
k∑

n=−k

Un(t)gn(x) ,

for any 0 ≤ t <∞ and x ≥ 0. Here,

Sk(t) = Sk(0) +X∗(t) +
k∑

n=−k

(
gn(t)Un(0) +

∫ t

0

gn(t− s)dXn(s)

)
,

with,

Xn(t) :=

〈∫ t

0

(Πβ(s)ds+ ΠΨ(s)dL(s)), g∗n

〉
α

,

X∗(t) :=

〈∫ t

0

(Πβ(s)ds+ ΠΨ(s)dL(s)), g∗

〉
α

,

Un(t) := eλnt〈fk(0), g∗n〉α +

∫ t

0

eλn(t−s)dXn(s)

for n ∈ {−k, . . . , k}.

Proof. The first equation is a restatement of (3) in Theorem 5.1. Proposition 4.5 yields

〈Uth, g∗〉α = 〈h, g∗〉α +
k∑

n=−k

gn(t)〈h, g∗n〉α

for any h ∈ HT,k
α because h = 〈h, g∗〉αg∗ +

∑k
n=−k〈h, g∗n〉αgn. Thus, since g∗ = 1 and

gn(0) = 0 we have

Sk(t) = fk(t, 0)

= 〈fk(t), g∗〉α

= 〈Utfk(0), g∗〉α +

∫ t

0

〈Ut−s(Λkβ(s) ds+ ΛkΨ(s) dL(s)), g∗〉α

= 〈fk(0), g∗〉α +
k∑

n=−k

gn(t)〈fk(0), g∗n〉α

+

∫ t

0

〈Λkβ(s) ds+ ΛkΨ(s) dL(s), g∗〉α

+
k∑

n=−k

∫ t

0

gn(t− s)〈Λkβ(s) + ΛkΨ(s) dL(s), g∗n〉α .

As in the proof of Theorem 5.1, we have 〈Λkf, g
∗
n〉α = 〈Πf, g∗n〉α for any f ∈ Hα.

Similarly, 〈Λkf, g∗〉α = 〈Πf, g∗〉α for n ∈ Z with |n| ≤ k. The result follows. �

The processes Sk, U−k, . . . , Uk in Corollary 5.3 capture at any time t the whole state
of the market in the approximation model. I.e., the spot price and the forward curve
are simple functions of these state variables. As we will see in Corollary 5.6 below, the
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forward prices of contracts with delivery periods can be expressed in these state vari-
ables as well. Note that if we assume 〈Πβ, g∗n〉α and 〈ΠΨ, g∗n〉α to be constant (non-
random), then (X−k, . . . , Xk) is a 2k + 1-dimensional Lévy process and U−k, . . . , Uk are
Ornstein-Uhlenbeck processes. This corresponds to the spot price model suggested in
Benth, Kallsen and Meyer-Brandis [2].

From the proof of Corollary 5.3 we find that Sk(0) = 〈fk(0), g∗〉α. But then

Sk(0) = 〈Λkf0, g∗〉α = 〈Πf0, g∗〉α = (Πf0)(0) = f0(0) .

Obviously, f0(0) is equal to today’s spot price, so we obtain that the starting point of the
process Sk(t) in the approximation fk is today’s spot price. Since we have fk(t, 0) =
Sk(t), Sk is the approximative spot price process associated with fk. For Un(0), n ∈ Z,
invoking Lemma 4.11 shows that

Un(0) = 〈Πf0, g
∗
n〉α

=
1√
T

∫ T

0

(Πf0)′(y) exp((λ+ α/2)x) exp

(
2πi

T
nx

)
dy .

This is the Fourier transform of the initial forward curve f0 (or, rather its derivative scaled
by an exponential function). In any case, both Sk(0) and Un(0) are given by (functionals
of) the initial forward curve f0.

Next, we would like to identify the convergence speed of our approximation, that is,
the rate for the convergence in part (1) of Theorem 5.1.

Proposition 5.4. Assume that x 7→ f(t, x) is twice continuously differentiable and let fk
be the mild solution of the SPDE

dfk(t) = ∂xfk(t)dt+ Λkβ(t)dt+ ΛkΨ(t)dL(t), t ≥ 0, fk(0) = Λkf0 .

Then, we have

E

[
sup

x∈[0,T−t]
|fk(t, x)− f(t, x)|2

]
≤ A(T )

k
,

for any k > 1, where

A(T ) :=
3T (1 + α−1)

(1− e−2λT )

{
‖Πf0‖2α +

∫ T

0
E[Tr(Ψ(s)QΨ∗(s))]ds+

(∫ T

0
E [‖β(s)‖α] ds

)2
}

+
3(1 + α−1)

π2(1− e−2λT )

{
TE
[
|∂xfΠ(t, T )eT (λ+α/2) − ∂xfΠ(t, 0)|2

]
+

(∫ T

0
E
[
|∂2
xfΠ(t, x)|

]
ex(λ+α/2) dx

)2
}
.

