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Abstract—We present ctrlTCP, a method to combine the con-

gestion controls of multiple TCP connections. In contrast to the

previous methods such as the Congestion Manager, ctrlTCP can

couple all TCP flows that leave one sender, traverse a common

bottleneck (e.g., a home user’s thin uplink) and arrive at different

destinations. Using ns-2 simulations and an implementation in the

FreeBSD kernel, we show that our mechanism reduces queuing

delay, packet loss, and short flow completion times while enabling

precise allocation of the share of the available bandwidth between

the connections according to the needs of the applications.

I. INTRODUCTION

Multiple TCP connections are often initiated from the
same host. They can overlap in time and may share the
same bottleneck. When this happens, they can sub-optimally
interact (and indeed, compete) with each other and other flows.
These overlapping connections that are intended to provide
throughput gains will also often push up queuing delays
and/or packet loss rates, to the detriment of flows sharing any
bottlenecks along the common path. In large part this is due
to each overlapping TCP connection’s congestion control state
machines acting independently.

Significant solutions to date fall into one of two classes:
Merge common application-layer data streams onto a single
transport layer connection, or couple the transport layer con-
gestion control machinery for connections known to share the
same endpoints. Examples of the former include SPDY [1] and
HTTP/2 [2], which multiplex multiple web sessions on top of a
single TCP connection between client and server. Examples of
the latter, often referred to as coupled congestion control (ccc),
include the Congestion Manager (CM [3]), Ensemble TCP
(E-TCP [4]) and Ensemble Flow Congestion Management
(EFCM [5]).

However, there are known problems within each class of
solutions. For instance, simply multiplexing application flows
onto a single TCP connection may result in head-of-line (HoL)
blocking, where faster application-layer threads are forced
to wait while serialized messages from slower threads are
handled at the TCP destination. Packet loss on one flow delays
all multiplexed flows until the loss can be recovered. Solving
HoL blocking usually involves entirely different transport
protocols, such as QUIC [6] or SCTP [7].

On the other hand, all the coupled congestion control
strategies are designed for connections between the same

endpoints having homogeneous round-trip times, and they tend
not to fully leverage the statefulness of the TCP congestion
control algorithm. Their mechanisms rely on the assumption
that connections between the same endpoints share a common
bottleneck — this may be true for routers in theory, but in
reality two connections may take different routes if they have
different TCP port numbers [8].

A coupled congestion control mechanism only makes sense
when flows traverse a shared bottleneck. Identifying a shared
bottleneck is therefore very important. To the best of our
knowledge, there are three different approaches to derive a
shared bottleneck: i) via multiplexing (which is a completely
reliable method where flows are multiplexed onto a single
transport layer connection, e.g., VPNs, WebRTC), ii) via
configuration (e.g., a home user’s thin uplink, a common
wireless bottleneck or by Software Defined Networking), and
iii) via measurements (e.g., correlations among measured delay
and losses can be used to deduce a common bottleneck).

Whenever the first two approaches are available, we can
readily apply a ccc approach. A configuration based approach
requires prior knowledge about the network environment. If
known, a ccc mechanism can combine flows (having hetero-
geneous RTTs) originated from the same host that are destined
for different receivers, otherwise a measurement based shared
bottleneck detection mechanism [9, 10] should be used.

We introduce ctrlTCP, a refined coupled congestion control
strategy that better utilizes a TCP sender’s awareness of
network conditions and allows precise bandwidth sharing. The
novel contribution of our mechanism is that it 1) can combine
any flows that share a bottleneck—this gives us the flexibility
to couple TCP flows that leave one sender, traverse a common
bottleneck (e.g., a home user’s thin uplink) and arrive at
different destinations— and 2) works better than prior work:
it is less intrusive and easier to implement than the CM, easier
to dynamically enable / disable than multiplexing / scheduling
based methods, and does not exhibit problems that we find
with E-TCP and EFCM (see Section III).

Using both ns-2 and FreeBSD implementations we have ex-
plored the benefits of our coupled congestion control scheme.
Our results demonstrate significantly better (lower) queuing
delays, packet loss rates, and short flow completion times
compared to uncoupled TCP connections without significantly
affecting throughput or long flow completion times. We believe
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our approach is practical and deployable in today’s Internet,
offering lower RTTs to all traffic sharing bottlenecks with
coupled TCP connections.

