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Abstract

About one eighth of the Earth’s surface is permanently covered by snow and ice, and about one
third is impacted by seasonal snow cover. Snow melt is an important contributor to fresh water
supply in many of these regions, making a profound understanding of snow accumulation and
melt processes paramount for water resource management, flood prediction, and hydropower
production. A great role plays hereby the amount of solar radiation absorbed by the snow due
to the direct impact on the energy budget. Clean snow reflects most of the sunlight, creat-
ing a white appearance. In fact, snow is known to be the most reflecting natural surface on
Earth. However, the albedo of snow, a measure of the ability of a surface to reflect sunlight,
undergoes large variations due to a number of processes that can lead to a reduction of the
snow albedo. Recently, implications of particles mixing within the snow that have the ability
to strongly absorb in the visible range of the solar spectrum have caught the attention of the re-
search community. These particles originate from fossil fuel combustion, forest fires, volcanic
activities, atmospheric transport of mineral dust, and biological activity, and are released by
both natural and anthropogenic sources. Lowering the snow albedo through their presence in
snow, it has been found that these particles cause a significant radiative forcing on global and re-
gional scales. While the effect has mostly been studied in the context of climate impacts, further
fields of research such as regional hydrologic impacts and implications for glacier mass balance
are just emerging. In particular the response of river flow of seasonally snow cowered basins
has received little attention despite indications of significant implications from light absorbing
particles during snow melt in various regions.

This thesis focuses on the hydrologic response to light absorbing impurities in snow at the
catchment scale. The development of a snow algorithm that allows the consideration of light
absorbing impurity impacts on snow processes is presented and applied within a rainfall-runoff

hydrological model. The significance of these impacts to the hydrologic response is shown for
study regions located in Norway and the Indian Himalayas. By announcing the first of its kind
rainfall-runoff model allowing to dynamically account for light-absorbing snow impurities, this
thesis contributes to the understanding of the magnitude of impacts in the study regions, as well
as raises attention to the uncertainties connected with model representations of such processes.
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Last but not least, the hydrologic model framework used in this thesis has been developed in
parallel to this thesis, from a joint effort by Statkraft AS and the University of Oslo. The
development of the framework aims for a model tool suitable for catchment scale analysis in
the fields of hydropower production, flood prediction, and water resource management, with a
strong focus on efficient operational application.
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Overview





1 Introduction

1.1 Motivation

In many regions of the world, snow melt contributes to a major portion of the water budged
(e.g., Junghans et al., 2011; Jeelani et al., 2012; Engelhardt et al., 2014), and about one sixth
of the world’s population is dependent on fresh water supply from snow or glacier melt (Hock
et al., 2006). In particular in a warming climate (IPCC, 2013), subsequent accelerated melting
in many mountain systems (Pepin et al., 2015), along with increasing fresh water demands
due to rapid population growth (Cosgrove and Loucks, 2015), detailed understanding of the
hydrologic system is essential. Reliable prediction of the timing and quantity of snow melt and
stream flow are paramount in order to perform water resource management that assures water
supply to millions of people.

Hydrological models are used by researchers, water resource managers, and policy makers to
understand, predict, and manage water. Given the important role of snow cover in many hydro-
logical systems, a good model representation of snow is therefore of considerable importance.
In order to capture snowpack dynamics with the help of numerical models, each aspect of the
energy budged needs to be treated with sufficient care, taking into account the predominant pro-
cesses. A specific property of snow is to reflect a large fraction of sunlight and thus limit the
portion of energy available for snow melt provided by the sun.

For snow, the ability to reflect sunlight plays a key role in the energy budget of the snowpack.
However, the variable determining the fraction of reflected solar radiation, the so called snow
albedo, remains a large source of uncertainties in the prediction of snowpack evolution and melt
(e.g., Malik et al., 2014; Jacobi et al., 2015; Thackeray and Fletcher, 2016). As snow ages, the
snow albedo undergoes large temporal fluctuations. The mean size of snow grains increases over
time, as the snow microstructure changes due to metamorphoses processes caused by sintering
(Rosenthal et al., 2007), sublimation (Flanner and Zender, 2006) and freeze-thaw processes
(Kapil et al., 2010). As a result of the altered scattering properties of the snow grains, snow
albedo generally decreases over time (e.g., Wiscombe and Warren, 1980), leading to higher
absorption of solar radiation and increased snow melt.
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1 Introduction

But snow metamorphoses are not the only processes causing a decreased ability to reflect
sunlight. The role of small particles mixed with the snow and their property to efficiently ab-
sorb sunlight in the visible spectrum, where snow albedo of clean snow is highest, caught the
attention of scientists already in the 1970s and 1980s (e.g Higuchi and Nagoshi, 1977; Warren
and Wiscombe, 1980). More recently, significant radiative forcing from absorbing impurities in
snow and ice on a global scale was predicted in several studies (Hansen and Nazarenko, 2004;
Hansen et al., 2005; Flanner et al., 2007), bringing the topic back into the focus of research.
Nowadays it is known that the resulting modification of the snow’s energy budget due to the
presence of these impurities can lead to shortening of snow cover duration (Painter et al., 2007;
Ménégoz et al., 2014), acceleration of glacier melt (Kaspari et al., 2015; Zhang et al., 2017),
and altering of the hydrologic cycle (Qian et al., 2009; Painter et al., 2010; Qian et al., 2011;
Oaida et al., 2015; Painter et al., 2017).

Many aspects of the role of these particles concerning hydrological processes are not yet un-
derstood and uncertainties are high (Qian et al., 2014b). On the other hand, understanding shifts
in the timing and amount of runoff from snowmelt due to light-absorbing aerosols could help
improve hydrologic predictions and reduce both uncertainty in predicting runoff and stressors
in local water supplies (Bryant et al., 2013). However, to date, no rainfall-runoff model aiming
for application in water resource management, hydropower production environments, and flood
forecasting is able to account for the dynamic albedo response to light-absorbing impurities in
snow.

The scope of this thesis is the integration of light-absorbing particles originating from at-
mospheric aerosol deposition in a hydrological framework operating at the catchment scale.
Aiming for improving hydrological modelling, the model is applied and evaluated in differ-
ent regions. The herein addressed scientific gaps between current state of knowledge and the
introduced objectives are further specified and discussed in Chapter 2.

1.2 Research Aims

The aim of this thesis is to develop, test, and apply a hydrologic catchment model that allows to
link atmospheric aerosol deposition to hydrological predictions at the catchment scale.

In order to address this, three main tasks are addressed:

• Task 1: Develop a snow algorithm able to dynamically account for light-absorbing

aerosols.
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1.3 Outline

Light-absorbing particles originating from atmospheric aerosol deposition will be inte-
grated in an energy balance based snowpack algorithm. The snowpack algorithm will
then be implemented in a hydrological model operating at the catchment scale.

• Task 2: Investigate the sensitivity and uncertainty of processes related to light-absorbing

impurities.

Sensitivities of parameters determining the impact of light-absorbing impurities on snow-
pack evolution will be identified through simulations at the point scale. Uncertainties in
the hydrologic response will be determined through simulations at the catchment scale.

• Task 3: Integrate remotely sensed snowpack information in order to improve model pre-

dictions of light-absorbing impurity impacts on the hydrologic response.

Methods to integrate satellite retrievals of light-absorbing impurities in hydrologic simu-
lations will be developed, applied, and evaluated aiming to improve the impact estimate
of light-absorbing impurities on discharge generation at the catchment scale.

1.3 Outline

This thesis is composed of two parts. Part I provides an overview of the presented research
and yet unpublished work. A general background on the state of knowledge of the role of
light-absorbing impurities on hydrologic systems is given in Chapter 2. The gap of knowledge
addressed in this thesis is pointed out and put into context of the recent body of research in
the field. Chapter 3 provides a general overview of the methodologies applied in the analysis,
with particular focus on modelling approaches. Geospatial and meteorological datasets, and the
climatic and geographic characteristics of study regions used in the research of this thesis are
described in Chapter 4. The backbone of this thesis are three publications, shortly summarized
in Chapter 5 together with unpublished additional material related to each of the publications.
A general discussion of the results put into context of the state of science on the topic is pro-
vided in Chapter 6. Finally, conclusions are summarized in Chapter 7 alongside with an outlook.

Part II consists of the three scientific journal articles forming the basis of this thesis. Paper II
and III are peer-reviewed and open-access published in internationally recognized scientific
journals. The manuscript of Paper I is soon to be submitted to the Hydrology and Earth System
Sciences journal of Copernicus Publications.
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2 Scientific Background

2.1 Snow Albedo

Snow melt plays a key role in the hydrology of catchments of various high mountain areas such
as the Himalayas (Jeelani et al., 2012), the Alps (Junghans et al., 2011), the western United
States (Li et al., 2017a), and the Norwegian mountains (Engelhardt et al., 2014), and is an
equally important contributor to stream flow generation as rain in these areas. Furthermore,
timing and magnitude of the snow melt are major predictors of floods (Berghuijs et al., 2016)
and land slides (Kawagoe et al., 2009), and important factors in water resource management
and operational hydropower forecasting. For these reasons, detailed understanding of the key
processes determining snow melt is paramount.

However, there are large uncertainties in many variables specifying the temporal evolution of
the snowpack, and the portion of incoming shortwave radiation that is absorbed by snow is one
of the most important due to the direct effect on the energy input to the snowpack from solar ra-
diation (e.g., Anderson, 1976) and subsequent implications for snow temperature, sublimation,
and melt.

In earth sciences, the dimensionless parameter albedo is fundamental to describe the ability
of a surface to reflect incoming electromagnetic radiation. By definition, the spectral albedo αλ
is defined as the ratio of the surface-reflected upwelling to the incident (Fλ ↓) flux of monochro-
matic radiation at wavelength λ,

αλ =
Fλ ↑
Fλ ↓ , (2.1)

measured over the upward directed semi-hemispherical space. The radiative fluxes Fλ, or irra-
diances, describe the power per unit area and unit wavelength interval that is incident (↓) on or
reflected (↑) by the surface.

Likewise, the albedo within a spectral band specified by λ1 and λ2, called broadband albedo
α, is defined as the ratio of the total surface-reflected upwelling (F ↑) to the total incident (F ↓)
flux of radiation,

7



2 Scientific Background

α =
F ↑
F ↓ (2.2)

=

∫ λ2

λ1
Fλ ↑ dλ

∫ λ2

λ1
Fλ ↓ dλ

. (2.3)

Even though broadband albedos can be determined for any spectral band, in earth sciences,
the term broadband albedo often refers to the shortwave albedo. Most commonly, shortwave
albedos are calculated using the 0.25-5 µm or the 0.3-3 µm wavelength band. In practice,
albedo calculations using the two ranges produce similar results because solar irradiance at
wavelengths beyond 0.3-3 µm approach zero at the earth’s surface (see the spectral irradiance at
the earth’s surface shown in Figure 2.1). In this thesis, however, broadband/shortwave albedo is
referred to as the 0.3-5 µm band if not specified otherwise, because the radiative transfer model
introduced in Section 3.3.3, which is used to determine snow albedos throughout this thesis,
operates on this wavelength range. It also should be noted that the albedo is not an intrinsic
surface property. Instead, the albedo depends on both the radiative properties of the surface
and the spectral and angular distributions of the incident radiation. The latter is governed by
atmospheric composition and the direction of the beam of light.

Snow is known to be the most reflective natural surface on Earth (Coulson et al., 1965) and
plays a crucial role in the energy balance of the current Earth’s climate system due to the ice-
albedo feedback (e.g., Kashiwase et al., 2017). Fresh snow typically reflects approximately
90% of incoming solar radiation (albedo of 0.9). Over time, snow undergoes metamorphosis as
a result of sintering (Rosenthal et al., 2007), sublimation (Flanner and Zender, 2006) and freeze-
thaw events (Kapil et al., 2010). Due to these processes, the micro structure of snow changes,
along with the scattering properties of the snow grains, resulting in a potentially significant drop
in albedo. The subsequent increased absorption of solar radiation has implications for timing
and quantity of snow melt.

To the human observer, fresh snow appears as a white surface. The impression of snow as
a white surface corresponds to generally high spectral albedos in the visible spectrum (VIS;
0.3-0.7 µm), where solar radiation peaks in intensity (Figure 2.1). What remains hidden to the
human observer is that at wavelengths outside the upper bound of the visible spectrum, spectral
snow albedos drop rapidly in the near-infrared (NIR, 0.7-1.4 µm) and stay comparably low at
longer wavelengths (snow is nearly "black" in the infrared spectrum).
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2.1 Snow Albedo
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Figure 2.1: Spectral albedos of snow with different optical grain radii (OGR) simulated with
the Snow, Ice, and Aerosol Radiation (SNICAR) model (Flanner et al., 2007, 2009). The
dotted black curve shows the black body irradiance of the sun received by the earth. The
grey area shows the direct normal spectral irradiance at the earth’s surface, based on the
American Society for Testing and Materials Terrestrial Reference Spectra (modelled us-
ing the Simple Model for Atmospheric Transmission of Sunshine, vesion 2.9.2; Gueymard
(2001); Gueymard et al. (2002)). UV is the ultraviolet, VIS the visible, NIR the near infrared,
and SWIR the shortwave infrared range of the electromagnetic spectrum.

2.1.1 Light-absorbing impurities in snow and ice

Snow metamorphism leads to a drop in spectral albedo that mainly occurs in the NIR spectrum
(see solid lines in Figure 2.1). However, observations of spectral snow albedo in some aged
snowpacks further revealed low spectral albedo in the visible spectrum observed that cannot be
caused sole by snow metamorphism (Wiscombe and Warren, 1980; Aoki et al., 2000, e.g.,).

Instead, Wiscombe and Warren (1980) and Warren and Wiscombe (1980) hypothesized that
trace amounts of absorptive impurities occurring in natural snow can lead to significant impli-
cations for snow albedo. To date, many studies support this hypothesis (Doherty et al., 2010;
Forsström et al., 2013; IPCC, 2013; Wang et al., 2013; Qian et al., 2014b). Particles that have
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2 Scientific Background

the ability to absorb electromagnetic waves in the short wavelength range caught the attention
of the research community due to their influence on water and energy budgets of both the at-
mosphere and the earth surface (e.g., Twomey et al., 1984; Albrecht, 1989; Hansen et al., 1997;
Ramanathan et al., 2001; Lau and Kim, 2006; Flanner et al., 2007; Qian et al., 2009, 2011;
Bond et al., 2013). These particles originate from fossil fuel combustion and forest fires in
the form of Black Carbon (BC) and Organic Carbon (OC) (Bond et al., 2013; AMAP, 2015),
mineral dust (Painter et al., 2012b), volcanic ash (Rhodes et al., 1987), organic compounds in
soils (Wang et al., 2013), and biological activity (Lutz et al., 2016). Some of these have re-
mote sources and undergo long distance atmospheric transport, interacting with their surround-
ings (Figure 2.2): The airborne particles warm the troposphere by absorbing solar radiation,
which raises the internal energy of the particles and causes them to increase in temperature.
The subsequent increased emission of predominantly infrared radiation (following Planck’s law
(Planck and Masius, 1914)) is then absorbed by surrounding air molecules, causing an increase
in air temperature. In turn, the absorption lowers the amount of shortwave radiation penetrating
through the atmosphere, and thus has a cooling effect at the earth’s surface. The impact on
solar heating in the atmosphere and at the surface can alter atmospheric stability and thus has
the potential to impact atmospheric circulation (Kim et al., 2015). In addition to the radiative
effect, the particles can act as cloud condensation nuclei and thus influence the formation of
clouds and impact precipitation (Dusek et al., 2006; Zhang et al., 2008; Maskey et al., 2017).

If these aerosols are deposited alongside snowfall, they lower the spectral albedo of the snow
in the shortwave spectrum (dashed purple line in Figure 2.3), and act in a similar way as their
airborne counterparts by emitting infrared radiation (Figure 2.2). Due to the efficient absorption
properties of snow grains in the thermal infrared, this leads to heating of the snow. This in turn
has implications for the evolution of the snow micro-structure (Flanner et al., 2007) and snow
melt.

In this thesis, particles (airborne or deposited) that have the ability to absorb in the shortwave
spectrum are referred to as LAP (light-absorbing particles), whereas LAISI (light-absorbing
impurities in snow and ice) is only used to refer to LAP mixed with snow.

2.1.2 Modelling snow albedo

Having a high temporal variability, the albedo of snow is a major controlling factor in the sur-
face energy balance of snow covered areas. A good representation of snow albedo is therefore
paramount in numerical models (in this thesis simply referred to as "models") that aim to simu-
late the spatial and temporal evolution of snow.

10
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LAP (BC)

sulfate

water molecules

snow flake

shortwave radiation

infrared radiation

snow

Figure 2.2: Schematic drawing of Black Carbon (and other light-absorbing particles) path-
ways and processes in the atmosphere and snow.

In various models, a range of approaches is used to capture the variability of snow albedo.
The direct integration of observations is one possibility, however, observations of albedo are
often only fragmentary available both in space and time, require expensive instrumentation and
maintenance, and are therefore often not suitable for use in model applications. Even though
satellite observations of snow albedo are common and offer large spatial coverage, retrievals
are limited to clear sky areas and associated with large uncertainties, particularly over complex
terrain. For this reason, the direct integration of observation in models is challenging and of-
ten impractical. Instead, models resolving the surface energy balance are usually coupled to
a snow albedo model. Very common is the integration of empirical parametrizations based on
observations. These parametrizations are usually mathematically simple and computationally
fast, and do not require sophisticated knowledge about the physical state of the snowpack and
the atmosphere. However, due to their simplicity these parametrizations often ignore certain
variables impacting the albedo, such as incident irradiation characteristics and the presence of
LAISI. Furthermore, the drop in albedo over time, though usually represented as a temporal
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Figure 2.3: Spectral albedos of snow with different optical grain radii (OGR) and Black
Carbon (BC) content simulated with the Snow, Ice, and Aerosol Radiation (SNICAR) model.
Solid lines show spectral albedos of clean snow and dotted lines show spectral albedos of
snow with 500 ng g−1 BC. Black body irradiance (black dotted line) and spectral irradiance
at the earth’s surface (grey area) are described in Figure 2.1.

decay function, is decoupled from the snow metamorphism causing it. Only few attempts ex-
ist to determine broad band albedo in a physically consistent approach (Marshall, 1989; Brun
et al., 1992; Gardner and Sharp, 2010), wherefore broad band albedo is usually determined from
empirical parametrizations (e.g., Brock et al., 2000; Pedersen and Winther, 2005).

For simulating the spectral albedo of snow, a range of physically based models have been de-
veloped (Wiscombe and Warren, 1980; Flanner et al., 2007, 2009) giving reliable results when
comparing with measurements (e.g., Hadley and Kirchstetter, 2012). However, they are com-
putationally more expensive and demanding in their input data requirements. For this reason,
the implementation of such approaches in spatially distributed numerical models with already
high computational needs was impractical until recently. As computational potential increased
continuously over the last decades (Moore, 2006; Keyes, 2006), these approaches have been im-
plemented in multilayer point models (Tuzet et al., 2017), regional climate models (Oaida et al.,
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2.1 Snow Albedo

2015), and global climate models (Flanner et al., 2007) in order to better represent process based
mechanisms and snow sensitivity to boundary forcing variables.

2.1.3 Modelling the spectral albedo of snow

In this Section, the widespread and well established approach to describe snow grains as spheres
is introduced. Snow albedo is then a function of the scattering properties of these spheres,
potential absorbers mixed within the snow, and the spectral and angular distribution of incoming
electromagnetic radiation.

To determine the spectral scattering properties of the snow continuum (multiple scattering),
one needs to know the single scattering properties of each component (i.e. snow grains, impuri-
ties). These properties are defined by three dimensionless parameters: the absorption efficiency
Qa, the scattering efficiency Qs, and the asymmetry factor g, describing the mean cosine of the
scattering angle.

For retrieving these quantities, the most widely used approach describes snow grains as
spheres (Wiscombe and Warren, 1980; Flanner et al., 2007, 2009), even though shapes of natu-
rally occurring snow grains usually strongly deviate from spherical shapes (Lachapelle, 1969).
It has been shown that assuming a collection of spheres with the same specific surface area
(SSA) As (surface area per unit of mass) as the snow grains, is a well suited approximation
(Wiscombe and Warren, 1980; Hadley and Kirchstetter, 2012). The area weighted radius of the
spheres r relates to As as

r =
3

ρi · As
, (2.4)

with ρi ≈ 917 kg m−3 the density of ice. In the literature, r is normally referred to as effective

grain radius or optical grain radius (OGR). Approximating snow grains as spheres then allows
the use of a known set of equations describing the scattering of light by small particles, where
the scattering particle is of comparable size to the wavelength λ of the scattered electromagnetic
wave. This set of equations is widely known as Mie theory (e.g., van de Hulst, 1957; Wiscombe,
1980). These equations require as input the complex refractive index of ice

m(λ) = mre(λ) + mim(λ) (2.5)

and the dimensionless parameter 2πrs/λ. The complex refractive index accounts for refraction
(real part mre(λ)) and attenuation due to absorption (imaginary part mim(λ)) of light passing
through ice. Examples of measured m(λ) are given in Figure 2.4.
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Figure 2.4: Real and imaginary part of the refractive index of ice at -7◦C. Modified from
Wiscombe and Warren (1980).

Using the determined single scattering properties of ice grains, it is then possible to determine
the spectral albedo of a snowpack from multiple scattering using a radiative transfer model.
Widely accepted is the Delta-Eddington approximation (Joseph et al., 1976) due to its ability
to handle anisotropic scattering (snow grains strongly forward-scatter) (Wiscombe and Warren,
1980; Dang et al., 2016).

Based on the approach described above, Wiscombe and Warren (1980) and Warren and Wis-
combe (1980) developed a robust and elegant model for snow albedo that remains today as a
standard. Critical to their approach was the ability to account for the strongly forward-scattering
snow grains, the large variability in ice absorption with wavelength, and both diffuse to direct
beam radiation at the surface. Furthermore, and of particular importance to the success of the
approach, the model relies on observable instead of tunable parameters:

λ the wavelength of radiation

m(λ) = mre(λ) + mim(λ) the complex refractive index of ice

r the mean snow grain radius (also called optical grain radius, OGR)

µ0 the cosine of the solar zenith angle θ0

h the ratio of diffuse to total (diffuse + direct) incident flux
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2.2 Snow-albedo feedbacks

s the snow water equivalent (SWE) of the snowpack

αg the albedo of the underlying ground

Based on this work, Flanner et al. (2007, 2009) developed the Snow, Ice, and Aerosol Ra-
diative (SNICAR) model, a multilayer radiative transfer model for snow that allows to simulate
snow albedo for arbitrary snow conditions and number of LAISI at any concentration.

2.2 Snow-albedo feedbacks

The interplay of mechanisms by which LAP impact the troposphere is complex and to date
uncertainties on impact estimates are high (Flanner et al., 2009; IPCC, 2013).

At the surface, the darkening effect of LAISI has a warming effect on the snow, which impacts
snow microphysics. Many studies hypothesize that a small initial snow albedo reduction may
have a large net forcing due to a number of feedbacks, all of which resulting in an amplification
of the radiative forcing (e.g., Flanner et al., 2007; Qian et al., 2009; Bond et al., 2013):

1. The LAISI induced surface darkening has the potential to accelerate snow ageing, lead-
ing to a faster increase in OGR. The albedo of snow is generally lower for snow with
larger OGR (see Figure 2.1). Furthermore, LAISI absorb more efficiently in snow with
larger OGR (see Figure 2.3). For this reason, the mechanism further lowers snow albedo
and increases snow melt (Flanner and Zender, 2006; Flanner et al., 2007; Hadley and
Kirchstetter, 2012).

2. During melt, LAISI may retain in the snow and accumulate at the snow surface, which
further darkens the snow surface and accelerates snow melt (Conway et al., 1996; Xu
et al., 2012; Doherty et al., 2013). This effect is referred to as melt amplification (Doherty
et al., 2013). The magnitude of the positive feedback through the LAISI enrichment
depends on the scavenging efficiency, describing how effective LAISI are entrained with
melt water (Flanner et al., 2007; Qian et al., 2014a).

3. Due to accelerated melt, the darker underlying surface is exposed earlier leading to the
well-known snow albedo feedback (Hansen and Nazarenko, 2004; Serreze and Francis,
2006; Flanner et al., 2007; Hadley and Kirchstetter, 2012).

Accounting for the above listed feedbacks, modelling studies suggest that LAISI induced
snow darkening is more efficient in accelerating snow melt than any other anthropogenic agent
(Hansen et al., 2005; Flanner et al., 2007; Qian et al., 2011).
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2.3 Climatic and hydrologic response to light-absorbing

impurities in snow and ice

Even though the impact of LAISI on snow albedo is known since the 1970s (e.g., Higuchi
and Nagoshi, 1977; Warren and Wiscombe, 1980; Grenfell et al., 1981; Clarke and Noone,
1985), it took until the 2000s for the topic to gain traction, when several studies showcased the
importance of LAISI on different scales (e.g., Hansen and Nazarenko, 2004; Jacobson, 2004;
Flanner et al., 2007; Painter et al., 2007).

Model studies investigating the climatic impacts on a global scale state that BC in snow
causes a surface warming on the northern hemisphere, with a climate efficacy of BC-in-snow
that is by a factor of 2-4 larger than that of CO2 (Hansen and Nazarenko, 2004; Jacobson, 2004;
Hansen et al., 2005; Flanner et al., 2009; Koch et al., 2009; Shindell and Faluvegi, 2009). The
large efficacy implies that the climatic impacts are likely to be larger than instantaneous forcing
estimates suggest (Qian et al., 2014b).

On a regional scale, most modelling studies investigating climatic and hydrologic impacts of
LAISI focus on mountainous regions such as the Tibetan Plateau (TP), the Colorado mountain
range (e.g., Painter et al., 2012b; Skiles et al., 2012), the Alps (e.g., Di Mauro et al., 2015;
Gabbi et al., 2015), and the Andes (e.g.,see Molina et al., 2015, for a review of studies). The
Tibetan Plateau and Himalaya (TPH) has been pointed out to be a region of specific importance
due to a number of reasons. Due to its vicinity to some of the largest sources of BC emissions
of the world (Bond and Bergstrom, 2006; Bond et al., 2013) such as the Indo-Gangetic Plain
(Ramanathan et al., 2007), especially the southern side of the TPH is exposed to high deposition
of LAP. In response to the increased anthropogenic LAP emissions from these sources, BC and
OC levels extracted from Himalayan ice cores indicate a significant increase in deposition on
the TP since 1990 (Ming et al., 2008; Kaspari et al., 2011) and model studies suggest that the
TP receives the highest radiative forcing from LAISI globally (Flanner et al., 2007; Qian et al.,
2011). Furthermore, westerly winds advect large amounts of mineral dust from Southwest Asia
and the Thar Desert into the Indo-Ganges planes, with occasional outbreaks over the southern
side of the Himalayas (Hegde et al., 2007; Prasad and Singh, 2007; Gautam et al., 2011, 2013;
Duchi et al., 2014). Due to the large role that the TPH plays in the monsoon circulation and
the Asian hydrological cycle (Qian et al., 2011), and the large surface water resources stored
in snow and ice, LAISI implications in this region captured the interest of scientists and water
resource managers.

There is broad consensus on the primary role of increasing greenhouse gas concentrations
as driver of accelerated melting of snow and glaciers on a global scale (Barnett et al., 2005).
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However, the above-average increase in warming and retreat of glaciers in the TPH region gives
rise to the hypothesis that additional mechanisms are driving these changes (Xu et al., 2009).
The heating of the atmosphere by LAP and increased snow and glacier melt caused by LAISI
has the potential to account for these at least partially (Ramanathan and Carmichael, 2008; Lau
et al., 2010; Qian et al., 2011). Qian et al. (2011) used a global climate model to simulate the
effect BC and mineral dust in snow have on the hydrological cycle of the TP. They found a
significant impact on the hydrology, with runoff increasing during late winter/early spring and
decreasing during late spring/early summer due to a trend towards earlier melt dates. However,
detailed modelling at the catchment scale was not conducted.

With respect to hydrologic impact studies outside the TPH, most focus has been on the west-
ern United States (Painter et al., 2007, 2010; Qian et al., 2009; Oaida et al., 2015). In the Rocky
Mountains, dust deposition increased fivefold in comparison to the mid nineteenth century, most
likely due to human activities altering surface sediments that caused an increase in wind erosion
(Neff et al., 2005). Painter et al. (2010) showed that dust, deposited to snow in the Colorado
River basin, can have severe implications for the hydrological regime due to disturbances to
the discharge generation from snowmelt during the spring time. They observed a shifting in
the peak runoff by several weeks and leading to earlier snow-free catchments and a decrease
in annual runoff. Qian et al. (2009) simulated hydrological impacts due to BC deposition in
the western United States using the Weather Research and Forecasting Model (WRF) coupled
with chemistry (WRF-Chem). They found a decrease in net snow accumulation and spring
snowmelt due to BC-in-snow induced increase in surface air temperature. Oaida et al. (2015)
implemented radiative transfer calculations to determine snow albedo in the Simplified Simple
Biosphere land surface model of the WRF regional climate model. They showed that physically
based snow albedo representation can be significantly improved by considering the deposition
of light-absorbing aerosols on snow over the western United States.

2.4 Gap of knowledge

The governing processes to enable LAISI calculation have been implemented in a variety of
models. To date, models of different scales consider the effects of LAISI, ranging from multi-
layer point models (Tuzet et al., 2017), to regional (Oaida et al., 2015), and global (Flanner et al.,
2007) climate models. However, only very few studies investigate the effect at the catchment
scale.