Remark 5.5. In the preceding proposition one might have expected a convergence rate
of order 1/k2 which would be the rate in the corresponding Galerkin approximation, cf.
Kruse [25, Theorem 1.1] (Note that we state the error in the squared norm-distance instead
of the usual norm-distance). However, different from the typical Galerkin approximation,
we included a correction term to retain the derivative operator in the approximation in-
stead of discretising it. The convergence speed of the correction term towards zero is
analysed in Lemma 4.13 and is only of order 1/k.
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Proof of Proposition 5.4. In the proof of Theorem 5.1 we have shown that

fk(t) = Πk(fΠ(t))− Ck,tΠf0 −
∫ t

0

Ck,t−s(Πβ(s)ds+ ΠΨ(s)dL(s)) ,

where fΠ(t) := UtΠf0 +
∫ t

0
Ut−s(Πβ(s)ds + ΠΨ(s)dL(s))) for any t ≥ 0. By Proposi-

tion 4.12 we have

‖fΠ(t)− Πk(fΠ(t))‖2
α ≤

C1(t)

k
where C1(t) is the random variable defined by

C1(t) =
T |∂xfΠ(t, T )eT (λ+α/2) − ∂xfΠ(t, 0)|2 + (

∫ T
0
|∂2
xfΠ(t, x)|ex(λ+α/2) dx)2

π2(1− e−2λT )
.

Proposition 4.7 and Lemma 4.13 yield

‖Ck,th‖2
α = ‖〈h, ck,t〉αg∗‖2

α = |〈h, ck,t〉α|2 ≤ ‖h‖2
α‖ck,t‖2

α ≤ ‖h‖2
α

C2

k
,

for the constant C2 = T/π2(1− e−2λT ). Then, we have

‖fk(t)− fΠ(t)‖2
α ≤ 3‖Πk(fΠ(t))− fΠ(t)‖2

α + 3‖Ck,tΠf0‖2
α

+ 3‖
∫ t

0

Ck,t−s(Πβ(s)ds+ ΠΨ(s)dL(s))‖2
α

≤ 3C1(t)

k
+

3C2

k
‖Πf0‖2

α

+ 3‖
∫ t

0

Ck,t−s(Πβ(s)ds+ ΠΨ(s)dL(s))‖2
α.

By Lemma 3.2 in Benth and Krühner [3], the uniform norm is bounded by the Hα-norm
with a constant c =

√
1 + α−1. Hence, taking expectations, yield

E

[
sup

x∈[0,T−t]
|fk(t, x)− f(t, x)|2

]
≤ c2E

[
‖fk(t)− fΠ(t)‖2

α

]
≤ 3c2

k

(
E [C1(t)] + C2‖Πf0‖2

α

)
+

6c2

k
C2

(∫ T

0

E[Tr(Ψ(s)QΨ∗(s))]ds+

(∫ T

0

E [‖β(s)‖α] ds

)2
)
.

The result follows. �

In electricity and gas markets forward contracts deliver over a future period rather than
at a fixed time. The holder of the forward contract receives a uniform stream of electricity
or gas over an agreed time period [τ1, τ2]. The forward prices of delivery period contracts
can be derived from a "fixed-delivery time" forward curve model (see Benth et al. [7]) by

F (t, τ1, τ2) :=
1

τ2 − τ1

∫ τ2

τ1

f(t, s− t) , ds (14)
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where f is given by the SPDE (1). The following corollary adapts Theorem 5.1 to the
case of forward contracts with delivery period.

Corollary 5.6. Assume the conditions of Theorem 5.1 and define

Fk(t, τ1, τ2) :=
1

τ2 − τ1

∫ τ2

τ1

fk(t, s− t)ds

for any 0 ≤ t ≤ τ1 ≤ τ2 ≤ T . Then, we have

Fk(t, τ1, τ2)→ F (t, τ1, τ2)

for k →∞ in L2(Ω) where F is given in (14). Furthermore,

Fk(t, τ1, τ2) = Sk(t) +
k∑

n=−k

Gn(t, τ1, τ2)

(
eλnt〈g∗n, fk(0)〉α +

∫ t

0

eλn(t−s)dXn(s)

)
,

for any t ≤ τ1 ≤ τ2 ≤ T where Sk(t) = δ0(fk(t)),

Gn(t, τ1, τ2) =
exp(λn(τ2 − t))− exp(λn(τ1 − t))− λn(τ2 − τ1)

λ2
n

√
T (τ2 − τ1)

and Xn(t) :=
∫ t

0
〈Πβ(s)ds+ ΠΨ(s)dL(s), g∗n〉α.

