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This paper provides a theoretical understanding of sampling bias in presence-only data in the 
context of species distribution modelling. This understanding forms the basis for two integrated 
frameworks, one for detecting sampling bias of different kinds in presence-only data (the bias 
assessment framework) and one for assessing potential effects of sampling bias on species distri-
bution models (the bias effects framework). We exemplify the use of these frameworks to museum 
data for nine insect species in Norway, for which the distribution along the two main bioclimatic 
gradients (related to oceanicity and temperatures) are modelled using the MaxEnt method. 
Models of different complexity (achieved by use of two different model selection procedures 
that represent spatial prediction or ecological response modelling purposes, respectively) were 
generated with different types of background data (uninformed and background-target-group 
[BTG]). The bias assessment framework made use of comparisons between observed and theo-
retical frequency-of-presence (FoP) curves, obtained separately for each combination of species 
and bioclimatic predictor, to identify potential sampling bias. The bias effects framework made 
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use of comparisons between modelled response curves (predicted relative FoP curves) and the 
corresponding observed FoP curves for each combination of species and predictor. The extent 
to which the observed FoP curves deviated from the expected, smooth and unimodal theoretical 
FoP curve, varied considerably among the nine insect species. Among-curve differences were, 
in most cases, interpreted as indications of sampling bias. Using BTG-type background data in 
many cases introduced strong sampling bias. The predicted relative FoP curves from MaxEnt 
were, in general, similar to the corresponding observed FoP curves. This indicates that the main 
structure of the data-sets were adequately summarised by the MaxEnt models (with the options 
and settings used), in turn suggesting that shortcomings of input data such as sampling bias 
or omission of important predictors may overshadow the effect of modelling method on the 
predictive performance of distribution models. The examples indicate that the two proposed 
frameworks are useful for identification of sampling bias in presence-only data and for choos-
ing settings for distribution modelling options such as the method for extraction of background 
data points and determining the appropriate level of model complexity.

Keywords: Background target group, frequency of presence, gradient analysis, MaxEnt model 
complexity, sampling bias, species distribution modelling, species response curves



SOMMERFELTIA 38 (2018)  Støa & al.: Sampling bias in presence-only data 3

Contents

Introduction.................................................................................................................................................................... 4
A theoretical understanding of sampling bias in the context of SDM.................................................... 5

Frequency-of-presence (FoP) curves: categories and terms	 5
Definitions of sampling bias	 7

Detecting sampling bias in presence-only data: the bias assessment framework........................... 7
Outline	 7
Establishing theoretical FOP curves: general properties of species’ responses to bioclimatic 
	 gradients	 8
Types of sampling bias	 12

Assessing effects of sampling bias on distribution modelling results: the bias effect 
	 framework.........................................................................................................................................................12
Examples: the two frameworks applied to data for nine insect species in Norway......................14

Study area	 14
Material: species presence datasets	 16
Material: explanatory variables	 16
Methods: distribution modelling by MaxEnt	 16
Methods: comparison between MaxEnt models	 19
Methods: applying the bias assessment and the bias effects framework	 19
Results: identification of sampling bias	 20
Results: assessment of effects of sampling bias	 24
Results: comparison between MaxEnt models	 28

Discussion......................................................................................................................................................................32
Detecting sampling bias	 32
Background target group: correction of sampling bias or introduction of new bias?	 36
Effects of sampling bias	 37

Conclusions...................................................................................................................................................................38
Acknowledgements....................................................................................................................................................39
References......................................................................................................................................................................39
Appendix 1. Derived variables and their coefficients in the nine ERM models fitted with 
	 uninformed background.............................................................................................................................45
Appendix 2. Derived variables and their coefficients in the nine ERM models fitted with 
	 target background..........................................................................................................................................46
Appendix 3. Derived variables and their coefficients in the nine SPM models fitted with 
	 uninformed background.............................................................................................................................47
Appendix 4. Derived variables and their coefficients in the nine SPM models fitted with 
	 target background..........................................................................................................................................51



SOMMERFELTIA 38 (2018)  Støa & al.: Sampling bias in presence-only data 4

INTRODUCTION

Species distribution modelling (SDM, Franklin 2009) comprises methods for integrating geo-
referenced observations of presence of a target species with area-covering environmental 
variables (e.g., Halvorsen 2012). SDM methodology has developed rapidly over the last two 
decades (Guisan & Zimmermann 2000, Elith et al. 2006, Franklin 2009), but development of 
this new research field has brought several major challenges of which one is inappropriate use 
of complex methods available in user-friendly software (Halvorsen 2012, Yackulic et al. 2013). 
A firm foothold in ecological theory and in-depth understanding of how the methods work is 
therefore needed (Halvorsen 2012, Merow et al. 2013, Yackulic et al. 2013). 