Using the Variable Infiltration Capacity model, Painter et al. (2010) studied implications from
dust radiative forcing in snow on runoff from the Upper Colorado River Basin. They found that
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the peak runoff occurs on average three weeks earlier nowadays compared to the beginning of
the 20th century due to increased dust deposition resulting from anthropogenic activities.

Despite these efforts, the direct integration of deposition mass fluxes of LAP in a catchment
model is still lacking. To date, there is no rainfall-runoff model with focus on runoff forecast
at the catchment scale that is able to consider atmospheric LAP deposition mass fluxes and
subsequent implications from LAISI. On the other hand, there is evidence that including the
radiative forcing of LAISI has the potential to improve the quality of hydrological predictions.
Bryant et al. (2013) showed that during the melt period errors in the operational stream flow
prediction of the National Weather Service Colorado Basin River Forecast Center are linearly
related to dust radiative forcing in snow. They concluded that implementing the effect of LAISI
on the snow reflectivity could improve hydrological predictions in regions prone to deposition
of light-absorbing aerosols on snow, which emphasizes the need for development of a suitable
model approach. Furthermore, we continuously move towards hydrological models with an
increasing complex representation of the physical processes involved in the evolution of the
seasonal snowpack. Heretofore there has been little focus on the factors related to LAISI, such
as the impact of aerosol deposition on snow albedo, that may alter the timing and character of
discharge generation at the catchment scale.

In this thesis, this deficiency is addressed by introducing a rainfall-runoff model with a newly
developed snow algorithm that allows for a new class of model input variables: the deposition
mass flux of different species of light-absorbing aerosols. The model integrates snowpack dy-
namics forced by LAISI and allows for analysis at the catchment scale. The algorithm uses a
radiative transfer model for snow to account dynamically for the impact of LAISI on the snow
albedo and the subsequent impacts on the snow melt and discharge generation. Aside from
enabling the user to optionally apply deposition mass fluxes as model input, the algorithm de-
pends on standard atmospheric input variables, such as precipitation, temperature, shortwave
radiation, wind speed, and relative humidity.
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3.1 Hydrologic modelling with Shyft

All hydrological analysis presented in this thesis are conducted with Statkraft’s Hydrologic
Forecasting Toolbox (Shyft). Shyft is a modern and open source (https://gitlab.com/
shyft-os) modelling platform that provides distributed hydrological analysis in research and
water management applications targeting the fields of hydropower production, flood forecasting,
water resource management, and impact assessment. The model framework is developed by
Statkraft AS in collaboration with the University of Oslo. In the current state, the platform
supports several hydrological models with focus on snow covered regions and is introduced in
Paper I of this thesis.

The concept of Shyft follows the idea that a hydrological model can be expressed as a se-
quence of algorithms that aim to represent a conceptual component of the hydrological system.
Examples of such components are evapotranspiration, snow accumulation/melt processes, and
soil water response. These algorithms (or methods) can then be combined to a sequence, the
so called method-stack or model. Shyft provides a standard set of methods and models, but
also aims to provide the user with the flexibility to implement their own contributions or to
re-arrange provided methods into new models.

The sequence of methods is then run on a cell by cell basis, where the cell loosely represents
an area of similar time-invariant geographical data (e.g. topographic properties or land type)
with (to date) no specific restriction to cell geometry or area. Cells can be grouped to catch-
ments and regions (a collection of catchments), and model calibration can be performed on the
catchment and region level, as well as the cell level. In every aspect, Shyft is optimized for
highly efficient simulation of hydrological processes.

The objectives of Shyft are to:

• provide a flexible hydrologic forecasting toolbox built for operational environments

• enable highly efficient and rapid calculations of hydrologic response at the region scale
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• allow for using the multiple working hypothesis (Clark et al., 2011) to obtain an optimal
catchment forecast

• create a mechanism for rapid implementation of improvements identified through re-
search activities

In particular the first two objectives require computational efficiency and a software archi-
tecture that allows test coverage of all aspects of the software. Shyft uses the latest C++

standards and makes use of the utility of C++ template concepts in order to provide a flex-
ible software for use in both business critical applications and research. All components of
the framework are exposed to the user via an Application Programming Interface support-
ing both C++ and Python. In order to demonstrate the functionality of Shyft we devel-
oped an interactive documentation for various aspects of the model using Jupyter Notebooks
(https://gitlab.com/shyft-os/shyft-doc).

3.2 Shyft Method Stack

Currently, several method-stacks are supported in Shyft (Figure 3.1). In additions to the "de-
fault" method-stacks described in this Section, a modular adaptation of the popular and widely
used HBV model (Bergström, 1976, 1995) is implemented in Shyft. A well documented de-
scription of the HBV model can be found in Seibert and Vis (2012). The method-stacks are
described below. Due to the (to date) primary application of Shyft in seasonally snow cov-
ered regions, the focus was particularly directed towards the representation of snow accumula-
tion/melt processes in the early stages of development. For this reason, the method stacks differ
mainly in the algorithms targeting snow processes (Section 3.2.4).

3.2.1 Hydrologic response

In all method stacks except the HBV-stack, the cell response to precipitation and snow melt is
determined using the approach of Kirchner (2009), who describes catchment discharge from a
simple first order nonlinear differential equation. The underlying assumption of the approach is
that the discharge is only a function of the liquid water in storage in the catchment, such that

Q = f (S ) (3.1)
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Figure 3.1: Sketch showing the structure of available method-stacks in Shyft. Methods are
shown in grey boxes, input variables are listed in big font, static cell data are shown in italic,
and response variables passed between methods are marked in red. The green box marks
the contribution developed during the work for this thesis.
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where Q is the catchment discharge, S is the liquid water storage, and the f (S ) the functional
relationship between Q and S , which is required to be invertible. Using the conservation-of-
mass equation for a catchment,

dS
dt

= P − E − Q, (3.2)

Kirchner (2009) finds the first order differential equation

dQ
dt

= g(Q)(P − E − Q), (3.3)

where g(Q) (called the "sensitivity function") is the derivative with respect to S of the inverse of
f (S ). g(Q) can be estimated from the observed discharge alone for periods of the discharge time
series for which the catchment precipitation (P) and evapotranspiration (Ea) can be neglected.
Kirchner (2009) uses the discharge time series of two catchments governed by humid climate
and mild and snow poor winters (the Plynlimon catchments in mid-Wales; for more information
see Robinson et al. (2013)), and recession plots to estimate g(Q). He finds

ln(g(Q)) ≈ c1 + c2ln(q) + c3(ln(Q))2 (3.4)

with c1, c2 and c3 being the only catchment specific parameters. To then solve Equation (3.3)
numerically using Equation (3.4), Kirchner suggests to log-transform Equation (3.3) due to a
"smoother" profile of the log-transformed function:

d(ln(Q))
dt

=
1
Q

dQ
dt

= g(Q)(
P − E

Q
− 1) (3.5)

In contrast to Kirchner’s approach, we apply a slight adjustment. Firstly, we use the outflow
response from the snow routine described in Sect. 3.2.4 instead of precipitation, P, to integrate
Equation (3.5). This outflow can be liquid precipitation, melt water, or a combination of both.
In the catchments used by Kirchner (2009) "persistent snow cover is rare". For this reason,
a contribution to the liquid water storage from snow melt is not considered in Equation (3.2).
Our study catchments, however, are high mountain catchments with long lasting snow cover.
Thus, snow melt significantly contributes to the change in the liquid water storage, making the
aforementioned adaptation necessary.

Secondly, we assume that the sensitivity function, g(Q), has the same form as described in
Kirchner (2009) (see Equation (3.4)) and estimate the parameters c1, c2 and c3 by standard
model calibration of simulated discharge against observed discharge using the Nash-Sutcliffe
model efficiency (NSE) as objective function (for further details see Section 3.4.1), rather than
using recession plots. Since we use a daily time step in our simulation, the identification of
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periods with negligible storage contribution from precipitation (and/or from snow melt) and
evapotranspiration is reduced significantly compared to using an hourly time step: Kirchner
(2009) uses an hourly time step and identifies predominantly rainless night hours, which satisfy
the aforementioned condition.

In contrast to the hydrologic response following Kirchner (2009), glacier melt and precipi-
tation falling over lakes contributes directly to discharge generation without undergoing a time
delay (direct response in Figure 3.1).

3.2.2 Glacier melt

Glacier melt is calculated using a simple degree-day model (e.g., Hock, 2003), where the
amount of glacier melt Mg is calculated from a claimed linear relationship to air temperature T ,

Mg =


T Fg ∗ (T − TTg), if T > TTg

0, if T ≤ TTg.
(3.6)

The slope of the linear relationship is described with the tunable parameter T Fg, which is typ-
ically given in units of mm h−1 K−1 or mm d−1 K−1, depending on the model time step. TTg is
the threshold temperature beyond which glacier melt is assumed to occur.

3.2.3 Evapotranspiration

To determine the potential evapotranspiration Ep, all of the implemented method-stacks rely on
the equation according to Priestley and Taylor (1972),

Ep =
a

Hvap
· s(T )

sv(T ) + γ
· R, (3.7)

where a = 1.26 is a dimensionless empirical multiplier, γ the psychrometric constant, sv(T ) the
slope of the relationship between the saturation vapour pressure and the air temperature T , Hvap

the latent heat of vaporization, and R the net radiation.

The actual evapotranspiration Ea is then determined taking the available liquid water stor-
age and the snow covered area (assuming only evapotranspiration from snow free areas) into
account.
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3.2.4 Snow accumulation/melt

At the time of writing this thesis, three different snow accumulation/melt algorithms are im-
plemented, which differ in concept and complexity and are part of the open source library. A
further snow algorithm was developed in the course of this thesis, and is described in detail in
Section 3.3.

1. HBV Snow

The least complex snow algorithm implemented originates from the HBV model (Bergström,
1976, 1995), and is conceptually similar to the glacier routine (Section 3.2.2):

Ms =


T Fs ∗ (T − TTs), if T > TTs

0, if T ≤ TTs.
(3.8)

Ms is the snow melt, T Fs the snow melt factor (typically given in units of mm h−1 K−1

or mm d−1 K−1, depending on the model time step), and TTs is the threshold temperature
beyond which snow melt is assumed to occur and below which precipitations falls as
snow. Liquid water from rain and melt is retained in the snowpack up to a certain mass
fraction of SWE of the snowpack, defined by the parameter CWH. Temperatures below
TTs lead to refreezing of a certain amount Mr f of the liquid water content, conditioned
by the refreezing parameter CFR,

Mr f =


CFR · T Fs · (TT − T ), if T < TTs

0, if T ≥ TTs.
(3.9)

To represent sub-cell SWE distribution, snowfall is partitioned to a number of snowpack
sub-sets, according to user defined redistribution factors (to multiply with snowfall). The
sub-cell snowpacks then differ by the amount of SWE, and under conditions of melt, the
amount of liquid water.

Despite their simplicity, degree-day methods for determining snow (and ice) melt are
widely used in cryospheric modelling due to little input data requirements, reliable fore-
casts of air temperature, good model performance in many regions of the world, and fast
computation (e.g., Hock, 2003).

2. Skaugen Snow
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3.2 Shyft Method Stack

Similar to HBV Snow, this method also uses a temperature index model to determine
snow melt, however, an alternative approach for the representation of sub-cell snow dis-
tribution has been implemented following Skaugen and Randen (2013) and Skaugen and
Weltzien (2016). In this approach, the spatial probability density function (PDF) of
accumulated SWE is estimated as a correlated sum of gamma-distributed unit fields of
snowfall, which are distributed in space according to a two-parameter gamma distribution
(Skaugen, 2007). The resulting spatial distribution of SWE is thus temporally varying in
shape and the parameters of the PDF can be described as dynamic in that they change
over time as a function of snow accumulation and melt events. The choice of distribu-
tion is based on earlier studies, concluding that the gamma-distribution is appropriate to
describe the spatial distribution of precipitation, SWE, and snow depth. The parameters
of the distribution describing accumulation events can be estimated from observed spa-
tial variability of precipitation at the catchment scale. This leads to a reduction of model
parameters requiring calibration against observed runoff. Temporal changes in snow cov-
ered area (SCA) are derived from the spatial PDF of SWE and the intensity of melting
events (Skaugen and Randen, 2013).

3. Gamma Snow

This method attempts to solve the energy balance equation

∆E = K + L + Hs + Hl + Hr, (3.10)

where ∆E is the net energy flux at the snow surface, K is the net shortwave radiation flux,
L is the net longwave radiation flux, Hs and Hl are the sensible and latent heat fluxes,
and Hr is the heat contribution from rain (see Figure 3.2). The net shortwave radiation is

Kin

Kout

Lin

Lout HL Hs

ΔE+

G

+ + =

+
snow surface

Figure 3.2: Schematic drawing of the snow surface energy balance components. Symbols
are explained in the text. Motivated from Figure 1.7 in Leclercq (2012).
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composed of the global radiation, Kin, and the reflected short wave radiation, Kout, which
relate to each other via the snow albedo α:

K = Kin − Kout = Kin(1 − α) (3.11)

Temporal decrease in snow albedo is fast for temperatures above 0◦C, following an expo-
nential decay function, and slow for temperatures below 0◦C, following a linear relation-
ship. After snowfall larger than a pre-defined amount, the albedo is reset to the albedo of
fresh snow. Incoming and outgoing longwave radiations are calculated according to the
Stephan-Boltzmann law. The required snow surface temperature is approximated using a
linear relationship to the air temperature (Raleigh et al., 2013).

Following Anderson (1976), a bulk-transfer approach is employed to approximate the
turbulent fluxes of sensible and latent heat as functions of wind speed, temperature, and
humidity, where the impact of the wind speed is represented in a linear, two-parametric
wind-function.

To determine heat contribution from rain Hr, it is assumed that rain falling on top of snow
is cooled from atmospheric temperature to 0◦C, releasing the sensible heat

Hr =



cp·T ·P
∆t , if T > 0◦C

0, if T ≤ 0◦C
(3.12)

where cp is the heat capacity of water, and ∆t the model time step.

If Equation (3.10) results in an energy surplus, it is assumed that the surplus is consumed
by snow melt, less the change in the cold content of the top 30 mm of SWE of the snow-
pack.

Once snowmelt is determined from Equation (3.10), the snow state is described using a
snow depletion curve (SDC) approach (e.g., Liston, 1999, 2004; Kolberg et al., 2006),
which relates the SCA of a model cell to the snow mass balance. This approach has been
used in many studies to determine the snow state in hydrological models (e.g., Kolberg
and Gottschalk, 2006, 2010; Hegdahl et al., 2016).

As mentioned above, the main focus of this thesis lies on the representation of snow in a
catchment and the impact of LAISI on the snow albedo, snow melt, and the subsequent effects
on the catchment discharge. To account for the effect of LAISI, we developed a new energy
balance based snow accumulation and melt routine, described in the following section.
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3.3 A new snowpack model accounting for LAISI

We developed a snowpack routine that allows to take the impact of LAISI on albedo into ac-
count. The energy balance part of the algorithm builds up on the Gamma Snow routine intro-
duced in Section 3.2.4. However, significant changes have been introduced to the calculation of
the snow albedo and the representation of the sub-grid snow distribution, which are presented
herein.

To represent the evolution of LAISI mixing ratios near the snow surface, we introduce two
snow layers in our model. The surface layer has a time invariant maximum thickness (further
called maximum surface layer thickness). The mixing ratio of each LAISI species in this layer
is calculated from a uniform mixing of the layer’s snow with either falling snow with a certain
mixing ratio of aerosol (wet deposition), or aerosol from atmospheric dry deposition. Following
Krinner et al. (2006), we apply a maximum surface layer thickness of 8 mm SWE. Krinner
et al. (2006) suggests this value based on observations of 1 cm thick dirty layers in alpine firn
cores used to identify summer horizons. The second layer (bottom layer) represents the snow
exceeding the maximum thickness of the surface layer and has no upper limit.

3.3.1 Melt amplification

The introduction of two layers allows to account for melt amplification. LAISI mass fluxes
between the two layers are accounted for during snow accumulation and melt. Generalizing
Jacobson (2004)’s representation of LAISI mass loss due to meltwater scavenging for multiple
snow layers, we characterize the magnitude of melt scavenging using the scavenging ratio ki

and calculate the temporal change of LAISI mass ms,i of LAISI species i in the surface layer as

dms,i

dt
= −kiqscs,i + Di (3.13)

and the change of LAISI mass mb,i in the bottom layer as

dmb,i

dt
= ki · (qscs,i − qbcb,i). (3.14)

Herein, qs and qb are the mass fluxes of melt water from the surface to the bottom layer and
out of the bottom layer, respectively, and cs,i and cb,i are the mass mixing ratios of LAISI in the
respective layer. Di is the atmospheric deposition mass flux. A value for ki of <1 is equal to
a scavenging efficiency of less than 100% and hence allows for accumulation of LAISI in the
surface layer during melt.
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In our analysis, we account for hydrophilic BC, hydrophobic BC, and dust. Following Flan-
ner et al. (2007), we treat aged, hydrophilic BC as sulphate coated to account for the net increase
in the mass absorption cross section (MAC) by 1.5 at λ=550 nm compared to hydrophobic BC.
The net increase results from the ageing of BC (reducing effect on MAC) and particle coating
from condensation of weakly absorbing compounds (enhancing effect on MAC) (Bond et al.,
2006). As a consequence, hydrophilic BC absorbs stronger than hydrophobic BC under the
same conditions. On the other hand, hydrophilic BC undergoes a more efficient melt scaveng-
ing. Scavenging ratios of LAISI species addressed in this thesis are shown in table 3.1.

LAISI species Scavenging ratio Reference

hydrophilic BC 0.2 Flanner et al. (2007)
hydrophobic BC 0.03 Flanner et al. (2007)
dust 0.01 Oaida et al. (2015)

Table 3.1: Scavenging ratios of LAISI species addressed in this thesis.

3.3.2 Optical grain radius (OGR) of snow

Both the albedo of clean snow and the effect of LAISI on the snow albedo strongly depend on
the snow optical grain radius r (Warren and Wiscombe, 1980), which alters as snow ages. r can
be related to the snow specific surface area As via

r =
3

ρi · As
, (3.15)

with ρi the density of ice. As represents the ratio of surface area per unit mass of the snow grain
(Roy et al., 2013).

In our model, we compute the evolution of As in dry snow following Taillandier et al. (2007)
as

As(t) = [0.629 · As,0 − 15.0 · (Ts − 11.2)] − [0.076 · As,0 − 1.76 · (Ts − 2.96)]

ln
{

t + exp
(−0.371 · As,0 − 15.0 · (Ts − 11.2)

0.076 · As,0 − 1.76 · (Ts − 2.96)

)}
, (3.16)

where t is the age of the snow layer in hours, As,0 is As at t=0, and Ts is the snow temperature.
The evolution of As in wet snow is calculated according to Eq. (3.15) and Brun (1989) as

dr
dt

=
C1 + C2 · Θ3

r2 · 4π , (3.17)
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3.3 A new snowpack model accounting for LAISI

where C1=1.1· 10−3 mm3 d−1 and C2 = 3.7·10−5 mm3 d−1 are empirical coefficients. Θ is the
liquid water content of snow in mass percentage. As,0 is set to 73.0 m2 kg−1 (Domine et al.,
2007) and we set the minimum snowfall required to reset As to 5 mm SWE.

3.3.3 Modelling snow albedo using SNICAR

To solve for the effect of light absorption from LAISI on the snow albedo, we have integrated a
2-layer adaption of the Snow, Ice, and Aerosol Radiative model (SNICAR;Flanner et al., 2007,
2009) into the energy and mass budget calculations. By providing the solar zenith angle of the
sun, the OGR, mixing ratios of LAISI in the snow layers, and SWE of each layer, SNICAR cal-
culates reliably the snow albedo for a number of spectral bands (see Figure 3.3). To achieve this,
SNICAR utilizes the theory from Wiscombe and Warren (1980) and the two-stream, multilayer
radiative approximation of Toon et al. (1989). SNICAR is available with 470 bands at a spec-
tral resolution of 0.01 µm covering the spectrum from 0.3 to 5.0 µm, and as a computationally
optimized version using five spectral bands (0.3-0.7, 0.7-1.0, 1.0-1.2, 1.2-1.5, and 1.5-5.0 µm)
(Flanner et al., 2007). In this thesis, both versions are used. The fine 470-band version is used in
stand-alone simulations of Paper III. The computationally faster 5-band version is implemented
in the snow algorithm introduced herein in order to maintain computational efficiency during
hydrologic simulations. Flanner et al. (2007) compared results from the 5-band scheme to the
default 470-band scheme in SNICAR and concluded that relative errors are less than 0.5%.
Broadband albedos (see Figure 3.4) are calculated with incident fluxes that are simulated offline
assuming mid-latitude winter clear- and cloudy-sky conditions.

3.3.4 Sub-grid snow distribution

In order to allow for explicit treatment of snow layers while representing sub-grid snow variabil-
ity, we follow Aas et al. (2017), and assume that the sub-grid spatial distribution of each single
event of solid precipitation follows a certain PDF. From this distribution we calculate multipli-
cation factors, which then are used to assign the snowfall of a model grid cell to a number of
sub-grid computational elements, the so called tiles (Aas et al., 2017). The snow algorithm de-
scribed herein is executed for each of the tiles separately, providing a mechanism to account for
snow spatial distribution while preserving conservation of mass. Therefore, variables related
to the snow state, such as SWE, liquid water content, LAISI mixing ratios, and snow albedo
differ among the tiles. To calculate the multiplication factors, we assume that the sub-grid re-
distributed snow follows a gamma distribution (see e.g., Kolberg and Gottschalk, 2010; Gisnås
et al., 2016), determined by the coefficient of variation (CV) of SWE at snow maximum. Ex-
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Figure 3.3: Spectral albedos of snow of different OGR mixing ratios of BC as obsereved in
laboratory experiments (dots) and simulated with SNICAR (shaded bands). Error bars show
the standard deviations of the measurements. Shaded bands refer to simulations assum-
ing BC mass absorption cross-sections of 7.5 and 15 m2 g−1, respectively, at wavelength
λ=550 nm. Modified from Hadley and Kirchstetter (2012).

amples of multiplication factors for forested grid cells and forest free grid cells for different CV
values are shown in Fig. 3.5.
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Figure 3.4: (a) Broadband albedo of snow resulting from spectral weighting over the 3-
2.5 µm solar spectrum derived from experiments (dots; error bars show ±1 standard de-
viation) and modelled using SNICAR (shaded bands). Shaded bands refer to simulations
assuming BC mass absorption cross-sections of 7.5 and 15 m2 g−1, respectively, at wave-
length λ=550 nm. (b) Snow albedo reduction due to BC in snow. Circles show experimental
data, solid lines are from an empirical relationship derived from the experimental data, and
dashed lines are SNICAR predictions for a BC MAC of 11 m2 g−1 at λ=550 nm and solar
zenith angles of 0◦ unless otherwise specified. Both figures are modified from Hadley and
Kirchstetter (2012).

31



3 Methodologies

1 2 3 4 5 6 7 8 9 10
sub-grid tile

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
CV

0.17

0.4

0.7

1.0

m
u
lt

ip
lic

a
ti

o
n
 f

a
ct

o
r

Figure 3.5: Examples of multiplication factors for different coefficients of variation (CV) com-
puted from a gamma distribution.

32



3.4 Calibration and evaluation

3.4 Calibration and evaluation

Due to the conceptual nature of many aspects of the model used herein, the model has a number
of model parameters that can assume a range of values for which the model simulates hydrologic
variables within reason. The range of suitable values makes the model flexible and allows the
adaption of the model to different climatic and hydrologic conditions. In order to assert quality
predictions for a particular watershed, these parameters need to be estimated through model
calibration. During calibration, varying sets of parameters are applied to the model and model
predictions are evaluated based on a performance measure allowing to quantify the predictive
power of the model.

3.4.1 Performance measures

A large number of objective functions to assess the predictive power of environmental models
exist. A comprehensive review of the most important and widely used ones is given in Bennett
et al. (2013). In this thesis, the following measures are used:

• Nash-Sutcliffe Model Efficiency
The Nash-Sutcliffe model efficiency (NSE) (Nash and Sutcliffe, 1970)

ENS = 1 −
1
n

∑n
i=1(yi − ŷi)2

1
n

∑n
i=1(yi − y)2

, (3.18)

allows to asses the predictive power of a model and is widely used in hydrologic mod-
elling to investigate the ability of a model to predict discharge. In Equation 3.18, yi is the
predicted value, ŷi is the corresponding observation, y is the mean of the observed data,
and n is the sample size. The method compares the performance of the model to a model
that always uses the mean of observations as prediction. A value of 1 indicates perfect
agreement with observations, while a value of zero states that the prediction performance
is equal to using the mean of observations as prediction.

• Root-Mean-Square Error
The Root-Mean-Square Error (RMSE)

ERMS =

√√
1
n

n∑

i=1

(
yi − ŷi

)2
, (3.19)

is a general purpose error metric for numerical predictions (e.g., Bennett et al., 2013).
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• Mean Absolute Volume Error

EMAE =
1
n

n∑

i=1

|yi − ŷi| (3.20)

The measure is similar to the Root-Mean-Squared Error, however, the use of absolute
values reduces the bias towards large events (e.g., Bennett et al., 2013).

3.4.2 Automatic calibration

Finding the best set of parameters for a model applied to a particular region is a wide field of
research on its own (Madsen et al., 2002). Manual calibration relying on trial-and-error pa-
rameter adjustment is extremely time consuming and therefore impractical or even unrealistic,
depending on the number of model parameters and the degree of parameter interaction. Much
more effective and less time consuming are automated calibration algorithms designed for find-
ing the global minimum on the response surface of an objective function. Most common are
population-evolution-based algorithms (Madsen et al., 2002) such as genetic algorithms (Wang,
1991), shuffle complex evolution approaches (Duan et al., 1992), and simulated annealing (Sum-
ner et al., 1997).

In this thesis, two calibration algorithms are used. Firstly, the robust general purpose evo-
lutionary global optimization algorithm SCE-UA (Shuffled Complex Evolution - University of
Arizona; Duan et al., 1992, 1994), which is widely used in conceptual model calibration (e.g.,
Cooper et al., 1997; Madsen, 2000; Jayawardena et al., 2006; Newman et al., 2015). Secondly,
the direct search algorithm BOBYQA (Bound Optimization BY Quadratic Approximation Pow-
ell, 2009) is used, which is computationally less demanding than evolutionary methods, but
nevertheless has been found to produce reliable optimization results.
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In this thesis, two main study sites are used, namely the Atnsjøen Catchment in Norway and
the Upper Beas Catchment in the Indian Himalayas. Since the data used at each site differ im-
mensely in how it is compiled, it is listed separately for each site. In Section 4.1 the Norwegian
study site is introduced alongside data used in Paper II and in Section 4.2 the Himalayan study
site is introduced together with the data used in Paper III.

4.1 Atnsjøen Catchment, Norway

The unregulated upper Atna river is located in the Rondane mountains in southern Norway
(Figure 4.1a and b) and is a tributary of the Glomma river - the largest and longest river in
Norway. The mountainous region lies between the two major valleys of Gudbrandsdalen and
Østerdalen. The Atnsjøen watershed covers an area of 463 km2 and ranges in elevation from
700 m above sea level (masl) at the outlet of lake Atnsjøen to over 2000 masl in the western
part of the watershed (Figure 4.1c). Approximately 90% of the watershed are above the tree
line (Sandlund and Aagaard, 2004).

4.1.1 Climate and hydro-meteorological observations

The catchment is located in the eastern part of southern Norway, which is characterized by
continental climatic conditions (Figure 4.2). The average annual precipitation in the eastern
part of southern Norway (approximately 650 mm in the study region) is much lower than in
the coastal and maritime regions to the West. The amount of water stored in the seasonal
snow accounts for about 50% of the annual precipitation sum (Wold, 1992), leading to the
accumulation of a substantial snow pack between autumn and spring despite relatively low
precipitation rates, and a strong impact of snow melt on the spring flood. Floods frequently
occur in late April, May, and early June, commonly triggered by periods of warm weather and
heavy rainfalls (Nesje et al., 2000). This is very distinct from the western part of southern
Norway, where marine impact dominates climatic conditions along the coastal mountain ranges
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Figure 4.1: a) Map of Norway showing the image section of b) and c). b) Location of the
Atnsjøen catchment in southern Norway and location of WATCH-Forcing-Data-ERA-Interim
and REMO-HAM grid points close to the catchment. c) Catchment overview map showing
the locations of observational stations.
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and annual precipitation sums are much higher. The amount of water stored in the seasonal
snow only accounts for about 25% and floods occur mainly in September through December
due to periods of heavy precipitation in autumn (Nyberg and Rapp, 1998).

In our study we focused on the time period from September 2006 through August 2012. Four
automatic weather stations operated by The Norwegian Water Resources and Energy Directorate
(NVE) and The Norwegian Meteorological Institute (MET) have time series of meteorological
variables available during in this period. The stations are located at lower elevations (between
701 and 780 masl) in the watershed along the Atna river (Figure 4.1c). Two of which measure
precipitation and two measure temperature. Observations of relative humidity and wind speed
are taken from stations at locations close to the watershed. Detailed information about the
observational stations is given in Table 4.1.

Streamflow of the Atna river is observed at a station located at the outlet of the catchment at
lake Atnsjøen (4.1c). The mean annual discharge of the Atna river is approximately 11 m3s−1,
with low flows of 1-3 m3s−1 during the winter months and peak flows of over 130 m3s−1 driven
by the spring melt season.

Station name Station ID Operator Observational variable Elevation [masl]

Atnsjøen 1 8720 MET precipitation 749
Atndalen-Eriksrud 8770 MET precipitation 731
Atnsjøen 2 2.32.0 NVE temperature 701
Li Bru 2.479.0 NVE temperature 780
Fokstuga 16610 MET wind speed; relative humidity 973
Kvitfjell 13160 MET wind speed 1030
Venabu 13420 MET relative humidity 930

Table 4.1: Information on observational stations.

