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ABSTRACT. We prove that all locally exposable points in a Stein compact in a
complex space can be exposed along a given curve to a given real hypersurface.
Moreover, the exposing map for a boundary point can be sufficiently close to
the identity map outside any fixed neighborhood of the point. We also prove a
parametric version of this result for bounded strongly pseudoconvex domains in
C™. For a bounded strongly pseudoconvex domain in C™ and a given boundary
point of it, we prove that there is a global coordinate change on the closure of
the domain which is arbitrarily close to the identity map with respect to the
C'-norm and maps the boundary point to a strongly convex boundary point.

1. INTRODUCTION

Let X be a complex space. We assume throughout this paper that all complex
spaces are reduced, irreducible, and paracompact. Let X be the set of singular
points of X and let X,ex = X\ Xging be the set of smooth points of X.

Definition 1.1. Let X be a complex space, let K C X be a compact set, and let
¢ € K be a point in X,.;. We will say that ¢ is locally exposable if there exists an
open set U C X containing ¢ and p a C?-smooth strictly plurisubharmonic function
on U such that

(i) p(¢) =0 and dp(¢) # 0, and
(ii) p<0on (KNU)\{C}.

Our main concern in this paper is to show that locally exposable points are
globally exposable (see Definition [1.2)).
The first result of the present paper is the following.

Theorem 1.1. Let X be a complex space, let K C X be a Stein compact, and
let ¢ € KN Xyeg be locally exposable. Let H C X\(K U Xging) be a locally closed
C?-smooth subset of a real hypersurface in X. Let v : [0,1] = Xyeq be a smoothly
embedded curve in X with v(0) = ¢, v(1) € H, andy(t) € X\(KUH) fort € (0,1).

Then for any (small) neighborhood V' of v, and any € > 0, there exist an open
neighborhood U of K, an arbitrarily small neighborhood V! C V' of (, and a biholo-
morphic map f:U — f(U) C X such that the following holds:

(a) f(V') CV and f(¢) =~(1),

(b) dist(f(2),2) < € for z € K\V', and

(c) fF(K)NH ={y(1)}.
where dist(-,-) is a fized distance on X. In the case X = C" and K C C™ is
polynomially convez, f can be taken to be a holomorphic automorphism of C™.

By saying that K is a Stein compact we mean that K has a Stein neighbourhood
basis in which K is holomorphically convex.
1
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Definition 1.2. The map f will be said to expose the point ¢ with respect to H,
and f(() is said to be exposed. If K C Br(0) C C™ and H = {z € C" : ||z|| = R},
for any R > 0, we will say that f({) is globally exposed.

From the proof, we will see that Theorem can be generalized in various
directions as follows:

e one can easily expose finitely many points simultaneously,

e the last statement can be generalized as: if X is a Stein manifold and has
density property (for definition see [12]) and K is O(X)-convex, then f can
be taken in Autpa X,

e if X is a 1-convex space, the same statement still holds if we assume that ¢ is
outside the exceptional set. This can be proved by Remmert’s reduction and
interpolation for the exposing maps constructed in Theorem|[1.1] (Exposing
boundary points in this setting was proposed by Franc Forstuneri¢ in [6].)

The importance of Theorem in the case that K is the closure of a domain
with a strictly pseudoconvex boundary point (, is that it tells us that K° resembles
a strictly convex domain in a concrete geometric sense. Convex domains are ex-
ceptionally well behaved from a complex analysis point of view. As a comparison,
the Levi problem was to show that such a domain K° resembles a strictly convex
domain in a much weaker function theoretic sense.

Our next result concerns in which ways a locally exposable point can be locally
exposed with global maps. It is quite simple using Andersén-Lempert theory to
show that a locally defined exposing map in C™ can be approximated by holomor-
phic automorphisms, but as a consequence one looses completely control of the
behaviour on most of K.

Theorem 1.2. Let D be a bounded strongly pseudoconvex domain in C™ with C2-
smooth boundary. Then for any ( € 0D and any € > 0, there is an injective
holomorphic map F : D — C™ such that F(¢) = ( is a strictly convex boundary
point of F(D), 0F(D) and 0D are tangent at ¢, and ||F —id||c1 () <.

In §2| we will construct a strongly pseudoconvex domain such that the map F in
Theorem can not be taken in Auty, (C™) for some boundary points.

Furthermore we are interested in parametric version of the previous two theo-
rems.

Theorem 1.3. Let D CC C" be a strongly pseudoconver domain with smooth
boundary. Let H C C" be a smooth closed real hypersurface with D N H = (). Let
v : 0D x [0,1] — 9D x C™ be a fiber-preserving continuous map such that for all
(e dD:

1) ve =7, ) : I — C™ is a smooth embedding;

2) ")/C(O) = C,’yg(l) € H and ’y<|(071) C (Cn\(D U H)
(We implicitly make the identification of {C} x C™ with C™.) Then for any neigh-
borhood V' of v(0D x [0,1]) and any € > 0, for any sufficiently small neighborhood
V'CV of {(¢,€);¢ € OD} in 9D x C™ there exists a smooth fiber-preserving map
f:0D x D — 0D x C™ such that the following holds for each ¢ € OD:

(a) fe:= f(¢,+) : D — C™ is injective and holomorphic,

(b) fe(V)) € Ve and fe(C) =v¢(1),

(e) Ilfe(z) =2l < € for = € D\V(,
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(d) fe(D)NH = {y (1)},
where Ve :=V N ({¢} x C"). If in addition D is polynomially convez, we can take
f a smooth map from 0D x C" to itself such that f\@g € Aut(C™) for all ¢ € OD.

