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Abstract

We introduce a new majorization order for classes (sets) of matri-
ces which generalizes several existing notions of matrix majorization.
Roughly, the notion says that every matrix in one class is majorized
by some matrix in the other class. The motivation to study this ma-
jorization concept comes from mathematical statistics and involves
the information content in experiments. This connection is briefly
described. We investigate properties of this new order both of alge-
braic and geometric character. In particular, we establish results on
so-called minimal cover classes with respect to the introduced ma-
jorization.
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1 Introduction

The notion of majorization has been studied a lot, in connection with vec-
tors (the classical notion), matrices, and even more general structures, such
as measure families. The purpose of this paper is to introduce a new ma-
jorization concept for matrices, actually for classes of matrices, which extends
several central notions of matrix majorization.

The motivation comes from mathematical statistics, an area called the
comparison of statistical experiments (for the detailed and self-contained
information on this topic we recommend the monograph [13]). It deals with
the information content of experiments.

Notation: Let Mm,n be the vector space of all real m×n matrices (where
we write Mn, if m = n). The transpose of a matrix A is denoted by At. For a
matrix A its j’th column is denoted by A(j), and the column sum vector of A
is denoted by c(A). The vector of a suitable length such that all its entries are
1 is denoted by e. The vector with all zero entries except 1 on the jth position
is referred as the jth unit vector and is denoted by ej. The convex hull of a
set S ⊆ Rn is denoted by conv(S). We say that a vector x ∈ Rn is monotone
if x1 ≥ x2 ≥ · · · ≥ xn. For a vector y ∈ Rn we let y[j] denote the jth largest
number among the components of y. If a, b ∈ Rn we say that a is majorized
by b, denoted by a � b (or b � a), provided that

∑k
j=1 a[j] ≤

∑k
j=1 b[j]

for k = 1, 2, . . . , n with the equality in the case k = n. In [10] one may
find a comprehensive study of majorization and its role in many branches of
mathematics and its applications. The recent book [2] treats majorization
in connection with several combinatorial classes of matrices. A matrix is
called doubly stochastic if it is (componentwise) nonnegative and each row
and column sum is 1. The set Ωn of all n×n doubly stochastic matrices is a
polytope whose extreme points are the permutation matrices (the Birkhoff -
von Neumann theorem), see [2] for an in-depth survey of properties of Ωn. A
matrix is row-stochastic if it is componentwise nonnegative and each row sum
is 1. The set of row-stochastic matrices in Mn is denoted by Ωrow

n . Further
details on these notions can be found in [9], [12] and references therein.

We discuss some notions and facts from this theory in Section 2. We
investigate properties of this new order, both of algebraic and geometric
flavour. In particular, we show several results on so-called minimal cover
classes.

When we discuss matrix classes (i.e., sets of matrices) we will assume that
each such class is finite. Some results may be extended to infinite matrix
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classes.
Our paper is organized as follows: in Section 2 we present some moti-

vation for this study. In Section 3 the majorization matrix class order is
introduced and some basic properties are investigated. Section 4 is devoted
to the investigations of minimal cover classes.

2 Motivation

The concepts introduced in the present paper are motivated by some ba-
sic questions in probability theory and mathematical statistics. We briefly
describe this motivation.

The theory of statistical experiments is a mathematical treatment of fun-
damental concepts in mathematical statistics, and it deals with the infor-
mation content of statistical experiments. The main idea is to compare two
statistical experiments with respect to the notion of “risk”, as explained
further. The most complete treatment of this theory is the monograph by
Torgersen [13]. The initial development of this area was around the 1950s,
and it was originated in the works by Halmos and Bahadur [7], Blackwell [1]
and LeCam [3].

Assume we want to minimize a real-valued function Lθ(t) over all t ∈ T ,
where T is a given (abstract) set, and θ is a given parameter in some set Θ.
The function L is usually called the loss function. A complication is that
the parameter θ is unknown. However, we can get information on θ via a
statistical experiment E where we observe a random variable X with values
in some set X , whose distribution depends on θ. Formally, the experiment
E is a family (Pθ : θ ∈ Θ) of probability measures on X (which is equipped
with a σ-algebra specifying measurable sets). Thus, after the experiment is
done and X is observed, say X = x (the realization), we choose an element
t ∈ T . Therefore, we consider t = t(x) as a function of the observed value
x of X, and this makes t a random variable. It makes sense to consider the
(mathematical) expectation Rθ := ELθ(t) =

∫
Lθ(t(x))dPθ where the expec-

tation is computed based on the probability distribution Pθ, which depends
on the unknown θ. The expression Rθ, the expected loss, is called the risk. It
depends on the unknown parameter θ and the function x→ t that we used,
which is called the decision rule. More generally, one may also consider a
randomized decision rule (or Markov kernel) which, for each x, specifies a
probability measure on the set T . Note that the risk function θ → Rθ not

3



only depends on the decision rule, but also on the experiment E , since this
specifies the underlying probablity measures Pθ, so let us write REθ to indicate
this dependence.

Now, consider two experiments E and F , both with probability measures
on the same parameter space Θ. We say that E is more informative than F
if for all finite sets T and loss functions Lθ : T → R and for each decision
rule in F , there exists a decision rule in E such that

REθ ≤ RFθ for all θ ∈ Θ.

This condition is a pointwise comparison of risks and, if it holds, we write
E ≥ F . So, we ordered the set of experiments. Informally, an experiment
which is more informative, tells more about the unknown parameter than the
other. Central part in the theory of comparison of experiments are theorems
that characterize the property E ≥ F in several ways, some of them expressed
in terms of statistical notions (such as Bayes risk). The setup above may be
generalized by allowing Pθ to be a measure, or even a signed measure.