4.1.2 Global radiation

Due to poor availability of continuous solar radiation observations in Norway, we use for model
input of global radiation gridded data from the Water and Global Change (WATCH) Forcing
Data methodology Weedon et al. (2014) applied to ERA-Interim reanalysis data (Dee et al.,
2011) with a resolution of 0.5◦ (the six nearest grid-points are shown in Figure 4.1a). The
dataset is available from 1979-2012 at 3-hourly time steps. Data provided by the WATCH
project is aiming for the use in regional and global studies of the hydrological cycle.
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Figure 4.2: Monthly mean temperature (red) and precipitation sums (blue) at the observa-
tional stations Li Bru and Atnsjøen 1 (see Table 4.1). Monthly precipitation sums are based
on data from 1957 through 2017. Temperature observations are only available from 2005
onwards.

4.1.3 BC deposition data with REMO-HAM

The wet and dry deposition rates of BC for the study area are generated using the regional
aerosol-climate model REMO-HAM (Pietikäinen et al., 2012). For the simulations, we follow
the approach of Hienola et al. (2013), but with changes to the emission inventory: Hienola
et al. (2013) used emissions based on the AeroCom emission inventory for the year 2000 (see
Dentener et al., 2006). In the REMO-HAM simulations conducted herein, emissions are made
by the International Institute for Applied Systems Analysis and are based on the Evaluating the
Climate and Air Quality Impacts of Short-Lived Pollutants (ECLIPSE) V5a inventory for the
years 2005, 2010, and 2015 (years in between were linearly interpolated) (Klimont et al., 2017,
2016). We updated also other emissions modules (wildfire, aviation, and shipping) following
the approaches presented in Pietikäinen et al. (2015). The only difference between Pietikäinen
et al. (2015) and this work is that herein the Global Fire Emissions Database (GFED) version 4
based on an updated version from van der Werf et al. (2010) is used.

REMO-HAM was used for the same European domain as in Pietikäinen et al. (2012) using
0.44◦ spatial resolution (50 km), 27 vertical levels, and 3 minutes time step. The ERA-Interim
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re-analysis data was utilized at the lateral boundaries for meteorological forcing (Dee et al.,
2011) and for the lateral aerosol forcing, data from the global aerosol-climate model ECHAM-
HAMMOZ (version echam6.1.0-ham2.2) was used. ECHAM-HAMMOZ was simulated in a
nudging mode, i.e. the model’s meteorology was forced to follow ERA-Interim data, and the
ECLIPSE emissions were used (plus other updated emission modules shown in Pietikäinen
et al. (2015)). The boundaries were updated every 6 hours for both meteorological and aerosol
related variables. Simulations with REMO-HAM were conducted for the time period of 2004-
2014 and the first three months were excluded from the analysis (spin-up period). The initial
state for the model was taken from the boundary data, except for the soil parameters which were
taken from a previous long-term simulation for the same domain (a so called warm-start). The
output frequency of REMO-HAM was 3 hours and the total BC deposition flux was calculated
from the accumulated dry and wet deposition fluxes.

4.2 Upper Beas Catchment

The Beas river rises from the Indian Himalayas in the state of Himachal Pradesh in Northwest
India, from where it flows for some 470 km towards the Sutlej river, the easternmost tributary
of the Indus River (Figure 4.3a). The Upper Beas basin is referred to as the drainage basin in
the vicinity of the headwaters of the Beas river to the South of Rohtang Pass (Figure 4.3b). The
area, located at the southern slopes of the Himalayas, is characterized by strong topographic
gradients. Elevations range from 977 masl at the outlet of the basin at Thalout discharge station
to over 6500 masl in the eastern part of the catchment. The total drainage area of the Upper
Beas basin is approximately 4960 km2. Some 12.6% of the area is glacier covered. In addition
to the discharge station at the outlet (Thalout), there are four more discharge stations located in
the Upper Beas basin (Figure 4.3b). Three of which define the sub-basins Tirthan, Sainj, and
Bhuntar. The Bhuntar sub-basin is further divided in the sub-basins Parvati and Manali. For the
latter no discharge observations are available.

Due to the large fraction of glaciation in the area (about 13%) and the high elevation, a
significant portion of the annual water budget comes from snow and glacier melt, dominating
the flow in the pre-monsoon period. However, highest flows coincide with high precipitation
rates during the monsoon period (Hegdahl et al., 2016).

Meteorological conditions in the area are governed by two different weather regimes (Xu
et al., 2008; Bookhagen and Burbank, 2010; Shekhar et al., 2010). While extratropical cy-
clones, namely the Western Distrubances, are the primary weather system causing winter pre-
cipitation, the weather during summer months is largely characterized by the Indian summer
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monsoon. Four seasons can be defined based on monsoon activity: winter (January to March),
pre-monsoon (April to June), monsoon (July to September), and post-monsoon (October to De-
cember). The generally higher elevated north and north-east are colder and drier compared to
the lower valleys in the south of the catchment.

The Upper Beas basin has a large potential for hydropower activities (4.2). A total of 4 plants
are under operation providing an installed capacity of 832 MW (Figure 4.3). Furthermore, parts
of a large scheme are under construction and will add an additional 520 MW to the currently
installed capacity. Due to the high impact of hydropower activities further downstream, we only
include analysis from the Bhuntar sub-basin in our hydrologic analysis of Paper III (purple line
in Figure 4.3).

The basin has been subject to numerous studies due to the availability of meteorological and
hydrological observations and a high interest in hydrological studies from the Indian North fo-
cusing on hydropower potential, socio-economic relevance, and climate projections (e.g., Heg-
dahl et al., 2016; Kumar et al., 2007; Li et al., 2014, 2015a,b, 2017b; Singh and Kumar, 1997;
Singh and Jain, 2003).

Powerplant Capacity [MW] Status of operation

Manala 86 in operation since 2001
Larji 126 in operation since 2007
Sainj 100 in operation since 2015
Parbati I 750 abandoned
Parbati II 800 under construction (ready 2018)
Parbati III 520 in operation since 2014

Table 4.2: Installed hydropower capacity in the Upper Beas basin. Specifications from Jain
et al. (2007, p. 482) and http://www.nhpcindia.com (accessed 08.02.2018).

4.2.1 Meteorological observations

Daily observations are available from a network of six weather stations located in the basin
measuring precipitation, temperature, and humidity. The stations are located at elevations rang-
ing from 904 masl at Pandoh Dam, to 1971 masl at Manali (Figure 4.3b). The stations Banjar
and Sainj measure only precipitation.
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4.2.2 Dynamical downscaling using a mesoscale numerical weather

prediction system

Several studies report data quality problems of observed meteorological variables (Hegdahl
et al., 2016; Li et al., 2017b). On the one hand, hydrologic simulations suffer from the generally
low altitude of station locations and related challenges with interpolation of meteorological
variables to high altitude locations (Hegdahl et al., 2016): the highest station in Manali is located
at 1971 masl, whereas the altitude of the Bhuntar sub-basin averages to about 3470 masl. On the
other hand, data does not seem to undergo any quality control (or at least no such information is
accessible to our knowledge) and even simple important measures such as geographic position
and altitude of automatic weather stations are highly uncertain. Due to this limitation, we choose
to dynamically downscale meteorological reanalysis data.

Aiming for high resolution meteorological forcing data for the Upper Beas basin, we con-
ducted downscaling simulations using WRF (version 3.8.1; Skamarock et al., 2008). WRF was
run with a nested approach with 1 km grid spacing for the inner domain, 5 km for the intermedi-
ate domain, and 25 km for the outer domain (Figure 4.4) from October 1999 through September
2005 (excluding a prior 3 month spin-up time). The outer domain was forced with the ERA-
Interim reanalysis data (Dee et al., 2011) from the European Center for Medium Range Weather
Forecasting (ECMWF). ERA-Interim comes with a spatial resolution of 0.75◦ and a 6 hours
temporal resolution. WRF was set up with 40 vertical atmospheric levels in all domains. Land
use classifications (21 categories) were derived from the Moderate-resolution Imaging Spectro-
radiometer (MODIS) default dataset for WRF.

The quality of precipitation data is in general of outstanding importance for hydrologic model
performance (O’Loughlin et al., 1996; Syed et al., 2003; Tetzlaff and Uhlenbrook, 2005), and
the choice of the microphysical scheme in WRF has significant impact on orographically in-
duced precipitation (Cossu and Hocke, 2014). Based on the work of others focusing on a good
representation of mountain precipitation in WRF (Maussion et al., 2011; Collier et al., 2013;
Rasmussen et al., 2011, 2014), we find that the bulk microphysical parametrization introduced
by Thompson et al. (2008) performs well and has shown to accurately reproduce precipitation
over highly complex terrain (e.g., Rasmussen et al., 2011, 2014).

An overview of WRF configurations is given in Table 4.3. Furthermore, the contents of the
WRF Preprocessing System files and WRF configuration files used to initiate our simulations
are listed in Appendix A.
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4.2 Upper Beas Catchment

General/Grid settings

WRF version 3.8.1
Map projection Lambert conformal
Nr. of nested domains 2
Horizontal grid spacing 25 km, 5 km, 1 km
Unstaggered grid points 217x185, 251x221, 301x251
(west-east x south-north)
Nesting approach Two-way
Number of vertical layers 40

Time settings

Simulation period June 1999 - December 2005
Time step 100 s, 25 s, 5 s

Boundary/Forcing settings

Boundary conditions ECMWF ERA-Interim
reanalysis (1◦, 6 h)

Static geographical fields MODIS standard dataset
30” spatial resolution

Spin up 3 months

Physics schemes

Short-wave RRTMG
(Iacono et al., 2008)

Long-wave RRTMG
(Iacono et al., 2008)

Cumulus parametrisation Tiedtke Scheme (only outer domain)
(Tiedtke, 1989; Zhang et al., 2011)

Microphysics Thompson Scheme
(Thompson et al., 2008)

Land-surface model Noah-MP
(Niu et al., 2011; Yang et al., 2011)

Planetary boundary Yonsei University Scheme
layer (Hong et al., 2006)

Table 4.3: WRF configuration.
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domain 1

domain 2

domain 3

Upper Beas basin

Figure 4.4: WRF domains targeting the Western Himalayas.

4.2.3 BC deposition with FLEXPART

Utilizing the Flexible Particle Dispersion Model (FLEXPART; Stohl et al., 1998, 2005; Stohl
and Thomson, 1999), global atmospheric transport simulations were conducted to provide BC
wet and dry deposition rates over the Hindu Kush, Karakoram, and Himalayan (HKKH) region.
BC emission scenarios were developed that incorporate both contributions from long range
transport as well as regional biomass burning. Emission data was retrieved from the ECLIPSE
emission inventory version V4a (Klimont et al., 2017). ECLIPSE inventories are based on
the GAINS (Greenhouse gas - Air pollution Interactions and Synergies) model (Amann et al.,
2011), which provides emissions of long-lived greenhouse gases and shorter-lived species in a
consistent framework. Open biomass burning emissions are not calculated in the GAINS model,
therefore we used the GFED version 3.1 (van der Werf et al., 2010) for BC emissions from non-
agricultural sources. This inventory is based on MODIS remote sensing ’hot spots’ as well as
other input data and provides a highly detailed record of biomass burning.

FLEXPART simulations were conducted for the period 2003 through 2013 in the forward
mode using 3-hourly, operational analyses from ECMWF on a 1◦ x 1◦ resolution with 92 ver-
tical layers. A climatology of the BC deposition was used to create a seasonal BC deposition
profile used as input to the hydrological model. This provides dual benefits: first, the GFED
version 3.1 emissions data is not available prior to 2003 and therefore we were able to use these
profiles in a climatological context in hydrologic simulations prior to 2003. Secondly, since
the wet deposition rates from FLEXPART are decoupled from the dynamically downscaled and
interpolated precipitation input to the hydrological model, we followed the recommended ap-
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4.2 Upper Beas Catchment

proach from Doherty et al. (2014) to calculate a monthly mean climatology of BC mixing ratio
in snow. This is, the monthly profile of wet deposited BC were converted to BC mixing ratios in
falling snow using monthly precipitation sums. Dry deposition rates and mixing ratios in falling
snow then constitute the input data to the hydrological model.

4.2.4 MODDRFS

The MODIS Dust Radiative Forcing in Snow (MODDRFS) algorithm presented in Painter et al.
(2012a) is the first (and to date only) model that uses satellite retrieved data to estimate the
additional energy absorbed by snow due to the presence of LAISI. MODDRFS bases its calcu-
lations on surface reflectance data from MODIS on board of NASA’s Terra and Aqua satellites.
By relating NASA’s surface reflectance products Terra MODIS MOD09GA and Aqua MODIS
MYD09GA1 to modelled clean snow albedo, MODDRFS provides instantaneous radiative forc-
ing of snow impurities at satellite overflight times. The spectral hemispherical-directional re-
flectance factor (Schaepman-Strub et al., 2006), which is the MOD09GA retrieval, varies with
OGR and thus allows to determine this quantity. The OGR is then used to simulate clean
snow albedo of snow with coherent properties using a radiative transfer model for snow. The
clean snow albedo simulations require assumptions on the solar irradiance characteristics during
the MODIS overpasses. MODDRFS relies on clear sky incident spectral irradiances modelled
with the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The spec-
tral reflectance difference between modelled and measured reflectance is then multiplied with
terrain-corrected local spectral irradiance from SBDART. Integration of the products over the
spectral bands finally gives the clear sky instantaneous at surface radiative forcing from LAISI
at satellite overflight times and at per-pixel spatial resolution (~500 m; Figure 4.5).

Two variants of the MODDRFS product are available, compiled from either near-real time
or historical data. The historical variant is based on a more mature version of the MOD09GA
surface reflectance data with a turnaround time of about 24 hours. In this thesis, only historical
data is used, which is available from February 2000 onwards.

The production of MODDRFS is focused on regions where snow cover monitoring is of inter-
est for research activities. Continuously updated data is available for the western part of North
America (including the Colorado River Basin) and the HKKH region (Figure 4.5a). Addition-
ally, near-real time data is provided for the Andean Mountains in South America.

1 https://lpdaac.usgs.gov/data

45

https://lpdaac.usgs.gov/data
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Figure 4.5: a) Tiles of the historical variant of MODDRFS. MODDRFS maintains the MODIS
sinusoidal projection and the spatial resolution (500 m) of the MODIS surface reflectance
products (MOD09GA). The red arrow marks the location of the image selection in b) (modi-
fied from the MODDRFS web portal (https://snow.jpl.nasa.gov/portal/data/help_
moddrfs). b) True color MODIS images (top row) showing the western Himalayas before,
during, and after a dust event in May/June 2003. The corresponding instantaneous radiative
forcing in snow predicted by the MODDRFS algorithm is shown in the bottom row (modified
from Figure 1 in Paper III).

46

https://snow.jpl.nasa.gov/portal/data/help_moddrfs
https://snow.jpl.nasa.gov/portal/data/help_moddrfs


5 Results

In this chapter, an overview over the main results of the thesis is given. Short summaries of the
publications are provided alongside yet unpublished material related to the publications.

5.1 Summary of Paper I:

Shyft - A Model Toolbox for Distributed Hydrologic

Modelling in Production Environments

In this paper we present a newly developed modern and open source (https://gitlab.com/
shyft-os) modelling platform that aims to provide distributed hydrologic modelling in re-
search and water management environments. The model framework, namely Statkraft’s Hy-
drologic Forecasting Toolbox (Shyft), is developed by Statkraft AS in collaboration with the
University of Oslo. In the current state, the platform supports several models with focus on
snow covered regions and application in environments where operational model systems are
essential. Focus areas are hydropower production, flood forecasting, and water resource man-
agement in business applications and research.

The objectives of Shyft are to:

• provide a flexible hydrologic forecasting toolbox built for operational environments

• enable highly efficient/rapid calculations of hydrologic response at the region scale

• allow for using the multiple working hypothesis (e.g., Clark et al., 2011) to obtain an
optimal catchment forecast

• create a mechanism for rapid implementation of improvements identified through re-
search activities

In addition to introducing the model platform details in this paper, we provide a case study
in which Shyft is used to compute predictions of natural streamflow for a production system in
Norway.
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5 Results

Shyft provides the backbone of this thesis, and several implementations and applications were
developed and explored throughout the course of this thesis, which resulted in the publications
Paper II and Paper III.

5.2 Summary of Paper II:

Modelling hydrologic impacts of light-absorbing aerosol

deposition on snow at the catchment scale

In this publication, we present an algorithm that can be used to explore the effect of various
species of light-absorbing impurities in snow and ice (LAISI) at the catchment scale. We
describe and apply the implementation of an energy balance based snow accumulation/melt
algorithm into a hydrologic catchment model within Shyft. The implementation enables the
calculation of snow albedo implications from LAISI through a coupling to the SNICAR model
(Flanner et al., 2007, 2009). LAISI mixing ratios are determined from atmospheric dry and
wet deposition rates of light-absorbing aerosols. The model is able to simulate enrichment of
LAISI in surface snow due to post-depositional processes. We apply the model to a region in
southern Norway in order to first investigate the sensitivity of newly introduced model param-
eters, and then address the implications of BC deposition for snow albedo and the subsequent
consequences for snowmelt and discharge generation in the region at the catchment scale.

Results from the sensitivity study show that at least two snow layers in the model (a thin
surface layer and a bottom layer) is of outstanding importance to capture the potential effect of
melt amplification on the LAISI evolution in surface snow. The parametrization of the surface
layer thickness has only a small effect on the snow albedo and melt rate as long as it is suffi-
ciently thin (e.g. thinner than the penetration depth of shortwave radiation). However, results
also reveal that the evolution of the LAISI surface mixing ratio is highly sensitive to the surface
layer thickness. Results further show that the determination of how LAISI are washed out of
the snowpack with meltwater has a great effect on the evolution of LAISI concentration near
the surface, as well as the snow albedo and melt rate. Due to rare observations of this effect
under controlled conditions, parameters governing this effect are uncertain and so are the model
predictions of LAISI impacts.

Results from simulating LAISI effects in the study region at the catchment scale show that
BC in snow is likely to have a significant impact on snow albedo, particularly in spring, and that
the resulting accelerated snow melt leads to a shift in the annual water balance (Figure 5.1). In-
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Figure 5.1: (a) Simulated daily discharge (Q; solid lines) and catchment mean SWE (dashed
lines) of the Atnsjøen catchment averaged over the 6-year study period. The shaded areas
show the impact range of BC (red lines mark the best estimate) for uncertainty estimates.
The black lines show the scenario without radiative forcing for LAISI (no-ARF). (b) Differ-
ences in daily discharge and SWE between LAISI radiative forcing scenarios and the sce-
nario without LAISI radiative forcing (no-ARF). The blue marker in (a) and (b) separates the
periods where BC in snow has an enhancing effect (left of the marker) and a decreasing
(right of the marker) effect on discharge.

cluding radiative forcing from BC in the simulations leads to a reduction in volume error during
the early and late melt season in our simulations. Results show an increase in discharge of 2.5
to 21.4%, depending on the applied model scenario, over a 2-month period during the spring
melt season compared to simulations, where radiative forcing from LAISI is not considered.
The increase in discharge is followed by a decrease in discharge due to a faster decrease in the
catchment’s snow-covered fraction and a trend towards earlier melt in the scenarios where radia-
tive forcing from LAISI is applied. Using a reasonable estimate for critical model parameters,
the model simulates realistic BC mixing ratios in surface snow. The model predicts a strong
annual cycle in BC mixing ratios, showing increasing surface BC mixing ratios during spring
melt as a consequence of melt amplification. The simulations further identify large uncertain-
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ties in the representation of the surface BC mixing ratio during snowmelt and the subsequent
consequences for the snowpack evolution.

5.3 Summary of Paper III:

Assessing satellite derived radiative forcing from snow

impurities through inverse hydrologic modelling

In this publication, we present a methodology for comparing LAISI radiative forcing from mod-
els with remotely sensed data. We furthermore employ the potential of this method by investi-
gating the impact of LAISI on the discharge generation in the Upper Beas Basin in Himachal
Pradesh, India.

The satellite dataset used in our study is based on the MODDRFS algorithm (Painter et al.,
2012a). Simulated radiative forcing, on the other hand, is estimated using the snow algorithm
described in Paper II implemented in the Shyft model framework (Paper I).

Due to the instantaneous nature of MODDRFS data and the assumption of clear sky solar
radiative conditions in the MODDRFS algorithm, we claim that the simulated radiative forc-
ing must be based on coherent atmospheric radiative conditions in order to be comparable to
the satellite product. With regards to our model approach, we therefore use the same radia-
tive transfer model for the atmosphere that is used in MODDRFS to determine clear sky solar
irradiances, and estimate simulated radiative forcing at MODIS overpass times. The latter is de-
termined from stand-alone simulations with the SNICAR model used to determine snow albedo
of clean and impurity bearing snow at MODIS overpass radiative conditions. Snowpack vari-
ables required as input to SNICAR (LAISI content of snow, OGR, SWE) are estimated using
an inverse hydrologic modelling approach. That is, we estimate model parameters of the hydro-
logic model by optimizing regional simulated streamflow constrained by observed streamflow.
The optimized hydrologic model is then used to simulate the snowpack variables. Deposition
rates of BC and dust are considered in the simulation chain. Deposition rates of BC are mod-
elled over the study region using the FLEXPART model. Dust, presumably the most important
absorber in the study area, is incorporated in the model simulations using a simple deposition
scenario based on quantitative estimates from Himalayan glaciers. Due to the predominant dust
deposition during premonsoon season, we add dust to the surface layer on a daily basis during
March to June, so that the daily added amount is constant and the annual sum initially has a
magnitude consistent with observed annual depositions. However, results show that aiming for
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Figure 5.2: Seasonal mean per-pixel instantaneous radiative forcing from MODDRFS ob-
servations (row 1) and model simulations using different LAP deposition scenarios (rows 2
to 6). DJF = December,January, February; MAM = March, April, May; JJA = June, July,
August; SON = September, October, November.
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3 g m−2a−1 (dust_1 scenario) observed closest to the study region, produces a strong underes-
timation of simulated radiative forcing (see top row of Figure 5.2). We therefore scale dust
depositions to multiples of this initial deposition scenario, re-estimate model parameters and
re-calculate the radiative forcing at MODIS overpass times, in order to achieve an optimization
of the simulated radiative forcing of LAISI towards the MODDRFS product (Figure 5.2).

The upward scaling of dust leads to a better representation of the seasonal cycle of radiative
forcing from LAISI shown in the observations (row 1 of graphs in Figure 5.2). However, sim-
ulated radiative forcing is underestimated during winter months (December, January, February)
regardless of the applied dust scenario. According to the root-mean-square error ERMS of basin
mean monthly radiative forcing, an annual dust deposition of 18 g m−2a−1 (dust_6 scenario)
gives the best results.

The optimized radiative forcing simulation allows to estimate the LAISI impact on hydrologic
variables (Figure 5.3). On average, LAISI lead to significantly higher discharge from about
middle March to end of August. For the rest of the year, no significant difference in discharge is
noticeable. The optimized model predicts LAISI-induced radiative forcing in snow contributes
to 3.52 to 5.41% of the annual discharge.
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Figure 5.3: Daily discharge and snow-covered fraction averaged over the 6-year study pe-
riod for the dust_6 scenario (red curve; 18 g m−2a−1 dust deposition) and the scenario
ignoring radiative forcing by LAISI ("clean"; green curve). The red shaded area shows the
difference between the dust_4 (12 g m−2a−1) and dust_8 (24 g m−2a−1) scenarios used to
estimate impact uncertainty.
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6 General Discussion

6.1 LAISI impact on hydrology

The model results show significant impact on the hydrology for both study regions, the basin
located in southern Norway and the one located in the Indian Himalayas. However, comparing
the discharge response to LAISI radiative forcing from both sites reveals large differences in the
response patterns. In the Norwegian catchment, a shift in the water balance is observed, man-
ifested in increase in discharge early in the melt season and decrease in the late spring season
(Figure 5.1). On an annual scale, increase and decrease cancel each other out, so that the total
annual discharge is nearly unaffected. In the Himalayan basin, on the other hand, LAISI lead to
an overall increase in discharge, with strongest surplus during spring/summer (Figure 5.3). The
reason for the different response patterns can be explained by different availability of snow and
ice in the two regions. The Rondane mountains in Norway are a relatively dry area. Despite
the cold temperatures and high elevation of the region, the relatively small winter precipitation
is preventing the accumulation of snowpacks that are able to survive the spring and summer.
Glaciers are not to be found in the area and snow and ice storage only exists during winter and
spring. Accelerated melt early in the spring season due to radiative forcing from LAISI and
the subsequent increase in discharge must therefore necessarily be balanced by a decrease in
discharge later in the season. In Paper II we refer to this as melt limitation, meaning that snow
melt stops earlier or is less strong during the late melt season.

The Upper Beas basin above Bhuntar station, on the other hand, is characterized by perma-
nent snow and ice cover above an elevation of 4800 masl, and about 13% of the catchment is
glaciated. The high fraction of glaciation and permanent snow cover leads to the phenomenon
that the accelerated snow melt in spring due to LAISI is not necessarily balanced by a retreat in
discharge later in the season but rather leads to a faster ageing of snow and thus darker albedo
during summer and earlier exposure of glaciated areas. Consequently, discharge is higher dur-
ing late spring and summer compared to a scenario where the effect of LAISI on albedo is
disregarded in the albedo model. In fact, in our study region discharge does not drop below the
discharge of a clean snow scenario when using reasonable assumptions for LAP deposition.
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6 General Discussion

The shift in water balance as found in the Norwegian basin is similar to previous findings
from the Colorado mountain range, where mineral dust is the dominating absorber (Painter
et al., 2010), and the TP, where BC is the dominating absorber in snow (Qian et al., 2011).
These studies observed a shift in the annual water balance with increasing discharge during
spring melt season and decrease of discharge later in the season. The increase in discharge
throughout the year, however, is firstly observed in our study.

Water resource managers and policy makers are increasingly aware of the impacts LAISI
can have on snow and ice covered regions (IPCC, 2013). Our study reveals that for decision
making and strategic planning of emission regulations, the predominant snow regime of an
area (i.e. the portion of permanent snow cover) determines if changed boundary conditions
of aerosol deposition lead to a shift in the water balance, or potentially increase/decrease the
annual discharge sum. This distinction is of great importance with respect to water resource
management, policy making, and future climate impact estimates.

6.2 The potential of LAISI remote sensing products

6.2.1 Improving impact estimates by using LAISI remote sensing

products

Model results reveal that LAISI can significantly impact snow albedo. A challenge is hereby
the evaluation of model predictions of LAISI impacts against observable parameters. So far, a
model’s ability to predict LAISI has been assessed by comparing observed LAISI concentra-
tions with those predicted by the respective model (e.g., Flanner et al., 2007; Forsström et al.,
2013; Ménégoz et al., 2014). A good representation of LAISI concentrations in surface snow
has been considered a well suited measure of the model’s ability to capture LAISI processes.
Based on such comparisons, LAISI impacts on glacier mass balance (Kaspari et al., 2011; Zhang
et al., 2017), regional hydrology (Qian et al., 2014b), and climate (Jacobson, 2004; Flanner
et al., 2007) have been concluded. However, there are a number of disadvantages connected to
this approach. Firstly, the approach only evaluates the cause, i.e. the concentrations, but not
the subsequent effect, i.e. the radiative forcing. If one aims to estimate LAISI impacts, this is
problematic. Because the radiative forcing depends on several other variables, such as the OGR
of the snow and incoming solar radiation characteristics, reliably predicted LAISI concentra-
tions are necessary, but not necessarily sufficient to reliably predict LAISI radiative forcing and
impacts. Also, our sensitivity study from Paper II shows large uncertainty in the modelled con-
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6.2 The potential of LAISI remote sensing products

centrations resulting from the way surface snow is represented in the model, which makes the
comparisons between model predictions and observations more challenging.

Furthermore, data collection is extremely time consuming and expensive as sampling of snow
is required. The snow is then melted, filtered and further analysed to determine LAISI con-
centrations. In addition, the available analysis methods introduce large uncertainties to the
estimated LAISI concentrations (e.g. BC concentrations can vary by up to a factor of seven
depending on the approach used (Petzold et al., 2013)). Due to the requirement of manual
snow sampling, measurements are often incomplete in space and time, and limited to accessible
regions. LAISI, however, can show large variability on spatial and temporal scales (AMAP,
2015), which requires spatially and temporally consistent measurements.

In particular to capture the annual cycle in seasonal snow, which is mainly caused by verti-
cal redistribution of LAISI within the snowpack during snow melt (see Paper II, III, and Aoki
et al., 2011; Doherty et al., 2013; Forsström et al., 2013), requires dense observational coverage
in space and time. Due to relatively sparse measurements, some regional (Qian et al., 2009)
and global (Jacobson, 2004; Flanner et al., 2007) studies evaluate model predictions using data
where observed and modelled years are different, making a discussion beyond potential clima-
tological variations impossible. In particular, the temporal mismatch causes difficulty in the
validation because LAISI concentrations can show large seasonal fluctuations at a given loca-
tion. Furthermore, Ménégoz et al. (2014) pointed out that for high-elevation regions like the
Himalayas, there are numerous difficulties when carrying out comparisons of LAISI due to the
amount of possible uncertainties.

Some of the discussed issues related to the use of observed LAISI concentration for model
evaluation are resolved by using satellite products that estimate LAISI radiative forcing (Painter
et al., 2012a). Advantageous are in particular the

1. dense temporal coverage

2. wide spatial coverage

3. low cost data availability

once a satellite suitable for the analysis is in operation. Points 1. and 2. will improve as satellites
are improving.

