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Abstract

In this thesis, results from numerical simulations and experiments on drops
squeezing through constricted capillaries are presented. The purpose is
to understand how the capillary number changes how drops are deformed
as they pass through constrictions and how long it takes them to do
so. The simulations use the Cahn–Hilliard phase-field model and the
Stokes equations to simulate both simple and compound drops, which
are solved using the finite element method with FEniCS. The numerical
implementation is validated using test cases such as the spreading of a
viscous drop and the Laplace pressure jump in a drop. For the experiments,
simple drops were generated using microfluidics techniques and PDMS-
chip manufacturing. Experiments with about 300 drops at low Reynolds
numbers are presented. The numerical and experimental results do not
initially show good agreement, but when changing the viscosity of the
two liquids in the simulations the results become more similar. We
discuss some possible reasons why the results are different, including the
possibility that the boundary conditions on the drop could have been
changed because of the use of surfactants. The transit time for simple and
compound drops are found for a range of capillary numbers and numerical
results show that as the capillary number is reduced, the way the drops
are squeezed through the constriction changes and for sufficiently low
capillary numbers both simple and compound drops clog the capillary.
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CHAPTER 1

Introduction

Red blood cells transport oxygen to and carbon dioxide away from tissues. They
can travel through capillaries with radii much smaller than that of the cell which
they can do because they are flexible. In some circumstances, because the cell
is too rigid or the forcing too small, the cell gets stuck blocking the flow which
is known as capillary clogging. Some diseases such as malaria modify the red
blood cells and reduce the deformability in both infected and uninfected cells
[18, 54, 65] resulting in anemia. The World Health Organization estimated that
219 million cases of malaria occured in 2017 [74], so learning about the role of
drop deformability in capillary clogging is important. There are also other cells
that undergo similar deformations as they move through the body, for example
when immune and cancer cells squeeze through tight constrictions the nuclear
envelope can rupture and allow for nucleo-cytoplasmic mixing which can cause
DNA damage [16, 59]. Understanding the squeezing dynamics of cells are also
useful in the detection of circulating tumor cells which travel in blood to spread
cancer [77, 82]. An increased understanding of both the dynamics that cause
capillary clogging as well as cases were the cells are able to deform enough to
pass through, are not only relevant for medical diagnostics [28], but have many
other applications [79] such as drug delivery [61], enhanced oil recovery [53] and
microfluidic droplet generation [26, 83]. This is the motivation for developing
numerical simulations using the computational platform FEniCS [50] for drops
passing through and/or clogging constrictions as well as designing and using an
experimental setup to investigate these phenomena.

Investigation of drops and their dynamics can be traced back to the 1930s
when G.I. Taylor expanded on the work of Einstein on the rheology of liquids
with suspended solid particles, by replacing the solid particles with fluid drops
[68]. He also looked at how drops deform in shear flow at low capillary numbers
[67]. This was later expanded by Cox [13] to general time-dependent flows.
Typically drops can be characterized as either simple or compound. Simple
drops are liquid drops surrounded by a second liquid and compound drops are
drops that consist of two liquid phases that are surrounded by a third liquid.

The motion of drops with radii greater or equal to tube radius in pressure
driven pipe flow, is a problem which has been studied analytically [5, 29,
63], numerically [20, 42] and experimentally [57]. To characterize two-phase
flow microfluidics, the relative importance of inertial, viscous, surface tension,
buoyancy and gravitational forces as well as the ratio of densities ρ and viscosities
η needs to be considered [26, 85]. The balance of the forces is expressed with the
dimensionless numbers in Table 1.1. For the flow of blood in capillaries, were

1



1. Introduction

Table 1.1: Overview of dimensionless parameters in two-phase microfluidic
flow expressed with the viscosity of the continuous and dispersed phases ηc, ηd,
characteristic velocity U , characteristic length scale L, surface tension σ and
density of the continuous and dispersed phases ρc, ρd.

Dimensionless number Formula Definition

Capillary Ca = ηcU
σ

Viscous forces
surface tension forces

Reynolds Re = ρcUL
ηc

Inertial forces
viscous forces

Weber We = ρcU
2L
σ

Inertial forces
surface tension forces

Bond Bo = L2∆ρg
σ

Gravitational forces
surface tension forces

Viscosity ratio η = ηd

ηc

Dispersed viscosity
continuous viscosity

Density ratio ρ = ρd

ρc

Dispersed density
continuous density

typically the characteristic length and velocity scales are L ∼ 10 µm and U ∼ 1
mm/s [64] then gravitational, buoyancy and inertial forces becomes vanishingly
small compared to viscous and surface tension forces. Which means the drop
flow and deformation in a straight tube can be characterized with the capillary
number Ca, viscosity ratio η and the relative drop size.

Since a natural extension of droplet flow in a straight tube is to look
at tubes with a constriction, much of the work done on drop squeezing in
constrictions builds on previous work on straight tubes. The constrictions are
typically separated into two categories, short constrictions where the length of
constriction is comparable to or shorter than drop size, and long constrictions
are where the constriction length is much larger than the drop size. With a
constricted geometry some new parameters needs to be introduced, such as the
length and width of the constriction, as well as how the cross section, entrance
and exit are shaped. Additionally, the wetting properties become more relevant
since the drop is naturally pushed towards the tube walls as the cross-sectional
area is reduced in the constriction.

Simple non-wetting drops being pushed through constrictions have been
studied extensively analytically [41, 48, 62, 80, 81]. The problem has also
been approached using numerical methods such as the volume of fluid method
[78, 80–82], lattice–Boltzmann method [41], smoothed particle hydrodynamics
method [75], boundary integral method [46] and hybrid boundary integral-mesh
methods [62]. Simple drops being squeezed through constrictions have also been
studied experimentally [12, 51] using microfluidic methods. Wetting drops have
also been considered, but since there is no film between the drop and the walls
[35] surface effects such as contact line pinning and static and dynamic friction
complicates the system even further.

Zhang and colleagues have in last few years published several papers on
viscous drops squeezing through short circular constrictions under constant flow
rates. Assuming that there is only one phase in the radial direction because the
film between the drop and the constriction wall is so thin and that the drop
is spherical when it meets the constriction, they have developed an analytical
framework which can predict the pressure profile [81] and minimum impulse [80]
for a drop squeezing through constrictions. They have also studied circulating
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Figure 1.1: Illustration of a constriction geometry with a compound drop. pi
and po are inlet and outlet pressures, r1 and r2 are the radii of the outer and
inner drop and rc and rs is the radius of the tube in the constriction and in the
straight part.

tumour cells in microconfinements using the volume of fluid method [77, 78,
82] with constant flow rates.

Drops being driven by a constant pressure difference have been studied
mostly numerically. Wu et al. [75] looked at how the deformability of a red
blood cell relates to the pressure required to push the cell through a short
triangularly narrowing constriction. Zinchenko and Davis [86] found using
the boundary-integral method for a drop being driven by a constant pressure
difference through a cubic lattice of spheres, an expression for the time it take
to squeeze through as a function of capillary number Ca for viscosity ratios 1
to 4. They also concluded that while the viscosity ratio of the two fluids has
almost no effect on the capillary number at which clogging occurs, it does have
a strong effect on the squeezing dynamics.

Expanding from a simple drop to a compound drop, the system becomes
considerably more complicated. And due to the increased complexity this has
been mostly studied numerically. Phase-field methods [84], VOF [78] and the
immersed boundary method [45] have been used. The focus has mainly been
on constrictions that are much longer than the droplet size. We have not
found experimental studies of compound drops squeezing through constrictions,
but deformable capsules filled with liquid has been studied experimentally
with constant flow rates for short constrictions [15, 55], were capsule elasticity
controls the deformation instead of the surface tension.

The purpose of this thesis is to contribute to the understanding of the
squeezing of simple and compound drops through constrictions. To achieve
this, we study the problem using numerical simulations and experiments. Our
focus will be on cases where the ratio of intertial and viscous forces, Re, is
much smaller than one, which is what is typically found in blood flow. Further
we will only consider axisymmetric geometries, illustrated in Figure 1.1. The
tube radius rs will be equal to or smaller than drop radius r1 and constrictions
will be short, which means the length of the constriction is about the size of
the drops or shorter. For compound drops, the radius of the inner drop r2
will be kept larger than the radius in the narrowest part of the constriction rc.
For simple drops r2 = 0. We will mainly consider non-wetting droplets, and
disregard any attractive or repulsive forces between the interface and wall.

We will approach to problem using numerical simulations and experiments.
In the numerical part, we find the pressure and flow fields by solving the
Stokes equations. To deal with interface dynamics we use the Cahn–Hilliard
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1. Introduction

(CH) phase field method, which is a diffuse-interface model which introduces
the chemical potential µ and concentration φ that can be solved to find the
surface tension forces. To solve the Stokes and CH equations, we use the finite
element method (FEM) using FeniCS. In the experimental part, we will build
an experimental setup using glass capillaries to make the constricted geometries
and use microfluidic techniques to generate the drops.

In chapter 2 the theory needed for the numerical simulations is presented.
We will discuss the Cahn–Hilliard (CH) equation, show how it was derived,
show the 1D equilibrium profile, how the boundary conditions are expressed
and coupling with hydrodynamic equations. In chapter 3 we go over the
implementation of the CH and Stokes equations with the finite element method
and discuss the mesh refinement we use on the interfaces. We then continue in
chapter 4 by validating the FEM solver by comparing numerical results with
several analytical solutions. In the next chapter the experimental methods
we use are explained and we discuss the how drops are typically generated in
microfluidics. In chapter 6 the results from both experiments and simulations
will be presented, compared and discussed. Finally in chapter 7 we will make
concluding remarks by discussing the limitations and the novelty of this work
as well as discussing future work.
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CHAPTER 2

Theory

2.1 Stokes equation

In order to study drops flowing through constrictions with blood flow in capil-
laries as a motivation, we first consider the parameters of capillary blood flow.
Typical capillary diameters range from 5 to 10 µm, and blood has a dynamic
viscosity of about 1 mPa·s and is slightly more dense than water at 1060 kg/m3

[64]. Typical flow velocities are on the scale of millimeters per second. The
resulting Reynolds number is on the order of Re ∼ 10−3.

At low shear rates, blood shows some non-Newtonian effects [64], but in
our droplet model we will neglect these effects and assume the system to be
Newtonian. Since the Reynolds number is so low the inertia terms of the
Navier-Stokes equations are negligible and we therefore use the Stokes equations
(2.1) to solve for the pressure p and velocity u fields.

−∇p+∇ · (η(∇u + (∇u)T )) + f = 0
∇ · u = 0,

(2.1)

where η is the dynamic viscosity and f is volume forces. The volume forces f is
in this project the surface tension forces arising from the shape of the interface
between the phases.

Since we are considering an axisymmetric system, we write the Eq. (2.1) in
cylindrical coordinates on component form assuming that all parameters are
constant with respect to rotation, and all angular components are zero:

0 = 1
r

∂

∂r
(rur) + ∂uz

∂z
(2.2)

0 = −∂p
∂r

+ ∂

∂r

(
η

r

∂

∂r
(rur)

)
+ ∂

∂z

(
η
∂ur
∂z

)
+ fr (2.3)

0 = −∂p
∂z

+ 1
r

∂

∂r

(
ηr
∂uz
∂r

)
+ ∂

∂z

(
η
∂uz
∂z

)
+ fz. (2.4)

2.2 Phase-field formulation

In order to model multi-phase flows, a method for handling the interfaces as well
as solving a hydrodynamic equation is needed. There are two main categories for
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2. Theory

how interfaces are treated. The two categories are sharp- and diffuse-interface
models [25, 52].

The sharp-interface methods [49, 70] can be divided into Eulerian surface
capturing methods such as Volume of Fluid (VOF) and Level Set, and La-
grangian surface tracking methods such as the boundary-integral method. In
the surface tracking methods mesh points follow the interface, which means
the mesh is redrawn as the interface moves. The flow on each side of the
interfaces are calculated with matching boundary condition on the interface.
These methods typically have trouble with large movements of interfaces and
drop breakup or coalescence [25]. For the capturing methods, the mesh does
not need updating because of mesh movement since the location of the interface
is found by solving for an interface function which captures the location the
interfaces. One of the disadvantages of not changing the mesh according to the
interface, is that the accuracy of the location of the interface is limited by the
resolution in the area of the interface.

In this project we will not use a sharp-interface method, but instead the
interface will be diffuse. The diffuse-interface methods are in a way an extension
of the level set methods in that it instead of using an artificial smoothing
function on the interface, the interface is a region of gradual transition between
the phases on each side of the interface where mixing occurs. They also do not
in principle require that the mesh be updated as the interfaces move. The are
three main diffuse-interface methods [32]. The tracking/distributed force model
and continuum surface force method, which are based on models of surface
tension forces, and phase-field methods which are based on models of fluid free
energy.

The diffuse-interface method we choose is the phase field method [2–4, 8,
10, 11, 32–34, 36–38, 40, 44, 76]. An order parameter or concentration φ is
introduced to distinguish the phases. For two-phase flow, the concentration is
φ = −1 in one phase and φ = +1 in the other. The interface is conventionally
chosen to lie at the points where φ takes non-extremal values, and we will follow
the convention that the interface is where |φ| < 0.9. In addition to the order
parameter we have the chemical potential µ as well, which is found by taking
the functional derivative of the free energy functional F of the system. In the
following we consider systems with only two phases.

Since interfaces are diffuse there are no discontinuities at the interface
which aids in simplifying the numerical solution methods. When coupled
with hydrodynamic equations, such as the Stokes equations, the volume force
f = µ∇φ is used in equation (2.1) to add surface tension forces and the
hydrodynamic equation can be solved in the entire system without needing to
track or capture the interfaces such as in the sharp interface methods.

The main advantage of the phase-field methods is their versatility. They can
be used to simulate complicated interface dynamics such as drop coalescence and
breakup, which with surface tracking methods is difficult to do [49]. However
because the interface is given a width they are best suited for modeling systems
of small physical size.

Free energy formulation

The free energy per molecule f in a two-phase system, was expressed by
Cahn and Hilliard [7] as a sum of two functions of the concentration and
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2.2. Phase-field formulation

concentration derivatives. They assumed that the gradient of φ was much
smaller than than the reciprocal intermolecular distance and φ,∇φ,∇2φ, ...
were treated as independent variables. Then f(φ,∇φ,∇2φ, ...) was expanded
with a multivariate Taylor expansion about f0(φ, 0, 0, ...) into

f(φ,∇φ,∇2φ, ...) = f0(φ) + k1∇2φ+ k2(∇φ)2 + ... (2.5)

where k1 = [∂f/∂∇2φ]0 and k2 = [∂2f/(∂|∇φ|)2]0, assuming that rotation and
reflection about a four fold axis does not affect f . The total free energy density
is NV f , where NV is the number of molecules per unit volume. The total free
energy of a volume V is then

F = NV

∫
V

fdV = NV

∫
V

(
f0(φ) + k1∇2φ+ k2(∇φ)2) dV.

Using the divergence theorem on the ∇2φ term, F can be written as a sum of
the bulk free energy with a volume integral and the energy contribution from
the external surface S with a surface integral

F = NV

∫
V

(
f0(φ) + k(∇φ)2 + ...