The rest of our paper is organized as follows: Section II
introduces related work and Section III describes our improved
approach to coupled TCP congestion control. We present
simulations and experimental results in Section IV. The paper
concludes in Section V.

II. RELATED WORK

To the best of our knowledge, RFC 2140 [11] was the
first work to outline a mechanism for coupling TCP con-
nections by sharing the TCP Control Block (TCB) in order
to better initialize new connections. This idea was expanded
by Ensemble TCP (E-TCP) [4] to allow concurrent flows to
benefit from each other beyond initialization, working together
so that the aggregate is no more aggressive than a single
TCP flow. On the other hand, Ensemble Flow Congestion
Management (EFCM) [5] allows the aggregate to be collec-
tively as aggressive as the combination of separately controlled
TCP connections. The Congestion Manager (CM) [3, 12]
takes the concept even further, completely replacing each
flow’s congestion controller with its own congestion control
mechanism—a rate based controller.

The CM is a major modification to the implementation
of congestion control as part of TCP. Our proposal aims to
minimize changes to the kernel TCP code, making it much
easier to implement as an add-on, closer in spirit to E-TCP
and EFCM, but fixing problems that have identified with these
mechanisms.

Although having important differences, congestion control
coupling (as described here) shares some similarities when
compared to coupled congestion control for MultiPath TCP
(MPTCP), e.g. the mechanisms LIA [13], OLIA [14] and
BALIA [15]. Similar to our proposal, E-TCP and the CM,
these mechanisms try to behave like one flow through a shared
resource. However, MPTCP’s coupling assumes that flows
take different paths, and therefore are likely to also traverse
different bottlenecks. This means that some things that ctrlTCP
or other coupled congestion control mechanisms can do would
probably be quite inappropriate for MPTCP. For example with
ctrlTCP:

• A new connection joining the aggregate can immediately
get a share of the potentially quite large cwnd of ongoing
transfers. This can significantly reduce the completion
time of short flows, but in MPTCP this would be in-
appropriate since it results in using a very large initial
window on a new path.

• Changing states (e.g. avoiding slow start), as our algo-
rithm does, strongly relies on the knowledge that there is
only a single shared bottleneck. The resulting behaviour
would be quite wrong in case of multiple bottlenecks.

• A share of the aggregate cwnd can be assigned based
on application preference in the case of ctrlTCP. These
preferences can even change on the fly. Again, if flows

were to traverse different paths, the send rate on a par-
ticular path could temporarily be much more aggressive
than TCP.

Finally, MPTCP’s subflows also use different identifying tu-
ples in order to be able to use different paths – this is, for
example, leveraged in [16] without even using multi-homed
end-systems.

III. ctrlTCP ALGORITHM DESIGN

Despite a number of previous attempts at coupled conges-
tion control, widespread deployment has proven to be difficult,
mainly due to the aforementioned complexities of the proposed
mechanisms. We draw inspiration from a method used to cou-
ple congestion control for media flows in WebRTC [17, 18].
TCP has particular difficulties due to its stateful nature that
require a significantly different design approach for ctrlTCP.
We first describe the key elements of the basic algorithm
logic in Section III-A, and then illustrate in Section III-B how
ctrlTCP solves key problems inherent in the E-TCP and EFCM
mechanisms, and finally in Section III-C we introduce a novel
approach to avoid sudden bursts in the network that “paces”
the packets by simply maintaining the ACK-clocks of the TCP
connections.

A. Basic algorithm logic
In ctrlTCP each TCP session communicates with an entity

called a Coupled Congestion Controller (CCC). The CCC
couples flows traversing the same bottleneck and stores some
shared variables including sum cwnd and sum ssthresh.

New TCP sessions first register with the CCC, supplying it
with a (i) Priority (P), (ii) cwnd, and (iii) ssthresh. The newly
joining flow then obtains its first cwnd and ssthresh values.