Theorem 1.4. Let D CC C™ be a strongly pseudoconver domain with C?-smooth
boundary. For any € > 0, there is a continuous map f : 0D x D — C" such that
for all € OD the following hold:

1) fe=f(¢ ) : D — C" is a holomorphic injective map,

2) fe(€) = ¢ is a strictly convex boundary point of fe(D),

3) 0fc(D) and 0D are tangential at ¢, and

4) [|fe —idl[ca 5y <€

For a further discussion of parametric exposing of points, see Section

2. TRANSFORMING A BOUNDARY POINT TO A STRONGLY CONVEX ONE

In this section, we consider transforming a boundary point of a strongly pseudo-
convex domain to a strictly convex one, with certain control of the behavior of the
involved transformation. The aim is to prove Theorem [I.2] and Theorem [T.4] We
also construct a strongly pseudoconvex domain in C? for which the transformation
furnished by Theorem can not be taken in Aut(C?).

We need the following lemmas. The first lemma is to prove the existence of
peak functions with certain estimates. The key tool is the existence of embed-
ding of strongly pseudoconvex domains into strongly convex domains with certain
boundary conditions, established by the second author in [4].

Lemma 2.1. Let D be a bounded strictly pseudoconvexr domain in C™ with C2-
smooth boundary. Then for any ¢ € OD, there is a holomorphic function f defined
on some neighborhood of D which satisfies the following two conditions:

1) f(¢) =1, and |f(2)| <1 for z € D\{¢};
2) the estimate

F(2)] < ezl

holds on D for some constant ¢ > 0.

Proof. For the case that D is the ball B := {z € C"; |21 +7|?+]|22|?+ - - +|2n|? < 72}
and ¢ = 0, a simple calculation shows that f(z) := e** satisfies the conditions. By
the result in [4] mentioned above, the general case can be reduced to the case that
D =B. O

For the proof of Theorem [1.4] we need a parametric version of Lemma [2.1

Lemma 2.2. Let D C C" be a bounded strongly pseudoconvex domain with smooth
boundary. Then there is a smooth map p: 0D x D — C such that:

1) For each ¢ € OD, p¢(-) := p((,-) is a holomorphic function on D;

2) pe(¢) =1 and |pc(2)| < 1 for z € D\{¢} for all ¢ € OD;

3) there exists a constant ¢ such that |p¢(z)| < e=ell==¢II” for (¢,z) € 9D x D.

Proof. By a result in [4], there is a proper holomorphic embedding ¢ from some
neighborhood of D into some neighborhood of a bounded strongly convex do-
main W C CV for some N such that o(0D) C OW and o(D) and OW inter-
sect transversely. Let p be a defining function for W, for each & € OW set
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Ae(w) = Z;yzl p/ow;(€) - (w; — &), and set ge(w) = e*¢(). Then g satisfies
1-3 for D replaced by W. So we may set p(C, 2) = go(¢)(0(2)). O

The last lemma we need is the following

Lemma 2.3. Let D be a bounded domain in C" with C?-smooth boundary. Let F
be a diffeomorphism from some neighborhood of D to its image in C". Assume that
{F;}(j > 1) is a sequence of smooth maps defined on some neighborhood of D such
that ||Fj — F|| converges uniformly on D to 0 in C*-norm. Then F} is injective on
D for j large enough.
Proof. We prove by contradiction. If it were not the case, then, without loss of
generality, we can assume that for each j there exist a; and b; in D with a; # b;
such that F}(a;) = Fj(b;). We may assume a; — a and b; — b as j — co. Then it
is necessary that a = b since F' is injective. We have a € D or a € dD. Since 0D
is C?, taking a C?-smooth coordinate change near _a if necessary, we may assume
that there is a neighborhood U of a such that U N D is convex. Let v; be the line
segment in C” given by ¢t — (1 — t)a; + tb;, t € [0,1], then ; C D for j large
enough. We have

1

dF;(v;(t

Fj(bj) = Fj(ay) =/ 7](;3( Doy
(1) °
= ([ dr e - a)).

which can not be 0 for j large enough since fol dF;(;(t))dt — dF(a) and dF'(a) is
nonsingular. Contradiction. ]

Proof of Theorem|[I.J: We can assume that ¢ = 0 and the local defining function
p(z) of D near 0 can be expanded as

p(z) = Re(zn + Q(2)) + Zaz’jzz‘% +-
4,J

where Q(z) =", ; @ij#i%; is a symmetric quadratic form. Let f be a holomorphic
function defined in some neighborhood of D that is furnished by Lemma We
will show that there are positive integers M and N;,j = 1,---, M such that the
transformation F'(z) = (21, -+ , Zn) given by

Zk=1z, fork=1,--- n—1,

- M .

Zn = Zn + Ej:l ﬁQfNj
is that expected by this theorem.

