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Abstract 11 

Theoretical models predict that investment in pre-copulatory and post-copulatory sexually 12 

selected traits should trade-off. At the macroevolutionary scale, the majority of studies to date 13 

have focused on male weaponry as the target of pre-copulatory sexual selection, but the 14 

trade-off should equally apply to traits used to attract females, such as bird song and 15 

plumage. We studied the Old World leaf warblers (Phylloscopidae), a group of socially 16 

monogamous songbirds that experience relatively high levels of sperm competition. We 17 

examined the relationships between song duration and number of elements in the song with 18 

sperm length across 21 species, and between the same song variables and combined testes 19 

mass in a subset of these species (n=10). Across species, these song variables and testes 20 

mass/sperm length are generally positively correlated, albeit not statistically significantly so 21 

or with borderline significance. In contrast to theory, we found no evidence for negative 22 

associations between pre- and post-copulatory traits. We argue that this is a consequence of 23 

males of some species investing more into overall fertilization success (i.e. the sum of pre- 24 

and post-copulatory sexual selection) than males of other species, and high fertilization 25 

success is achieved through investment into both mate attraction and sperm competition. 26 

 27 
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Introduction 29 

Male reproductive success is a product of pre- and post-copulatory episodes of sexual 30 

selection. That is, a male's fitness depends on traits that influence his mating success, such as 31 

ornaments and armaments, as well as traits that influence his success in fertilizing ova when 32 

in competition with sperm from other males (Parker 1998, Kvarnemo and Simmons 2013). 33 

Theoretical models predict that investment into traits that influence mating success should 34 

limit investment into ejaculate traits that affect fertilization success, and vice versa (Parker 35 

1998, Parker et al. 2013). Recently, an increasing number of studies have focused on 36 

understanding covariance between pre- and post-copulatory sexually selected traits across 37 

species (i.e. macroevolutionary patterns of trait variation). To date, the majority of these 38 

studies have focused on pre-copulatory traits linked to aggressive male interactions, notably 39 

weaponry and body size (Lüpold et al. 2014, Simmons et al. 2017), but the theoretical 40 

predictions should equally apply to any pre-copulatory trait that requires costly investment, 41 

such as displays, ornaments, and vocalizations. Similarly, investment in post-copulatory traits 42 

has also typically focused on a limited set of traits, and especially testes size (Lüpold et al. 43 

2014, Simmons et al. 2017). This is because larger testes produce more sperm (Amann 1970, 44 

Møller 1988), thereby providing a numerical advantage under conditions of sperm 45 

competition and increasing male competitive fertilization success (Parker 1982). In contrast, 46 

ejaculate features such as sperm size and quality have been less frequently considered, with 47 

few exceptions such as Lüpold et al. (2015). Such traits, however, may influence fertilization 48 

success and, given that producing competitive ejaculates is likely to incur costs, are predicted 49 

to influence pre-copulatory trait investment. 50 

We investigated the across-species covariance between pre- and post-copulatory traits 51 

using 21 species of Old World leaf warblers (Family Phylloscopidae), a group of small, 52 

socially monogamous songbirds that experience moderate to relatively high levels of sperm 53 
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competition. Across species, extra-pair paternity varies from 20%-45% (Supriya et al. 2016), 54 

and both male-male competition and female choice are important processes in this group 55 

(Marchetti 1998, Forstmeier et al. 2002). Thus, both pre- and post-copulatory episodes of 56 

sexual selection are likely to be important in this system and may shape patterns of trait 57 

diversification across species. 58 

We choose to examine among species variation in vocalizations as our pre-copulatory 59 

trait of interest. Though limited, a few studies have considered vocal characteristics or the 60 

anatomy underlying sound production in examinations of the relationship between pre- and 61 

post-copulatory traits (Dunn et al. 2015, Charlton and Reby 2016). In the Old World 62 

warblers, male song is the focus of both female choice and male-male competition (Marchetti 63 

