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Abstract
In myocardial infarction, muscle tissue of the heart is damaged as a result of ceased or severely impaired blood flow. Survivors
have an increased risk of further complications, possibly leading to heart failure. Material properties play an important
role in determining post-infarction outcome. Due to spatial variation in scarring, material properties can be expected to
vary throughout the tissue of a heart after an infarction. In this study we propose a data assimilation technique that can
efficiently estimate heterogeneous elastic material properties in a personalized model of cardiac mechanics. The proposed
data assimilation is tested on a clinical dataset consisting of regional left ventricular strains and in vivo pressures during atrial
systole from a human with a myocardial infarction. Good matches to regional strains are obtained, and simulated equi-biaxial
tests are carried out to demonstrate regional heterogeneities in stress–strain relationships. A synthetic data test shows a good
match of estimated versus ground truth material parameter fields in the presence of no to low levels of noise. This study is
the first to apply adjoint-based data assimilation to the important problem of estimating cardiac elastic heterogeneities in 3-D
from medical images.

Keywords Adjoint method · Data assimilation · Cardiac mechanics · Myocardial infarction · Elastography

1 Introduction

Myocardial infarction (MI) is a condition in which muscle
tissue in the heart is damaged due to a loss of blood sup-
ply. After an infarction, there is an increased risk of further
complications, such as rupture, infarct expansion, ventricu-
lar remodelling, hypertrophy, and heart failure (Holmes et al.
2005). Post-MI, the elastic properties of the myocardium
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have been shown to play a large role in determining the out-
come (Morita et al. 2011; Fomovsky et al. 2012).

A promising way to study the elastic properties of in vivo
myocardium is by mathematical modelling and computer
simulation. With simulation it is possible to create an in sil-
ico representation of a patient’s heart after an infarction. This
opens up new possibilities for quantification of elasticity,
beyond what is available in medical imaging today. Addi-
tionally, an in silico model that is personalized to a patient
can potentially simulate the effects of treatments or therapies
on the patient, thereby improving the outcome and reducing
risks after MI.

Previous studies have estimated elasticity as a global value
inmodels of infarcted hearts (Chabiniok et al. 2009;Gao et al.
2014; Fan et al. 2016). This resulted in simulated pressure–
volume relations that matched well to those observed in vivo.
Additionally, estimated elasticity values were shown to be
significantly higher in patients with infarction compared to
healthy controls (Fan et al. 2016). While these results are
intriguing, the use of global parameters neglects the fact that
infarction is a local phenomenon.

A more detailed approach has been to identify infarcted
and healthy regions a priori and then define separate param-
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eters for these regions in a model (Walker et al. 2005;
Mojsejenko et al. 2015;McGarvey et al. 2015). The resulting
regional parameters were shown to be higher in the infarcted
region as compared to the healthy remote myocardium. This
demonstrates the potential of modelling to quantify differ-
ences in tissue stiffness within the same heart. However,
the infarctions that caused the stiffness differences were
induced in otherwise healthy animals, leading to clearly
demarcated regions of myocardial infarction. In the general
clinical setting, however, patients may suffer from multiple
infarctions, possibly occurring at different times and loca-
tions, and/ormaybe suffering fromother cardiac pathologies.
Such conditionsmay lead to substantial heterogeneity in elas-
tic properties, not known a priori.

To address the issue of spatial heterogeneity in cardiac
elasticity, we here present a novel 3-D data assimilation pro-
cedure. This procedure employs an adjoint gradient-based
optimization method which can efficiently handle high-
dimensional parameter sets. In turn, this allows for the spatial
resolution of heterogeneous elastic parameters throughout
the myocardium. Previous studies on the topic of soft tissue
elastography have proposed the adjoint gradient approach
with 2-D models and synthetic data (Oberai et al. 2003) for
both compressible (Gokhale et al. 2008) and incompressible
mechanics (Goenezen et al. 2011). Furthermore, we applied
adjoint gradient optimization to the problem of estimating
local cardiac contraction (Balaban et al. 2017; Finsberg et al.
2017), but did not consider spatially resolved elastic param-
eters, which we now address.

We demonstrate the utility of our method by personaliz-
ing an in silico model of cardiac elasticity to data collected
from a patient in heart failure with a previous myocardial
infarction and a heterogeneous distribution of fibrotic tissue.
Input data consist of regional strains, which are computed
by speckle tracking echocardiography, and a pressure tran-
sient obtained from a catheter. Additionally, we quantify the
patient’s cardiac scar burden from late gadolinium enhanced
magnetic resonance images (LG-MRI) to provide a context
for the modelling results.

2 Methods andmaterials

2.1 Clinical data

Clinical data were obtained with the permission of the Oslo
UniversityHospital in the context of the Impact study (Hospi-
tal 2016). Specifically, we consider the case of a 64-year-old
man in systolic heart failure, with left bundle branch block,
coronary artery disease, and chronic infarction predomi-
nantly in the inferior and inferolateral sections of the left
ventricular wall.