First note that

(2)

QSIS NlzlleNel1E,
and hence goes to zero uniformly on D as N — oco. Note also that

2
(3) QNN 7H| S N |z [P el

Let o be the function on (0,400) given by x +— ze~“*. It is clear that o(0) = 0
and lim, o o(z) = 0, and o attains its maximum c—le at © = 1/c. So the right
hand side of attains its maximum L at |[z|[> = §. For any ¢ > 0 and a
sufficiently large integer M with ﬁ < €/2, by the above discussion, we can find

71 > 79 > -+ > 1) > 0 and positive numbers Ny, -+, Njs such that |[(QfN7)|| <
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s on {1z € Di||z|| > rj or |[z|| < rjy1}. Define o = Z;‘il L QfNi, then ¢y is
a holomorphic function defined on some neighborhood of D, and ||¢),|| < € on D.
By taking NN, large enough, we can also require that |pp(2)| < € for 2 € D. Let
Fy; be the map defined as in . By Lemma Fus is injective on D for M and
N; large enough. It is clear that ||Fy —id||c1 converges to 0 uniformly on D, and
Fp(Q) is a strongly convex boundary point of Fis(D).
O
Proof of Theorem : For ( € 0D, denote by n¢ the unit outward-pointing
normal vector of D at . Let L¢ = {xn¢+iyne;z,y € R} and let m¢ : C* — L¢ be
the orthogonal projection. For z € C”, let t¢(z) = x + iy if m¢(z — ¢) = zn¢ +iyne
and let 2; = (2 — () — m¢(2 — (). Note that z — (2{,%¢(2)) is a linear isomorphism
form C" to (TécaD) x C which maps ¢ to the origin, where TéCaD =T:0DNiT:0D
is the complex tangent space of D at (. Let p be a defining function of D which
is strictly plurisubharmonic on some neighborhood of D. After normalization, near
each ¢ € D, p can be expanded as follows:

(4) p(2) = Re(tc(2)) + Qc(z — ) + L(z = Q) + o]l = CI1*),

where L. is the Levi form of p at ¢ and @ is the complex Hessian of p at (.

By some basic results from calculus, the right hand side of can be viewed
as a smooth function defined on some neighborhood of D x D in D x C". Let
p: 0D x D — C be the smooth map furnished by Lemma Then, by the same
estimate as in the proof of Theorem [1.2] we can show that there are positive integer
M and Nj,j =1,---, M such that the map F((,z): D x D — C" given by

{F(g, 2)h =2
te(F(C,2)) = te(2) + 21 HQc(z = Opl (2)

satisfies the required conditions. ([l
We now construct a strongly pseudoconvex domain D C C? such that the map
F in Theorem can not be taken in Auty, (C™) for some p € 9D.

Ezample 2.1. Let D := {(z,w) € C*: |2|*+|1|> + |w|? < 3}. Then D is a bounded
strongly pseudoconvex domain with smooth boundary. The intersection A of D
and the z-axis is an annulus. Let p be an inner boundary point of A. It is clear
that there exists a compact set V' C D such that the polynomial hull of V' contains
an open neighborhood of p. So if Fj € Autpe(C?) is a sequence that converges to
id uniformly on D, then F; converges to id uniformly on a neighborhood of p. So
Fj(p) can not be a strictly convex boundary point of F;(D) for j large enough.

3. THE BALL MODEL CASE IN C"

The main technical problem in proving Theorem [I.1]which differs from the results
in [3] is to prove an exposing result for balls, which can later be used to pass from
local to global exposing by approximately gluing. For » € R, we denote the point
(0,---,0,r) in C™ by p,. For r > 0 and a € C", B,(a) denotes the ball in C"
centered at a with radius r, and we denote by B™ the unit ball in C" as usual. For
r,s € R,r < s, we let [, s denote the closed line segment between p, and ps. The
main aim of this section is to prove the following theorem which is a key step in
the proof of Theorem
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Theorem 3.1. Let r,s be positive numbers with s > r + 1. Then for any open
neighborhood V' of 1y s_r, any open neighborhood U of 11 s_» U B.(ps), and any
sufficiently small € > 0, there ezits a sequence of maps ¢, : B" — C", (t € [0,1]),
of injective holomorphic maps such that the following hold:
(1) ¢u are smooth int and ¢, o = Id,
ii) ¢, — Id uniformly on B"\B.(p1) fort € [0,1], as v — oo,
ii) ¢u(p1) = psyr for all v € N, where ¢, := ¢p1,
) ¢
)

(i
(iv) ¢ (Be(p1) NB") €V U Br(ps) U {psir},
v) ¢y.t(B" N Be(p1)) C U for all v and t,

(vi) the images ¢,.(B™) are polynomially convex for all v and t.

(
(

Lemma 3.2. Let a < b be points on the real line with b —a > 2, and let | be
the closed line segment between a + 1 and b — 1. Let §, — 0 and let 2, be the
0, meighborhood of Di(a) Ul U Dy(b), where Dy(a) is the disk in C centered at a
with radius s. There exist injective holomorphic maps f,, g, : D — C such that the
following holds:

(i) £,(DNR) CR,g,(DNR) CR, and f,(D) = g,(D) C Q, for all v,
(ii> fl/(_l) = gu(_l) =a-— 1af1/(1) = gu(l) =b+1 and fu(o) = a>gu(0) =b,

for all v,
(iii) f,(2) — z 4+ a uniformly on some fized neighborhood of D\D.(1) for any
small € > 0;
(iv) g,(2) = z + b uniformly on some fized neighborhood of D\D.(—1) for any
small € > 0;
(v) fu(2) = gu(my(2)) for all v, where
z2—1,
my(2) = 1—r,z
with r, — 1 as v — o0.
Proof. For simplicity we assume a = —2,b = 2. We will construct maps f, that
satisfy (i)-(iii) and f, (D) is invariant under the transformation z ++ —z. By sym-
metry, if we put g, (z) = — f,(—z), then all conditions about f, and g, in the lemma

hold. The convergence of , to 1 in (v) will be guaranteed by the convergence of
fv as presented in (iv).

