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Abstract

Speciation is a continuous process and analysis of species pairs at different stages of diver-

gence provides insight into how it unfolds. Previous genomic studies on young species pairs

have revealed peaks of divergence and heterogeneous genomic differentiation. Yet less

known is how localised peaks of differentiation progress to genome-wide divergence during

the later stages of speciation in the presence of persistent gene flow. Spanning the specia-

tion continuum, stickleback species pairs are ideal for investigating how genomic diver-

gence builds up during speciation. However, attention has largely focused on young

postglacial species pairs, with little knowledge of the genomic signatures of divergence and

introgression in older stickleback systems. The Japanese stickleback species pair, com-

posed of the Pacific Ocean three-spined stickleback (Gasterosteus aculeatus) and the

Japan Sea stickleback (G. nipponicus), which co-occur in the Japanese islands, is at a late

stage of speciation. Divergence likely started well before the end of the last glacial period

and crosses between Japan Sea females and Pacific Ocean males result in hybrid male ste-

rility. Here we use coalescent analyses and Approximate Bayesian Computation to show

that the two species split approximately 0.68–1 million years ago but that they have contin-

ued to exchange genes at a low rate throughout divergence. Population genomic data

revealed that, despite gene flow, a high level of genomic differentiation is maintained across

the majority of the genome. However, we identified multiple, small regions of introgression,

occurring mainly in areas of low recombination rate. Our results demonstrate that a high

level of genome-wide divergence can establish in the face of persistent introgression and

that gene flow can be localized to small genomic regions at the later stages of speciation

with gene flow.
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Author summary

When species evolve, reproductive isolation leads to a build-up of differentiation in the

genome where genes involved in the process occur. Spanning the speciation continuum,

stickleback species pairs are ideal for investigating how genomic divergence accumulates

during speciation. However, much of our understanding of stickleback speciation comes

from early stage divergence, with relatively few examples from more divergent species

pairs that still exchange genes. To address this, we focused on Pacific Ocean and Japan Sea

sticklebacks, which co-occur in the Japanese islands. We established that they are the old-

est and most divergent known stickleback species pair, that they evolved in the face of

gene flow and that this gene flow is still on going. We found introgression is confined to

small, localised genomic regions where recombination rate is high. Our results show high

divergence can be maintained between species, despite extensive gene flow.

Introduction

Speciation is a continuous process through which reproductive isolation is established [1–3].

According to the genic view of speciation [4], when populations are in contact, gene flow is

initially restricted at barrier loci (i.e. loci underlying reproductive isolation), leading to the

emergence of peaks of genetic differentiation surrounding such barriers; i.e. heterogeneous

genomic differentiation [5,6]. As speciation progresses, this localised build-up of reproductive

isolation spreads to nearby regions due to linkage disequilibrium [4,5,7]. Once a critical

amount of differentiation at multiple barrier loci has accumulated, reduction of the genome-

wide effective migration rate will eventually lead to divergence across the entire genome [5,7].

This final step of genome-wide congealing may be a rapid and non-linear phase transition

under certain conditions, such as when isolating barriers have a polygenic basis or a few strong

barrier loci arise [8–10].

Recent empirical genomic studies have revealed regions of high and low differentiation dis-

persed throughout the genome at early stages of speciation [7,11,12]. This empirical data has

lent strong support to the genic perspective of the speciation process [4]. To-date however, the

majority of speciation genomic studies demonstrating heterogeneous genetic differentiation

have come from young species or population pairs with low divergence [7,11,12]. Several thor-

ough genomic studies on old sympatric species pairs exist, including European rabbits [13],

Drosophila species [14], sunflowers [15], whitefishes [16], flycatchers [17,18], wild mice [19],

Mimulus [20] and stick insects [9]; however except in a few cases, such as with Heliconius

[21,22], divergence is thought to have occurred during periods of geographical isolation.

Distinction between primary and secondary divergence is important for interpreting the

patterns of genomic differentiation [12,17]. This is because high genome-wide differentiation

may have evolved via genetic drift and local adaptation during allopatric isolation, rather than

due to divergence with gene flow. Following secondary contact after geographical isolation,

heterogeneous genomic differentiation may arise due to introgression. Without a picture of

the demographic history, this scenario may be indistinguishable from primary divergence

[23]. Despite the fact that the expected pattern of genomic differentiation during speciation is

influenced by the timing and duration of geographical isolation [7], testing different demo-

graphic histories has been somewhat neglected by the field [7,23], although this is now chang-

ing [17,24].

Other factors besides the demographic history of a species pair can also confound patterns

of heterogeneous genomic differentiation. For example, variation in recombination rate
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influences the patterns of genomic differentiation, because local adaptation or background

selection in genomic regions where recombination is reduced can elevate differentiation mea-

sures and be mistaken for barrier loci [18,25,26]. Mutation rate variation also influences the

patterns of absolute divergence [27]. Regions of low differentiation may be caused by shared

ancestral polymorphism rather than gene flow [25,28]. Distinction between gene flow and

shared ancestral polymorphism is likely easier in more divergent species pairs [27,29,30]. Fur-

thermore, the use of multiple classical and recently developed methods, such as detection of

recent hybrid progeny, ABBA-BABA tests [21,31], model-based inference [32], and compari-

sons between allopatric and sympatric pairs [21,26] provide a means to distinguish signatures

of gene flow from alternative explanations. It is therefore essential to account for factors such

as demographic history, recombination rate variation, and shared ancestral polymorphism

that can confound the interpretation of genome scan data [7,12].

Three-spined stickleback species pairs (genus Gasterosteus) span the speciation continuum

at varying stages of divergence, making them a model system for speciation research [33,34].

To-date genomic research on speciation with gene flow in the stickleback complex has largely

focused on weakly divergent species pairs, such as lake-stream ecotypes [35–37]. Such studies

have shown that the genomic landscape of differentiation between these recently diverged

sympatric or parapatric species pairs is heterogeneous and interspersed with multiple peaks of

high differentiation [35,37,38]. The emerging pattern is consistent with predictions under the

genic concept of speciation–i.e. that reproductive isolation is localized in the genome at early

stages of divergence [4,39]. However, it remains unclear whether such localized differentiation

will eventually progress toward genome-wide differentiation in the face of gene flow [40].

Toward the end of the stickleback speciation continuum is a marine species pair in Japan

[41,42]. The Japan Sea stickleback (G. nipponicus) is sympatric with the Pacific Ocean lineage

of three-spined stickleback (G. aculeatus) (Fig 1A) in the waters surrounding the Japanese

archipelago (Fig 1C) [41,43]. Divergence time between the two marine species has been esti-

mated to be 1.5–2 million years based on allozyme and microsatellite data [42,44], making it

much older than postglacial stickleback species pairs. Divergence between the species may

have occurred as a result of the repeated isolation of the Sea of Japan during the Pleistocene,

but this divergence scenario remains to be explicitly tested [42,44]. A unique feature of the G.

nipponicus and G. aculeatus system, relative to postglacial stickleback species pairs, is that a

neo-sex chromosome has arisen due to a fusion between a Y chromosome and a previously

autosomal chromosome IX (chrIX) in the G. nipponicus lineage [41,45]. Furthermore, crosses

between Japan Sea females and Pacific Ocean males show hybrid male sterility [42]. Previous

quantitative trait locus (QTL) mapping identified QTL for courtship behaviour on the neo-X

and hybrid male sterility on the ancestral-X. However, there are other isolating barriers, such

as eco-geographical isolation, temporal isolation, and ecological selection against migrants

[42,46,47]. The combination of these multiple barriers most likely contributes to the strong

reproductive isolation in this system [41,48]. However, despite such strong divergence, hybrids

have been observed where the two species co-occur in Northern Japan [41] and phylogenetic

discordance between nuclear and mitochondrial loci suggests some history of introgression

during speciation [49,50]. Although the Japanese species pair represents one of the furthest

points of divergence within the stickleback species complex, speciation remains incomplete.

The evolutionary history and genome-wide patterns of genetic differentiation and introgres-

sion of this strongly divergent species pair therefore remains an open question.