Prior to treatment, the patient had echocardiography, LG-
MRI, and left ventricular (LV) pressure measurements taken,
which are the basis for the clinical data used in this study.
Pressure recordings were carried out with an intra-vascular
pressure sensor catheter (Millar micro catheter: precision 1
mmHg, accuracy 1.5 mmHg Millar 2017); that is, a pres-
sure catheter that was positioned in the LV via the right
femoral artery. Pressure data were obtained automatically
and digitized (Powerlab system, AD Instruments) before
offline analyses were performed with a low-pass filter of
10Hz.

A 4-D echocardiography examination of the patient’s LV
was performed using a GE Vingmed E9 machine. Speckle
tracking motion analysis was carried out with GE’s software
package EchoPac. Data from 6 heartbeats were combined
in order to obtain a single sequence of images for a single
heartbeat. Example short- and long-axis slices taken from
the image sequence are shown in Fig. 1. Seven separate
measurement points of left ventricular strain during atrial
systolewere obtained from the echo images. The strainswere
given as regional averages defined for a standard 17 segment
AHA representation (Cerqueira et al. 2002) and measured in
the local longitudinal, radial, and circumferential directions,
without any off-diagonal shear components.

Strain and pressure data were synchronized using begin
of atrial systole (BAS) as the first point of registration. In the
pressure data, BAS was located by a deflection in a simul-
taneously acquired left atrial electrogram. In the strain data,
BAS was identified by the onset of longitudinal stretching
following diastasis. Pressures corresponding to strains were
registered by the use of image acquisition times until just
before ventricular systole, which was identified in the strain
data by the onset of longitudinal contraction.

Pressure increases in late diastole are generally very small
in magnitude, and for our patient strain points 2 and 3
shared the same pressure measurement. In order to give each
strain point a unique pressure, an additional cubic polyno-
mial smoothing was carried out. Both smoothed and original
pressure data are illustrated in Fig. 2.

Cardiac magnetic resonance imaging was performed with
a 3.0 Tesla scanner (Skyra, Siemens, Erlangen, Germany).
We quantified the amount of myocardial fibrosis on a per
region basis from short-axis late gadolinium enhancement
images acquired 10–20 min after intravenous injection of
0.2 mmol/kg of gadoterate meglumine (Guerbet, Villepinte,
France). This resulted in an estimated volume ratio of fibrotic
to healthy tissue for each myocardial segment (scar bur-
den). In this analysis the apex region was merged into the
neighbouring apical regions, giving a 16 segment division.
Example LG-MRI images and the scar burden data are dis-
played in Fig. 3.
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Fig. 1 Top row: Example short- and long-axis slices taken from 3-D
echocardiography with tracked segments in green. Bottom row: Model
LV geometry derived from the 3-D echo data. From left to right are

the computational mesh, rule-based fibre orientations and the standard
AHA zones shown in separate colours

Fig. 2 Left ventricular pressure trace synchronized to echo-derived
strain measurements taken in atrial systole. The original catheter data
are shown in dotted black, whereas the cubic polynomial smoothed data
are shown in solid green

2.2 Mesh and fibre generation

We created a computational mesh based on a 3-D ultrasound
image to capture the details of the patient ventricular geom-
etry in an in silico model. The image was taken at the start
of atrial systole, when the pressure was at a minimum. Using
GE’sEchoPac software,we extracted triangulated data points
for the left ventricular endocardial and epicardial surfaces.
These surfaces were cut by a plane fitted to the basal points
of the surfaces, and adjusted so that the ventricular volume
of the computational mesh was within 1 mL of the volume

measured in the image. Using the epicardial, endocardial,
and basal surfaces as boundaries, we created a volumetric
mesh using Gmsh (Geuzaine and Remacle 2009). This mesh
contained 741 vertices and 2214 tetrahedra. AHA zoneswere
delineated on this volumetric mesh based on data provided
by EchoPac, so that our AHA zones were consistent with
those used to calculate image-based strains.

Local myocardial fibre orientations were assigned with a
helix angle of 40 degrees on the endocardium rotated clock-
wise throughout the ventricular wall to −50 degrees on the
epicardium using a rule-based method (Bayer et al. 2012).
Snapshots of the image-based geometry, along with AHA
segments and fibres, are shown in the bottom row of Fig. 1.