Classical majorization for vectors in Rn is a special case of this order
relation for statistical experiments. The same is true for matrix majorization,
see [5] where this concept is developed and where a brief introduction to some
relevant theory of statistical experiments is presented. These special cases
are obtained by letting X = {1, 2, . . . , n}, and Θ = {1, 2, . . . ,m}. Then the
(generalized) experiment (Pθ : θ ∈ Θ) corresponds to a matrix E = [eij]
where eij = Pi({j}), so θ = i. The case of classical vector majorization is
obtained when m = 2 and the first row is the vector of all ones, e. If E
is an experiment, then each Pθ is a probability measure, and E is a row-
stochastic matrix. For a generalized experiment (but with X and Θ discrete
as stated above), E is an arbitrary m× n matrix. For more on this and the
majorization special case, see [5, 6].

The next example gives some intuition concerning the concepts intro-
duced above.

Example 2.1. Assume we have two different devices for measuring some
substance in the human body, where we use a simple scale of low (L), medium
(M) and high (H) occurrence of the substance. Due to device quality, the
output may be wrong, and the probabilities for different output based on the
true underlying value can be described by a row-stochastic matrix, where
both rows and columns correspond to L, M, and H. Assume the two devices
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are given by the two matrices E and F :

E =

 0.7 0.3 0
0 1 0
0 0 1

 , F =

 0.55 0.39 0.06
0.2 0.6 0.2
0 0.3 0.7

 ,
where the (i, j)th entry provides the probability of the answer j if the true
answer is i.

Consider first the device given by E. Assume the realization of a random
variable in the experiment E is j. If j = 1 (or L), we conclude that the
underlying parameter i is 1, and if j = 3, the only possibility is i = 3.
If, however, the realization is j = 2, i can be either 1 or 2. Since j = 2
has probability 0.3 when i = 1 and 1 when i = 2, we would say that it is
more likely that i = 2, although it depends on prior probabilities of i = 1
and i = 2. Thus, the experiment E gives a lot of information about the
underlying parameter i, and the measuring device seems good. For the device
corresponding to the matrix F , the situation is different: for each realization
j there are at least two possible underlying values of i, and the probabilities
do not distinguish these possibilities so well. So, device/experiment E seems
better than F . In fact, one can verify that E is more informative than F ,
using the following method.

Let

X =

 0.7 0.3 0
0.2 0.6 0.2
0 0.3 0.7

 .
Note that X is also row-stochastic. Moreover, one can check that EX = F .
This implies that E matrix majorizes F , see [5] and the next section. The
so-called randomization criterion in the theory of statistical experiments says
that (under weak assumptions that are fulfilled here) E is more informative
that F if and only if there exists a row-stochastic matrix X such that EX =
F .

Now we extend the mentioned ordering of pairs of experiments, into com-
paring sets of experiments. LetA = {E1, E2, . . . , Ep} and B = {F1,F2, . . . ,Fq}
be two sets of experiments, all based on the same parameter space Θ. Sup-
pose a statistician A may choose an experiment in the set A, and another
statistician B may choose an experiment in the set B. Which one has avail-
able the most information about the unknown θ? We may introduce the
following notion to model this situation: We say that B is more informative
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than A if for each Ej (j ≤ p), there exists an i ≤ q such that Fi is more
informative than Ej. In other words, whatever experiment A chooses in A,
B can choose a more informative experiment in B, which means that B has a
preferred situation for making decisions. The present paper investigates this
new notion in detail.

For a comprehensive treatment of the theory of comparison of statisti-
cal experiments, including the proper framework from convexity, functional
analysis and game theory, see [14]. Some shorter treatments, more directed
toward majorization, may be found in [13] and [4]. In [13] the connection to
the important concept of stochastic order is discussed.

3 The majorization matrix class order

Let � denote a matrix majorization order. There are several such notions,
and we mention some of them next. Let A,B ∈Mm,n.

• Directional majorization: A �d B when Ax � Bx for all x ∈ Rn.

• Doubly stochastic majorization: A �ds B when there is X ∈ Ωn such
that A = BX.

• Matrix majorization: A �m B when there is a row-stochastic matrix
X ∈ Ωrow

n such that A = BX.

• Weak matrix majorization: A �wm B when there is a row-stochastic
matrix X ∈ Ωrow

m such that A = XB.

• Strong majorization: A �s B when there is X ∈ Ωm such that A =
XB.

Classical vector majorization is the special case of strong majorization
where the matrices A and B have a single column. Classical vector majoriza-
tion is also a special case of matrix majorization ([5]) where the matrices A
and B have two rows and the first row is the all ones vector.

Theorem 3.1. Let A,B ∈Mm,n. Then the following hold.

(i) A �s B if and only if At �ds Bt (by the definitions),
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(ii) A �s⇒ A �d B ⇒ A �wm B (See the Hardy Littlewood Pólya Theo-
rem (Theorem 46) in [8] and Proposition 3.3 in [11] which is proved by
a separation argument.)

(iii) A �ds B ⇒ A �m B (by the definitions).

Let A,B ∈ Mm,n, and let � be either �ds, �m, �wm or �s. Then
one can check if A � B holds efficiently (in polynomial time) using linear
optimization. In fact, for each of these orders we look for a row-stochastic or
doubly stochastic matrix X that satisfies a (finite) system of linear equations,
namely AX = B or XA = B (depending on the order �). Thus, one needs
to decide if a certain system of linear inequalities has a solution, and this can
be done by linear optimization.

Let R(A) denote the set of rows of a matrix A. Also define, for a matrix
class A ⊆Mm,n, R(A) =

⋃
{R(A) : A ∈ A}. The set of columns of a matrix

or a matrix class are denoted, similarly, by C(A) and C(A). Recall that the
convex hull of a set X of points in a Euclidean space is the smallest convex
set that contains X.

Proposition 3.2. [11, Proposition 3.3] Let A,B ∈Mm,n. Then

A �wm B ⇔ R(A) ⊆ conv(R(B)).

Proposition 3.3. The following hold:

(i) �s does not imply �ds and conversely,

(ii) A � B, where � is either �s, �d, or �wm does not imply C(A) ⊆
conv(C(B)),

(iii) A � B, where � is either �ds or �m does not imply R(A) ⊆ conv(R(B)).

Proof. Consider the following Example:

Example 3.4.