The aim of our study was to address this gap in our knowledge; i.e. to quantify the patterns

of genomic differentiation and introgression at a later stage of the stickleback speciation con-

tinuum. To this end, we used previously published whole-genome sequences and newly

acquired Restriction-site Associated DNA sequencing (RAD-seq) data from the Japanese
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stickleback species pair to determine their evolutionary history and characterise patterns of

gene flow between them. Our first aim was to establish how and when divergence took place

between G. nipponicus and G. aculeatus. Using thousands of genomic loci and a coalescent

modelling approach on the resequence data, we tested a range of divergence scenarios and esti-

mated the timing and duration of isolation, the extent of gene flow and fluctuations in popula-

tion size. After identifying that the two species have indeed diverged in the face of gene flow,

we first used our RAD-seq dataset to investigate patterns of population structure and intro-

gression between the Japanese stickleback species pairs. We then used a comparative genome

scan approach with the resequence data, adding G. aculeatus lineage from the Atlantic Ocean

[51] as an allopatric control (Fig 1A, S1 Fig). After establishing that gene flow has occurred but

that a high level of genomic differentiation has remained, we used two independent measures

of gene flow to identify where in the genome introgression has left its mark. We tested whether

Fig 1. The Japan Sea stickleback is a separate species. (A) Rooted nuclear consensus tree for Japan Sea, Pacific Ocean and Atlantic Ocean stickleback lineages from 10

kb non-overlapping sliding windows across the autosomes. Red trees indicate species clustering; blue trees indicate geographical clustering and green trees reflect

ancestral polymorphism. NB: Only 1,000 subsampled species trees are shown here to aid illustration. (B) Mitogenome Bayesian consensus tree shows divergence

between two mitochondrial clades–all Japanese sticklebacks (G. nipponicus and G. aculeatus) and G. aculeatus occurring in Europe and North America. (C) Present day

distribution of G. aculeatus (blue) and G. nipponicus (red) around the Japanese archipelago. The two species overlap in Hokkaido, Northern Japan and samples for this

study were collected in Bekanbeushi River in Akkeshi unless noted. (D) PSMC plot of 26 resequenced genomes shows a steady effective population size in the Pacific

Ocean lineage (blue) but a bottleneck around 0.15–0.3 million years before present and a subsequent increase in the Japan Sea lineage (orange). The effective population

size of the Atlantic Ocean lineage is shown in blue green.

https://doi.org/10.1371/journal.pgen.1007358.g001
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introgression occurs more frequently in regions of high recombination and whether it occurs

in regions with functionally important genes. Our findings suggest a high level of genome-

wide divergence can be maintained in the face of gene flow, as introgression is restricted to

small, localized genomic regions.

Results

Ancestral demography and population genomic analyses support

divergence with gene flow

Phylogenetic analysis on 35,666 10 kb non-overlapping genome windows on autosomes (i.e.,

excluding chrIX and chrXIX) using whole genome resequence data on 26 individuals supports

a deep split between G. aculeatus (both Pacific and Atlantic Ocean lineages) and G. nipponicus
(Japan Sea stickleback) (Fig 1A). Of all windows, 98.8% support the split between species,

while only 0.51% indicate clustering of fish occurring in Japan (the Japanese Pacific Ocean G.

aculeatus and the Japan Sea G. nipponicus; S1 Table and Fig 1A).

We calculated genealogical sorting index (gsi) [52] on maximum likelihood phylogenies

estimated from non-overlapping sliding windows of 10 kb across the autosomes. High gsi indi-

cates monophyly, while low gsi indicates mixed ancestry [52]. Genome-wide averages (± SD)

of gsi were high, but not complete, for all three Gasterosteus lineages with that of the Japan Sea

stickleback being the highest (Atlantic gsi = 0.45 ± 0.10, Pacific gsi = 0.57 ± 0.09, Japan Sea

gsi = 0.72 ± 0.06).

This is in stark contrast to the mitogenome phylogeny where sticklebacks from both species

occurring in Japan fall into a single clade separate from the clade occurring in the Western

Pacific and Atlantic (Fig 1B, S2 Fig). A lack of mitogenome divergence between G. aculeatus
and G. nipponicus from the Japanese archipelago suggests mitochondrial introgression might

occur where these lineages overlap (Fig 1C). Since the consensus autosomal phylogeny suggests

a more recent split between the Japanese Pacific and Atlantic G. aculeatus lineages than the split

in the mitochondrial phylogeny, the two mitogenome clades may represent the split between G.

aculeatus and G. nipponicus lineages with mitochondrial introgression likely having occurred

from the Japan Sea G. nipponicus into the Pacific Ocean G. aculeatus in sympatry. Divergence

time estimates between the mitogenome clades are thus informative for dating the divergence

time between G. aculeatus and G. nipponicus lineages. Bayesian coalescent analysis using a strict

clock model in Bayesian Evolutionary Analysis by Sampling Trees (BEAST) suggests a median

split date of 1.30 million years (0.15–2.41; 95% Highest Posterior Density [HPD] intervals; S2

Table) for the two major mitogenome clades (S2 Fig), consistent with previous estimates [49].

Divergence between Eastern Pacific and Atlantic haplotypes is more recent at 0.39 million years

(0.03–0.74; 95% HPD) but is older than the Most Recent Common Ancestor (MRCA) of all

haplotypes occurring in Japan (Fig 1B, S2 Fig), suggesting mitochondrial gene flow from G. nip-
ponicus to G. aculeatus may have occurred within the last 0.39 million years.

To investigate the demographic history of G. aculeatus and G. nipponicus, we first used pair-

wise sequential Markov coalescent (PSMC) on all 26 Atlantic Ocean, Japan Sea and Pacific

Ocean resequenced stickleback genomes to examine fluctuations in effective population size.

Strikingly, G. nipponicus experienced a severe bottleneck around 0.15–0.3 million years before

present (BP) (Fig 1D); mean Ne fell to 26,422 ± 1,191 at its lowest point. Subsequently after 0.1

million years BP, G. nipponicus underwent a dramatic effective population size expansion (Fig

1D): mean Ne rose to 195,974 ± 28,832 (i.e. ~7.5 times increase from the bottleneck) during

the late Pleistocene. In contrast, the effective population size of the Japanese Pacific Ocean

G. aculeatus has remained relatively stable throughout its history (mean Ne ± SD = 118,150 ±
4,330; Fig 1D, see S3 Fig for bootstrap support). Although the Atlantic (Fig 1D) and Western
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Pacific lineages of G. aculeatus (S4 Fig) also experienced some growth during the late Pleisto-

cene, their effective population sizes remained smaller than that of G. nipponicus. Cryptic pop-

ulation structure in G. nipponicus might explain the disparity in Ne between lineages; however

our RAD-sequence dataset confirms substructure is not present in this species (see below for

more details on RAD-seq dataset; S5 Fig and S6 Fig). Furthermore, genome-wide averages of

Tajima’s D also support a recent demographic expansion for G. nipponicus (mean ± SD of Taji-

ma’s D = -0.82±0.45) and stable effective population size in the Pacific Ocean (mean ± SD of

Tajima’s D = -0.04 ± 0.63).

To explicitly test whether divergence between G. aculeatus and G. nipponicus occurred in

the presence of gene flow, we used an Approximate Bayesian Computation (ABC) approach

with 1,874 2 kb loci randomly sampled from across autosomes. We tested five divergence sce-

narios–isolation (I), isolation with migration (IM), isolation-with-ancient-migration (IAM),

isolation-with-recent-migration (IRM) and isolation-with-ancient-and-recent-migration

(IARM)–i.e. two discrete periods of contact. Since the results of our PSMC analyses indicate

Ne has varied throughout divergence (Fig 1D), we performed a hierarchical ABC analysis, first

selecting the most appropriate population growth model (i.e. constant size, population growth

and a Japan Sea bottleneck) within each divergence scenario and then performing final model

selection amongst the best supported divergence/growth model scenarios (see S1 Text for full

specification of models, priors, parameters and extensive sensitivity testing).

Using 20 summary statistics (see S1 Text for a full list of statistics used) and a neural-net-

work rejection method with 1% tolerance of simulated datasets, the best-supported divergence

scenario was a model of IM with a bottleneck occurring only in the Japan Sea species (Fig 2A,

Table 1). An IARM model was the second best supported model. The use of a standard ABC

rejection method gave rise to the qualitatively similar results and we found no evidence of an

overrepresentation of introgressed regions in the loci used as the observed data for this analysis

(S1 Text). An independent maximum likelihood based demographic analysis using the joint G.

aculeatus and G. nipponicus site frequency spectrum (SFS) derived from RAD-seq data showed

high support for an IARM model (see S1 Text).

Parameter estimates from the ABC IM model suggest divergence between G. aculeatus and

G. nipponicus occurred 0.68 million years ago (median estimate, 0.18–4.17 million years, lower

& upper 95% HPD; Fig 2B). A Japan Sea bottleneck occurred 0.3 million years ago (0.03–2.21

million years 95% HPD), reducing Ne to about 20% of the contemporary estimate (Fig 2C, S3

Table). Mean migration rates between the two species were low, and migration rate (expressed

asmij−i.e proportion of population i that are migrants from j per generation) from the Pacific

Ocean lineage into the Japan Sea lineage (m12: median = 1.3 x 10−6, 95% HPD = 8.61 x 10−8–

5.32 x 10−6) was slightly greater than in the opposite direction (m21: median = 1.05 x 10−6, 95%

HPD = 4.91 x 10−8–6.39 x 10−6, N.B. migration rates are backwards in time; see also Fig 2D &

S3 Table). In addition to this, the distribution of the migration rate hyperprior suggested that a

large number of loci showed some level of gene flow (S1 Text). Contemporary Ne of the Japan

Sea lineage is larger than that of the Pacific Ocean, although the Ne estimates differed in mag-

nitude from those estimated by PSMC (Figs 1D and 2C, S3 Table). Given this difference in

effective population size, the scaled migration rates, the expected number of migrants per gen-

eration, (2Nimij) are higher from Pacific Ocean lineage into the Japan Sea than the alternative

(PO to JS = 0.18; JS to PO = 0.04) in contemporary populations, although still very low. Scaled

migration rates were likely more similar during the Japan Sea bottleneck, because lower effec-

tive population size of the Japan Sea population (1.22 x 104) at this stage reduces the expected

number of migrants from the Pacific Ocean to the Japan Sea (0.031).