)
dV +NV

∫
S

(k1∇φ · n) dS, (2.6)

where k = k2 − dk1/dφ. Neglecting the higher order derivatives, the bulk free
energy density can be written as

fd =
(
βΨ(φ) + α

2 |∇φ|
2
)
, (2.7)

where β ∼ σ/ε and α ∼ σε [10] with surface tension σ and interface thickness ε.
The free energy density is split into two terms, the first representing the bulk
energy in the two phases and the second being the interfacial energy. Ψ(φ) is
defined as a double well potential with minima at φ = ±1

Ψ(φ) = 1
4 ((φ+ 1)(φ− 1))2

, (2.8)

shown in Figure 2.1. The free energy functional in the bulk is then

FV =
∫
V

(
βΨ(φ) + α

2 |∇φ|
2
)
dV. (2.9)

To find the chemical potential µ of the system, the functional derivative of
FV is taken with respect to φ.

δFV =
∫
V

(
∂fd
∂φ

δφ+ ∂fd
∂∇φ

· δ∇φ
)
dV,

using integration by parts on the second term we get

δFV =
∫
V

(
∂fd
∂φ
−∇ · ∂fd

∂∇φ

)
δφdV +

∫
S

n · ∂fd
∂∇φ

δφdS.

Then inserting for fd gives

δFV =
∫
V

(
βΨ′(φ)− α∇2φ

)
δφdV +

∫
S

α∇φ · nδφdS, (2.10)

where Ψ′(φ) = dΨ(φ)
dφ . The chemical potential is recovered from the volume

integral
µ = βΨ′(φ)− α∇2φ. (2.11)
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2. Theory

Figure 2.1: The double well potential Ψ(φ) with minima at φ = ±1 which
makes these points equilibrium states.

One dimensional case

The equilibrium profile of the interface can be found by minimizing the chemical
potential. In one dimension this can done analytically. We begin by writing the
expression for the chemical potential in one dimension where x is the normal
direction to the interface

µ = βΨ′(φ)− αd
2φ

dx2 = 0.

The expression is then multiplied by dφ/dx and integrated from x = −∞ to x∫ x

−∞

(
βΨ′(φ)dφ

dx
− αd

2φ

dx2
dφ

dx

)
dx = [βΨ(φ)]φ=φ(x)

φ=−1 −

[
α

2

(
dφ

dx

)2
]φ=φ(x)

φ=−1

= 0,

where we have used that φ = −1 far left of the interface. This can be written as

βΨ(φ)− α

2

(
dφ

dx

)2
= 0⇒ dφ

dx
= ±

√
2β
α

Ψ(φ). (2.12)

By requiring that φ ∈ [0, 1] and that φ(x) is monotonically increasing, the
negative solution for dφ/dx may be discarded and the equation can be solved
as a separable differential equation∫ φ

0

dφ√
Ψ(φ)

=
∫ x

x0

√
2β
α
dx.
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2.2. Phase-field formulation

First solving the integral on the left hand side gives∫ φ

0

dφ√
Ψ(φ)

=
∫ φ

0

2dφ
(1− φ)(1 + φ) =

∫ φ

0

(
1

1 + φ
+ 1

1− φ

)
dφ

= [ln(1 + φ)− ln(1− φ)]φ=φ(x)
φ=0 = ln

(
1 + φ

1− φ

)
.

Solving the right hand using x0 = 0 we get∫ x

x0

√
2β
α
dx =

√
2β
α
x,

which means that

ln
(

1 + φ

1− φ

)
=
√

2β
α
x.

By exponentiating both sides the expression can be simplified to

1 + φ

1− φ = exp
(√

2β
α
x

)
⇒ φ =

exp
(√

2β
α x

)
− 1

exp
(√

2β
α x

)
+ 1

= tanh
(√

β

2αx
)
,

which gives the one dimensional equilibrium profile φ1D(x)

φ1D(x) = tanh
(

x√
2ε

)
, (2.13)

where we have used that α/β = ε.

The effective surface tension in one dimension is defined by the integral [10]

σ = α

∫ ∞
−∞

(
dφ

dx

)2
dx =

√
αβ√
2

∫ ∞
−∞

(1− φ2)dφ = 2
√

2
3
√
αβ,

where we have substituted one of the dφ/dx factors using equation (2.12) and
that φ(x = ±∞) = ±1.

The equilibrium profile for the one dimenstional case is a good approximation
for the profile in higher dimensions as well. In Figure 2.2 we show that equation
(2.13) works well also in axisymmetry, where we plot the interface profile at
equilibrium of an axisymmetric drop which was found numerically by initializing
the drop with equation (2.13). When solving the CH equation in two or more
dimensions and initializing using the 1D equilibrium profile, there is shift in
the bulk value of φ, which depends on the relative size of the interface to the
drop. This is a consequence of the fact that the 1D solution for the interface
profile does not represent an energy minimum for higher dimensions [8, 76].
This results in a reduction of drop volume. Therefore some care has to be taken
if we want to have a droplet of a certain volume in simulations. If the drop is
too small compared to ε, the drop eventually disappears.
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2. Theory

Figure 2.2: Plot of the one dimensional equilibrium profile given by equation
(2.13) and the numerical equilibrium profile of an axisymmetric droplet initialized
using equation (2.13) with a radius of 1.

Wetting Boundary conditions

The contribution to the total free energy from the surface can be postulated
[11] as

FS =
∫
S

[σsl + (σsg − σsl)w(φ)] dS, (2.14)

where σsl and σsv is the surface tension between the faces of solid (s), liquid (l)
and gas (g). If the system we are looking at consists of two liquids and a solid,
σsg is replaced with the surface tension between the second liquid and the solid.
w(φ) = − 1

4φ
3 + 3

4φ+ 1
2 is a normalized polynomial with w(−1) = 0, w(1) = 1

and w′(−1) = w′(1) = 0. Taking the variation of eq. (2.14) with respect to φ
we get

δFS =
∫
S

(σsg − σsl)w′(φ)δφdS.

Collecting this boundary term and the boundary term in in eq. (2.10) we get
the natural boundary condition for φ at the wall

α∇φ · n + (σsg − σsl)w′(φ) = 0.

Using the Young equation [43, p. 72] the contact angle θc can be introduced

σ cos θc = σsg − σsl,

10



2.3. Coupling Stokes and CH for two-phase flow

which means the boundary condition for φ can be written as

∇φ · n + 1
ε

cos θcw′(φ) = 0. (2.15)

The boundary condition for φ is used to set the wetting properties of the system.
This condition means that wherever there is a contact line, the contact angle is
always constant. To account for non-equilibrium contact angles a term Dw∂φ/∂t
can be added to the right hand side [11], where Dw is a phenomenological
parameter. We will not take non-equilibrium contact angles into account, so
the boundary condition will be as in equation (2.15).

For the chemical potential we impose there to be no fluxes of chemical
potential through the boundaries which leads to

∇µ · n = 0. (2.16)

The Cahn–Hilliard equation

The Cahn–Hilliard (CH) equation is found by approximating interfacial diffusion
fluxes as proportional to chemical potential gradients [32]. If there is a also a
flow present, advection of the order parameter is also included which results in
the CH equation with u as the the bulk velocity

∂φ

∂t
+ u · ∇φ = ∇ · [M(φ))∇µ] (2.17)

where M(φ) = M is the mobility, which we will keep constant. For this model
to be thermodynamically sound the free energy needs to decrease in time, so
we need to make sure this is the case. If we consider the case where the bulk
velocity u = 0 equation (2.17) can be written as δφ = M∇2µ δt and since we
have an equilibrium wetting boundary condition, the energy contribution from
the boundary is zero. Inserting in the variation of FV gives

δFV =
∫
V

µ δφdV = δt

∫
V

µM∇2µdV.

Using integration by parts and diving both sides with δt we get
δFV

δt
= M

∫
S

∇2µ∇µ · ndS −M
∫
V

(∇µ)2
dV = −M

∫
V

(∇µ)2
dV,

where the boundary term is zero because of the chemical potential boundary
condition. To ensure decrease of free energy the mobility constant must therefore
be positive.

In addition to being useful in multi-phase flow simulations, there are several
other applications [40] such as spinodal decomposition, diblock copolymer and
image inpainting.

2.3 Coupling Stokes and CH for two-phase flow

To couple the CH equation and the Stokes equation, the surface tension force
f = −µ∇φ [32] is added to the right hand side of the Stokes equation, modifying
it to

∇p = ∇ · (η(∇u + (∇u)T ))− µ∇φ. (2.18)
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2. Theory

Another choice for the surface tension is using f = −φ∇µ, but this requires a
the use of a modified pressure [11, 32].

Non-dimensionalization

Before implementing these equations, we first make them non-dimensional. We
introduce characteristic parameters and non-dimensional numbers following [10]
and take into account that we have creeping flow. The dimensionless variables
are with superscript ∗

x = Lx∗, t = L

U
t∗, p = ηU

L
p∗, u = Uu∗, µ = 3σ

2
√

2ε
µ∗, (2.19)

where L is the characteristic length scale, U is the characteristic velocity, ε the
interface width and σ is the surface tension. When we later look at drops in
capillaries, we use the capillary radius as characteristic length scale, L = rs and
the drop velocity as the characteristic velocity.

By using these and arranging the expressions appropriately we end up with
the following non-dimensional system of differential equations, where now the
superscript ∗ is omitted,

∇ · u = 0 (2.20)

∇p = ∇ ·
(
λ(η, φ)(∇u + (∇u)T )

)
− µ∇φ
Cn · Ca

(2.21)

∂φ

∂t
+ u · ∇φ = 1

Pe
∇2µ = 1

Pe
∇2 [F ′(φ)− Cn2∇2φ

]
, (2.22)

where λ(η, φ) is a linear function of φ with λ(η,−1) = η and λ(η, 1) = 1

λ(η, φ) = 1 + φ+ η(1− φ)
2

and η is now the viscosity ratio. The non-dimensional numbers are the Peclet
(Pe) number which is the ratio of advection and diffusion, the Cahn (Cn)
number which is the ratio of the interface width and characteristic length scale
and the capillary number (Ca) which is the ratio of viscous and surface tension
forces

Pe = 2
√

2UεL
3Mσ

, Cn = ε

L
, Ca = 2

√
2ηcU
3σ ,

where ηc is the dynamic viscosity of the continuous phase. With these parame-
ters, the one dimensional equilibrium profile (2.13) is written on non-dimensional
form as

φ1D = tanh
(

x√
2Cn

)
. (2.23)

The two main modeling parameters that we set in the simulations are the
interface width and mobility, using the non-dimensional numbers these are
determined by Cn and Pe respectively. Since ε in the simulations can be
orders of magnitude larger than the physical interface which ∼ 10−9 m [52],
the mobility parameter can typically be ∼ 10−17 m3s kg−1 [33, 52]. Using such
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2.3. Coupling Stokes and CH for two-phase flow

low numbers for example for a characteristic length scale of a L = 1 mm we
would need to set Cn = 10−6, which would need a too high mesh resolution to
solve. Because the interface has to be width has to be higher in the simulations
than in reality, Pe has to be adjusted accordingly. The sharp-interface limit is
where the relation between Cn and Pe is properly set such that the convection
and capillary stresses on the diffuse interface can be modeled reasonably [21,
52]. To find this relation, asymptotic expansions for the interface and the two
fluids can be done, where inner solutions are expanded with the parameter
1/Pe and the outer solution with the parameter Cn2Pe. By requiring that the
inner and outer solutions should both rely on the same parameter, Magaletti
and colleagues [52] found that

1
Pe

= Cn2Pe� 1,

which reduces to

Pe ∝ 1
Cn

.

Further, Magaletti et al. confirm the inverse proportionality by numerical
experiments of capillary waves and drop coalescence. They suggest a prefactor
to achieve convergence to the sharp interface limit

Pe ' 1
3Cn, (2.24)

which is how Pe is set for all of the simulations in this project.
Since we are studying an axisymmetrical system we write the non-dimensional

CH and Stokes equations (2.20, 2.21, 2.22) on axisymmetrical form by using
that ∂/∂θ = uθ = 0. This gives us the system of partial differential equations
(PDEs) we want to solve

0 = 1
r

∂

∂r
(rur) + ∂uz

∂z
(2.25)

0 = −∂p
∂r

+ ∂

∂r

(
λ

r

∂

∂r
(rur)

)
+ ∂

∂z

(
λ
∂ur
∂z

)
+ fr (2.26)

0 = −∂p
∂z

+ 1
r

∂

∂r

(
λr
∂uz
∂r

)
+ ∂

∂z

(
λ
∂uz
∂z

)
+ fz (2.27)

fr = − µ

Cn · Ca
∂φ

∂r
, fz = − µ

Cn · Ca
∂φ

∂z
(2.28)

∂φ

∂t
+ ur

∂φ

∂r
+ uz

∂φ

∂z
= 1
Pe

(
1
r

∂

∂r

(
r
∂µ

∂r

)
+ ∂2µ

∂z2

)
(2.29)

µ = Ψ′(φ)− Cn2
(

1
r

∂

∂r

(
r
∂φ

∂r

)
+ ∂2φ

∂z2

)
. (2.30)

Energy evaluations

Since we are studying flow dominated by viscous forces, viscous dissipation
should play a major role in how energy is lost in the system. The viscous
dissipation rate Ṙη and the rate of diffusive fluxes of the chemical potential Ṙµ
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can be calculated and scaled with the surface energy [9]. The rate of viscous
dissipation is given by

Ṙη =
∫
V

Caλ∇u :
(
u +∇Tu

)
dV,

which on axisymmetrical form becomes

Ṙη =
∫
V

Caλ

(
2
(
∂ur
∂r

)2
+
(
∂ur
∂z

)2
+ 2∂ur

∂z

∂uz
∂r

+2
(ur
r

)2
+
(
∂uz
∂r

)2
+ 2

(
∂uz
∂z

)2
)
dV,

(2.31)

and the rate of diffusive fluxes of chemical potential is

Ṙµ =
∫
V

Cn

Pe

(
∂µ

∂t

)2
dV. (2.32)

Since there is no inertia in our model, Re � 1, the rate of change in kinetic
energy will be very small, and because our wetting boundary condition does
not allow for non-equilibrium contact angles, dissipation due to contact line
relaxation is not a factor. The surface free energy can also be found by
calculating the interface surface area since the surface free energy is proportional
to the surface area.

2.4 Three-phase flow

The model we have discussed so far is only for two-phase flow. Compound drops
can be studied with this model, but it would be limited to drops that have the
same surface tension on the inner and outer interface, since with a two-phase
model the inner liquid would be the same as the outer. To have compound drops
that allow for interfaces with different surface tensions and different viscosities
for all three phases, the CH–Stokes model has to be modified to include a third
phase.

