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Nitric oxide (NO) produced by mammalian nitric oxide synthases (mNOSs)

is an important mediator in a variety of physiological functions. Crystal

structures of mNOSs have shown strong conservation of the active-site

residue Val567 (numbering for rat neuronal NOS, nNOS). NOS-like pro-

teins have been identified in several bacterial pathogens, and these display

striking sequence identity to the oxygenase domain of mNOS (NOSoxy),

with the exception of a Val to Ile mutation at the active site. Preliminary

studies have highlighted the importance of this Val residue in NO-binding,

substrate recognition, and oxidation in mNOSs. To further elucidate the

role of this valine in substrate and substrate analogue recognition, we gen-

erated five Val567 mutants of the oxygenase domain of the neuronal NOS

(nNOSoxy) and used UV-visible and EPR spectroscopy to investigate the

effects of these mutations on the heme distal environment, the stability of

the heme-FeII-CO complexes, and the binding of a series of substrate ana-

logues. Our results are consistent with Val567 playing an important role in

preserving the integrity of the active site for substrate binding, stability of

heme-bound gaseous ligands, and potential NO production.

Nitric oxide (NO) is an important mammalian signal-

ing molecule synthesized by nitric oxide synthase

(NOS). There are three distinct isoforms of mam-

malian NOS (mNOSs), the neuronal, inducible, and

endothelial NOS (n-, i- and e-NOS, respectively), that

can be distinguished by their initial cellular identifica-

tion, primary sequence, and modes of regulation [1–3].
The structure of the three mNOS isoforms can be

divided into two main parts: a N-terminal oxygenase

domain (NOSoxy) containing the heme prosthetic

group, with binding sites for substrate L-arginine

(L-Arg), and cofactor (6R)-5,6,7,8-tetrahydro-L-

biopterin (BH4), and a C-terminal reductase domain

containing binding sites for cofactors, FMN, FAD,

and NADPH. These two domains are connected by a

calmodulin-binding sequence [4,5]. NOS converts

L-Arg to L-citrulline and NO in a two-step oxidation

with the intermediate formation of Nώ-hydroxy-L-Arg

(NOHA) in the first step (Fig. 1) [6].

Low levels of NO are important in a variety of

physiological functions, such as neurotransmission,

immune response, and vasodilation. High levels of NO

are involved in several pathologies associated with

oxidative stress phenomena such as atherosclerosis,
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Alzheimer’s, Huntington’s, and Parkinson’s diseases,

most of which are linked to the concomitant formation

of superoxide, hydrogen peroxide, and peroxynitrite by

a variety of enzymes including NOSs [7–13]. These

findings show important pharmacological challenges

with respect to the elucidation of NOSs mechanism

and the search and discovery of potent selective inhibi-

tors [14–16]
Despite the broad range of biological activity of the

three mNOSs, the crystal structures of their oxygenase

domains have shown a very strong conservation of the

heme active-site residues (Fig. 2A) [21–25] with identi-

fication of key amino acids involved in the binding of

substrates L-Arg and NOHA. Crucial hydrogen bonds

are formed between the guanidine or hydroxyguani-

dino groups of L-Arg and NOHA and the highly con-

served Glu592 (rat nNOS numbering) thus governing

their binding close to the heme (Fig. 2A) [22,26,27].

Furthermore, the crystallographic studies showed a

hydrogen-bond network, involving L-Arg, diatomic

ligands, and an active-site water molecule that could

be involved in proton shuttling during catalysis [28,29].

It has been proposed that this water molecule is

important in step 1 by hydrogen bonding to the high-

valent oxo intermediate, while step 2 propagates

through a different mechanism [30–32]. Previous stud-

ies have also identified hydrogen bonds between the

OH-group of the highly conserved Tyr588 and the

a-COOH-group of L-Arg and NOHA believed to be of

importance in substrate recognition with mutations of

Tyr588 strongly altering substrate binding and oxida-

tion [33,34]. Although neither the substrate nor BH4

coordinate as heme iron ligands, it has been shown

that their binding markedly influences the heme iron

properties by shifting the heme iron spin equilibrium

toward high-spin state altering its electron properties

and binding of ligands like CO and NO [35–42].
Mammalian NOSs have been shown to also catalyze

the oxidation of non-amino acids, N-alkyl-guanidines

and N-aryl-N’-hydroxy-guanidines, with subsequent

NO formation, following a similar oxidation as that of

natural substrates L-Arg and NOHA [43–47]. Crystal

structures of the NOSoxy domains have revealed a

novel binding mode where the alkyl chains move

toward a hydrophobic pocket at the heme distal site

comprising highly conserved residues Phe, Pro, and

Val (Fig. 2) [24]. We have previously reported the

importance of Val567 in full-length nNOS for the

binding and oxidation of L-Arg, NOHA, and alterna-

tive substrates to NO [48]. Furthermore, this Val resi-

due is highly conserved among the different mNOSs

and eukaryotic NOSs. However, in the majority of

bacterial NOSs, this conserved Val has been replaced

by an Ile believed to create a greater steric shielding of

the heme prosthetic group. This results in a much

slower NO dissociation compared to its mammalian

counterpart [49–51].
In order to better understand the importance of this

Val residue on the heme distal environment and sub-

strate recognition, five nNOSoxy Val567 mutants were

constructed. Here, we report the spectroscopic charac-

terization of wild-type (WT) nNOSoxy and five Val567

mutants and their ability to bind L-Arg, NOHA, and a

series of non-amino acid guanidines.