To date, radiative forcing estimates from satellites are limited in that they only provide in-
stantaneous values and are based on critical assumptions about the radiative properties of the
atmosphere. Derivation of the total energy absorbed due to the presence of absorbers in the
snow (e.g. daily or monthly means) are not possible so far, but might become reality as the tem-
poral resolution of suitable satellites approaches into the sub-daily range (Painter et al., 2012a).
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Due to these limitations, the satellite data available up to this point is not directly comparable
to model results. In Paper III, we therefore developed a methodology that allows comparison
between the instantaneous clear sky radiative forcing retrieved with MODDRFS and model
predictions despite these challenges.

The approach enables an additional option for evaluating and improving radiative forcing
by LAISI predicted by models. The additional data source represents a valuable contribution
in addition to the established snow sampling methods that can be integrated when simulating
LAISI effects on glacier mass balance, regional hydrology, and climate. The integration of the
satellite product then allows to investigate a model’s ability to simulate the spatial and temporal
variations of radiative forcing by LAISI at different scales, and, if necessary, reconsider and
update the model configuration in order to improve the prediction. This has been done in the
case study of Paper III, allowing an improved impact estimate of LAISI on the hydrologic
response of a Himalayan catchment, as well as giving an estimate on the annual dust deposition
flux of the region, which is known to be highly uncertain.

Targeting the effect of LAISI on climate and hydrology on different scales is important. The
possibility to reduce uncertainties in the responses to LAISI allows for more reliable predictions
to be utilized by scientists, policy makers, and water resource managers.

6.2.2 Estimating LAISI surface concentrations via satellites - a

challenge or impossible?

Retrieving the concentrations of LAISI using satellites could reveal trends in the deposition
of LAP on regional to global scales, and help identifying whether policy decisions on LAP
emissions, e.g. BC, are showing the desired results. For this reason, the question arises whether
the LAISI concentrations could be detected from radiance measurements by satellite.

An answer to this question is presented by Warren (2013), focusing on BC only, claiming that
estimating BC content in snow using satellite remote sensing is unlikely to be successful due
to several reasons: errors in satellite retrieved albedo on the magnitude of order of the albedo
decrease from BC in snow, impacts from undetected thin clouds and blowing snow, implications
from bare ground areas at the sub-pixel scale.

Seemingly opposing Warren’s concerns, Painter et al. (2012a) presented the MODDRFS al-
gorithm to detect radiative forcing from LAISI from MODIS surface reflectance data showing
that the algorithm gives relatively good results for the Colorado mountain range, and a plausible
range of values for the HKKH. However, MODDRFS does not address the direct retrieval of
LAISI content, which would add another level of complexity, as a certain reduction in albedo
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does not stand in unambiguous relation to LAISI content: a theoretically infinite amount of com-
binations of LAISI species compositions, optical grain sizes, and vertical profiles of LAISI con-
centrations lead to similar reductions in albedo (Warren and Wiscombe, 1980; Warren, 2013).
For this reason, an unambiguous detection of LAISI concentrations is not possible without fur-
ther information.

Even though our study does not directly address the satellite retrieval of LAISI content, we
are arguing that our approach, which combines modelling (Paper II) with a model-satellite data
analysis chain (Paper III), could pave the way for a satellite supported product predicting LAISI
content in snow.

The approach introduced in Paper III is the first allowing the comparison of clear sky radia-
tive forcing from LAISI observed by a satellite and predicted by a model. By using coherent
atmospheric radiative conditions for the model prediction, we minimize impacts from differ-
ences in atmospheric radiation used in the model and satellite product. Based on this, we argue
that differences in the radiative forcing outside the bounds of uncertainty of the satellite product
are mainly due to shortcomings in modelling LAISI in surface snow. Thus, by adapting and
improving the aerosol deposition scenarios, an optimization towards the satellite product can be
achieved.

In Paper III, we adapted LAP depositions in order to get an improved estimate on the hy-
drologic impact of LAISI. Generalizing the approach and shifting the focus on LAISI represen-
tation in surface snow, the model/satellite coupled approach opens the possibility to estimate
LAISI concentrations in snow. In this context, the model part of the approach can help to
overcome the problem of equifinality stressed by Warren (2013). That is, due to inclusion of
post-depositional processes in the snow model, the processes determining the vertical profile
of snowpack variables are represented in a physically coherent way. Uncertainties in estimated
snow variables can be reduced by improving the snowpack scheme and input data used for the
model. Differences in radiative forcing between satellite observations and models can then be
minimized by e.g. improving certain aspects of the atmospheric transport schemes or scaling
deposition rates, as done in the case study of Paper III.

The proposed approach is primarily suitable for regions where a single LAISI species dom-
inates radiative impacts and which are exposed to high levels of contamination. Despite these
limitations, further developing the approach described in Paper III has the potential to fill the
gap of a temporally and spatially continuous product of LAISI content in surface snow.
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6 General Discussion

6.3 Improvement of hydrologic modelling and uncertainty

By implementing the effects of LAISI in the snow routine of the hydrological model, we are
adding complexity to the model. As indicated by e.g. Orth et al. (2015), adding complexity
to hydrologic models operating at the catchment scale does not necessarily lead to improved
performance and, in general, the quality of input data is more important than model complexity
(Finger et al., 2015).

Due to the physical meaning of processes included in the model we in fact reduced the pa-
rameter space by two parameters that require estimation through model calibration compared
to the Gamma Snow algorithm of Shyft, which is based on similar energy balance calculations.
The parameters removed define the albedo decay function. On the other hand, new parame-
ters have been introduced to the model. These parameters (melt scavenging ratios ki) are based
on observable parameters and do not require calibration. Reducing the parameter space of the
hydrologic models is advantageous as it reduces the risk of equifinality (Beven, 2006), and pro-
vides more robust predictions for future climatic conditions as catchment characteristics change
with altered boundary conditions.

Accounting for post-depositional processes in models is important in order to capture the sea-
sonal cycle in surface LAISI content and radiative forcing, and the consequences for hydrologic
variables (Paper II and III) as well as climate forcing on a regional and global scale (e.g. Flanner
et al., 2007; Qian et al., 2011; Oaida et al., 2015).

However, as field observations are rare, the parameters governing scavenging processes are,
to date, connected with large uncertainties. Though many studies have reported increasing ac-
cumulation of absorbers at the snow surface during melt (Higuchi and Nagoshi, 1977; Conway
et al., 1996; Doherty et al., 2013; Aamaas et al., 2011; Sterle et al., 2013), hardly any allow for
quantification of scavenging parameters. In fact, most models that allow for post-depositional
LAISI processes base the parametrization of LAISI scavenging on only few experimental inves-
tigations. Primarily the results from Conway et al. (1996) are used to quantify the scavenging
parameters even though the model experiments conducted in this study were not designed with
the aim to estimate these parameters. Due to the limited experimental bases, the uncertainty on
the parameter estimates is large (Flanner et al., 2007). Despite these issues, a number of studies
use these estimates to investigate LAISI impacts on different spatial scales (Flanner et al., 2007,
2009; Qian et al., 2011; Oaida et al., 2015), including the herein presented work. As a direct
consequence form the large uncertainties of LAISI scavenging, the impact estimates of LAISI
in surface snow and the hydrologic response are connected with considerable uncertainties, as
revealed in Paper II of this thesis. Due to the importance of the effect of LAISI on snow-melt
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processes and climate forcing, we therefore strongly argue for further experimental work re-
garding the fate of different LAISI species during post-depositional processes in order to better
understand these processes and reduce uncertainties in modelling.
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7 Conclusions

The main goal of this thesis was to further the knowledge about the role of LAISI on hydrologic
processes in snow dominated regions through hydrologic catchment modelling. The main out-
come of this thesis is a novel snow routine applied within a novel distributed hydrologic model
framework and an improved understanding about the sensitivity, uncertainty, and magnitude of
impacts of different LAISI species on discharge generation in two drastically different regions.

The main objective listed in the introduction have been addressed as follows:

• Objective 1: Develop a snow algorithm able to take effects from light absorbing aerosols

into account.

In this thesis, a novel snow algorithm has been developed that is able to account for LAISI
implications on snow (Paper I). The snow algorithm conducts energy balance calculation
to determine snow melt, where snow albedo is calculated from a coupling to a radiative
transfer model for snow. The albedo model accounts for LAISI in two snow layers, orig-
inating from wet and dry deposition of LAP. The model further allows for melt water
transport of LAISI between the layers and out of the snowpack.

Even though the effect of LAISI has been implemented in a number of models operating
at different scales, the herein presented contribution provides the first snow algorithm
accounting for LAISI within a hydrologic catchment model.

• Objective 2: Investigate the sensitivity and uncertainty of processes related to light ab-

sorbing impurities.

The new model has been applied in catchments in Norway (Paper I) and the Indian Hi-
malayas (Paper II). The studies reveal the significance of LAISI forcing for snow melt
and discharge generation and highlight potential improvements of hydrologic forecasting
by including these effects, in particular in regions with high deposition rates of LAP, and
in regions that are under the impact of event based deposition scenarios. However, the
studies also demonstrate large uncertainties in the effect of LAISI on discharge genera-
tion. Uncertainties originate in particular from uncertainties in melt amplification. As
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7 Conclusions

parametrizations available to date are based only on limited empirical data, more field
data is required in order to improve process understanding and reduce uncertainties.

• Objective 3: Integrate remotely sensed snowpack information in order to improve model

predictions of light absorbing impurity impacts on the hydrologic response.

In this thesis, a first-of-its-kind approach to integrate remotely sensed radiative forcing
from LAISI is presented. The approach has a wide field of application as it enables a
new method to test and evaluate model predictions of LAISI radiative forcing on a large
number of scales. This will reduce uncertainty of future LAISI predictions, as traditional
methods to evaluate model predictions rely on costly fieldwork and are limited in time
and space. As satellites will improve in temporal and spatial resolution, the significance
of the herein presented approach will further increase. By applying the method in a region
located in the Indian Himalayas, an improvement of the estimates of LAP deposition and
LAISI impacts on hydrologic processes could be achieved.
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Abstract. Light absorbing impurities in snow and ice
(LAISI) originating from atmospheric deposition enhance
snowmelt by increasing the absorption of shortwave radia-
tion. The consequences are a shortening of the snow dura-
tion due to increased snowmelt and, at the catchment scale, a
temporal shift in the discharge generation during the spring
melt season.

In this study, we present a newly developed snow algo-
rithm for application in hydrological models that allows for
an additional class of input variable: the deposition mass
flux of various species of light absorbing aerosols. To show
the sensitivity of different model parameters, we first use
the model as a 1-D point model forced with representative
synthetic data and investigate the impact of parameters and
variables specific to the algorithm determining the effect of
LAISI. We then demonstrate the significance of the radia-
tive forcing by simulating the effect of black carbon (BC)
deposited on snow of a remote southern Norwegian catch-
ment over a 6-year period, from September 2006 to Au-
gust 2012. Our simulations suggest a significant impact of
BC in snow on the hydrological cycle. Results show an aver-
age increase in discharge of 2.5, 9.9, and 21.4 %, depending
on the applied model scenario, over a 2-month period dur-
ing the spring melt season compared to simulations where
radiative forcing from LAISI is not considered. The increase
in discharge is followed by a decrease in discharge due to a
faster decrease in the catchment’s snow-covered fraction and
a trend towards earlier melt in the scenarios where radiative
forcing from LAISI is applied. Using a reasonable estimate
of critical model parameters, the model simulates realistic
BC mixing ratios in surface snow with a strong annual cycle,

showing increasing surface BC mixing ratios during spring
melt as a consequence of melt amplification. However, we
further identify large uncertainties in the representation of
the surface BC mixing ratio during snowmelt and the subse-
quent consequences for the snowpack evolution.

1 Introduction

The representation of the seasonal snowpack is of outstand-
ing importance in hydrological models aiming for applica-
tion in cold or mountainous environments. In many mountain
regions, the seasonal snowpack constitutes a major portion of
the water budget, contributing up to 50 %, and even more, to
the annual discharge (e.g. Junghans et al., 2011). Snowmelt
plays a key role in the dynamic of the hydrology of catch-
ments of various high mountain areas such as the Himalayas
(Jeelani et al., 2012), the Alps (Junghans et al., 2011), and
the Norwegian mountains (Engelhardt et al., 2014), and is
an equally important contributor to streamflow generation as
rain in these areas. Furthermore, timing and magnitude of
the snowmelt are major predictors for flood (Berghuijs et al.,
2016) and landslide (Kawagoe et al., 2009) forecasts, and
important factors in water resource management and oper-
ational hydropower forecasting. Lastly, the extent and the
temporal evolution of the snow cover is a controlling fac-
tor in the processes determining the growing season of plants
(Jonas et al., 2008). For all these reasons, a good represen-
tation of the seasonal snowpack in hydrological models is
paramount. However, there are large uncertainties in many
variables specifying the temporal evolution of the snowpack,
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and the snow albedo is one of the most important among
those due to the direct effect on the energy input to the snow-
pack from solar radiation (Anderson, 1976). Fresh snow re-
flects most of the incoming solar radiation in the near-UV
and visible spectrum (Warren and Wiscombe, 1980). How-
ever, as snow ages and snow grain size increases, the snow
albedo will drop as a result of the altered scattering properties
of the larger snow grains (Flanner and Zender, 2006). Fur-
thermore, ambient conditions also play a large role. The ratio
of diffuse and direct incoming shortwave radiation, the zenith
angle of the sun, and the albedo of the underlying ground in
combination with the snow thickness can have a large im-
pact on the snow albedo (Warren and Wiscombe, 1980). Of
recent significance is the role light absorbing impurities, or
particles, which absorb in the range of the solar spectrum,
have on albedo when present in the snowpack (e.g. Flanner
et al., 2007; Painter et al., 2007; Skiles et al., 2012). These
light absorbing impurities in snow and ice (LAISI) can orig-
inate from fossil fuel combustion and forest fires in the form
of black carbon, BC, and organic carbon (Bond et al., 2013;
AMAP, 2015), mineral dust (Painter et al., 2012), volcanic
ash (Rhodes et al., 1987), organic compounds in soils (Wang
et al., 2013), and biological activity (Lutz et al., 2016), and
have species-specific radiative properties.

As LAISI lower the snow albedo, the effect on the
snowmelt has the potential to alter the hydrological char-
acteristics of catchments where snowmelt significantly con-
tributes to the water budget. Recent research investigates the
impact of LAISI on discharge generation in mountain regions
at different scales. Qian et al. (2011) used a global climate
model to simulate the effect black carbon and dust in snow
have on the hydrological cycle of the Tibetan Plateau. They
found a significant impact on the hydrology, with runoff in-
creasing during late winter/early spring and decreasing dur-
ing late spring/early summer due to a trend to earlier melt
dates. Oaida et al. (2015) implemented radiative transfer cal-
culations to determine snow albedo in the Simple Simpli-
fied Biosphere (SSiB) land surface model of the Weather Re-
search and Forecasting (WRF) regional climate model. They
showed that physically based snow albedo representation can
be significantly improved by considering the deposition of
light absorbing aerosols on snow. Qian et al. (2009) simu-
lated hydrological impacts due to BC deposition in the west-
ern United States using WRF coupled with chemistry (WRF-
Chem). They found a decrease in net snow accumulation and
spring snowmelt due to BC-in-snow induced increase in sur-
face air temperature.

Only a few studies have developed model approaches to
resolve the impact of LAISI on snowmelt discharge gener-
ation at the catchment scale. Painter et al. (2010) showed
that dust, transported from remote places to the Colorado
River basin, can have severe implications for the hydrolog-
ical regime due to disturbances to the discharge generation
from snowmelt during the spring time, shifting the peak
runoff by several weeks and leading to earlier snow-free

catchments and a decrease in annual runoff. Kaspari et al.
(2015) simulated the impact of BC and dust in snow on
glacier melt on Mount Olympus, USA, by using measured
concentrations in summer horizons and determining the ra-
diative forcing via a radiative transfer model. Results indi-
cate enhanced melt during a year of heavy nearby forest fires,
coinciding with an increase in observed discharge from the
catchment.

Despite these efforts, the direct integration of deposition
mass fluxes of light absorbing aerosols in a catchment model
is still lacking. To date, there is no rainfall–runoff model
with a focus on runoff forecast at the catchment scale that
is able to consider aerosol deposition mass fluxes alongside
snowfall. On the other hand, there is evidence that including
the radiative forcing of LAISI has the potential to improve
the quality of hydrological predictions: Bryant et al. (2013)
showed that during the melt period errors in the operational
streamflow prediction of the National Weather Service Col-
orado Basin River Forecast Center are linearly related to dust
radiative forcing in snow. They concluded that implement-
ing the effect of LAISI on the snow reflectivity could im-
prove hydrological predictions in regions prone to deposition
of light absorbing aerosols on snow, which emphasizes the
need for development of a suitable model approach. Further-
more, we continuously move towards hydrological models
with an increasingly complex representation of the physical
processes involved in the evolution of the seasonal snowpack.
Heretofore there has been little focus on the factors related
to LAISI, such as the impact of aerosol deposition on snow
albedo, that may alter the timing and character of discharge
generation at the catchment scale.

In this study, we address this deficiency by introducing
a rainfall–runoff model with a newly developed snow algo-
rithm that allows for a new class of model input variable: the
deposition mass flux of different species of light absorbing
aerosols. The model integrates snowpack dynamics forced
by LAISI and allows for analysis at the catchment scale. The
algorithm uses a radiative transfer model for snow to account
dynamically for the impact of LAISI on the snow albedo and
the subsequent impacts on the snowmelt and discharge gener-
ation. Aside from enabling the user to optionally apply depo-
sition mass fluxes as model input, the algorithm depends on
standard atmospheric input variables (precipitation, temper-
ature, shortwave radiation, wind speed, and relative humid-
ity). To enable a critical evaluation of the newly developed
snowpack algorithm, we conduct two independent analyses:
(i) a 1-D sensitivity study of critical model parameters, and
(ii) a catchment-scale analysis of the impact of LAISI. In
both analyses we use BC in snow from wet and dry depo-
sition as a proxy for the impact of LAISI.

We first present an overview of the hydrological model
used in this study and our algorithm to treat LAISI in Sect. 2.
A description of the catchment used for our study and the in-
put data sets is given in Sect. 3. Section 4 describes the 1-D
model experiments and the model settings in the case study.
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Lastly, our results are presented in Sect. 5 and discussed in
Sect. 6.

2 Modelling framework and snowpack algorithm

In the following section we provide descriptions of the hy-
drologic model (Sect. 2.1) and the formulation of a novel
snowpack module used for the analyses (Sect. 2.2).

2.1 Hydrologic model framework

For the analysis, we use Statkraft’s hydrologic forecasting
toolbox (Shyft; https://github.com/statkraft/shyft), a model
framework developed for hydropower forecasting (Burkhart
et al., 2016; Ghimirey, 2016; Westergren, 2016). Shyft pro-
vides the implementation of many well-known hydrological
routines (conceptual parameter models, and more physically
based approaches), and allows for distributed hydrological
modelling. Standard model input variables are temperature,
precipitation, wind speed, relative humidity, and shortwave
radiation.

The methods used to simulate hydrological processes are
(i) a single-equation implementation to determine the poten-
tial evapotranspiration, (ii) a newly developed snowpack al-
gorithm using an online radiative transfer solution for snow
to account for the effect of LAISI on the snow albedo, and
(iii) a first-order nonlinear differential equation to calcu-
late the catchment response to precipitation, snowmelt, and
evapotranspiration. (i) and (iii) are described in more detail
herein, while (ii) is described in detail in Sect. 2.2.

To determine the potential evapotranspiration, Epot, we
use the method according to Priestley and Taylor (1972):

Epot =
a

λ
·

s(Ta)

s(Ta)+ γ
·Kn, (1)

with a = 1.26 being a dimensionless empirical multiplier, γ
the psychrometric constant, s(Ta) the slope of the relation-
ship between the saturation vapour pressure and the temper-
ature Ta, λ the latent heat of vaporization, and Kn the net
radiation.

The catchment response to precipitation and snowmelt is
determined using the approach of Kirchner (2009), who de-
scribes catchment discharge from a simple first-order non-
linear differential equation. Following Kirchner (2009), we
solve the log-transformed formulation

d(ln(Q))
dt

= g(Q)(
P −E

Q
− 1) (2)

due to numerical instabilities of the original formulation. In
Eq. (2), Q is the catchment discharge, E the evapotranspira-
tion, and P the precipitation.

We assume that the sensitivity function, g(Q), has the
same form as described in Kirchner (2009):

ln(g(Q))≈ c1+ c2 ln(Q)+ c3(ln(Q))2, (3)

with c1, c2, and c3 being the only catchment-specific param-
eters, which we estimate by standard model calibration of
simulated discharge against observed discharge. In contrast
to Kirchner (2009)’s approach, we use the liquid water re-
sponse from the snow routine instead of precipitation P in
Eq. (2) (Kirchner, 2009, used snow-free catchments). The
response from the snow routine can be liquid precipitation,
meltwater, or a combination of both.

2.2 A new snowpack module for LAISI

To account for snow in the model, we developed a snow al-
gorithm to solve the energy balance:

δF

δt
=Kin(1−α)+Lin+Lout+Hs+Hl+R, (4)

with the incoming shortwave radiation flux Kin, the incom-
ing and outgoing longwave radiation fluxes Lin and Lout, the
sensible and latent heat fluxes Hs and Hl, and the heat con-
tribution from rain R. δF

δt
is the net energy flux into or out

of the snowpack. Fluxes are considered to be positive when
directed into the snowpack and as such an energy source.
Lin and Lout are calculated using the Stephan–Boltzmann

law, with Lin depending on the air temperature Ta and Lout
on the snow surface temperature Tss, calculated as Tss =

1.16·Ta−2.09 (Hegdahl et al., 2016). The latent and sensible
heat fluxes are calculated using a bulk-transfer approach that
depends on wind speed, temperature, and relative humidity
(Hegdahl et al., 2016).

The main addition provided in the algorithm described
herein is the implementation of a radiative transfer solution
for the dynamical calculation of snow albedo, α. This imple-
mentation allows a new class of model input variable, wet
and dry deposition rates of light absorbing aerosols. From
this, the model is able to simulate the impact of dust, black
carbon, volcanic ash, or other aerosol deposition on snow
albedo, snowmelt, and runoff. To account for the mass bal-
ance of LAISI, while maintaining a representation of sub-
grid snow variability and snow cover fraction (SCF), a tiling
approach is applied, where a grid cell’s snowfall is appor-
tioned to sub-grid units. Energy balance calculations are then
conducted within each tile. Currently, a gamma distribution
is used to distribute snowfall to the tiles.

Below, we introduce the radiative transfer calculations re-
quired to represent LAISI (Sect. 2.2.1), and provide fur-
ther details of the sub-grid-scale tiling approach to represent
snowpack spatial variability (Sect. 2.2.2).

2.2.1 Aerosols in the snowpack

Wiscombe and Warren (1980) and Warren and Wiscombe
(1980) developed a robust and elegant model for snow albedo
that remains today as a standard. Critical to their approach
was the ability to account for (i) wide variability in ice ab-
sorption with wavelength, (ii) the forward scattering of snow
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grains, and (iii) both diffuse and direct beam radiation at the
surface. Furthermore, and of particular importance to the suc-
cess of the approach, the model relies on observable param-
eters.

Both the albedo of clean snow and the effect of LAISI on
the snow albedo strongly depend on the snow optical grain
radius r (Warren and Wiscombe, 1980), which alters as snow
ages. r can be related to the snow-specific surface areaAs via

r =
3

ρice ·As
, (5)

with ρice the density of ice. As represents the ratio of surface
area per unit mass of snow grain (Roy et al., 2013).

In our model, we compute the evolution of As in dry snow
following Taillandier et al. (2007) as

As(t)= [0.629 ·As,0− 15.0 · (Ts− 11.2)] − [0.076 ·As,0

−1.76 · (Ts− 2.96)]

ln
{
t + exp

(
−0.371 ·As,0− 15.0 · (Ts− 11.2)
0.076 ·As,0− 1.76 · (Ts− 2.96)

)}
, (6)

where t is the age of the snow layer (hours), As,0 is As at
t = 0 (cm2 g−1), and Ts is the snow temperature (◦C). The
evolution ofAs in wet snow is calculated according to Eq. (5)
and Brun (1989) as

dr
dt
=
C1+C2 ·2

3

r2 · 4π
, (7)

where C1 = 1.1× 10−3 mm3 d−1 and C2 = 3.7×
10−5 mm3 d−1 are empirical coefficients. 2 is the liq-
uid water content of snow in mass percentage. As,0 is set to
73.0 m2 kg−1 (Domine et al., 2007) and we set the minimum
snowfall required to reset As to 5 mm snow water equivalent
(SWE).

To solve for the effect of light absorption from LAISI on
the snow albedo, we have integrated a two-layer adaption
of the Snow, Ice, and Aerosol Radiative (SNICAR) model
(Flanner et al., 2007, 2009) into the energy and mass bud-
get calculations. By providing the solar zenith angle of the
sun, the snow optical grain radius r , mixing ratios of LAISI
in the snow layers, and the SWE of each layer, SNICAR
calculates the snow albedo for a number of spectral bands.
To achieve this, SNICAR utilizes the theory from Wiscombe
and Warren (1980) and the two-stream, multilayer radiative
approximation of Toon et al. (1989). Following Flanner et al.
(2007), our implementation of SNICAR uses five spectral
bands (0.3–0.7, 0.7–1.0, 1.0–1.2, 1.2–1.5, and 1.5–5.0 µm)
in order to maintain computational efficiency. Flanner et al.
(2007) compared results from the 5-band scheme to the de-
fault 470-band scheme in SNICAR and concluded that rela-
tive errors are less than 0.5 %. The incident fluxes were simu-
lated offline assuming mid-latitude winter clear- and cloudy-
sky conditions.

The absorbing effect of LAISI is most efficient when the
LAISI reside at or close to the snow surface (Warren and

Wiscombe, 1980). As snow melts, LAISI can remain near
the surface due to inefficient melt scavenging, which leads to
an increase in the near-surface concentration of LAISI and
thus a further decrease in the snow albedo – the so-called
melt amplification (e.g. Xu et al., 2012; Doherty et al., 2013,
2016; Sterle et al., 2013). Field observations suggest that the
magnitude of this effect is determined by the particle size and
the hydrophobicity of the respective LAISI (Doherty et al.,
2013). Conway et al. (1996) observed vertical redistribution
and the effect on the snow albedo by adding volcanic ash
and hydrophilic and hydrophobic BC to the snow surface of
a natural snowpack. Flanner et al. (2007) used the results
from Conway et al. (1996) to determine the scavenging ra-
tios, specifying the ratio of LAISI contained in the melting
snow that is flushed out with meltwater, of both hydrophilic
and hydrophobic BC. They found the scavenging ratio for
hydrophobic BC, kphob, to be 0.03, and, for hydrophilic BC,
kphil, 0.2. Doherty et al. (2013) found similar results by ob-
serving BC mixing ratios close to the surface of melting
snow. However, more recent studies report efficient removal
of BC with meltwater (Lazarcik et al., 2017), revealing large
gaps in the understanding of the process.

To represent the evolution of LAISI mixing ratios near the
snow surface, we treat LAISI in two layers in our model.
The surface layer has a time-invariant maximum thickness
(further called the maximum surface layer thickness). The
mixing ratio of each LAISI species in this layer is calcu-
lated from a uniform mixing of the layer’s snow with either
falling snow with a certain mixing ratio of aerosol (wet depo-
sition) or aerosol from atmospheric dry deposition. The sec-
ond layer (bottom layer) represents the snow exceeding the
maximum thickness of the surface layer. Following Krinner
et al. (2006), we apply a maximum surface layer thickness of
8 mm SWE. Krinner et al. (2006) suggest this value is based
on observations of 1 cm thick dirty layers in alpine firn cores
used to identify summer horizons. Due to potential accumu-
lation of LAISI in surface snow via dry deposition and melt
amplification, we expect the simulated surface mixing ratios
of LAISI to be sensitive to the maximum surface layer thick-
ness of our model. For this reason, we use a factor of 2 for
the maximal surface layer thickness to account for the uncer-
tainty of this model parameter.

To allow for melt amplification in the model, we include
LAISI mass fluxes between the two layers during snow ac-
cumulation and snowmelt. Generalizing Jacobson (2004)’s
representation of LAISI mass loss due to meltwater scaveng-
ing for multiple snow layers, we characterize the magnitude
of melt scavenging using the scavenging ratio k and calculate
the temporal change in LAISI massms in the surface layer as

dms

dt
=−kqscs+D, (8)

and the change in LAISI mass mb in the bottom layer as
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Figure 1. (a) Elevation versus coefficients of variation (CVs) of sub-grid snow distribution from Gisnås et al. (2016) of forest-free areas in
the Atnsjoen catchment (dots) and the relationship between the CVs and the elevation resulting from simple linear regression analysis (black
line). (b) Solid precipitation multiplication factors for the sub-grid snow tiles for different CVs.

dmb

dt
= k(qscs− qbcb). (9)

Herein, qs and qb are the mass fluxes of meltwater from the
surface to the bottom layer and out of the bottom layer, re-
spectively, and cs and cb are the mass mixing ratios of LAISI
in the respective layer. D is the atmospheric deposition mass
flux. A value for k of < 1 is equal to a scavenging efficiency
of less than 100 % and hence allows for accumulation of
LAISI in the surface layer during melt. In our analysis, we
account for hydrophobic and hydrophilic BC. By following
Flanner et al. (2007), we set kphob to 0.03 and kphil to 0.2,
and account for the large uncertainty in those estimates by
using an order of magnitude variation on kphob and kphil. Like
Flanner et al. (2007), we treat aged, hydrophilic BC as sulfate
coated to account for the net increase in the mass absorption
cross section (MAC) by 1.5 at λ= 550 nm compared to hy-
drophobic BC caused by the ageing of BC (reducing effect
on MAC) and particle coating from condensation of weakly
absorbing compounds (enhancing effect on MAC) suggested
by Bond et al. (2006). As a consequence, hydrophilic BC ab-
sorbs more strongly than hydrophobic BC under the same
conditions. On the other hand, hydrophilic BC undergoes a
more efficient melt scavenging. The competing mechanisms
are subjects of the 1-D sensitivity study in Sect. 5.1.3.