Let D =

 3/4 0 1/4
0 1 0

1/4 0 3/4

 ∈ Ωn, B =

 3 −1
1 3
2 1

, A =

 11/4 −1/2
1 3

9/4 1/2

 .
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Since DB = A, A �s B and as a consequence A �d B and A �wm B. It
is easy to verify that

[
11/4 1 9/4

]t
/∈ conv(C(B)).

It follows that R(At) 6⊆ conv(R(Bt)) ⇒ At 6�wm Bt ⇒ A 6�ds B. Thus
we have proved (ii) and a half of (i).

To conclude the proof one should do the same calculations with At, Bt

and Dt. (In this case At = BtDt, so At �ds Bt and At �m Bt.)

Now, for the rest of this section, let � denote any of these matrix ma-
jorization orders. We define our main concept as follows.

Definition 3.5. Let A and B be two, possibly, finite classes of matrices in
Mm,n. We say that A is majorized by B if

for all A ∈ A there exists some BA ∈ B such that A � BA. (1)

If this holds, we writeAEB, and we call this the majorization matrix class or-
der (MMC-order). We also use the notation Ed when � is �d, and, similarly,
Eds corresponds to �ds and the same for the other matrix order relations.

Remark 3.6. Here again strong majorization implies directional and direc-
tional majorization implies weak majorization, see Theorem 3.1.

Example 3.7. (i) If A = {A} and B = {B}, then A E B means A � B.
So the MMC-order generalizes the matrix majorization order above,
and therefore also classical vector majorization.

(ii) Assume B = {B}. Then AE B means A � B for all A ∈ A.

(iii) Assume A = {A}. Then AE B means that A � B for some B ∈ B.

Let us consider situation (ii) in Example 3.7 in the special case of vector
majorization, so strong majorization �s with n = 1.

Proposition 3.8. Let b = (b1, b2, . . . , bm)t and a(j) = (a
(j)
1 , a

(j)
2 , . . . , a

(j)
m )t be

vectors in Rm (j ≤ p). Then the following statements are equivalent:

(i) {a(1), a(2), . . . , a(p)}Es {b}.

(ii) maxj≤p
∑k

i=1 a
(j)
[i] ≤

∑k
i=1 b[i] (k < m) and

∑m
i=1 a

(j)
i =

∑m
i=1 bi (j ≤ p).

(iii) There are matrices X(j) ∈ Ωm with a(j) = X(j)b (j ≤ p).
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(iv) All permutations of a(j) for j ≤ p lie in the convex hull of all permuta-
tions of b.

Proof. This follows directly from general majorization theory, see e.g.
Theorem P1 in [11].

Consider two matrix classes U ⊆Mm,n and V ⊆Mn,k. Define

A ◦ B = {AB : A ∈ A, B ∈ B} ⊆Mm,k,

the set of pairwise products.
Recall that Ωrow

n (resp., Ωn) denotes the set of all row-stochastic (resp.,
doubly-stochastic) matrices of order n. Then we observe the following for
matrix classes A,B ⊆Mm,n:

• Doubly stochastic majorization: AEds B if and only if A ⊆ B ◦ Ωn.

• Matrix majorization: AEm B if and only if A ⊆ B ◦ Ωrow
n .

• Weak matrix majorization: AEwm B if and only if A ⊆ Ωrow
m ◦ B.

• Strong majorization: AEs B if and only if A ⊆ Ωm ◦ B.

Proposition 3.9. Let A, B and C be matrix classes in Mm,n. Then

(i) AEA.

(ii) If AE B and B E C, then AE C.

(iii) If AE B, then
max
A∈A

rankA ≤ max
B∈B

rankB.

(iv) If AE B, then
max
A∈A
| detA| ≤ max

B∈B
| detB|.

Proof. (i) and (ii) follow from the definition. (iii): This follows from
the fact that if matrices A and B satisfy A � B for any of these orders
except �d, then, by definition, either A = BX or A = XB. It follows
that rankA ≤ rankB. By the second part of Remark 3.1, directional
majorization implies weak majorization, so what just stated, proves the result
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for �d as well. The proof of (iv) follows from the fact that for all X ∈ Ωrow
n ,

| detX| ≤ 1 (this follows directly by Laplace expansion on the first row).
Therefore, for all A ∈ A there exists some B ∈ B such that | detA| ≤ | detB|
since there exists X ∈ Ωrow

n such that either A = BX or A = XB (depending
on the majorization type).

There is an analogue of Proposition 3.2 for matrix classes.

Proposition 3.10. Let A, B be matrix classes in Mm,n. Then AEB, where
E is either Es, Ed or Ewm, implies that R(A) ⊆ conv(R(B)).

Proof. For matrices A and B, if A � B for one of the orders �s or �d,
then A �wm B. By Proposition 3.2 each row in A is a convex combination
of the rows in B. Finally, for every xt ∈ R(A) then there exists some B ∈ B
such that xt ∈ conv(R(B)) and as a consequence xt ∈ conv(R(B)).

Let A, B be matrix classes in Mm,n. Then R(A) ⊆ conv(R(B)) does not
imply A �wm B in general as the following example shows.

Example 3.11. LetA = {A1} = {
[

1 0
−1 0

]
} and B = {

[
2 0
0 0

]
,

[
−2 0

0 0

]
}.

Then R(A1) ⊆ conv(R(B)), but
[

1 0
]
6∈ conv(R(B2)) and

[
−1 0

]
6∈

conv(R(B1)). It follows that A1 6�wm Bi and, as a result, A 6 EwmB.

Given A ∈ Mm,n. We denote [A, v] ∈ Mm,n+1 the matrix whose first
(ordered) n columns are equal to those of A and its last column is the vector
v. [ Avt ] denotes the same for rows.

For A = {Ai : 1 ≤ i ≤ p} the class [A, v] (resp. [ Avt ]) denotes the class
formed by the extended matrices: {[Ai, v] : 1 ≤ i ≤ p} (resp. {[ Ai

vt
] : 1 ≤ i ≤

p}). Recall that e is the vector of 1.

Proposition 3.12. Let A and B be two classes of matrices in Mm,n. Then,

(i) If E is either Es, Ed or Ewm then AE B if and only if [A, e] E [B, e].