SDM practice involves three main steps (Austin 2007, Halvorsen 2012): (1) collection and 
preparation of data for the target species and the environmental variables (specification of a 
data model), (2) parameterization of a statistical model that relates the species’ response to the 
environment (statistical modelling), and (3) model evaluation and assessment. The statistical 
modelling step does not necessarily make use of geographical co-ordinates; only ecological 
information for the sites is required. Accordingly, a species distribution model as such is a 
model of a species’ response to potentially important environmental variables, in a conceptual 
environmental space. Shortcomings in the data or one or more of the statistical modelling steps 
are likely to reduce model quality by making the modelled response deviate from the ’underly-
ing true response’ of the species. The most important potential shortcoming of data used for 
modeling is that the response variable does not adequately reflect the true response of the 
species to important environmental variables (Halvorsen 2012). 

Natural history museums are one of the most important sources of biodiversity data for 
distribution modeling although ‘museum data’ are generally not collected for this purpose. Ide-
ally, sampling for distribution modeling should be random or otherwise designed to represent 
the entire range of variation along the environmental gradients to which the response is stud-
ied. Museum data are, however, likely to be biased towards areas that are easily accessible for 
biologists, known for their interesting fauna and flora, or that are of special interest for other 
reasons (Wollan 2008, Robertson et al. 2010, Anderson 2012). Furthermore, museum data are 
of the presence-only type, not providing explicit information about the environmental condi-
tions under which species are absent. Therefore, distribution models trained with such data 
may be inaccurate to an extent that is difficult to assess. 

Another source of suboptimal distribution models is inadequate model specification and/
or sub-optimal model parameterization (Halvorsen 2012).  Furthermore, the magnitude of ef-
fects of deficiencies and biases in the data, which are likely to be inherited through statistical 
modelling, may be inflated by the modelling method (Austin 2007).

Good SDM practices require efficient tools and guidelines for assessing bias in the data, 
for assessing the effects of such bias on modelling results, and for model evaluation (Guisan & 
Zimmermann 2000, Austin 2007, Halvorsen 2012, Kramer-Schadt et al. 2013). Development of 
such tools and guidelines requires in-depth understanding of what sampling bias is, and how it 
affects species distribution models. Most SDM methods in current use are group-discriminative 
methods (Mateo et al. 2010), by which the ratio of densities of presence observations to all ob-
servations (presences and absences) is modelled with respect to variation in supplied environ-
mental variable(s) (Elith et al. 2011, Merow et al. 2013). Because real absence observations are, 
in cases, unavailable, such data are typically replaced by uninformed background observations, 
i.e. a set of grid cells from the study area for which no information about eventual presence or 
absence of the modelled target is available. The uninformed background may consist of all cells 
of a standard grid superimposed on the study area or a subset of these cells. Use of background 
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target-group observations (BTG; Phillips & Dudík 2008), typically consisting of presence observa-
tions for species that are taxonomically or ecologically related to the modelled target, has been 
proposed as an alternative to the uninformed background. Appropriateness of BTG for mitigat-
ing effects of sampling bias in presence-only data (Phillips & Dudík 2008, Merow et al. 2013, 
Phillips et al. 2017) rests on the assumptions that the focal species would have been recorded 
at BTG presence sites if it really occurs there (Phillips & Dudík 2008, Phillips et al. 2009). One 
further assumption is that the presence and BTG sets of observations contain similar bias (Mateo 
et al. 2010). The popularity of the BTG approach seems to be rapidly increasing (Graham et al. 
2011, Bystriakova et al. 2012, Millar & Blouin-Demers 2012, Crall et al. 2013, Searcy & Shaffer 
2014) despite that a thorough evaluation of the approach has not yet been performed (but see 
Stokland et al. 2011, Heibl & Renner 2012, Fourcade et al. 2014).