1998, Mahler and Gil 2009) and in two species song duration and performance measures are 64 

linked to female choice of extra-pair males (Forstmeier et al. 2002, Gil et al. 2007). In birds 65 

more generally, many aspects of song (e.g. song duration) are linked to female mate choice in 66 

both lab (Wasserman and Cigliano 1991, Caro et al. 2010) and field settings (Martín-Vivaldi 67 

et al. 1999, Woodgate et al. 2012). It also appears that longer songs are generally costly to 68 

produce (Oberweger and Goller 2001, Gil and Gahr 2002). Moreover, food supplementation 69 

and/or nutritional enrichment increases song output in adults (Thomas 1999, Casagrande et 70 

al. 2014, Yamada and Soma 2016), and males with longer songs can incur costs due to high 71 

social aggression from other males (sensu the cost of a “badge” Vehrencamp 2000; Lattin and 72 

Ritchison 2009, see Linhart et al. 2012 for an example in Phylloscopus). Thus males singing 73 

longer songs appear to allocate more resources to traits linked to pre-copulatory success 74 

relative to those singing shorter songs. In birds, an alternative pre-copulatory trait of interest 75 

is plumage dichromatism (Dale et al. 2015, Dunn et al. 2015). We chose not to assess sexual 76 

dichromatism, however, because these warblers are sexually monochromatic (Price et al. 77 

2000), and thus plumage dichromatism is less likely to reflect pre-copulatory sexual selection 78 
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compared to vocal traits in this group (but see (Marchetti 1998) for an example of male 79 

colour patches influencing mating success in one Phylloscopus species). 80 

We used total sperm length as our post-copulatory trait. Though few comparative 81 

studies have considered sperm length (see Lupold et al. 2015 for an exception), it is widely 82 

held that sperm length is shaped by sperm competition in a range of taxa (Pitnick et al. 2009), 83 

including birds (Immler et al. 2011). Moreover, sperm size has been linked to male 84 

reproductive success in wild, free-living passerines (Laskemoen et al. 2010, Calhim et al. 85 

2011), and, in the zebra finch (Taeniopygia guttata), sperm competition experiments have 86 

shown that sperm length influences fertilization success, with males possessing longer sperm 87 

siring a significantly greater proportion of embryos relative to males with short sperm 88 

(Bennison et al. 2015). Producing longer sperm is also considered costlier than producing a 89 

shorter sperm (Pitnick et al. 1995, Ramm and Stockley 2010, Godwin et al. 2017). Thus 90 

sperm length reflects a sexual trait that is both costly and the product of post-copulatory 91 

sexual selection, and as such theoretical models predict that sperm length will trade-off with 92 

energy invested in pre-copulatory sexually selected traits. In addition, for a subset of species, 93 

we examined variation in testes mass as a measure of post-copulatory investment in sperm 94 

production. In birds, relative testes mass is positively correlated with rates of extra-pair 95 

paternity (Moller and Briskie 1995), and has been widely used as an index of sperm 96 

competition in across-species comparisons (e.g. Pitcher et al. 2005, Rowe et al. 2015).  97 

 98 

Methods 99 

Data collection  100 

We gathered data on song and sperm for 21 species of Old World leaf warblers. We focused 101 

on two specific, clearly defined song traits, total number of elements in the song, where 102 

element is defined as a continuous sound trace on the spectrogram (hence this measure is 103 
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equivalent to the number of gaps plus 1), and song duration. Song data are from Mahler and 104 

Gil (2009), with the exception of 4 species in our dataset that were not covered in that study. 105 

We measured traits for these 4 species using songs downloaded from xeno-canto.org or 106 

provided by P. Alström (personal communication). All song measurements were made using 107 

Raven lite (Charif et al. 2006). We used 5 songs per male from three males of each species 108 

and used the average of these measures for our analysis; such sample sizes are sufficient 109 

given the high repeatability of song traits within species in these warblers (Mahler and Gil 110 

2009) (Supplementary data S1).  111 

Data on sperm length and testes mass were taken from Supriya et al. (2016). Sperm 112 

midpiece, flagellum, and total length were highly correlated (all pairwise r = 0.99, p <0.0001) 113 

and for all analyses we used total sperm length. Analyses using midpiece length, however, 114 

returned similar results (data not shown). For one species, Phylloscopus reguloides, data were 115 

available from two distinct populations (one individual per population). As sperm length for 116 

these two populations differed considerably, we chose not to use an average value from these 117 

individuals, but instead used data from one individual in all our analyses. We repeated our 118 

analyses using data from the other individual, and the results were qualitatively similar 119 