2.3 Elastic wall motionmodel

We adopt a quasi-static continuum mechanics framework to
simulate the motion of the left ventricle throughout atrial
systole. As primary variables, we consider a vector field
u giving the displacement map between a reference con-
figuration Ω and a deformed configuration undergoing a
pressure load. Furthermore, we define the deformation gra-
dient F = Grad u + I.
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Fig. 3 Top row: two example short-axis late enhancement gadolinium
MRI images used for regional scar quantification. Fibrotic sections of
the myocardium appear in white. Bottom row: regional quantification
of myocardial scar burden based on LG-MRI. The inner, middle, and

outer rings represent apical, midwall, and basal sections, respectively.
The RV insertion points are marked by two horizontal lines extending
to the left of the bullseye

In our wall motion model the myocardium is considered
to be a hyperelastic material with strain energy given by a
transversely isotropic simplification of the Holzapfel–Ogden
law (Holzapfel and Ogden 2009),

ψ(C) = a

2b

(
eb(I1(C)−3) − 1

)
+ a f

2b f

(
eb f (I4 f (C)−1)2+ − 1

)
.

(1)

The energy density ψ in (1) defines the amount of elastic
energy stored per unit volume myocardium, given the values
of the right Cauchy–Green tensor C = FTF. The notation
(·)+ refers to max{·, 0}, and the mechanical invariants I1 and
I4 f are defined as

I1(C) = trC, I4 f = ef · Cef , (2)

with ef indicating the local myocardial fibre direction field.
The material parameters a, a f , b, b f are scalar-valued

quantities which influence the stiffness of the material. We

allow thesematerial parameters to vary spatiallywith a piece-
wise linear representation, so that each material parameter
has a separate value at each vertex of themesh. For the sake of
improved numerical stability (Land et al. 2015), we employ
a modified strain energy density ψ̃ in place of ψ with

ψ̃(C) = ψ
(
J− 2

3C
)

, (3)

where J = det F is the deformation gradient. The elas-
tic energy (3) is embedded into a standard pressure–
displacement variational formulationof incompressible hyper-
elasticity [Chapter 8.5 of Holzapfel (2000)]. Displacements
are set to 0 in the longitudinal direction at the base of
the ventricular geometry by a Dirichlet boundary condition.
Movement in the other directions at the base is restricted by
a linear spring with constant k = 1.0 kPa as in our previous
study (Balaban et al. 2017).

The total variational equation, including the effects of
blood pressure, pblood, and the basal spring, is given by: find
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the displacement u and the hydrostatic pressure p such that

∫

Ω

(
P + pJF−T

)
: Grad δu dV +

∫

Ω

(J − 1)δ p dV

+
∫

∂Ωbase

k u · δu dS + pblood

∫

∂Ωendo

JF−TN · δu dS = 0,

(4)

for all admissible variations δu, δ p in the displacement and
pressure respectively. In (4), P is the first Piola–Kirchhoff

tensor: P = ∂ψ̃
∂F , ∂Ωendo represents the endocardium and

∂Ωbase the ventricular base, and N is the unit outward fac-
ing boundary normal. We discretize (4) by a mixed finite
element method with Taylor–Hood interpolation (Hood and
Taylor 1974); that is, a piecewise quadratic representation of
the displacement field and a piecewise linear representation
of the pressure.

The software implementation of the finite element vector
and matrix assembly code is based on the software package
FEniCS (Logg et al. 2011). Nonlinear systems are solved
using the PETSc SNES implementation of a Newton line
search algorithm (Balay et al. 2015), while the inner lin-
ear solves are handled by a distributed memory parallel LU
solver (Li and Demmel 2003).

2.4 Elastic parameter estimation via constrained
minimization and adjoint gradient calculations

We consider a least squares minimization of the mismatch
between model derived and measured strains, to personalize
the elastic material properties of our computational mechan-
ics model.

We compute both model and measured strains in terms
of the deformation gradient tensor F and multiply the model
strains by F−1

0 , which is the strain at the smallest measured
in vivo pressure. This allows for the simulated strains to be
calculated from a reference that is at the same pressure as
that used for the image-based strains (Nikou et al. 2016). For
a given echo image number i , AHA region Ω j , and strain
direction k, we compute the model strain as

Fi, j,k
model = 1

|Ω j |
∫

Ω j

ek · FiF
−1
0 ek dV (5)

where |Ω j | is the AHA segment volume, and ek the unit
vector pointing in the direction k.

The image-based strainmeasurements are given as regional
engineering strains, whichwe relate to a diagonal component
of the deformation gradient by

Fi, j,k
measured = εi, j,k + 1 (6)

where ε is the engineering strain and Fmeasured the corre-
sponding measured deformation gradient diagonal compo-
nent. We note that this implies the linear approximation
εk ≈ ∇u · ek .

We quantify the mismatch between model and measured
strains with the following functional

Idata =
Nm∑
i=1

Nr∑
j=1

∑
k∈{c,r ,l}

(
Fi, j,k
model − Fi, j,k

measured

)2
. (7)

Here Nm = 7 is the number of strain measurements avail-
able in atrial systole and Nr = 16 the number of AHA
regions, with the apex segment excluded for compatibility
with the LG-MRI data. Finally, the direction set of index k
refers to the circumferential (c), radial (r), or longitudinal (l)
directions.