Identifying admixture and the presence of backcrossed individuals between species where

they co-occur provides strong evidence of on-going introgression [7,12]. To address this, we

High divergence with localized introgression during speciation
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used a RAD-sequencing dataset with a larger sample size of 245 individuals from the Atlantic,

Pacific and Japan Sea lineages, including previously published data from Pacific-derived popu-

lations in North America [53]. Principal component analysis (PCA) of allele frequencies at 3,

Fig 2. ABC analysis supports isolation with gene flow. (A) A model of isolation with migration and a bottleneck in the Japan Sea lineage is best supported by ABC

analysis using ~2,000 nuclear loci (see Table 1). Posterior probability densities for model parameters estimated using neural network analysis with a tolerance of 1% and

20 summary statistics. Parameters are: T = time of split,m12 = the proportion of the Japan Sea population that are migrants from the Pacific Ocean per generation,m21 =

the proportion the Pacific Ocean population that are migrants from the Japan Sea per generation (note thatm is the migration rate backward in time); TG = timing of

bottleneck,NPO = Pacific Ocean effective population size, NJS = Japan Sea effective population size and NJSB = Japan Sea bottleneck effective population size. Posterior

probability density curves for (B) Japan Sea and Pacific Ocean divergence time and timing of bottleneck in the Japan Sea lineage, (C) Japan Sea, Pacific Ocean and Japan

Sea bottleneck effective population sizes, and (D) migration rates averaged across the genome, shown asm in Fig 2A. Figures on each panel are median parameter

estimates.

https://doi.org/10.1371/journal.pgen.1007358.g002

Table 1. Posterior probability values for models for final ABC model selection using neural network rejection.

All estimates produced using a tolerance of 1% and 20 summary statistics. Bold text indicates the model where poste-

rior probability provides the highest support. Models are I = isolation, IM = isolation with migration, IAM = isolation

and ancient migration, IRM = isolation and recent migration, IARM = isolation with ancient and recent migration.

Divergence model Growth model Posterior probability

IM bottleneck 0.511

I bottleneck 0.008

IAM bottleneck 0.009

IARM bottleneck 0.343

IRM bottleneck 0.129

https://doi.org/10.1371/journal.pgen.1007358.t001
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744 high-quality bi-allelic SNPs pruned to remove loci in linkage disequilibrium showed that,

consistent with our whole genome data, the main axis explaining 20% of the variance was

between G. aculeatus and G. nipponicus (S5 Fig). The secondary axis explaining 9.49% of the

variance was mainly between the Atlantic and Pacific populations (S5 Fig). Importantly, PCA

showed a single individual was intermediate between the Pacific and Japan Sea populations

occurring in Akkeshi, the sympatric site in Hokkaido, Japan where our whole genome-

sequenced samples were collected (Fig 1C). A separate Bayesian analysis for admixture using

STRUCTURE [54,55] found greatest support for K = 2 among stickleback populations and

also identified the putative F1 hybrid plus individuals with possible recent admixture in Akke-

shi (S6 Fig). To further investigate variation in individual ancestry, we identified 5,967 ances-

try-informative loci i.e. autosomal SNPs with an allele frequency difference of>0.8 between

the Japan Sea and Pacific Ocean lineages. Using a genomic cline approach, we estimated inter-

specific heterozygosity (i.e., proportion of loci with alleles from both species) and hybrid index

(i.e., proportion of alleles from one species) on simulated hybrid genotypes. This indicates the

marker set has high power to detect hybrid ancestry (S7 Fig). Analyses on the observed data

suggest the RAD-seq dataset includes one F1 hybrid and several individuals with likely hybrid

ancestry in the last few generations (S7 Fig).

Taken together, these data indicate that divergence between the Japanese G. aculeatus and

G. nipponicus is much older and greater compared to commonly studied postglacial stickle-

back species pairs. Despite the great extent of divergence between Japanese stickleback species,

parameter estimates and observational data suggest that gene flow between them is on-going.

High levels of genome-wide divergence with highly localized signatures of

introgression

Genome-wide differentiation was strikingly high between G. nipponicus and G. aculeatus
regardless of their geographical overlap (Fig 3A & 3B and Fig 4, and S8 Fig and S9 Fig). The

genome-wide average of FST between the sympatric species was 0.628; this is higher than FST

in all other studied stickleback species pairs, which is typically less than 0.3 [35–37,56] (see Fig

3C). The genome-wide average of absolute divergence (dXY) was 0.012; which is also high com-

pared to previously calculated dXY values, i.e. less than 0.005, between postglacial parapatric

and sympatric stickleback ecotypes [35,57,58]. Despite consistently high divergence, both FST

and dXY values were significantly lower where the two species occur in contact (Table 2, Figs 3

&, 4, S8 Fig and S9 Fig; 10,000 replicate permutation tests on 10 kb windows: P< 2.2 x 10−16

for both statistics), consistent with the presence of gene flow in sympatry.

A more fine-scale analysis of genome-wide divergence based on 10 kb non-overlapping

windows revealed that the high baseline divergence between G. nipponicus and G. aculeatus is

interspersed by regions of low differentiation in both FST and dXY genome scans (Fig 4 top two

panels, S8 Fig and S9 Fig), possibly indicating introgression. To identify genomic regions of

recent introgression, we calculated two independent measures. The first of these was GMIN, the

ratio of the minimum dXY to the average dXY [30]. Under strict isolation, minimum dXY relates

to the upper bound of divergence time between two populations, whereas when introgression

occurs, minimum dXY reflects the timing of the most recent migration event [30]. The second

measure was fd, an estimate of the proportion of introgressed sites in a genome window, calcu-

lated using a four population ABBA-BABA test [59]. GMIN is more effective at identifying recent,

low level gene flow than either FST or dXY but by definition it is unable to detect genomic regions

where complete introgression has occurred [30], which can however be detected using fd. Impor-

tantly, both measures are robust to variation in recombination rate [30,59]. Combining these

two statistics therefore allows us to identify both low-level (GMIN) and strong introgression (fd).
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Focusing on between species comparisons, mean (± SD) GMIN measured from 10 kb non-

overlapping windows was greater in allopatry than sympatry (Japan Sea vs. Atlantic: 0.876 ±
0.071; Japan Sea vs. Pacific: 0.857±0.103; randomization test P< 2.2x10-16; Fig 4). Mean fd was

also greater when the species overlapped (JS vs. AT: -0.0031 ± 0.0540; JS vs. PO: 0.0039

±0.0328; P< 2.2x10-16; Fig 4), and both statistics are more strongly negatively correlated in

sympatry (S10 Fig) supporting gene flow between G. nipponicus and Japanese populations of

G. aculeatus.
Genomic regions of low GMIN (i.e. GMIN valleys) may indicate recent introgression. We

identified genome windows with low GMIN values using a Hidden-Markov classification

model [60] (S11 Fig). We then clustered 10 kb outlier windows occurring within 30 kb of one

another into putative GMIN valleys. GMIN in particular may be susceptible to false positives as a

result of shared ancestral polymorphism. However, lower dXY and higher fd in sympatric GMIN

valley windows compared to the genomic background suggests shared ancestral polymor-

phism alone does not explain the patterns observed here (S12 Fig; randomization test, P<
2.2 x 10−16 in both cases). These regions of introgression were more common in the genome

when the two species overlapped, with 637 valleys in sympatry (JS-PO comparison) compared

to 337 in allopatry (JS-AT comparison) (randomization test, t = 5.35, P< 2.2 x 10−16) and a

greater number of valleys per chromosome (Fig 5A), although mean valley size did not differ

significantly (77.6 kb and 75.4 kb in sympatry and allopatry respectively, P = 0.82). Interest-

ingly, 225 valleys were shared between JS-PO and JS-AT comparisons (Fig 4). These shared

valleys may indicate shared ancestral polymorphism but they may also reflect introgression

from Pacific Ocean to Japan Sea, where one or a few Japan Sea individuals carry haplotypes

derived from Pacific Ocean and therefore are also similar to Atlantic Ocean haplotypes too.

However, a larger number of valleys (412 valleys) were unique to the JS-PO comparison,

where introgression might occur from Japan Sea to Pacific Ocean.

Fig 3. Genomic divergence is lower in sympatry than in allopatry between species. Histograms of (A) relative (FST) and (B) absolute (dXY)

differentiation measures for each of the species comparisons. (C) Mean genome-wide FST of the Japanese species pair compared with those of other

stickleback systems taken from previously published studies [35–37,56].

https://doi.org/10.1371/journal.pgen.1007358.g003

Fig 4. Genome-wide distribution of divergence and introgression. Divergence was measured using FST and dXY, while introgression was measured using GMIN and fd.