(results not shown).  120 

We included two other variables in our analysis: mid-latitude of breeding range and 121 

body mass. Body mass data was collected from the literature (Price et al. 1997, 2014, 122 

Carrascal et al. 2008). Mid-latitude was included because song duration has been reported to 123 

increase with latitude in these warblers (Irwin 2000, Singh and Price 2015). Mid-latitudes 124 

were taken from Price (2010) or estimated from maps available at birdlife.org. 125 

 126 

Statistical analysis  127 
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All variables except mid-latitude were log-transformed before analysis. Correlations among 128 

variables are given in Table 1; note song duration and total number of elements were only 129 

moderately correlated (r = 0.6), therefore we conducted our analyses using both song duration 130 

and total number of elements separately. We controlled for phylogeny in our analyses based 131 

on the tree reported in Supriya et al. (2016; see Fig. 1). Because we do not expect any 132 

particular direction of causality between song and sperm traits, we calculated phylogenetic 133 

partial correlations between total sperm length and each of the song variables, while 134 

controlling for body mass and mid-latitude using the approach laid out in Lüpold et al. 135 

(2015). Briefly, we obtained phylogenetic independent contrasts for all variables using the R 136 

package APE (Paradis et al. 2004). Next, we constructed a matrix of pairwise correlations 137 

between contrasts of song traits, sperm length, body mass and mid-latitude using the formula 138 

given in Crawley (2012) and used the R package CORPCOR (Schäfer et al. 2014) to convert 139 

the correlation matrix into the partial correlation matrix. We assigned a p-value to the partial 140 

correlations from multiple regressions using phylogenetic generalized least squares using the 141 

R package CAPER with no transformations of branch length (Orme et al. 2013). In order to 142 

visually interpret the correlations, we assigned phylogenetic independent contrasts to nodes 143 

on the phylogeny to identify those nodes at which changes in trait values have been 144 

especially large (Richman and Price 1992). Since the strength of correlation between traits 145 

may change over the course of the evolutionary history of a clade (Revell and Collar 2009), 146 

this approach is a better way to visualize correlation between traits than simple plots of 147 

contrast values. Finally, because differences in the evolutionary lability of traits can affect the 148 

strength of correlated evolution between them, we calculated Blomberg’s k as an estimate of 149 

the phylogenetic signal in the song traits, sperm length and testes mass (Blomberg et al. 150 

2003), using the R package Picante (Kembel et al. 2010). Values of k < 1 indicate high trait 151 

lability, that is, closely related species tend to differ in trait values and large contrasts are near 152 
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the tips of the phylogeny, whereas values > 1 indicate related species tend to be highly 153 

similar in trait values and thus large contrasts occur near the base of the phylogeny. The R 154 

code we used for analyses and figures is available as a supplement to this paper.  155 

  156 

Results 157 

Visualization of the phylogenetic independent contrasts in total sperm length and number of 158 

song elements showed large contrasts at the base of the phylogeny for both traits, with some 159 

further large contrasts in number of song elements among the tips of the tree (Fig. 1a).  After 160 

controlling for phylogeny, the correlation between sperm length and number of song 161 

elements was r = 0.41, P = 0.06 (N = 21) and the partial correlation (i.e. correlation 162 

controlling for body mass and latitude) was r = 0.36, P = 0.13 (Fig 1b).  Corresponding 163 

values for the correlation between sperm length and song duration was r = 0.18, P = 0.4, 164 

while values for the partial correlation controlling for body mass and latitude was r = 0.07, P 165 

= 0.8 (Fig. 1c).  166 

 After controlling for phylogeny, the correlation between testes mass and number of 167 

song elements was r = 0.02, P = 0.95 (N = 10) and the partial correlation (i.e. the correlation 168 

controlling for mass and latitude) was r = -0.096, P = 0.82 (Fig. 2a). Corresponding values for 169 

the correlation between testes mass and song duration were r = 0.54, P = 0.1, while the partial 170 

correlation controlling for mass and latitude was r = 0.56, P = 0.15 (Fig. 2b) 171 