2.2.2 Sub-grid variability in snow depth and snow
cover

In order to allow for explicit treatment of snow layers while
representing sub-grid snow variability, we follow Aas et al.
(2017), and assume that the sub-grid spatial distribution of
each single event of solid precipitation follows a certain
probability distribution function. From this distribution we

calculate multiplication factors, which then are used to as-
sign the snowfall of a model grid cell to a number of sub-
grid computational elements, the so-called tiles (Aas et al.,
2017). The snow algorithm described herein is executed for
each of the tiles separately, providing a mechanism to ac-
count for snow spatial distribution while preserving conser-
vation of mass. Therefore, variables related to the snow state,
such as SWE, liquid water content, LAISI mixing ratios, and
snow albedo differ among the tiles. To calculate the multi-
plication factors, we assume that the sub-grid redistributed
snow follows a gamma distribution (see e.g. Kolberg and
Gottschalk, 2010; Gisnås et al., 2016), determined by the co-
efficient of variation (CV) of SWE at snow maximum. Gis-
nås et al. (2016) used Winstral and Marks (2002)’s terrain-
based parametrization to model snow redistribution in Nor-
way by accounting for wind effects during the snow accumu-
lation period over a digital elevation model with 10 m resolu-
tion. In the case study presented in Sect. 5.2, we use the CV
values from Gisnås et al. (2016) to derive a linear relation-
ship between the model grid cell’s elevation and the corre-
sponding CV value by simple linear regression (see Fig. 1a),
which results in a R2 value of 0.71 and a p value of smaller
than 2.0× 10−5 for the study area. The linear relationship
is only applied to grid cells with an areal forest cover frac-
tion of lower than or equal to 0.5. For grid cells with a forest
cover fraction of higher than 0.5, a constant snow CV value
of 0.17 is used, following the findings of Liston (2004) for
high-latitude, mountainous forest. Examples of multiplica-
tion factors for forested grid cells and forest-free grid cells
for different CV values are shown in Fig. 1b.
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3 Site description, meteorologic model input, and
atmospheric deposition data

We selected the unregulated upper Atna catchment for our
analysis. The catchment is located in a high-elevation region
of southern Norway (Fig. 2). The watershed covers an area
of 463 km2 and ranges in elevation from 700 m a.s.l. at the
outlet at lake Atnsjoen to over 2000 m a.s.l. in the Rondane
mountains in the western part of the watershed, with approx-
imately 90 % of the area above the forest limit. The average
annual precipitation in the watershed during the study period
is approximately 655 mm. The mean annual discharge is ap-
proximately 11 m3 s−1, with low flows of 1–3 m3 s−1 during
the winter months and peak flows of over 130 m3 s−1 during
the spring melt season.

For the meteorological model input of precipitation, tem-
perature, relative humidity, and wind speed we use daily ob-
servations from the Norwegian Water Resources and Energy
Directorate (NVE) and the Norwegian Meteorological Insti-
tute (MET). Four meteorological stations are located in the
watershed at elevations between 701 and 780 m a.s.l. along
the Atna river, two of these measuring precipitation and
two measuring temperature. Observations of relative humid-
ity and wind speed originate from two stations at locations
close by the catchment (not shown in Fig. 2). Further in-
formation about the stations are given in Table 1. Due to
poor availability of continuous solar radiation observations
in Norway, we use gridded global radiation data from the
Water and Global Change (WATCH) Forcing Data method-
ology applied to ERA-Interim reanalysis data (WFDEI; Wee-
don et al., 2014) with a resolution of 0.5◦. Discharge obser-
vations are from a station located at the outlet of the catch-
ment at lake Atnsjoen and are used for model calibration and
validation. In the following, we present the development of
atmospheric deposition rates of BC, which we use as a proxy
for LAISI, due to a lack of available deposition rates for other
species. For the 1-D sensitivity study of Sect. 5.1 we devel-
oped representative model input based on the meteorological
conditions in this catchment.

Atmospheric deposition of black carbon from the
REMO-HAM model

The wet and dry deposition rates of BC for the study area are
generated using the REMO-HAM regional aerosol-climate
model (Pietikäinen et al., 2012). The core of the model
is a hydrostatic, 3-D atmosphere model developed at the
Max Planck Institute for Meteorology in Hamburg. With
the aerosol configuration, the model incorporates the HAM
(Hamburg Aerosol Module) by Stier et al. (2005) and Zhang
et al. (2012). HAM calculates the aerosol distributions using
seven log-normal modes and includes all the main aerosol
processes.

For the simulations, we follow the approach of Hienola
et al. (2013), but with changes to the emission inventory:

N
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Figure 2. Location of the Atnsjoen catchment in Norway (black
box in the left map) and overview map of the Atnsjoen catchment
(right).

Hienola et al. (2013) used emissions based on the AeroCom
emission inventory for the year 2000 (see Dentener et al.,
2006). In the REMO-HAM simulations conducted herein,
emissions are made by the International Institute for Applied
Systems Analysis (IIASA) and are based on the Evaluating
the Climate and Air Quality Impacts of Short-Lived Pollu-
tants (ECLIPSE) V5a inventory for the years 2005, 2010, and
2015 (years in between were linearly interpolated) (Klimont
et al., 2016, 2017). We also updated other emissions modules
(wildfire, aviation, and shipping) following the approaches
presented in Pietikäinen et al. (2015). The only difference
to Pietikäinen et al. (2015) in this work is that we used the
Global Fire Emissions Database (GFED) version 4 based on
an updated version of van der Werf et al. (2010).

REMO-HAM was used for the same European domain as
in Pietikäinen et al. (2012) using a 0.44◦ spatial resolution
(50 km), 27 vertical levels, and a 3 min time step. The ERA-
Interim re-analysis data were utilized at the lateral bound-
aries for meteorological forcing (Dee et al., 2011) and, for the
lateral aerosol forcing, data from the ECHAM-HAMMOZ
global aerosol-climate model (version echam6.1.0-ham2.2)
were used. ECHAM-HAMMOZ was simulated in a nudg-
ing mode, i.e. the model’s meteorology was forced to follow
ERA-Interim data, and the ECLIPSE emissions were used
(plus the other updated emission modules shown in Pietikäi-
nen et al., 2015). The boundaries of REMO-HAM were up-
dated every 6 h for both meteorological and aerosol related
variables. Simulations with REMO-HAM were conducted
for the time period of 1 July 2004–31 August 2012 and the
time period used in our analysis is from 1 September 2006
onwards. The initial state for the model was taken from the
boundary data, except for the soil parameters, which were
taken from a previous long-term simulation for the same
domain (a so-called warm start). The output frequency of
REMO-HAM was 3 h and the total BC deposition flux was
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Table 1. Information about observational stations.

Station name Station ID Operator Observational variable Elevation (m a.s.l.)

Atnsjoen 1 8720 MET precipitation 749
Atndalen-Eriksrud 8770 MET precipitation 731
Atnsjoen 2 2.32.0 NVE temperature 701
Li Bru 2.479.0 NVE temperature 780
Fokstuga 16610 MET wind speed; relative humidity 973
Kvitfjell 13160 MET wind speed 1030
Venabu 13420 MET relative humidity 930

calculated from the accumulated dry and wet deposition and
sedimentation fluxes, and resampled to daily time resolution.
Herein, dry deposition refers to the sum of REMO-HAM dry
deposition and sedimentation.

4 Modelling experiments and calibration

Our analysis is conducted in two parts. First, in a 1-D sen-
sitivity study, we investigate the sensitivity of parameters
and variables specific to the LAISI algorithm presented in
Sect. 2.2. We then demonstrate the impact of BC at the catch-
ment scale in a case study by simulating the impact of wet
and dry deposition of BC on snowmelt and discharge gener-
ation in a remote southern Norwegian catchment (Sect. 5.2).

We assume uncertainties of the LAISI radiative forcing in
snow to originate mainly from the model representation of
surface layer thickness, melt scavenging of BC, and uncer-
tainties in the deposition input data. To account for the un-
certainties, we declare minimum (min), central (mid), and
maximum (max) effect estimates for each of the critical pa-
rameters, outlined together with further model parameters
in Table 2. The min, mid, and max estimates are both sub-
jects of analysis in the sensitivity study (further described in
Sect. 4.1) and used in the case study to give an uncertainty
estimate of the LAISI effect on the hydrologic variables (fur-
ther described in Sect. 4.2). We investigate the impact of BC
impurities on the response variables by comparing the results
from aerosol radiative forcing model experiments (ARF sce-
narios) to simulations in which all BC deposition rates are
set to zero (no-ARF scenario).

4.1 One-dimensional sensitivity study experiments

The results of the 1-D sensitivity study are presented in
Sect. 5.1; herein we describe the configurations to conduct
our analysis. The purpose of this study is to isolate the im-
pact of different model parameters: (i) maximum surface
layer thickness (parameter max_surface_layer; see Table 2),
(ii) scavenging ratio, and (iii) the impact of the scavenging
ratio with respect to the BC species (parameters kphob and
kphil).

Our approach evaluates these parameters and the evolu-
tion of the snowpack under constant melting conditions. We

run the 1-D simulations with model parameters as outlined in
Table 2 and forcing data based on synthetic input data. The
synthetic forcing data set is based on the average meteorolog-
ical conditions during the melt season from mid March until
mid July of the Atnsjoen catchment. In our sensitivity ex-
periments, all snowpacks have 250 mm SWE of snow with a
mixing ratio of 35 ng g−1 in both surface and bottom layer at
melt onset. These values are representative of the upper 50 %
of tiles at winter snow maximum in the Atnsjoen catchment
during the study period of the case study. During the melt
period, we exclude fresh snowfall and dry deposition, in or-
der to isolate the effect of the tested model parameters on the
snowpack evolution under melt conditions. This may lead to
an underestimation of total BC mass in the snow column.

To investigate the impact of the maximum surface layer
thickness (parameter max_surface_layer) of the model, we
run simulations with synthetic forcing and use maximal sur-
face layer thicknesses of 4.0 mm SWE (max estimate; see Ta-
ble 2), 8.0 mm SWE (mid estimate), and 16.0 mm SWE (min
estimate). Additionally, we include a single-layer model with
a vertically uniform distribution of BC in the analysis and, for
comparison, a simulation with clean snow.

To explore the sensitivity to scavenging ratio, we apply
different BC scavenging ratios in the range of the uncertainty
of hydrophilic BC, which covers a wide range from very effi-
cient to inefficient scavenging. The scavenging ratios applied
are based on the analysis conducted by Flanner et al. (2007)
using data from Conway et al. (1996). The mid estimate for
the hydrophilic BC scavenging ratio (kphil = 0.2) also com-
pares well to field observations from Doherty et al. (2013).
We further include in the analysis Flanner et al. (2007)’s up-
per bound uncertainty estimate for hydrophilic BC (2.0; ef-
ficient scavenging), the lower bound estimate (0.02; ineffi-
cient scavenging), and for comparison a scenario in which
BC does not undergo any scavenging (0.0).

Hydrophilic BC absorbs more strongly than hydrophobic
BC under the same conditions due to an increased MAC for
hydrophilic BC resulting from ageing of the aerosol during
atmospheric transport (Bond et al., 2006). On the other hand,
hydrophilic BC undergoes more efficient melt scavenging
(Flanner et al., 2007), which impacts the snowpack evolu-
tion significantly. To explore this competing interplay, we
apply the mid estimate of the scavenging ratio of hydropho-
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Table 2. Model parameters used in the sensitivity and case study. Parameters optimized during calibration are marked with a. Further
parameters were pre-set and not included in parameter estimation during calibration. Parameters with different values in the minimum (min),
central (mid), and maximum (max) BC radiative forcing estimates are marked with b.

Parameter Description and unit min estimate optimized/set max estimate
mid estimate

c1
a empirical coefficient 1 (see Eq. 3) (–) −4.298

c2
a empirical coefficient 2 (see Eq. 3) (–) 0.3295

c3
a empirical coefficient 3 (see Eq. 3) (–) −0.07757

ae_scale_factora scaling factor for actual evapotranspiration (–) 1.43
txa temperature threshold rain/snow (◦C) −0.92
wind_consta determining wind profile (–) 6.32
wind_scalea determining wind profile (–) 1.12
snowfall_reset_depth minimum snowfall required to reset As (mm SWE) 5.0
snow_cv_forest snow CV in forested area (–) 0.17
snow_cv_intercept intercept of linear elevation–CV relation (–) −0.05
snow_cv_slope slope of linear elevation–CV relation (m−1) 0.00056
max_water fractional max water content of snow (–) 0.10
As,0 As of fresh snowfall (m2 kg−1) 73.0
surface_magnitude maximum snow depth for snow heat content (mm SWE) 30.0
max_surface_layerb maximum thickness of surface layer (mm SWE) 16.0 8.0 4.0
depo_factorb multiplication factor for deposition (–) 0.5 1.0 1.5
kphob

b scavenging ratio of hydrophobic BC (–) 0.3 0.03 0.003
kphil

b scavenging ratio of hydrophilic BC (–) 2.0 0.2 0.02

bic BC (kphob = 0.03) to both the hydrophobic BC and the
hydrophilic BC species. In this manner we explore the iso-
lated effect of the different absorption properties of the two
species. We further apply the mid estimate for hydrophilic
BC scavenging ratio (kphil = 0.2) to hydrophilic BC to quan-
tify the gross effect. As in other cases, we include the no-
ARF scenario to highlight the overall effect on the albedo
and melt of the different scenarios.

4.2 Case study model set-up and calibration

We investigate the impact of BC aerosol deposition on the
catchment hydrology of a Norwegian catchment over a study
period of 6 years, from September 2006 to August 2012.
The station-based input data described above (Sect. 3) are
interpolated to the simulation grid cells (1× 1 km2 and
accordingly smaller cells at the catchment boarders; see
Fig. 2) using Shyft’s interpolation algorithms. For temper-
ature Bayesian Kriging (Diggle and Ribeiro, 2007) is used.
For precipitation, BC deposition rates, wind speed, and rel-
ative humidity interpolation to the model grid cells are via
inverse distance weighting. A 5 % increase in precipitation
for every 100 m increase in altitude is used for the precipita-
tion interpolation (Førland, 1979).

To calibrate the model against observed discharge, we first
run a split-sample calibration (Klemes, 1986) using the first
3 years (1 September 2006 to 31 August 2009) of the study
period as the calibration period and the following 3 years
(1 September 2009 to 31 August 2012) for model validation.
For parameter estimation, we use the BOBYQA algorithm

for bound-constrained optimization (Powell, 2009). To as-
sess the predictive efficiency of the model, we use the Nash–
Sutcliffe model efficiency

ENS = 1−
∑T
t=0(Q

t
o−Q

t
s)

2

∑T
t=0(Q

t
o−Qo)2

, (10)

whereQt
o andQt

s are the observed and simulated discharge at
time t , respectively, and Qo is the mean observed discharge
over the assessed period.

Model calibration is run with mid estimates for all model
parameters impacting the handling and effect of LAISI and
aerosol depositions as simulated from REMO-HAM during
model calibration. Those parameters and further model pa-
rameters, including the parameters estimated during calibra-
tion, are listed in the left column of Table 2. We investigate
the uncertainty in the effect of BC on snowmelt by using the
min and max effect parameter estimates from Table 2, while
holding constant all other model parameters as estimated dur-
ing calibration. To assess the gross effect of LAISI, we com-
pare the simulations to equivalent simulations in which ARF
is not included.
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Figure 3. Snow albedo (top row of graphs; solid lines) and melt rate (top row of graphs; dashed lines), BC mixing ratio in the surface layer
and factor increase in the mixing ratio during melt compared to the pre-melt BC mixing ratio (central row of graphs), and snowpack SWE
(bottom row of graphs) for simulations forced with synthetic data based on average meteorological conditions during the melt season from
mid March until mid July of the Atnsjoen catchment and different model configurations: (a) different values for maximum surface layer
thickness; (b) scavenging ratio; and (c) BC species with different melt scavenging ratios applied (phob and phil in the legend stand for
hydrophobic and hydrophilic BC, respectively). The black lines in all graphs show simulation results of model runs without ARF applied
(no-ARF).

5 Results

5.1 One-dimensional sensitivity studies

5.1.1 Sensitivity to surface layer thickness

Figure 3a shows the effect of the different maximum sur-
face layer thicknesses (parameter max_surface_layer) on the
melting snowpack with other parameters set according to Ta-
ble 2. The maximum surface layer thickness strongly deter-
mines the surface BC mixing ratio over the melt season. Dur-
ing snowmelt, surface BC increases up to a factor of circa
10, 20, and 30 for maximum surface layer thicknesses of
16.0, 8.0, and 4.0 mm SWE, compared to the pre-melt sea-
son BC mixing ratio (35 ng g−1). For those three two-layer
scenarios (purple, red, and green curves in Fig. 3a), the re-
sulting differences in albedo and melt rate are small, even
though the increase in the surface layer mixing ratio during
the melt season differs strongly among the scenarios. Us-
ing the single layer model, the surface BC mixing ratio in-
creases more slowly and stays comparably low in contrast
to the two-layer models until shortly before meltout. This
leads to a less pronounced decrease in albedo compared to
the two-layer models and thus to a shorter meltout shift com-
pared to a clean snowpack of about 5 days (yellow curves

in Fig. 3a), whereas the two-layer scenarios show earlier
meltouts of about 7 days.

5.1.2 Sensitivity to scavenging ratio of BC

In the range of investigated scavenging ratios, we find the
sensitivity of the surface BC mixing ratio, the albedo, and the
subsequent snowmelt to this parameter (Fig. 3b). When ap-
plying a melt scavenging factor typical for the lower bound of
hydrophilic BC (0.02, purple lines) there is little effect com-
pared to the scenario without melt scavenging (green lines).
Both show circa a factor 30 increase in surface BC mixing ra-
tio to the end of the melt season and only little differences in
the development of albedo and snowmelt. Similar results are
achieved when using the mid estimate scavenging factor for
hydrophobic BC (0.03, not shown). A distinction exists when
using the mid estimate scavenging factor for hydrophilic BC
(0.2, red line). In contrast to no scavenging and the lower
bound hydrophilic scavenging, surface BC does not increase
as rapidly during the melt period and is completely flushed
when applying a melt scavenging factor typical for the upper
bound of hydrophilic BC (yellow line; the surface concentra-
tion drops continuously during the melt period).

The changes in the scavenging ratio lead to a considerable
effect on albedo and snowmelt. Meltout is delayed by circa
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0.5 (purple lines), 3 (red lines), and 8 days (yellow lines)
for scavenging ratios of 0.02, 0.2, and 2.0, respectively, com-
pared to no scavenging (green lines). Compared to the no-
ARF experiment (black lines), our simulations show that the
presence of BC causes an earlier meltout of about 9.5, 7, and
2 days for scavenging ratios of 0.02, 0.2, and 2.0, respec-
tively.

5.1.3 Sensitivity to BC species

The column of graphs in Fig. 3c illustrate the net effect of
the competing processes of more efficient absorption result-
ing from a larger MAC with more efficient wash out. A mid
estimate of the scavenging ratio of hydrophobic BC (0.03)
is applied and shown for the hydrophobic BC (green curve)
and the hydrophilic BC (purple curves) species. These curves
show the isolated effect of the different absorption proper-
ties of the two species. Further, the mid estimate scavenging
ratio for hydrophilic BC (0.2) is also shown using radiative
properties of hydrophilic BC to quantify the gross effect (red
curves). The no-ARF scenario (black curves) highlights the
overall impacts.

The isolated effect of the stronger absorption of hy-
drophilic BC leads to an earlier meltout by circa 2 days com-
pared to hydrophobic BC (purple and green curves in graphs
of Fig. 3c). However, when applying the mid estimate of the
scavenging ratio for hydrophilic BC (0.2), the combined ef-
fects leads to a masking of the isolated effect of stronger ab-
sorption by hydrophilic BC (and vice versa). During the melt
period, snow albedo, melt rate and the snowpack SWE barely
differ between the scenarios with the mid estimate scaveng-
ing for hydrophobic and hydrophilic BC applied (green and
red curves). This reveals that both scenarios, hydrophobic BC
with low scavenging efficiency and hydrophilic BC with high
scavenging efficiency, lead to an earlier meltout by roughly
7 days compared to the no-ARF scenario.

5.2 Case study: Impact of BC deposition on the
hydrology of a south Norwegian catchment

5.2.1 Performance of the model

In the split-sample test, the model performance is accept-
able during both calibration and validation, with Nash–
Sutcliffe model efficiencies of 0.86 during the calibration pe-
riod (green line in Fig. 4a) and 0.82 during the validation
period (red line in Fig. 4a). However, in the winter season
(November until March) the model generally underestimates
the discharge and peaks in the beginning of the melt season
are slightly underestimated. The scatter plot in Fig. 5 con-
firms the underestimation of low-flow situations. For the dif-
ferent scenarios explored within the case study, all LAISI-
relevant parameters are fixed to mid estimates and model pa-
rameters optimized for the full period (1 September 2006 to
31 August 2012; Fig. 4b) resulting in a Nash–Sutcliffe model
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Figure 4. Simulated (green and red curves) and observed (black
curve) daily discharge from the Atnsjoen catchment. (a) is showing
the simulation results for 3 years of calibration (green) and 3 years
of validation (red). (b) is showing the results for the 6-year calibra-
tion period. Parameters estimated in the latter are used in the case
study. Parameters not included in the optimization are set to mid
estimate values during the calibration process (see Table 2).
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Figure 5. Comparison of observed and simulated daily discharge
Q of the Atnsjoen catchment. The dashed black line demonstrates
perfect agreement between simulation and observation.

efficiency of 0.84. The optimized parameters are listed in Ta-
ble 2. Note that switching ARF off entirely (no BC deposi-
tion) leads to a slight decrease in the model quality (Nash–
Sutcliffe model efficiency of 0.83 over the whole period; not
shown).

5.2.2 Surface BC and albedo

For the min and mid estimate, the model simulates an average
annual surface BC mixing ratio of about 18 and 71 ng g−1,
respectively. Our max estimate yields 198 ng g−1. The evolu-
tion of surface albedo driven by BC deposition is distinct in
the accumulation period vs. the melt period. During the snow
accumulation period (until end of March), only slight dif-
ferences in albedo are noticeable. The average annual snow
albedo from 1 January until 22 March is 0.871 for the no-
ARF scenario (Fig. 6a), while during the same time period,
min, mid, and max estimates show relative albedo reductions
of 0.003, 0.010, and 0.014, respectively from the no-ARF

Hydrol. Earth Syst. Sci., 22, 179–201, 2018 www.hydrol-earth-syst-sci.net/22/179/2018/



F. N. Matt et al.: Modelling hydrologic impacts of light absorbing aerosol deposition 189

Jan Feb Mar Apr May Jun Jul
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ea

n 
al

be
do

(a)

Albedo
Mid
No ARF

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

SC
F

SCF
Mid
No ARF

Jan Feb Mar Apr May Jun Jul
100

101

102

103

104

BC
 c

on
ce

nt
ra

tio
n 

[n
g 

g−
1
] (b)Mid

100

101

102

103

104

BC
 c

on
ce

nt
ra

tio
n 

[n
g 

g−
1
]

Figure 6. (a) Simulated mean catchment snow albedo (solid lines)
and snow-covered fraction (SCF; dashed lines) for the mid (red
lines), min, and max (shaded) estimates and for the scenario with-
out ARF (no-ARF; black lines) averaged over the 6-year period.
(b) Mixing ratio of BC in the model surface layer for the mid (solid
line), min (lower bound of the shaded area), and max (upper bound
of the shaded area) estimates.

case. At the beginning of the melt period, surface layer con-
centrations of min, mid, and max estimate average to 12, 49,
and 98 ng g−1 (Fig. 6b).

With the start of the melt season, the difference in albedo
between model experiments becomes increasingly larger
over time. During the melt season, the mid estimate spatially
averaged surface BC mixing ratio increases from 49 to about
250 ng g−1 (factor 5 increase) at the end of the melt season
(beginning of July). For the max estimate, the increase is
from roughly 100 to over 2500 ng g−1 (factor 25 increase).
The min estimate on the other hand leads to a decrease in
the BC surface mixing ratio. The distinctly different surface
BC mixing ratios at the end of the melt season and among the
three scenarios cause large differences in albedo decrease rel-
ative to the no-ARF case of about 0.03, 0.1, and over 0.3 for
the min, mid, and max estimates, respectively.

5.2.3 BC-induced radiative forcing

The radiative forcing in snow (RFS) induced by the pres-
ence of BC is calculated from the average radiative forc-
ing over snow-bearing tiles only. The RFS represents the
additional uptake of energy from solar radiation per area
snow cover due to the presence of BC in the snow com-
pared to clean snow with the same properties. Figure 7a
shows the daily mean RFS and demonstrates the increase
in RFS during snowmelt. Low RFS is observed during the
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Figure 7. Catchment snow-covered fraction (SCF; dashed lines),
(a) simulated mean radiative forcing in snow (RFS), and (b) total
daily energy uptake in the catchment due to BC (surface radiative
forcing in Watts per square metre catchment area) for the mid (solid
red lines), min (lower bound of the shaded area), and max (upper
bound of the shaded area) estimates averaged over the 6-year pe-
riod).

snow accumulation period, then steadily increasing through
spring snowmelt, reaching values of approximately 8, 18, and
57 W m−2 for the min, mid, and max estimates, respectively
(see the red solid line and shaded area in Fig. 7a). RFS in mid
winter is small due to low surface BC mixing ratios and low
solar irradiance.

However, most relevant for discharge generation (see
Sect. 5.2.4) is the catchment-wide total daily energy uptake
due to BC, or surface radiative forcing, calculated as the
mean radiative forcing over all grid cells. As the snow cover
fraction (SCF) in the catchment drops during spring (dotted
line and yellow shaded area in Figs. 6 and 7), the effect of
the RFS on the melt generation is limited by the increasing
area of bare ground. The net effect is shown in Fig. 7b. The
catchment mean surface radiative forcing due to the presence
of BC in snow shows a strong annual cycle and reaches a
maximum of 1.3, 4.9, and 8.8 W m−2 (min, mid, and max
estimates, respectively) around the beginning of May.

5.2.4 BC impact on catchment discharge and snow
storage

Figure 8a shows the simulated daily discharge and catchment
SWE averaged over the 6-year simulation period for the mid
(red lines), min, and max estimates (bounds of the shaded
areas), and the no-ARF scenario (black lines). The differ-
ences in daily discharge and catchment SWE of the min,
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Figure 8. (a) Simulated daily discharge (Q; solid lines) and catch-
ment mean snow water equivalent (SWE; dashed lines) for the mid
(red lines), min, and max (shaded) estimates and for the scenario
without ARF (no-ARF; black lines) averaged over the 6-year pe-
riod. (b) Differences in daily discharge and SWE between ARF sce-
narios and the scenario without ARF (no-ARF). The blue marker
in (a) and (b) separates the periods where BC in snow has an en-
hancing effect (left of the marker) and a decreasing (right of the
marker) effect on discharge.

mid, and max estimates to the no-ARF scenario are shown
in Fig. 8b. All simulations with ARF applied show higher
daily discharge from the end of March until the end of May
and lower discharge from the end of May until mid August
relative to the no-ARF simulation. For the rest of the year,
no effect on discharge is noticeable. The net impact of RFS
results in a shift in the timing of discharge. Higher discharge
early in the melt season is observed, yet offset by lower dis-
charge following May. The cumulative annual discharge re-
mains nearly identical.

Min, mid, and max estimates all show the change from
higher to lower discharge compared to the no-ARF scenario
approximately at the same time (at the end of May; see the
blue marker in Fig. 8). Therefore, we can quantify the abso-
lute and relative effect of RFS on the discharge during the
two periods: the early melt season from circa 22 March un-
til 29 May and the late melt season from circa 30 May until
10 August (Fig. 8b, and see Table 3). This yields an average
percentage increase in daily discharge of 2.5, 9.9, and 21.4 %
for the min, mid, and max estimates for the early melt sea-
son and a decrease in discharge of −0.8, −3.1, and −6.7 %
during the late melt season.

The differences in discharge among the scenarios can be
explained by understanding the evolution of the snowpack.
In all scenarios the catchment SWE (Fig. 8a) reaches a peak

reduction relative to the no-ARF scenario of −4.6, −13.4,
and −34.4 % in mid May. The average decreases in catch-
ment SWE of the min, mid, and max estimates compared to
the no-ARF scenario during the entire melt season are −2.1,
−7.4, and−15.1 % (see Table 3). From mid May on, the dif-
ferences in catchment SWE between scenarios drop contin-
uously, which is equivalent to a higher catchment averaged
snowmelt rate in the no-ARF scenario compared to the ARF
scenarios.

6 Discussion

The objective of this work is to provide a mechanism to as-
sess the impact of light absorbing aerosols on runoff at the
catchment scale in a rainfall–runoff modelling context. Prior
investigations into LAISI indicate potentially significant im-
pacts on the cryosphere (Flanner et al., 2007) with poten-
tial impacts on water resources (Qian et al., 2009, 2011).
Earlier studies on hydrologic impacts at the catchment scale
have used altered radiative forcings to evaluate the impact on
the timing of snowmelt and hydrology (Painter et al., 2010;
Skiles et al., 2012). With the approach presented herein, we
seek to fill a gap between land-surface model approaches
(e.g. Oaida et al., 2015) and approaches that apply modified
radiative forcing to provide a novel tool for hydrologic fore-
casting.