Data plotted here is from 50 kb non-overlapping genome windows. Blue and yellow lines indicates allopatric (Japan Sea vs Atlantic) and sympatric (Japan Sea vs Pacific

Ocean) comparisons, respectively.

https://doi.org/10.1371/journal.pgen.1007358.g004
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A similar geographical comparison of peaks of fd between species was not possible, due to

the fact that fd is much closer to 0 in the comparison between G. nipponicus and the Atlantic G.

aculeatus and very few peaks were present (Fig 4). Nonetheless, Hidden-Markov classification

identified 823 fd peaks occurring between G. nipponicus and Pacific G. aculeatus (S13 Fig). If

the fd peaks mainly indicate introgression from Pacific Ocean to Japan Sea, dXY between Japan

Sea and Atlantic Ocean is expected to be lower in these regions compared to the genome back-

ground, as Japan Sea fish carry haplotypes derived from the Pacific Ocean, which in turn are

similar to the Atlantic Ocean haplotypes. While JS-AT dXY was lower in fd peaks compared to

the genome background (JS-AT mean dXY ± SD, fd peaks: 0.0121±0.0035, genome-back-

ground: 0.0127±0.0026; one-tailed permutation test, P< 2.2 x 10−16), this difference was not

very clear (S14 Fig). In contrast, if introgression occurred mainly from Japan Sea to Pacific

Ocean, dXY in the PO-AT comparison should increase in fd peaks relative to the genome back-

ground, as Pacific Ocean fish carry Japan Sea-derived haplotypes, which are divergent from

Table 2. Genome-wide averages for measures of divergence and introgression. FST, dXY, GMIN, and fd for all pairwise comparisons of Japan Sea (JS), Pacific Ocean (PO)

and Atlantic Ocean sticklebacks (AT) are shown. Mean ± SD and lower and upper limits of the 95% confidence interval (in parenthesis) are shown. NA, not analysed.

Comparison FST dXY GMIN fd
JS vs PO 0.634 ± 0.122 (0.333–0.862) 0.012 ± 0.002 (0.007–0.017) 0.857 ± 0.102 (0.513–0.942) 0.004 ± 0.054 (-0.031–0.085)

JS vs AT 0.697 ± 0.116 (0.406–0.902) 0.013 ± 0.002 (0.007–0.018) 0.876 ± 0.071 (0.666–0.942) -0.003±0.033 (-0.077–0.029)

PO vs AT 0.215 ± 0.134 (0.003–0.539) 0.004 ± 0.002 (0.001–0.009) 0.560 ± 0.141 (0.223–0.772) NA

https://doi.org/10.1371/journal.pgen.1007358.t002

Fig 5. Fewer introgression valleys occur on the neo-X chromosome. (A) A greater number of GMIN valleys occur in sympatry than in allopatry between species. (B)

GMIN valleys and fd peaks also occur in regions of the genome with a higher recombination rate. Fewer valleys occur on the neo-X chromosome (chrIX; shown in pink)

compared to autosomes (C), even when chromosome length is taken into consideration (D); N.B.–data for (C) and (D) were measured using females only. Green shows

the ancestral sex chromosome (chrXIX).

https://doi.org/10.1371/journal.pgen.1007358.g005
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the Atlantic Ocean haplotypes. We clearly observed this pattern (PO-AT mean dXY ± SD, fd
peaks: 0.0065±0.0035, genome-background: 0.0038±0.00182; P< 2.2 x 10−16; S14 Fig); suggest-

ing that introgression from Japan Sea to Pacific Ocean may be more predominant than the

opposite direction. Importantly, our findings using GMIN, dXY and fd are robust to different

missing data thresholds and did not change when phased vs. unphased data is used (S1 Text).

To further investigate the direction of gene flow, we used partitioned D statistics (an exten-

sion of the four population test–see S15 Fig), which tests the excess of shared derived alleles

using five, rather than four populations [61]. To this end, we added an allopatric Japan Sea

population (collected from Lake Shinji, a brackish lake at the Japan Sea coast of southern Hon-

shu). A positive D12 statistic is proposed to indicate the predominance of introgression from

P3 to P2 (S15 Fig) [61]. When P3 was set to Japan Sea (where P31 is sympatric and P32 is allo-

patric with the Pacific Ocean) and P2 to Pacific Ocean (see S14 Fig), D12 was significantly posi-

tive in fd peaks (one-tailed permutation test, P < 2.2 x 10−16). In contrast, when we rotated the

populations at the tips–i.e. setting P2 to sympatric Japan Sea, P31 to Pacific Ocean, and P32 to

Atlantic Ocean (see S15 Fig), D12 was not positive, consistent with the suggestion that intro-

gression is occurring mainly from Japan Sea to Pacific Ocean. However, the resolution of parti-

tioned D statistics has been criticized [62]; positive D12 can also be caused by introgression

from the Pacific Ocean (P2) to the common ancestor of the sympatric and allopatric Japan Sea

populations (P31 & P32). To overcome this issue, we calculated DFOIL, which also uses a five-

population test but accounts for all possible introgression events [62]. When P1 = sympatric

Japan Sea, P2 = allopatric Japan Sea, P3 = Pacific Ocean, and P4 = Atlantic Ocean (S16 Fig),

DFOIL clearly indicated the presence of ancestral introgression (239 out of 4,236 100 kb-win-

dows) between the Japan Sea ancestor (P12) and the Pacific Ocean (P3) (see S15 Fig). However,

we found only a few windows showing unidirectional introgression (6 in total), meaning we

cannot determine the direction of introgression using this analysis (S16 Fig). This low sensitiv-

ity may be due to the fact that structuring in the Japan Sea lineage is very low (S6 Fig) [63]–i.e.

recent divergence time between the sympatric and allopatric Japan Sea populations or high

intraspecific gene flow within the Japan Sea species.

Characterization of genomic regions of introgression

To investigate whether introgression co-varies with recombination rate, we used a previously

published recombination map from an Atlantic G. aculeatus cross [64] to interpolate genome-

wide recombination rate variation (see Methods). We detected a negative correlation between

recombination rate and GMIN and a positive correlation with fd (Pearson’s correlation, GMIN:

r = -0.17, P< 2.2 x 10−16; fd: r = 0.08, P< 2.2 x 10−16, S17 Fig). Accordingly, mean recombina-

tion rate for putatively introgressed regions was over two times higher than the genome back-

ground (GMIN: valley = 8.98 cM/Mb, non-valley = 3.99 cM/Mb; fd: peak = 9.64 cM/Mb, non-

peak = 4.16 cM/Mb; randomization test P< 2.2 x 10−16 in both cases; Fig 5B).

Sex chromosomes likely played an important role in speciation between G. aculeatus and

G. nipponicus [41,45]. A fusion between Y and chrIX means that chrIX segregates as a neo-sex

chromosome in G. nipponicus but not G. aculeatus which only carries the ancestral and shared

sex chromosome, chrXIX [41,45]. The divergent XY (G. aculeatus) and X1X2Y (G. nipponicus)
systems means that recombination is reduced for chrIX and chrXIX in hybrids carrying the

neo-Y [45]. Given this recombination rate reduction and previously identified QTL for traits

involved in reproductive isolation that map to chrIX and chrXIX [41,45], we tested whether

recent introgression (i.e. measured using GMIN) was reduced in this part of the genome relative

to the autosome. For this, we repeated our analyses using females only (5 Japan Sea and 6

Pacific Ocean). The number and density of valleys was lowest on the neo-sex chromosome,
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chrIX (16 valleys or 0.8 valleys per Mb) but not on the ancestral sex chromosome (chrXIX, see

S4 Table).

Finally, we investigated the nature of introgression between the two species. We first asked

whether introgression occurs more frequently in genic or non-genic regions. We identified

3,261 genes occurring in GMIN valleys and 2,958 genes from fd peaks between sympatric G. acu-
leatus and G. nipponicus; 60% of genes identified were found in both types of introgressed

window, whereas 23% occurred only in GMIN valleys and 15% only in fd peaks (S18 Fig). Irre-

spective of the method used to detect putatively introgressed regions, the number of genes

identified was greater than the number expected by chance (P< 0.0001 based on a null distri-

bution generated from 1,000 random samples of the genome). Mean recombination rate was

higher in the genomic windows where genes are present compared to the genomic background

(gene windows = 4.92 cM/Mb, genome-background = 4.24 cM/Mb; permutation test: P< 2.2

x 10−16). This suggests that introgression may be more likely in genic regions of the genome

than non-genic regions, which can be partly explained by higher recombination rates in genic

regions.

To further investigate the functional enrichment of the genes occurring in regions of intro-

gression, we performed gene ontology (GO) analysis on 2,310 GMIN valley and 2,217 fd peak

genes with orthologs in the human genome. Enriched GO terms for fd peaks included immune

response, metabolic processes and chromatin assembly, while enriched GO terms for GMIN

valleys included major histocompatibility complex (MHC) protein and metabolic processes

(S5 Table & S6 Table).

Discussion

Japanese stickleback speciation has occurred in the face of on-going gene

flow

Determining the demographic and evolutionary history of species pairs is an important first

step for understanding how speciation has unfolded in any system [7,12]. Our present study

has produced several lines of evidence indicating that divergence between the Japanese stickle-

backs has occurred in the presence of gene flow.

Firstly, our ABC analysis supported a model of isolation with migration. Previously, it has

been speculated that the Japan Sea stickleback diverged largely as a result of geographical isola-

tion in the Sea of Japan caused by sea level fluctuation during the early Pleistocene [42,44].

Using ABC, we were able to explicitly test several divergence hypotheses in a statistical frame-

work [65]; our findings suggest that gene flow has likely occurred throughout majority of the

divergence history. It should be noted that ABC and most established demographic inference

methods perform poorly when resolving the timing of gene flow between lineages [66,67].

Therefore, one caveat to the interpretation of our ABC results is that we cannot rule out the

possibility that the two species diverged in repeated cycles of contact (i.e. akin to our IARM

model which had the second highest level of support; Table 1), but these periods of contact

were simply too close in time. Our independent SFS-based demographic analysis using RAD-

seq data also suggested higher support for an IARM model than for an IM model. Nonetheless,

the posterior probabilities from models with migration in the ABC analysis overwhelmingly

support a scenario of divergence with a period of gene flow irrespective of the timing or nature

of the actual speciation event.