There are two ways to expand the model to include a third phase. The more
rigorous method, but also more complex is to use a ternary Cahn–Hilliard model
[3, 4, 39]. In these ternary models, a new expression for the free energy has to
be introduced which also means the expression for the chemical potential also
changes. In some ternary models the free energy functional F3 and chemical
potential µi can be written as [39]

F3 =
∫
V

(
1
4

3∑
i=1

φ2
i (1− φi)2 + ε2

2

3∑
i=1
|∇φi|2

)
dV

µi = 1
4
∂
(∑3

i=1 φ
2
i (1− φi)2

)
∂φi

− ε2∇2φi + β(φ1, φ2, φ3),

where β(φ1, φ2, φ3) is a non-constant Lagrange-multiplier which makes sure that
the sum of the chemical potentials is zero. In these models, the concentration
φi ∈ [0, 1] and φ1 + φ2 + φ3 = 1. In phase i, φi = 1 and φj = 0 for j 6= i. If
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2.4. Three-phase flow

we were to choose a ternary Cahn–Hilliard model of this type, the CH solver
would have to be substantial changed.

Another method, is to have two CH equations, one to govern phases 1 and 2
and the other for phases 2 and 3, each with their respective chemical potentials
µ1 and µ2 and concentrations φ1 and φ2. The surface tension term in the
momentum equation (2.28) is also expanded to include the second interface.
The system of PDEs that we end up with is very similar to the two-dimensional
case:

0 = 1
r

∂

∂r
(rur) + ∂uz

∂z
(2.33)

0 = −∂p
∂r

+ ∂

∂r

(
λ

r

∂

∂r
(rur)

)
+ ∂

∂z

(
λ
∂ur
∂z

)
+ fr (2.34)

0 = −∂p
∂z

+ 1
r

∂

∂r

(
λr
∂uz
∂r

)
+ ∂

∂z

(
λ
∂uz
∂z

)
+ fz (2.35)

fr = − µ1

Cn · Ca1

∂φ1

∂r
− µ2

Cn · Ca2

∂φ2

∂r
(2.36)

fz = − µ1

Cn · Ca1

∂φ1

∂z
− µ2

Cn · Ca2

∂φ2

∂z
(2.37)

∂φ1

∂t
+ ur

∂φ1

∂r
+ uz

∂φ1

∂z
= 1
Pe

(
1
r

∂

∂r

(
r
∂µ1

∂r

)
+ ∂2µ1

∂z2

)
(2.38)

∂φ2

∂t
+ ur

∂φ2

∂r
+ uz

∂φ2

∂z
= 1
Pe

(
1
r

∂

∂r

(
r
∂µ2

∂r

)
+ ∂2µ2

∂z2

)
(2.39)

µ1 = Ψ′(φ1)− Cn2
(

1
r

∂

∂r

(
r
∂φ1

∂r

)
+ ∂2φ1

∂z2

)
(2.40)

µ2 = Ψ′(φ2)− Cn2
(

1
r

∂

∂r

(
r
∂φ2

∂r

)
+ ∂2φ2

∂z2

)
(2.41)

The only connection between the two sets of CH equations is the velocity, so any
interaction between the interfaces in this model is strictly limited to how their
respective surface tension terms in the momentum equations (2.34) and (2.35)
affect the velocity field. Since the first set of CH equations (2.38) and (2.40)
only considers phases 1 and 2 and the second set (2.39) and (2.41) considers
phases 2 and 3, this model can only be used for cases where phases 1 and 3
have no shared interface. This considerably limits the types of cases this model
can be used to investigate, for example the collision of two drops of different
phases dispersed in a third continuous phase can not be studied. However for
the case of a compound drop being squeezed through a constriction, we do not
expect this limitation to cause problems.

To illustrate how the three-phase model is used we will consider a one-
dimensional case. We initialize φ1 and φ2 with the equilibrium profile given by
equation (2.23), shifted so that the interfaces are separated by one characteristic
length scale. When the system has reached equilibrium, φ1, φ2 and φ1 + φ2 is
as shown in Figure 2.3. To interpret the three-phase system, the solutions for
φ1 and φ2 are added together and phase 1 is where φ1 + φ2 = −2, phase 2 is
where φ1 + φ2 = 0 and phase 3 is where φ1 + φ2 = 2. The two interfaces are
located where φ is around either −1 or 1.
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2. Theory

Figure 2.3: Profiles of φ1, φ2 and φ1 + φ2 for the three-phase model. φ1 and φ2
is the solution from each CH equation, and φ1 + φ2 gives the location of the
three phases and interfaces.
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CHAPTER 3

Numerical implementation

3.1 Finite Element Method

In order to solve them system of PDEs in the CH–Stokes models we use the finite
element method (FEM). FEM is a method for finding approximate solutions to
PDEs, where the domain is divided into elements and on each element there is
a set of nodes [50]. The nodes that are on the boundaries between elements
are the shared nodes and internal nodes are those located on the inside of an
element. For each node i there is a finite element basis function ψi. These
finite element basis functions are called trial functions, and with FEM we seek
solutions written as linear combinations of these trial functions. The PDEs we
want to solve need to be written on weak form, which is done by multiplying
the PDE with a test function and integrating over the domain. Usually the
test functions are the same as the trial functions, which is also the case for this
project.

Weak formulation

In order to write the PDEs on weak form, the equations are multiplied with
a test function and integrated over the domain Ω. The Neumann boundary
conditions given by equations (2.15) and (2.16), appear when integration by
parts is done on second order derivatives of φ, µ, ur and uz. In the following
we will show the weak formulation for the two-phase CH–Stokes model.

The weak form for the continuity equation (2.25) is found by multiplying
with the test function l(r, z) = l and integrating over the domain∫

Ω

(
1
r

∂

∂r
(rur) + ∂uz

∂z

)
ldΩ = 0,

where dΩ = rdrdz, which means the continuity equation on weak form is∫
Ω

(
∂

∂r
(rur) + r

∂uz
∂z

)
ldrdz = 0. (3.1)

For the r-component of the Stokes equations (2.26) we multiply with krr, where
kr(r, z) = kr is the test function. The reason we also multiply the equation
with r is to avoid terms with 1/r in the weak form. The two terms containing
ur are also partially integrated, which results in the following expression for
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the weak form

−
∫

Ω
λ

[
∂

∂r
(rur)

(
2kr + r

∂kr
∂r

)
+ ∂ur

∂z

∂kr
∂z

r2
]
drdz

+
∫

Ω

(
−∂p
∂r
kr + µ

Cn · Ca
∂φ

∂r
kr

)
r2drdz

+
∫
∂Ω

(
ur + ∂ur

∂r
r

)
krrdz +

∫
∂Ω

∂ur
∂z

krr
2dr = 0,

(3.2)

where ∂Ω means it is a boundary integral. For the z-component (2.27) we
multiply with the test function kz(r, z) = kz and partially integrate the two
terms with uz to get the weak form

−
∫

Ω

[
λ

(
∂uz
∂r

∂kz
∂r

+ ∂uz
∂z

∂kz
∂z

)
+ ∂p

∂z
kz −

µ

Cn · Ca
∂φ

∂z
kz

]
rdrdz

+
∫
∂Ω
r
∂uz
∂r

kzdz +
∫
∂Ω

∂uz
∂z

kzrdr = 0.
(3.3)

The weak forms for the CH equations (2.29) and (2.30), is found by multiplying
the equations with the test functions q(r, z) = q and v(r, z) = v respectively
and then integrating over the domain. The terms containing derivatives of µ or
φ are partially integrated which gives the following weak forms∫

Ω

[(
∂φ

∂t
+ ur

∂φ

∂r
+ uz

∂φ

∂z

)
q − 1

Pe

(
∂µ

∂r

∂q

∂r
− ∂µ

∂z

∂q

∂z

)]
rdrdz

+
∫
∂Ω

∂µ

∂r
qrdz +

∫
∂Ω

∂q

∂z
qrdr = 0,

(3.4)

∫
Ω

[
(µv − F ′(φ)) v − Cn2

(
∂φ

∂r

∂v

∂r
+ ∂φ

∂z

∂v

∂z

)]
rdrdz

+Cn2
∫
∂Ω

∂φ

∂r
vrdz + Cn2

∫
∂Ω

∂φ

∂z
vrdr = 0.

(3.5)

The weak formulation for the PDEs in the three-phase CH–Stokes model is
similar to the two-phase one. The only difference is an extra set of CH equations
and an extra term in the momentum equations (3.2) and (3.3).

Neumann boundary conditions are applied using the boundary integral
terms. For example if we want to impose a contact angle θc on a surface with
normal vector n = iz we use

∂φ

∂z
= − 2

Cn
cos θcw′(φ).

For both the two- and three-phase models, the CH and Stokes equations
are separated into two systems. We first solve the CH equations using the
velocity field from the previous time step and then we solve Stokes equations
using the solutions from the CH equations. For the time differentiation in
the CH equations the backward euler scheme is used. The elements we use
for the Stokes equations are Taylor-Hood elements, which have Lagrangian
polynomials of order q for u and q− 1 for p for q ≥ 2 as basis element functions
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3.2. FEniCS

[50]. In our case we use elements with q = 2. For the CH equation, we use
linear Lagrangian polynomials for both µ and φ. To solve these equations,
we use the built-in Newton solver in FEniCS with the linear solver MUMPS
using standard parameters which means the relative tolerance is 10−9 and the
absolute tolerance is 10−10. The use of FEniCS will be further discussed in the
next section.

3.2 FEniCS

To solve the PDEs we have, we use the FEniCS platform [50]. FEniCS is an
open-source computational platform which endeavors to automate the process
of solving PDEs using FEM. FEniCS can be used with both Python and C++,
but in this project we have chosen to only use Python with FEniCS. Some of
the scripts can be found in the github repository Squeezing-of-drops-through-
constrictions [24]. There are several reasons why FEniCS has been chosen. It
is quick to implement changes as the input used is close to the mathematical
form, it is efficient and the same code which is run on a single core on a laptop
can be run in parallel on many cores by simply calling the program in a slightly
different way. In this project however, we found through experimentation that
without making significant changes to the code the scaling in parallel was
poor. We therefore decided not to use the parallel functionality in FEniCS,
but instead run several simulations with different parameters at the same time.
The majority of the simulations were done on the abacus-as machine at the
Department of Mathematics at the University of Oslo.

To solve the Stokes and CH equations in FEniCS the weak forms are
expressed as SL and CHL by adding the left hand sides of equations (3.1, 3.2,
3.3 and 3.4, 3.5) shown below in Python notation.

# Stokes
# r - component:
L0 = -Dx(p, 0) * k[0] * r**2 * dx
L0 -= eta * Dx(r * u[0], 0) * (2 * k[0] + r * Dx(k[0], 0)) * dx
L0 -= eta * Dx(u[0], 1) * Dx(k[0] * r**2, 1) * dx

# z - component:
L1 = -Dx(p, 1) * r * k[1] * dx
L1 -= eta * r * Dx(u[1], 0) * Dx(k[1], 0) * dx
L1 -= eta * Dx(u[1], 1) * Dx(k[1] * r, 1) * dx

# continuity equation:
L2 = Dx(r * u[0], 0) * l * dx
L2 += Dx(u[1], 1) * l * r * dx
L = L0 + L1 + L2

# Coupling terms:
L += mu / (Cn * Ca) * Dx(phi, 0) * k[0] * r**2 * dx
L += mu / (Cn * Ca) * Dx(phi, 1) * k[1] * r * dx
SL = L

# Cahn-Hillard:
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3. Numerical implementation

L = (phi - phi0) * q * r * dx
L += Dt * u[0] * Dx(phi, 0) * q * r * dx
L += Dt * u[1] * Dx(phi, 1) * q * r * dx
L += Dt * 1 / Pe * r * Dx(mu, 0) * Dx(q, 0) * dx
L += Dt * 1 / Pe * Dx(mu, 1) * r * Dx(q, 1) * dx
L += Dt * mu * v * r * dx
L -= Dt * dPsidphi * v * r * dx
L -= Dt * Cn**2 * r * Dx(phi, 0) * Dx(v, 0) * dx
L -= Dt * Cn**2 * Dx(phi, 1) * r * Dx(v, 1) * dx
# Contact angle boundary condition:
L -= Dt * Cn * cos(theta1) * v * r * dgdphi * ds(2)
CHL = L

The equations are solved using the solve command as shown below.

solve(CHL == 0, CHsol,
solver_parameters={"newton_solver":
{"linear_solver": "mumps"}})

solve(SL == 0, Ssol, BCs,
solver_parameters={"newton_solver":
{"linear_solver": "mumps"}})

3.3 Mesh

When solving the CH equation numerically, a high resolution on the mesh is
needed. Too low mesh resolution at the interface generally leads to parasitic
velocities that grow over time, which causes the interface to deform in a way
we do not want. For a given Ca there is an approximate number of grid points
required across the interface in order to prevent the instability, typically between
five and 15. Using narrower interface means the required number of nodes in
the system increases. So in order to have the interface as thin as practically
possible, we refine the mesh around the interface.

To refine the mesh on the interface, we identify the points that are within
1 ·Cn of the interface, and refine the grid around these points. Typically we do
the refinement three times, which makes the resolution close to the interface
around six times higher than in the bulk, an example of a drop where the mesh
is refined on the interface is shown in Figure 3.1.
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3.3. Mesh

(a)

(b)

Figure 3.1: An example which illustrates the mesh refinement close to the
interface and how it relates to φ. The color is blue when φ = −1 and red when
φ = 1. The black lines show the grid drawn on top of φ. (a) shows a drop where
the mesh is refined around the interface, and in (b) the bottom left part of the
interface is zoomed in on.
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CHAPTER 4

Numerical validation

Before we start using the program to study drops in constrictions, we do a series
of tests where the numerical results are compared with analytical solutions or
published experimental or numerical results in order to validate the code. We
begin by first validating the Stokes solver in isolation by looking at pressure
driven pipe flow. Then we see if the solver correctly predicts the pressure
differential for a drop in equilibrium. Next we consider three transient test
cases. The first is the spreading of a viscous drop on a surface and the second
the relaxation of a slightly deformed drop. As a final test we look at the shape
of a drop in pressure driven pipe flow.

4.1 Stokes flow in pressure driven pipe flow

In order to validate our numerical implementation, we first want to confirm
that solutions to the Stokes equations are as expected. To ensure that the
CH part of our system plays no role, the surface tension terms fr = fz = 0 in
the momentum equation. The concentration is also set to φ = 1 in the entire
domain. To validate the implementation of the Stokes equations, we want to
check that we recover the theoretical flow velocity in pressure driven flow. The
geometry is a straight pipe, which means rc = rs and r1 = r2 = 0 using the
terms shown in Figure 1.1. The boundary conditions are, p = po at the outlet
and p = pi at the inlet in addition to ∇u · n = 0 where n is the normal vector.
On the wall have the no-slip condition u = 0.

The part of the solution we want to compare with the analytical result is
the velocity component in the z-direction uz. The analytical solution is found
by solving the z-component of the Stokes equations (2.27) with fz = 0 and
η = 1. Integrating twice with respect to r and considering cases sufficiently far
away from inlets and outlets so that ∂uz/∂z = 0, we get

uz(r) = −1
4
∂p

∂z
r2 +A ln r +B,

where A = 0 because uz has to be finite at r = 0 and B = 1
4
∂p
∂z r

2
s because of

the no-slip boundary condition, which results in

uz(r) = 1
4
∂p

∂z

(
r2
s − r2) . (4.1)
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4. Numerical validation

Figure 4.1: The speed parallel to the pipe uz under constant pressure drop.
The solid blue line is the numerical solution extracted from halfway between
the inlet and outlet and the dashed red line is the analytical solution given by
equation (4.1).