Fig. 1. The two-step reaction catalyzed by NOSs. The first step involves the initial hydroxylation of L-Arg resulting in the formation of Nx-

hydroxy-L-arginine (NOHA) followed in a second step by the oxidation of NOHA to L-citrulline and NO with overall consumption of 1.5 mol

NADPH and 2 mol O2 per mol of L-citrulline and NO formed.
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Materials and methods

Chemicals

BH4 was purchased from Schircks Laboratories (Jona,

Switzerland). L-Arg 1, Nx-nitro-L-Arg 3, Nx-methyl-L-Arg

4, and most of the other reagents were obtained from

Sigma and were of the highest purity commercially avail-

able. The synthesis and physicochemical characteristics of

NOHA 2, n-propyl-guanidine 5, n-butyl-guanidine 6,

n-pentyl-guanidine 7, cyclopropyl-guanidine 8, isopropyl-

guanidine 9, 4-trifluoromethyl-phenyl-guanidine 10, 4-fluor-

ophenyl-guanidine 11, and 4-methoxyphenyl-guanidine 12

have been previously described (Fig. 3) [32,47].

Protein expression and purification

The plasmid pCWnNOSoxy (aa 1–720 plus a 6-histidine

tag) [52] was transformed into BL 21 (DE3) cells (Novagen,

Darmstadt, Germany). Cells were grown from freeze stocks

in 100 mL Luria-Bertani medium containing 100 lg�mL�1

ampicillin overnight at 37 °C with vigorous shaking. The

overnight culture was diluted 100-fold into 1 L Terrific

broth. When cells had grown to an OD600 of 0.8–1, the

cultures were cooled to 25 °C before induction by adding

isopropyl b-D-1-thiogalactopyranoside and d-aminolevulinic

acid to final concentrations of 1 mM and 0.2 mM, respec-

tively. Cultures were grown for 65–72 h at 20 °C before

cells were harvested by centrifugation (~6400 g, 15 min).

The cell paste was then stored at �20 °C prior to purifica-

tion.

Cells were suspended in 200 mL buffer A [50 mM Tris/

HCl pH 7.4, 250 mM NaCl, 20% glycerol, 1 mM DTT,

1 mM EDTA, 0.8 mg�mL�1 lysozyme, 1 mM phenylmethyl-

sulfonyl fluoride (PMSF)] and a cocktail of protease inhibi-

tors (pepstatin A, leupeptin, and antipain, 1 lg�mL�1 each)

and lysed using sonication. Cell debris was removed by

centrifugation (~48 000 g, 60 min at 4 °C). DNA was pre-

cipitated by adding streptomycin sulfate to a final concen-

tration of 2.5% (w/v) and discarded after centrifugation at

48 000 g for 30 min at 4 °C. Finally, solid ammonium sul-

fate (0.291 g�mL�1) was added to the supernatant to pre-

cipitate proteins and the precipitate was removed by

centrifugation (~15 000 g, 45 min at 4 °C). The precipitated

proteins were dissolved in binding buffer B (50 mM Tris/

HCl pH 7.4, 250 mM NaCl, 10% glycerol, 10 mM imidazole

(ImH), 1 mM PMSF, and 1 mM DTT) and applied to a

5 ml HisTrap HP (GE Healthcare, Oslo, Norway) column

Fig. 2. Structure of the nNOS active site (PDB id 1OM4) showing the main interactions between the substrate and the residues close to

the heme. The residues are colored according to the conservation score determined by ConSurf [17–20] from searching for homologous

sequences of the rat nNOSoxy domain sequence (turquoise: least conserved, purple: most conserved). (A) Structure shown with L-Arg and

Water 1a (yellow, PDB id: 1OM4). (B) Same as A but in the presence of N-butyl-N’-hydroxyguanidine (green, PDB id: 1M00) and

N-isopropyl-N’-hydroxyguanidine with structural water molecule (turquoise, PDB id 1LZZ) [24].
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pact with Ni Sepharose High Performance affinity resin

using an €AKTA purifier FPLC system (GE Healthcare).