6.1 Parameter sensitivity

To assess the sensitivity of the newly introduced algorithm
and parameters, we conducted a sequence of 1-D sensitiv-
ity studies. In this context, we are able to remove complexi-
ties that arise when conducting distributed simulations at the
catchment scale.

We found the greatest sensitivity to lie in the parametriza-
tion of scavenging, as it relates to how likely the aerosol is
to remain at the snow surface during melt. Field measure-
ments indicate that only a fraction of BC is flushed out with
the meltwater and BC can accumulate near the snow sur-
face (e.g. Xu et al., 2012; Doherty et al., 2013, 2016; Sterle
et al., 2013). Our model is able to simulate this process by
taking the scavenging ratio of BC during meltwater move-
ment into account (Eqs. 8 and 9). In the literature, the scav-
enging efficiency of BC is discussed controversially. Flanner
et al. (2007)’s estimates for scavenging ratios of hydrophilic
and hydrophobic BC, which are used in this study, are based
on data from field experiments using artificially added soot
(Conway et al., 1996). However, parameters derived from
artificially added soot might not be directly transferable to
the scavenging properties of naturally occurring BC. Even
though field observations from Doherty et al. (2013) agree
well with the estimates of Flanner et al. (2007), and further
studies highlight the importance of BC retention in the snow-
pack (e.g. Xu et al., 2012; Sterle et al., 2013), a large uncer-
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Table 3. Average change in discharge during the early (22 March to 29 May) and late (30 May to 10 August) melt seasons of min, mid, and
max estimates and average change in SWE during the melt season (22 March to 10 August) compared to the no-ARF scenario.

scenario early melt late melt melt season
season discharge season discharge SWE

(m3 s−1) (%) (m3 s−1) (%) (mm) (%)

min estimate 0.2 2.5 −0.18 −0.8 −1.5 −2.1
mid estimate 0.81 9.9 −0.74 −3.1 −5.1 −7.4
max estimate 1.74 21.4 −1.60 −6.7 −10.3 −15.1

tainty remains on the magnitude of this effect (Lazarcik et al.,
2017). These uncertainties are identified in our simulations
as results show large differences in BC evolution and day of
meltout at the boundaries of the applied scavenging ratios
(Fig. 3b). Compared to the no-ARF experiment (black lines),
the presence of BC causes an earlier meltout for all scaveng-
ing ratios applied, spanning from 2 days (upper boundary hy-
drophilic scavenging, 2.0) to about 9.5 days (lower boundary
hydrophilic scavenging, 0.02). Even when applying efficient
melt scavenging, resulting in nearly all BC removed from the
snow, the meltout still happens circa 2 days earlier compared
to the no-ARF experiment.

Further complicating the effect is the fact that hydrophilic
BC (which undergoes more efficient melt scavenging) has a
larger MAC (enhanced absorption) compared to hydropho-
bic BC (Flanner et al., 2007). Our results suggest that distin-
guishing between species may play a secondary role in the
determination of the overall impact of BC on snowmelt due
to the compensating effect of stronger scavenging accompa-
nied by stronger absorption and vice versa (Fig. 3c).

The 1-D model experiments further show that the defini-
tion of at least two layers in the snowpack model is impor-
tant to allow for accumulation of impurities at the snow sur-
face. This result in itself is not original: numerous prior stud-
ies have identified the importance of having multiple layers
(Krinner et al., 2006; Flanner et al., 2007; Oaida et al., 2015).
However, we further find that the model surface layer thick-
ness (parameter max_surface_layer; see Table 2) has a great
impact on the evolution of surface mixing ratios of BC, while
at the same time the effect on albedo and snowmelt is small.
This results from the fact that for all two-layer models the
surface layer thickness is much thinner than the penetration
depth of shortwave radiation. For example, in clean snow
with an optical grain radius of 50 µm, the radiative intensity
diminishes to 1/e of its surface value (the so-called pene-
tration depth) in 25.5 mm SWE. For snow with an optical
grain radius of 1000 µm, the penetration depth increases to
117 mm SWE (both results from Flanner et al., 2007, assum-
ing a wavelength of 550 nm and a solar zenith angle of 60◦).
Thus, BC in the surface layer absorb efficiently in all two-
layer scenarios and the difference in the albedo is relatively
large compared to the no-ARF scenario (solid black line in
the top graph of Fig. 3a), but relatively small among the two-

layer scenarios (solid purple, red, and green curves in the top
graph of Fig. 3a). However, there is a critical difference when
a single-layer model is used (yellow curves in Fig. 3a) due to
the aerosol being distributed uniformly throughout the snow-
pack instead of allowing accumulation at the surface. Thus,
a large fraction of the BC is located at depths where the ra-
diative intensity is much lower than in the top few mm of the
snowpack. This leads to a weaker absorption efficiency and
a less pronounced decrease in albedo compared to the two-
layer models and thus to a shorter meltout shift compared to
a clean snowpack than in the two-layer scenarios.

Observations of BC in melting snow support the accumu-
lation of BC near the surface (Xu et al., 2012; Doherty et al.,
2013; Sterle et al., 2013; Delaney et al., 2015). In a sequence
of snow pits, Sterle et al. (2013) showed that during the abla-
tion season, BC mixing ratios increase significantly near the
snow surface (sampled in the top 2 cm) relative to bulk BC
concentrations. They suggest that most likely a large frac-
tion of previously deposited BC becomes concentrated near
the surface. Delaney et al. (2015) also report surface BC in-
crease during melt, to which BC being trapped at the snow
surface is likely to contribute. BC increases in surface snow
of up to an order of magnitude (Sterle et al., 2013; Doherty
et al., 2016) and more (Xu et al., 2012) have been observed in
natural snow during melt. Over most of the melt period, our
results show a factor increase between 5 and 15 for the two-
layer scenarios, which aligns well with observations. Higher
values are mainly predicted shortly before meltout, when the
snowpack is typically very thin and effects on discharge gen-
eration due to high increase in surface BC should be small.

We argue therefore the importance of providing, at a min-
imum, a separate surface layer, but recognize that simulated
surface mixing ratios of BC are highly sensitive to the thick-
ness of this layer. Since evaluation of model predictions for
BC in snow is commonly performed by comparing simulated
with observed BC mixing ratios in surface snow (e.g. Flan-
ner et al., 2007; Forsström et al., 2013), this is a critical result.
Snow is often sampled in the top few centimetres (typically
2 to 5 cm, e.g. Doherty et al., 2010; Aamaas et al., 2011;
Forsström et al., 2013). This raises an interesting challenge
given that the surface layer assumed in models is not a mea-
surable property of snow. A comparison of model simula-
tions with observations should therefore include some quan-
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tification of the uncertainty resulting from the surface layer
thickness parametrization.

6.2 Hydrologic response to BC deposition in a snowfall
dominated catchment

We are interested in addressing the impact of BC deposi-
tion – and potentially other light absorbing aerosols – on the
hydrology of snowfall dominated catchments. Studies have
shown the potential impact LAISI may have on the timing
of snowmelt (Skiles et al., 2012; Painter et al., 2012), while
others have argued that the impact on climate may be sig-
nificant (Flanner et al., 2007, 2009; Qian et al., 2009, 2011).
Given the importance of snow for water resources for a sig-
nificant portion of the population (Barnett et al., 2005; Sturm
et al., 2017) and the rapid growth of BC emissions in certain
regions of the world (e.g. Paliwal et al., 2016; Bond et al.,
2013), our aim is to provide a mechanism to include this pro-
cess in hydrologic forecasting to better address future impact
studies.

Forsström et al. (2013) found BC seasonal mean snow-
pack concentrations from about 10 to 80 ng g−1 for different
locations and time periods in mainland Scandinavia. Gener-
ally our results are within those presented in Forsström et al.
(2013), though our max estimate lies above. However, Flan-
ner et al. (2007) evaluated the global impact of the radiative
forcing of BC in snow using a model that was compared with
globally distributed surface BC measurements. For southern
Norway, Flanner et al. (2007) predicted annual mean surface
BC mixing ratios between 46 and 215 ng g−1 for the year
1998, placing our simulations fully within a reasonable range
of prior reported values.

The impact resulting from BC deposition in our study is
seen in the timing of the annual water balance. Inclusion of
ARF generally increases early season melt and causes the
snowpack to melt out earlier. Comparing the ARF and no-
ARF scenarios, we see a general shift in the discharge, with
the ARF scenario producing greater discharge early in the
season, and having less discharge after June. Such a shift in
seasonal water balance will potentially have impacts on soil
moisture and agriculture (Blankinship et al., 2014), as well
as on regional climate (Qian et al., 2011). While we recog-
nize significant uncertainties associated with conceptual hy-
drologic modelling that may impact the applicability of these
results (Beven and Binley, 1992; see also the uncertainty dis-
cussion in Sect. 6.3), we feel it provides a novel mechanism
to address LAISI in a manner that, to date, is not available
otherwise. As a reality check of the catchment-scale process
representation, we evaluate the impact of the incorporation
of BC deposition on albedo, radiative forcing, and snowpack
storage.

6.2.1 Surface BC and albedo

Albedo is a critical parameter in any snowmelt model, with
significant control over the energy balance. During the ac-
cumulation period, the average albedo of each scenario lies
within the range of albedo of fresh snow with small opti-
cal grain radius combined with a high solar zenith angle
(Gardner and Sharp, 2010) and is thus reasonable for a high-
latitude snowpack during snow accumulation. The differ-
ences in snow albedo during the accumulation season are
mostly due to differences in aerosol deposition and in the
maximum surface layer thickness of the snowpack. The time
series of mid estimate modelled surface BC is within the
range of values for locations in mainland Scandinavia pre-
sented in Forsström et al. (2013) during the accumulation
period. The min estimate predicts values at the lower bound
and lies in the range of the background surface BC level
found in Svalbard in the European High Arctic (5 ng g−1,
Aamaas et al., 2011; 30 ng g−1, Clarke and Noone, 1985).
Compared to Forsström et al. (2013), the surface BC level
of the max estimate seems to exceed the range of values rea-
sonable for mainland Scandinavia during snow accumulation
and reflects a range of values that is rarely found in snow-
packs outside Asia (Doherty et al., 2010; Forsström et al.,
2013; Wang et al., 2013; AMAP, 2015).

At the end of the melt season, the evolution of surface BC
yields reductions in albedo relative to the no-ARF case of
about 0.03, 0.1, and over 0.3 for the min, mid, and max esti-
mates, respectively. This has two reasons: first, with increas-
ing grain radius during the melt season, the absorbing effect
of BC gets more efficient due to deeper penetration of radi-
ation into the snowpack, leading to a stronger effect of the
BC deposition on albedo. Snow of larger grains has a larger
extinction coefficient and more effective forward scattering
properties (Flanner et al., 2007). Second, with the start of the
melt season there is a widespread decrease in snow thick-
ness, allowing BC to accumulate in the surface layer. This
latter effect is strongly dependent on the applied scaveng-
ing ratios, as we demonstrated in the 1-D sensitivity study
(Sect. 5.1). During the melt season, the mid estimate spa-
tially averaged surface BC mixing ratio increases from 49 to
about 250 ng g−1 (factor 5 increase) at the end of the melt
season (beginning of July). Observations from Forsström
et al. (2013) indicate that surface BC mixing ratios around
250 ng g−1 are well within the range of reasonable values for
a melting Scandinavian snowpack. Furthermore, an increase
in surface BC by a factor of 5 and higher during snowmelt
is in line with observed BC trends in melting snow from dif-
ferent locations (Doherty et al., 2013, 2016; Xu et al., 2012).
From this, we argue that our mid estimate simulation predicts
a seasonal cycle in surface BC that is within reason.

For the max estimate, the increase is from roughly 100 to
over 2500 ng g−1 (factor 25 increase). This strong seasonal
cycle in surface BC is beyond what is observed for both ab-
solute BC values in Scandinavian snowpacks and increase

Hydrol. Earth Syst. Sci., 22, 179–201, 2018 www.hydrol-earth-syst-sci.net/22/179/2018/



F. N. Matt et al.: Modelling hydrologic impacts of light absorbing aerosol deposition 193

relative to surface BC during snow accumulation. The min
estimate, on the other hand, leads to a decrease in the BC
surface mixing ratio. Even though many studies report an in-
crease in surface BC during snowmelt (e.g. Conway et al.,
1996; Doherty et al., 2013, 2016; Xu et al., 2012), there ex-
ist observations showing that a large fraction of BC can be
flushed efficiently from the snowpack with the beginning of
snowmelt (Lazarcik et al., 2017). This indicates that post-
depositional enrichment processes and their significance in
determining surface BC trends in melting snow require fur-
ther exploration. We argue that the min estimate thus marks
a reasonable lower bound estimate for the seasonal evolution
of surface BC.

We recognize our max estimate results in a strong increase
in surface BC mixing ratios mostly due to low BC scavenging
with melt (note the strong increase from the end of March
on in Fig. 6). This divergent evolution of surface BC mixing
ratios in the min, mid, and max estimates reveals uncertainty
in the representation of the fate of BC in snow during melt,
which is also reflected in the literature (Doherty et al., 2013,
2016; Xu et al., 2012; Lazarcik et al., 2017).

6.2.2 BC-induced radiative forcing

The strong increase in RFS (Fig. 7a) and surface radiative
forcing (Fig. 7b) during spring melt results from the combi-
nation of (i) the aforementioned decrease in snow albedo due
to the increase in surface BC mixing ratios (e.g. melt amplifi-
cation and the increasing optical grain radius in melting snow
as discussed in Sect. 5.2.2) and (ii) the increasing daily solar
irradiation due to a lower solar zenith angle and longer days.

The annual mean surface radiative forcings in this study
are 0.284, 0.844, and 1.391 W m−2 for the min, mid, and
max estimates. Averaged over Scandinavia (including Fin-
land), Hienola et al. (2016) calculated lower values around
0.145 W m−2. However, Hienola et al. (2016)’s study in-
cludes large areas with shorter snow cover. Since the surface
radiative forcing is strongly dependent on the snow cover
evolution, higher values compared to Hienola et al. (2016)
are expected due to the long lasting snow cover in our case
study region. The mid estimate annual cycle of surface ra-
diative forcing due to the presence of BC in the study region
is of a similar magnitude to what is found over the Tibetan
Plateau. Qian et al. (2011) report similar snow cover duration
and maximum mean forcing during May of over 6 W m−2

using a global climate model. Due to the generally much
lower snow-covered fraction in Qian et al. (2011)’s study
region, however, RFS is presumably significantly higher on
the Tibetan Plateau compared to our study region, which is
in agreement with very high levels of BC reported for the
Tibetan Plateau (Qian et al., 2011). Using a stand-alone ver-
sion of SNICAR, we estimated RFS based on surface BC
mixing ratios from Forsström et al. (2013) measured during
melt in the top 5 cm of Scandinavian snowpacks to 4.7 to
18.2 W m−2 (95 % confidence interval; details described in

Appendix A). These values agree well with our min and mid
estimate RFS (Fig. 7), but are significantly lower than our
max estimate predictions.

6.2.3 BC impact on catchment discharge and snow
storage

We mention a shift in the seasonal water balance, with more
melt early in the melt season resulting from enhanced RFS.
However, from mid May the melt enhancement reduces and
the differences in catchment SWE between the ARF and no-
ARF scenarios decrease (Fig. 8b). One would expect with
more incoming radiation, later in the season, the RFS ef-
fect to become further enhanced. However, this counter-
intuitive result becomes clearer when one considers the im-
pact of fractional snow-covered area and catchment-scale
processes. The dynamics driven by the faster development
of SCF (see Fig. 6a) is a limiting factor in the catchment-
averaged snowmelt. By comparing Fig. 7a, which shows the
RFS enhancement, with Fig. 7b, which shows total daily en-
ergy uptake in the catchment, we see that a threshold period
is reached and total daily energy uptake decreases, while RFS
is continually increasing. The SCF decrease with increased
melt due to ARF counteracts the RFS effect itself, due to the
reduction in area from which snow can actually melt. For
discharge, this is manifested in the ARF scenarios as an en-
hancement during the beginning of the melt season attributed
to RFS, whereas the decreased discharge later in the season
is attributed to melt limitation caused by the faster growth of
fractional bare ground areas.

Similar shifts in the annual water balance due to the impact
from LAISI are reported for the Upper Colorado River Basin
(Painter et al., 2010) and the Tibetan Plateau (Qian et al.,
2011). Those regions are well-known hotspots of LAISI dis-
turbance to snow cover (Painter et al., 2007; Qian et al.,
2014). Our results suggest that the hydrologic cycle of re-
gions that have not been the focus hitherto (such as Norway)
might also be significantly affected by ARF.

Compared to observations, all simulations (ARF and no-
ARF) tend to underestimate discharge during early melt
season and overestimate discharge during late melt season
(Fig. 8a). However, the magnitude of over- and underesti-
mation strongly differs between the scenarios. By including
ARF the volume error is reduced in both the early melt sea-
son (by increasing melt), and in late melt season (by subse-
quently decreasing melt generation in the catchment due to
reduced SCF). Expressed as seasonal mean volume error for
early and late melt season, the difference to observed dis-
charge is largest for the no-ARF scenario and smallest for
the max estimate. The max estimate reduces the volume er-
ror by −75.1 % during early melt season and −89.9 % dur-
ing late melt season, relative to the no-ARF scenario (see
Table 4). The min and mid estimates also reduce the volume
error. Thus, on average, an improvement in simulated dis-
charge is achieved during the melt season by accounting for
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Table 4. Season mean volume error in discharge during the early
(22 March to 29 May) and late (30 May to 10 August) melt sea-
sons of the no-ARF, min, mid, and max scenarios compared to ob-
served discharge. The percentage change shows an increase (+) or
decrease (−) in the volume error compared to the no-ARF volume
error.

scenario early melt late melt
season discharge season discharge

(m3 s−1) (%) (m3 s−1) (%)

no-ARF −2.32 – 1.78 –
min estimate −2.12 −8.7 1.60 −10.1
mid estimate −1.52 −34.7 1.04 −41.6
max estimate −0.57 −75.1 0.18 −89.8

BC RFS. Similar results are achieved when estimating model
parameters using a no-ARF scenario (not shown). However,
we acknowledge that further studies are needed in order to be
able to confirm a general model improvement when account-
ing for ARF in snow dominated catchments. Certain mecha-
nisms can lead to model improvements for the wrong reason
when applying ARF (Kirchner, 2006). Structural deficits of
the model might lead to a negligence of processes that are im-
portant for the spring melt generation. The implementation of
ARF could then optimize the model towards the observations
and counteract errors coming (partly) from a missing process
that is not related to ARF. A further potential mechanism is
related to the equifinality of conceptual models. These im-
plications coming from model parameter uncertainty are dis-
cussed in Sect. 6.3 alongside with further sources of uncer-
tainty.

6.3 Uncertainties

There are numerous challenges associated with the devel-
opment of an algorithm that mixes conceptual hydrologic
parametrizations with physically based approaches. Both the
literature and our analysis highlight aspects that warrant a
deeper investigation of ARF-induced uncertainty. The intent
with this work is to introduce a new algorithm; however, as
indicated in Pappenberger and Beven (2006), we feel it is
important to provide an initial assessment of the uncertainty
introduced with the addition of ARF terms. To achieve this
we have conducted a generalized likelihood uncertainty esti-
mation (GLUE; Beven and Binley, 1992) which provides an
assessment of the degree of variability in behavioural models
resulting from equifinality.

With respect to the implementation of a physical albedo
model, the treatment of the darkening effect of LAISI adds
additional degrees of freedom to the parameter space of the
model due to the introduction of new parameters (scaveng-
ing ratios, surface layer thickness, BC input scaling factor;
see the bottom four parameters in Table 2). In order to inves-
tigate the abilities and limits of the model with and without
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Figure 9. The 95 % confidence interval of simulated discharge due
to parameter uncertainty when allowing for ARF (red) and disre-
garding ARF (grey), calculated using the GLUE method and aver-
aged over the 6-year simulation period. The shaded box marks the
period of the melt season, where observations tend to lie outside the
uncertainty bounds of the no-ARF simulations.

ARF to reflect the observed discharge, we quantify the pa-
rameter uncertainty prior and posterior to the implementation
of ARF calculations (Fig. 9; details in Appendix B). Uncer-
tainties are generally largest during snowmelt and summer
because various parameters only play an active role in cal-
culating discharge during snowmelt. Including ARF calcula-
tion in the model leads to a shift of the uncertainty band to
higher values during April and May, and lower values dur-
ing June and July, due to increased melt under the impact
of ARF. From mid May to mid June, the ARF-induced shift
in the uncertainty band leads to observations being within
or closer to the border of the uncertainty bands (shaded box
in Fig. 9), which can be interpreted as an improvement to
the model. This would imply that in the model without ARF,
albedo decays not sufficiently enough during spring in order
to generate enough snowmelt, resulting in an underestima-
tion of discharge in April and May. However, we admit that
further testing is needed to draw a more accurate conclusion,
as discussed above. Perhaps more importantly, it appears that
we have not increased uncertainty much by adding complex-
ity. In general, both simulations with and without ARF lead
to acceptable results. However, we enable the inclusion of
a potentially important variable, particularly with respect to
increasing emissions of light absorbing aerosols due to pop-
ulation growth.

In our case study, further uncertainties result from mixing
ratios of BC in the snowpack due to prescribed BC deposi-
tion, and LAISI other than BC not accounted for in the sim-
ulations:

i. prescribed BC deposition

In the approach presented here, we use prescribed BC
deposition mass fluxes. Even though this is common
practice (e.g. Goldenson et al., 2012; Lee et al., 2013;
Jiao et al., 2014), it was shown by Doherty et al. (2014)
that the decoupling of aerosol deposition from the wa-
ter mass flux of falling snow can lead to an overesti-
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mation of surface mixing ratios by a factor of 1.5–2.5.
However, we would like to highlight an important dif-
ference between our approach and the one Doherty et al.
(2014) claim to be problematic: first, the high bias in
surface snow BC mixing ratios described by Doherty
et al. (2014) refers to global climate model simulations
with prescribed aerosol deposition rates (wet and dry),
where the input aerosol fields are interpolated in time
from monthly means. Therefore, the episodic nature of
aerosol deposition due to wet deposition is generally ab-
sent in the prescribed aerosol fields. The coupling of the
interpolated fields with highly variable meteorology (in
particular precipitation) results in the high bias (Doherty
et al., 2014). In our case study, we use deposition fields
originating from the REMO-HAM regional aerosol cli-
mate model, forced with ERA-Interim reanalysis data at
the boundaries. REMO-HAM output is 3-hourly, which
we re-sampled to daily means in order to have consis-
tency between the deposition fields and the observed
daily precipitation used as input data in the hydrological
simulations. The daily time step allows us to preserve
the episodic nature of aerosol deposition. Moreover, the
daily BC wet deposition rates should not be biased due
to major inaccuracies in precipitation, as REMO-HAM
has been shown to reproduce the Scandinavian precip-
itation realistically (Pietikäinen et al., 2012). The high
bias occurring when using interpolated monthly aver-
ages as input should therefore be minimized. Addition-
ally, and significantly, Doherty et al. (2014) (and the cri-
tiques therein) address an objective with consideration
to climate impacts. Our analysis is focused on the im-
pact on the hydrological cycle. Our simulations suggest
that BC RFS is mostly important during spring time,
where surface BC mixing ratios are predominantly con-
trolled by melt processes, and not by deposition pro-
cesses (as shown in Figs. 3 and 6b).

ii. LAISI other than BC

By including only BC deposition in our simulation,
we likely underestimate the additional effect of fur-
ther LAISI species such as mineral dust (Di Mauro
et al., 2015; Painter et al., 2010), mixing of the snow
with soil from the underlying ground or local sources
(Wang et al., 2013), and biological processes (Lutz
et al., 2016). Neglecting additional RFS from LAISI
other than BC is likely to result in an underestimation of
the overall effect of LAISI on snowmelt and discharge
generation. Especially the contribution from dust is crit-
ical since it has been shown that in many regions such as
the Rocky Mountains (Painter et al., 2012), Utah (Do-
herty et al., 2016), the southern edge of the Himalayas
(Gautam et al., 2013), and Svalbard (Forsström et al.,
2013), dust can play a significant role in terms of RFS
or even is the dominating LAISI. For Norway, however,
analysis conducted by Forsström et al. (2013) indicates

that dust might only play a minor role. By compar-
ing samples from Svalbard and near Tromsø, Norway,
Forsström et al. (2013) showed that there exits a distinc-
tive difference between the Arctic Archipelago and the
mainland. The BC mixing ratio from mineral-dust-rich
Svalbard measured by the thermal/optical method used
in Forsström et al. (2013) averaged about half the mix-
ing ratio of insoluble light absorbing particulates (in-
cluding dust) measured by an optical method (ISSW:
Integrating Sphere/Integrating Sandwich; e.g. Doherty
et al., 2010). Samples collected close to Tromsø, on the
other hand, resulted in BC that averaged about 1.3 times
the ILAP mixing ratios. Due to the fact that the ISSW
method overestimates BC for samples containing dust,
Forsström et al. (2013) argue that the comparison of
both methods can be used to draw conclusions about the
pollution regime. However, due to the small number of
samples and the single-location analysis, this needs to
be addressed more in future studies in order to identify
the relative importance of different LAISI species.

With respect to our study, we acknowledge that including
only BC is a shortcoming with respect to the overall effect of
LAISI. However, by demonstrating the significant effect of
BC on accelerating snowmelt and discharge generation, our
study gives a conservative estimate of the effect of LAISI and
urges a more detailed investigation.

7 Conclusions

Herein we presented a newly developed snow algorithm for
application in hydrologic models that allows a new class of
model input variable: the deposition rates of light absorbing
aerosols. By coupling a radiative transfer model for snow to
an energy-balance-based snowpack model, we are provid-
ing a tool that can be used to determine the effect of vari-
ous species of LAISI at the catchment scale. In this analysis
we have focused solely on BC and acknowledge it therefore
likely represents a conservative estimate. This work presents
a novel analysis of the impact of BC deposition to snow
on the hydrologic cycle through 1-D sensitivity studies and
catchment-scale hydrologic modelling. From a 1-D model
study, presented in Sect. 5.1, we conclude that

i. the implementation of at least two layers (a thin surface
layer and a bottom layer) is of outstanding importance
to capture the potential effect of melt amplification on
the near-surface LAISI evolution. The parametrization
of the surface layer has only a small effect on the snow
albedo and melt rate as long as the surface layer thick-
ness (in SWE) is sufficiently thin (e.g. thinner than the
penetration depth of shortwave radiation). However, the
evolution of the LAISI surface mixing ratio is highly
sensitive to the surface layer thickness. For this reason,
we suggest including a surface layer thickness varia-
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tion in model studies when comparing simulated and
observed LAISI mixing ratios sampled in the top few
centimetres of snow.

ii. The determination of how LAISI are washed out of the
snowpack with meltwater has a great effect on the evo-
lution of LAISI concentration near the surface, snow
albedo, and melt rate. Due to rare observations of this
effect under controlled conditions, the uncertainties are
high and our findings show the need for more detailed
understanding of the processes involved due to the high
importance of the overall effect of LAISI on the snow-
pack evolution.

To demonstrate the significance of BC radiative forcing for
the hydrologic cycle at the catchment scale, we demonstrated
the effect of BC deposition and the subsequent implications
for snowmelt and discharge generation on a remote Norwe-
gian mountain catchment. The study indicates that inclusion
of BC in snow is likely to have a significant impact on melt
timing, and that the effect on the discharge generation leads
to a shift in the annual water balance. Our simulations further
suggest that melt amplification can have severe implications
for both the snowpack evolution and the discharge regime of
a catchment, which means that the seasonal cycle of the sur-
face BC mixing ratio is of great importance. However, large
uncertainties are connected with the representation of surface
enrichment of BC. A more robust understanding of the fate
of BC in melting snow is essential to fully assess impacts on
the hydrologic cycle.

Including radiative forcing from BC in the simulations
leads to a reduction in volume error during the early and late
melt season in our simulations. We conclude from our study
that hydrological modelling can potentially be improved by
including the effect of LAISI, especially when the model ap-
proach implies a physically based representation of the snow-
pack in general and the snow albedo in particular. However,
more research in the area of catchment-scale impact of LAISI
is needed to support this. The approach and algorithm pre-
sented in this analysis provide a tool to target this in future
applications.

Data availability. Meteorological observations for the Atnsjoen
catchment are provided by the Norwegian Meteorological Institute
(MET) and the Norwegian Water Resources and Energy Directorate
(NVE). Observed streamflow data are provided by NVE. The data
are published in Matt (2018), alongside gridded BC wet and dry
deposition data and SHyFT model configuration files. The source
code of SHyFT is available on GitHub (https://www.github.com/
statkraft). More information may be found at http://www.mn.uio.
no/geo/english/research/projects/hycamp.
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Appendix A: Radiative forcing in snow estimated from
Forsström et al. (2013)

In order to calculate radiative forcing in snow (RFS) from
surface concentrations during melt reported in Forsström
et al. (2013), several assumptions have been made. For each
input variable, a certain reasonable range is estimated, suited
to snow properties during melt conditions:

– snow optical grain radius: 500–1000 µm;

– snow density: 400–600 kg m−3;

– BC mixing ratio: 50–200 ng g−1 (from Forsström et al.,
2013).