We allow each of the four elastic material parameters
a, b, a f , b f in (1) to vary in space, andmore precisely, to vary
as a continuous piecewise linear function defined relative to
the computational mesh. This allows us to resolve spatially
heterogeneous material parameters, at the cost of greatly
increasing their dimensionality. To constrain the minimiza-
tion problem at hand, we introduce a first-order Tikhonov
regularization functional favouring more smooth material
parameter sets. This regularization functional is defined as:

Ismooth = 1

|Ω|
∑

z∈{a,a f ,b,b f }

∫

Ω

|Grad z|2 dV , (8)

where |Ω| is the volume of the simulated myocardium.
In total, we consider the optimization problem of mini-

mizing a combined data and smoothness functional over the
admissible material parameter fields a, b, a f , b f :

min
a,b,a f ,b f

I = min
a,b,a f ,b f

(Idata + λIsmooth) (9)

with regularization parameter λ.
The total functional (9) is minimized by simultaneously

optimizing all of the degrees of freedom of the 4 elastic
parameters. This optimization is carried out by a sequen-
tial quadratic programming (SQP) algorithm (Kraft 1988).
Each iteration of the SQP algorithm requires one or more
evaluations of the functional (9), and the gradient of the func-
tional with respect to all of the material parameter variables.
This gradient is calculated efficiently by the adjoint gradient
method [Eq. 13ofBalaban et al. (2016)] symbolically derived
by the software package dolfin-adjoint (Farrell et al. 2013).
In particular, the computational cost of the adjoint gradient
does not significantly depend on the number of optimization
parameters, of which there are 2964 in our study. This com-
pares favourably with a one sided finite difference approach
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to functional gradient calculation, which would require 2964
model realizations, one for each optimization parameter.

We employ a continuity scheme (Gokhale et al. 2008)
to reduce the number of nonlinear solves needed to eval-
uate the functional (9). In this scheme the first time the
functional is evaluated the cavity pressure is applied in
small increments, and the displacement–pressure solutions
are saved at the seven recorded in vivo pressures. For further
functional evaluations, the hyperelastic equation is solved
directly at the seven pressure levels, with the previously
stored displacement-pressure solution as the initialization
point. If convergence in the Newton solver is not achieved,
then the difference between the previous and current material
parameter vector is divided into smaller increments, which
are then applied. In our implementation the number of divi-
sions is doubled every time that convergence is not achieved.
Using such divisions we obtained convergence in all cases in
our study.

3 Numerical results

Themain results of this study are heterogeneous elasticmate-
rial parameters optimized to match clinical data, presented
in Section 3.2. We also present simulated equi-biaxial exten-
sions tests based on regional averages of estimated elastic
parameters. Prior to the presentation of the main results, we
present results for a synthetic data test for the purpose of
verification and inspection of algorithm performance in Sec-
tion 3.1.

Optimizations were carried out until the norm of the pro-
jected gradient was less than 1.0 × 10−4, or 500 iteration of
the SQP algorithm had been reached. A lower bound of 0.4
was applied to all material parameter fields pointwise during
optimization.

3.1 Parameter estimation and evaluation using
synthetic data

For the purpose of verification of themodel and the optimiza-
tion procedure, we consider initial trials using synthetically
generated data over the ventricular mesh. In these trials, the
ground truth elastic parameters were defined as:

a0 = 2 − y

ymax
, a0f = 2 + y

ymax
,

b0 = 2 − z

zmax
, b0f = 2 + z

zmax
,

(10)

where ymax and zmax are the maximum absolute coordi-
nate values in the y and z directions of the computational
mesh (and where the yz-plane was defined by the basal
plane).Using these ground truth parameters, average regional

strains were generated by solving (4) for 6 LV blood pres-
sures: pblood ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} (kPa). Four sets
of strains were generated: one noise-free case and three noisy
cases. For the noisy cases, realizations ofGaussian noisewith
standard deviations of 0.1, 0.2, and 0.3 mm were applied to
the displacements from which strains were calculated. We
quantified the effect of this noise on the value of the syn-
thetic strains in the second column of Table 1. We note that
though the average effect of the noise is small, individual
strains have relative errors as high as 24, 25, and 12 per cent
for the 0.1, 0.2, and 0.3 mm noise levels, respectively.

Optimizations were carried out using the synthetic strains
as target data in the total functional (9). All material param-
eters were initialized to a spatially constant value of 1.5. For
each level of noise, the valuesλ ∈ {1, 10, 100, 1000, 10000}
of the regularization parameter were tested, and the case with
the lowest relative L2-error, averaged across the 4 parame-
ters, was selected. The λ values that were selected are listed
in Table 1. As expected, the regularization value increases
with the noise level. In the target functional (7), F−1

0 was
calculated from the model strains at 0.1 kPa.