Proteins were eluted using a stepwise gradient of 10–50 mM

ImH in purification buffer C (50 mM Tris/HCl pH 7.4,

250 mM NaCl, and 10% glycerol). The colored nNOSoxy

fractions were pooled, and dialysis was performed to

remove ImH using dialysis tubing of cellulose membrane in

buffer D (50 mM Tris/HCl pH 7.4, 250 mM NaCl, 20%

glycerol, 1 mM DTT). After 2 h at 4 °C, buffer was replen-

ished and protein left to stir overnight at 4 °C. The protein

was concentrated in a Centricon Plus-70 filter unit (30-kDa

cutoff, Merck Millipore, Oslo, Norway). To avoid denatu-

ration of nNOSoxy, all buffers contained 10 lM BH4.

Purified WT nNOSoxy and Val567 mutants were more

than 95% pure as determined by SDS/PAGE stained with

Coomassie Blue [53,54].

The heme concentration was measured using UV-visible

spectroscopy (see below), and samples were aliquoted,

flash-frozen in liquid nitrogen, and stored at �80 °C.

Mutagenesis

Site-directed mutagenesis of the pCWnNOSoxy expression

plasmid was performed using a QuikChange site-directed

mutagenesis kit (Stratagene, La Jolla, CA, USA). The

mutations were incorporated into the primers as follows:

Val567Ser 50 GGC-CTC-CCC-GCT-AGC-TCC-AAC-AT

G-CTG-CTG

Val567Thr 50 GGC-CTC-CCC-GCT-ACG-TCC-AAC-AT

G-CTG-CTG

Val567Tyr 50 GGC-CTC-CCC-GCT-TAT-TCC-AAC-AT

G-CTG-CTG

Val567Phe 50 GGC-CTC-CCC-GCT-TTT-TCC-AAC-AT

G-CTG-CTG

Val567Arg 50 GGC-CTC-CCC-GCT-CGT-TCC-AAC-AT

G-CTG-CTG

The mutations were confirmed by sequencing (GEN-

OME express, Maylan, France) 500–800 consecutive/over-

lapping base pairs including the mutations sites.

UV-visible spectroscopy

Optical spectra were recorded using an Uvikon 941 spec-

trophotometer in 150-lL quartz cuvettes. The concentra-

tion of nNOS was determined optically from the [CO-

reduced]-[reduced] difference spectrum using De444–
470 nm = 76 mM

�1�cm�1 [55].

The stability of FeII-CO complexes of WT nNOSoxy

and its mutants was monitored at room temperature

(~25 °C) following the absorbance at 443 nm over time in

the presence of 10 lM BH4 and in the absence or presence

of 10 mM L-Arg in 50 mM HEPES buffer pH 7.4. The

changes in absorption at 443 nm were then plotted over

time, and the percentage of remaining absorbance after

45 min were calculated.

The binding affinities of ImH, substrates L-Arg and

NOHA, and substrate analogues 3–12 for WT and Val567

mutants were determined by perturbation difference spec-

troscopy [37]. The native enzymes (~1–2 lM) were incu-

bated 5 min at 4 °C in 50 mM HEPES buffer pH 7.4 in the

presence of 0.5 mM ImH and then equally divided into ref-

erence and sample cuvettes. After 2 min at room tempera-

ture, increasing concentrations of the studied compounds

were added to the sample cuvette and equivalent amounts

of buffer were added to the reference cuvette. Apparent dis-

sociation constants (Ks,app) were estimated by plotting the

difference in absorbance between peak (~395 nm) and val-

ley (~430 nm) as a function of added substrate or substrate

analogue concentrations and fitting the data to a hyper-

bolic one-site binding model by Origin (OriginLab Corp.,

Northampton, MA, USA). The Ks,app for substrates and

Fig. 3. Structures of the studied guanidines 1–12.
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substrate analogues does not take into account the

dissociation constant of ImH. Effective Ks values can be

deduced from the Ks,app and the Ks values for ImH, assum-

ing simple competitive binding equilibrium [37].

Electron paramagnetic resonance spectroscopy

The WT and mutants protein sample (~100 lM based on

heme concentration, final volume 90 lL) were incubated at

4 °C in 50 mM HEPES buffer pH 7.4 containing 10% glyc-

erol and 10 lM BH4 under argon. After 10 min, samples

were flash-frozen in quartz EPR tubes and stored at

�80 °C prior to spectroscopic measurements. EPR spectra

were recorded on a Bruker Elexsys 560 EPR spectrometer

operating at X-band frequency (9.66 GHz) equipped with

an ER41116DM dual mode cavity using a He-flow cryostat

(ESR900 Oxford Instruments, Abingdon, UK) and an

Oxford Instrument liquid helium probe. The following

instrument settings were used: modulation frequency,

100 kHz; modulation amplitude, 0.75 mT; time constant,

0.02 s; scan width, 0.5 T; field sweep, 100 mT�min�1; center

field, 255 mT; and sweep time 168 s, 4 mW applied micro-

wave power, and averaged four scans.