In Figure 4.1 the numerical and analytical solutions are plotted together,
and they overlap. The maximum value for the relative error is 0.02% with 100
elements in the radial direction.

4.2 Laplace pressure jump

The second test, is to consider the pressure jump across the interface of a drop
in equilibrium. At equilibrium the sum of forces that act on the interface must
equal to zero for all parts of the interface. Following [43, p. 76-79] we can
therefore divide the interface into smaller areas A with C being the boundary
curve around the element. The force generated by the stress on the interface
element is found by integrating the stress on the element over the area. This
must be balanced by the surface tension force, which is found by integrating
the surface tension over the boundary curve. So the equilibrium condition is∫ ∫

A

(T− T̂) · ndA+
∫
C

σtdl = 0, (4.2)

where T and T̂ is the total bulk stress in the fluid when approaching from the
outside and inside respectively, n is the normal vector pointing out and t is the
normal vector to C which is tangent to A and pointing out. The line integral

24



4.3. Drop spreading case

Table 4.1: The error in Laplace pressure difference for different resolutions of
the interface. The interface thickness given by Cn, number of elements across
the interface ε/h and the pressure error in percent ∆perror(%).

Cn ε/h ∆perror(%)
0.01 10 2.25
0.01 12 0.95
0.01 14 0.51

can be written as a surface integral with Stokes’ theorem∫
C

σtdl =
∫ ∫

A

[∇σ − n(n · ∇)σ − σn(∇ · n)] dA. (4.3)

Since the force equilibrium (4.2) must be valid for any chosen surface element
on the interface, the integrands must also sum to zero

(T− T̂) · n +∇σ − n(n · ∇)σ − σn(∇ · n) = 0. (4.4)

We find the normal stress balance by multiplying eq. (4.4) with the normal
vector n. Since we are looking at a drop in equilibrium, the velocities are zero
and the total bulk stresses are simplified to T = pI and T̂ = p̂I where p̂ and p
are the pressures on the inside and outside of the drop. Additionally our surface
tension is constant and for a sphere ∇ · n = 2/R with R being the radius of the
sphere. This gives us the pressure differential for a spherical drop

p̂tot − ptot = 2σ
R
. (4.5)

In order to compare with numerical results we make eq. (4.5) dimensionless
by dividing both sides with the characteristic pressure ηU/L, which results in
the non dimensional pressure difference

∆p = 4
√

2
3

1
Ca

. (4.6)

To see if we find the same pressure difference, a drop is initialized using the
equilibrium solution in one dimension (2.13) with x replaced by r. The drop is
given a radius of r1 = 1 with a center in origo and the domain is a rectangle
from 0 to 5 in the r-direction and −5 to 5 in the z-direction. On the boundaries
we set p = 0 and ∇u · n = 0 for the Stokes equations. For the CH equation we
use the Neuman condition on the chemical potential and set θc = 0 in equation
2.15. The equilibrium drop profile ends up being very similar to the analytical
one dimensional solution, see Figure 2.2. For Ca = 1, the results for the error
in pressure ∆perror(%) and how it changes with the number of elements across
the interface for Cn = 0.01 are summarized in Table 4.1. With 14 elements
across the interface we get an error of 0.51% for Cn = 0.01.

4.3 Drop spreading case

Since the two prior validation cases have been at equilibrium or stationary, we
have not yet verified that the solver works on transient problems. To achieve
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4. Numerical validation

this, we consider the spreading of a viscous drop on a surface. The spreading
process can be divided into two parts. In the beginning the spreading is similar
to coalescence of two spherical drops, and Stokes flow calculations on high
viscosity drop coalescence shows that the radius of the wetted area R follows a
log-law [19]

R = −at lnR, (4.7)

where a is an adjustable parameter and t is the non-dimensional time which
has been scaled with the characteristic time 4πηR0/σ where R0 is the initial
radius of the drop.

In the later stage for small contact angles θm, the drop is shaped as a
spherical cap in the region far away from the contact line, also known as the
outer region

dho(x)
dx

= 2V
πr2

1

[
2
r1
− 2r
r2
1

]
, (4.8)

where V is the drop volume, h0(x) is the interface height in the outer region
and r1 is the drop radius. Close to the contact line, the thin film equation can
be used to described the interface profile h(x) [66]

d3h(x)
dx3 = − 3Ca

h(x)2 . (4.9)

For a vanishing slope at infinity equation (4.9) can be solved with [22](
dh(x)
dx

)3
= θ3

m + 9Ca ln
(
x

lm

)
, (4.10)

where lm is the slip length and θm is the contact angle at equilibrium. Imposing
that θm = 0 the solution in the contact line region can be matched with the
outer solution which results in Tanner’s law

R ∼ t1/10. (4.11)

The spreading is simulated by placing a spherical drop which is 50 times more
viscous than the surrounding liquid on top of a surface with a no-slip boundary
condition. The mesh has a triangular shape, and on the remaining boundary,
we allow u 6= 0 and set the pressure to be constant p = 0, shown in Figure 4.2.
We expect the capillary numbers to be of order ∼ 0.01, so to get the contact line
speed close to 1 we set Ca = 0.01 for the simulations. With Cn = 0.01 we run
simulations of drops with contact angles θc = 10◦, 15◦, 30◦ and for Cn = 0.005
with θc = 30◦. The evolution of the interface over time is shown in Figure 4.2
for θc = 10◦ and Cn = 0.01. To compare our results with the log-law (4.7)
and experiments from [19] we scale the time by multiplying with 0.01 since
we set Ca = 0.01 in the simulations and also take into account the 4π factor
used in equation (4.7) to scale the time. Using the fitting parameter a = 9 for
the numerical simulations we plot our results together with the log-law (4.7)
and experimental results on drops with equilibrium contact angles θeq ≈ 0◦, 85◦
from Eddi et al. [19] in Figure 4.3. In the initial phase of the spreading the
numerical results are different from the experiments and do not follow the drop
coalescence solution. The are a couple of reasons for this. The first is that
the boundary condition for φ does not allow non-equilibrium contact angles
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4.4. Relaxation of drop

Figure 4.2: Spreading of droplet with contact angle θ = 10◦. The profile of the
interface is shown at t = 0.03, 1.30, 2.87, 7.87, 20.4. The triangle shaped domain
is marked with lines, and the symmetry axis is marked with a dashed line at
r = 0. We use Cn = 0.01 and p = 0 on the open boundary and u = 0 on the
wall.

which is needed to accurately simulate this phase of the spreading [9]. We also
notice that the drop with Cn = 0.005 spreads slightly slower in the initial phase
compared to the three drops with Cn = 0.01 and it starts following the log-law
earlier. At about t = 0.03 the drops with Cn = 0.01 and Cn = 0.005 with
the same contact angle show the same wetting radius and continue to do so as
the drop spreads further. When the initial phase of the spreading is done, the
numerical results are in good agreement with the experimental data from Eddi
et al. [19].

We had also hoped that the case with θc = 10◦ would follow Tanner’s law in
the later stage of spreading. However after the drop was allowed to spread for
a long while a large area of the surface the drop is spreading on has |φ| < 0.9
and the results appear non-physical.

4.4 Relaxation of drop

Next we perform another test on a dynamic problem to confirm the validity of
our code. We look at the retraction of an ellipsoidal droplet back to spherical
shape. How the drop changes shape as a function of time can be found for small
deviations from spherical shape and low capillary numbers. To describe a drop

27



4. Numerical validation

Figure 4.3: Results of spreading of a viscous droplet on a surface with contact
angles θc = 30◦, 15◦, 10◦ and Cn = 0.01 and one case with θc = 30◦ and
Cn = 0.005. The dashed line is the log-law theory as given by equation (4.7)
using a = 9 as the fitting parameter.

surface slightly distorted from a sphere [60] suggested using

(x + x)(1/2) = 1 + αx ·A · x + O(α2) α� 1,

where A is the distortion from a spherical shape and x is the position vector
relative to the center of mass of the drop. With the time evolution of A being
[60]

α
∂A
∂t
− αĈaω ·A + αĈaA · ω = 5Ĉae

2η + 3 −
40(η + 1)αA

(2η + 3)(19η + 16) + O(αĈa, α2),

where ω, e are the vorticity and strain tensors, η = ηd/ηc where ηd and ηc are
the viscosities of the dispersed and continuous phases respectively, Ĉa = ηcγ̇L/σ
with γ̇ being the shear rate and t is the time scaled with σ/(ηcL). Since we are
looking at the relaxation of droplet there is no applied flow field [27] so e and
ω can be neglected. Additionally if Ca� 1 it simplifies to

∂A
∂t

= − 40(η + 1)A
(2η + 3)(19η + 16) ,

which can be solved for A as an exponential decay. Solving the preceding ordi-
nary differential equation leads to the following expression for the deformation
over time

D(t) = D0 exp
(
− 40(η + 1)

(2η + 3)(19η + 16)
t

Ca

)
, (4.12)
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Figure 4.4: Comparison of numerical results for Ca = 0.01 with η = 1, 10 and
Ca = 0.05, 0.1 for η = 1, with Cn = 0.01. The markers are the numerical
results and the line are the respective analytical solution.

where we have changed back to the definition of Ca and dimensionless time t
given by (2.19). D is the Taylor deformation parameter given by the following
equation

D = a− b
a+ b

(4.13)

where a and b are major and minor axes of the drop. By dividing by D0 and
taking the natural logarithm, equation (4.12) can be written as

ln
(
D(t)
D0

)
= − 40(η + 1)

(2η + 3)(19η + 16)
t

Ca
. (4.14)

The simulations are initialized with a = 1.25 and b = 0.83 and the drop as
allowed to relax. To prevent the initial shift in the bulk of φ to affect the results,
we start measuring the deformation after a few timesteps, when D0 = 0.11.
The drop is in a rectangular domain with r from 0 to 5 and z from −5 to 5.
On the boundaries of the domain, p = 0 and ∇u · n = 0. The usual boundary
conditions for µ and φ apply with θc = 0◦. In Figure 4.4 the numerical results
for ln(D(t)/D0) for Ca = 0.01, 0.05, 0.1 with η = 1 and Ca = 0.01 with η = 10
is plotted together with the analytical solutions. The numerical and analytical
solutions are in good agreement.
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Figure 4.5: Drop profile in pressure driven pipe flow. The dashed lines are
our numerical results for three drop volumes. The straight lines are numerical
results from [42]. The capillary number is Ca = 0.05, the viscosity ratio is
η = 10 and the interface thickness is given by Cn = 0.01.

4.5 Drop shape in a pipe

As a final validation test we consider a case similar to drop squeezing through
constrictions. We want to check that the shape of a simple drop in pressure
driven flow in a straight pipe is in agreement with other numerical results.

We place a simple drop inside a straight pipe, rc = rs and r2 = 0 using the
terms from Figure 1.1. The boundary conditions with respect to p and u are
p = pi at the inlet, p = p0 at the outlet with ∇u · n at outlet and inlet. We
follow the perspective of the drop by setting the velocity on the wall to be the
desired drop velocity u = −iz, where iz is the unit vector in the z direction.
The pressure drop is set in such a way that the drop does not move in the z
direction. When the drop has taken on a steady shape, we extract the drop
profile. For this test we set Ca = 0.05 and η = 10. Because some have radius
bigger than the pipe, the drops are initialized with a cylindrical shape with the
same volume as the undeformed drop.

With simulations using the boundary integral method Lac and Sherwood
[42] found the shape of drops in pressure driven pipe flow at Re � 1 with
η = 0.1, 1, 10 and Ca = 0.05. In Figure 4.5 we plot Lac and Sherwood and our
results for three drop volumes. There is a small difference in drop volume which
comes from the shift in φ values as the drop is initialized, but the results are in
good agreement.
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CHAPTER 5

Experimental method

In addition to exploring the squeezing of drops through constrictions using
numerical simulations, we also take an experimental approach. The experiments
were done during a three month stay in Paris at École supérieure de physique
et de chimie industrielles de la Ville de Paris (ESPCI) and Institut Pierre-Gilles
de Gennes pour la Microfluidique (IPGG). The experimental setup can be
divided in two parts. The generation of drops using microfluidic techniques and
polydimethylsiloxane (PDMS) chip manufacturing, and the second part which
is to push these drops through a constriction.

5.1 Generation of simple drops

Drop generation in microfluidics can be divided into passive and active methods
[26, 47, 69, 85]. In passive methods the dispersed (drop) fluid is introduced
to the continuous (outer) fluid, and drops are generated from the interaction
between the two fluids. The active methods have an additional level of control,
for example by adding an external electric or magnetic field or by varying the
flow rates or material properties. The active methods give more control and are
suitable when a great variety of drop configurations are needed. In this project,
only passive droplet generation methods were used.

The passive methods can be separated into three categories: co-flowing, flow
focusing and cross-flowing designs. We opt for the flow focusing design because
it is well suited for planar microfluidic chips. In the flow focusing method [6, 26,
47, 71, 73, 85], illustrated in Figure 5.1 the dispersed fluid is introduced from
the right and the continuous fluid comes from the top and bottom channels.
The two fluids meet where the channels intersect and drops are formed. The
PDMS chip shown in Figure 5.1 was fabricated at IPGG and a description of
that process is given in the next section.

In all three passive methods, droplets can be generated in the squeezing,
dripping and jetting regimes, which are mostly determined by the flow rate
ratio and capillary number [26, 85]. In the squeezing regime, typically at
Ca < O(10−2) the dispersed phase is pushed into the intersection, and as
it begins to increasingly prevent the flow of the continuous phase, the outer
phase pinches off the neck close to the dispersed phase channel end, this regime
is shown in Figure 5.1. Within this regime, the droplets can have a length
of several channel widths. If the dispersed phase flow rate is kept constant,
increasing the flow rate of the continuous phase will reduce the droplet size and
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Figure 5.1: A PDMS chip with 50 µm wide channels with a flow focusing design
for drop generation. In this image, drops are generated in the squeezing regime.
The dispersed water phase is pushed in from the right, and the continuous oil
phase comes from the top and bottom.

vice versa. Increasing the continuous flow rate and thus the capillary number
further, a transition to the dripping regime eventually occurs. In the dripping
regime viscous forces are more important, and so the interface is ruptured
because of drag between the continuous phase and the dispersed phase. In this
regime, the drops are about the size of the channel or smaller. The jetting
regime is distinct from the other two in that the pinch-off does not occur in the
intersection but instead after it. A jet of the dispersed liquid extends further
beyond the end of the dispersed channel than in the other regimes, and the
pinch-off happens near the end of the jet, typically outside of the intersection.
In this regime, drops are larger and less uniform than in the dripping regime.
The jet remains extended out of the dispersed channel after a droplet is released,
unlike for squeezing and dripping where the interface is drawn back into the
dispersed channel after release.

In order to have stable drops, surfactants are often used to reduce surface
tension on the interface [26]. Surfactants have one hydrophobic and one hy-
drophilic part and can be added to one of the phases. When the dispersed
and continuous phases come into contact, the surfactants migrate towards the
interface and reduce the surface tension and increase drop stability. Surfactants
can typically reduce the surface tension by up to a factor of ten [26]. The
timescale for the migration of surfactants to the interface is about the same as
for droplet generation [26], so determining the capillary number during droplet
generation can be challenging. However, since our focus is not to understand
the drop generation process, but instead drop dynamics at a much later time
we can assume that the surface tension does not depend on time.