 Blomberg’s k values for the two song traits were less than 1 (N = 21 species, total 172 

number of song elements, k = 0.79, p = 0.04; song duration k = 0.71, p= 0.06; all p-values for 173 

randomization tests against k = 1), implying that song has high phylogenetic lability. In 174 

contrast, values of Blomberg’s k indicate a strong phylogenetic signal in total sperm length 175 

(total length k = 1.72;  p < 0.001). Testes mass did not show the same phylogenetic 176 
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conservatism as sperm length (testes mass k= 0.67, p= 0.53 (N = 10 species); for the same 177 

subset of 10 species: total sperm length k= 1.1, p= 0.06; song duration k= 0.66, p= 0.53).  178 

 179 

Discussion 180 

In contrast to predictions from theory, we found no support for a negative correlation 181 

between the expression of pre- and post-copulatory sexual traits among Old World leaf 182 

warblers. In fact, across-species, species with longer songs and more song elements tended to 183 

have longer sperm and larger testes, with border-line significance in some correlations. Many 184 

empirical studies have reported positive correlations or a lack of correlation between pre- and 185 

post-copulatory traits across species (Lüpold et al. 2014, Simmons and Fitzpatrick 2016), 186 

including studies reporting positive covariance between testes mass and song (Greig et al. 187 

2013) and positive or no correlation between testes mass and plumage characteristics (Dunn 188 

et al. 2001, Hegyi et al. 2008) in birds. We suggest that these positive correlations may arise 189 

because in some species males allocate more energy into reproduction than others, likely due 190 

to differences in life history and ecology, and when they do so they invest more energy into 191 

both obtaining matings and securing fertilizations subsequent to mating. Thus, variation in 192 

overall resource investment contributes importantly to variation among species in terms of 193 

the expression and interrelationship of pre- and post-copulatory sexually selected traits. As 194 

such, resource variation makes it difficult to use comparative studies to assess trade-offs 195 

between these traits, in much the same way that, within species, trade-offs between life-196 

history can be obscured by the overall condition of individuals, with some males investing 197 

more in all stages of the life-history than others (Van Noordwijk and de Jong 1986, Price et 198 

al. 1993). 199 

Variation in investment may arise for two distinct reasons. First, the intensity of 200 

sexual selection may differ across species, which can be caused by variation in life-history or 201 
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ecological factors such as changes in operational sex ratio or breeding density (Emlen and 202 

Oring 1977, Kokko and Rankin 2006, Lüpold et al. 2017, Janicke and Morrow 2018). In this 203 

case, in some species males invest more into fertilization success, at costs to their survival, 204 

and in other species males are longer lived, and invest less into fertilization success at each 205 

reproductive bout. An alternative, but not necessarily mutually exclusive, explanation for 206 

variation in investment is that costs of increased investment in sexually selected traits may 207 

differ across environments. For example, some species may breed in locations with a large 208 

food flush leading to a reduction in the cost of traits.  209 

In Old World Leaf Warblers, we suggest both factors may contribute to variation in 210 

total investment into sexual selection across species. Song duration correlates with latitude 211 

across warbler species (Mahler and Gil 2009, Singh and Price 2015), and one explanation for 212 

this is that costs of singing are reduced in the north (Irwin 2000, Singh and Price 2015). In 213 

addition, body size should correlate with investment into sexually selected traits, because it is 214 

reasonable to assume that a given absolute investment would be less costly for a larger 215 

species. Body size is positively correlated with total sperm length and both song duration and 216 

total number of song elements in our dataset (Table 1). However, including body size and 217 

latitude had only a small effect on the correlation between sperm length and number of 218 

elements, reducing significance from P = 0.06 to P = 0.13. We confirmed the small influence 219 

from a stepwise regression analysis in which mass and latitude dropped out before song 220 

elements (not shown). Hence we suggest that, beyond influences of latitude and body size, 221 

males of some species invest more in reproduction than others and this accounts for the 222 

positive correlations reported here; which is consistent with suggestions from a number of 223 

other studies reporting positive across-species correlations in pre- and post-copulatory traits 224 

(Simmons and Fitzpatrick 2016, Lüpold et al. 2017) 225 
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The positive correlations we detected in the current study were weak. This might 226 

indicate that the pre- and post-copulatory sexually selected traits we examined only partially 227 

reflect pre- and post-copulatory investment, resulting in considerable ‘noise’ in the data. 228 