When the TCP state of a coupled flow is changed, the
flow sends an update message to the CCC including cwnd,
sshthresh, RTT and the TCP state machine state. The CCC
responds by assigning calculated values of cwnd and ssthresh
to the updating flow. We emulate the behavior of a single
TCP session by choosing the flow with the shortest RTT as
the Coordinating Connection (CoCo), since it has the most
timely congestion information. This flow dictates the increase
behavior for the aggregate while in the TCP Congestion
Avoidance phase. For simplicity, the algorithm refrains from
adjusting cwnd when a connection is in Fast Recovery (FR).
As we will explain in Section III-B, we limit the usage of
Slow Start (SS), ensuring that the aggregate’s behavior is only
dictated by SS when all connections are in the SS phase.

When a TCP flow terminates its variables are removed and
the summations are recalculated. The aggregate variables also
need to be adjusted when a flow leaves. When the last flow in
the coupled group terminates, the group is removed from the
CCC.

ctrlTCP shares state variables across multiple TCP con-
nections. This has been done in the past by E-TCP [4] and
EFCM [5], however, these works do not properly account
for the stateful nature of TCP. This can lead to erroneous
behavior if the goal is to emulate the dynamics of a single



TCP connection. We now use E-TCP and EFCM to illustrate
the merits of the design rationale underlying our algorithm.

B. Handling Loss events

1) Fast recovery behaviour: ctrlTCP observes when a
flow enters Fast Recovery (FR) and reacts by reducing
sum ssthresh and sum cwnd appropriately. As long as a
flow is in FR, we refrain from overriding that flow’s cwnd and
ssthresh values to allow the Fast Recovery/Fast Retransmit
logic to work.

TCP operates on loss events (one or more packet losses per
RTT), not individual packet losses. When congestion controls
are combined, this logic should be preserved. We explain
this by using an example of two connections traversing the
same bottleneck. A single packet drop from connection 1, two
drops from connections 1 and 2 or multiple packet drops from
connection 2 only, should all result in the same behavior of
the traffic aggregate. Simply sharing TCP variables such as
cwnd or ssthresh cannot achieve this.

In order to compare our mechanism with EFCM coupling1

and without coupling, we simulated the behaviour of two TCP
Reno connections in the ns-2 simulator2 using a dumbbell
topology (bottleneck capacity 10 Mbps, RTT 100 ms, packet
size 1500 bytes, and queue length of one BDP (83 packets)).
Fig. 1(a–d) captures the behavior of two TCP Reno flows,
without coupling, with EFCM, and with our proposed coupled
congestion control mechanism, respectively. We artificially
induced a packet drop for connection 1 at 25 seconds. Fig. 1(a)
shows that without coupling, it takes quite some time for the
two flows to converge, and with EFCM (see Fig. 1(b)), the
aggregate is not halved, and the flows remain aggressive. This
can lead to higher queue growth and packet losses.

2) Timeouts and Slow Start: ctrlTCP operates on the prin-
ciple that slow start following a timeout should only happen
if no packets could be delivered across the same path for the
timeout interval. This assumption is broken if some but not all
connections experience a timeout. In practice this means that
if at least one of the flows is still receiving acknowledgements
and has not tried to enter slow start, then it is not appropriate
for the coupled group to enter slow start.

E-TCP does not adopt this rationale, instead forcing all
flows to slow start if any one has a timeout (see Fig. 1(c) where
we artificially induced a timeout for connection 1 to simulate
this behavior). EFCM has the issue of sharing the initial very
large ssthresh value, which potentially moves all existing
flows back into Slow Start from Congestion Avoidance when
a new flow joins.

With ctrlTCP, if the timeout of a particular flow is indeed
due to lost packets, it will recover the lost packets when it
enters Fast Recovery. In the extreme case when a flow has
lost its entire cwnd of packets, it can take up to 1+Dupthresh3

1We implemented EFCM and E-TCP in ns-2 based on the descriptions
in [5] and [4], respectively.

2We used the TCP-Linux module that gives the flexibility to use the actual
Linux TCP code in simulations. In our case, it was Linux kernel 3.17.4

3Number of duplicate ACKs required to trigger fast recovery

(a) Not coupled (b) Coupled with EFCM

(c) Coupled with E-TCP (d) Coupled with ctrlTCP

Fig. 1: cwnd of two TCP Reno flows

RTTs for the flow to enter fast recovery. The reason for this is
that the flow’s duplicate ACK counter is not being incremented
for ACKs received on other coupled flows, as would be the
case if it was truly one aggregated TCP flow. A possible
solution to this — currently under investigation — is to count
ACKs from other coupled flows and send this DupACK count
when the affected flow sends its update. This will allow fast
recovery to be triggered after just 1 RTT and still maintains the
simplicity of implementation and interaction with the coupled
flows that our algorithm has.