Homology modeling of mutations

To obtain an estimation of the probable orientation of the

different Val567 mutants, they were subjected to homology

modeling using SWISS-MODEL [56–59] with the mutated

sequences as target sequences. The sequence similarity

search through SWISS-MODEL resulted in the structure

with PDB id 3HSO to be the best fit, and this structure

was utilized by Automodel for the homology modeling of

the different mutants. The heme group was included (PDB

id 3HSO) in the homology modeling. In a further step, L-

Arg was added to the five different models of the Val567

mutants, and a small geometry minimalization with Phenix

was performed [60]. Structure figures were generated with

PyMOL (Schr€odinger, LLC).

Results

To investigate the importance of an active-site residue

at the hydrophobic site of the distal heme pocket of

nNOSoxy, we mutated Val567 (nNOSoxy) into both

different hydrophobic (Phe, Tyr) and polar (Arg, Ser,

Thr) residues. Val to Phe and Tyr mutations would

give information on steric hindrance and possible p–p
interactions. Ser and Thr mutations were introduced

to explore the effects of disrupting the hydrophobic

pocket, and the effects of introducing a positive charge

were investigated by introducing an Arg residue. Using

established protocols, we successfully expressed WT

nNOSoxy and five mutants from transformed Escheri-

chia coli. WT nNOSoxy, and its Val567Ser, Val567Tyr,

and Val567Thr mutants were purified in almost identi-

cal yield (3–5 mg�L�1 of culture), and Val567Phe was

obtained in a slightly higher yield (6–8 mg�L�1 of cul-

ture), whereas Val567Arg was obtained in a lower

yield (1–2 mg�L�1 of culture).

UV-visible spectroscopic properties of WT

nNOSoxy and Val567 mutants

The optical absorption spectra of the purified heme-

FeIII and FeII-CO complexes of WT nNOSoxy and

its mutants were recorded (Fig. 4). WT nNOSoxy

exhibited a broad Soret peak centered at 400 nm

associated with a high-spin heme-FeIII complex,

whereas all the mutants absorbed at 415–419 nm,

indicating that they predominantly existed as low-spin

heme-FeIII complexes. Addition of dithionite to the

proteins caused heme reduction as evident by the

shift in Soret peak to 414 nm, and addition of CO

caused an immediate built-up of the heme-FeII-CO

complexes with characteristic Soret peak at 443 nm

(Fig. 4). However, this peak disappeared as a func-

tion of time with concomitant formation of an

absorption peak at 420 nm in all proteins (Fig. 5).

The presence of this 420 nm absorbing peak sug-

gested the existence of another form of the NOS

heme-FeII-CO complexes for WT and mutants [61].

To determine the impact of the Val567 mutations on

the stability of FeII-CO complexes, we followed the

time-dependent disappearance of the 443 nm absorp-

tion peak. Previous studies have shown that the WT

nNOS FeII-CO complex is destabilized in the absence

of BH4 and L-Arg [35,61]. Accordingly, we recorded

the stability of the WT and mutants NOS heme-
FeII-CO complexes in the absence or presence of

10 mM L-Arg (Table 1). As expected, in the absence

of L-Arg, the species absorbing at 443 nm of WT

nNOSoxy and of the Val567 mutants were unstable

with a shift of absorbance to 420 nm over time

(Fig. 5) [61,62]. The heme-FeII-CO complexes absorb-

ing at 443 nm of the Val567Tyr and Phe mutants

were less stable than those of the WT nNOSoxy,

Val567Ser, Thr, and Arg mutants with the Val567Phe

mutant being the least stable (Table 1). Interestingly,

in the presence of L-Arg, the stability of the heme-
FeII-CO complexes of WT nNOSoxy and Val567Ser

and Thr mutants was strongly increased. By contrast,

the stability of the heme-FeII-CO complexes of

Val567Phe was almost unchanged and that of

Val567Tyr and Arg slightly reduced in the presence

of L-Arg (Table 1).
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Fig. 4. Optical absorbance spectra of purified WT nNOSoxy and its mutants Val567Ser, Val567Arg, Val567Tyr, Val567Thr, and Val567Phe.

The black line shows the native FeIII form, the red line the dithionite reduced FeII, and the blue line the heme-FeII-CO complexes. Spectra

were recorded in 50 mM HEPES buffer pH 7.4 containing 0.1 M KCl and 10 lM BH4.
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EPR spectroscopic properties of WT nNOSoxy

and Val567 mutants

The EPR resonance spectra of native WT nNOSoxy

and of the different Val567 mutants were recorded at

10 K and in the presence of BH4 (Fig. 6). The oxi-

dized form of WT nNOSoxy (Fig. 6A) showed signa-

tures typical of ferric heme complexes in equilibrium

between high (S = 5/2) and low (S = ½) spin states

[38]. Both the high- and low-spin components of the

heme spin-state equilibrium were visible and resolved.