Proof. Theorem 5.1 yields uniform L2 convergence of the integrands appearing in Fk to
the integrand appearing in F and hence the convergence follows. The representation of
Fk follows immediately from part (3) of Theorem 5.1. �

We remark in passing that the temperature derivatives market (see e.g. Benth and Šal-
tytė Benth [8]) trades in forwards with a "delivery period" as well. In this market, the
forwards are cash-settled against an index of the daily average temperature measured in
a city over a given period. Temperature forward prices can be approximated using our
approach.

Our forward price dynamics f in (1) may also be a model for forward rates in fixed-
income theory (see for instance Filipovic [19], Peszat and Zabczyk [28] and Carmona
and Tehranchi [12]). Indeed, this is the application area where much of the theoretical
developments and interest for the HJMM dynamics comes from. We end this section with
a discussion of forward rates in view of our approximations of (1) in Theorem 5.1.

In the fixed-income theory, it is customary to formulate the HJMM dynamics of forward
rates directly in the risk neutral setting, which imposes a drift condition relating β with
Ψ (see Filipovic [19], Peszat and Zabczyk [28] and Carmona and Tehranchi [12]). Let us
take the set-up in Peszat and Zabczyk [28, Ch. 20], and restrict our attention to the Wiener
case for simplicity, that is, we let L = W . Suppose that Ψ(t) is defined via an Hα-valued
stochastic process σ(t, x), t, x ≥ 0 such that

Ψ(t)f(x) = 〈σ(t, x), f〉α .
Without going into details, we assume that σ is such that Ψ(t) satisfies the required condi-
tions (recall the assumptions in Section 2). From Remark 20.2 in Peszat and Zabczyk [28],
the drift condition becomes

β(t, x) =
1

2
〈Qσ(t, x),

∫ x

0

σ(t, y) dy〉α .
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We note here that σ(t, y) ∈ Hα for all y ≥ 0, and hence the integral above is to be under-
stood in the Bochner sense (which we assume is well-defined, here). By the definition of
Ψ(t), we have

β(t, x) =
1

2

∫ x

0

Ψ(t)(Q∗σ(t, y))(x) dy .

Now, from Theorem 5.1 we find an approximation fk where the drift is βk(t) := Λkβ(t)
and volatility Ψk(t) := ΛkΨ(t). Under suitable regularity conditions on σ, we find that

ΛkΨ(t)f = 〈Λkσ(t, ·, ·), f〉α
with the interpretation that the inner product is taken with respect to the third argument of
σ and Λk acts on the second argument. Hence, with σk(t, x, y) = Λkσ(t, ·, y)(x), we have
that fk is an arbitrage-free dynamics if the drift in the dynamics of fk satisfies

β̂k(t, x) :=
1

2

∫ x

0

Ψk(t)(Q∗σk(t, ·, y)) dy

But this is in general different from βk(t), and we conclude that our approach does not
give an arbitrage-free approximative dynamics of the forward rate model.

6. REFINEMENT TO MARKOVIAN FORWARD PRICE MODELS

In this Section we refine our analysis to Markovian forward price models, making the
additional assumption that the coefficients β and Ψ depend on the state of the forward
curve. More specifically, we assume that

β(t) = b(t, f(t)), (15)

Ψ(t) = ψ(t, f(t)), (16)

where b : R+×Hα → Hα, ψ : R+×Hα → L(Hα) are measurable, Lipschitz continuous
functions of linear growth in the sense

‖b(t, f)− b(t, g)‖α ≤ Cb‖f − g‖α , (17)

‖(ψ(t, f)− ψ(t, g))Q1/2‖HS ≤ Cψ‖f − g‖α , (18)

and

‖b(t, f)‖α ≤ Cb(1 + ‖f‖α) , (19)

‖ψ(t, f)Q1/2‖HS ≤ Cψ(1 + ‖f‖α) , (20)

for positive constants Cb, Cψ. Under these conditions there exists a unique mild solution
f of the semilinear SPDE

df(t) = (∂xf(t) + b(t, f(t)))dt+ ψ(t, f(t−))dL(t), f(0) = f0 (21)

with càdlàg paths, cf. Tappe [34, Theorem 4.5, Remark 4.6]. We would like to note that
semilinear SPDEs of this type are treated in the book by Peszat and Zabczyk [28] and in
Tappe [34]. Additionally, we assume that

b(t, h) = b(t, g), (22)

ψ(t, h) = ψ(t, g) , (23)
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for any h, g ∈ Hα such that h(x) = g(x) for any x ∈ [0, T − t], i.e. the structure of the
curve beyond our time horizon T does not influence the dynamics of the curve-valued
process f(t).