Based on gradient analytic (ter Braak & Prentice 1988, Halvorsen 2012) and macro-
ecological (Hengeveld & Haeck 1982, Brown 1984, Cox & Moore 2010) theory, this paper 
provides two theoretical frameworks, one that addresses identification and categorization of 
sampling bias in presence-only data (the bias assessment framework) and one for assessing 
the effects of sampling bias on species distribution models (the bias effects framework). We 
exemplify use of the frameworks by applying them to data for nine insect species in Norway, the 
distributions of which are modelled with respect to two important bioclimatic gradients related 
to oceanicity and temperatures (Moen 1999, Bakkestuen et al. 2008). We apply the frequently 
used SDM method MaxEnt (Phillips et al. 2006, Phillips & Dudík 2008, Halvorsen 2013, Phillips 
et al. 2017). The modelling examples are designed to facilitate assessment of the usefulness 
of the two frameworks and, additionally, to explore the effects of model complexity and use of 
background target group data on MaxEnt distribution models. 

A THEORETICAL UNDERSTANDING OF SAMPLING BIAS IN THE 
CONTEXT OF SDM 

FREQUENCY-OF-PRESENCE (FoP) CURVES: CATEGORIES AND TERMS

A species response curve shows the variation in a species’ aggregated performance along an 
environmental gradient (Halvorsen 2012). The gradient is typically represented by an environ-
mental variable that is recorded (or estimated) for each site in the study area. Response curves 
are fundamentally important in understanding sampling bias in the SDM context because the 
response variable, the presence-to-background frequency ratio, is itself a measure of aggregated 
performance of the species, along the environmental variable (Halvorsen 2012). The obvious 
choice of aggregated performance measure for presence-only or presence/absence distribution 
data is the density of the species in a subset of observations units that is homogeneous with 
respect to the environmental variable in question, e.g., the ratio of the counts of presence and 
background observations in a subset of observation units with values for the environmental 
variable within a small interval (Loehle 2012). This measure is referred to in this paper as the 
Frequency of Presence (FoP). Frequency-of-presence curves (FoP curves) may be obtained as 
a discrete set of values by counting the number of presence observations in each interval of the 
gradient (Loehle 2012), or by fitting a continuous response function to densities, e.g., by maxi-
mum likelihood estimation methods (Oksanen & Minchin 2002, Jansen & Oksanen 2013).
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Table 1. Types of species response curves with definitions. 

Term	 Definition

True frequency of 	 Graph showing the true relative frequency of a species’ presence
presence curve	 along an environmental gradient, i.e., ratios between counts or 
	 densities of presence and background observations for successive 
	 intervals or at successive points along the gradient, obtained by 
	 use of an exhaustive dataset

Empirical frequency of 	 Graph showing variation in the relative frequency of presence 
presence curve	 observations for a species along an environmental gradient, 
	 calculated for successive intervals or at successive points along 
	 the gradient as the ratio between counts or densities of presence 
	 and absence observations in a relevant but not exhaustive dataset

Observed frequency of 	 Graph showing variation in the relative frequency of presence 
presence curve	 observations for a species along an environmental gradient, 
	 calculated for successive intervals or at successive points along 
	 the gradient as the ratio between counts or densities of presence 
	 and background observations (the background observation set 
	 may consist of presences together with uninformed or informed, 
	 e.g., background target group, observations)
	
Theoretical frequency 	 Graph showing variation in the relative frequency of a species 
of presence curve	 along an environmental gradient, deduced from ecological 
	 theory and prior knowledge about the species in question
	
Predicted relative 	 Graph showing variation in the relative predicted frequency 
frequency of	 (probability) of presence for a species along an environmental 
presence curve	 gradient, as obtained by an SDM

As a foundation for our theoretical framework, we have defined five types of frequency-
of-presence (FoP) curves based on the type of data used to produce them (complete or a subset 
of an empirical data set, presence-only data combined with selected background data), and 
absence or presence of bias (see Table 1). The true FoP curve, the empirical FoP curve, the 
observed FoP curve, the theoretical FoP curve, and the predicted relative  FoP curve (the term 
‘relative’ here pertains to the fact that SDMs obtained by use of presence-only data produce 
output on a relative, not an absolute, probability scale). The first three are all obtained by use 
of empirical data, differing with respect to the types of presence and background observations 
used. The true and empirical FoP curves are obtained from presence/absence observations of 
the target species in the study area, the former requires an exhaustive dataset and assumes 
full detectability (e.g., MacKenzie et al. 2005), whereas the latter are based upon any sample of 
presence/absence observations. The observed FoP curves differ fundamentally from the first 
two by being based on presence-only data and modelled absences (i.e., a set of observations 
consisting of either uninformed or targeted background observations). In the absence of any 
kind of bias in the data, the observed FoP is proportionally similar to the true FoP, with a pro-
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portionality factor determined by the sampling effort (Loehle 2012).
The theoretical FoP curves show variation in the relative frequency of a species along an 

environmental gradient under the assumption that no bias of any kind is present. Theoretical FoP 
curves are deduced from ecological theory and prior knowledge about the species in question. 
The predicted relative FoP curve is a graphic representation of predictions from a distribution 
model, i.e., of the results obtained by species distribution modelling.