The resonances falling at g = 7.70, 4.15, 1.85 corre-

sponded to the high-spin fraction of the ferric heme,

and the EPR signals with resonances at g = 2.49, 2.26,

1.85 corresponded to the low-spin state fraction. By

contrast, the EPR spectra of the Val567Phe mutant

showed an EPR spectrum clearly distinct from that

observed with WT nNOSoxy (Fig. 6B) with the char-

acteristic high-spin signal set around g = 7.70 not dis-

cernable. A weak resonance at g = 5.85 was observed,

and a relatively strong and asymmetric EPR signal

emerged at g = 4.11 which could correspond to adven-

titious rhombic high-spin ferric iron attributed to con-

tamination of nonspecifically bound iron. A cluster of

poorly resolved signals appearing in the range

1.7 < g < 2.8 indicated the presence of several confor-

mations for the low-spin components, distinct of those

observed for WT nNOSoxy. The Val567Thr (Fig. 6C)

and Val567Ser mutants (data not shown) exhibited

very weak high-spin signatures falling at g = 7.70 and

other heme high-spin signals at g = 4.26 in addition to

several signals observed in the region g = 2.8–1.8 cor-

responding to mixtures of several low-spin heme spe-

cies, distinct from those observed for WT nNOSoxy.

Similar mixtures of low-spin heme species were

observed for the Val567Tyr and Arg mutants without

any signal around g = 7.7 (data not shown).

Affinity of WT nNOSoxy and Val567 mutants for

imidazole

Determination of the ImH binding constants (Ks val-

ues) for WT and mutants was obtained by stepwise

additions of ImH to the native ferric proteins. All the

proteins formed a low-spin heme-FeIII-ImH complex

with a shift from 400 (WT) or 415 (mutants) nm to

425–430 nm characteristic of heme–thiolate proteins

with nitrogenous ligands [37]. WT nNOSoxy displayed

Ks values close to 75 lM. The Val567Thr mutant dis-

played an almost identical affinity for ImH, whereas

the Val567Ser, Val567Phe, and Val567Arg mutants

displayed twofold to fourfold lower affinity. Interest-

ingly, ImH displayed a much higher affinity for the

Val567Tyr mutant (Table 2).

Affinity of WT nNOSoxy and Val567 mutants for

Guanidines 1–12

The apparent dissociation constants (Ks,app) of L-Arg 1

and its derivatives 2–12 for WT nNOSoxy and

mutants were determined by difference spectroscopy

after the addition of 0.5 mM ImH to completely con-

vert their heme-FeIII complexes into low-spin hexaco-

ordinated heme-FeIII-ImH complexes as described

Fig. 5. Time-dependent disappearance of the heme-FeII-CO

complex of WT nNOSoxy. The black line shows the spectrum

recorded just after addition of sodium dithionate and bubbling of

CO in the sample cuvette containing WT nNOSoxy in 50 mM

HEPES buffer pH 7.4 and 10 lM BH4. Spectra were then recorded

every 10 min thereafter. The arrows show the disappearance of

the 443 nm peak and appearance of the 420 nm peak. Data are

representative of a typical experiment.

Table 1. Effects of mutations and L-Arg addition on the stability of

the heme-FeII-CO complexes of WT nNOSoxy and its mutants.

� L-Arg + L-Arg

WT 45 95

Val567Ser 50 85

Val567Thr 35 70

Val567Phe 20 35

Val567Tyr 30 20

Val567Arg 40 25

Results are expressed as % of the absorbance of the peak at

443 nm remaining after 45 min at room temperature. WT nNOSoxy

or its mutants in HEPES buffer pH 7.4 containing 10 lM BH4 alone

or BH4 + 10 mM L-Arg were equally distributed in sample and refer-

ence cuvettes. Both cuvettes were reduced with the addition of

sodium dithionate, and CO was bubbled into the sample cuvette.

Spectra were immediately recorded and every 10 min thereafter.

Data are representative of a typical series of experiments.
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previously [37]. The stepwise addition of L-Arg to the

FeIII-ImH complex of WT nNOSoxy and mutants

gave rise to difference spectra characterized by a peak

at 390–395 nm and a through at 420–427 nm [37],

except Val567Arg which showed no discernible differ-

ence spectra. Similar titrations of WT nNOSoxy and

mutants in the presence of ImH were performed with

the substrate analogues 2–12. A typical result is shown

in Fig. 7A, which shows the difference spectra

observed after stepwise additions of cyclopropyl-guani-

dine 8 to WT nNOSoxy containing 0.5 mM ImH. The

appearance of a peak at 395 nm and a through at

428 nm (Fig. 7A) indicated that the studied guanidine

bound to the protein in close proximity to the heme

and shifted the spin-state equilibrium toward the

high-spin state with displacement of bound ImH [37].

Plotting the absorption changes between peak and

trough as a function of added guanidine could be fit-

ted to a hyperbolic one-site binding model (Fig. 7B)

allowing the determination of the apparent dissocia-

tion constants (Ks,app) values shown in Table 3.