(ii) AEds B if and only if [ Aet ] Eds [ Bet ].

Proof. This follows directly from the definitions.

Let A ∈Mm,n. For each J ⊂ {1, 2, . . . , n} we denote by A[; J ] the subma-
trix of A whose columns are indexed by the elements in J . Similarly for each
I ⊂ {1, 2, . . . , n} we denote by and A[I; ] the submatrix of A whose rows are
indexed by the elements in I.
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For A = {Ai, i ∈ {1, 2, . . . , p}} the class A[I; ] denotes the class formed
by the corresponding submatrices {Ai[I; ], i ∈ {1, 2, . . . , p}} and similarly
for columns.

Proposition 3.13. Let A and B be two classes of matrices in Mm,n, and
sets I and J as above. Then the following holds.

(i) If E is either Es, Ed or Ewm, then AE B ⇒ A[; J ] E B[; J ].

(ii) If E is either Eds or Em, then AE B ⇒ A[I; ] E B[I; ].

Proof. This proposition follows directly from the same result for matrices
(see [5, Theorem 2.1(iii)] for �ds or �m and [11, Proposition 3.5] for �s, �d
or �wm)

For a matrix A ∈Mm,n and an integer k, let A(k) denote the matrix with(
m
k

)
rows and n columns, where the rows of A(k) are all possible averages

(arithmetic means) of various k-tuples of different rows of A, the arithmetic
mean of k vectors v1, v2, . . . , vk is the vector whose ith coordinate is the
arithmetical mean of ith coordinates of v1, v2, . . . , vk.

Proposition 3.14. ([11, Corollary 3.13]) Let A,B ∈Mm,n. Then A �d B if
and only if

A(k) �wm B(k) (k ∈ {1, 2, . . . , [m
2

],m}).

For A = {Ai, i ∈ {1, 2, . . . , p}} and an integer k, let A(k) denote
{Ai(k), i ∈ {1, 2, . . . , p}}.

Corollary 3.15. Let A and B be two classes of matrices. Then
AEd B ⇒ A(k) Ewm B(k) for k = 1, 2, . . . , [m

2
] and k = m.

Proof. This statement follows directly from the same result for matri-
ces.

The converse implication does not hold as the following example shows.

Example 3.16. Let A = {A1} = {
[

0 0
2 0

]
} and B = {B1, B2}, where

B1 =

[
0 0
3 0

]
, B2 =

[
1 1
1 −1

]
. Then it is easy to see that A1 �wm B1

and the column sum vectors c(A1) = c(B2) that is A1(1) �wm B1(1) and
A1(2) �wm B2(2). Then A(k)Ewm B(k) for k = 1, 2. But c(A1) 6= c(B1) and
A1 6�wm B2. Thus A 6EdB.
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Theorem 3.17. Let A and B be two classes of matrices in Mm,n. If AEB,
where E is either Es, Ed or Ewm, then⋂

B∈B

kerB ⊆
⋂
A∈A

kerA.

Proof. This theorem follows directly from the fact that A �wm B implies
kerB ⊆ kerA.

4 Minimal cover classes

As explained in Section 2 a motivation for this work lies in the theory of
comparison of statistical experiments ([13]), and we introduced the new or-
dering which compares two sets of experiments, A = {E1, E2, . . . , Ep} and
B = {F1,F2, . . . ,Fq}. We say that B is more informative than A if for each
Ej (j ≤ q), there exists an i ≤ p such that Fi is more informative than Ej.
Mathematically, this idea lies behind the MMC order of matrix classes, and
it also motivates the main question in this section: how small can the set B
be, when we require that AE B. Thus, the general question is: For a given
matrix class A, determine

min{|B| : AE B} (2)

where we assume that AE B holds for some finite class B. This is a kind of
covering problem which is dependent on the underlying matrix majorization
order �. We say that a class B is a minimal cover class for A if AE B and
the cardinality of B equals the minimum in (2).

For a matrix class A there may not exist a single matrix B such that
AEwm B where B = {B}. The following example illustrates this.

Example 4.1. Let A = {A1, A2} = {
[

0 1
1 1

]
,

[
0 2
1 2

]
}. Then, for any

B ∈M2,2, the set conv(R(B)) is a line segment on a plane since conv(R(B))
is a convex hull of two 2-dimensional points, and cannot contain R(A1) ∪
R(A2). Thus by Proposition 3.2 there is no any B such that A Ewm {B}.

Remark 4.2. The construction in the example above shows that for all p
there exists a matrix class A = {A1, A2, . . . , Ap} such that min{|B| : AEwm

B} = p. Here |X| denotes the cardinality of a set or family X.
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In order to show this, consider the following example.

Example 4.3. Let A = {A1, A2, . . . , Ap} such that As =

[
0 s
1 s

]
, s =

1, . . . , p. Then, as in the example above, by Proposition 3.2 there is no any
B such that |B| < p and AEwm B.

LetA be a matrix class such that there exists a matrix B withAEwm{B}.
Then, in general, there may not exist a matrix C such that AEs {C}, as the
next example shows.

Example 4.4. A = {A1, A2} where A1 =

[
1 0
0 1

]
and A2 =

[
1 0

1/2 1/2

]
.

Then AEwm {A1}. Suppose that there exists a matrix C such that A1 �s C

and A2 �s C. It follows that A1 =

[
x 1− x

1− x x

]
C for some x with

0 ≤ x ≤ 1, and A2 = DC for some doubly stochastic matrix D. Since A1

is non-singular, x 6= 1/2. Then C =

[
x

2x−1
x−1
2x−1

x−1
2x−1

x
2x−1

]
. It follows that D =

A2C
−1 =

[
x 1− x

1/2 1/2

]
. Then D is not doubly stochastic, a contradiction.

Classical vector majorization has a nice geometrical interpretation, given
by Rado’s theorem ([10]): for x, y ∈ Rn, x is majorized by y if and only if x
lies in the convex hull of all points obtained by permuting the components of
y. Moreover, the geometry of matrix majorization was studied in [5, 6]. Our
next results continue on this line of geometrical approach to majorization.