We now construct such f,. By Mergelyan’s Theorem there exists a sequence of
embeddings ¢, : Di1(—2) Ul U D;(2) — C such that ¢, — id on D;(—2), ¢, (1)
shrinks to the point —1, as ¥ — oo, and such that ¢, is are as close as we like to a
translation and a scaling on D;(2), such that the diameter of ¢, (D1(2)) shrinks to
zero. We may also interpolate to get ¢,(—2) = —2,¢!,(—2) = 1). Replacing ¢, by

the map given by z — M if necessarily, we can assume that ¢, (z) = m,
and hence ¢,, maps real numbers to real numbers Let W,, = D (—2)UI(d.,) U D1(2),
where [(d!)) is the §/-neighborhood of [ and 0 < ¢/, < §,. If the 4/, are chosen small
enough, then ¢, (W,) converges to the ball D;(—2) in the sense of Goluzin.

Let ¢, : D — ¢,(W,) be the Riemann map with ¢, (0) = —2,¢.,(0) > 0, we
have that 1, (z) — z — 2 uniformly on D (see [7], Theorem 2, p. 59.). Morover,
¥, (2) = ¥, (Z). Then it is clear that f, := ¢ ' 01, satisfy (i), (ii), and (iii).

O

Lemma 3.3. Let 0 <r <1 and define ¢.(2) = 7==. Then either |, (2)| < || or
Re(pr(2)) <0 for all z € D.
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Proof. Note first that any circle Ty = {|z| = a} with a > 0 is mapped by ¢, to a

circle symmetric with respect to the real line, and ¢, (a) < a. A straightforward
1—r2

computation shows that |, (a) — ¢r(—a)| = 2a7—%= and so the radius of ¢, (I's)
is less than a. Since also ¢,(a) < a this implies that ¢,(I';) N Ty is either empty
or is contained in {Re(z) < 0}. O

Lemma 3.4. Let r;,s; be real numbers for j = 1,2 with s; > r; +1. Then there
exists a sequence

(5) ¢y :B* Ul s, UB, (ps,) = C"
of injective holomorphic maps such that the following hold:
(i) ¢, — Id uniformly on B,

(ii) ¢v(2) = ¢(2) = ps, + 72(2 — ps,) uniformly on By, (ps,),

(ili) ¢, converges uniformly on ly s, to a smooth embedding of l1 s, onto 1 s,.
Moreover, the maps ¢, are of the form ¢,(z) = (hy(zn) - 2/, fu(2,)), where h,, f,
are holomorphic functions in one variable. Finally, the maps ¢, can be chosen to
match v to any given order at the point ps,1r, .

Proof. By Mergelyan’s theorem there exists one variable functions f,, (z,) satisfying
(i)-(iii) on the intersection with the z,-axis. Again by Mergelyan’s theorem there
exist a sequence h,(z,) converging to the constant function ry/ry on the disk of
radius 71 centred at s, to 1 on the closed unit disk, and some fixed real function

increasing/decreasing from r5 /71 to 1 on the line segment connecting the two disks.
O

We now give the proof of Theorem [3.1}

Proof. We prove it first without the parameter t, i.e., we prove the existence of the
sequence ¢, 1. By Lemma it is enough to prove this for some special case of
r,s. We take the special case that r = 1.5,s = 3. Let f, be maps furnished by
Lemma [3.2 with @ = 0,b = 3.5. We define ¢, (2) := (21, " , 2n—1, fu(2n)). Then
the properties (ii), (iii), (v) and (vi) hold (we have that (vi) holds because f,! is
approximable by entire maps).

We now prove (iv). Since € can be chosen arbitrarily small, the only place where
the inclusion in (iv) can fail is near the point py 5. Consider first the sequence

(bu(z) = (Zla Tty RAn—1, gu(zn))'
Then ¢, (z) = z + p uniformly on B" \ B.(p_1), and since ¢/,(1) is real (and goes
to 1) we have that ¢(B™ \ B.(p_1)) is eventually contained in By 5(ps). Now let
z = (z1,..., 2,) be a point in B* N B(p;). If Re(m,(z,)) < 0 then ¢,(2) is far away
from the point py 5 since ¢, (2) = (21, sy 2Zn—1, gv (M (2,))). If Re(m,(z,)) > 0 it
follows from Lemma that (z1,...2n—1,mu(2n)) € B\ Be(p-1), and so ¢,(2) €

B15(p3)-
To construct isotopies we simply define

Bualz) = 100 (t2).

Note first that we can choose € > 0 arbitrarily small, and that by the construction,
B™ N Be(p1) gets mapped by ¢, into a relatively compact subset U of U which is
independent of €. Write

Pu(2) = A (2) + Gu(2),
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where A, — Id and ||G,(2)|| < §,]]z|? for ||z|]] < 1 — € where 6, — 0. Consider a
point z € Be(p1) NB". If t <1— € then ¢,,(2) = A,z + 1G, (t2), with |G, (t2)[| <
5,t%)|]|?, so if v is large we are in U. If t > 1 — ¢ we consider two cases. If
tz ¢ Be(p1) we may assume that ¢, is as close to the identity as we like, and so we
are still in U. If tz € B.(p1) then ¢, maps tz into U, and %U C U provided € was
chosen small enough. [

4. EXPOSING A SINGLE BOUNDARY POINT

The aim of this section is to prove Theorem Recall that a pair (A4, B) of
compact sets in a complex space X is called a Cartan pair if A, B,ANB, AUB all
admit Stein neighborhood bases in X and A\B N B\A = (). The following lemma
due to Forstneri¢ will be used to (approximately) glue locally defined exposing maps
to define global ones.