Forsström et al. (2013) report six time series of BC surface
concentrations sampled in the top 5 cm of the snowpack,
all of which cover the snowmelt period at three locations
in Scandinavia; however, only one location can be consid-
ered remote without pollution from local sources (Abisko,
Sweden). The range of BC mixing ratios during melt is es-
timated from this location. Global radiation during spring is
estimated to 210 W m−2. The value has been calculated from
the input time series of our study region, in order to receive
comparable results. The daily mean solar zenith angle has
been set to 60◦ and BC mixing ratios below the top 5 cm to
0 ng g−1, since no further information is available. The lat-
ter might lead to an underestimation of RFS, and results can
be seen as a conservative estimate; 1000 realizations with
SNICAR have been conducted using different input variable
sets, with random values for each input variable according
to a uniform distribution in the stated range. Resulting RFS
values are presented as the 95 % confidence interval to 4.7 to
18.2 W m−2. The mean is 11.2 W m−2.

Appendix B: Parameter uncertainty with GLUE

We determine parameter uncertainty using the GLUE
method (Beven and Binley, 1992). Lower and upper bounds
of parameters used in the calculation are shown in Table B1.
We use the Nash–Sutcliffe model efficiency (see Eq. 10) as a
likelihood function and choose a threshold value of 0.74 (0.1
below the best calibration result) for accepting parameter sets
as behavioural parameter sets. To identify the impact of ARF
on model uncertainty, we run GLUE twice, first without ARF
applied, and in a second round of simulations accounting for
ARF. Random parameter sets are created by choosing pa-
rameters according to a uniform distribution in the range of
the parameter bounds. For each of the two uncertainty esti-
mations, a total of 10 000 model realizations was drawn, of
which 1435 (no-ARF) and 1831 (ARF) parameter sets were
rated as behavioural parameter sets. This accounts for about
14 and 18 % of the total samples, respectively.

Table B1. Model parameter bounds used in the uncertainty estima-
tion with the GLUE method. Parameters used to determine ARF are
marked with ∗.

Parameter Unit Lower bound Upper bound

c1 – −7.0 −2.0
c2 – 0.1 1.0
c3 – −0.1 0.0
ae_scale_factor – 0.7 2.0
tx ◦C −2.0 1.0
wind_const – 3.0 10.0
wind_scale – 0.5 2.0
snowfall_reset_depth mm SWE 3.0 7.0
snow_cv_forest – 0.15 0.2
snow_cv_intercept – −0.03 −0.07
snow_cv_slope m−1 0.0003 0.0007
max_water – 0.5 0.15
As,0 m2 kg−1 50.0 100.0
surface_magnitude mm SWE 20.0 40.0
max_surface_layer∗ mm SWE 4.0 16.0
depo_factor∗ – 0.5 1.5
kphob

∗ – 0.003 0.3
kphil
∗ – 0.02 2.0
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Abstract Light-absorbing impurities in snow and ice (LAISI) lower the snow albedo and cause
accelerated snowmelt. The radiative forcing caused by LAISI is in this connection the key variable in
understanding LAISI-snowpack dynamics. Here we present an approach combining distributed hydrologic
model simulations and remotely sensed radiative forcing from LAISI in order to improve model predictions
of radiative forcing impacts. In a case study, we assess the seasonal cycle of instantaneous at-surface
clear-sky radiative forcing from LAISI as predicted by model and satellite observations for a river basin
located at the southern slope of the Himalayas. By scaling dust depositions, we optimize simulated radiative
forcing conditioned on satellite observations. The optimized model predicts that LAISI-induced radiative
forcing in snow contributes to 4.1% to 5.8% of the annual discharge. The presented approach has a wide
range of applications as it provides a novel method to constrain and evaluate measures of LAISI-induced
radiative forcing.

Plain Language Summary Certain particles that have the ability to absorb sunlight deposit onto
mountain snow via atmospheric transport mechanisms. The presence of such particles in snow leads to a
reduction of the snow’s ability to reflect sunlight, which increases snowmelt. The key variable to understand
these processes is hereby the additional energy that is taken up by the snow due to the presence of these
particles. In this study, we present a method that allows the comparison of this additional energy measured
by satellites with those predicted by numerical models. In a case study, we use the satellite data to
improve the model representation of this variable by adapting the amount of particles in the snow of an
area located at the southern slope of the Himalayas. Using the improved model, we estimate the increase
in streamflow resulting from increased snowmelt in the area. We find that in the study region,
light-absorbing particles in snow are responsible for 4.1% to 5.8% of the annual streamflow.

1. Introduction

Light-absorbing impurities in snow and ice (LAISI) can increase snowmelt (Skiles et al., 2012), shorten snow
cover (Painter et al., 2007), and alter the hydrologic cycle (Qian et al., 2011) resulting from modifications
to snow albedo. Inclusion of LAISI in physically based snow albedo models improves the representation
of this sensitive and dynamic variable and modifies snow metamorphism (Tuzet et al., 2017). Models of
different scales consider the effects of LAISI, ranging from multilayer point models (Tuzet et al., 2017), hydro-
logic catchment models (Matt et al., 2018), to regional (Oaida et al., 2015) and global (Flanner et al., 2007)
climate models.

LAISI in surface snow lead to increased energy uptake by the snowpack, so-called radiative forcing in snow
(RFS). RFS is the key variable in determining LAISI impacts. However, it remains a challenge to asses model
predictions of RFS. Most studies compare the simulated LAISI content in surface snow layers against obser-
vations, which illustrates the models’ ability to predict mixing ratios of LAISI from aerosol deposition and
post depositional dynamics (e.g., Flanner et al., 2007; Ménégoz et al., 2014; Qian et al., 2011, 2014; Zhao
et al., 2014). From this it is then assumed that a good estimate of the LAISI mixing ratios in surface snow
reflects the model’s ability to simulate RFS. Though reasonable estimates of surface mixing ratios of LAISI
may be a necessity to determine RFS, it is not a sufficiency: the model representation of surface snow
(Matt et al., 2018), optical grain radius (OGR) of the snow (Warren & Wiscombe, 1980), and irradiance char-
acteristics (Wiscombe & Warren, 1980) play an essential role. However, observations of all variables required
to conduct a complete evaluation of model predictions are rare and often discontinuous in time and space.
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Figure 1. (a) Overview map showing the location of the Upper Beas Basin (magenta) in the western Himalayas. The red box marks the area shown in (c).
The black lines mark the country boarders of India. (b) Upper Beas Basin. (c) True color Moderate Resolution Imaging Spectroradiometer (MODIS) images (top row)
showing the western Himalayas before, during, and after a dust event in May/June 2003. The corresponding instantaneous radiative forcing in snow predicted
by the MODIS Dust Radiative Forcing in Snow algorithm is shown in the bottom row.

On the other hand, continuous observations are required due to strong temporal fluctuations in the surface

mixing ratios and subsequent RFS, driven by post depositional redistribution of LAISI in the snowpack (Matt

et al., 2018; Qian et al., 2014). These dynamics, and in particular the role of LAISI transport and removal from

the snowpack with percolating meltwater (Doherty et al., 2013, 2016; Sterle et al., 2013; Xu et al., 2012), are

still poorly understood (Lazarcik et al., 2017). For all these reasons, simulations including LAISI would benefit

from a direct evaluation of the model’s ability to predict RFS.
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RFS can be determined without knowledge of vertical distribution and composition of LAISI by measuring
snow albedo and relating it to the albedo of hypothetically clean snow with the same OGR. Painter et al. (2012)
introduced a new algorithm that enables the retrieval of RFS from the Moderate Resolution Imaging
Spectroradiometer (MODIS) surface reflectance data, which may be used to directly assess model perfor-
mance in the simulation of RFS. However, challenges arise when comparing instantaneous satellite products
with simulations at hourly or daily temporal frequency, and significant variability may exist that MODIS may
not adequately capture (Burkhart et al., 2017).

Here we introduce an inverse modeling approach allowing the comparison of simulated instantaneous
clear-sky RFS from LAISI to observations from the MODIS Dust Radiative Forcing in Snow algorithm (MOD-
DRFS; Painter et al., 2012). We apply the approach to a western Himalayan catchment that is heavily impacted
by dust deposition (Gautam et al., 2013) (see Figure 1 showing satellite scenes prior and posterior to a dust
storm over the study area). Utilizing catchment discharge data from a region in the Himalayas for which
MODDRFS is available (Figure 1c) and for which we believe significant dust and black carbon (BC) deposition
will impact RFS, we conduct hydrologic simulations to derive snowpack properties. Atmospheric transport
simulations provide BC aerosol deposition, while dust deposition is scaled in order to optimize model pre-
dictions of RFS toward the satellite observations. In this manner we are able to assess the impacts of RFS on
discharge generation as well as derive an improved understanding of the magnitude of dust deposition for
the region.

2. Study Location and Meteorological Forcing

The study region is the Upper Beas Basin, located at the southern slope of the western Himalayas, Himachal
Pradesh, India (Figure 1a). Only the headwater basin above Bhuntar station is used (Figure 1b) due to lower
impact of seasonal snow cover and significant hydroelectric activity further downstream (Li et al., 2015). The
study basin covers an area of approximately 3,200 km2, of which about 13% is glacier covered. Elevation varies
between 1,055 and over 6,000 masl. The local climate is dominated from a combination of elevation effect,
extratropical cyclones in winter, and summer monsoon activity. Meteorological forcing for the hydrological
model include daily mean 2-m air temperature, precipitation, relative humidity, wind speed, and global radia-
tion. Limited meteorological observations are available for the study area and time. We chose to dynamically
downscale ERA-Interim data (Dee et al., 2011) from the European Centre for Medium Range Weather Forecasts
using the Weather Research and Forecasting Model (version 3.8.1; Skamarock et al., 2008). Our decision to
use dynamically downscaled reanalysis data as model forcing data rather than meteorological observations
is based on a simple model experiment. We found that hydrologic simulations perform equivalent to other
studies when using observations as input (Hegdahl et al., 2016; Li et al., 2015) yet significantly better when
using dynamically downscaled reanalysis data (see supporting information for details; Diggle & Ribeiro, 2007;
Engelhardt et al., 2017).

3. Approach

Figure 2 introduces our methodology which provides a concurrent instantaneous RFS calculation for direct
comparison with MODDRFS (Painter et al., 2012). As the satellite product provides an instantaneous response,
simulated RFS (hereinafter RFSsim) of LAISI must be calculated with contemporaneous solar radiative condi-
tions to the MODIS overpass. To estimate snowpack variables required to determine RFSsim at MODIS overpass
times, we use an inverse hydrologic modeling approach. That is, we estimate model parameters by optimizing
regional simulated streamflow constrained by observed streamflow, in order to develop snowpack properties
used for the subsequent simulations of RFSsim.

The approach initiates with the development of an aerosol deposition scenario for our study region
(Figure 2-A). This scenario provides input for a catchment-scale hydrologic model coupled to the Snow, Ice,
and Aerosol Radiation (SNICAR) model (Flanner et al., 2007, 2009). The model includes a dynamic snow albedo
calculation considering LAISI (Figure 2-1; details can be found in Matt et al., 2018). Using an optimized set of
parameters, we derive snow properties for the region on a daily time scale. The snowpack properties from
the regional hydrologic model are then used as input to a stand-alone version of SNICAR. Next, simulated
snow albedos are used in combination with solar irradiances at MODIS overpass times in order to estimate the
broadband RFSsim (Figure 2-2) suitable for comparison with MODDRFS (Figure 2-3). We then iterate through
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Figure 2. Methodology overview.

our model chain, scaling dust deposition (Figure 2-4) until an optimized fit is achieved between the MODDRFS
product and RFSsim. Our approach ultimately allows us to evaluate dust deposition and estimate impacts on
streamflow using the optimized LAISI representation (Figure 2-B).

Details of each sequence of the model chain (step 1. to 4. in Figure 2) are provided in the following.

3.1. Coupled Snow/Hydrologic Model
Matt et al. (2018) introduced a snowpack routine within a catchment-scale hydrologic model that allows for
the input of wet and dry deposition of light-absorbing aerosols, in addition to standard meteorological forcing
variables. The model uses a two-layer energy balance-based snow algorithm coupled to the SNICAR model
(Flanner et al., 2007, 2009), which accounts for the reduction in albedo due to LAISI. SNICAR determines snow
albedo from the modeled mixing ratios of LAISI in the snow layers, the modeled OGR, and the incoming solar
flux characteristics.

Model parameters of the hydrologic model are estimated using automatic model calibration with the Bound
Optimization BY Quadratic Approximation algorithm for bound constrained optimization (Powell, 2009).
Simulated and observed streamflow are used to quantify model performance (see supporting information for
model parameters and model performance measures; Nash & Sutcliffe, 1970). The model is then run at a daily
time step over a 6-year period (October 1999 to September 2005) in order to estimate per-grid cell daily time
series of the snow properties: OGR, snow water equivalent of surface and bottom layer, and mixing ratios of
LAISI in both layers (Figure 2-1).

3.2. Modeled Instantaneous Clear-Sky Radiative Forcing
In the second processing step (Figure 2-2), the snow properties developed in the first step are used as
input to a stand-alone version of the SNICAR model. For each grid cell the albedo time series of clean snow
(all LAISI mixing ratios set to 0) and LAISI-polluted snow (with LAISI mixing ratios from the first step) at
MODIS overpass times are determined. This allows the determination of the instantaneous RFSsim at MODIS
overflight times, which is required for comparison with MODDRFS. The MODIS time of acquisition and the solar
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Figure 3. Seasonal mean per-pixel instantaneous radiative forcing from MODIS Dust Radiative Forcing in Snow algorithm observations (row 1) and model
simulations using different light-absorbing impurities in snow and ice scenarios (rows 2 to 6). DJF = December, January, February; MAM = March, April, May;
JJA = June, July, August; SON = September, October, November.
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Figure 4. Daily discharge and snow-covered fraction (SCF) averaged over
the 6-year study period for the dust_6 scenario (red curve; 18 g⋅m−2⋅a−1

dust deposition) and the scenario ignoring radiative forcing in snow by
light-absorbing impurities in snow and ice (“clean”; green curve). The red
shaded area shows the difference between the dust_4 (12 g⋅m−2⋅a−1)
and dust_8 (24 g⋅m−2⋅a−1) scenarios used to estimate light-absorbing
impurities in snow and ice radiative forcing impact uncertainty.
BC = black carbon; OBS = observations.

ephemeris were determined using the NASA LaRC Satellite Overpass
Predictor (https://www-air.larc.nasa.gov/tools.htm). In order to be consis-
tent with the MODDRFS product, we estimate the per-grid cell instanta-
neous clear-sky RFS using spectral irradiances calculated with the same
model configuration as for MODDRFS. Accordingly, local clear-sky radia-
tive conditions for each grid cell at the time of acquisition are modeled
using the Santa Barbara DISORT Atmospheric Radiative Transfer model
(Ricchiazzi et al., 1998) in conjunction with the 3 arc second Shuttle Radar
Topography Mission digital elevation model. In this manner, the approach
eliminates differences coming from the radiative transfer model for the
atmosphere used in our approach and MODDRFS, and a direct “apples
to apples” comparison of RFSsim from the regional hydrologic model with
MODDRFS is achieved.

In the same manner as MODDRFS, topographic radiation correction is
applied to direct and diffuse incident spectral irradiances. The irradiances
are first determined at 1/5th grid cell spatial resolution and then upscaled
to mean per-grid cell spectral irradiances. Terrain-corrected irradiances
Ecorrected,𝜆 are calculated as

Ecorrected,𝜆 = cos 𝛽 ⋅ Edirect,𝜆 + Ediffuse,𝜆, (1)

where Edirect,𝜆 and Ediffuse,𝜆 are the direct and diffuse irradiances at wavelength 𝜆 and 𝛽 is the grid cell local
solar zenith angle, determined as

cos 𝛽 = cos 𝜃s cos 𝜃n + sin 𝜃s sin 𝜃n cos(𝜙s − 𝜙n). (2)

The 𝜃s is the solar zenith angle for a level surface, 𝜙s is the solar azimuth angle, 𝜃n is the surface slope angle,
and 𝜙n is the surface aspect angle (Painter et al., 2012).

The irradiances are first modeled on a continuous spectrum of 0.001 μm. We then integrate the irradiances
to the SNICAR bands 1 (0.3 to 0.7 μm) and 2 (0.7 to 1.0 μm), to be comparable with MODDRFS (0.350 to 0.876
μm). Instantaneous clear-sky RFSsim at MODIS overpass times is then retrieved as

F =
2∑

i=1

Ecorrected,i(𝛼clean,i − 𝛼polluted,i), (3)

where i is the SNICAR band number. 𝛼clean,i and 𝛼polluted,i are the band-specific direct beam albedos for clean
and polluted snow. Using the 470 bands version of SNICAR (0.01-μm spectral resolution) and various combi-
nations of input data (impurity content, OGR, solar zenith angle, and solar irradiances) representative for the
study region, we found that radiative forcing modeled for the 0.3- to 1.0-μm spectrum used in our approach
is 10.4 ± 1.9% larger than for the 0.35- to 0.876-μm spectrum used in MODDRFS. We account for this positive
bias by introducing a correction factor, c, so that RFSsim corrected for the band mismatch is

Fc = c ∗ F, (4)

with c = 0.906 being specific for the study region. The corrected RFSsim is then used in the comparison with
MODDRFS.

A summary of the methods used for MODDRFS retrieval and our model approach is given in supporting
information (Brun, 1989; Taillandier et al., 2007).

3.3. Comparison of MODDRFS With Simulated RFS
To compare MODDRFS with our model results, the RFSsim is spatially downscaled from the model grid reso-
lution (1 km) to the MODDRFS pixels (∼300 m). Only pixels where both MODDRFS and RFSsim have valid RFS
values are selected. For MODDRFS a certain pixel must have a value in the range 0 to 400 W/m2, while the
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RFSsim values are considered only if the corresponding snow cover of a pixel is equal or larger than 90%. Valid
values are grouped according to a certain time criteria (e.g., month of year or season of year) and per-pixel
mean values calculated. Due to the high number of missing values in the MODDRFS product and the very
short snow cover in pixels at lower elevations, we introduce a minimum number of values per grouping that
are required in order to calculate the mean value for the respective pixel. If this criteria is not fulfilled, the
pixel is excluded from the comparison. Mean pixel values constitute the basis for the metric used to compare
clear-sky RFSsim with the remotely sensed MODDRFS product. This refers to step 3 in Figure 2.

3.4. Adjusting Model Scenario
We account for BC and dust in our simulations. Wet and dry deposition rates of BC are modeled with the Flex-
ible Particle Dispersion Model (Stohl et al., 1998, 2005; Stohl & Thomson, 1999; details given in supporting
information; Amann et al., 2011; Doherty et al., 2014; Klimont et al., 2017; Stohl et al., 2015; van der Werf et al.,
2010). Dust deposition rates estimated with atmospheric transport models are highly uncertain due to poten-
tially high contribution from local or regional sources not resolved by the model (Ginot et al., 2014; Ménégoz
et al., 2014). For this reason, we apply a simple dust deposition scenario based on quantitative observations
and then attempt to improve model projections of RFS by scaling dust depositions (step 4 in Figure 2) and
reevaluate steps 1 to 3 of Figure 2. In this way, we optimize RFSsim toward MODDRFS with the aim to improve
LAISI impact estimates (Figure 2-B).

In our study area, dust storms are mainly occurring during the premonsoon period (March to June), when
westerly winds advect desert dust from Southwest Asia and the Thar desert into the Indo-Ganges planes, with
occasional outbreaks over the southern side of the Himalayas (Duchi et al., 2014; Gautam et al., 2011, 2013;
Hegde et al., 2007; Prasad & Singh, 2007). Estimates of the annual deposition flux are rare and mainly exist from
snowpit and ice core measurements (e.g., Ginot et al., 2014; Xu et al., 2016, 2014). Closest to the study region
(Jiemayangzong glacier, Southwest Tibet) dust deposition is about 3.0 g⋅m−2⋅a−1 (Xu et al., 2016). Further
estimates from the southern Himalayas are given from Mera Glacier (Nepal) and are about 10.4 g⋅m−2⋅a−1

(Ginot et al., 2014). Size distributions peak at around 6 μm (Ginot et al., 2014); wherefore, we use dust optical
properties accounting for dust with a diameter of 5–10 μm.

Due to the predominant dust deposition during premonsoon, we add dust to the surface layer on a daily basis
during March to June, so that the daily added amount is constant and the annual sum has a magnitude consis-
tent with the observed annual depositions. As shown later, aiming for 3 g⋅m−2⋅a−1 (dust_1 scenario) results in
strong underestimation of RFS. We therefore scale dust depositions to multiples of this initial deposition sce-
nario, where the multiplication factor is given in the scenario name (i.e., dust_2 scenario aims for 6 g⋅m−2⋅a−1

and dust_3 for 9 g⋅m−2⋅a−1). The highest annual dust deposition included in the analysis is 24 g⋅m−2⋅a−1

(dust_8). By adding a daily amount of dust to the snow surface, we acknowledge that we are unable to account
for the episodic nature of dust events. Implications from this are discussed in section 4.2.

4. Results and Discussion
4.1. From Satellite Observations to Impact Estimates
An optimization of modeled LAISI RFS (RFSsim) toward satellite observations (MODDRFS) is achieved by scal-
ing dust depositions (see Figure 3). The upward scaling of dust leads to a better representation of the seasonal
cycle of RFS shown in the observations (row 1 of graphs in Figure 3), which comes from a combination of dif-
ferent processes that cause an increase in RFS from LAISI during spring (March, April, May) and summer (June,
July, August): stronger solar irradiation toward summer, increase in OGR due to accelerated snow metamor-
phism in melting snow and thus more effective absorption of solar radiation by LAISI (Warren & Wiscombe,
1980), and LAISI accumulation in the snow surface during snowmelt (Doherty et al., 2013, 2016; Xu et al.,
2012). RFSsim is underestimated during winter months (December, January, February) regardless of the applied
dust scenario. The underestimation is likely to come from an underestimation of OGR or an underestimation
of LAISI in surface snow or a combination of both. However, we do not expect large implications from the
winter underestimation of RFS for the impact estimate on discharge due to generally low streamflow during
winter (Figure 4). Using the root-mean-square error ERMS (e.g., Bennett et al., 2013) of basin mean monthly
RFS as evaluation metric, an annual dust deposition of 18 g⋅m−2⋅a−1 (dust_6 scenario) gives the best results
(see supporting information for a complete overview of results). We further include the dust_4 (12 g⋅m−2⋅a−1;
general underestimation of LAISI RFS) and dust_8 (24 g⋅m−2⋅a−1; general overestimation) scenarios to quan-
tify the uncertainty of model projections. Even though the optimized dust depositions are exceeding
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the amount of the nearest observed deposition flux (3 g⋅m−2⋅a−1; Xu et al., 2016) by a factor of 4 to 8 within
these uncertainties, we believe that our estimate is realistic due to much shorter distances of our study region
to major dust sources such as the Thar Desert and the location at the southern slopes of the Himalayas, which
is particularly prone to dust events (e.g., Gautam et al., 2013).

The optimized RFS simulation allows to estimate the LAISI impact on hydrologic variables (Figure 4). On aver-
age, LAISI lead to significantly higher discharge from about middle March to end of August. For the rest of
the year, no significant difference in discharge is noticeable. Results show on average a maximum absolute
increase in discharge of 33.8 m3/s (26.0 to 40.6 m3/s), occurring in all scenarios in the beginning of July.
Accordingly, LAISI account at maximum for 13.4% (10.6% to 15.6%) of the daily discharge. Considering the
whole study period, LAISI account for about 5.0% (4.1% to 5.8%) of the annually generated discharge. The
snow-covered fraction (SCF) in the catchment decreases faster during the melt period in scenarios accounting
for LAISI, leading to a SCF reduction of 0.065 (0.053 to 0.074) at snow cover minimum in summer. The annual
mean SCF is reduced by 0.023 (0.018 to 0.026). The increasing effect on discharge throughout spring and
summer is distinct from other studies, where a shift in the annual water balance is observed with increasing
discharge during spring melt season and decrease of discharge later in the season (Matt et al., 2018; Painter
et al., 2010; Qian et al., 2011). In contrast to the aforementioned studies, our study region shows permanent
snow cover due to the high altitude and glaciers. This allows streamflow contribution from snowmelt through-
out the year, whereas in seasonally snow covered regions, increased streamflow due to LAISI is limited to the
early melt season.

4.2. Uncertainties
Our study exemplifies how remotely sensed instantaneous LAISI RFS can be integrated alongside model
simulations with the aim to evaluate and improve model predictions. We hereby lay particular focus on elim-
inating differences coming from the radiative transfer model for the atmosphere used in our approach and
MODDRFS. We then expect discrepancies between simulations and satellite data to mainly originate from
the LAISI representation in the model. Uncertainties in the satellite data come from known limitations asso-
ciated with atmospheric correction, detection of snow properties, and bare ground contamination at the
subpixel scale (Painter et al., 2012). To date, ground evaluation of MODDRFS is only available for the Colorado
Mountains. We therefore claim that evaluation of MODDRFS in interest regions such as Himalayas, Tibetan
plateau, and the Andes is of great importance in order to gain more insight in the accuracy of the satellite prod-
uct. For the Upper Colorado River Basin, Painter et al. (2012) state a high bias for low values of MODDRFS and
a low bias for high values. These findings are consistent with the likelihood that MODIS inherently smooths
subpixel variability (Burkhart et al., 2017). Yet as the magnitude of those biases may be regionally specific, we
did not apply the bias correction to MODDRFS prior to the case study. However, assuming an analogous ten-
dency in the bias and the predominantly high RFS values during snowmelt (Figure 3), we consider our impact
estimate to be conservative. In addition, we expect an uncertainty of about ±1.6% on the corrected RFSsim

due to the mismatch in spectral bands used in the radiative transfer model for snow of our model and the
MODDRFS algorithm. The uncertainty is estimated using the 470 bands version of SNICAR and various input
data combinations representative for conditions in the study region.

By depositing a daily amount of dust to the snow surface during the premonsoon period, we acknowledge
that our deposition scenarios potentially differ significantly from real deposition rates both at spatial and
temporal scales. Especially the event based, episodic nature of dust depositions (Duchi et al., 2014; Gautam
et al., 2011; Hegde et al., 2007) may have implications for the model representation of dust in the surface
layer. Improving the spatial and temporal representation of the dust deposition scenario has the potential
to improve model predictions of LAISI RFS and impact estimates. Development of such scenarios was not in
the scope of this study; however, recent advances in the field of atmospheric dust transport and deposition
modeling could provide scenarios enabling this to be addressed in future studies.

5. Potential Applications and Outlook

The impact of LAISI on cryospheric regions has caught the attention of scientists and policymakers due to the
significant role in accelerating glacier melt (Gabbi et al., 2015; Xu et al., 2012), altering hydrologic processes
(Matt et al., 2018; Qian et al., 2011), and climate forcing (Flanner et al., 2007). However, the techniques to
assess model predictions on all scales are limited. The herein provided method is a significant contribution
as it provides a further metric of evaluation for LAISI impacts in addition to the established and widely used
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comparison between simulated and observed mixing ratios in surface snow. We used the herein presented
method in order to optimize model representation of LAISI RFS by scaling dust deposition and to asses the
impact on the hydrological cycle using a hydrological model. Likewise, the method can be applied to evaluate
model predictions of LAISI RFS of models on different scales. Numerous model studies evaluate surface mixing
ratios of LAISI and give an estimate of their radiative impact based on this evaluation (e.g., Flanner et al., 2007;
Ménégoz et al., 2014; Qian et al., 2014, 2011; Zhao et al., 2014). Due to the impact of many other variables
on RFS, such as OGR and incident radiation properties, we argue that those studies can greatly benefit from
including benchmarking tests against the MODDRFS product. In future applications the method described
herein can be used as follows:

1. To validate model products aiming for the quantification of LAISI RFS on scales ranging from global,
regional, to point models.

2. To improve impact assessments of LAISI on snowmelt, discharge generation, and glacier melt in various
regions of the world.

Such comparisons require reliable satellite data of instantaneous RFS. For this reason, we also suggest an
in-depth assessment of the regional quality of MODDRFS, which was not in the scope of the study presented
herein.