A simplex is a generalization of the notion of a triangle or tetrahedron to
arbitrary dimension. Suppose the k+1 points u0, u1, . . . , uk ∈ Rk are affinely
independent, which means that the vectors {u1−u0, u2−u0, . . . , uk−u0} are
linearly independent. Then the simplex determined by these points is the set

S =

{
θ0u0 + θ1u2 + · · ·+ θkuk :

k∑
i=0

θi = 1 and θi ≥ 0 for all i

}
.

The points u0, u1, . . . , uk ∈ Rk are vertices or extreme points of the simplex.
It can be said also that a k-simplex is a k-dimensional polytope which is the
convex hull of its k + 1 vertices. For example, a 2-simplex is a triangle, a
3-simplex is a tetrahedron.
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Remark 4.5. Let A be a matrix class in Mm,n with min{|B| : AEwmB} = 1.
Then each A ∈ A has all its rows in the same (n− 1)-simplex. In fact, since
there exists B ∈Mm,n such that AEwm {B}, the points in Rn corresponding
to the rows of matrices in A are contained in conv(R(B)) and therefore in
some (n− 1)-simplex.

Recall our standing assumption that the matrix classes considered (in
majorization statements) are assumed to be finite.

Proposition 4.6. Let A be a matrix class in Mm,n where m > n. Then

min{|B| : AEwm B} = 1.

Proof. The set R(A), consisting of all rows of the matrices in A, is a
subset of Rn. Choose a ball Sr = {x ∈ Rn : ‖x‖ ≤ r}, for some r > 0, such
that R(A) ⊆ Sr. Then there exists a full-dimensional simplex P containing
Sr. The simplex is the convex hull of its n + 1 ≤ m extreme points. Let B
be the m × n matrix with these extreme points as rows and otherwise zero
rows (there are m− n− 1 ≥ 0 of these). Then R(A) ⊆ conv(R(B)), so, by
Proposition 3.2, AEwm {B}, as desired.

Proposition 4.7. Let A be a matrix class in Mm,n. Then

min{|B| : AEd B} ≥ ΣA

where ΣA is the number of matrices in A with different column sum vectors.

Proof. If A �d B then the column sums of A and B coincide, so c(A) =
c(B). It follows that for every Ai ∈ A there exists Bj ∈ B such that c(Ai) =
c(Bj), and then obviously min{|B| : AEd B} ≥ ΣA.

As the following example shows the inequality in the previous proposition
may be strict.

Example 4.8. Let A1 =

[
2 2
0 0

]
, A2 =

[
2 1
0 1

]
. Then column sum vectors

c(A1) = c(A2) = (2, 2), so ΣA = 1. However, by Proposition 3.2 there is no
B such that A1 �wm B and A2 �wm B, and since �d is stronger than �wm,
there is no B such that A1 �d B and A2 �d B, as required.

Consider again the relation �wm and the characterization in Proposition
3.2. We assume m ≤ n, as the case of m > n was settled in Proposition 4.6.
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Lemma 4.9. Let A be a matrix class B in Mm,n. Then min{|B| : AEwm B}
is a minimal number of hyperplanes, covering (as above) the set of polytopes
conv(R(A)), where A ∈ A.

Proof. We may conclude, in the case of weak matrix majorization, that a
minimal cover class of some matrix class A ⊆Mm,n is a class B ⊆Mm,n such
that each polytope conv(R(A)), where A ∈ A, is contained in the polytope
conv(R(B)) for some B ∈ B. Thus, we are looking for a minimal family

of polytopes with this specific covering property. It follows that min{|B| :
A E B} is a minimal number of hyperplanes, covering (as above) a set of
polytopes conv(R(A)), where A ∈ A.

Lemma 4.10. For every matrix class A there exists an algorithm for finding
a minimal cover class in the case of weak majorization.

Proof. We may enumerate every partition of A and, for each partition,
we may check that every subclass can be weakly majorized by one matrix in
polynomial time. Indeed, we only have to verify that for each subclass of the
partition all points corresponding to each row of each matrix in this subclass
belongs to the same hyperplane.

We remark that it is possible to reduce complexity of the algorithm in
the previous proof to 2|A|poly(n,m, |A|) + 3|A|poly(|A|) using dynamic pro-
gramming over subsets of A.

Lemma 4.11. Let A ⊆ Mm,n be a matrix class such that for every A ∈ A
the rows of A are vertices of an (m− 1)-simplex. Then there is a polynomial
algorithm for finding minimal cover class.

Proof. If the rows of matrix A are vertices of an (m− 1)-simplex, then the
hyperplane corresponding to the convex hull of rows of matrix A is unique.
Thus for A1, A2 there exists B such that Ai �wm B if and only if the hyper-
planes corresponding to A1, A2 coincide.

Thus in the case of weak matrix majorization we can find, computation-
ally, a minimal cover class B of any class A ⊆Mm,n.

Now, let us consider the case of directional majorization. Recall that for
given A ∈ Mm,n, the matrix A(k) ∈ M(m

k),n denotes the matrix, such that

each its row is the average of some k different rows of A.
A barycenter (or a centroid) of a set is a center of mass of all its points.

For a k-simplex with the vertices u0, u1, . . . , uk ∈ Rn, its barycenter is the
average point of the vertices: 1

k+1

∑k
i=0 uk.
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Definition 4.12. For any matrix X ∈Mm,n, let PX be a polytope in Rn with
m vertices corresponding to the rows of X. For the convenience we suppose
that there are exactly m vertices of PX even if some of them coincide.

Lemma 4.13. Let X ∈Mm,n. Then 1
m
c(X) is the barycenter of PX .

Proof. By the definition of PX , it has exactly m vertices. The rest follows
from the definition of barycenter.

Note that Lemma 4.13 may not hold for conv(R(X)) as the following
example shows:

Example 4.14. Let X =

 0 0
0 0
3 0

 . Then conv(R(X)) is a line segment

with start point at
[

0 0
]

and end point at
[

3 0
]
. It follows that

the barycenter of conv(R(X)) is different from
[

1 0
]

= 1
3
c(X), and

conv(R(X)) is a polytope with only two vertices.