We remark that, in order to represent non-trivial mate-
rial parameters, the synthetic material parameter fields were
chosen with a nonzero spatial gradient. In turn, this gave
a nonzero contribution from the regularization functional,
cf. (8). Thus, even in the case of an exact optimization, we
did not expect to obtain an optimal functional value of 0 and
did not expect to recover the exact material parameter fields
in this test case.

The ground truth and estimated material parameter fields
for this noise-free case are presented in Fig. 4. Moreover, the
differences between the ground truth and estimated param-
eters are given in terms of the relative L2-errors in Table 1,
along with the optimal data and smoothness functional val-
ues.

We note that for the noise-free and 0.1 mm noise case, the
parameters are accurately reproduced, with all relative errors
being less that 6%. For the 0.2 and 0.3 mm noise cases, the
errors in the first three material parameters a, b, a f are also
less than 6%, but the error in the parameter b f is 19% and
17% for 0.2mm and 0.3mmnoise respectively. The accuracy
of the reproductions is also visible in Fig. 4, where we can
see that the linear gradients are reproduced for a, b, a f in all
cases and for b f in the noise-free and 0.1 mm cases.

3.2 Parameter estimation using patient-specific
strain data

As a first step towards creating a patient-specificmodel of the
infarcted left ventricle in atrial systole, we identified suitable
values for the regularization parameter λ.

We tested a series of trial material parameter optimiza-
tions with the patient strains as target data using λ ∈

123



In vivo estimation of elastic heterogeneity in an infarcted human heart 1323

Table 1 Optimal functional values and relative errors in reconstructed material parameter fields obtained in the synthetic data test

Noise (mm) Relative strain error % mean ( % max) λ Idata Ismooth E(a) E(b) E(a f ) E(b f )

0.0 – 1 3.4 × 10−4 3.3 × 10−4 0.016 0.017 0.022 0.042

0.1 0.26 (24) 10 0.046 9.4 × 10−4 0.051 0.038 0.058 0.041

0.2 0.17 (25) 1000 0.33 2.3 × 10−4 0.029 0.060 0.038 0.19

0.3 0.36 (12) 1000 0.55 3.3 × 10−4 0.034 0.044 0.036 0.17

Synthetic data are corrupted by varying levels of Gaussian noise applied to the ground truth displacement field. The standard deviations of these
noise realizations are given in the first column. The relative strain error due to noise is given in the second column. The numbers presented are the

mean, and max of the quantities
Fbase−Fnoisy
Fbase−1 , calculated for each echo image, AHA zone, and strain direction. Both the baseline strain Fbase and

noisy strain Fnoisy are calculated as in Eq. (5). For a parameter c the relative error E(c) = ‖c−c0‖
‖c0‖ , where ‖ · ‖ denotes the standard L2(Ω) norm

and c0 the ground truth parameter field

Fig. 4 Top view of the ground truth and estimated parameters fields of
the synthetic data test

{1, 5, 10, 50, 100, 500, 1000}. Before optimization, material
parameters were initialized with global values a = 1.291
kPa, b = 5.0, a f = 2.582 kPa, and b f = 5.0 cf. (Asner et al.
2015,Table 5, caseP2).Optimal data and regularization func-
tional values Idata and Ismooth were obtained for each of the λ

values tested. These are shown in Fig. 5. For the subsequent
experiments, we selected λ = 5 as the corresponding optimal
functional values lay in a corner of the trade-off curve, and
therefore represented a good compromise between smooth-
ness and data fit. This choice of λ is inspired by the so called
L-criterion (Hansen and O’Leary 1993).

With the value of the regularization parameter λ fixed,
we carried out a series of optimizations using various ini-
tializations for the elastic parameters. These initializations

Fig. 5 Optimal data functional value versus optimal smoothness func-
tional value for a series of optimization experiments with clinical data
over a range of regularization parameter values λ. The regularization
parameter values are stated next to the corresponding data point

consisted of 20 global parameter sets whose values were
taken from a Latin hypercube design (McKay et al. 1979)
with minimum and maximum limits of 0 and 10 respectively
for each variable. This design created parameters which
spanned the parameter space with low redundancy. Optimal
functional values for the optimizations are shown in Table 2
along with the spatial mean and standard deviation for each
elastic parameter. We note that there is great variability in
the optimal parameter sets calculated, and that there is a
clear best fitting parameter set. Furthermore, the values of
the smoothness functional are similar among all parameter
sets and small in comparison to the total functional values.
This indicates that the parameter sets differ in their ability to
fit the model to the data, but are similar in their smoothness.