The presence of extant recent hybrids in sympatry also strongly indicates that introgression

is still on-going. In several cases of sympatric pairs of highly diverged species [68–70], hybrids

beyond F1 are found and provide strong evidence for on-going gene flow. We observed a prob-

able F1 hybrid in the wild and several other individuals with evidence of recent hybrid ancestry
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in our RAD-seq dataset, consistent with previous studies that observed wild caught hybrids

[41,71]. This provides direct observation of admixture in the wild.

Lower levels of genome-wide divergence (both FST and dXY) between sympatric pairs com-

pared to allopatric pairs also indicate the presence of gene flow. Our GMIN and fd genome

scans showed a higher number of putatively introgressed regions between G. nipponicus and

Japanese Pacific G. aculeatus than between G. nipponicus and Atlantic G. aculeatus, suggesting

that introgression has been occurring even after the Atlantic and Pacific stickleback popula-

tions diverged approximately 390,000 years BP. Our partitioned D statistics demonstrated that

gene flow from G. nipponicus into Japanese Pacific G. aculeatus may be more predominant

than the opposite direction in sympatry.

Contrasting mitochondrial and nuclear genome phylogenies are also consistent with the

presence of gene flow. Mitochondrial introgression has likely occurred from G. nipponicus
into G. aculeatus at some point in the last 0.39 million years. Our mitogenome phylogeny con-

firmed previous findings that there is no mitochondrial structure that distinguishes between

the G. nipponicus and Japanese populations of G. aculeatus [49,50]. This is in contrast to our

nuclear autosomal phylogeny which showed that majority of the genome supports a clear split

between G. nipponicus and G. aculeatus occurring in Japan and that the latter shares a more

recent common ancestor with Atlantic European G. aculeatus populations. In short, mitogen-

ome data clusters the Gasterosteus lineages by geography, while the nuclear data clusters them

by species. Disparities in effective population size between lineages are a common cause of uni-

directional mitonuclear introgression with introgression likely occurring from a larger to a

smaller population [72]. Our reconstruction of temporal variation in effective population size

using PSMC showed a rapid population expansion of G. nipponicus during the late Pleistocene

that created a large demographic disparity with the G. aculeatus Pacific Ocean lineage. Although

it should be noted that admixture and cryptic population structure can increase effective popu-

lation size estimates when using PSMC [73,74], we found no evidence of clear population

structure in the Japan Sea lineage (S6 Fig). Furthermore, both Japan Sea and Pacific Ocean

individuals were sequenced to very high mean coverage (80X), therefore differences in depth of

coverage are very unlikely to explain the PSMC results [75] or introduce bias into our ABC anal-

ysis. Unidirectional mitochondrial introgression might also be caused by female mate choice

[76]. Our previous behavioural studies indicate that Japan Sea females often mate with Pacific

Ocean males, while Pacific Ocean females rarely mate with Japan Sea males [41,42]. Hybrid

females from Japan Sea female and Pacific Ocean male crosses are fertile [42] and will carry

Japan Sea mitochondrial DNA. Backcrossing of these hybrids to Pacific Ocean males would

result in unidirectional mitochondrial introgression from the Japan Sea to Pacific Ocean.

High genomic divergence at a late stage of speciation with gene flow

Compared to young species pairs, less is known about the patterns of genomic differentiation

at more advanced stages of speciation with gene flow. Our ABC analyses placed the estimated

divergence time of G. aculeatus and G. nipponicus at 0.68 million years BP. Similarly, our

Bayesian coalescent analysis of mitogenome divergence revealed a 1.3 million year split

between the Japanese and Atlantic-Pacific Gasterosteus mitochondrial clades. Both mitochon-

drial and nuclear split estimates suggest that divergence between G. aculeatus and G. nipponi-
cus occurred well before the end of the last glacial period. Therefore the Japanese stickleback

system is older than all other previously examined postglacial sympatric or parapatric species

pairs, which have typically diverged within the last 20,000 years [33].

The Japanese stickleback system also has a mean genome-wide FST and dXY values higher

than any other sympatric or parapatric stickleback species pair studied so far such as lake-
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stream or freshwater-anadromous pairs (Fig 3C) [36,38,57]; placing this pair at the furthest

end of the speciation continuum. The primary explanation for the observed elevated diver-

gence is most likely the more ancient divergence time of the Japan Sea-Pacific Ocean species

pair compared to postglacial species pairs [38,77]. However, the results of our demographic

analyses indicate that high divergence is not due to a long period of allopatric isolation without

gene flow, contrary to what has previously been suggested [42,44]. This is important, as failing

to account for variation in evolutionary history among species pairs placed on a continuum

will obscure the processes leading to higher differentiation as speciation progresses. A further

explanation for the high genomic divergence is the presence of strong isolating barriers

between the Japan Sea and Pacific Ocean sticklebacks. Total reproductive isolation (0.970) is

greater than in all postglacial species pairs (0.716–0.895) [48] and arises from a combination of

habitat [46,47], temporal [78] and sexual isolation, and hybrid sterility [41,42]. Recent theoreti-

cal studies have shown that selection on many barrier loci in the face of gene flow may result

in a transition from low to high differentiation as a result of ‘genome-wide congealing’ [10,79].

It is important to note however that we lack evidence that such a transition might explain the

high differentiation we see here relative to the rest of the stickleback continuum (Fig 3C).

Localized introgression at a late stage of speciation with gene flow

Our study has also demonstrated two important signatures of introgression in the Japanese

sympatric stickleback pair. Firstly, levels of background genome differentiation between G.

aculeatus and G. nipponicus estimated by FST were lower in sympatry compared to allopatry.

We note that this pattern was observed both in our whole genome and RAD-seq datasets. The

higher overall genetic differentiation between G. nipponicus and Atlantic G. aculeatus is likely

due to genetic drift and local adaptation and the fact that these two lineages have never over-

lapped geographically. Secondly and strikingly, using resequencing data, we identified small

regions of localised introgression dispersed throughout the genome when G. nipponicus and

G. aculeatus co-occur in sympatry. These introgression regions were measured using GMIN, the

ratio of minimum dXY to mean dXY [30], and fd, the proportion of introgressed sites in a

genome window [59].

Several methodological issues might influence these measures of introgression. Firstly,

there is a coverage disparity between resequenced individuals sampled in Japan and those

from the Atlantic (mean 61X and 12X coverage respectively), but both sample sets are

sequenced to a depth suitable for accurate genotyping. Furthermore, Atlantic Ocean individu-

als with relatively lower depth are not included in the analysis of ABC and only serve as a com-

parison for genome-wide patterns of differentiation, divergence or introgression between the

sympatric Japanese species. Secondly, both GMIN and fd are sensitive to sample size; fewer indi-

viduals will mean rare haplotypes have a lower sampling probability. However, by re-conduct-

ing our analyses using only females, a much smaller sample size than our main analysis, we

still identified clear signals of introgression. Thirdly, GMIN will be biased downwards if a

recently backcrossed individual is included in the dataset. All Japanese G. aculeatus and G. nip-
ponicus used in the study were identified as ‘pure’ individuals with genotyping at multiple

microsatellite loci prior to resequencing [41,45]. To further ensure that a single backcrossed

individual was not biasing our findings, we examined the two haplotypes producing the lowest

value of dXY in each GMIN valley to confirm that the majority were not always from the same

individuals (doi:10.5061/dryad.104g3d0). Finally, shared ancestral polymorphism cannot

explain why more GMIN valleys occur in sympatry (Fig 5A) (S9 Fig & S13 Fig).

What then underlies the localised pattern of introgression we observe? One possible expla-

nation is the fact that many isolating barriers are involved in reproductive isolation [41,48].
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Although the genomic basis of these isolating barriers remains unknown, it is likely that bar-

rier loci occur throughout the genome; pervasive selection at multiple loci is expected to limit

the extent of introgression at this scale [80]. We found significant positive relationships

between recombination rates and introgression. The strength and extent of negative selection

against an allele at a barrier locus and genomic regions linked to it is inversely proportional to

recombination rate [80]. Recombination determines effective migration rate [81]; when

recombination is high, neutral and adaptive loci linked to the target of negative selection in the

recipient population have a greater probability of escaping removal and so their probability of

introgression is greater [3]. Selection has a higher efficiency in these high recombination rate

regions due to increased effective population size–therefore deleterious introgression is also

more likely to be removed. The expectation then is that signatures of introgressed neutral or

adaptive alleles are most likely to persist in regions of the genome where recombination rate is

sufficiently high enough, and indeed, the positive association between introgressed regions

and recombination rate we observed supports this (Fig 5B, S15 Fig). Introgression is typically

lower on sex chromosomes relative to autosomes in multiple taxa due to the effects of reduced

recombination and greater exposure to selection in the hemizygous sex [82]. The sex chromo-

somes play an important role in the Japanese stickleback system, harbouring QTL for hybrid

sterility and behavioural isolation [41]. Consistent with this, we observed lower introgression

on the neo-sex chromosome (Fig 5E & 5F), although we cannot exclude the possibility that the

fusion occurred more recently than the speciation event, so the opportunity for introgression

on the neo-sex chromosomes was simply low relative to the rest of the genome. Taken

together, our findings suggest that strong divergent selection and recombination rate variation

may determine the localised signature of introgression in the genome.