Theorem 4.15. Let A be a matrix class in Mm,n. Assume that there exists
a matrix B ∈ Mm,n such that A Ewm {B} and the vectors of column sums
of all Ai ∈ A coincide, that is c(Ai) = c(Aj) for all i, j. Then there exists
C ∈Mm,n such that AEd {C}.

Proof. The condition c(Ai) = c(Aj) for all i, j implies coincidence of the
barycenters of the convex polytopes PAi

corresponding to the matrices Ai.
We denote this common barycenter by O. Without loss of generality we may
assume that the barycenter of the polytope PB corresponding to B is also
O. Indeed, in the other case we can consider B′ instead of B such that the
polytope PB′ corresponding to B′ is obtained from PB by the parallel shift
moving the barycenter of PB to O and homothety providing that PB ⊆ PB′ .
Thus the conditions of the lemma are satisfied for B′ and barycenter of PB′
is O.

It is straightforward to check that for any X ∈Mm,n the convex hull of the
row space conv(R(X(k))) ⊆ conv(R(X)) for any k with 1 ≤ k ≤ m, since
the rows of X(k) lie in the convex hull of the rows of X by the definition of
the matrix X(k). Then, by Proposition 3.14, we obtain that if there is a ma-
trix C ∈ Mm,n such that conv(R(B)) ⊆

⋂
k=1,...,[m

2
]

R(C(k)) and c(B) = c(C),

then A Ed C. Indeed, for any Ai ∈ A and k = 1, 2, . . . , [m
2

] it holds that
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conv(R(Ai(k))) ⊆ conv(R(A)) ⊆ conv(R(B)) ⊆ conv(R(C(k))). More-
over, c(Ai) = c(C), i.e., all conditions of Proposition 3.14 are satisfied, so, it
is applicable and provides the required result.

It remains to show that such C always exists. We will show this construc-
tively in several lemmas, namely Lemmas 4.16 – 4.18 below.

Note that for an arbitrary matrix D, since c(D) ∈
⋂

k=1,...,[m
2
]

R(D(k)), we

obtain that
⋂

k=1,...,[m
2
]

D(k) 6= ∅. Moreover, the barycenters of all matrices

D(k), k = 1, 2, . . . , [m
2

] coincide by the definition of D(k).

Lemma 4.16. Let D ∈ Mm,n. Then the subspaces RD and RD(k), the
minimal subspaces of Rn containing PD and PD(k), correspondingly, coincide.

Proof. Let O be the barycenter of PD. We denote the vertices of PD by
D(i), i = 1, 2, . . . ,m and the vertices of PD(k) by Dk

(i), i = 1, 2, . . . ,
(
m
k

)
. By

the definition of D(k) it holds that
−−−→
ODk

(i) ∈ RD for all i. Thus RD ⊇ RD(k).

Also by the definition, for each i = 1, 2, . . . ,
(
m
k

)
the vector

−−−→
ODk

(i) =
1

k

(−−−−→
OD(i1) + · · ·+

−−−−→
OD(ik)

)
. (3)

Then for any fixed j = 1, 2, . . . ,m there are
(
m−1
k−1

)
vertices Dk

(i) such that

the corresponding expression (3) contains D(j). We denote these vertices by

jD
k
(u), u = 1, 2, . . . ,

(
m−1
k−1

)
. Hence there are

(
m
k

)
−
(
m−1
k−1

)
=
(
m−1
k

)
vertices

Dk
(i) such that the corresponding expression (3) does not contain D(j). We

denote these vertices by ĵD
k
(v), v = 1, 2, . . . ,

(
m−1
k

)
. Let us sum up all vectors

−−−−→
O jD

k
(u) and express them via (3). Then we get

(m−1
k−1)∑
u=1

−−−−→
O jD

k
(u) = s

−−−→
OD(j)+t(

−−−→
OD(1)+· · ·+

−−−−−→
OD(j−1)+

−−−−−→
OD(j+1)+· · ·+

−−−−→
OD(m)) (4)

for some s and t. Note that s > t, since each
−−−−→
O jD

k
(i) contains

−−−→
OD(j). Now

we sum up all vectors
−−−−→
O ĵD

k
(v) to get

(m−1
k−1)∑
v=1

−−−−→
O ĵD

k
(v) = l

(−−−→
OD(1) + · · ·+

−−−−−→
OD(j−1) +

−−−−−→
OD(j+1) + · · ·+

−−−−→
OD(m)

)
(5)
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for some l.
Therefore, by multiplying (4) with l and (5) with s one obtains

s · l ·
−−−→
OD(j) = l ·

(m−1
k−1)∑
u=1

−−−−→
O jD

k
(u) − t ·

(m−1
k )∑

v=1

−−−−→
O ĵD

k
(v). (6)

Hence, the other inclusion holds and the required equality RD = RD(k) is
proved.

Now we find s, l and t explicitly.

Lemma 4.17. The parameters s, l and t from Lemma 4.16 can be expressed
as follows

s =

(
m−1
k−1

)
k

, t =

(
m−2
k−2

)
k

and l =

(
m− 2

k − 1

)
.

Proof. As it was mentioned in the beginning of the proof of Lemma 4.16

there are
(
m−1
k−1

)
vectors

−−−−→
O jD

k
(u). Thus each vector OD(j) appears in the

equality (4) for
(
m−1
k−1

)
times with the scalar 1/k. Furthermore, there are(

m−2
k−2

)
vectors

−−−−→
O jD

k
(u) with OD(i) and OD(j) in their corresponding sums for

some fixed i 6= j since we choose (k − 2) other vectors among (m − 2) that

are left. Thus t =
(m−2
k−2)
k

.

Finally, there are
(
m−1
k

)
vectors

−−−−→
O ĵD

k
(i). As a consequence, k

(
m−1
k

)
=

l(m− 1). Hence, l =
(
m−2
k−1

)
.