The best fitting parameter fields (corresponding to the first
rowof Table 2) are visualized in the top rowof Fig. 6.We note
that these fields are fairly smooth, yet show large variation
across the ventricle.We also compare strain curves generated
by the optimized model to the patient strains in Fig. 7.
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Table 2 Results of parameter estimations with patient data starting from 20 points drawn from a Latin hypercube design

I Idata Ismooth a (kPa) b a f (kPa) b f Function evaluations

121.29 119.62 1.67 7.87 (7.09) 2.71 (4.06) 2.61 (3.34) 2.24(2.22) 514

121.51 119.97 1.54 7.63 (7.17) 2.81 (4.11) 2.51 (3.37) 2.05 (2.11) 524

121.54 119.88 1.67 8.01 (7.01) 2.67 (3.10) 2.93 (3.51) 2.52 (2.45) 583

121.62 119.99 1.62 8.22 (6.85) 2.47 (3.58) 3.83 (4.20) 1.88 (1.82) 511

121.68 120.067 1.61 8.11 (6.75) 2.49 (3.62) 3.84 (4.23) 2.25 (2.16) 450

121.81 120.28 1.53 5.80 (5.68) 2.96 (3.97) 1.64 (2.32) 3.11 (2.63) 500

121.97 120.44 1.53 8.25 (6.82) 2.65 (3.80) 2.66 (3.12) 2.92 (2.56) 501

122.76 121.28 1.48 6.40 (6.41) 2.76 (3.70) 2.23 (2.86) 1.93 (1.82) 501

124.44 122.88 1.56 6.14 (5.83) 3.06 (4.07) 2.94 (3.38) 3.77 (3.51) 501

125.05 123.54 1.51 5.92 (5.82) 2.84 (3.73) 1.80 (2.34) 4.20 (3.68) 502

125.21 123.65 1.56 6.50 (5.10) 2.94 (3.99) 3.81 (3.55) 1.95 (1.00) 501

126.42 125.02 1.40 6.15 (4.76) 3.15 (4.04) 1.60 (1.90) 2.15 (1.84) 501

127.93 126.33 1.60 5.58 (4.32) 3.24 (4.05) 1.51 (1.97) 4.56 (3.42) 501

128.83 127.64 1.19 3.98 (3.94) 3.33 (3.97) 0.88 (0.85) 2.83 (2.32) 501

129.08 127.61 1.47 5.04 (4.52) 3.09 (3.83) 2.24 (2.58) 4.80 (3.91) 501

130.07 128.39 1.68 4.59 (4.28) 3.37 (4.05) 5.67 (4.36) 1.77 (2.08) 501

131.33 129.83 1.50 6.08 (4.14) 2.87 (3.74) 3.27 (3.08) 4.55 (3.49) 501

138.35 136.50 1.85 3.44 (3.17) 3.79 (4.02) 4.47 (2.74) 2.11 (2.23) 501

170.72 169.43 1.29 3.09 (2.33) 3.93 (3.57) 6.00 (2.17) 1.44 (1.27) 501

171.14 170.51 0.63 2.66 (1.55) 2.82 (2.57) 1.26 (0.81) 2.81 (1.69) 501

Optimized material parameter fields are given as a spatial mean followed by the standard deviation in brackets. Standard deviations are calculated
as the L2(Ω) distance of a parameter field to its mean, normalized by the mesh volume. The first three columns show the value of the optimized
total, data, and smoothness functionals. The last column shows the number of least squares function evaluations needed for convergence. A limit
of 500 SQP iterations was used, with each SQP iteration consisting of 1 or more function evaluations

3.3 Stability of optimizedmaterial parameters
under mesh refinement

In order to test the effect of mesh refinement on the estimated
material parameters, we have carried out a parameter estima-
tionwith a slightly finermesh (1117 vertices, 3373 elements).
This estimation was initialized with the same constant values
that were used previously in the best fitting optimization to
clinical data. The target data were the clinical strains. The
resulting optimal material parameter fields are shown in the
bottom two rows of Fig. 6. We note that the corresponding
original and higher resolution parameters appear to be very
similar. We note that the higher resolution parameters came
with an increased computational cost, as the time required
for an average evaluation of the total functional increased
from 30 s to 46 s as compared to the original resolution.

3.4 Regional stress–strain relationships

The personalization of the mechanics model to the patient
data resulted in four material parameters fields that were
resolved in space over the ventricular geometry. We com-
bined these four parameters into a more intuitive visu-
alization of stiffness by considering regional stress–strain

relationships. This allows for regional comparisons to be
made for a given level of strain, as stiffermaterials give higher
stresses given the same strain.

Regional stress–strain curves were calculated with in sil-
ico equi-biaxial extension tests, using analytical values for
the stresses based on [Eqs. 17, 18 of Holzapfel and Ogden
(2008)].A testwas conducted perAHAregion using the aver-
age of the material parameter fields over the corresponding
region. The resulting stress–strain relations along the fibre
and cross-fibre directions are presented in Fig. 8.