DEFINITIONS OF SAMPLING BIAS

Sources of bias in presence-only data have been addressed in several studies, and a multitude 
of terms have been used to categorize such bias, e.g., ‘temporal bias’ (Bean et al. 2012), ‘road-
side bias’ or ‘cosmopolitan bias’ (Boakes et al. 2010) and ‘hotspot bias’ (Loiselle et al. 2008). 
A clear definition of sampling bias with specific reference to SDM is, however, still lacking [but 
see Kadmon et al. (2003) and Phillips et al. (2009)]. 

Bias in response data for SDM can be divided into two types: geographical and environ-
mental sampling bias. We define geographical sampling bias as bias in response data for SDM 
that occurs because some parts of the geographical space are sampled more intensively than 
others. Because SDM addresses relationships in the environmental space, i.e., the conceptual 
space with the major environmental complex-gradients as axes [complex-gradients are sets of 
environmental gradients that act on species in concert (Whittaker 1967)], geographical sampling 
bias must manifest itself in the environmental space to affect SDM results. Good performance of 
group-discriminative SDM methods also requires that the sampling effort be distributed in pro-
portion to the actual frequency distribution of environmental conditions along all environmental 
variables of importance for the species (Elith et al. 2011). Accordingly, we propose the following 
operational definition of sampling bias in the context of SDM: A set of presence observations 
for a target of SDM contains sampling bias if the frequency distribution of observed presences 
along major environmental complex-gradients deviates from the frequency distribution of the 
target’s true presence in environmental space.

DETECTING SAMPLING BIAS IN PRESENCE-ONLY DATA: THE BIAS 
ASSESSMENT FRAMEWORK

OUTLINE

 Our definition of sampling bias establishes a standard reference for an unbiased sample: the 
distribution of true frequency of presence of the modelled species in environmental space, i.e., 
the true FoP curve. A true FoP curve may, if available in a parameterized form, be used as a refer-
ence to which the observed FoP curves can be compared by statistical methods or, alternatively, 
by visual inspection. Deviations of the observed FoP curve from the reference true FoP curve 
indicate possible presence of sampling bias, as indicated in Fig. 1.
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Unfortunately, obtaining the data required to construct a true FoP curve is unrealistic 
in almost all cases. In theory, the true FoP curve can be approximated by an empirical FoP 
curve, constructed by using a sample of high-quality presence/absence data that are collected 
independently of the data used to obtain the FoP curve (Edvardsen et al. 2011, Erikstad et al. 
2013). Fig. 1 shows that empirical FoP curves allow assessment of sampling bias by the same 
procedures (visual inspection and statistical testing) than theoretical FoP curves. 

In most cases, however, also the presence/absence data needed to construct an empirical 
FoP curve are unavailable, or out of reach given available resources. We are then left with the 
third alternative shown in Fig. 1: to use the theoretical FoP curves as a reference with which 
the observed FoP curves can be compared (cf. Vaughan & Ormerod 2003). The theoretical FoP 
curve is a conceptual rather than a parameterized model, hence the third alternative implies an 
informal comparison of the observed FoP and the theoretical FoP curves, e.g., by visual inspection, 
rather than a statistical analysis of relationships. Accordingly, this third option cannot provide 
conclusive evidence for or against presence of geographical or environmental sampling bias in 
specific data sets. The value of this option relies on our ability to obtain a reliable theoretical 
FoP curve. Comparison of observed FoP curves with true, empirical or theoretical, FoP curves 
forms the basis for the proposed framework for detecting sampling bias in presence-only data 
intended for use in SDM, as summarised in Fig. 1.