5.2 PDMS chip fabrication

The flow focusing design and the drop generation is implemented using PDMS
chips, which is the standard in microfluidics [69]. The PDMS used was Sylgard
184 from Dow Corning. The chip manufacturing process consists of the following
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5.3. Liquid properties

steps. First we make a design for the flow focusing setup using CAD, in this
case Autodesk Inventor. The design has several copies of the same design,
which allows us to create several chips at once. The pattern is then automilled
which results in a wafer that can be reused many times. PDMS is mixed with
a 10 : 1 mixing ratio of base to crosslinker, and poured onto the wafer. The
mixed PDMS has a lot of air bubbles, so it is placed in a vacuum chamber for
several hours to remove the bubbles. After the air bubbles have been removed
the PDMS and wafer are put into an oven at 70◦C for a few hours to cure the
PDMS. After the PDMS has cured it is peeled from the wafer, and using a
razor the PDMS is separated into pieces, one for each design. The resulting
PDMS pieces have the flow focusing channels on the bottom.

Holes for inlets and outlet are made with a PDMS puncher (1 mm diameter
for the inlets, and 2 mm for the outlet) by pushing through the PDMS from
the top, through the PDMS and into the inputs and output. The side of the
PDMS chips that has the flow focusing channels, inputs and output is still
open to air and needs to be sealed. Before sealing the last side, a capillary is
pushed through the outlet several times in order to reduce the chance of PDMS
dislodging from the chip, when the constricted capillary is connected with the
chip. If we do not want to seal the chips up right away, the open side of the
chips are covered with scotch tape to prevent dirt from entering the channels.

In order to seal the last side of the chip, a glass slide is bonded to the chip
using plasma bonding. The glass slide, and the chip with the bonding side
facing up, is put in a plasma cleaner where the surface properties of the glass
and PDMS are altered. After the plasma cleaning, the bonding side of the chip
is put into contact with the glass slide. The slide and PDMS bond together
sealing the channel side of the chip. The plasma cleaning process makes the
inside of the chip hydrophilic and it will gradually turn hydrophobic over many
hours. To hasten the process the chip can be placed inside an oven at 90◦C to
make the chip hydrophobic within a few hours.

5.3 Liquid properties

The liquids we use in the experiments are water as the dispersed phase, and
sunflower oil with 5% of the surfactant polyglycerol polyricinoleate (PGPR)
as the continuous phase. For the dynamic viscosity of water we use ηw = 1.00
mPa·s which is the value for water at 20◦. For the sunflower oil solution, we
measured the viscosity by using a Mocular Compact Rheometer (Anton Paar
MCR 302) to measure the torque required to turn an object submerged in
the solution. The measurements, which are shown in Figure 5.2, result in a
dynamic viscosity of ηs = 82.4± 0.3 mPa·s, where the uncertainty is defined as
one standard deviation. Based on these viscosity measurements, the expected
viscosity ratio for the two liquids is then η = 82.4−1.

The surface tension was measured using a tensiometer (Krüss DSA30)
which uses the pendant drop method [17]. The surface tension was measured
after 10, 20 and 50 seconds, and is shown in Figure 5.3 for both solutions and
summarized in Table 5.1. It is clear that the surfactant reduces the surface
tension with an order of magnitude.

To check if our measurements of surface tension are reasonable we compare
with [56], where they found pure sunflower oil/water surface tension to σpure =
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Figure 5.2: Viscosity of sunflower oil with PGPR ηs measured at different shear
rates γ̇. The line shows the average viscosity measured.

(a) (b)

Figure 5.3: Surface tension measurements σ with the pendant drop method of
pure sunflower solution (a) and the sunflower with PGPR solution (b) after
allowing 10, 20 and 50 s for equilibriation. The lines show the average surface
tensions measured.
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Table 5.1: Measurements of surface tension σ using the pendant drop method
of water in sunflower oil with and without the surfactant after allowing 10, 20
and 50 s for equilibriation.

σ [mN/m]
surfactant

σ [mN/m]
pure

10 s 20 s 50 s 10 s 20 s 50 s
3.7± 0.3 3.32±0.07 2.92±0.05 26.1± 0.1 25.9± 0.1 25.6± 0.1

27.5± 0.3 mN/m, and sunflower oil with 5% PGPR to have a surface tension
to water of σNIS16 = 3.03 ± 0.05 mN/m when measuring after allowing the
surface to equilibriate for 10 minutes, which is in reasonable agreement with our
measurements, given that it is sunflower oil we are using where some variability
in its properties are to be expected.

5.4 Capillaries with constriction

To make a geometry similar to what is shown in Figure 1.1, we use glass
capillaries. The capillaries chosen for the experiments with single emulsions
have a length of 10 cm. Since the numerical model is based on Re � 1, we
need the Reynolds number to be very small in the experiments. One way to
ensure Re � 1 is to use capillaries with very low radii, but for smaller radii
the capillaries become more fragile especially around the constriction. So glass
capillaries with inner radius rs = 0.58 mm are chosen because they are small
enough to have viscous forces dominate over inertia given low enough flow rates,
but also big enough that if handled very carefully they do not break. In order
to make a constriction on these capillaries, a pipette puller (Narishige PN-31) is
used. As shown in Figure 5.4, the capillary is inserted into two platinum wires
that have been shaped by hand. The capillary is fastened to two mounting
points on either side, the platinum wires are then heated by passing a current
through them as a force gradually pulls the mounting points apart. After a
certain period of time, typically 30 s, and due to the incompressibility of the
molten glass, a constriction is thus formed by the action of this stretching. The
machine is stopped before the capillary is split into two separate pieces, leaving
us with a constricted capillary, an example of which is shown in Figure 5.5.

5.5 Experimental setup

An example of a final device is shown in Figure 5.6. For the first steps in
building the setup, the channels of the chip and capillary are parallel and
perpendicular to the ground respectively (rotated 90◦ compared to Figure 5.6).
Before connecting the capillary to the chip, a tube for the output is connected
to the capillary. Prior to pumping any liquid into the chip, the other end of
the capillary is pushed into the outlet of the chip and the connection is sealed
with epoxy. The continuous phase is then connected to its inlet and is pushed
almost all the way to the intersection using a pressure controller (FLUIGENT
MFCS-FLEX 4C). The reservoir for the dispersed phase is then connected to the
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Figure 5.4: A pipette puller, with the capillary inserted into platinum wires. The
capillary is attached with retention screws on both sides. The outer diameter
of the capillary is 1.5 mm.
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Figure 5.5: An example of a glass capillary with a constriction made using a
pipette puller.

inlet and is also pushed to the intersection using the pressure controller. When
both liquids have reached the intersection, both liquids are pushed through the
chip, and about half-way through capillary, where the pressures are reduced so
the liquids remain still.

The device is then rotated 90◦ to the orientation shown in Figure 5.6 and
the constriction is placed on a glass slide with glycerol on it. Glycerol is used
because it has refractive index close to glass which reduces optical distortion
caused by the transition between the glass and surroundings [14]. More glycerol
is then put on top of the constriction and another slide is placed on top, ensuring
that the constriction and area around is fully immersed in glycerol (middle of
Figure 5.6). A mirror is placed below the constriction redirecting light from
a light source so that the light passes vertically through the constriction and
another mirror reflects the light horizontally towards a camera.

Since we assume creeping flow in the simulations, we want Re to be suffi-
ciently low in the experiments. For example Re ∼ 0.001 means we would need
drops to move at U ∼ 0.1 mm/s. At these low flowrates, drops could not be
generated. So drops were instead generated at higher pressures (flow rates),
and when the capillary was filled with the drops, the pressures were reduced
and allowed to stabilize before images were taken.

5.6 Compound drops

To create compound drops, we tried three different approaches. One method
was first creating the inner emulsion in a PDMS chip, and storing the output in
a reservoir, and then using this output as input for an other PDMS chip with
wider channels. The two other methods were based on making one single device
that creates the compound drop in either one step or two. For surfactants we
also tried adding the surfactant sodium dodecyl sulfate (SDS) in the water
phase.

In the two-step method, we first created the inner droplet with diameters
about ∼ 500 µm. It was soon observed that the stability of these droplets was
not sufficient. When the droplets reached the output container, they would
break up into smaller drops with diameters about 10 µm within 30 minutes,
which was considerably smaller than the constriction diameter making them
too small for our use.
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Figure 5.6: Setup for simple drops pushed through a constriction. In the bottom
right corner, a PDMS chip with inlet tubes for oil and water are connected on
the lower part, and the capillary with outer diameter of 1.5 mm is connected to
the top part. In the middle of the image, the constricted part of the capillary is
placed between two glass slides, with two mirrors for redirecting light from the
light source, through the device and into the camera lens.

The first type of one-step device we assembled and used has two circular
capillaries inside of a square capillary as shown in Figure 5.7, this type of
device has been commonly used to make compound drops and capsules [55,
72]. An image of one of the devices we made is in Figure 5.8. The tips for the
circular capillaries, were made by first pulling a capillary with a pipette puller,
a microforge was then used to make the tips as flat as possible and with the
appropriate diameter. When they were inserted into the square capillary, they
were aligned such they their axes of symmetry were as close the the middle of
the square capillary as possible. A close up of the tips in Figure 5.8 is shown
in Figure 5.9, where we see that the tips are not completely flat, but they are
aligned well. Four of these devices were created, as the first devices were not
properly alligned, or the tips not sufficiently flat. The last and most succesfull
iteration, was an o/w/o configuration with the output capillary treated to be
hydrophobic, by immersing it in hexane, chloroform and octadecyltrichlorosilane
(OTS) at 200◦C for more than 5 hours. After working with these devices, we

38



5.6. Compound drops

Figure 5.7: Illustration of one-step compound drop device, with two circular
capillaries inside of a square capillary reproduced from [72].

Figure 5.8: A one-step compound drop device, with two circular capillaries
inside of a square capillary. The outer diameter of the square capillary is 1.5
mm.

speculated that also for this method, the droplet size was a major factor in the
difficulty in reliably creating compound droplets. With the same geometry [73]
reports that this method can be used to create compound drops with diameter
up to 1 mm, so this flow-focusing method itself is not the limitation. One
difficulty that we observed when creating these devices was that the difficulty
of creating flat tip-endings for the round capillaries increased with size. If we
had found another method of making the tips smooth and flat we could most
likely have made this method work.

The third method was to connect two PDMS chips with different channel
widths together. This setup showed more promising results than the previously
discussed device. Since the outer phase was oil in one chip and water in the
other, the chips had to be hydrophobic and hydrophilic respectively. This meant
that device would be useful for a few hours before the hydrophilic chip gradually
turned hydrophobic. The output of the first chip was connected to the inner
phase input of the second one. In the output of the second chip, the constricted
capillary was attached in the same way as for the single emulsion setup. For
this setup each component of the device worked as intended. We were able
to make the internal droplet and they would transfer into the second chip.
Additionally we were able to make the outer droplet in the second chip and
send them through the constriction. Unfortunately making these two processes
happen at the same time was very difficult. To create the inner droplets, the
input pressures had to be such that the liquid from the first chip could freely
flow into the second chip. When the input pressure for the secondary chip was
increased, the flow rate was reduced in the first chip, and the production of
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Figure 5.9: A close-up of the tips of the circular capillaries in the one-step
compound drop device shown in Figure 5.8.

droplets seized. Trying many input pressure combinations, a few compound
drops were created, see Figure 5.10. It is conceivable that if we controlled the
flow rates directly instead of the pressure, we would be able to solve this issue,
but we did not have time to try this. We have not been able to find this setup
in the literature to see how others have controlled this type of device.
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5.6. Compound drops

Figure 5.10: Examples of some compound drops that were created using the
two-PDMS chips setup. The outer phase is sunflower oil with 5% PGPR, middle
phase is water with 1.9 g/L SDS and inner phase is sunflower oil. The outer
diameter of the capillaries are 1.5 mm.
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CHAPTER 6

Results and discussion

6.1 Experimental results

With the final experimental setup for simple drops we used two constricted
capillaries to collect data on 78 drops for the first capillary and over 200 for
the second. Both capillaries have the radius in the straight part rs = 0.58 mm.
In the constricted part, the radii are slightly different because the process in
which the constrictions are made are not able to exactly reproduce the same
result. The first capillary has a constriction radius of rc = 0.29 mm and and
the second has rc = 0.26 mm. For the first capillary Ca ranged from 8 · 10−4

to 1 · 10−2 with Re from 2 · 10−4 to 3 · 10−3. For the second capillary Ca was
from 3 · 10−4 to 2 · 10−3 with Re from 8 · 10−5 to 8 · 10−3. We looked at drops
with the same size as the capillary to bigger drops that when deformed inside
capillary had length about two and half times the capillary diameter. The
range of drop speeds resulted in a wide range of transit times from 8 seconds
to 11 minutes. Snapshots of two similarly sized drops passing through the two
different capillaries are shown in Figure 6.1.

For all the experiments, we extracted the position of the center of mass,
front and back end for each frame, as well as the surface area and volume.
The data extraction was done using a Matlab script written by Dr. Alexandre
Vilquin. For the first capillary images were taken at 50 frames per second,
and for the second capillary one frame was taken every second. The velocity
in each frame was calculated by fitting a polynomial to the adjacent points
and using the gradient. For the first case, a first degree polynomial for 20
prior and subsequent points was used, and for the second case we used a third
degree polynomial for ten prior and subsequent points. The polynomial used
was different for the two cases because of the difference in frame rates. For the
two examples shown in Figure 6.1 the extracted position and speed expressed
with Ca for the back part, center of mass and front part of the drop as well
as the surface area and volume, is shown in Figure 6.2 for the first capillary
and Figure 6.3 for the second. For all the experiments, independent of Ca, the
maximum velocities for the front and back part, were approximately one and a
half to twice as big as the maximum velocity of the center of mass. As the drop
enters the constriction the surface area is increased and when the drop exits the
surface area returns to approximately the same value, shown in Figures 6.2c
and 6.3c, which is what we would expect since some kinetic energy should be
converted to and from interfacial energy as the drop is squeezed through the
constriction [80].
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Figure 6.1: Snapshots from the experiments on simple drops. On the left we
see an example of an experiment with Ca = 0.002 and drop volume V = 3.8
mm3 in the first capillary and on the right the snapshots are from the second
capillary with Ca = 0.0013 and drop volume V = 3.6 mm3. In the bottom row,
the drop found with the drop tracking script is overlayed and the center of mass
is marked. The time t in seconds is given on the side of each image, and in the
top center a length scale is given.