Before continuing our analysis of the arbitrage-free approximation in the Markovian
case, we show a couple of useful lemmas. The first states a version of Doob’s L2 inequal-
ity for Volterra-like Hilbert space-valued stochastic integrals with respect to the Lévy
process L, and is essentially collected from Filipović, Tappe and Teichmann [20].

Lemma 6.1. Suppose that Φ ∈ L2
L(Hα). Then,

E

[
sup
s∈[0,t]

‖
∫ s

0

Us−rΦ(r) dL(r)‖2
α

]
≤ 4c2

t

∫ t

0

E
[
‖Φ(r)Q1/2‖2

HS

]
dr ,

for ct > 0 being at most exponentially growing in t.

Proof. Note first that due to Benth and Krühner [3, Lemma 3.5] theC0-semigroup {Ut}t≥0

is pseudo-contractive. Filipović, Tappe and Teichmann [20, Prop. 8.7]2 state that there is
a Hilbert space extension H of Hα (i.e. H is a Hilbert space and Hα is its subspace and
the norm of Hα equals the norm of H restricted to Hα where by slight abuse of notation
we write ‖ · ‖α for the norm on H as well) and a C0-group {Vt}t∈R on H such that
ΠHαVt|Hα = Ut for t ≥ 0 where ΠHα is the orthogonal projection from H to Hα. Then,
we have

sup
s∈[0,t]

‖
∫ s

0

Us−rΦ(r) dL(r)‖α ≤ sup
s∈[0,t]

‖Vs−t‖op‖
∫ s

0

Vt−rΦ(r) dL(r)‖α

≤ sup
s∈[0,t]

‖V−s‖op sup
s∈[0,t]

‖
∫ s

0

Vt−rΦ(r) dL(r)‖α .

Thus, by Doob’s maximal inequality, Thm. 2.2.7 in Prevot and Röckner [31], we find

E

[
sup
s∈[0,t]

‖
∫ s

0

Us−rΦ(r) dL(r)‖2
α

]

≤ sup
s∈[0,t]

‖V−s‖2
opE

[
sup
s∈[0,t]

‖
∫ s

0

Vt−rΦ(r) dL(r)‖2
α

]

≤ 4 sup
s∈[0,t]

‖V−s‖2
opE

[
‖
∫ t

0

Vt−rΦ(r) dL(r)‖2
α

]
= 4 sup

s∈[0,t]

‖V−s‖2
op

∫ t

0

E
[
‖Vt−rΦ(r)Q1/2‖2

HS

]
dr

≤ 4 sup
s∈[0,t]

‖V−s‖2
op sup

s∈[0,t]

‖Vs‖2
op

∫ t

0

E
[
‖Φ(r)Q1/2‖2

HS

]
dr

This proves the Lemma by letting ct = sups∈[0,t] ‖V−s‖op sup0≤s≤t ‖Vs‖op and recalling
that any C0-group is bounded in operator norm by an exponentially increasing function in
t. Hence, ct ≤ c exp(wt) for some constants c, w > 0. �

2This is a very useful consequence of the Szökefalvi-Nagy dilation theorem [32, Theorem I.8.1].
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We remark in passing that the above result holds for any pseudo-contractive semigroup
St, t ≥ 0.

The next lemma is a useful technical result on the distance between processes and the
fixed point of an integral operator defined via the mild solution of (21). The lemma plays
a crucial role in showing that certain arbitrage-free approximations of (21) converge to
the right limit. Essentially, it states the error of an arbitrary element to a fix point of some
operator V in terms of a constant times the error of the element to its next iteration.

Lemma 6.2. Let h be an Hα-valued adapted càdlàg process with E[
∫ t

0
‖h(s)‖2

α ds] <∞.
Then we can define

V (h)(t) := Utf0 +

∫ t

0

Ut−sb(s, h(s)) ds+

∫ t

0

Ut−sψ(s, h(s−)) dL(s) ,

for any t ≥ 0, V (h) has a càdlàg modification and we have

E
[

sup
0≤s≤t

‖h(s)− f(s)‖2
α

]
≤ π2

6
exp(4Ct)E

[
sup

0≤s≤t
‖V (h)(s)− h(s)‖2

α

]
,

for any t ≥ 0 where Ct := 2C2
b t sups∈[0,t] ‖Us‖op + 8c2

tC
2
ψ and ct is the constant given in

Lemma 6.1.

Proof. The linear growth assumption (19) on b yields

E[

∫ t

0

‖Ut−sb(s, h(s))‖α ds] ≤ Cbe
wt(t+ E[

∫ t

0

‖h(s)‖α ds])

≤ Cbe
wt(t+

√
tE[

∫ t

0

‖h(s)‖2
α ds]

1/2)

<∞ .