4 Discussion

By applying an adjoint gradient-based data assimilation
method, we were able to estimate spatially heterogeneous
material properties in an infarcted left ventricle with a good
match of simulated to measured strains. This has important
implications for the use of computational mechanics models
in planning and optimizing therapies in silico. Conditions
such as myocardial infarction are local and lead to elastic
heterogeneities which should be accounted for in a personal-
izedmodel. This study presents a general and flexiblemethod
to account for these elastic heterogeneities.
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Fig. 6 View of optimal material parameters at two different mesh reso-
lutions estimated from patient strain data. The first and third rows show
the inferior view and the second and fourth rows the anterior view

Our experiments with synthetic data indicate that fairly
accurate reproductions of spatially varying parameters are
possible in the absence of noise, as the relative L2 errors were
less than 5% for all parameters in this case. In the presence
of Gaussian noise the relative errors in the a-type parame-
ters increased slightly, but were still below 6%. The effect
of the noise on the reproduced b-type parameters was more
pronounced, and in particular, errors in the b f parameter for
the 0.02 and 0.03 mm noise cases were large enough that
the spatial gradient present in the ground truth b f parameter
could no longer be reproduced. These results suggest that
spatial heterogeneities can be more robustly estimated with
a-type parameters rather than b-type exponential parameters.
Indeed, several recent data assimilation studies have limited
parameters estimations to the a-type parameters only (Had-
jicharalambous et al. 2015; Asner et al. 2017).

We note that the optimal Idata values were two orders of
magnitude higher in the clinical case than in the synthetic
case. This could be due to higher noise in the clinical data
and ormodelling error in the representation of in vivo cardiac
motion (1). Similarly, the optimal Ismooth values were several
orders of magnitude higher in the clinical case than in the
synthetic case. This is due to relatively higher gradients in
the optimal material parameters fitted to the clinical data.

In both simulated and measured patient data, we noticed
that the heavily infarcted region encompassing inferior to
inferolateral segments at the base and the mid-posterior seg-
ment differed in severalways fromhealthy segments. In these
infarcted segments strains were smaller, and the simulated
equi-biaxial stress–strain relationships showed greater fibre
stresses. Additionally, the optimal a and a f material param-
eters are larger in the infarcted anterolateral segment, and
there is a band of high a parameter value running through
the infarcted inferior segments. These observations indicate
increased myocardial stiffness. This is consistent with the
increased stiffness observed in healing infarcts during an ex
vivo tissue experiment (Gupta et al. 1994) and in previous
computational modelling with in vivo data (Mojsejenko et al.
2015).

We also observed that the mid-anterolateral segment was
identified as free from scar in the late enhancement MRI
analysis, yet showed signs of stiffness similar to the heav-
ily infarcted segments described above, that is both low
strain and high simulated stress. Such apparent stiffness in
a healthy segment is consistent with an infarction impairing
the mechanics of neighbouring healthy tissue (Holmes et al.
2005) or could be an effect of myocardial border zone tissue.

Ideally, model material parameters should be uniquely
identifiable from in vivo data in order to produce poten-
tially useful biomarkers for clinical practice. Recently, it has
been shown that the linear parameters a and a f of a reduced
Holzapfel–Ogden law (1), are structurally identifiable (Had-
jicharalambous et al. 2015). Structural identifiability means
that there exist sets of model loaded states such that only one
set of parameters produces them,making it theoretically pos-
sible to uniquely identify the parameters. Our in vivo data are
corrupted by noise, which makes the question of the unique
identifiability of parameters more complex. Additionally, we
have optimized the exponential b and b f parameters in our in
vivo experiment, for which possible structural identifiability
is still unknown. Last but far from least, we have spatially
resolved all of the parameters, thereby greatly increasing
their dimensionality. Under such circumstances the theoreti-
cal identifiability of material parameters is an open question.

To improve the identifiability of material parameters in
our estimations, we have added regularization to the opti-
mized functional. Indeed, Fig. 5 confirms the existence of
several material parameter sets that fit the model to the data
very similarly, but differ in their smoothness. By choosing a
corner point in the space of optimized data and smoothness
functionals our aim was to pick the smoothest set of elastic
parameters that still fit the data well. However, even with
the regularization, our parameter estimation still showed a
dependency on the choice of initial parameters, and a vari-
ety of results were obtained (Table 2). Nevertheless only one
parameter set fit the best, allowing us to choose it from among
the others.
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Fig. 7 Optimized model (solid line) versus measured (black dot) strain
components averaged over the volume of each AHA zone. The refer-
ence geometries for the strain measurements are derived from the echo

image at 1.2 kPa in the case of the measured strain, and the model at 1.2
kPa in the case of the model derived strain. The line colouring indicates
the relative amount of scar in a segment as given by Fig. 3
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Fig. 8 Regional fibre and cross-fibre stress–strain curves generated from simulated equi-biaxial extension tests. In each AHA region the spatial
average of the optimal material parameters is used in the simulated extension experiment. The colour of each line indicates the corresponding
regional scar burden value