The nature of gene flow in the Japanese stickleback system may also give some clues as to

why we observe such highly localised introgression. One possibility is that a proportion of the

introgression we detected is adaptive; i.e. it is maintained because of either directional or bal-

ancing selection. Adaptive introgression has been detected in a wide range of taxa [83], includ-

ing humans [84]. However, the expected signatures of the process remain unclear–especially

when introgression is widespread in the genome, as is possibly the case here. Our GO analyses

suggest an enrichment of immune response genes, including MHC genes, and metabolism

genes in introgressed regions. Immune genes have been identified as being under balancing

selection in hybridising taxa, particularly plants [85] and birds [86]. Several genes involved in

metabolism are also reported to be under balancing selection in humans [87]. Furthermore,

recent analysis suggests that negative frequency dependent selection might result in introgres-

sion of rare MHC alleles between divergent stickleback ecotypes [88]. Further research is nec-

essary to directly test whether this process might explain introgression in the Japanese

stickleback system.

Conclusion

Much of our knowledge of how genomic differentiation builds along the speciation continuum

is drawn from studies focusing on young, allopatric or completely reproductively isolated spe-

cies pairs. Very few examples of species pairs at a later stage of divergence with on-going gene

flow have been investigated. Here, we have shown that the Japan Sea and Pacific Ocean species

pair exemplifies this under-represented stage of speciation and is situated at the further end of

the stickleback species continuum. The high genomic differentiation between the species may

be due to a more ancient divergence time than previously studied postglacial species pairs,

selection on multiple isolating barriers or a combination of the two. Despite high differentia-

tion, gene flow is on-going between the species and we identified localized signatures of
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introgression throughout the genome. Although the localized nature of the introgression

remains unclear, selection–either directional or balancing–may play some role in promoting

it. Overall, our study demonstrates that high levels of genomic divergence can be established

and maintained in the presence of gene flow. Further genomic studies on more species pairs at

late stages of speciation with gene flow will help to understand the generality of the patterns

seen here.

Materials and methods

Ethics statement

All animal experiments were approved by the institutional animal care and use committee of

the National Institute of Genetics (23–15, 24–15, 25–18).

Sample collection, whole genome resequencing and RAD sequencing. Collection and

sequencing of all Japanese individuals used for whole genome resequencing has been described

previously [45] except the allopatric Japan Sea fish. Briefly sympatric populations were cap-

tured from the Akkeshi system in Hokkaido, Japan in 2006 (Fig 1C). The allopatric Japan Sea

female was collected in Lake Shinji in March 2014. The outgroup species, G. wheatlandi was

captured from Demarest Lloyd State Park, MA, USA in 2007, as described previously [45].

Libraries were constructed with TruSeq DNA Sample Preparation Kit (Illumina) and whole-

genome 100 bp paired-end sequencing was performed on an Illumina HiSeq2000 at the

National Institute of Genetics (sympatric JS and PO) and Functional Genomics Facility, NIBB

Core Research Facilities (allopatric JS) [45]. Whole genome sequencing of North American

marine and stream populations collected from Little Campbell River, BC, Canada was reported

previously [56,89]. For the six Atlantic G. aculeatus individuals (North Sea) included in the

study, we used previously published sequences [51]. All Japan Sea, Pacific Ocean, Little Camp-

bell and G. wheatlandi individuals were sequenced to a high mean depth of coverage (61X),

whereas Atlantic individuals had a lower depth of 12X (see S7 Table for more information)

Japanese individuals used for RAD sequencing have been previously described elsewhere

[63]. Samples used for RAD sequencing from the Atlantic lineage were collected from across

Ireland in 2009–2011 [90,91]. DNA was extracted using a Qiagen DNeasy Blood and Tissue

Kit (Qiagen, Valencia, CA, USA). Single digest RAD-sequencing was performed using SbfI fol-

lowing a standard protocol [92]. RAD library preparation and sequencing was conducted

using a 100bp single-end Illumina HiSeq by Floragenex (Oregon, USA).

Accession numbers, sample names and locations for all genome and RAD-seq samples are

listed in S7 Table.

Whole genome alignment, variant calling and phasing. Sequence reads were mapped to

the Broads S1 stickleback reference genome [93] using CLC Genomics Workbench 8.0 (Qia-

gen, Hilden, Germany) as described previously [45]. Alignments were exported as bam files

and were sorted and indexed using samtools 1.2 [94]. We first called bases at all sites (i.e. vari-

ant and invariant) across the genome for all 27 resequenced individuals and the outgroup (G.

wheatlandi). Mapped reads from all individuals were piled-up using samtoolsmpileup and

called against the stickleback BROAD S1 reference genome using the bcftools 1.2 consensus

caller, adjusting for poor mapping quality (-c 50) [95]. This consensus call produced a vcf file

with a base call for every position in the genome for all samples (27 + 1 outgroup). Consensus

calls from this phase were used in later demographic inference using PSMC and ABC with sep-

arate filtering criteria applied to each (see relevant sections). Estimates of fd, dXY and GMIN,

were also produced from this callset (see below). For analysis of differentiation and introgres-

sion we produced two separate datasets to compare the effects of phasing on our approach (see

S1 Text). The first unphased dataset used only Phred quality score>20 and a maximum depth
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of 200 (representing four times the mean coverage for resequenced individuals). The second

dataset was phased and as such required more stringent filtering. For this we allowed a maxi-

mum of two alleles at each position (to retain invariant sites), an MAF of 0.05, a minimum call

rate of 80% across all individuals, a minimum site depth of 10 and maximum site depth of 200.

Phasing was conducted using ShapeIt2 using default parameters [96].

We further filtered our callset down to produce a subset of high-quality biallelic SNPs with

which to examine genome-wide differentiation (measured as FST) between the Japan Sea,

Pacific and Atlantic Ocean lineages. We used bcftools to filter the consensus-call vcf for these

three lineages, only retaining sites with a Phred Quality score >10, and with a maximum indi-

vidual read depth of 200; loci with very high coverage may represent gene duplication and are

excluded. Prior to estimating FST (see below), we filtered for bi-allelic sites with an

MAF > 0.05, genotype calls in at least 70% of individuals, a minimum depth of 10 and a maxi-

mum depth of 200 using vcftools.

Mitochondrial genome divergence. To estimate divergence times based on mitochon-

drial DNA, we performed Bayesian coalescent analysis using BEAST v2.2.1 [97]. From our

resequencing data, we extracted the whole mitochondrial genome from the 26 Japan Sea,

Pacific and Atlantic Ocean individuals. We also downloaded two G. wheatlandi whole mito-

genomes as outgroups (NCBI accession numbers: AB445129 & NC011570). Note that due to

poor sequence coverage across the mitogenome we excluded our own re-sequenced G. whea-
tlandi individual here. Mitogenomes were aligned using MUSCLE v3.81.3 [98] resulting in a

16,549 bp final alignment and were not partitioned for phylogenetic analysis.

Although there is a considerable three-spined stickleback fossil record, it is unfortunately of

little use for providing fossil calibration dates for splits within the Gasterosteus genus [99,100].

However biogeographical events can also be used to calibrate node estimates and as such we

used a normal prior (mean = 1.5 million years, SD = 0.75 million years) on the split between

the Japan Sea and Pacific Ocean G. aculeatus lineages. We provided a further normal prior on

the split date between the Pacific and Atlantic Ocean mitochondrial lineages (mean = 0.5 mil-

lion years, SD = 0.25 million years). The latter prior distribution was intentionally made wide

to reflect uncertainty surrounding this estimate. Initial analyses with BEAST indicated that

marginal prior distributions for node ages did not behave as specified in the model and instead

returned extremely recent divergence times with low likelihood support. This is a common

bias in coalescent divergence time dating and use of a calibrated prior removed this issue

[101,102]. As a result, we performed all further analyses with a calibrated Yule prior. Incorrect

choice of molecular clock model can seriously bias coalescent estimates of lineage divergence

times and so care must be taken to ensure the appropriate model is chosen [103,104]. We used

path-sampling analysis in BEAST to estimate model marginal likelihoods for three different

clock models–strict, relaxed lognormal and relaxed exponential. For each model, Markov

chain Monte Carlo (MCMC) was run for 5 x 107 iterations, and marginal likelihoods were cal-

culated using BEAST. We then ran the final model using two 108 independent MCMC runs.

Runs were assessed in TRACER [105] to ensure convergence and that ESS values> 200 –i.e.

the posterior was adequately sampled. Independent runs were then combined to produce pos-

terior estimates of divergence times and substitution rates.

Nuclear phylogenetic analysis and genealogical sorting index (gsi). To investigate

nuclear phylogenetic discordance, we constructed maximum likelihood trees from consensus

sequences for non-overlapping 10, 50 and 100 kb sliding windows following Martin et al [21].

The best-fit tree was estimated for each window using RAxML with a ‘GTRGAMMA’ model

and a random number seed [106]. Trees were classified using a custom R script available from

Dryad (doi:10.5061/dryad.104g3d0) that binned trees based on whether they matched three

different topologies; species, geography, ancestral–or were unresolved. For the species
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category, all Atlantic, Pacific and Japan Sea individuals form separate monophyletic groups;

for the geography category, Japan Sea and Pacific Ocean form a monophyletic group separate

to the Atlantic Ocean; trees where the Atlantic Ocean grouped monophyletically with the

Japan Sea were classed as ancestral. Trees that did not fit any of these categories were classified

as unresolved. Following categorisation, trees were then standardised to ensure equal branch

lengths using the compute.brlen function from the Phytools R package [107] and were finally

visualised for each gene tree class using the densiTree function in the R package Phangorn
[108].