Furthermore, from the linear growth condition (20) on ψ we have

E[

∫ t

0

‖Ut−sψ(s, h(s))‖2
α ds] ≤ 2C2

ψe
2wt

(
t+ E[

∫ t

0

‖h(s)‖2
α ds]

)
<∞ .

Hence, V (h) is well-defined, and it is an adapted process. Filipović, Tappe and Teich-
mann [20, Prop. 8.7] state that there is a Hilbert space extension H of Hα and a C0-group
{Vt}t∈R on H such that ΠHαVt|Hα = Ut for t ≥ 0 where ΠHα is the orthogonal projection
from H to Hα. We have

V (h)(t) = ΠHαVt
(
f0 +

∫ t

0

V−sb(s, h(s))ds+

∫ t

0

V−sψ(s, h(s−))dL(s)

)
for any t ≥ 0. The expression in the bracket has a càdlàg modification l and then we see
that {ΠHαVt(l(t))}t≥0 is a càdlàg modification of V (h) by the local uniform boundedness
of t 7→ ‖Vt‖op and the strong continuity of V . For the rest of the proof we mean by V (h)
a càdlàg modification.

Define L2(Ω, D([0, t], Hα)) to be the vector space of Hα-valued adapted càdlàg sto-
chastic processes g for which E[sups∈[0,t] ‖g(s)‖2

α] < ∞ and define a norm ‖ · ‖t on it
by

‖g‖2
t := E[ sup

s∈[0,t]

‖g(s)‖2
α].
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From the above consideration we can define V on the entire normed space. By a straight-
forward estimation using again the linear growth of b and ψ, we find similarly that

E[ sup
s∈[0,t]

‖V (h)(s)‖2
α] ≤ Kt

(
1 + E

[∫ t

0

‖h‖2
α ds

])
<∞ ,

for some constant Kt > 0. Thus, V is an operator on L2(Ω, D([0, t], Hα)) and can be
iterated.

Observe, that V (f) = f which means that V has a fixed point. We now show that the
nth iteration V n of V is Lipschitz continuous with constant less than one for some n ∈ N.
If that is shown, then Banach’s fixed point theorem yields that f is the unique fixed point
and V nh→ f for n→∞. To this end, let g ∈ L2(Ω, D([0, t], Hα)). Then, we have

E
[

sup
0≤s≤t

‖V (h)(s)− V (g)(s)‖2
α

]
≤ 2E

[
sup

0≤s≤t
‖
∫ s

0

Us−r (b(r, h(r))− b(r, g(r))) dr‖2
α

]
+ 2E

[
sup

0≤s≤t
‖
∫ s

0

Us−r (ψ(r, h(r−))− ψ(r, g(r−))) dL(r)‖2
α

]
.

Consider the first term on the right hand side of the inequality. By the norm inequality for
Bochner integrals and Lipschitz continuity of b in (17), we find

E
[

sup
0≤s≤t

‖
∫ s

0

Us−r (b(r, h(r))− b(r, g(r))) dr‖2
α

]
≤ E

[
sup

0≤s≤t

(∫ s

0

‖Us−r‖op‖b(r, h(r))− b(r, g(r))‖α dr
)2
]

≤ tE
[

sup
0≤s≤t

∫ s

0

‖Us−r‖2
op‖b(r, h(r))− b(r, g(r))‖2

α dr

]
≤ t sup

0≤s≤t
‖Us‖2

opE
[∫ t

0

‖b(r, h(r))− b(r, g(r))‖2
α dr

]
≤ tC2

b sup
0≤s≤t

‖Us‖2
op

∫ t

0

E
[
‖h(r)− g(r)‖2

α

]
dr ,

where we have applied Cauchy-Schwartz’ inequality. Recall that since Ut is a pseudo-
contractive semigroup, we find for some w > 0, it holds that

sup
0≤s≤t

‖Us‖2
op ≤ exp(2wt) <∞.



FINITE DIMENSIONAL APPROXIMATION OF FORWARD PRICES 29

For the second term, we find by appealing to Lemma 6.1 and the Lipschitz continuity
in (18) of ψ,

E
[

sup
0≤s≤t

‖
∫ s

0

Us−r (ψ(r, h(r−))− ψ(r, g(r−))) dL(r)‖2
α

]
≤ 4c2

t

∫ t

0

E
[
‖(ψ(r, h(r))− ψ(r, g(r)))Q1/2‖2

HS

]
dr

≤ 4c2
tC

2
ψ

∫ t

0

E
[
‖h(r)− g(r)‖2

α

]
dr

Then, we have from the definition of Ct that

E
[

sup
0≤s≤t

‖V n(h)(s)− V n(g)(s)‖2
α

]
≤ Ct

∫ t

0

E
[
‖V n−1(h)(s1)− V n−1(g)(s1)‖2

α

]
ds1

≤ Cn
t

∫ t

0

∫ s1

0

· · ·
∫ sn−1

0

E
[
‖h(sn)− g(sn)‖2

α

]
dsn . . . ds1

≤ Cn
t

n!
E
[

sup
0≤s≤t

‖h(s)− g(s)‖2
α

]
,

for any n ∈ N. Consequently, V n is Lipschitz continuous with constant strictly less than
1 for some n ∈ N. We have that