5 Limitations

The identifiability of material parameters was limited in our
study, and all optimizations depended upon their initial guess.
This dependence is demonstrated in Table 2 by the variety
of minima. In the future it would be of interest to further
examine constraints to spatially resolved material parame-
ters, ideally yielding an optimization procedure that yields
the same parameters regardless of the initialization. One
such possible constraint is the left ventricular chamber vol-
ume, which has been previouslymatched together with strain
data (Balaban et al. 2017; Mojsejenko et al. 2015; Sun et al.
2009). Further possible constraints are aggregated geometry
measures such as LV twist, and long- and short-axis motion.
These have been shown to improve identifiability of elastic
parameters in experiments with mouse ventricles (Nordbø
et al. 2014).

Further limitations were related to the rule-based fibres,
mechanics modelling, computational efficiency, and strain
and pressure synchronization

5.1 Rule-based fibres

The fibre orientations in our model were generic and not
patient specific. As a result, healthy fibre angles were used
in infarcted areas. Previous studies have shown that fibre
orientations of infarcted areas can be significantly different
from healthy tissue (Mojsejenko et al. 2015; Fomovsky et al.

2012). If this effect were incorporated in our parameter esti-
mation, we would expect a change in the optimal material
parameters in the infarcted areas, especially in the a f and b f

parameters, which control the amount of anisotropy in the
model along thefibre direction. In the future, further improve-
ments to diffusion-tensor MRI technology may allow for
in vivo identification of local myocardial fibre directions,
which would allow for the fibre directions to be directly
incorporated into the optimized model without needing to
be estimated.

5.2 Mechanics modelling

The image-based reference geometry contained a pressure
load that was not accounted for in the current study as 0
pressure was assumed for the reference geometry. Using
recently developed techniques, it is possible to calculate a
pressure-free reference geometry simultaneously with mate-
rial parameter estimation (Nikou et al. 2016). Applying this
technique in our study was unfortunately not possible as the
unloaded mesh self-intersected partway into the calculation
when we attempted it.

Active tension was assumed to vanish in our model. Typ-
ically this tension has decayed to 0 in the diastasis phase
of a healthy heart, but may extend into atrial systole under
pathological conditions. If active tension were present in the
diastasis phase of our patient, then it could add additional
stiffness to the myocardium. At the same time, the release
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of active tension could contribute to strain in atrial systole.
Missing these effects would lead to potential overestimation
of passive tissue stiffness in the first case and an underesti-
mation in the second.

The computational model lacked several relevant physical
effects, notably inertia, viscoelasticity, residual stresses in the
unloading geometry, mechanical coupling of the LV to the
right ventricle and atria, the effect of sheet microstructure,
and tissue compressibility due to blood entering and exiting
the ventricle via coronary vessels. The spring constant at the
base was a rough approximation and could be replaced by
displacement data at the basal boundary if it were available.
The apex of the computational model was free, while longi-
tudinal motion at the base was fixed. The in vivo situation is
the opposite, the base moves longitudinally, and the apex is
mostly stationary.

5.3 Computational efficiency

The spatial discretizations of the material parameters were
not optimized. Instead, the computational mesh used to solve
the variational equation of motion (4) was also used for the
representation of the spatial parameters due to ease of imple-
mentation. It is possible that a coarser representation of the
material parameters could have also produced good model-
data fits. Using fewer parameters could potentially improve
the identifiability of parameters and reduce the number of
SQP iterations needed to find a minimum.

For the sake of computational efficiency, the resolution
of the mesh was not increased to the point of obtaining a
numerically convergent solution. Errors in the discretization
of the hyperelastic variational equation (4)may have affected
the optimized elastic parameter values. However, the results
of our test optimization with a finer mesh indicate that any
errors due to insufficientmesh resolution did not substantially
affect the overall pattern of the optimized parameters.

5.4 Strain and pressure synchronization

LV pressure and strain measurements were not taken simul-
taneously and had to be synchronized in our study. Though
both strain and pressure measurements were taken when the
patient was relaxed and prone, there could have been slight
differences in heart rate which would confound the strain–
pressure synchronization.

6 Conclusion

Adjoint-based data assimilation has been used to personalize
a mechanics model to reflect the heterogeneity in mate-
rial properties throughout an infarcted human left ventricle.
Further trials with more datasets and more methodological

development are warranted in order to evaluate the applica-
bility of the technique.
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