Lemma 4.1 ([5][6]). Assume that X is a complex space and X' is a closed complex
subvariety of X containing the singular locus Xging. Let (A, B) be a Cartan pair
in X such that C :== AN B C X\X'. For any open set C C X containing C
there exist open sets A’ > A,B' > B,C' > C in X, with C' ¢ AnNB c C,
satisfying the following property. For every number n > 0 there exists a number
€y > 0 such that for each holomorphic map ~ : C — X with dista (7, Id) < €, there
exist biholomorphic maps a = ay 1 A’ » a(A)C X and B=3,: B - (B') C X
satisfying the following properties:

(i) yoa=ponC,

(i) distar (o, Id) < n and distg/ (5, Id) < n, and

(iii) « and B are tangent to the identity map to any given finite order along the

subvariety X' intersected with their respective domain.

Moreover, the maps o, and B~ can be chosen to depend continuously on vy such that
Ajd = Id and IBId = Id.

We start by embedding a neighbourhood of the curve =y suitably into C™, where
we will define local exposing maps.

Lemma 4.2. There exists an open Stein neighbourhood W of v, an open neigh-
bourhood Us C W of (,and a holomorphic embedding ¢ : W — C" (n = dim(X))
such that the following holds:

(i) 6() =0,

(i) ¢((Ue N K)\{C}) C {z € C" : 2Re(zn) + [2]|* < 0}

Proof. First let M C X be a totally real manifold (with boundary) of dimension
n that contains the curve 7, and choose a smooth embedding g : M — R™ C C".
Then M admits a Stein neighbourhood Wy such that g may be approximated in
C'-norm on M by holomorphic maps ¢g : Wy — C™. So ¢o may be taken to be an
embedding of an open Stein neighbourhood W of « into C™. By assumption there
is a (local) strictly pseudoconvex hypersurface ¥ C C™ and an open set Us such
that X touches ¢o(Us N K) only at the point ¢o(¢). Let F' € AutpeC™ such that
F(X) is strictly convex near F'(¢o(¢)). After a translation and scaling, the map
¢ = F o ¢g will ensure the conclusions of the lemma. O

We may now modify v such that near the origin, the curve 4 := ¢(v) coincides
with the line segment [y, for some r > 0, and such that 7 is perpendicular to the
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(local) hypersurface H := ¢(W N H) where they intersect. We keep the notation ~
for the modified curve. Let , denote the piece ¢~ (ly,.) of .

Lemma 4.3. There ezists a a compact set K' C X with K C int(K') such that
for any € > 0 there exists an open neighbourhood Q@ of K' U~ and a holomorphic
embedding ¢ : Q — X such that the following holds:
(i) dist(z,9(z)) < e for all z € K,
(i) virc) < VAW,
(iil) ¥(ye) N H = ¥(¢~ (pr)) and the intersection is perpendicular to H in the
coordinates furnished by ¢.

Proof. We will first define a map h accomplishing (i)-(iii) in the local coordinates
furnished by ¢, and then we will (approximately) glue the map ¢! o ho ¢ to the
identity map on K.

We start by defining a suitable Cartan pair. Writing ¢ = (¢1, ..., ¢,) note that
the pluriharmonic function p := Re(¢,,) extends to a plurisubharmonic function on
an open neighbourhood of K which agrees with p on an open neighbourhood of ¢,
and which is negative and uniformly bounded away from zero away from where they
agree. We keep the notation p for the extended function. Then for a sufficiently
small smoothly bounded strictly pseudoconvex open neighbourhood ' of K U~y
and sufficiently small 7 > 0, the sets

AT:ﬁ/ﬁ{pZ—QT} andBTzﬁ/ﬁ{pg—T}

define a Cartan pair (4., B;). Let A, = ¢(A;) and B, = (B NW). If Q and 7
are chosen sufficiently small we have that A, N B, ¢ W and A, N B, C B, /2(0).
Set C, = B, /2(0). Fix K’ a Stein compact such that K’ contains a neighbourhood
of K and K' C B, U¢™ (B, 2).

Now let D be an open neighbourhood of B,./5(0) Ul with g : D — C™ a smooth
embedding such that § = id near ET/Q(O), g stretches [y, to cover 7, g_l(ﬁ) is
perpendicular to [y, and such that g is O-flat to order one along lo,r. Then g is
uniformly approximable on B, /2(0) Ulp, in C l_norm with jet interpolation at the
point p,. So there exists a holomorphic embedding A : EOJ./Q 0)Ulp, — C, as
close to the identity as we like on ET/Q(O), with the image ﬁ(lo’r) as close as we like
to 4 and with ﬁ’l(ﬁ) perpendicular to Iy . Set h:= ¢! o ho¢. Now if h is close
enough to the identity on B, /; we have that Lemma furnishes maps o and 3
such that the map v defined as v := hoa on A, and ¥ = § on B, will satisfy the
claims of the lemma.