‖f − h‖t = lim
n→∞

‖V n(h)− h‖t ,

and

‖V n(h)− h‖t ≤
n−1∑
k=0

‖V k+1(h)− V k(h)‖t ≤ ‖V (h)− h‖t
n−1∑
k=0

(
Ck
t

k!

)1/2

.

From Cauchy-Schwartz’ inequality we get

n−1∑
k=0

(
Ck
t

k!

)1/2

=
n−1∑
k=0

(k + 1)−1

(
(k + 1)2Ck

t

k!

)1/2

≤

(
n−1∑
k=0

1

(k + 1)2

)1/2(n−1∑
k=0

(k + 1)2Ck
t

k!

)1/2

≤ π√
6

(
n−1∑
k=0

4kCk
t

k!

)1/2

≤ π√
6

exp(2Ct) ,

where we have used the elementary inequality k + 1 ≤ 2k, k ∈ N. �
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Let us define the Lipschitz continuous functions bΠ := Π ◦ b and ψΠ := Π ◦ ψ. Then,
Tappe [34, Theorem 4.5] yields a mild solution fΠ for the SPDE

dfΠ(t) = (∂xfΠ(t) + bΠ(t, fΠ(t))) dt+ ψΠ(t, fΠ(t−)) dL(t), fΠ(0) = Πf0 . (24)

Furthermore, it will be convenient to use the notations

bk(t, h) := Λk(b(t, h)), (25)

ψk(t, h) := Λk(ψ(t, h)) (26)

for any h ∈ Hα, t ≥ 0.
In the proof of Theorem 5.1 we compared the solution f to the projected solution Πf

which are essentially the same due to properties of Π. Then we compared Πf to fΠ which
again had been essentially the same. Finally, we compared ΠkfΠ to solutions of the
projected SPDE where the difference was given by a certain Lie-commutator. However,
in the Markovian setting we want to change the dependencies of the coefficients as well,
which complicates the proof of the approximation result.

Theorem 6.3. Denote by f̂k be the mild solution of the SPDE

df̂k(t) = (∂xf̂k(t) + bk(t, f̂k(t))) dt+ ψk(t, f̂k(t−)) dL(t), f̂k(0) = Λkf0, t ≥ 0 .

Then, f̂k ∈ HT,k
α is a strong solution, and we have

E

[
sup

t∈[0,T ],x∈[0,T−t]
|f̂k(t, x)− f(t, x)|2

]
→ 0

for k →∞.

Proof. First we note that a unique mild solution f̂k with càdlàg paths to the SPDE exists
due to Tappe [34, Theorem 4.5] and for the same reason there is a unique mild càdlàg
solution fk to the SPDE

dfk(t) = (∂xf̂k(t) + bk(t, f̂(t))) dt+ ψk(t, f̂(t−)) dL(t), f̂k(0) = Λkf0, t ≥ 0 .

where we like to note that we insert the original process f into the drift function bk and
the diffusion function ψk. Define

Vk(h)(t) := Utfk(0) +

∫ t

0

Ut−s(bk(s, h(s)) ds+ ψk(s, h(s−)) dL(s)) ,

for any k ∈ N, t ≥ 0 and any adapted càdlàg process h inHα with E[
∫ t

0
‖h(s)‖2

α ds] <∞.
We have f̂k = Vk(f̂k) and fk = V (fΠ). By Lemma 6.2, it holds

E
[

sup
0≤s≤t

‖fΠ(t)− f̂k(t)‖2
α

]
≤ π2

6
exp(4Ct)E

[
sup

0≤s≤t
‖fk(s)− fΠ(s)‖2

α

]
,

for any k ∈ N, t ≥ 0 and Ct given in the lemma (recall from Section 2 that the oper-
ator norm of the shift semigroup Ut is uniformly bounded by the constant CU ). By the
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definition of fk and fΠ we find

‖fk(s)− fΠ(s)‖2
α ≤ 3‖fk(0)− fΠ(0)‖2

α + 3‖
∫ s

0

Us−r(bk(r, fΠ(r))− bΠ(r, fΠ(r))) dr‖2
α

+ 3‖
∫ s

0

Us−r(ψk(r, fΠ(r−))− ψΠ(r, fΠ(r−))) dL(r)‖2
α .