We expect the drops to have constant volume throughout the capillary, but
Figures 6.2d and 6.3d show that this is not the case. The data suggests that the
drop loses mass as it enters the constriction and gains mass as it exits. This is
not likely to be correct and there are a few contributing factors that can explain
these measurements. The fluctuations in the surface area, which are smaller
than the difference between the smallest and biggest volume, are smallest when
the drop is inside the constriction and mostly comes from inaccuracies when
tracking the drops. These inaccuracies come from errors in the numerical
integration when volume and area is calculated and in some cases particles that
are in the glycerol are thought to be part of the drop, which can change the
drop profile. In the images of the second capillary shown in Figure 6.1 these
particles can be seen. The capillaries were not perfectly axisymmetric and the
volumes were calculated assuming that they were, but since the deviation from
axisymmetry for the capillaries was small we do not consider this to be the main
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(a) (b)

(c) (d)

Figure 6.2: Position z, capillary number Ca, surface area A and volume V
as function of time for one droplet in the first capillary. For the position and
capillary number we plot the values for the front end, center of mass and back
end of the drop.

cause. The biggest contribution to the error in volume measurement probably
comes from the difficulties we faced getting the capillary in focus. Because
of the fragility of the glass capillaries few adjustments could be made to the
alignment of the capillary with breaking the glass. We could ensure that the
constriction was in focus by adjusting the camera focus, but one end of the
capillary was always closer to the camera than the other.

The transit time, which we defined as the time it takes for the drop to
move from a position which is 2.5 · rs in front of the contriction entrance to
2.5 · rs after the constriction exit was extracted for all the drops. The transit
time in seconds τs and drop speed in the straight part of the capillary is shown
in Figure 6.4. As expected increasing the speed of the drop reduces transit
time. Since increasing the drop speed would also decrease the transit time in a
straight capillary, we can make the transit time dimensionless by scaling with
the capillary radius rs and drop speed U to better see how changing the ratio
of viscous and surface tension forces changes transit time. The non-dimensional
transit time τ as function of Ca is shown in Figure 6.5 for experiments and
simulations, but the simulations will be discussed later. We can see that as
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(a) (b)

(c) (d)

Figure 6.3: Position z, capillary number Ca, surface area A and volume V as
function of time for one droplet in the second capillary. For the position and
capillary number we plot the values for the front end, center of mass and back
end of the drop.

Ca is reduced the non-dimensional transit time is also lowered, but this effect
is small compared to the spread of the data. These transit times also include
different drop sizes and the size does not seem to have any effect on τ . We only
looked at drops of different sizes on the low end of the Re and Ca range, which
could partly explain why. At such low Re, the curvature of the front and back
part of the drop does not depend on drop size, so the Young–Laplace pressure
induced by difference in curvature of the front and back parts [81], would not
depend on size. One would expect that as Ca is reduced, the surface tension of
the drop would eventually prevent the drop from deforming enough to be able
to fit through the constrictions, but from these experimental data this does
not appear to be the case. We tried reducing the driving pressure by lowering
the reservoirs for the input fluids, but instead of seeing any signs of clogging
the drops would start traveling backwards. So in order to see clogging of the
capillaries, we would need to able to apply a smaller driving pressure than we
were able to do. Another idea would be to use a combination of liquids with a
higher surface tension to viscosity ratio so that the driving pressure could be
higher.
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Figure 6.4: The experimental transit time τs in seconds as function of drop
speed U far away from the constriction for capillary 1 and 2. The inset shows
the same data using logarithmic axes.

Figure 6.5: The dimensionless transit time τ as function of Ca for experiments
and simulations. Capillary 1 and capillary 2 is the data from the two exper-
imental setups and the other markers show the numerical results. Since the
transit time of clogging cases is infinite, the clogging cases have been added to
the plots and marked with a circle.
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Figure 6.6: Concentration φ, chemical potential µ, pressure p and the magnitude
of the velocity u =

√
u2
r + u2

z for a simple drop with Cn = 0.01.

6.2 Numerical results

In all simulations, we have a no-slip boundary condition on the wall, and set
the inlet and outlet pressures pi and po. For the chemical potential we use the
no fluxes of chemical potential condition (2.16). For the concentration we set
the contact angle θc = 90◦ at the inlets and outlets and θc = 180◦ on the walls.
The drops are initialized at least five times the tube radius to the left of the
constriction so that they are given enough time to reach a stable shape before
entering the constriction. The concentration, chemical potential, pressure and
velocity field can be extracted and are as shown in Figure 6.6.

To control the capillary number in the simulations the straight forward
approach would be to set the pressure difference ∆p = pi − po such that the
velocity of the drop is 1, and then simply the set the parameter Ca equal to
the capillary number we want to simulate. However since parasitic velocities
become an increasing problem when the Ca parameter is low, we instead set
the parameter to Ca ∼ 1, and adjust ∆p to reduce the velocity of the drop.
The effective capillary number in the simulations is then found by multiplying
the input parameter for Ca with the drop velocity.

Before presenting the numerical results, we first confirm that the interface
thickness we choose does not change the results for sufficiently small Cn.
To confirm this we ran two simulations, one with Cn = 0.01 and the other
with Cn = 0.02. The position z as function of time t of the back, center
of mass and front parts of the drop is shown in Figure 6.7. It is clear that
changing Cn between these two values do not change the results. For all
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(a) (b)

(c)

Figure 6.7: Position as a function of time for simulations with Cn = 0.02 and
Cn = 0.01 for the a) back, b) center of mass and c) front of the drop.

the simulations discussed in this chapter we therefore keep the same interface
thickness, Cn = 0.01.

6.3 Comparing experiments and simulations for a simple
drop

Difference in Ca

When first comparing simulations with experiments, the viscosity ratio and
effective capillary number was set to be the same in the simulations as in the
experiments. Looking at the drop shape in the straight part of the capillary, we
found the drops were more elongated in the simulations than in the experiments,
which meant that the capillary number in the simulations were higher than in
the experiments. By running a series of numerical experiments for drops at
various volumes and capillary numbers we found that the in order to get the
same drop shape in the simulations as in the experiments we have to multiply the
capillary number by a non constant factor. To get the same drop deformation
in the simulations as in experiments with Ca from ∼ 10−3 to ∼ 10−2, the
capillary number in the simulations needed to be multiplied with a factor from
2.9 to 4.6 for experimental Ca from ∼ 10−3 to ∼ 10−2. Using this method for
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Ca < 10−3 does not work, because when Ca is sufficiently small the drops take
on a symmetrical shape and the deformation no longer depends on Ca.

So in order to compare simulations with experiments, we compare experi-
ments with simulations that have the same drop shape in the straight part of
the tube under the assumption that this ensures the ratio of viscous and surface
tension forces are the same in the simulation and experiment. This also means
we are only able to compare results for Ca > 10−3.

Deformation and transitory characteristics

To look at how experiments and simulations compare in terms of deformation in
different parts of the constriction, we consider an experiment were Ca = 0.011.
Since the viscosity of the continuous fluid should be 82.4 times greater than
the viscosity of the drop, we set η−1 = 82.4 in the simulations as well. In
Figure 6.8 images of the drop from simulations and experiments are shown in
the same place of the constriction, and the nondimensional time is shown next
to each image. t = 0 is defined to be when the center of mass of the drop is
in the middle of the constriction. We can see that the drop shape is similar
at all stages of the constriction except for the second to last image. Here the
experimental drop has a flat back end, whereas in the simulation it does not. In
the simulation, the third and sixth rows resemble mirror images of each other,
which is in agreement with some previous work by Zhang and colleagues [81,
82]. For the experiment, rows three and six are not mirror images but the drop
has a flat rear end as it exits the constriction, which has also been found by
others [41] as well as for both air bubbles [15] and capsules [15, 46, 62]. Looking
at the time between each image, it is also clear the that experimental drop
spends nearly twice as long time inside the constriction.

Because of the big difference in transit time between the simulations and
experiments, we tried changing η in the simulations to see how that changed
the results. By setting the two viscosities to be equal, η−1 = 1, we observed
that both drop deformation and time spent inside the constriction was in closer
agreement with the experiments. In Figure 6.9 we show the deformation for a
simulation with η−1 = 1 and the same experiment that was shown in Figure
6.8. In all the stages the drop shape is similar. Especially for the second to
last image it is clear that the drop shape for η−1 = 1 is much closer to the
experiments, than is the simulation with η−1 = 82.4. The transit times are
still not the same, but the experimental drop now only spends about 12% more
time inside the constriction than the simulated drop.

We then look at how the three cases compare in time. To plot the experiment
and simulations in the same plot, we also scale the length with rs. The position
is set to z = 0 in the middle of the constriction. The resulting Ca as function
of time is in Figure 6.10 and position as function of time is in Figure 6.11.
For all cases we see that the rear end has a higher maximum velocity than
the front end. This is in agreement with what has been found for air bubbles
and capsules under constant flow rate [15]. It is also clear that the simulation
with η−1 = 1 is much more similar to the experiments than the simulation
with η−1 = 82.4. When inside the constrictions, the drop in the simulation
with η−1 = 82.4 moves more than twice as fast as the experiments, whereas for
the simulation with η−1 = 1 the drop has approximately the same maximum
velocity.
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Figure 6.8: Drop shape in different parts of the constriction for simulation with
η−1 = 82.4 on the left and experiment on the right for experimental capillary
number Ca = 0.011. The time is shown on the sides.

Figure 6.9: Drop shape in different parts of the constriction for simulation with
η−1 = 1 on the left and experiment on the right for experimental capillary
number Ca = 0.011. The time is shown on the sides.
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(a) (b)

(c)

Figure 6.10: Drop speed expressed with Ca as a function of time for experiment
and simulations with η−1 = 1 and η−1 = 82.4 for the a) back part, b) center of
mass and c) front part measured at r = 0.

Since we did not measure the velocity field in the experiments, we cannot
calculate the viscous dissipation rate. However from the simulations we have
the necessary data to calculate the viscous dissipation rate Ṙη and the rate
of diffusive fluxes of the chemical potential Ṙµ. The dissipation rates for
η−1 = 82.4 is shown in Figure 6.12. We see that Ṙη is always much greater
than Ṙµ. Some energy is also converted to interfacial energy as the drop enters
the constriction and when the drop exits the interfacial energy is reduced. In
Figure 6.13 we show how the rate viscous dissipation and surface area for the
two different viscosity ratios change over time, in this figure we have scaled the
surface area and Ṙη with the values far away from the constriction. For η−1 = 1
the viscous dissipation is almost antisymmetric around t = 0, but for η−1 = 82.4
this is not the case at all, instead the initial reduction is about eight times
smaller than the increase we observe as the drop exits the constriction. It is not
surprising that the difference is so big considering that the maximum velocities
in the η−1 = 82.4 is about twice as big as those for η−1 = 1 in addition to the
viscosity difference.

When the drop is not close to the constriction the rate of viscous dissipation
is constant and the majority of the viscous dissipation occurs close the wall in
the middle of the constriction as shown in Figure 6.14a. This is what we expect
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(a) (b)

(c)

Figure 6.11: Position as a function of time for experiment and simulations with
η−1 = 1 and η−1 = 82.4 for the a) back part, b) center of mass and c) front
part measured at r = 0.

since the velocity gradients are biggest in the constriction. The minimum occurs
when the tip of the drop which is less viscous that the surrounding fluid is in
the middle of the constriction, shown in Figure 6.14b. As the drop is in the
middle of the constriction the Ṙη is distributed as shown in Figure 6.15a with
the majority of the dissipation happening inside the droplet in the middle of the
constriction. The maximum is when the rear end of the drop is in the middle
of the constriction and the more viscous surrounding fluid is being pushed in to
replace the less viscous drop, shown in Figure 6.15b.

Why do the simulations and experiments not agree?

It is clear that for η−1 = 82.4 the numerical simulations and the experiments
produce very different results. Even in the straight part of the capillary the
drop deformation was different, but for η−1 = 1 the results are much more
similar. It is tempting to argue that there is an error in how the code handles
viscosity ratios different from 1, and that the results for η = 1 is similar to
the experimental results because the viscosity ratio does not play that much
of a role. However we confirmed that the code works on viscosity ratios η 6= 1
with the drop relaxation test with η = 10 and the drop spreading test using

53



6. Results and discussion

(a) (b)

Figure 6.12: Viscous dissipation rate Ṙη (a) and diffusive fluxes of chemical
potential Ṙµ (b) for simulation of a simple drop with η−1 = 82.4 and Ca = 0.05.

(a) (b)

Figure 6.13: Viscous dissipation Ṙη (a) and surface area A (b) for simple drops
with η−1 = 1 and η−1 = 82.4 and Ca = 0.05. Ṙη and A are scaled with their
values far away from the constriction.

η = 50. We also compared the drop shape in a straight channel for η = 10
with published results from simulations with the Boundary Integral method [42]
and got good agreement, so the code is definitely able to handle the different
viscosities.

One possibility is that the film between the drop and the wall is not ad-
equately resolved. In the straight part of the capillary, we expect the film
thickness to follow ∼ Ca2/3 [5]. However we have kept Cn = 0.01 in all simu-
lations, so when the film thickness relative to the interface thickness becomes
small problems can arise because the film is not resolved sufficiently.

If the difference can not be explained by an error in the code, it either
stems from the experiments or both. One possibility is that either the viscosity
or surface tension of the sunflower oil + PGPR solution was not measured
correctly. However the surface tension measured was in close agreement with
[56]. The measured viscosity is about 25% greater than the viscosity of sunflower
oil without PGPR at 20◦ C [23], which seems reasonable since the surfactant
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6.3. Comparing experiments and simulations for a simple drop

(a)

(b)

Figure 6.14: Rate of viscous dissipation Ṙη for simple drop with η = 82.4 and
Ca = 0.05. The interface of the drop is shown by the white outline and has
the same thickness as the drop interface, which here is given by Cn = 0.01.
In (a) the drop is in the straight part and in (b) the front end of the drop is
in the middle of the constriction and it is here the minimum rate of viscous
dissipation is found.

is expected to increase the viscosity. It was also obvious when handling the
sunflower oil solution that it was much more viscous than water, and if there
is an error in the measured viscosity it can be nowhere near big enough to
explain why we needed to change the viscosity ratio by a factor of 82.4 in the
simulations.

Since the viscosity and surface tension was measured under different condi-
tions than the experiments, it is possible that conditions the droplet undergoes
in the experiments has an effect on the true values. For example if there are
gradients in the surface tension marangoni effects that can affect the drop defor-
mation and the curvature induced pressure drops at the front and back part of
the drops [58] could play a role. The use of surfactants can also have significant
effect on the boundary conditions on the drop [31] and if it is altered to a no-slip
condition, the dispersed phase would behave as if it was more viscous. Which if
the case, would explain why the drops behave as if their viscosity is much closer
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6. Results and discussion

(a)

(b)

Figure 6.15: Rate of viscous dissipation Ṙη for simple drop with η = 82.4 and
Ca = 0.05. The interface of the drop is shown by the white outline and has
the same thickness as the drop interface, which here is given by Cn = 0.01. In
(a) the drop is in the middle of the constriction (b) the back end of the drop
is in the middle of the constriction and it is here the maximum rate viscous
dissipation is found.

to the continuous phase than what we measured. Another possible explanation
could be shear thinning of the sunflower oil in the film between the drop and the
capillary wall, but since the viscosity measurement was taken with shear rates
from 1 s−1 to 100 s−1 the film thickness would have to be orders of magnitude
smaller than the film thicknesses we observed, which were 10 µm or larger.