Since the linear subspaces RD and RD(k) coincide, as it was stated
in Lemma 4.16, we can first consider D = B, and then elongate all sides
of the polytope in order to obtain the matrix C, for which it holds that⋂
k=1,...,[m

2
]

R(C(k)) ⊇ conv(R(B)).

Lemma 4.18. Let C be a matrix in Mm,n such that PC is obtained from PB
by the α-homothety with the center O and α = max

k=1,...,[m
2
]
(k + (k−1)

k
(
(
m
k

)
− 1)).

Then
⋂

k=1,...,[m
2
]

R(C(k)) ⊇ conv(R(D)).

Proof. We plan to explore the equality (6). Note that
∑
i

−−−→
ODk

(i) =
−→
OO = O

since O is the barycenter. Then −
−−−→
ODk

(j) =
∑
i 6=j

−−−→
ODk

(i).
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It follows that
−−−→
OD(j) = 1

s

∑−−−−→
O jD

k
(i) + t

sl

∑
q∈Q

∑
i 6=q

−−−→
ODk

(i) where Q is the set

of all indexes q such that
−−−→
ODk

(q) is
−−−−→
O ĵD

k
(i).

Thus
−−−→
OD(j) is a linear combination of vectors

−−−→
ODk

(i) with positive scalars.
The sum of all the scalars is equal to(

m−1
k−1

)
s

+
t

sl

(
m− 1

k

)((
m

k

)
− 1

)
=: α(k).

Finally,

−−−→
OD(j) =

1
s

∑
α(k)
−−−−→
O jD

k
(i) + t

sl

∑
q∈Q

∑
i 6=q

α(k)
−−−→
ODk

(i)

α(k)

−−−→
OD(j) =

1
s

∑−−−−→
O jC

k
(i) + t

sl

∑
q∈Q

∑
i 6=q

−−−→
OCk

(i)

α(k)

for every j.

It follows that every
−−−→
OD(j) is a convex combination of

−−−→
OCk

(j).

Let α = max
k=1,...,[m

2
]
α(k). Then it is easy to see that, if C is such that PC

is obtained from PB by the α-homothety with the center O, then
−−−→
OD(j) is

a convex combination of OCk
(j) for every k ∈ {1, . . . , [m

2
]}. Indeed we have

already shown that it is a linear combination with positive scalars and by
definition of α the sum of this scalars is less or equal to 1. If it is equal to
1 then it is proved, else we may add to the linear combination

∑
i

OCk
(i) = 0

with the suitable scalar. Moreover,

α(k) =

(
m−1
k−1

)
s

+
t

sl

(
m− 1

k

)
(

(
m

k

)
−1) = k+

(
m−2
k−2

)(
m−1
k−1

)(
m−2
k−1

)m− 1

k

(
m− 2

k − 1

)
(

(
m

k

)
−1) =

= k +
(k − 1)

(
m−2
k−2

)
k(m− 1)

(
m−2
k−2

)(m− 1)(

(
m

k

)
− 1) = k +

(k − 1)

k
(

(
m

k

)
− 1).

Finishing the proof of Theorem 4.15:
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Thus
⋂

k=1,...,[m
2
]

R(C(k)) ⊇ conv(R(D)) = conv(R(B)) ⊇ conv(R(Ai)) ⊇⋃
k=1,...,[m

2
]

R(Ai(k)) for any Ai ∈ A. Therefore, AEd {C} as required.

Remark 4.19. Let A = {A1, A2} such that c(A1) 6= c(A2). Then there is no
B such that AEd {B}.

Proof. Suppose that there exists some B such that A Ed {B}. It follows
that Ai �d B and by Proposition 3.14 c(A1) = c(B) = c(A2), a contradic-
tion.

Remark 4.20. In order to find a matrix C as in Theorem 4.15 we do not
use the class A itself, except the information about the barycenter. We may
use just a matrix, covering A in terms of weak majorization.

Theorem 4.15 allows us to find a general algorithm for finding a minimal
cover class of a given A ⊆Mm,n. First of all, we split the class A into equiv-
alence classes according to the column sum vectors of the matrices. Then,
for each class, we find a minimal cover class in terms of weak majorization.
Now we can split all of the equivalence classes for the subsets which can
be covered by one matrix and with the same vectors of column sums. The
number of these subsets equals to min{|B| : AEd B} and an example of such
a class can be found as we have shown in the proof of Theorem 4.15.

The following property allows us to find a minimal cover class in terms
of strong majorization for a matrix class A such that for each A ∈ A its set
of rows R(A) is the vertex set of a simplex.

Proposition 4.21. ([11, Corollary 3.21]) Let A,B ∈ Mm,n be such that the
rows of A are the vertices of a simplex. If A �wm B and c(A) = c(B), then
A �s B.

There are several cases when weak majorization implies strong majoriza-
tion. Some of them are studied in [11, Subsection 3.2]. In addition, the
following theorem allows us to present another case.

Theorem 4.22. Let A,B ∈Mn where B is invertible. Then A �d B if and
only if A �s B.
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Proof. We only need to prove that A �d B implies A �s B. So assume that
A �d B holds. Then Ax � Bx for all x ∈ Rn. Since B is invertible, y = Bx
runs through Rn whenever x runs through Rn. Therefore, Ax = AB−1y � y
for all y ∈ Rn which, by Ostrowski’s theorem (see Theorem 2.A.4 in [10]),
means that AB−1 ∈ Ωn. So AB−1 = R for some R ∈ Ωn, and therefore
A = RB. This means that A �s B, as desired.

From the previous theorem we get the following result.

Lemma 4.23. Let A,B be matrix classes in Mn such that AEd B,

|B| = min{|C| : AEd C}

and each B ∈ B is invertible. Then |B| = min{|C| : AEs C}.

Remark 4.24. It is important to note that in general for some matrix A ∈
Mn there does not exist an invertible matrix B ∈Mn such that A � B, here
� denotes any of introduced majorizations.

Example 4.25. Let A =

[
0 0
1 1

]
. Let B =

[
a b
c d

]
such that A �wm B.