(Il

Proof of Theorem [I.1; We use the extended function p from the proof of the
previous lemma to define a Cartan pair:

A.=Kn{p>-2rtand B, =KnNn{p< -7}
Then for 7 small we have that ¢ maps A, into By (p—1)U{0}, and C; = A NB; gets
mapped into the ball Bi(p_1). Choose a small 6 > 0 such that the ball Bs(p,_s)
touches E’I(H ) only at the point p,. Now Theorem applied to the dumbbell
B (p-1)Ulo,r—26 UBs(pr—s) furnishes local exposing maps ¢, : By (p—1) = C™ such
that the maps ¢, := ¢ ' o (;31, o ¢ may be approximately glued to the identity map
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over a neighbourhood of C; to conclude the proof of the first part of Theorem [I1]
by setting f =1 o ¢,.

For the last part we now assume that K C C" is polynomially convex. Let p be a
non-singular strictly plurisubharmonic function on an open neighbourhood U, of ¢
such that p(¢) = 0and p < 0 on (KNU;)\{¢}. Then for any sufficiently small Runge
and Stein neighbourhood € of K the function p extends to a plurisubharmonic
function on  which is strictly negative on Q \ U¢, and so @ = Qn{p < 0}
is a Runge and Stein domain with ¢ € bQ’. Moreover, choosing Q to have a
Runge and Stein neighbourhood basis, we have that @ will have a Runge and
Stein neighbourhood basis, and so by Theorem 1.3 in [3] there exists F' € AutyqC™
such that F(K \ {¢}) C B" and F(¢) = p;. Since we can conjugate by F we may
as well assume that K \ {(} C B" and that ¢ = p;.

My slightly modifying v we may assume that v agrees with I 14, near p; and that
it is perpendicular to H where they intersect. First let D be an open neighbourhood
of B*Uly 14, and g : [0,1] x D — C™ be an isotopy of embeddings such that go = id,
g stretches Iy 14, along v, g; = id near B" for all ¢, g~!(H) is perpendicular to I3 1,
and g, is O-flat on I 14, to order one. Then the whole parameter family g, may
be approximated by a parameter family A : [0,1] x C" of holomorphic maps in
C'-norm on B U l1,14- with jet interpolation at the end point of l1 14,. So h; is
a family of holomorphic embeddings on some open neighbourhood of B™ U 1y 14,
and by the Andersén-Lempert theory h; may be approximated by a holomorphic
automorphism G with interpolation at the end point of I 14,.

Let H = G~1(H) which is now perpendicular to li1,14r. Choose s > 0 such
that Bs(p14r—s) touches H only at a single point. Now Theorem applied to
the dumbbell B™ U 1y 14, U Bs(p14r—s) furnishes a one-parameter family of maps
¢ such that G o ¢ is the exposing map we are after, except that ¢; is not an
automorphism. However, by (vi), ¢;(B") is polynomially convex for each ¢, and so

¢1 is approximable by holomorphic automorphisms. The proof is complete.
O

5. REGULARITY OF EXPOSING MAPS WITH PARAMETERS

In this section we will prove Theorem Before we proceed with the proof, we
give a further discussion on parametric exposing. The terminology of being exposed
will refer to being globally exposed in the sense of Definition 1.2, and R may vary
with the parameter.

Definition 5.1. Let D be a bounded domain in C™ with smooth boundary. Then
we say that D satisfies:

1) Property (E), if there exists a continuous map F : D x D — C" such that for
each fixed p € D the map F; := F((,-) : D — C" is an exposing of D at (; or

2) Property (AE), if there exists a continuous map F : 9D x C" — C™ such that
for each fixed ¢ € 0D we have that F; € AutyoiC" is an exposing of D at (; or

3) Property (ASE), if there exists a continuous map F': 9D x C™ — C" such that
for each fixed ( € 0D we have that F; € AutqigC™ and F¢(D) is exposed at F¢(().

In the case 2) we say that F, is ambient exposing, and in case 3) we say that F
is ambient smoothly exposing. Note that Property (ASE) has nothing to do with
the complex structure of D and C". In [2], the following question was proposed:
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Question 1. Let D be a bounded strongly pseudoconver domain in C"™ with smooth
boundary. Does D satisfies Property (E)?

The following theorem, which can be viewed as a parametric version of Theorem
[} partially answers the above question.

Theorem 5.1. Let D C C*(n > 1) be a bounded strongly pseudoconvex domain
with smooth boundary. If D satisfies Property (ASE), then for any positive numbers
€,0, there exists a continuous map f : 0D x D — C™ such that for each ¢ € 0D:

1) fe() = f(¢,) : D — C™ is holomorphic and injective;

2) fe(D) is exposed at fc(¢); and

3) ||fe(2) — z|| < € for z € D\Bs((), where Bs(() = {z € C"; ||z — (|| < 6}.
In particular, D satisfies Property (E). If in addition D is polynomially conver,
then f can be taken to be a smooth map f : 0D x C™ — C™ such that f; € Aut(C")
for all ¢ € OD. In particular, D satisfies Property (AE).

When trying to apply Theorem [I.3]to Question 1, we meet a topological obstruc-
tion. Even we originally just interested in exposing but not ambient exposing, it
turns out that Property (ASE) is needed in our argument. It is clear that Property
(ASE) is a necessary condition for Property (AE), but we don’t know if it is also
necessary for Property (E).