Consider the first term on the right-hand side of the inequality. By the norm inequality for
Bochner integrals, Cauchy-Schwartz’ inequality and boundedness of the operator norm
of Ut we find (for s ≤ t)

‖
∫ s

0

Us−r(bk(r, fΠ(r))− bΠ(r, fΠ(r))) dr‖2
α

≤
(∫ s

0

‖Us−r(bk(r, fΠ(r))− bΠ(r, fΠ(r)))‖α dr
)2

≤ t

∫ t

0

‖Us−r(bk(r, fΠ(r))− bΠ(r, fΠ(r)))‖2
α dr

≤ tC2
U

∫ t

0

‖bk(r, fΠ(r))− bΠ(r, fΠ(r))‖2
α dr

≤ tC2
U

∫ t

0

‖(Πk − I)bΠ(r, fΠ(r))‖2
α dr

Here, I denotes the identity operator on HT
α . Hence, using Lemma 6.1 and the fact that

{Ut}t≥0 is pseudo-contractive,

E
[

sup
0≤s≤t

‖fk(s)− fΠ(s)‖2
α

]
≤ 3‖fk(0)− fΠ(0)‖2

α + 3tC2
U

∫ t

0

E
[
‖(Πk − I)bΠ(r, fΠ(r))‖2

α

]
dr

+ 3E
[

sup
0≤s≤t

‖
∫ s

0

Us−r(ψk(r, fΠ(r−))− ψΠ(r, fΠ(r−))) dL(r)‖2
α

]
≤ 3‖fk(0)− fΠ(0)‖2

α + 3tC2
U

∫ t

0

E
[
‖(Πk − I)bΠ(r, fΠ(r))‖2

α

]
dr

+ 12c2
t

∫ t

0

E
[
‖(ψk(r, fΠ(r))− ψΠ(r, fΠ(r)))Q1/2‖2

HS

]
dr

≤ 3‖fk(0)− fΠ(0)‖2
α + 3tC2

U

∫ t

0

E
[
‖(Πk − I)bΠ(r, fΠ(r))‖2

α

]
dr

+ 12c2
t

∫ t

0

E
[
‖(Πk − I)ψΠ(r, fΠ(r))Q1/2‖2

HS

]
dr .
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Denote by

Kt(k) : = 3‖fk(0)− fΠ(0)‖2
α + 3tC2

U

∫ t

0

E
[
‖(Πk − I)bΠ(r, fΠ(r))‖2

α

]
dr

+ 12c2
t

∫ t

0

E
[
‖(Πk − I)ψΠ(r, fΠ(r))Q1/2‖2

HS

]
dr ,

for k ∈ N. By standard norm inequalities and the fact that Q is trace class, we have

Kt(k) ≤ 6(1 + ‖Πk‖2
op)‖fΠ(0)‖2

α + 6tC2
U(1 + ‖Πk‖2

op)

∫ t

0

E
[
‖bΠ(r, fΠ(r))‖2

α

]
dr

+ 24c2
t (1 + ‖Πk‖2

op)‖Q1/2‖2
HS

∫ t

0

E
[
‖ψΠ(r, fΠ(r))‖2

op

]
dr ,

which is seen to be bounded uniformly in k ∈ N from Proposition 4.6. Hence, we have
Kt(k) → 0 for k → ∞ and any t ≥ 0 by the dominated convergence theorem because
(Πk − I)h→ 0 for k →∞ and any h ∈ HT

α . Thus, we find

E
[

sup
0≤t≤T

‖fΠ(t)− f̂k(t)‖2
α

]
→ 0 ,

for k → ∞. We have fΠ(t, x) = f(t, x) for any t ∈ [0, T ], x ∈ [0, T − t] and from
Lemma 3.2 in Benth and Krühner [3] the sup-norm is dominated by the Hα-norm, and
therefore we have

E

[
sup

t∈[0,T ],x∈[T−t]
|f̂k(t, x)− f(t, x)|2

]
≤ cE

[
sup

0≤t≤T
‖f̂k(t)− fΠ(t)‖2

α

]
→ 0 ,

for k →∞ where c =
√

1 + 1/α. �

The philosophy in Theorem 6.3 is to take f(t) as the actual forward curve dynamics,
and study finite dimensional approximations f̂k(t) of it. By construction, f̂k solves a
HJMM dynamics which yields that the approximating forward curves become arbitrage-
free. From the main theorem, the approximations f̂k(t) converge uniformly to f(t) for
x ∈ [0, T − t]. As time t progresses, the times to maturity x ≥ 0 for which we obtain
convergence shrink. The reason is that information of f is transported to the left in the
dynamics of the SPDE. We recall that the approximation of f is constructed by first lo-
calizing f to x ∈ [0, T ] for a fixed time horizon T by the projection operator Π down to
HT
α , and next creating finite-dimensional approximations of this.
Alternatively, we may use fΠ(t) as our forward price model. Then, the finite dimen-