ESTABLISHING THEORETICAL FOP CURVES: GENERAL PROPERTIES OF SPECIES’ RESPONSES 
TO BIOCLIMATIC GRADIENTS

The extent to which comparison of observed FoP curves with theoretical FoP curves will provide 
valid indications of sampling bias depends on the reliability and realism of the theoretical FoP 

Fig. 1. Proposed frameworks for assessment of sampling bias in presence-only data (left) and 
for assessment of effects on species distribution models. For explanation, see text.
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curves used in the comparison. We use the gradient analytic perspective (GAP) of Halvorsen 
(2012), which summarises gradient analytic and macro-ecological biogeographic theory, as 
a foundation for deriving general properties of theoretical FoP curves. The GAP can be sum-
marised into three points: (1) Species do not respond to single environmental gradients, but 
to environmental complex-gradients. (2) A few major complex-gradients normally account for 
most of the variation in species composition that can be explained environmentally, and, most 
importantly. (3) Species occur within a restricted interval along each major complex-gradient 
and have an optimum somewhere within this interval. From (3) it follows that theoretical FoP 
curves should typically be unimodal (Whittaker 1956, Austin & Gaywood 1994), reflecting the 
preferences for specific parts of the environmental space acquired by each species throughout its 
evolutionary history. From the species’ point of view, habitat suitability and, hence, the species’ 
performance, will decrease with increasing ‘environmental distance’ from the species’ optimum 
along a complex-gradient. How far away from its optimum a species may be found, depends on 
the species’ physiological tolerance to the resource, stress and/or disturbance factors that vary 
along the complex-gradient, biotic interactions, and the outcome of demographic processes such 
as the species’ ability to disperse to and establish in new sites (Halvorsen 2012).

The shape of theoretical FoP curves is also influenced by the spatial grain used in the 
study (sampling-unit size) and by properties of the species and the relevant complex-gradients 
(Minchin 1989, Økland 1990). Empirical studies ranging from those using small (e.g., 1 m2) plots 
distributed along local complex-gradients (e.g., Minchin 1989, Rydgren, et al. 2003) to those 
using larger plots (e.g., 1 km2) distributed along bioclimatic gradients (Brown 1984, Austin & 
Gaywood 1994) conclude that unimodal responses are typical for species with relatively narrow 
ecological ranges and optima near the centre of an important complex-gradient. This pattern is 
found in most species studied (Brown 1984, Halvorsen 2012). Response curves for species with 
optima near or outside the sampled portion of the complex-gradient will be truncated to vari-
ous degrees, as shown by Halvorsen (2012: Fig. 11). The unimodal response curve also agrees 
with conceptual macro-ecological biogeographic models that predict decreasing abundance 
in geographical space from the centre to the periphery of a species’ distributional range, e.g., 
exemplified by the ‘abundant centre model’ (Hengeveld & Haeck 1982), the ‘peak model for 
intraspecific patterns’ (Gaston et al. 2000, Gaston et al. 2008) and the ‘peak-and-tail pattern’ 
(McGill & Collins 2003). Correspondence between a species’ response in environmental space 
and its distribution in geographical space is a logical consequence of the species’ geographical 
distribution reflecting its response to environmental gradients, modified to a greater or lesser 
extent by its history, biotic interactions and demographic processes.

Available empirical evidence thus supports a generally unimodal shape of theoretical 
FoP curves with respect to broad-scaled environmental gradients, with exact curve shapes 
determined by a combination of six factors (see Figs 2–9):

(1) The width of the theoretical FoP curve is determined by the species’ tolerance to the 
environmental conditions that vary along the complex-gradient in question (e.g., Dahl & Birks 
1998). The extent to which the response curve will decline gradually or abruptly towards its 
tails depends on the relationship of the species to the distribution-limiting factors. Species with 
sharp tolerance limits (Skre 1979, Gauslaa 1984) will have more flat-topped theoretical FoP 
curves that decline abruptly towards the margins (Fig. 4).

(2) The height of the curve is determined by the local commonness of the species near 
its optimum (compare Figs 7 and 9).

(3) The width and height of a unimodal theoretical FoP curve tend to be positively corre-
lated. This follows from two important general biogeographic patterns: the positive abundance-
occupancy relationship (Brown et al. 1996, Gaston et al. 2000) and the core-satellite species 
hypothesis (Hanski 1982). 
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Fig. 2–9. Theoretical frequency-of-presence curves for typical core (2–3), rural (4–5), urban 
(6–7) and satellite (8–9) species. The species’ aggregated performance (given on the ordinate 
axes) is the relative frequency of a species’ presence along the environmental gradient, i.e., ratios 
between counts or densities of presence and background observations for successive intervals 
or at successive points along the gradient. Curves are shown for coarse (2, 4, 6, 8) and fine (3, 5, 
7, 9) spatial scales, i.e., for coarse (e.g., 100 km2) and fine (e.g., 100 m2) grid-cell rasterizations 
of the study area, respectively.