For the special case when D is diffeomorphic to the closed unit ball, we can prove
the following

Theorem 5.2. Let D be a bounded strongly pseudoconvex domain in C™ with
smooth boundary. Assume that either D is diffeomorphic to the unit ball B™ and
n > 3, or the closure D of D is diffeomorphic to the closed unit ball and n = 2.
Then D satisfies Property (E). If in addition D is polynomially convex, then D
satisfies Property (AE).

Remark 5.1. It is known that any smoothly embedded S™"~! in R” bounds a domain
that is diffeomorphic to the unit ball except n # 4 (see [I0]). The case for n =4 is
still open. So for n # 2, the condition in Theorem [5.2] that D is diffeomorphic to
B™ can be replaced by that 0D is diffeomorphic to S2"~1.

5.1. A parametric version of Forstnerié’s splitting lemma. We first intro-
duce some notations. Let D be a bounded strictly pseudoconvex domain in C™ with
C?-smooth boundary and § be a sufficiently small positive number. For ¢ € 0D we
define:

Ac={z€D:|lz— (|l <4},

Be={z€D:|lz— (| >d/2},

O< = AC n B(.
For a closed subset X in C™ and a > 0, we set X(a) := {z € C" : ||z —w|| <

a for some w € X} the a-neighborhood of X.
The following result is the main result in the thesis of Lars Simon ([I1])

Lemma 5.3. Let D and 6 as above. If 7 > 0 is small enough (this depends on d),
then for any n > 0 there exists € > 0 such that the following holds. If p > 57 and
if v¢ is a family of injective holomorphic maps ¢ : Ce(p) — C™ satisfying

o v:{(2,():2€C¢(pn),{ € 0D} = C", (2,() = 7c(2) is continuous,
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o distc, (¢, Id) < e for all ( € 0D,
then there exist families {ac}ceop and {Bc}ececap of injective holomorphic maps
ac: Ac(21) = C" and B¢ : Be(21) — C™ with the following properties:
(1) for all { € 0D we have y¢ = B¢ o azl on C¢(T),
(2) dista(2r)(ac, Id) <n and distp (o) (B¢, Id) <,
(3) the maps « and B are continuous, where
a:{(z,{)eC"x0D:ze€ A(21)} = C", (2,() — ac(z),
B:{(2,{) e C"x 0D :z€ B:(21)} = C", (2,{) — Bc(2).
Moreover, the maps a¢c may be constructed to match the identity to any given order

at ¢, and if we are given a parameter family v¢ ¢ with t € [0, 1] we may obtain o 4
and B¢ also jointly continuous in (C,t).

We note that the two last points were not a part of the statement in [I1], but
they follow from the proof.

5.2. Exposing along normal directions. Let Q2 C C" be a domain with a strictly
plurisubharmonic defining function p, and fix p € 9€2. By choosing a smooth family
orthogonal frames in 702 for ( near p we may construct a smooth family of locally
injective holomorphic maps g¢(z) such that g;(€2) has a defining function

(6) pc(z) = 2Re(z1 + Q¢(2)) + L¢(2) + hoot

near the origin. Define G¢(2) = (21 — Q¢(2), 22, ..., 2n), so that H. = G¢ o g¢
maps 0 to a strictly convex surface near the origin. We may cover 92 by finitely
many open sets U; such that we have such families of maps H Z defined on each
Uj;, and they all coincide modulo a unitary change of coordinates in {z; = 0},
sending one frame to another. More precisely, for maps gé and gg we have that
gé(z) = Vgé(z), where Vz = (21,U2’). For the corresponding defining functions

we get that pf(z1,2) = pz_ (21,U~12"). Furthermore we have

(7) GL(2) = (21 = Qc(2)s 22, ey 20),

and

(8) GZ(z) = (21 — Qc((21, U (), 22, .2).
For a point w near ¢, writing z = gé (w), we see that

©) G gt () = GE(1.U) = (21 — Qc(2).U%).

and in particular we see that the map gc_lGCgC is independent of the choice of
orthonormal fram on the tangent space.

Choose a small a > 0, let [, denote the line segment between 0 and a in the
z1-axis, and let ne = (Hg)_l(la). For small b,c > 0 we let B(b,() denote the
ball (Hg)*l(Bb(a)), and V¢ = (Hg)’l(la(c)), the inverse image of the open c-tube
around [,.

Theorem 5.4. Let  C C" be a domain with a strictly plurisubarmonic defining
function p and with objects defined above. Then for €1,61 >0 and a,b,c > 0 small
enough there exists a continuous map F : 00 x Q C C™ such that the following
holds.
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(i) For each ¢ € 9 the map F; = F((,-) : Q@ — C" is a holomorphic embed-
ding, '
(ii) FC(C) = (HZ)_l(a,O, '70) =1 4¢;
(i) F¢(QN B, (¢)) € Ve UB(b,¢)U{gc}, and
(iv) [[F(¢,-) = idllg g, () < €1-
Moreover, if Q is polynomially convex we may achieve that Fr € AutpoiC™ for each

¢,

Proof. We first define local maps achieving (i)-(iii), and then these will be approx-
imately glued to the identity map using Lemma above.