It follows that there exists a row stochastic matrix R =

[
x 1− x
y 1− y

]
such

that

[
0 0
1 1

]
=

[
x 1− x
y 1− y

] [
a b
c d

]
. It is easy to verify that a = b and c =

d. Thus we have proved the required statement for weak majorization and as
a consequence for strong and directional. Considering At instead of A allows
us to complete the proof for doubly stochastic and matrix majorization.

We now turn to the doubly stochastic majorization order �ds, and rank-
constraints. Consider the doubly stochastic matrix class majorization, so
A = BX where X ∈ Ωn and the matrices A and B belong to two matrix
classes A and B.

Consider A �ds B, where B is a rank one matrix, so B = uvT where
u, v ∈ Rn are both nonzero vectors. This implies that A is also of rank one.
Moreover

BX = uvTX = uzT

where zT = vTX, i.e., z = XTv. Since XT is doubly stochastic, by the Hardy-
Littlewood-Pólya theorem on majorization ([10]), this means that z � v, so
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z is majorized by v. This shows that the principal ideal Mu,v generated by
B = uvT is given by

Mu,v = {A : A �ds B} = {uzT : z � v}.

This is a polyhedron, in fact a polytope, in Mn. Note that

Mu,v = conv{uwT : w is a permutation of v}.

Checking membership in Muv, i.e., checking if A �ds B for given A, can be
done as follows

• First, check if each column of A is parallel to u and, if so, we get
(unique) numbers αj (j ≤ n) such that the j’th column of A is αju.

• Then, check if the majorization (α1, α2, . . . , αn) � v holds.

Proposition 4.26. For given A and B, where B has rank one, the majoriza-
tion A �ds B can be checked by the algorithm above in O(mn+n log n) steps.
Moreover, for classes A and B of n × n matrices, where each matrix in B
has rank one, the algorithm tests if AE B in O(|A||B|(mn+ n log n)) steps.

Proof. This follows from the discussion above since all computations reduce
to (i) for each of m columns we need n operations to check if two vectors
are parallel, and (ii) checking majorizations z � v for vectors of length n,
and this is done by sorting the entries in each vector and use the partial sum
definition of majorization, which takes O(mn+ n log n) steps.

Example 4.27. Let

B =

 1 0 0
2 0 0
3 0 0

 = uvT

where u = (1, 2, 3) and v = (1, 0, 0). Let z = (1/2, 1/4, 1/4), so z � v, then

A =

 1/2 1/4 1/4
1 1/2 1/2

3/2 3/4 3/4

 = uzT

lies in Mu,v.
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Now, consider the same approach, but applied to the situation where B
has rank k, so B =

∑k
i=1 uiv

T
i for some nonzero vectors ui ∈ Rm, vi ∈ Rn.

Then

A = BX =
k∑
i=1

uiv
T
i X =

k∑
i=1

uiz
T
i

where X ∈ Ωn, zi = Xvi that is zi � vi.
Therefore we may propose the following algorithm (not sufficient yet) of

checking if A �ds B. Let u1, u2, . . . , uk be k linear independent columns
of B. Then we can find z1, z2, . . . , zk such that A =

∑k
i=1 uiz

T
i and such

selection of zi is unique because each column of A is a linear combination of
linear independent vectors. It follows that for any A we can determine zi and
then we can check if zi � vi for all i. Note that this condition may not be
sufficient. If in addition there exists doubly stochastic matrix X such that
zi = Xvi for every i, then A �ds B.

Therefore we only have to find a way of determining if for k pairs of
vectors zi and vi such that zi � vi there exists an overall doubly stochastic
matrix X such that zi = Xvi. Different characterizations of whenever such
a matrix exists are found in [5]. Moreover, related polytopes and connection
to transportation polytopes are discussed in [6].

Finally, in this paper, we define some subclasses of the set Ωn of n × n
doubly stochastic matrices.

Let 1 ≤ k ≤ n. Define Ω
(k)
n as the set of all n × n doubly stochastic

matrices whose first k rows are equal. These are matrices of the form

D =

[
D1

D2

]
where D2 ∈Mn−k,n is row stochastic with column sum vector c := c(D2) ≤ e
(i.e., each column sum is at most 1), and each row in D1 is (1/k)(e− c)t. If
k = n, the matrix D2 is void, and c := O (the zero vector). Each matrix

in Ω
(k)
n has rank at most n − k + 1. The extreme cases are Ω

(1)
n = Ωn

and Ω
(n)
n = {(1/n)Jn}, and clearly Ω

(n)
n ⊆ Ω

(n−1)
n ⊆ · · · ⊆ Ω

(1)
n = Ωn. For

1 ≤ k < n define the doubly stochastic matrix D
(k)
n = ((1/k)Jk) ⊕ In−k,

which is the direct sum of the k × k matrix with all entries being 1/k and

the identity matrix In−k. Also, define D
(n)
n = (1/n)Jn. The following result

is easy to prove, but gives insight in the matrix majorization order based on
�ds.
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Proposition 4.28. Let A be a matrix class in Mn, and let 1 ≤ k ≤ n. Then

{A ∈Mn : A �ds D(k)
n } = Ω(k)

n .

Thus, AEds {D(k)
n } if and only if A ⊆ Ω

(k)
n .

Proof. Let X ∈ Ωn and partition X similar to D
(k)
n . This gives

D(k)
n X =

[
(1/k)Jk O
O In−k

] [
X11 X12

X21 X22

]
=

[
(1/k)JkX11 (1/k)JkX12

X21 X22

]
= K

The matrix K is doubly stochastic, as the product of two doubly stochastic
matrices, and its first k rows are equal, namely equal to the barycenter of
the first k rows of X. Therefore K ∈ Ω

(k)
n . Conversely, if D ∈ Ω

(k)
n , so its

first k rows are equal, then
D(k)
n D = D.

Thus, we have shown that D �ds D(k)
n if and only if D ∈ Ω

(k)
n , and the

proposition follows.

This previous result means that the matrix D
(k)
n is a maximal element

w.r.t. �ds in the set Ω
(k)
n .
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