2 3

4 5

6 7

8 9
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(4) The shape of true, empirical, observed and even theoretical FoP curves will be strongly 
affected by the grain of the study (Loehle 2012): the curves flatten out when grid-cell size 
increases. 

(5) The extent of the study area determines if, or the extent to which, the unimodal theo-
retical FoP is truncated. Truncation occurs if the full range of the species along the gradient is 
not contained within the study area (Halvorsen 2012).

(6) The degree of skewness of theoretical FoP curves depends on several factors: (a) If 
several conditions are met, interspecific biotic interactions may result in skewed empirical 
responses of species to gradients even when the physiological response [the response in the 
absence of influence by other species (Ellenberg 1954)] is symmetric (Austin & Smith 1989, 
Austin & Gaywood 1994, Austin 2002). Because interspecific interactions take place at the 
spatial scale where individual organisms physically meet (Huston 2002), one such condition 
is that the interactions manifest themselves at the (typically) much broader scale addressed 
by SDM. However, the scale at which interspecific interactions take place varies and may be 
quite broad for larger, more mobile organisms, such as mammals, while it is finer (and normally 
much finer than the scale addressed in SDM) for smaller, sessile species, such as plants. The 
larger the study area and the coarser the grid cells used for recording presence or absence, 
the more individuals have to be involved in interactions to affect the distribution, and hence, 
the resulting distribution model (Halvorsen 2012). Nevertheless, the SDM literature contains 
examples of effects of biotic interactions over a wide range of spatial scales. Effects of inter-
specific interactions on distribution models trained by use of local-scale data have been dem-
onstrated for competition (Meier et al. 2010, Boulangeat et al. 2012), facilitation (Boulangeat 
et al. 2012), mutualism (Gutiérrez et al. 2005), and parasitic/amensalistic relationships such 
as effects of the availability of host plants for butterflies (Pellissier et al. 2012). Effects of biotic 
interactions on regional-scale (1,000–1,000,000 m) distribution models have also been shown, 
for competition (Leathwick & Austin 2001, Anderson et al. 2002), facilitation (Heikkinen et 
al. 2007), predation (Hebblewhite et al. 2005), host-plant availability (Araújo & Luoto 2007, 
Schweiger et al. 2012) and the distribution of prey (Redfern et al. 2006). (b) Irregularities in 
realized response-curves compared to expectations from theoretical reasoning may be due to 
metapopulation, or sink-source, dynamics (Hanski & Simberloff 1997, Hanski 1998, Hanski & 
Ovaskainen 2000). At finer spatial and temporal scales species may occur in unsuitable habitats 
and be absent from suitable ones because of stochastic processes such as local extinctions and 
dispersal into temporarily suitable sites (the mass effect; Shmida & Wilson 1985). However, 
while traditional metapopulation theory assumes that an area consists of discrete patches of 
suitable habitat surrounded by uniformly unsuitable habitats (but see Cavanaugh et al. 2014), 
most SDM methods assign a continuous variable value (the relative probability of presence) to 
each cell in the gridded study area. This improves the realism of model predictions compared 
to approaches that provide binary predictions. (c) Deviations from a unimodal curve shape by 
inability of the species to fill its potential range, typically because of interactions between dis-
persal constraints and available time (Primack & Miao 1992, Hatteland et al. 2013), may result 
in influences a species’ response to one complex-gradient by other complex-gradients with 
different spatial patterns in the study area (Halvorsen 2012). (d) Local adaptations (Westley 
et al. 2013). (e) How the gradient is scaled, e.g., in units of physical or chemical units or in units 
of species compositional turnover (Økland 1986, 1992)

The scale of the study also affects the degree to which each of these possible explana-
tions will influence a distribution model. Dispersal barriers are normally rare when the extent 
of the study area is small (Soberon & Peterson 2005). At finer scales, biotic interactions and 
metapopulation dynamics may cause mismatch between the theoretical and the empirical, or 
observed, FOP curves. Effects of biotic interactions may translate into deviant distributions of 
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the target species on a broad scale if the interaction is obligate [such as the availability of host 
plants for host-specific insects (Araújo & Luoto 2007, Schweiger et al. 2012)].