We additionally used the non-overlapping Maximum Likelihood phylogenies to calculate

genealogical sorting index (gsi) [52]. We used a custom R script to estimate gsi across the auto-

somes of 26 resequenced individuals. This allowed us to compare autosomal signals of intro-

gression with a reduction in gsi.
Population size change over time. We used PSMC to estimate fluctuations in effective

population size over time [109]. PSMC uses the density of heterozygote sites across a single

diploid genome to estimate blocks of constant TMRCA that are split by recombination and

then uses these to infer ancestral effective population sizes (Ne) over time [74,109]. Since

PSMC can only analyse a single diploid individual at a time, we ran the program separately on

each of the 26 resequenced genomes from Japan Sea, Pacific and Atlantic Ocean lineages. We

additionally ran the analyses for a resequenced genome of a marine ecotype fish from Little

Campbell River, Canada as a representative of the Eastern Pacific. Consensus sequences for

each genome were converted to PSMC format—a binary format indicating the presence/

absence of heterozygous sites within a specified window. We used 100 bp windows along a

scaffold, requiring a minimum of 10,000 ‘good’ sites (i.e. those passing with a Phred quality fil-

ter>20, with a minimum depth of 20 and maximum depth of 120) to be present on a genome

scaffold in order for it to be included. We then ran PSMC for 30 iterations with a maximum

coalescent time of 15 (measured in units of 2NO where NO is ancestral population size). Due to

the difficulty of inferring past effective population sizes across this time, PSMC requires the

user to provide intervals which are combined to produce the same effective population size

[109]. Since this method is least accurate for recent (i.e.< 20 kyr BP) and more ancient periods

[109], we estimated Ne for 45 discrete time intervals, combining the first four and the last three

intervals using the command “4+19�2+3”. To scale our results from coalescent units, we

assumed a generation time of 1 year [110] and used an autosomal mutation rate of 7.1 x 10−9

per site per year [111]. Finally, to provide confidence intervals for our Ne estimates, we per-

formed 100 bootstraps on 500 kb segments for each analysis.

Approximate Bayesian computation (ABC). We used ABC to test different scenarios of

divergence between the Japan Sea and Pacific Ocean lineages and to estimate demographic

parameters, such as divergence time and migration rate, under these scenarios.

To obtain loci suitable for our ABC analysis, we randomly sampled nuclear loci from the 20

resequenced genomes (sympatric Japan Sea and Pacific Ocean) using a similar approach to

Nadachowska-Brzyska et al [17]. Using a custom R script, we produced a bed file of reference

genome coordinates for 2 kb loci randomly sampled at 125 kb intervals; resulting in 2,378

potential loci per individual. Using a custom python script, we called sequences for each locus

from the consensus vcf, coding heterozygous bases with IUPAC codes. This script created two

haplotype sequences for each of the 2 kb loci, randomly assigning heterozygous variants to one

of the two called haplotypes; this step allowed us to use unphased data for demographic analy-

ses [66,112]. We then further filtered these loci to include only those that occur on autosomes,

with>1,000 bp sequence and with a base call at each position for at least 14 of the 20 individu-

als (i.e. a 30% missing data threshold). This resulted in a final dataset of 1,874 loci. Functions

and scripts for generating coordinates and extracting and filtering consensus sequences are
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available from Dryad (doi:10.5061/dryad.104g3d0) and on Github (https://github.com/

markravinet/genome_sampler).

Following Robinson et al [66] we used a custom R-based control script and msABC [113]

to perform simulations, calculate summary statistics and quantify their distribution across the

genome in a single step. This approach offers considerable flexibility in establishing prior

probability distributions for each of the estimated parameters. Furthermore, given the large

size of our dataset (i.e. approximately 2,000 loci for 20 individuals), each simulation produces

a large amount of data, making storage a challenge. Using R to interface with msABC allowed

us to greatly reduce the required data storage.

For each of the 15 models we performed 106 simulations. We used a combination of GNU

Parallel [114] and independent runs across multiple computing cores to reduce analysis time

to approximately 1 day per model (scripts and additional instructions available from Dryad:

doi:10.5061/dryad.104g3d0) and on Github (https://github.com/markravinet/abc_pipeline).

We initially ran our simulations to produce all the available summary statistics that msABC

calculates. However since summary statistic choice can greatly alter the outcomes of ABC anal-

yses [115,116], all post-simulation ABC analyses were conducted using subsets of 29, 20 and 12

summary statistics. Following completion of the simulation step, we performed a neural-net-

work rejection step on log-transformed parameter estimates with a tolerance of 0.01 using the

abc function in the R package abc [117]. The neural network rejection method performs better

with higher dimensionality in the data and weights the accepted summary statistics based on

their distance from the observed dataset [117,118] Posterior probability was estimated for each

model using the R abc postpr function, also with a neural-network method for a range of toler-

ance values representing 0.1%, 0.5%, 1% and 3% of the simulated data (i.e. 1,000, 5,000, 10,000

and 30,000 datasets respectively). With a standard rejection ABC approach, posterior probabil-

ities of models are calculated from proportion of simulations from each model accepted after

the rejection step; therefore if 1,000 simulations are accepted and all are from a single model,

the posterior probability is 1 for that model and 0 for all others. Using a neural-network, the

distances between the observed summary statistics and those from the simulations are

weighted in a non-linear regression model, allowing a more accurate estimation of posterior

probability when dimensionality in the data is high [117,119]. In keeping with a hierarchical

analysis [17], we performed two rounds of model selection. We first chose the growth model

with the highest posterior probability within each divergence scenario. Following this, we per-

formed model selection on the five models with the highest support within each divergence

category.

In order to ensure our ABC approach was reliable, we used pseudo-observed datasets

(PODs) to assess how well we could discriminate between different divergence scenarios.

Essentially, this involves randomly selecting a series of simulated dataset from a known model

(hence pseudo-observed) and then rerunning the model selection procedure to see whether

the true model could be recovered. For further details of our POD-based sensitivity analysis

and ABC approach, see S1 Text.

Detecting genome-wide divergence and recent introgression. Weir and Cockerham’s

FST [119] was calculated using 10 and 50 kb non-overlapping windows with VCFtools 0.113

[120]. To calculate statistics such as dXY, GMIN and fd, we used a modified version of a python

script used by Martin et al [21]. In addition to our main filters on the dataset (see Genome
Alignment and Variant calling), we only calculated these haplotype-based statistics for win-

dows with >50% of useable bases–i.e. >5,000 sites within a 10 kb sliding window. For autoso-

mal statistics, all individuals were included in the analyses. For comparing the ancestral

(chrXIX) and neo-sex chromosomes (chrIX) with autosomes (Fig 5E and 5F), we re-ran the

analyses of all chromosomes using only females. In addition to 10 kb windows, we also
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performed analyses for non-overlapping 50 kb windows to aid visualisation; the results from

all analyses were then combined into a single dataset using custom R scripts.

We calculated recently established statistics, GMIN and fd, for detecting introgression

between divergent lineages [30,59]. GMIN is particularly suited for identifying recent, low fre-

quency introgression [30] whereas fd can also identify stronger, high frequency introgression

events [59]. Importantly, both methods are robust to variation in recombination rate variation.

Initial genome scans conducted using GMIN revealed a series of ‘valleys’ present across the

genome. Detection of such valleys, like genomic islands of divergence, presents a variety of

methodological issues. Firstly, how do we determine that GMIN valleys are not due to stochastic

variation in genealogy amongst loci? Secondly, how do we measure the size and distribution of

valleys of introgression? Finally, how can we determine a null or expected distribution of val-

leys across the genome to test for the under- or overrepresentation of valleys?

To deal with each of these issues in turn, we first performed chromosome-specific permuta-

tions to identify the null distribution of the value of GMIN. Specifically, we shuffled the nucleo-

tide sequence of each chromosome 100 times and estimated GMIN for 11 different sliding

window sizes (5,000, 5,500, 6,000, 6,500, 7,000, 7,500, 8,000, 8,500, 9,000, 9,500 and 10,000 kb),

representing the distribution of useable sites from the empirical dataset. We then used the

lower 99 percentile of the permutations to determine the value of GMIN below which a window

could be classified as a valley. Identifying the boundaries of divergent genome regions is some-

what subjective and open to potential bias [121]. To account for this, we used a hidden Mar-

kov-model (HMM) approach to classify windows into two states—i.e. valleys or non-valleys–

and to estimate the probability of state transition. Following Soria-Caracasco et al. [60], we

used the R package HiddenMarkov [122] on a logit transformed GMIN distribution. Transition

probabilities between the two states were symmetrical with an emphasis on it being difficult to

transition between states (p = 0.1) but relatively easy to remain within a state (p = 0.9). Since

valleys are relatively rare in the genome, we set our models to start in the non-valley state and

we provided estimated parameter values for the states based on the empirical distribution.

HMM estimates were run for both the sympatric and allopatric comparisons using the baum-
welch function to estimate parameters using the Baum-Welch algorithm and the viterbi func-

tion to estimate the sequence of states using the Viterbi algorithm. We used a similar approach

to identify fd peaks but we instead performed the analysis using untransformed fd values only

in the sympatric Japanese G. aculeatus and G. nipponicus comparison.