sional approximation fk(t) will converge uniformly over all x ∈ [0, T ]. In practice, there
will be a time horizon for the futures market for which we have no information. For exam-
ple, in liberalized power markets like NordPool and EEX, there are no futures contracts
traded with settlement beyond 6 years. Hence, it is a delicate task to model the dynamics
of the futures price curve beyond this horizon. The alternative is then clearly to restrict the
modelling perspective to the dynamics with the maturities confined in x ∈ [0, T ]. Indeed,
in such a context the structural conditions (22) and (23) will be trivially satisfied as we
restrict our model parameters in any case to the behaviour on x ∈ [0, T ].
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We end our paper with a short discussion on a possible numerical implementation of
f̂k(t), the finite-dimensional approximation of f(t). Since f̂k(t) ∈ HT,k

α , we can express
it as

f̂k(t) = f̂k,∗(t) +
k∑

n=−k

gnf̂k,n(t) ,

where f̂k,∗(t) = f̂k(t, 0)g∗ and f̂k,n(t) = 〈f̂k(t), g∗n〉α are C-valued functions. For any
h ∈ HT,k

α it follows that bk(t, h) ∈ HT,k
α . Define for n = −k, . . . , k the functions

bk,n : R+ × C2k+2 → C ; (t, x∗, x−k, . . . , xk) 7→

〈
bk(t, x∗g∗ +

k∑
j=−k

xjgj), g
∗
n

〉
α

,

bk,∗ : R+ × C2k+2 → C ; (t, x∗, x−k, . . . , xk) 7→

〈
b∗(t, x∗g∗ +

k∑
j=−k

xjgj), g
∗
n

〉
α

.

Furthermore, ψk(t, h) ∈ LHS(Hα, H
T,k
α ). Thus, for any g ∈ Hα we have thatψk(t, h)(g) ∈

HT,k
α . We define the mappings

ψk,n : R+ × C2k+2 → H∗α; (t, x∗, x−k, . . . , xk) 7→

〈
ψk(t, x∗g∗ +

k∑
j=−k

xjgj)(·), g∗n

〉
α

ψk,∗ : R+ × C2k+2 → H∗α; (t, x∗, x−k, . . . , xk) 7→

〈
ψ∗(t, x∗g∗ +

k∑
j=−k

xjgj)(·), g∗n

〉
α

for n = −k, . . . , k. Now, since ∂xg∗ = 0 and ∂xgn = λngn + g∗/
√
T , we find from

the SPDE of f̂k the following 2k + 2 system of stochastic differential equations (after
comparing terms with respect to the Riesz basis functions),

df̂k,∗(t) =

(
1√
T

k∑
n=−k

f̂k,n(t) + bk,∗(t, f̂k,∗(t), f̂k,−k(t), . . . , f̂k,k(t))

)
dt

+ ψk,∗(t, f̂k,∗(t−), f̂k,−k(t−), . . . , f̂k,k(t−))(dL(t))

df̂k,−k(t) =
(
λ−kf̂k,−k(t) + bk,−k(t, f̂k,∗(t), f̂k,−k(t), . . . , f̂k,k(t))

)
dt

+ ψk,−k(t, f̂k,∗(t−), f̂k,−k(t−), . . . , f̂k,k(t−))(dL(t))

· · · ·
· · · ·

df̂k,k(t) =
(
λkf̂k,k(t) + bk,k(t, f̂k,∗(t), f̂k,−k(t), . . . , f̂k,k(t))

)
dt

+ ψk,k(t, f̂k,∗(t−), f̂k,−k(t−), . . . , f̂k,k(t−))(dL(t))
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In a matrix notation, defining x(t) = (x1(t), x2(t), . . . , x2k+2(t))′ and

A =



1√
T

1√
T

1√
T

· · · 1√
T

0 λ−k 0 · · · 0
0 0 λ−k+1 · · · 0
· · · · · · ·
· · · · · · ·
0 0 0 · · · λk

 ,

we have the dynamics

dx(t) = (Ax(t) + bk(t,x(t))) dt+ ψk(t,x(t−))(dL(t)) ,

with f̂k,∗ = x1, f̂k,−k = x2, . . . , f̂k,k = x2k+2. Using for example an Euler approximation,
we can derive an iterative numerical scheme for this stochastic differential equation in
C2k+2. We refer to Platen and Bruti-Liberati [29] for a detailed analysis of numerical
solution of stochastic differential equations driven by jump processes.
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