C. ACK-clocking
When a new connection joins, it may benefit from sharing

the large cwnd of existing flows. This has potential to cause
bursts of transmission into the network, unless the packets are
paced in some way. Consider the scenario where connection
1 has already achieved a cwnd of 100 packets, connection
2 joins and receives cwnd=50 packets as its share of the
capacity. If it sends these without some form of pacing it can
cause a significant congestion spike in the network. It is not a
problem for connection 1 alone because its packets are paced
by arriving ACKs.

ctrlTCP uses a simple ACK-clocking mechanism to avoid
these bursts. Rather than using timers, in this example we
utilize the acknowledgements connection 1 receives to pace
the sending of connection 2 over the course of the first RTT. In
this way, we avoid causing a congestion spike in the network.

Fig. 2 shows the packet sequence diagrams over time
of two coupled-TCP Reno connections, with and without
ACK-clocking. Without ACK-clocking, the congestion spike
causes significant packet loss. Our ACK-clocking algorithm
completely eliminates this issue.

IV. RESULTS

We have implemented ctrlTCP in the ns-2 simulator and
in the FreeBSD-11 kernel. In the simulations, we used pre-
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Fig. 2: Packet sequence plots of 2 flows when flow 2 joins after 5
seconds.

processed TMIX background traffic4 in order to provide an
approximate load of 50% on a 10 Mbps bottleneck link. The
RTTs of background TCP flows generated by TMIX are in
the range of 80–100 ms. For the emulation experiments the
sender and receiver machines are physical, identical desktop
computers (Intel i7-870 2.93GHz CPU, 8GB RAM) equipped
with Gigabit Ethernet Network Interface Cards (NICs), run-
ning our modified version of FreeBSD-11. They are connected
via a third identical machine running Ubuntu Linux 15.04
and the CORE network emulator [21] version 4.7 to form the
dumbbell topology (bottleneck capacity 10 Mbps, RTT 100 ms,
MTU 1500 bytes, and queue length 1 BDP (83 packets)). The
underlying TCP congestion control mechanism is NewReno.

In this paper, we first show the results for connections
carrying bulk traffic with homogeneous RTTs of 100 ms. Later
we show the efficacy of our solution when the RTTs of the
connections are varied.

A. Connections with Homogeneous RTTs

Fig. 3 showcases an example of ctrlTCP where two con-
nections are created with priorities 0.75 and 0.25, respectively.
Connection 1 starts at t=3 s and connection 2 starts at t=30 s.
It can be seen from Fig. 3 that between t=30 s and t=85 s
(the duration when two flows coexist), flow 1 gets 3/4 of the
aggregate cwnd while flow 2 gets 1/4. We also see that the two
flows are coupled, as they increase and decrease their cwnds
at the same time. Outside of this interval, flow 1 gets all of
the cwnd. In Fig. 3, flow 2 is able to immediately use its share
of the aggregate cwnd.

Fig. 4 demonstrates that ctrlTCP’s coupling can yield a
significant improvement in the short flow’s completion time.
We repeated this test 10 times with randomly picked flow
start times over the first second for the long flow (25 Mb)
and the sixth second for the short flow (200 Kb). We show the
reduction of flow completion times (FCTs) in emulation while
varying the bottleneck capacity (6, 8, and 10 Mbps) in Fig. 4.
The impact on the long flow was negligible.

4The TMIX traffic used in ns-2 simulations is taken from 60-minute
trace of campus traffic at the University of North Carolina [19], and
it can be accessed from the common TCP evaluation suite [20].

Fig. 3: cwnd (in Kbytes) plot of two TCP connections using
coupled congestion control with priorities compared to a single

TCP flow scenario. The aggregate line depicts the sum of cwnds in
two connections scenario, closely matching a single TCP flow.

cwnd going down all the way to 0 whenever cwnd is reduced is not
related to ctrlTCP but a result of how cwnd is internally updated in

FreeBSD.

Fig. 4: Flow completion time (FCT) of short flows without
ACK-clocking (emulation).