L-Arg tightly bound WT nNOSoxy, and a threefold

lower affinity was observed for the Val567Ser and

Thr mutants. Very low affinities of L-Arg for the Tyr

and Phe mutants were measured, and no interaction

could be observed between L-Arg and the Val567Arg

mutant. The substrate intermediate NOHA 2 dis-

played a lower affinity for WT nNOSoxy than L-Arg

but bound the Ser and Thr mutants with an almost

identical affinity as that of L-Arg. However, no bind-

ing could be observed between NOHA and the Phe

and Arg mutants. The usual inhibitors Nx-nitro-L-

Arg 3 and Nx-methyl-L-Arg 4 were potent ligands for

WT nNOSoxy and the studied mutants with a three-

fold to 70-fold higher affinity than L-Arg for the Ser

and Thr mutants (Table 3). The alkyl-guanidines 5–9
that do not bear an a-amino acid function displayed

strongly decreased affinity for WT nNOSoxy and

most of the mutants (60- to 160-fold relative to L-

Arg). The affinity of simple alkyl-guanidines 5–7
depended on the length of the alkyl chains with high-

est affinity obtained with n-propyl-guanidine 5. Inter-

estingly, isopropyl- and cyclopropyl-guanidines 8 and

9 displayed good affinity for Val567Ser with cyclo-

propyl-guanidine 9 tightly binding Phe and Tyr

mutants. Introduction of the bulky aryl-guanidines 11

and 12 20-fold decreased binding affinity for WT

nNOSoxy in comparison with L-Arg but led to an

almost identical affinity as that of L-Arg for the Ser

mutant. However, these aryl-guanidines 11 and 12

poorly bound the four other mutants while aryl-gua-

nidine 10 that bears a CF3-group at the paraposition

of the aryl ring did not interact with any of the stud-

ied proteins at the highest concentration tested

(Table 3). The Val567Ser and Val567Thr mutants

showed minimal deviation from WT nNOSoxy for

binding of substrate analogues. By contrast, introduc-

tion of the aromatic amino acid residues Phe and Tyr

led to strong deviations from WT and much more

pronounced effects were observed when introducing

the positively charged Arg.

Fig. 6. X-band EPR spectra of native WT nNOSoxy (A) and its

mutants Val567Phe (B) and Val567Thr (C). Spectra were recorded

at 10 � 2 K with 4 mW applied microwave power and in the

presence of 10 lM BH4 cofactor. The numbers in panels A–C

indicate g-values.

Table 2. Dissociation constants Ks (in lM) measured by UV-visible difference spectroscopy following the formation of the heme-FeIII-ImH

complexes by WT nNOSoxy and the studied mutants.

WT Val567Ser Val567Thr Val567Tyr Val567Phe Val567Arg

Ks 76.3 � 5.4 140 � 16 93.0 � 24.7 11.1 � 3.0 152 � 26 262 � 77
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Modeling of the effects of Val567 mutations on

the distal pocket

Modeling of the effects of Val567 mutations on the

structure of distal heme pocket with SWISS-MODEL

showed that the Ser and Thr mutations did not lead to

any significant differences from the Val residue except

changing the polarity of the hydrophobic pocket

(Fig. 8). The Arg mutant positioned its side chain

away from the hydrophobic pocket and the substrate

binding site (Fig. 8). The side chain of Phe and Tyr

mutants on the other hand were positioned so that

they would interfere with the L-Arg binding site. A

simple geometry optimization in the presence of L-Arg

showed that the position of both Phe and Tyr would

move slightly to mutually fit in the heme pocket (data

not shown).

Discussion

Previous works have demonstrated that the hydropho-

bic isopropyl side chain of Val567 residue in the

hydrophobic distal pocket of mNOSs plays a key role

in recognition and transformation of substrates and

stability of the FeIII-NO complex [24,49–51]. Crystal

structures also revealed a structural water molecule in

this hydrophobic pocket that can modify the active-site

geometry and contribute to the binding affinity of

ligands [63]. In the present study, we have compared

Fig. 7. (A) UV-visible difference spectra obtained upon addition of increasing concentrations of Cyclopropyl-Guanidine 8 to 1 lM WT

nNOSoxy containing 0.5 mM imidazole. (B) Plot of differences in absorbance (DAbsorbance) between 428 and 395 nm as a function of the

concentration of 8, and replot of 1/DAbsorbance versus 1/[ligand] giving a Ks,app value of 43.3 lM.

Table 3. Apparent dissociation constants (Ks,app) of substrate analogues 1–12.