By scaling we may assume that all (local) images H](f) are contained in the
ball B = {z : 2Rez; + ||2]|> < 0} of radius one centered at the point (—1,0,...,0).
Let ¢, be the maps from Theorem defined for the ball B, the line segment
la, the ball of radius b centred at the point a, and the set V' = [,(c). Similarly
to the above discussion, since ¢, ; are one variable maps, the maps defined by
Fe(2) = (Hg‘)’1 o¢, 0 Hg do not depend on the choice of orthonormal frame on

the tangent space, and so are well defined independently of j, and FC is a locally
defined map (near each () achieving (i)-(iii) for v large enough.

Now choose J > 0 small enough, set v, = FC|C<(M)’ and let a¢, B¢ be the maps
from Lemma Then the maps F; defined by Froa; on A¢(27) and f; on B¢ (27)
are globally defined on Q and will satisfy (i)-(iv) as long as all constants involved
are small enough.

For the last part, assuming polynomial convexity, note that I is isotopic to the
identity map through holomorphic embeddings by setting Fg,t = (Hg)*1 0Pty OHg,
including the t-parameter from Theorem [3.I} and invoking the last statement in
Lemma Following the arguments in Section 5 in [3] each image F +(Q) will be
polynomially convex, and so by the Andersén-Lempert theorem with parameters
and jet-interpolation, the map F¢ ; may be approximated by a family of holomor-
phic automorphisms. Note that in the usual statements of the Andersén-Lempert
theorems, isotopies are required to by of class C2, but it is quite simple to work
with CC-isotopies instead, see [1] for details. O

5.3. Proof of Theorem Let n¢ denote the arcs from the previous section
with a << 1. We leave it to the reader to convince himself/herself that the arcs
v¢ may be modified so that each of them parametrises 7 over an interval [0, s],
and so that v, is perpendicular to H. Let ¢, : 9Q x QU (UACH xne) = o xCr

be a fiberpreserving smooth map, t € [0,1], that is the identity near 9Q x Q, and
stretches each 7¢ to cover 7¢. According to [9] Section 5 we have that ¢y may be
approximated by an isotopy of injective holomorphic maps such that 1 (n¢) is still
perpendicular to H, keeping the notation v, for the approximation. Let W, denote
wgi(H) Then each W is transverse to 7¢, and there is a b > 0 such that the ball
of radius b centred at a — b is tangent to (Hg)_l(Wc) for all ¢, where Hé is as in
the previous section. Letting F: be maps as in Theorem the maps )¢ 0 F¢ will
satisfy the claims of the theorem. Finally, as before if Q is polynomially convex,
the maps 1)¢,1 may be taken to be holomorphic automorphisms.

5.4. Proof of Theorem and Theorem In this subsection, we give the
proofs of Theorem and Theorem which are based on Theorem
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Proof. (of Theorem For R > 0, let Bgr be the ball in C™ centered at the origin
with radius R, and let Sg = 0BR be the boundary of Bgr. We want to prove that
there is a smooth family of curves v : D x [0,1] — 9D x C™ which satisfies the
conditions 1)-4) in Theorem [1.3] with H replaced by Sg for R >> 1.

By assumption, there is a smooth map F : 9D x C" — C" such that for each
¢ € 0D, Fe(-) = F(¢,-) : C" — C" is a diffecomorphism and F¢(D) is exposed at
Fe(€).

We assume that all F are orientation preserving. For any ¢ € 9D there is a
natural isotopy H¢ : [0,1] x C* — C™ from F, to the identity, given by Fr; =
F¢(t, z) == 2 F¢(tz) for t # 0, and smoothly extended to 0 by setting F o(z) = z.

This isotopy gives us a smooth family of vector fields X¢(¢,z) on C". In other
words, Fr ; is generated by X¢. It is clear that X, (¢, z) is even smooth jointly with
respect to ¢, ¢, and z.

Let r > 0 such that F¢ (D) C B.(0) := {z € C": ||z]| < r} for all ¢ € D and
t €[0,1]. Let R >> r be a positive number. Let 1) be a positive smooth function
on C" such that 1) =1 on B, and ¢ = 0 on C"\Bg. Let X/(t,2) = ¢ X¢(t, 2), then
X’ has compact support.

Let G¢ : C" — C" be the diffeomorphism of C" generated by X/(t,2),t € [0, 1].
Then G¢ = Fr on D and G¢ = Id on C"\Bg.

For ¢ € 0D, let nc be the unit out-pointing normal vector of 0G¢(D) at
G¢(¢). Then there is a unique ¢ € (0,+00) such that G¢(¢) + rene € Skg.
We define a smooth family of curves v : 9D x [0,1] — 9D x C™ by setting
HG,t) = (€, GZHG(Q) + retne))-

Then the theorem follows by applying Theorem [I.3 with v and H = Sg. O

Proof. (of Theorem [5.2) For n = 2, we already assume that D is diffeomorphic to
the closed unit ball. For n > 2, we want to show that D is diffeomorphic to the
closed unit ball too. By the Collar Theorem (see Theorem 6.1 in [§]), 0D is simply
connected. Let zp € D and let B be an open ball centered at zy with boundary
S C D. Let W = D\B, then the triad (W;S,dD) is an h-cobordism. Note that
the relative homology H,.(W,S) = 0. By the h-Cobordism Theorem (see Theorem
9.1 in [10]), W is diffeomorphic to S x [0,1] and hence D is contractible. So D
is diffeomorphic the the unit ball (See Proposition A in §9 in [I0]). By a result
in differential topology (see Theorem 3.1 in [§]), there is a diffeomorphism o of
C" such that o(D) is the closed unit ball. So the Theorem follows from Theorem

(]
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