Optical distortions are also worth considering because even though it would
not affect the transit time it could possibly contribute to errors in the measured
drop deformation and film thickness. Glycerol has a refractive index of ngly =
1.47 [30], glass typically has ngla = 1.49 and sunflower oil no = 1.47 [1]. Since
the refractive indices are so similar, the optical distortion [14] that arises when
light moves from one medium to another is not big enough to explain why
the drop deformation we see in the straight part of the capillary is not what
we expect. The error in the film thickness measurements caused by optical
distortion is also not big enough for the actual film thickness to be several times
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6.4. Capillary clogging

smaller than what measured, which is what would have to be the case for shear
thinning to happen.

One test we could have done to control whether the surface tension and
viscosities are as expected, would be to have a drop in shear flow and compare
the deformation we observe with analytical results [27], however we did not
think of this until after the experiments were done.

6.4 Capillary clogging

To investigate capillary clogging numerically, we ran a series of simulations for
η−1 = 82.4 and η−1 = 1 by reducing the effective capillary numbers until we
observed that the drop got stuck in the constriction and as a result the flow
velocities were greatly reduced. For η−1 = 82.4 and Ca = 4.3 ·10−3 we observed
that the droplet got stuck in the constriction. For Ca = 5.8 · 10−3 there was
no clogging, but the transitory characteristics were different from drops with
higher capillary numbers because it was almost clogging. In Figure 6.16, we
show how the position of the front, center of mass and back parts of these two
cases as well as one with Ca = 3.1 · 10−2 change over time. In Figure 6.17,
we see the speed expressed with Ca as function of time. The almost clogging
case takes longer time to get the front part of the drop past the narrowest
part of the constriction, but once it has passed this point the two cases behave
similarly. For η−1 = 1 the clogging was found at Ca = 5.8 · 10−3, which is
slightly higher than for the other case but supports the claim that the viscosity
ratio does not play an important role in determining the capillary number at
which clogging occurs [86]. How the speed and position of the different parts
of the drop behaves, is similar to the η−1 = 82.4 drops for the clogging and
almost clogging cases. As predicted by the Young–Laplace relation sufficiently
high surface tensions result in the drop getting stuck. More generally we find
that for sufficiently low capillary numbers, Ca controls transit time which is
in qualitative agreement with Zinchenko and Davis [86]. However since they
looked at very different viscosity ratios and geometry than us, we do not expect
our results to follow the same power-law that they found. These results do not
reflect what we found experimentally, where we did not observe any effect of
Ca on how the drops are squeezed through.

The transit time of non clogging, almost clogging and clogging cases for η−1 =
82.4 and η−1 = 1 were extracted and are plotted in alongside the experimental
data in Figure 6.5. These results are different than the experimental data, since
when Ca is reduced and we get closer to clogging, the transit time increases.
The observation of almost clogging drops, suggests that we were far away
from observing clogging experimentally, because we did not see any drop that
exhibited this behavior. When the capillary number is increased, less time is
spent inside the constriction and for sufficiently big Ca one would expect the
non-dimensional transit time to be independent of Ca because the interface is
so easily deformed. It is therefore possible that this is the explanation for why
the transit time in the experiments where independent of Ca, and if we were to
run simulations for higher capillary numbers than those we have presented we
would be able to confirm if this is indeed the case.
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(a) (b)

(c)

Figure 6.16: Position as a function of time for simulations for a clogging, almost-
clogging and non-clogging drop for the a) back part, b) center of mass and c)
front part measured at r = 0.

6.5 Compound drops

Compound drops were created by placing a smaller drop inside the simple drop.
In this project we restrict ourselves to one combination of the drop radii r1 and
r2. We also only consider cases where the viscosity is equal in all three phases, so
any comparison to simple drops are done for η−1 = 1. To most clearly see how
a compound drop is different from a simple drop, we first look at a compound
drop where the capillary number of the internal and the outer drop are the same
as for the simple drop. Since we no longer are comparing the numerical results
with the experiments, we change to a symmetric mesh, were the constriction
wall can be described with a cos(z) function. For this constriction, the length
and is the same as previously. To see how adding an extra drop inside the
simple drop changes the dynamics we compare the deformation in the different
parts of the constriction in Figure 6.19 for a compound drop where the capillary
number for the outer and inner interfaces Ca1 and Ca2 are the same. There
is almost no difference in the deformation or transit time. This means that
the energy required to deform the inner drop is much smaller than the bigger
drop which is not surprising since the required deformation is much smaller. In
the straight part of the capillary, the inner drop always stays toward the front
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(a) (b)

(c)

Figure 6.17: Ca as a function of time for simulations for a clogging, almost-
clogging and non-clogging drop for the a) back part, b) center of mass and c)
front part measured at r = 0.

part of the outer drop, which is in agreement with what we observed for the
few compound drops we were able generate experimentally, see Figure 5.10. In
Figure 6.20 we also see that the speed of the outer interface as a function of
time is almost the same as for the simple drop for the back, center of mass and
front part of the drop. So simply adding a drop which has the same capillary
number as the outer drop only slightly changes the results when the viscosity is
the same.

Further we can explore how changing the ratio of the capillary numbers
C̃a = Ca1/Ca2 changes the drop deformation. In Figure 6.21 we compare the
drop deformation of two drops that have the same capillary number for the
inner drop Ca1, but different the outer capillary numbers Ca2 so that C̃a = 10
and C̃a = 2 for the two cases. We see that the difference in the deformation of
the outer drop is very big. Looking at the fourth image it is clear that these
cases are very different, for C̃a = 10 it almost looks like the part in front of the
inner drop is about the break free. As for the simple drops, the outer capillary
number also affects the transit time. Similarly we can also look at how changing
the inner capillary number affects the results while keeping the outer capillary
number constant. In Figure 6.22 drops with C̃a = 2 and C̃a = 1 are shown
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6. Results and discussion

Figure 6.18: The dimensionless transit time τ as function of Ca for the simu-
lations. Since the transit time of clogging cases is infinite, the clogging cases
have been added to the plots and marked with a circle. The dashed line shows
where the transition from non-clogging to clogging happens.

Figure 6.19: Drop shape in different parts of the constriction for simulation
with compound drop on the left and simple drop on the right. The time is
shown on the sides.
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(a) (b)

(c)

Figure 6.20: Drop speed given by Ca for simple n = 2 and compound n = 3
drop with equal viscosity in all phases as a function of time for the a) back
part, b) center of mass and c) front part measured at r = 0. The interface of
the inner drop is called inner and the interface of the outer drop is called outer.

next to each other and there is almost no difference in the drop shapes when we
look at the different parts of the constriction. The transit times are also similar,
but higher capillary numbers for the inner drop does lead to a reduction in
transit time. Since the inner drop does not have to deform much compared to
the outer drop, it is not surprising that changing Ca2 has a smaller effect on
the results than changing Ca1, and we expect that the role of Ca2 very much
depends on the size of the inner drop relative to the constriction width.

Similarly as we did for the simple drops, we wanted to get an overview of how
changing the drop parameters changes the transit time. Since the compound
drops have an extra capillary number, which introduces another parameter that
can be changed, we kept the sizes of the inner and outer drops constant for
all the simulations. The transit time τ as a function of the outer and inner
capillary number Ca1 and Ca2 is shown in Figure 6.23. There is a tendency for
the transit time to increase as the capillary numbers decrease, but this trend is
not as clear as is was for the simple drops. The capillary number required for
clogging was the same for compound drops with Ca1 = Ca2 as it was for the
simple drop with η−1 = 1. We do not really understand why the relationship
between τ and Ca1 and Ca2 is not as clear as it was for the simple drops, but
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6. Results and discussion

Figure 6.21: Drop shape in different parts of the constriction for simulation
with compound drops. On the left Ca1 = 0.075 and Ca2 = 0.0075. On the
right Ca1 = 0.015 and Ca2 = 0.0075. The time is shown on the sides.

Figure 6.22: Drop shape in different parts of the constriction for simulation
with compound drops. On the left Ca1 = 0.03 and Ca2 = 0.015. On the right
Ca1 = 0.03 and Ca2 = 0.03. The time is shown on the sides.
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(a)

(b) (c)

Figure 6.23: The dimensionless transit time τ as function of the capillary
numbers for the outer and inner drop Ca1 and Ca2. Since the transit time
of clogging cases is infinite, the clogging cases have been added to the plots
and marked with a circle. In (a) we show the transit time as function of both
capillary numbers Ca1 and Ca2, in (b) we have collapsed the Ca2 axis and
show τ as a function of Ca1 where Ca2 is shown with different colors and in (c)
the Ca1 axis has been collapsed and Ca2 is shown with colors.

performing more numerical experiments could shed light on why this is the
case.
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CHAPTER 7

Conclusions

In this thesis, we studied the transit of a drop through a constriction using
numerical and experimental methods. About 300 experiments were done on
simple drops with Ca from 8 · 10−4 to 2 · 10−3 squeezing through constrictions,
and the results showed no clear relationship between the capillary number and
the non-dimensional transit time. We were not able to produce any examples
where the drops clogged the capillary and there was no indication that the drops
were anywhere close to the clogging regime. To generate compound drops we
tried three different methods, two of which are commonly used is microfluidics,
however they are normally used to create smaller drops than what we needed
since we were working on the boundaries between micro and millifluidics. The
required size of the drops was probably the main cause of our issues with the
compound drops.

A Cahn-Hilliard creeping flow model for two-phase flow and one for three-
phase flow was implemented using the Finite Element method in FEniCS. The
two-phase model was validated using test cases such as Laplace pressure jump
for a drop in equilibrium, spreading of a viscous drop on a surface and relaxation
of a drop. The only difference in the implementation of these tests are the
boundary conditions and initialization of the concentration parameter, which
shows one of the advantages of phase field models, their versatility. When
simulating simple drops using the same viscosity ratio as in the experiments
we found there to be a big difference between the numerical and experimental
results, both with respect to drop deformation and transit time. Changing the
viscosity ratio to η−1 = 1 in the simulations however changed the results in
such a way the numerics and experiments were in much stronger agreement.
Looking at the drop shape in the different parts of the constriction they looked
almost identical and the transit time was also much more similar. We were not
able to determine why the difference is so big for η−1 = 82.4 and so small for
η−1 = 1, but the most promising explanation is that the surfactants used in
the experiments alter the boundary conditions on the drop. Experiments using
different liquids, for example liquids with approximately the same viscosity, or
experiments without surfactants could help us understand why the experiments
are so different from the simulations.

With simulations we were able to produce clogging, almost clogging and
non clogging cases with the simple drop simulations. The clogging occurred at
capillary numbers around Ca = 5 · 10−3 for both viscosity ratios investigated,
which suggests that the viscosity ratio is not an important factor for what
capillary numbers lead to clogging and is in agreement with [86]. We were
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also able to observe that as the capillary number is reduced towards the values
required for clogging, the drop slows down in the first section of the constriction
instead of speeding up as it does for Ca > 4·10−3. Since the experimental results
showed no strong relation between non-dimensional transit time and capillary
number, it is possible that the experiments showed a different regime than the
simulations, a regime where the role of surface tension is so small that reducing
the surface tension further has virtually no effect on the non-dimensional transit
time.

For compound drops we found that introducing a drop inside of a simple
drop does not in itself cause a big change in how the drop is squeezed through
the constriction. When we make the capillary numbers for the inner and outer
drop different we see a big difference. Especially when the capillary number
for the outer drop is several times larger than for the inner drop, because the
outer drop is then pushed through the constriction much easier than the inner
phase. As we did for the simple drops we did a number of simulations to try to
understand how the capillary numbers Ca1 and Ca2 affect the transit time of
the drops. Similarly to the simple drops the transit time tends to increase as
the capillary numbers are reduced.

The exploration of how the capillary numbers for compound drops affect
the drop deformation inside the constriction and their effect on transit time
appears to be novel work and extending this to drops with different liquid
viscosities would be interesting. Different drop sizes can also be included so
that the capillary number of the inner phase plays a bigger role. To learn more
about clogging, further experiments at lower capillary numbers, either by using
less viscous fluids or a higher surface tension should be done. Experiments with
compound drops should also be done. Compound drops that are smaller than
what we tried to make can be used, and if making axisymmetric constrictions
at smaller scales turns out to be too difficult, results from other constriction
geometries would also be worth collecting.

66



Bibliography

[1] Ali, M. A. et al. “Effect of Microwave Heating on Oxidative Degradation
of Sunflower Oil in the Presence of Palm Olein”. In: Sains Malaysiana 43
(Aug. 2014), pp. 1189–1195.

[2] Anderson, D. M., McFadden, G. B., and Wheeler, A. A. “Diffuse-interface
methods in fluid mechanics”. In: Annual review of fluid mechanics 30.1
(1998), pp. 139–165.

[3] Boyer, F. and Lapuerta, C. “Study of a three component Cahn-Hilliard
flow model”. In: ESAIM: Mathematical Modelling and Numerical Analysis
40.4 (2006), pp. 653–687.

[4] Boyer, F. et al. “Cahn–Hilliard/Navier–Stokes model for the simulation of
three-phase flows”. In: Transport in Porous Media 82.3 (2010), pp. 463–
483.

[5] Bretherton, F. P. “The motion of long bubbles in tubes”. In: Journal of
Fluid Mechanics 10.2 (1961), pp. 166–188.

[6] C Bauer, W.-A. et al. “Hydrophilic PDMS microchannels for high-throughput
formation of oil-in-water microdroplets and water-in-oil-in-water double
emulsions”. In: Lab on a chip 10 (May 2010), pp. 1814–9.

[7] Cahn, J. W. and Hilliard, J. E. “Free Energy of a Nonuniform System. I.
Interfacial Free Energy”. In: The Journal of Chemical Physics 28.2 (1958),
pp. 258–267.

[8] Calderer, M.-C. T. and Terentjev, E. M. Modeling of Soft Matter. The
IMA Volumes in Mathematics and its Applications. Springer-Verlag New
York, 2005.

[9] Carlson, A., Do-Quang, M., and Amberg, G. “Dissipation in rapid dynamic
wetting”. In: Journal of Fluid Mechanics 682 (2011), pp. 213–240.

[10] Carlson, A., Do-Quang, M., and Amberg, G. “Droplet dynamics in a
bifurcating channel”. In: International Journal of Multiphase Flow 36.5
(2010), pp. 397–405.

[11] Carlson, A., Do-Quang, M., and Amberg, G. “Modeling of dynamic wetting
far from equilibrium”. In: Physics of Fluids 21.12 (2009), p. 121701.

[12] Cobos, S., Carvalho, M., and Alvarado, V. “Flow of oil–water emulsions
through a constricted capillary”. In: International Journal of Multiphase
Flow 35.6 (2009), pp. 507–515.

67



Bibliography

[13] Cox, R. G. “The deformation of a drop in a general time-dependent fluid
flow”. In: Journal of Fluid Mechanics 37.3 (1969), pp. 601–623.

[14] Darzi, M. and Park, C. “Optical distortion correction of a liquid-gas
interface and contact angle in cylindrical tubes”. In: Physics of Fluids
29.5 (2017), p. 052004.

[15] Dawson, G., Häner, E., and Juel, A. “Extreme deformation of capsules and
bubbles flowing through a localised constriction”. In: Procedia IUTAM
16 (2015), pp. 22–32.