TYPES OF SAMPLING BIAS 

We distinguish between four types of sampling bias, each caused by one specific theoretical 
reason. Sampling biases of types 1–3 are collectively referred to as systematic bias, in contrast to 
the stochastic variation that constitutes type 4. Each type is characterized by a specific pattern 
of deviation of the observed FoP curves from the reference true, empirical or theoretical FoP 
curves. The four types are: (1) under-sampling (Fig. 10), i.e., lower-than-true observed FoP in 
some intervals along a gradient, (2) over-sampling, i.e., higher-than-true observed FoP in some 
intervals along a gradient, (3) peripheral sampling gap (Fig. 11), i.e., truncation of the observed 
FoP curve due to lack of presence observations (in the data set) at one or both of the species’ 
tolerance limits, and (4) stochastic variation (Fig. 12), i.e., irregularities in the observed FoP 
curve due to unpredictable and variable sampling effort along the gradient. 

ASSESSING EFFECTS OF SAMPLING BIAS ON DISTRIBUTION 
MODELLING RESULTS: THE BIAS EFFECTS FRAMEWORK 

The bias effects framework, which provides guidelines for assessing possible effects of sampling 
bias on the species distribution models as such, is based on comparing the observed FoP curves 
with the corresponding (modelled response) curves obtained from the modelling results [the 
predicted relative FoP curve s (Table 1, also see Fig. 1)]. These curves are obtained by using 
the predicted relative frequencies of presence instead of observed frequencies of presence for 
calculating aggregated performance. 

The ideal SDM method reproduces the true response of the species (i.e., the true FoP curve) 
with respect to every single environmental variable of importance for the species in an adequate 
way: (1) if sampling bias is absent, by reproducing the observed FoP curve or, (2) if sampling 
bias is present, by mitigating any effects of the bias, and (3) by smoothing the response curve 
to a degree of generality that matches the modelling purpose. This third point highlights that 
avoidance of overfitting the model to the data is also a means for mitigating sampling bias. In the 
context of model evaluation, it should be mentioned that evaluation of SDMs has to take model-
ling purpose into account (Jiménez-Valverde et al. 2008, Halvorsen 2012):	 spatial prediction 
modelling and ecological response modelling can be considered as end-points along a gradient of 
modelling purposes from low to high degrees of generalisation. A (more complex) spatial predic-
tion model is overfit when it reproduces stochastic variation in the training data set, i.e., when 
the more complex model (in terms of the number of included environmental variables) explains 
more of the variation in the training data set than a simpler model while the model’s prediction 
error on independently collected data is higher. An ecological response model is overfit when 
the modelled relationship between the target species and environmental variables cannot be 
transferred to other areas and/or times without increase of prediction error (Halvorsen 2012). 
Observed and predicted relative FoP curves with shapes that indicate sampling bias types 1 
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10

11

12

Fig. 10–12. True frequency of presence (FoP) curves, observed frequency of presence curves and 
predicted relative frequency of presence curves for a hypothetic species, given different types 
of sampling bias: (10) under-sampling near the species’ optimum, (11) peripheral sampling 
gap, (12) stochastic variation. The bars show the raw frequencies of presence (observed FoP 
values) which are generalized into the observed FoP curve.
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and 2 (gaps and over-sampling) may, however, also result from real properties of the modelled 
species in a study area, resulting, e.g., from biotic interactions or inability of the species to fill its 
ecological range. These curve shapes are thus compatible with valid spatial prediction models 
while they are inappropriate in ecological response modelling contexts because they do not 
represent general properties of the species. If the purpose is ecological response modelling, such 
patterns indicate a need for stronger smoothing of the model. Sampling bias type 3, peripheral 
sampling gaps (Fig. 12), will affect the skewness of observed FoP (and predicted relative FoP) 
curves and can normally not be identified without access to auxiliary presence/absence data. 
Sampling bias type 4 (stochastic variation) can be confidently identified and interpreted as an 
indication of sampling bias by inspecting observed and predicted relative FoP curves . This is 
also the only type of sampling bias that may be mitigated by a modelling method without in-
troducing new bias to the model. We therefore argue that, unless there are strong indications 
for the opposite, SDM methods should produce predicted relative FoP curves that reproduce 
observed FoP curves as closely as possible and with a degree of detail that matches the level of 
generalization required by the purpose of the study (Halvorsen 2012). Furthermore, we argue 
that datasets that give rise to observed FoP curves that appear unrealistic because of sampling 
bias should be rejected or improved before they are subjected to SDM.