In the following tests, experiments were repeated 10 times
with different randomly picked flow start times over the first
second. Prerecorded traces of self-similar crosstraffic were
injected to occupy 50% of the bottleneck link capacity on
average. These were generated using the D-ITG [22] traf-
fic generator, by superposition of 11 on/off streams, with
Pareto heavy-tailed on-time distributions (H = 0.8) and expo-
nentially distributed off-times (µ 2 [1, 2] s). Packet sizes are
normally distributed (µ = 1000,� = 200), with exponentially
distributed (µ 2 [50, 150] pps) inter-packet times.

Fig. 5(a) and 5(c) illustrate the average RTT, and loss ratio,
with and without coupling for varying numbers of flows,
respectively. It can be seen from the graphs that ctrlTCP
reduces both the average RTT and loss without significantly
affecting goodput as we varied the number of flows (see
Fig. 5(b)).

Fig. 6 demonstrates that our mechanism can distribute the
share of the aggregate cwnd to the TCP connections based
on the needs of the applications. Both the simulation and



(a) Average delay (in ms) (b) Average goodput (in Mbps) (c) Loss ratio

Fig. 5: Average delay, average goodput, and loss ratio as the number of TCP connections is varied, with and without coupled congestion
control (emulation)

emulation results confirm that our mechanism calculates and
assigns the shares almost ideally as we vary the priority ratio
between two TCP Reno connections.

Fig. 6: Throughput ratio as the priorities of two TCP connections
are varied

B. Connections with Heterogeneous RTTs

We have also simulated the case where connections are
initiated from the same sender, traverse a common bottleneck
and arrive at different destinations. We varied the number of
flows with different RTT ratios as shown in Table I. Fig. 7(a)
and 7(b) illustrate that the average queue length and loss ratio
of the connections are consistently lower when coupled with
ctrlTCP. Coupling resulted in a small reduction in throughput,
but never more than 3%.

# of flows RTT ratio minRTT maxRTT meanRTT

2 1:2 20 40 30
3 1:2:3 20 60 40
4 1. . . .4 20 80 50
5 1. . . .5 20 100 60
6 1. . . .6 20 120 70
7 1. . . .7 20 140 80
8 1. . . .8 20 160 90
9 1. . . .9 20 180 100
10 1:2:3:4:5:6:7:8:9:10 20 200 110

TABLE I: RTT ratio, maxRTT (in ms), minRTT (in ms) and mean
RTT (in ms) as the number of flows is varied

(a) Mean queue length (in pkts) (b) Loss ratio

Fig. 7: Mean queue length and loss ratio as the number of flows
with different RTT ratios is varied

V. CONCLUSIONS

It is increasingly common that a sender initiate several
standard TCP connections that overlap in time and hence often
traverse a common bottleneck. This may result in competition,
rather than cooperation, between each connection’s congestion
control mechanism, often leading to undesirable spikes in
queuing delay and packet loss rates.

We have introduced ctrlTCP, a new coupled congestion con-
trol strategy that allows applications to exert precise allocation
over the relative bandwidth share offered to coupled flows,
with only minimal changes to the kernel TCP code.

We have implemented ctrlTCP in both ns-2 and the
FreeBSD kernel5, and used these implementations to demon-
strate the utility of our proposal: ctrlTCP yields lower average
queuing delays, lower packet loss rates, and significantly
shorter flow completion times for short flows than uncoupled
TCP flows while having a negligible impact on overall goodput
and long flow completion times. Our solution also avoids
several shortcomings we identified in previous mechanisms.

Coupling flows is especially beneficial when many short
web-like flows share a common bottleneck as it allows the
short flows to quickly obtain a share of the available capacity.
There may be scenarios, such as multiple bulk transfers, where
coupling flows to competing as a single TCP flow may reduce

5The source code of ctrlTCP is available at http://safiquli.at.ifi.uio.no/
tcp-ccc/



overall performance when compared to multiple single TCP
flows. As future work we plan to investigate dynamically
tuning our mechanism as suggested by MulTCP [23] and
MulTFRC [24] to behave as some appropriate multiple of a
TCP flow in certain circumstances, though what is an appro-
priate multiple in particular circumstances is still contentious.
ctrlTCP will facilitate experimental investigation of this issue.
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