Compounds No WT Val567Ser Val567Thr Val567Tyr Val567Phe Val567Arg

L-Arginine 1 1.7 � 0.6 3.4 � 1.2 3.6 � 0.8 402 � 58 145 � 50 > 1 mM

NOHA 2 11.8 � 2.4 5.8 � 1.7 6.9 � 2.5 214 � 42 > 1 mM 1.2 � 0.1

N-nitro arginine 3 1.4 � 0.5 0.42 � 0.14 0.96 � 0.33 9.7 � 1.6 19.8 � 3.4 1.9 � 0.5

N-Methyl arginine 4 0.57 � 0.08 0.41 � 0.06 0.13 � 0.03 5.5 � 1.9 48 � 17 71 � 25

n-Propyl-guanidine 5 317 � 60 122 � 8 267 � 63 295 � 16 >1 mM 326 � 51

n-Butyl-guanidine 6 269 � 20 322 � 31 23.0 � 5.6 >1 mM >1 mM >1 mM

n-Pentyl-guanidine 7 >1 mM >1 mM >1 mM >1 mM >1 mM >1 mM

Cyclopropyl-guanidine 8 43.3 � 6.5 21.6 � 3.9 20.2 � 3.9 24.3 � 1.4 6.4 � 0.7 237 � 85

Isopropyl-guanidine 9 47 � 12 34.2 � 4.2 99 � 19 147 � 43 293 � 34 > 500

4-trifluoromethyl-phenyl-guanidine 10 >1 mM >1 mM >1 mM n.d. >1 mM >1 mM

4-fluorophenyl-guanidine 11 29.0 � 3.8 2.2 � 0.4 n.d. >1 mM 165 � 87 n.d.

4-methoxyphenyl-guanidine 12 17.9 � 5.9 7.8 � 1.2 189 � 63 n.d. >1 mM >1 mM

Ks,app (in lM) were measured by UV-visible difference spectroscopy following displacement of the low-spin heme-FeIII-ImH complex to the

high-spin heme-FeIII complex upon addition of substrate analogues 1–12, as described in Materials and Methods. Error represents the error

associated with the fit curve used to calculate the Ks,app., and mean values of two to three experiments. n.d., not determined.
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the spectroscopic and binding properties of five

mutants of WT nNOSoxy that differ by the nature of

this Val567 residue. WT nNOSoxy and its mutants

were tested against a series of L-Arg analogues that

differ by modifications of the a-amino acid function,

the length of the side chain, and the presence of vari-

ous substituents on the guanidine function (Fig. 3).

Some of these compounds have previously been

reported to have different binding modes to the NOS

active site (Fig. 2B) [24,64].

UV-visible spectrum of WT nNOSoxy showed a

broad Soret absorption peak around 400 nm, indicat-

ing that it existed as a mixture of high-spin and low-

spin heme-FeIII complexes [37]. Val567Ser, Thr, Phe,

Tyr, and Arg mutants predominantly existed as low-

spin heme-FeIII complexes with broad absorption

around 415 nm. The EPR study more precisely identi-

fied differences in the heme environment of the pro-

teins. The heme-FeIII complex of native WT nNOS

was predominantly in its high-spin state. Under identi-

cal conditions, the studied Val567 mutants showed

very weak high-spin signatures with mixtures of several

low-spin species clearly indicating strongly altered

heme environments.

After dithionite reduction and bubbling of CO, all

the studied proteins formed the characteristic heme-

FeII-CO complex absorbing at 443 nm (Fig. 4) with

almost identical stability (Table 1). However, differ-

ences were observed following the addition of L-Arg.

Addition of L-Arg stabilized the heme-FeII-CO com-

plex of WT nNOSoxy and its Val567Ser and Thr

mutants, whereas the addition of L-Arg to the

Val567Phe/Tyr and Arg mutants had almost no effect

(Table 1). From the homology models (Fig. 8), the

Tyr OH-group of the Val567Tyr mutant could make a

2.6 �A H-bond to one of the propionates of the heme

group. In the presence of L-Arg, this proposed orienta-

tion of the Tyr mutant would not be feasible if L-Arg

binds similarly to that observed in the WT. This is due

to the close distance between the two residues (1.6 �A)

(Fig. 8). A simple energy optimization showed that in

the presence of L-Arg, the Tyr aromatic side chain and

the L-Arg would move away from each other, thereby

destabilizing the Tyr conformation and disrupting the

H-bond between L-Arg and CO as present in the

WT structure (data not shown). This might account

for the lower stability of the heme-FeII-CO complex of

the Tyr mutant in the presence of L-Arg (Table 1). In

Fig. 8. Structure of the active site of nNOSoxy (PDB id: 3HSO, yellow) and homology models of the mutants generated with SWISS-

MODEL without substrate. The L-Arg has been added for comparison (black, PDB id: 1OM4). (A) Val567Thr (pink), Val567Arg (turquoise) and

Val567Phe (purple). (B) Val567Tyr (green) and CO (gray, PDB id 3HSN). The weak bonds between the L-Arg and the Glu592 and the CO-

molecule are shown as dashed lines, and the closest distance between the L-Arg and the modeled Phe and Tyr mutants is indicated.
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the case of the Val567Arg mutant, repulsion between

the two positively charged guanidino moieties might

also explain the lower stability observed for the heme-

FeII-CO complex of this mutant in the presence of L-

Arg.

The twelve studied guanidines (Fig. 3) displayed dis-

tinct WT and nNOSoxy mutant affinities. WT nNOS

oxy and the Val567Ser/Thr/Tyr and Arg mutants

bound L-Arg or analogues bearing and a-amino acid

function (1–4) with affinity in the 0.1–10 lM range.