Permutation tests. In order to test for differences between allopatric and sympatric com-

parisons of FST, dXY, fd and GMIN, we used a permutation-based independence test imple-

mented in the R package, coin. To give an example of how this approach works, consider a test

of whether FST is higher in allopatry versus sympatry. Estimates of FST from 10 kb windows

were randomly sampled and their identity as coming from either the allopatric or sympatric

case are also permutated. This creates a null distribution of Z–i.e. the expected mean difference

between the two populations.

RAD-seq data processing, population structure and ancestry analysis. To complement

our whole-genome resequencing data, we performed RAD sequencing on a further 151 Japan

Sea, Pacific Ocean and Atlantic individuals (see S7 Table for a full breakdown). We further

combined our RAD-seq dataset with previously determined RAD sequences from 93 Pacific

Ocean fish sampled in North America [53], resulting in a total dataset of 244 individuals. RAD

sequence reads were demultiplexed and processed using the process_radtags module of Stacks

1.30 [123]. All reads were trimmed to 90 bp and any read where the average Phred quality

score dropped below 10 in a 9 bp sliding window was discarded. Following filtering, reads

were mapped to the Roesti et al. [64] build of the G. aculeatus genome using GSNAP [124]

allowing a maximum of two indels to be present in an alignment, reporting no suboptimal
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hits, allowing a maximum of 8 mismatches and printing only the best alignment. SNPs were

then called using the samtools and bcftools pipeline [125]. Called variants were then filtered

using vcftools to remove all sites with greater than 25% missing data, to include genotypes

only with an individual depth between 15X and 100X, to remove all sites with a Phred quality

score below 20 and with a minor allele frequency below 0.05. Since common admixture analy-

ses assume independence among sites (i.e. the absence of linkage disequilibrium) [126], we

additionally pruned our RAD-derived SNP dataset using plink [127], removing all sites where

pairwise linkage disequilibrium was greater than 0.4 within a 100 kb window.

PCA on allele frequencies from all individuals was conducted using the glPca function from

the R package adegenet [128]. Admixture analysis was carried out on all 244 individuals using

STRUCTURE [54,55]. For each value of K from 1 to 8, the program was run for 10 iterations

with a burn-in of 10,000 steps followed by 20,000 MCMC steps. The most likely value of K was

assessed using STRUCTURE HARVESTER [129].

To further investigate variation in individual ancestry, we used a genomic cline approach

with the R package introgress [130]. As our resequencing data was taken from individuals pre-

viously identified of being of probable ‘pure’ descent inferred by microsatellite data, we identi-

fied ancestry informative markers from this resequence dataset. To be informative, a marker

was required to be present in the RAD-seq data, occur on an autosome and to have an absolute

allele frequency difference of>0.8 between the two parental species (following Larson et al.

[131]). For each individual, we then calculated hybrid index and interspecific heterozygosity

[130]. As a measure of a power of this approach, we used adegenet to simulate F1 and F2

hybrids, as well as Japan Sea and Pacific Ocean backcrosses.

As independent support of our demographic inference using ABC, we also used a maxi-

mum likelihood inference of demography based on the joint site-frequency spectrum from

Japan Sea and Pacific Ocean RAD-seq data (N = 51). To account for missing data, we resam-

pled 20 genotypes per species at each site, resulting in calls for 20 ‘pseudo-individuals’ at

22,065 SNP loci. We used the same models as the ABC analysis (without population growth

parameters) but with parameters drawn from a loguniform distribution (see S1 Text for more

details on parameters, models and data used). We performed 100 independent runs of 100,000

coalescent simulations for each model using fastsimcoal2 [132]. Model selection was carried

out on the run with the highest likelihood using Akaike’s Information Criterion (AIC); how-

ever, as our SFS dataset was not pruned for linked sites (i.e. SNPs are not independent), AIC

values should be interpreted carefully [133]. As an additional mean of model selection, we also

calculated the likelihood distribution for each model using 100 expected site frequency spectra

and 106 coalescent simulations [24].

Detecting the direction of introgression. We investigated the direction of gene flow between

the Japan Sea and Pacific Ocean lineages using partitionedD statistics [61]. This is conceptually

similar to standard four population ABBA-BABA tests for gene flow but includes a fifth popula-

tion–an allopatric lineage of the Japan Sea. This balances the assumed phylogeny (i.e. ((P1, P2),

(P31, P32), O) and therefore allows us to rotate the populations used in the analysis–i.e. testing for

an enrichment of gene flow in both directions. We therefore tested two topologies ((AT, PO),

(JSS, JSA), O) and ((JSA, JSS), (PO, AT), O) (see S15 Fig). For either test topology, an excess of the

ABBAA (compared to BABAA) or ABBBA (compared to BABBA) in a genome window inflates

partitionedD statistics above zero–indicating gene flow from the P3 into P2.

Given that the partitioned D approach has attracted some criticisms, we also calculated

DFOIL statistics [62]. DFOIL is an additional extension of the four population test but one that

incorporates all possible introgression events for a symmetric four population tree (excluding

the outgroup) (see S16 Fig). We used the same test phylogeny as with the partitioned D
statistics.
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Both partitioned D and DFOIL are based on ABBA/BABA methods–i.e. where only a single

individual is present at the tips of the phylogeny. To account for this, we extended both meth-

ods to account for allele frequency data, meaning our site pattern counts are weighted by allele

frequencies [59]. To calculate both D and DFOIL statistics, we used a modified version of a

python script used by Martin et al [21].

Characterization of introgression sites. In order to characterize regions of introgression,

we identified candidate regions showing a strong signature of introgression (i.e. GMIN valleys

and fd peaks) from our genome scan approach. We then counted the number of unique genes

falling within our candidate valleys/peaks and compared this to a null distribution generated

by 1,000 random samples of 10 kb non-valley/non-peak genome windows for the same num-

ber and size range as the valleys or peaks.

We next tested whether genes in introgressed regions were more likely to have any specific

functions. To achieve this, we used gene ontology (GO) analysis on genes in valleys and 1,000

randomly chosen from across the genome. GO analysis was performed with the ClueGO

plugin [133] for Cytoscape 3.4.0 [134]. Since functional annotations for this analysis were

drawn from the human genome, we first generated a list of human-stickleback orthologous

gene IDs (Ensembl Biomart 86). We then subset our candidate and random gene sets to

include only orthologous genes. Several human genes have multiple stickleback orthologs; we

therefore allowed only a single, randomly chosen occurrence of each human gene in both sets

to prevent pseudo-replication. A hypergeometric test was conducted for testing enrichment

with Benjamini & Hochberg FDR correction [135].
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S2 Fig. Japanese stickleback mitonuclear discordance. (A) Mitogenome Bayesian tree

shows divergence between two mitochondrial clades–the Transpacific and European North

American; asterisks on nodes indicate appropriate densities shown in (B). (B) Posterior proba-

bility densities for mitochondrial divergence time between G. aculeatus and G. nipponicus
(pink) and between Pacific and Atlantic populations of the European North American clade

(blue).

(PDF)

S3 Fig. Bootstrapped PSMC curves for 26 resequenced individuals.
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S4 Fig. PSMC profile for all 26 individuals and an additional Eastern Pacific individual

from Little Campbell River, Canada.
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S5 Fig. Principal component analysis on RAD-seq data from 295 individuals from across

the distribution of all three lineages. The arrow indicates the presence of an admixed individ-

ual occurring in the Akkeshi system.

(PDF)

S6 Fig. Structure analysis on RAD-seq data from multiple Japan Sea, Atlantic and Pacific

Ocean populations. Analysis with K = 2 & 4 clusters (A), which is supported by likelihood

analysis (B), showed the presence of admixed individuals in the Akkeshi system.

(PDF)

S7 Fig. Individual ancestry estimates using hybrid index and interspecific ancestry based

on RAD-seq data.
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S8 Fig. Genome-wide FST measured in non-overlapping 50 kb windows for allopatric and

sympatric between and within species comparisons.

(PDF)

S9 Fig. Genome-wide dXY measured in non-overlapping 50 kb windows for allopatric and

sympatric between and within species comparisons.

(PDF)

S10 Fig. Negative association between fd and GMIN in sympatric (JS vs PO) and allopatric

(JS v AT) between species comparisons.

(PDF)

S11 Fig. Genome-wide GMIN for sympatric between species comparisons. Black line repre-

sents 50 kb non-overlapping window GMIN signature. Points represent 10 kb windows; grey

points are non-valley windows, blue points are valley windows identified by Hidden Markov

Model algorithm.

(PDF)

S12 Fig. Absolute divergence (dXY) is lower and fd is higher in GMIN valleys compared to

the genome-wide background.

(PDF)

S13 Fig. Genome-wide fd for sympatric between species comparisons. Black line represents

50 kb non-overlapping window fd signature. Points represent 10 kb windows; grey points are

non-valley windows, while blue points are peak windows identified by Hidden Markov Model
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S15 Fig. Analysis of partitioned D statistics. (A) Boxplots comparing partitioned D statistics

between fd peaks and the autosomal background. Dashed line at zero indicates a balance
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both P31 and P32. If we assume that the derived allele B occurred at the ancestor of P3, D12
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statistics.
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