Although there is evidence that the traits we investigated i.e. song and sperm length are 229 

important targets of pre- and post-copulatory sexual selection in warblers, other pre-230 

copulatory traits such as territory quality, proportion of time spent on singing, colour of 231 

patches (Marchetti 1998) and post-copulatory traits such as sperm number and 232 

quality(Simmons and Fitzpatrick 2012, Fitzpatrick and Lüpold 2014) could contribute to 233 

differences in pre- and post-copulatory investment across species. Another reason for the 234 

weak correlation might be due to the difference in evolutionary lability of the traits we 235 

examined. While sperm length shows a strong phylogenetic signal, song is culturally 236 

transmitted and is an evolutionarily labile trait (Mahler and Gil 2009; this study). In fact, 237 

major differences in sperm length arose early in the evolutionary history of this group 238 

(Supriya et al. 2016) (see dark squares in Figure 1a). By contrast, some closely related 239 

species exhibit striking differences in song duration (see dark circles in Figure 1a). In some 240 

instances, large differences in song duration correspond to little evolutionary change in sperm 241 

length and are associated with latitude (e.g. bonelli and sibilatrix), which correlates with song 242 

complexity in birds more generally (Weir and Wheatcroft 2011, Singh and Price 2015).  243 

 Ultimately, our findings suggest that the assessment of trade-offs will require 244 

consideration of a wide range of traits that affect pre-copulatory and post-copulatory 245 

reproductive investment. Such an approach has been recommended in a recent review of 246 

evolutionary trade-offs between pre- and post-copulatory traits, which suggested taking into 247 

account life-history, ecological, and mating system variables (Simmons et al. 2017) and we 248 

echo that sentiment here. Our results support one general thesis of that paper, which is when 249 

multiple components of a life-history are considered, positive correlations between pre- and 250 
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post-copulatory investment may arise because some species invest more into obtain 251 

fertilizations than others. 252 
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 432 

Table 1. Correlations among sperm and song traits in the Old World leaf warblers (N = 21, 

except for correlations involving testes mass, where N = 10).  Phylogenetically corrected 

correlations (correlations between contrasts) are below the diagonal and raw correlations 

above. All variables except mid-latitude were log transformed. Significant correlations (P <  

0.05) are in bold. 

 

       

       

Variables 

Sperm 

length, 

µm 

Total 

elements 

Song 

duration,

s 

Body 

mass’ 

g 

Mid-

latitude, 

˚N 

Combined 

testes mass, g 

Sperm length, µm   0.39 0.13 0.46 0.01 -0.53 

Total elements 0.41  0.63 0.6 0.48 -0.05 

Song duration, s  0.18 0.67  0.61 0.67 0.53 

Body mass, g 0.31 0.57 0.64  0.56 -0.006 

Mid-latitude, ˚N 0.07 0.51 0.73 0.58  0.26 

Combined testes 

mass, g 
-0.47 0.02 0.54 -0.02 0.24 
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Figure 1 (a) Phylogeny of the 21 Old World leaf warblers used in our study with 4 major 

clades indicated in green, blue, red and orange. Phylogenetically independent contrasts 

for total sperm length (circles) and number of song elements (squares) are shown at the 

nodes with darker shading indicating larger contrasts. Dark squares indicate divergence in 

sperm length arose primarily at the base of the phylogeny, while dark circles show 

divergence in song duration frequently occurred near the tips of the phylogeny 

 (b) Relationship between total sperm length and the number of song elements. Trend 

lines (reduced major axes) illustrates the relationship between song complexity and 

sperm length in the two most speciose groups. Phylogenetically corrected correlation 

across the entire clade (grey: N = 21, P = 0.06), and for the two larger clades with major 

axis trend lines indicated (blue: P = 0.098, red: P = 0.064). (c) Relationship between total 

sperm length and song duration. Phylogenetically corrected correlation across the entire 

clade (grey: N = 21, P = 0.4), and for the two larger clades with trend lines indicated 

(blue: P = 0.38, red: P = 0.26). All data were log-transformed before analysis.  
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Figure 2 Relationships between testes mass and song variables. Colour codes as in 

Figure 1. Combined testes mass refers to sum of left and right testis. All data were log-

transformed before analysis.  
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