References
Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Höglund-Isaksson, L., et al. (2011). Cost-effective control of air quality and

greenhouse gases in Europe: Modeling and policy applications. Environmental Modelling & Software, 26(12), 1489–1501.
https://doi.org/10.1016/j.envsoft.2011.07.012

Bennett, N. D., Croke, B. F., Guariso, G., Guillaume, J. H., Hamilton, S. H., Jakeman, A. J., et al. (2013). Characterising performance of
environmental models. Environmental Modelling & Software, 40, 1–20. https://doi.org/10.1016/j.envsoft.2012.09.011

Brun, E. (1989). Investigation on wet-snow metamorphims in respect of liquid water content. Annals of Glaciology, 13, 22–26.
https://doi.org/10.3189/S0260305500007576

Burkhart, J., Kylling, A., Schaaf, C. B., Wang, Z., Bogren, W., Storvold, R., et al. (2017). Unmanned aerial system nadir reflectance
and MODIS nadir BRDF-adjusted surface reflectances intercompared over Greenland. The Cryosphere, 11, 1575–1589.
https://doi.org/10.5194/tc-11-1575-2017

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-interim reanalysis: Configuration
and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597.
https://doi.org/10.1002/qj.828

Diggle, P. J., & Ribeiro, P. J. (2007). Model-based geostatistics, Springer Series in Statistics. New York USA: Springer.
https://doi.org/10.1007/978-0-387-48536-2

Doherty, S. J., Bitz, C. M., & Flanner, M. G. (2014). Biases in modeled surface snow BC mixing ratios in prescribed-aerosol climate model runs.
Atmospheric Chemistry and Physics, 14(21), 11,697–11,709. https://doi.org/10.5194/acp-14-11697-2014

Doherty, S. J., Grenfell, T. C., Forsström, S., Hegg, D. L., Brandt, R. E., & Warren, S. G. (2013). Observed vertical redistribution of black carbon
and other insoluble light-absorbing particles in melting snow. Journal of Geophysical Research: Atmospheres, 118, 5553–5569.
https://doi.org/10.1002/jgrd.50235

Doherty, S. J., Hegg, D. A., Johnson, J. E., Quinn, P. K., Schwarz, J. P., Dang, C., & Warren, S. G. (2016). Causes of variability in light
absorption by particles in snow at sites in Idaho and Utah. Journal of Geophysical Research: Atmospheres, 121, 4751–4768.
https://doi.org/10.1002/2015JD024375

Duchi, R., Cristofanelli, P., Marinoni, A., Bourcier, L., Laj, P., Calzolari, F., et al. (2014). Synoptic-scale dust transport events in the southern
Himalaya. Aeolian Research, 13, 51–57. https://doi.org/10.1016/j.aeolia.2014.03.008

Engelhardt, M., Leclercq, P., Eidhammer, T., Kumar, P., Landgren, O., & Rasmussen, R. (2017). Meltwater runoff in a changing climate
(1951–2099) at Chhota Shigri Glacier, Western Himalaya, Northern India. Annals of Glaciology, 58, 47–58.
https://doi.org/10.1017/aog.2017.13

Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H., Ramanathan, V., & Rasch, P. J. (2009). Springtime
warming and reduced snow cover from carbonaceous particles. Atmospheric Chemistry and Physics, 9, 2481–2497.
https://doi.org/10.1029/2005JD006356

Flanner, M. G., Zender, C. S., Randerson, J. T., & Rasch, P. J. (2007). Present-day climate forcing and response from black carbon in snow.
Journal of Geophysical Research, 112, D11202. https://doi.org/10.1029/2006JD008003

Gabbi, J., Huss, M., Bauder, A., Cao, F., & Schwikowski, M. (2015). The impact of Saharan dust and black carbon on albedo and long-term
mass balance of an Alpine glacier. The Cryosphere, 9(4), 1385–1400. https://doi.org/10.5194/tc-9-1385-2015

Gautam, R., Hsu, N. C., Lau, W. K.-M., & Yasunari, T. J. (2013). Satellite observations of desert dust-induced Himalayan snow darkening.
Geophysical Research Letters, 40, 988–993. https://doi.org/10.1002/grl.50226

Gautam, R., Hsu, N. C., Tsay, S. C., Lau, K. M., Holben, B., Bell, S., et al. (2011). Accumulation of aerosols over the Indo-Gangetic plains and
southern slopes of the Himalayas: Distribution, properties and radiative effects during the 2009 pre-monsoon season. Atmospheric
Chemistry and Physics, 11, 12,841–12,863. https://doi.org/10.5194/acp-11-12841-2011

Ginot, P., Dumont, M., Lim, S., Patris, N., Taupin, J.-D., Wagnon, P., et al. (2014). A 10 year record of black carbon and dust from
a Mera Peak ice core (Nepal): Variability and potential impact on melting of Himalayan glaciers. The Cryosphere, 8, 1479–1496.
https://doi.org/10.5194/tc-8-1479-2014

Hegdahl, T. J., Tallaksen, L. M., Engeland, K., Burkhart, J. F., & Xu, C.-Y. (2016). Discharge sensitivity to snowmelt parameterization: A case
study for Upper Beas basin in Himachal Pradesh, India. Hydrology Research, 47(4), 683–700. https://doi.org/10.2166/nh.2016.047

Hegde, P., Pant, P., Naja, M., Dumka, U. C., & Sagar, R. (2007). South Asian dust episode in june 2006: Aerosol observations in the central
Himalayas. Geophysical Research Letters, 34, L23802. https://doi.org/10.1029/2007GL030692

Acknowledgments
This work was conducted within the
Norwegian Research Council’s INDNOR
program under the HyCAMP project
(NFR 222195) with support from the
strategic research group LATICE
(Faculty of Mathematics and Natural
Sciences, University of Oslo). We thank
Trude Eidhammer from NCAR for
providing the WRF configuration files
and Sabine Eckhardt from NILU for
input on the black carbon emissions
used for the FLEXPART modeling.
Computational and data storage
resources were provided by
NOTUR/NORSTORE projects NS9333K
and NN9333K. We further thank
Anaconda, Inc., for providing the
open-source distribution of Python
used in this study. Data processing was
conducted with open-source Python
tools, namely, SciPy/NumPy (van der
Walt et al., 2011) and xarray (Hoyer &
Hamman, 2017). The data used are
listed in the references, tables, and
supporting information. Model forcing
data, model configuration files, and
model output generated and used
herein are published in Matt and
Burkhart (2018).

MATT AND BURKHART 3539



Geophysical Research Letters 10.1002/2018GL077133

Hoyer, S., & Hamman, J. J. (2017). xarray: N-D labeled arrays and datasets in Python. Journal of Open Research Software, 5(1), 10.
https://doi.org/10.5334/jors.148

Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., et al. (2017). Global anthropogenic emissions of particulate matter
including black carbon. Atmospheric Chemistry and Physics, 17, 8681–8723. https://doi.org/10.5194/acp-17-8681-2017

Lazarcik, J., Dibb, J. E., Adolph, A. C., Amante, J. M., Wake, C. P., Scheuer, E., et al. (2017). Major fraction of black carbon is flushed from the
melting New Hampshire snowpack nearly as quickly as soluble impurities. Journal of Geophysical Research: Atmospheres, 122, 537–553.
https://doi.org/10.1002/2016JD025351

Li, H., Beldring, S., Xu, C.-Y., Huss, M., Melvold, K., & Jain, S. K. (2015). Integrating a glacier retreat model into a hydrological
model—Case studies of three glacierised catchments in Norway and Himalayan region. Journal of Hydrology, 527, 656–667.
https://doi.org/10.1016/j.jhydrol.2015.05.017

Matt, F. N., & Burkhart, J. F. (2018). Datasets for “assessing satellite derived radiative forcing from snow impurities through inverse hydrologic
modeling”, Dataset. https://doi.org/10.5281/zenodo.1147967

Matt, F. N., Burkhart, J. F., & Pietikäinen, J.-P. (2018). Modelling hydrologic impacts of light absorbing aerosol deposition on snow at the
catchment scale. Hydrology and Earth System Sciences, 22(1), 179–201. https://doi.org/10.5194/hess-22-179-2018

Ménégoz, M., Krinner, G., Balkanski, Y., Boucher, O., Cozic, A., Lim, S., et al. (2014). Snow cover sensitivity to black carbon deposition in
the Himalayas: From atmospheric and ice core measurements to regional climate simulations. Atmospheric Chemistry and Physics, 14,
4237–4249. https://doi.org/10.5194/acp-14-4237-2014

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models. Part I: A discussion of principles. Journal of Hydrology,
10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6

Oaida, C. M., Xue, Y., Flanner, M. G., Skiles, S. M., De Sales, F., & Painter, T. H. (2015). Improving snow albedo processes in WRF/SSiB regional
climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S.Journal of
Geophysical Research: Atmospheres, 120, 3228–3248. https://doi.org/10.1002/2014JD022444

Painter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P., Lawrence, C. R., et al. (2007). Impact of disturbed desert soils on duration of
mountain snow cover. Geophysical Research Letters, 34, L12502. https://doi.org/10.1029/2007GL030284

Painter, T. H., Bryant, A. C., & Skiles, S. M. (2012). Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance
data. Geophysical Research Letters, 39, L17502. https://doi.org/10.1029/2012GL052457

Painter, T. H., Deems, J. S., Belnap, J., Hamlet, A. F., Landry, C. C., & Udall, B. (2010). Response of Colorado River runoff to dust radiative
forcing in snow. Proceedings of the National Academy of Sciences of the United States of America, 107(40), 17,125–17,130.
https://doi.org/10.1073/pnas.0913139107/-/DCSupplemental

Powell, M. (2009). The BOBYQA algorithm for bound constrained optimization without derivatives (Report NA2009/06, pp. 1–39).
Cambridge, UK: Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences.

Prasad, A. K., & Singh, R. P. (2007). Changes in Himalayan snow and glacier cover between 1972 and 2000. Eos, Transactions American
Geophysical Union, 88(33), 326. https://doi.org/doi:10.1029/2007EO330002

Qian, Y., Flanner, M. G., Leung, L. R., & Wang, W. (2011). Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian
hydrological cycle and monsoon climate. Atmospheric Chemistry and Physics, 11, 1929–1948. https://doi.org/10.5194/acp-11-1929-2011

Qian, Y., Wang, H., Zhang, R., Flanner, M. G., & Rasch, P. J. (2014). A sensitivity study on modeling black carbon in snow and its radiative
forcing over the Arctic and Northern China. Environmental Research Letters, 9, 64001. https://doi.org/10.1088/1748-9326/9/6/064001

Ricchiazzi, P., Yang, S., Gautier, C., & Sowle, D. (1998). SBDART: A research and teaching software tool for plane-parallel
radiative transfer in the Earth’s atmosphere. Bulletin of the American Meteorological Society, 79(10), 2101–2114.
https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., et al. (2008). A description of the advanced research WRF version
3 (Tech. Rep. NCAR/TN-475+STR). Boulder, CO: National Center for Atmospheric Research. https://doi.org/10.5065/D68S4MVH

Skiles, S. M., Painter, T. H., Deems, J. S., Bryant, A. C., & Landry, C. C. (2012). Dust radiative forcing in snow of the Upper Colorado
River Basin: 2. Interannual variability in radiative forcing and snowmelt rates. Water Resources Research, 48, W07522.
https://doi.org/10.1029/2012WR011986

Sterle, K. M., McConnell, J. R., Dozier, J., Edwards, R., & Flanner, M. G. (2013). Retention and radiative forcing of black carbon in eastern Sierra
Nevada snow. The Cryosphere, 7(1), 365–374. https://doi.org/10.5194/tc-7-365-2013

Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N., & Berntsen, T. K. (2015). Evaluating the climate and air quality impacts of
short-lived pollutants. Atmospheric Chemistry and Physics, 15, 10,529–10,566. https://doi.org/10.5194/acp-15-10529-2015

Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version
6.2. Atmospheric Chemistry and Physics, 5(9), 2461–2474. https://doi.org/10.5194/acp-5-2461-2005

Stohl, A., Hittenberger, M., & Wotawa, G. (1998). Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer
experiment data. Atmospheric Environment, 32(24), 4245–4264. https://doi.org/10.1016/S1352-2310(98)00184-8

Stohl, A., & Thomson, D. J. (1999). A density correction for Lagrangian particle dispersion models. Boundary-Layer Meteorology, 90(1),
155–167. https://doi.org/10.1023/A:1001741110696

Taillandier, A.-S., Domine, F., Simpson, W. R., Sturm, M., & Douglas, T. A. (2007). Rate of decrease of the specific surface area of dry snow:
Isothermal and temperature gradient conditions. Journal of Geophysical Research, 112, F03003. https://doi.org/10.1029/2006JF000514

Tuzet, F., Dumont, M., Lafaysse, M., Picard, G., Arnaud, L., Voisin, D., et al. (2017). A multilayer physically based snowpack model
simulating direct and indirect radiative impacts of light-absorbing impurities in snow. The Cryosphere, 11(6), 2633–2653.
https://doi.org/10.5194/tc-11-2633-2017

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy array: A structure for efficient numerical computation. Computing in
Science Engineering, 13(2), 22–30. https://doi.org/10.1109/MCSE.2011.37

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., et al. (2010). Global fire emissions and the contribution
of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11,707–11,735.
https://doi.org/10.5194/acp-10-11707-2010

Warren, S. G., & Wiscombe, W. J. (1980). A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. Journal of the
Atmospheric Sciences, 37(12), 2734–2745. https://doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO;2

Wiscombe, W. J., & Warren, S. G. (1980). A model for the spectral albedo of snow. I: Pure snow. Journal of the Atmospheric Sciences, 37(12),
2712–2733. https://doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2

Xu, B., Cao, J., Joswiak, D. R., Liu, X., Zhao, H., & He, J. (2012). Post-depositional enrichment of black soot in snow-pack and accelerated
melting of Tibetan glaciers. Environmental Research Letters, 7(1), 14022. https://doi.org/10.1088/1748-9326/7/1/014022

MATT AND BURKHART 3540



Geophysical Research Letters 10.1002/2018GL077133

Xu, J., Kang, S., Hou, S., Zhang, Q., Huang, J., Xiao, C., et al. (2016). Characterization of contemporary aeolian dust deposition on mountain
glaciers of western China. Sciences in Cold and Arid Regions, 8(1), 9–21.

Zhao, C., Hu, Z., Qian, Y., Ruby Leung, L., Huang, J., Huang, M., et al. (2014). Simulating black carbon and dust and their radiative forcing
in seasonal snow: A case study over North China with field campaign measurements. Atmospheric Chemistry and Physics, 14(20),
11,475–11,491. https://doi.org/10.5194/acp-14-11475-2014

MATT AND BURKHART 3541





Confidential manuscript submitted to Geophysical Research Letters

Supporting Information for

“Assessing satellite derived radiative forcing from snow impurities through

inverse hydrologic modelling”

F. N. Matt1, J. F. Burkhart1,2

1Department of Geosciences, University of Oslo, Oslo, Norway.

2Statkraft As, Oslo, Norway.

Appendix A: Dynamical downscaling of ERA-Interim reanalysis data using WRF
and evaluation of hydrologic model results

WRF was run with a nested approach with 1 km grid spacing for the inner domain,

5 km grid spacing for the intermediate domain, and 25 km grid spacing for the outer do-

main from October 1999 through September 2005 (excluding a prior 3 month spin-up

time). The latter was forced with ERA-Interim reanalysis data [Dee et al., 2011]. A sim-

ilar WRF setup was used in Engelhardt et al. [2017], however, without the inner nested

domain. Horizontal interpolation to the model domain of the hydrological model was per-

formed using inverse distance weighting for all variables except temperature, taking into

account a vertical adjustment for precipitation. Temperature interpolation was performed

using Bayesian Kriging [Diggle and Ribeiro, 2007].

In order to investigate the quality of input datasets, we ran model calibration over

the 6-year study period (Oct. 1999 through Sep. 2005) using daily meteorological model

input from both station observations in the study region and the WRF output variables,

respectively. The quality of hydrologic simulations is assessed by determining the Nash-

Sutcliffe model efficiency (see auxiliary material B) using observed and simulated stream-

flow. Simulations show that using meteorological model input from WRF improves hydro-

logic simulations from 0.55 (station observations) to 0.79 (WRF) (see Table 1). Due to the

significantly improved model performance we decided to use meteorological model input

data from WRF in the case study.

Corresponding author: F. N. Matt, f.n.matt@geo.uio.no
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Table 1. Calibration results using meteorological input to the hydrological model from station observations

only (top row), partly from observations and from dynamically downscaled reanalysis data using WRF, and

using WRF data only. T is daily air temperature, P is daily precipitation. Required input data to the hydrologi-

cal model are global radiation, wind speed, relative humidity, air temperature, and precipitation.

Model Input Variables Nash-Sutcliffe model efficiency

Observations only 0.55

Observations + Twr f 0.65

Observations + Twr f + Pwr f 0.73

WRF only 0.79
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Appendix B: Model parameters and model performance measures

Table 2 gives an overview of model parameters. To evaluate the performance of the

model during calibration, we determine the Nash-Sutcliffe model efficiency [Nash and Sut-

cliffe, 1970] comparing simulated to observed streamflow. To investigate the goodness-of-

fit between simulated and MODDRFS instantaneous at-surface clear sky radiative forcing

in snow (RFSsim) we use the root-mean-square error ERMS [e.g., Bennett et al., 2013] of

basin mean monthly RFS.

• Nash-Sutcliffe model efficiency

The Nash-Sutcliffe model efficiency [Nash and Sutcliffe, 1970] allows to asses the

predictive power of a model and is widely used in hydrologic modelling [Bennett

et al., 2013]. It is defined as:

ENS = 1 −
∑T

t=0(Qt
o −Qt

s )2

∑T
t=0(Qt

o −Qo )2
, (1)

where Qt
o and Qt

s are the observed and simulated discharge at time t, respectively,

and Q0 is the mean observed discharge over the assessed period.

• Root-Mean-Squared Error

The Root-Mean-Squared Error is a general purpose error metric for numerical pre-

dictions [e.g., Bennett et al., 2013], here stated for two time series, y1 and y2:

ERMS =

√√
1
n

n∑

i=1

(
y1, i − y2, i

)2, (2)

where y1, i and y2, i are members of a time series at time i, respectively, and n is the

total number of members per time series.
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Table 2. Model parameters used in the simulations. Parameters optimized during calibration are marked

with * and resulting estimates are shown for the dust_6 scenario. Further parameters were pre-set and not

included in parameter estimation during calibration.

Parameter Description and unit Optimized/set

c1 * discharge determining empirical coefficient 1 [-] -5.190

c2 * discharge determining empirical coefficient 2 [-] 0.5594

c3 * discharge determining empirical coefficient 3 [-] -0.04189

ae_scale_factor * scaling factor for actual evapotranspiration [-] 1.41

tx * temperature threshold rain/snow [◦C] 1.52

wind_const * determining wind profile [-] 4.10

wind_scale * determining wind profile [-] 4.64

As,0 specific surface area As of fresh snow [m2 kg−1] 73.0

snowfall_reset_depth minimum snowfall required to reset As [mm SWE] 5.0

snow_cv_forest Coefficient of variation of snow distribution in forested area [-] 0.17

snow_cv Coefficient of variation of snow distribution in forested free area [-] 0.4

max_water fractional max water content of snow [-] 0.10

surface_magnitude maximum snow depth for snow heat content [mm SWE] 30.0

max_surface_layer maximum thickness of snow surface layer [mm SWE] 8.0

depo_factor multiplication factor for dust deposition (dust_6 scenario) [-] 6.0

kphil melt scavenging ratio of hydrophilic BC [-] 0.2

kphob melt scavenging ratio of hydrophobic BC [-] 0.03

kdust melt scavenging ratio of dust [-] 0.01

–4–
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Appendix C: Summary of methods

Table 3. Comparison of radiative forcing retrieval methods used in the MODDRFS algorithm and our

approach.

MODDRFS MODEL

Optical grain

radius (OGR)

Estimated from the normalized difference grain

size index (NDGSI), which is sensitive to OGR

and solar zenith angle.

Modelled OGR according to Brun [1989] for wet snow

and Taillandier et al. [2007] for dry snow.

Bare ground

masking

MODIS Snow Covered Area and Grainsize

(MODSCAG) fractional snow and vegetation

products to exclude pixels with mixed cover of

vegetation

Grid cells with snow cover lower than 0.9 are excluded

from the analysis.

Spectral

irradiation

Incident spectral irradiances determined at 1/5th

MODIS pixel spatial resolution and then up-

scaled to pixel resolution.

Incident spectral irradiances determined at 1/5th model

grid spatial resolution and then up-scaled to grid cell

resolution.

Topographic

radiation

correction

Ecorrected,λ =

cos β · Edirect,λ + Ediffuse,λ

where β is the per-pixel slope and aspect de-

pended local solar zenith angle

Ecorrected,λ =

cos β · Edirect,λ + Ediffuse,λ

where β is the per-grid cell slope and aspect depended

local solar zenith angle

Clean snow

albedo αclean

Modelled clean snow at same OGR as deter-

mined from NDGSI and SZA from MODIS

overflight predictor.

Modelled with SNICAR for the wavelength bands i=1

(0.3-0.7 µm) and i=2 (0.7-1.0 µm) assuming no impu-

rities in the snow, OGR from model output, and SZA

from MODIS overflight predictor.

Polluted

snow albedo

αpolluted

Measured spectral MODIS albedo, fit to mod-

elled clean spectrum at MODIS2 band center,

and interpolated to a continuous spectrum of

0.001 µm.

Modelled with SNICAR for the wavelength bands i=1

(0.3-0.7 µm) and i=2 (0.7-1.0 µm) assuming LAISI

mixing ratios and OGR as predicted by the model, and

SZA from the MODIS overflight predictor.

Radiative

Forcing F

F =
0.876µm∑
λ=0.350µm

Ecorrected,λ (αclean,λ − αMODIS,λ )∆λ Ecorrected,1 =
0.7µm∑
λ=0.3µm

Ecorrected,λ∆λ

Ecorrected,2 =
1.0µm∑
λ=0.7µm

Ecorrected,λ∆λ

Fc = c ·
2∑

i=1
Ecorrected,i(αclean,i − αpolluted,i)

where c is a correction factor accounting the spectral

band mismatch between model and MODDRFS.
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Appendix D: Black carbon (BC) deposition input data

Wet and dry deposition rates over the study region are modelled with the Flexible

Particle Dispersion Model (FLEXPART) [Stohl et al., 1998; Stohl and Thomson, 1999;

Stohl et al., 2005]. To develop the scenarios for this study, FLEXPART used particles pa-

rameterized only for BC emissions as developed from the ECLIPSE (Evaluating the Cli-

mate and Air Quality Impacts of Short-Lived Pollutants) emission inventory version V4a

[Klimont et al., 2017]. The ECLIPSE inventory was created using the GAINS (Greenhouse

gas - Air pollution Interactions and Synergies) model [Amann et al., 2011], which pro-

vides emissions of long-lived greenhouse gases and shorter-lived species in a consistent

framework. Details of the inventory are described in Stohl et al. [2015]. Open biomass

burning emissions are not calculated in the GAINS model, therefore we used the Global

Fire Emission Database (GFED), version 3.1 [van der Werf et al., 2010] for BC emissions

from non-agricultural sources.

FLEXPART simulations were conducted for the period 2003 through 2013 in the

forward mode using 3-hourly, operational analyses from the European Centre for Medium

Range Weather Forecasts (ECMWF) on a 1◦x1◦ resolution with 92 vertical layers. We

developed a climatology of the BC deposition to create a seasonal BC deposition pro-

file for two reasons. First, the GFED emissions data is not available prior to 2003. Sec-

ond, since the wet deposition rates from FLEXPART are decoupled from the dynamically

downscaled and interpolated precipitation input to the hydrological model, we follow the

suggestion from Doherty et al. [2014] and calculate a monthly mean climatology of BC

aerosol depositions. Wet deposition rates were used to create monthly mean climatological

BC mixing ratios in falling snow. We then account for wet and dry deposition of BC in

the hydrological model by using the monthly climatologies of dry deposition mass fluxes

and mixing ratios in falling snow from wet deposition. This approach avoids a positive

bias in surface snow mixing ratios due to decoupling of wet deposition rates from precipi-

tation [Doherty et al., 2014].
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Appendix E: Basin mean monthly RFS and LAISI impact on discharge
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Figure 1. Monthly mean instantaneous radiative forcing from observations and model simulations using

different LAISI scenarios. The red shaded area shows the difference between the dust_4 and dust_8 scenarios

used as LAISI forcing uncertainty in the impact estimation on discharge. The gray box marks the melt period.

Best results in terms of ERMS gives the dust_6 scenario (see Table 4).
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Table 4. Summary of simulation results.

scenario dust deposition* ENS* mean** ERMS** discharge due LAISI*

[g m−2a−1] [-] [W m−2] [W m−2] [%]

obs - - 53.14 0 -

dust_0 0 0.761 7.04 52.57 0.71

dust_1 3 0.770 18.29 39.98 1.91

dust_2 6 0.776 27.50 29.91 2.81

dust_3 9 0.780 35.36 21.62 3.52

dust_4 12 0.783 42.28 15.04 4.11

dust_5 15 0.785 48.48 10.82 4.61

dust_6 18 0.787 54.04 10.23 5.04

dust_7 21 0.788 59.21 12.95 5.41

dust_8 24 0.789 63.86 16.87 5.75

* Annual. ** Melt period only (February through August).
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A WRF configuration files

A.1 namelist.wps file content

&share

wrf_core = ’ARW’,

max_dom = 3,

start_date = ’1999-07-01_00:00:00’,’1999-07-01_00:00:00’,’1999-07-01_00:00:00’,

end_date = ’2005-12-31_18:00:00’,’2005-12-31_18:00:00’, ’2005-12-31_18:00:00’,

interval_seconds = 21600

io_form_geogrid = 2,

/

&geogrid

parent_id = 1, 1, 2,

parent_grid_ratio = 1, 5, 5,

i_parent_start = 1, 80, 75,

j_parent_start = 1, 101, 95,

e_we = 217, 251, 301,

e_sn = 185, 221, 251

geog_data_res = ’modis_lakes+30s’,’modis_lakes+30s’,’modis_lakes+30s’

dx = 25000,

dy = 25000,

map_proj = ’lambert’,

ref_lat = 25.0,

ref_lon = 80.0,

truelat1 = 30.0,

truelat2 = 60.0,

stand_lon = 80.0,

geog_data_path = ’/path/to/geog’

/

&ungrib

out_format = ’WPS’,

prefix = ’FILE’,

/

&metgrid

fg_name = ’FILE’

constants_name = ’TAVGSFC’

io_form_metgrid = 2,

/

159



A WRF configuration files

A.2 namelist.input file content

&time_control

start_year = 1999, 1999, 1999,

start_month = 07, 07, 07,

start_day = 01, 01, 01,

start_hour = 00, 00, 00,

start_minute = 00, 00, 00,

start_second = 00, 00, 00,

end_year = 2005, 2005, 2005,

end_month = 12, 12, 12,

end_day = 31, 31, 31,

end_hour = 18, 18, 18,

end_minute = 00, 00, 00,

end_second = 00, 00, 00,

interval_seconds = 21600

input_from_file = .true.,.true.,.true.,

history_interval = 180, 60, 60,

frames_per_outfile = 1, 1, 1,

restart = .true.,

restart_interval = 1440,

io_form_history = 2

io_form_restart = 2

io_form_input = 2

io_form_boundary = 2

debug_level = 0

auxinput4_inname = "wrflowinp_d<domain>",

auxinput4_interval = 360,

io_form_auxinput4 = 2,

override_restart_timers = .true.,

write_hist_at_0h_rst = .true.,

/

&domains

time_step = 100,

time_step_fract_num = 0,

time_step_fract_den = 1,

max_dom = 3,

e_we = 217, 251, 301,

e_sn = 185, 221, 251,

e_vert = 40, 40, 40,

p_top_requested = 2500,

num_metgrid_levels = 38,

num_metgrid_soil_levels = 4,

dx = 25000, 5000, 1000,

dy = 25000, 5000, 1000,

grid_id = 1, 2, 3,

parent_id = 0, 1, 2,

i_parent_start = 1, 80, 75,

j_parent_start = 1, 101, 95,

parent_grid_ratio = 1, 5, 5,

parent_time_step_ratio = 1, 5, 5,

feedback = 0,

160



A.2 namelist.input file content

interp_type = 1,

lagrange_order = 1,

smooth_option = 0

eta_levels = 1.,

0.9974,

0.9940, 0.9905, 0.9850, 0.9800,

0.9700, 0.9600, 0.9450, 0.9300, 0.9100,

0.8900, 0.8650, 0.8400, 0.8100, 0.7800,

0.7500, 0.7100, 0.6800, 0.6450, 0.6100,

0.5700, 0.5300, 0.4900, 0.4500, 0.4100,

0.3700, 0.3300, 0.2900, 0.2500, 0.2100,

0.1750, 0.1450, 0.1150, 0.0900, 0.0650,

0.0450, 0.0250, 0.0100, 0.0000,

/

&physics

mp_physics = 8, 8, 8,

ra_lw_physics = 4, 4, 4,

ra_sw_physics = 4, 4, 4,

radt = 30, 10, 5,

sf_sfclay_physics = 1, 1, 1,

sf_surface_physics = 4, 4, 4,

bl_pbl_physics = 1, 1, 1,

bldt = 0, 0, 0,

cu_physics = 6, 0, 0,

cudt = 0, 0, 0,

isfflx = 1,

ifsnow = 1,

icloud = 1,

surface_input_source = 1,

num_soil_layers = 4,

num_land_cat = 21,

sf_urban_physics = 0, 0, 0,

sst_update = 1,

fractional_seaice = 0,

bucket_mm = 100.0,

bucket_J = 1.e9,

sst_skin = 1,

lagday = 150,

tmn_update = 1,

prec_acc_dt = 180, 60, 60,

aer_opt = 2,

mp_zero_out = 0,

rdmaxalb = .false.,

slope_rad = 1,

topo_shading = 0,

topo_wind = 0,

do_radar_ref = 1,

/

&noah_mp

dveg = 4,

opOBt_crs = 1,

161



A WRF configuration files

opt_btr = 2,

opt_sfc = 1,

opt_run = 1,

opt_frz = 1,

opt_inf = 1,

opt_rad = 3,

opt_alb = 2,

opt_snf = 4,

opt_tbot = 1,

opt_stc = 1,

/

&fdda

/

&dynamics

w_damping = 1,

diff_opt = 1, 1, 1,

km_opt = 4, 4, 4,

diff_6th_opt = 0, 0, 0,

diff_6th_factor = 0.12, 0.12, 0.12,

base_temp = 290.

damp_opt = 3,

zdamp = 5000., 5000., 5000.,

dampcoef = 0.2, 0.2, 0.2

khdif = 0, 0, 0,

kvdif = 0, 0, 0,

non_hydrostatic = .true., .true., .true.,

moist_adv_opt = 1, 1, 1,

scalar_adv_opt = 1, 1, 1,

epssm = 0.7, 0.7, 0.7,

do_avgflx_em = 1, 1, 1,

/

&bdy_control

spec_bdy_width = 5,

spec_zone = 1,

relax_zone = 4,

specified = .true., .false.,.false.,

nested = .false., .true., .true.,

/

&grib2

/

&namelist_quilt

nio_tasks_per_group = 0,

nio_groups = 1,

/
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