[16] Denais, C. M. et al. “Nuclear envelope rupture and repair during cancer
cell migration”. In: Science 352.6283 (2016), pp. 353–358.

[17] Determining the surface tension of liquids by measurements on pendant
drops. https://www.kruss-scientific.com/fileadmin/user_upload/website/
literature/kruss-tn316-en.pdf. Accessed: 2019-07-12.

[18] Dondorp, A. M. et al. “Red blood cell deformability as a predictor of
anemia in severe falciparum malaria.” In: The American Journal of
Tropical Medicine and Hygiene 60.5 (1999), pp. 733–737.

[19] Eddi, A., Winkels, K. G., and Snoeijer, J. H. “Short time dynamics of
viscous drop spreading”. In: Physics of Fluids 25.1 (2013), p. 013102.

[20] Edvinsson, R. K. and Irandoust, S. “Finite-element analysis of Taylor
flow”. In: AIChE Journal 42.7 (1996), pp. 1815–1823.

[21] Elder, K. R. et al. “Sharp interface limits of phase-field models”. In: Phys.
Rev. E 64 (2 2001), p. 021604.

[22] Eral, H. B., ’t Mannetje, D. J. C. M., and Oh, J. M. “Contact angle
hysteresis: a review of fundamentals and applications”. In: Colloid and
Polymer Science 291.2 (Feb. 2013), pp. 247–260.

[23] Esteban, B. et al. “Temperature dependence of density and viscosity of
vegetable oils”. In: Biomass and Bioenergy 42 (2012), pp. 164–171.

[24] Fauli, R. Github repository containing Python scripts. https://github.com/
richaraf/Squeezing-of-drops-through-constrictions. 2019.

[25] Feng, J. J. et al. “An Energetic Variational Formulation with Phase Field
Methods for Interfacial Dynamics of Complex Fluids: Advantages and
Challenges”. In: Modeling of Soft Matter. Ed. by Calderer, M.-C. T. and
Terentjev, E. M. New York, NY: Springer New York, 2005, pp. 1–26.

[26] Glawdel, T., Elbuken, C., and Ren, C. L. “Droplet Generation in Mi-
crofluidics”. In: Encyclopedia of Microfluidics and Nanofluidics. Ed. by
Li, D. Boston, MA: Springer US, 2013, pp. 1–12.

[27] Guido, S. and Villone, M. “Measurement of Interfacial Tension by Drop
Retraction Analysis”. In: Journal of Colloid and Interface Science 209.1
(1999), pp. 247–250.

[28] Guo, Q. et al. “Microfluidic analysis of red blood cell deformability”. In:
Journal of Biomechanics 47.8 (2014), pp. 1767–1776.

[29] Hodges, S., Jensen, O., and Rallison, J. “The motion of a viscous drop
through a cylindrical tube”. In: Journal of fluid mechanics 501 (2004),
pp. 279–301.

68

https://www.kruss-scientific.com/fileadmin/user_upload/website/literature/kruss-tn316-en.pdf
https://www.kruss-scientific.com/fileadmin/user_upload/website/literature/kruss-tn316-en.pdf
https://github.com/richaraf/Squeezing-of-drops-through-constrictions
https://github.com/richaraf/Squeezing-of-drops-through-constrictions


Bibliography

[30] Hoyt, L. F. “New Table of the Refractive Index of Pure Glycerol at 20°C”.
In: Industrial & Engineering Chemistry 26.3 (1934), pp. 329–332.

[31] Hu, Y., Zhang, X., and Wang, W. “Boundary Conditions at the Liquid-
Liquid Interface in the Presence of Surfactants”. In: Langmuir : the ACS
journal of surfaces and colloids 26 (July 2010), pp. 10693–702.

[32] Jacqmin, D. “Calculation of Two-Phase Navier–Stokes Flows Using Phase-
Field Modeling”. In: Journal of Computational Physics 155.1 (1999),
pp. 96–127.

[33] Jacqmin, D. “Contact-line dynamics of a diffuse fluid interface”. In: Jour-
nal of Fluid Mechanics 402 (2000), pp. 57–88.

[34] Jaensson, N., Hulsen, M., and Anderson, P. “Stokes–Cahn–Hilliard formu-
lations and simulations of two-phase flows with suspended rigid particles”.
In: Computers & Fluids 111 (2015), pp. 1–17.

[35] Jensen, M. J., Goranović, G., and Bruus, H. “The clogging pressure
of bubbles in hydrophilic microchannel contractions”. In: Journal of
Micromechanics and Microengineering 14.7 (2004), p. 876.

[36] Kay, D., Styles, V., and Süli, E. “Discontinuous Galerkin finite element
approximation of the Cahn–Hilliard equation with convection”. In: SIAM
Journal on Numerical Analysis 47.4 (2009), pp. 2660–2685.

[37] Kay, D., Styles, V., and Welford, R. “Finite element approximation of
a Cahn-Hilliard-Navier-Stokes system”. In: Interfaces Free Bound 10.1
(2008), pp. 15–43.

[38] Kim, J. “A diffuse-interface model for axisymmetric immiscible two-phase
flow”. In: Applied mathematics and computation 160.2 (2005), pp. 589–
606.

[39] Kim, J. “Phase field computations for ternary fluid flows”. In: Computer
methods in applied mechanics and engineering 196.45-48 (2007), pp. 4779–
4788.

[40] Kim, J. et al. “Basic Principles and Practical Applications of the Cahn–Hilliard
Equation”. In: Mathematical Problems in Engineering 2016 (Jan. 2016),
pp. 1–11.

[41] Kusters, R. et al. “Forced transport of deformable containers through
narrow constrictions”. In: Physical Review E 90.3 (2014), p. 033006.

[42] Lac, E. and Sherwood, J. D. “Motion of a drop along the centreline of a
capillary in a pressure-driven flow”. In: Journal of Fluid Mechanics 640
(2009), pp. 27–54.

[43] Leal, L. G. Advanced Transport Phenomena: Fluid Mechanics and Con-
vective Transport Processes. Cambridge Series in Chemical Engineering.
Cambridge University Press, 2007.

[44] Lee, D. et al. “Physical, mathematical, and numerical derivations of the
Cahn–Hilliard equation”. In: Computational Materials Science 81 (2014),
pp. 216–225.

[45] Leong, F. Y. et al. “Modeling cell entry into a micro-channel”. In: Biome-
chanics and modeling in mechanobiology 10.5 (2011), pp. 755–766.

69



Bibliography

[46] Leyrat-Maurin, A. and Barthes-Biesel, D. “Motion of a deformable capsule
through a hyperbolic constriction”. In: Journal of fluid mechanics 279
(1994), pp. 135–163.

[47] Li, S. et al. “Rapid Preparation of Highly Reliable PDMS Double Emulsion
Microfluidic Devices”. In: RSC Adv. 6 (Mar. 2016).

[48] Liang, M. et al. “Minimum applied pressure for a drop through an abruptly
constricted capillary”. In: Microfluidics and Nanofluidics 19.1 (2015),
pp. 1–8.

[49] Liu, J. and Trung Nguyen, N. “Numerical simulation of droplet-based
microfluidics-A review”. In: Micro and Nanosystems 2.3 (2010), pp. 193–
201.

[50] Logg, A., Mardal, K.-A., Wells, G. N., et al. Automated Solution of
Differential Equations by the Finite Element Method. Ed. by Logg, A.,
Mardal, K.-A., and Wells, G. N. Springer, 2012.

[51] Lundström, T. S. “Bubble transport through constricted capillary tubes
with application to resin transfer molding”. In: Polymer Composites 17.6
(1996), pp. 770–779.

[52] Magaletti, F. et al. “The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes
model for binary fluids”. In: Journal of Fluid Mechanics 714 (2013), pp. 95–
126.

[53] Mandal, A. et al. “Characterization of oil- water emulsion and its use in
enhanced oil recovery”. In: Industrial & Engineering Chemistry Research
49.24 (2010), pp. 12756–12761.

[54] Moxon, C. A., Grau, G. E., and Craig, A. G. “Malaria: modification of the
red blood cell and consequences in the human host”. In: British Journal
of Haematology 154.6 (2011), pp. 670–679.

[55] Nascimento, D. F. do et al. “Flow of Tunable Elastic Microcapsules
through Constrictions”. In: Scientific reports 7.1 (2017), p. 11898.

[56] Nikolovski, B., Ilić, J., and Sovilj, M. “How to formulate a stable and
monodisperse water-in-oil nanoemulsion containing pumpkin seed oil: the
use of multiobjective optimization”. In: Brazilian Journal of Chemical
Engineering 33.4 (2016), pp. 919–931.

[57] Olbricht, W. L. and Kung, D. M. “The deformation and breakup of liquid
drops in low Reynolds number flow through a capillary”. In: Physics of
Fluids A: Fluid Dynamics 4.7 (1992), pp. 1347–1354.

[58] Pawar, Y. and Stebe, K. J. “Marangoni effects on drop deformation in an
extensional flow: The role of surfactant physical chemistry. I. Insoluble
surfactants”. In: Physics of Fluids 8.7 (1996), pp. 1738–1751.

[59] Raab, M. et al. “ESCRT III repairs nuclear envelope ruptures during cell
migration to limit DNA damage and cell death”. In: Science 352.6283
(2016), pp. 359–362.

[60] Rallison, J. M. “The Deformation of Small Viscous Drops and Bubbles in
Shear Flows”. In: Annual Review of Fluid Mechanics 16.1 (1984), pp. 45–
66.

70



Bibliography

[61] Riahi, R. et al. “Microfluidics for advanced drug delivery systems”. In:
Current Opinion in Chemical Engineering 7 (2015). Biological engineering
/ Materials engineering, pp. 101–112.

[62] Rorai, C. et al. “Motion of an elastic capsule in a constricted microchannel”.
In: The European Physical Journal E 38.5 (2015), p. 49.

[63] Schwartz, L., Princen, H., and Kiss, A. “On the motion of bubbles in
capillary tubes”. In: Journal of Fluid Mechanics 172 (1986), pp. 259–275.

[64] Secomb, T. W. “Blood flow in the microcirculation”. In: Annual Review
of Fluid Mechanics 49 (2017), pp. 443–461.

[65] Shelby, J. P. et al. “A microfluidic model for single-cell capillary obstruc-
tion by Plasmodium falciparum-infected erythrocytes”. In: Proceedings of
the National Academy of Sciences 100.25 (2003), pp. 14618–14622.

[66] Snoeijer, J. H. and Andreotti, B. “Moving Contact Lines: Scales, Regimes,
and Dynamical Transitions”. In: Annual Review of Fluid Mechanics 45.1
(2013), pp. 269–292.

[67] Taylor, G. I. “The formation of emulsions in definable fields of flow”. In:
Proceedings of the Royal Society of London. Series A, Containing Papers
of a Mathematical and Physical Character 146.858 (1934), pp. 501–523.

[68] Taylor, G. I. “The viscosity of a fluid containing small drops of another
fluid”. In: Proceedings of the Royal Society of London. Series A, Containing
Papers of a Mathematical and Physical Character 138.834 (1932), pp. 41–
48.

[69] Teh, S.-Y. et al. “Droplet microfluidics”. In: Lab Chip 8 (2 2008), pp. 198–
220.

[70] Tezduyar, T. “Finite Element Methods for Fluid Dynamics with Moving
Boundaries and Interfaces”. In: vol. 8. Oct. 2004.

[71] Trantidou, T. et al. “Hydrophilic Surface Modification of Pdms for Droplet
Microfluidics Using a Simple, Quick and Robust Method Via Pva Deposi-
tion”. In: Microsystems & Nanoengineering 3 (Apr. 2017), p. 16091.

[72] Utada, A. et al. “Monodisperse Double Emulsions Generated from a
Microcapillary Device”. In: Science (New York, N.Y.) 308 (May 2005),
pp. 537–41.

[73] Vladisavljević, G., Al Nuumani, R., and Nabavi, S. A. “Microfluidic
Production of Multiple Emulsions”. In: Micromachines 8 (Mar. 2017),
p. 75.

[74] World Health Organization. World malaria report 2018. (2018).
[75] Wu, T. et al. “The critical pressure for driving a red blood cell through a

contracting microfluidic channel”. In: Theoretical and Applied Mechanics
Letters 5.6 (2015), pp. 227–230.

[76] Yue, P., Zhou, C., and Feng, J. J. “Spontaneous shrinkage of drops and
mass conservation in phase-field simulations”. In: Journal of Computa-
tional Physics 223.1 (2007), pp. 1–9.

[77] Zhang, X., Chen, X., and Tan, H. “On the thin-film-dominated passing
pressure of cancer cell squeezing through a microfluidic CTC chip”. In:
Microfluidics and Nanofluidics 21.9 (2017), p. 146.

71



Bibliography

[78] Zhang, Z., Chen, X., and Xu, J. “Entry effects of droplet in a micro
confinement: Implications for deformation-based circulating tumor cell
microfiltration”. In: Biomicrofluidics 9.2 (2015), p. 024108.

[79] Zhang, Z., Xu, J., and Drapaca, C. “Particle squeezing in narrow confine-
ments”. In: Microfluidics and Nanofluidics 22.10 (2018), p. 120.

[80] Zhang, Z. et al. “Droplet squeezing through a narrow constriction: Min-
imum impulse and critical velocity”. In: Physics of Fluids 29.7 (2017),
p. 072102.

[81] Zhang, Z. et al. “Pressure of a viscous droplet squeezing through a short
circular constriction: An analytical model”. In: Physics of Fluids 30.10
(2018), p. 102004.

[82] Zhang, Z. et al. “The effects of 3D channel geometry on CTC passing
pressure–towards deformability-based cancer cell separation”. In: Lab on
a Chip 14.14 (2014), pp. 2576–2584.

[83] Zhou, C., Yue, P., and Feng, J. J. “Formation of simple and compound
drops in microfluidic devices”. In: Physics of Fluids 18.9 (2006), p. 092105.

[84] Zhou, C., Yue, P., and J. Feng, J. “Deformation of a compound drop
through a contraction in a pressure-driven pipe flow”. In: International
Journal of Multiphase Flow 34 (Jan. 2008), pp. 102–109.

[85] Zhu, P. and Wang, L. “Passive and active droplet generation with mi-
crofluidics: a review”. In: Lab on a Chip 17.1 (2017), pp. 34–75.

[86] Zinchenko, A. Z. and Davis, R. H. “Squeezing of a periodic emulsion
through a cubic lattice of spheres”. In: Physics of Fluids 20.4 (2008),
p. 040803.

72


	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Theory
	Stokes equation
	Phase-field formulation
	Coupling Stokes and CH for two-phase flow
	Three-phase flow

	Numerical implementation
	Finite Element Method
	FEniCS
	Mesh

	Numerical validation
	Stokes flow in pressure driven pipe flow
	Laplace pressure jump
	Drop spreading case
	Relaxation of drop
	Drop shape in a pipe

	Experimental method
	Generation of simple drops
	PDMS chip fabrication
	Liquid properties
	Capillaries with constriction
	Experimental setup
	Compound drops

	Results and discussion
	Experimental results
	Numerical results
	Comparing experiments and simulations for a simple drop
	Capillary clogging
	Compound drops

	Conclusions
	Bibliography