The introduction of polar residues Ser and Thr

resulted in a fourfold to fivefold decreased affinity for

L-Arg compared to WT (Table 3). This might be due

to distortion of the H-bond network including a water

molecule close to L-Arg by the OH-group of Ser or

Thr residues. Altering the water molecule(s) position

might alter the hydrogen bonding from a moderate to

a weaker hydrogen bond, resulting in reduced binding

affinities. Introduction of a steric hindrance such as

Phe and Tyr might also result in displacement of the

conserved water molecule believed to aid in the correct

positioning of the ligand in the active site (Fig. 8),

thus resulting in the 100- to 300-fold decrease in affin-

ity. The decrease could also be explained by the close

proximity of the aromatic amino acid to the substrate

as seen from the homology modeling in Fig. 8, which

shows that the aromatic side chain would need to

reposition to allow for substrate binding as described

above. A weakening of the binding of ImH, L-Arg,

and NOHA in the Val567Phe mutant was also

observed for the full-length nNOS in a previous study,

indicating a similar effect of the mutation in the oxy-

genase domain alone and in full-length nNOS

(Table S1) [48]. The origins of the differences observed

in binding full-length and the oxygenase domain may

arise from differences in the preparation of proteins,

or from the effects of the reductase domain on the

conformation of the protein and/or access to the active

site. However, the Val567Phe mutation slightly

reduced the affinity of ImH (twofold), a ligand of the

ferric heme, and more dramatically (100- to 300-fold)

those of L-Arg and NOHA, two ligands of the distal

cavity, highlighting the key role of Val567 in binding

this cavity.

The decrease in binding affinity observed for the

simple alkyl-guanidines 5–9 could be explained by the

active-site geometry (Fig. 2A). When binding native

substrates, L-Arg and NOHA, crystallographic studies

have identified three sites of interaction at the heme

distal cavity: One is the binding site for the a-amino

acid moiety; the second is right above the heme plane

where the guanidino group establishes three hydrogen

bonds; and third is the distal hydrophobic pocket

including a structural water molecule (Fig. 2A). Struc-

tural changes in the amino or guanidino end of a sub-

strate have been shown to have distinct effects. While

the guanidino end governs the precise positioning of

the substrate over the heme, the amino acid end is

needed to stabilize the H-bonding interaction between

the heme and the pterin cofactor [65]. Upon complete

deletion of the a-amino acid function, the end of the

propyl, butyl, and pentyl groups of 5–7 curls toward

the Gln478 and Val567 away from the amino acid-

binding pocket [24] causing the Gln478 to swing

slightly away avoiding close van der Waals contact

with the ligand. The Val567 possibly provides favor-

able hydrophobic interactions based on the distance

between WT protein and ligand (~ 3.7 �A for butyl)

[24]. The introduction of a Val567 mutation appears

to have limited impact on these simple alkyl-guani-

dines and the binding of their alkyl chain in the small

hydrophobic pocket in close proximity to the heme

(Fig. 2B). Previous studies of the binding of 8 and 9

revealed a novel binding mode where the terminal

guanidino group NH2 and the NH both bind to the

Glu592 (Fig. 2B) causing both CH3 groups of the iso-

propyl moiety of 9 and the CH3 and a-NH of Val567

to be in close proximity to 3.52 �A and 3.69 �A, respec-

tively [24]. The novel binding mode causes a shift in

the structural water molecule position (Fig. 2B, water

W1b). The introduction of the aromatic residues Phe

and Tyr are believed to, in turn, completely remove

this structural water molecule. The increase in binding

affinity observed for cyclopropyl-guanidine 8 and the

Phe and Tyr mutants is believed to be due to

pi-stacking.

Conclusion

Our series of simple guanidines without an a-amino

acid function is a useful tool in comparing the changes

in binding introduced by the Val567 mutations. The

introduction of polar, aromatic, or charged residues

results in changes in the distal H-bond network of the

heme distal cavity and in a displacement of a struc-

tural water molecule, thus accounting for the changes

in binding affinity observed. This might also change

the conformation of the heme porphyrin plane and

introduce distortions with axial ligands, with conse-

quences in the stability of the heme-FeII-CO com-

plexes. Although this study shows that several of the

compounds have the ability to bind to the nNOS

active site, further studies are needed to determine

their validity as potential substrates as there is no clear

relationship between the affinity of a compound and

their ability to generate NO [44,46,48]
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In conclusion, all mutations of Val567 residue of

nNOSoxy affect the electronic properties of the heme

as shown by EPR and UV-visible spectroscopy, the

stability of the FeII-CO complexes and the binding

affinities for different substrate analogues. Together,

these data demonstrate the importance of the Val567

residue and of the hydrophobic pocket for binding

and stability of ligands, including gaseous ligands such

as CO, O2, and NO, and thus NO formation.
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Soxy, and with their corresponding Val567Phe
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