Besides assessment of sampling bias effects, comparisons between observed FoP and 
predicted relative FoP curves may reveal modelling bias, i.e., shortcomings of the model as such. 
The most important type of modelling bias is model specification errors, whereby the model 
does not capture important features of observed FoP-curve shapes. Comparisons between 
observed and predicted relative FoP curves do, however, not provide an alternative to model 
evaluation by standard tools for assessing the model’s predictive ability (from a spatial predic-
tive modelling perspective), which are needed, among others, for selection among alternative 
models (Halvorsen 2012). Evaluation of SDM models, if possible, should be performed by use 
of independently collected presence/absence datasets (Phillips & Elith 2010, Edvardsen et al. 
2011, Halvorsen 2012, Erikstad et al. 2013). Such datasets can also be used to provide true FoP 
curves that are useful for identifying and assessing sampling bias (cf. Fig. 1). 

EXAMPLES:   THE TWO FRAMEWORKS APPLIED TO DATA FOR 
NINE INSECT SPECIES IN NORWAY

STUDY AREA

We exemplify use of the bias assessment and bias effects frameworks by applying them to data 
and distribution modelling results for nine insect species in Norway (Table 2). Our study area 
is the mainland of Norway, which comprises 323,782 km2. Norway is particularly well suited 
for exploring SDM-related issues because of the two strong bioclimatic gradients: one related 
to oceanicity-continentality and the division into bioclimatic sections (from strongly oceanic 
to slightly continental), and the other related to temperature and the division into bioclimatic 
zones (boreo-nemoral to the high alpine; Moen 1999, Wollan et al. 2008). Large topographical 
and geological diversity, and complex spatial and temporal variation in human land-use, makes 
the study area highly variable with respect to environmental conditions and species composi-
tion (Halvorsen 2012).
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MATERIAL: SPECIES PRESENCE DATASETS

Species occurrence data for nine species from three insect orders were used for the examples 
(Table 2). The species were assigned to the four CURS categories (plus one indeterminate, 
or intermediate, category, for species that did not fit into one of these four categories) of the 
hierarchical continuum model of Collins et al. (1993) by their abundance and distribution pat-
terns (Figs 2–9): core (C) species with high maximum abundance and wide tolerance (to the 
gradients(s) in question) and hence broad distribution; urban species with high abundance 
and narrow distribution; rural species which combine low maximum abundance with broad 
distribution, and satellite species with low abundance and narrow distribution.  Classification 
of the species to CURS category was done by visual comparison of the shape of empirical FoP 
curves provided by earlier studies (Hansen & Larsson 1973, Ehnström & Holmer 2007, Aarvik 
et al. 2009, Bartsch et al. 2009) with the theoretical FoP curves in Figs 2–9. 

Presence observations for the nine focal species and other species belonging to the same 
family (cf. Table 2) were extracted from the databases of the insect collections of three Norwe-
gian institutions: the Natural History Museum, University of Oslo; Bergen Museum, University of 
Bergen; and the Museum of Natural History and Archaeology, Norwegian University of Science 
and Technology, Trondheim. Only records that could be geo-referenced with precision ± 1000 
m or better were included. 

Accepted presence records were assigned to cells in a 1 × 1 km grid covering the study 
area. Multiple records within the same grid cell were treated as one observation. Since no in-
formation about bioclimatic gradient positions (see below) was available for grid cells with the 
centre point falling in the sea, the few presence records in such grid cells were assigned to the 
nearest grid cell for which bioclimatic gradient information was available. 

MATERIAL: EXPLANATORY VARIABLES

As explanatory variables we used two variables that represent the two most important regional 
bioclimatic gradients in Norway (Bakkestuen et al. 2008, Moen 1999): the oceanicity-continen-
tality gradient (Figs 13, 15) and the temperature gradient (Figs 14, 16). The two continuous 
variables were obtained for 1 × 1 km cells covering the study area according to  Bakkestuen et al. 
(2008) , i.e., as the two directions in the space spanned by the first two axes of a PCA ordination 
of 54 climatic, topographical, hydrological and geological variables  of that best corresponded 
with the divisions into vegetation sections and vegetation zones described by Moen (1999). The 
two variables were transformed from the original scaling in arbitrary units onto a 0–1 scale. The 
fact that PCA axes 1 and 2 together accounted for 63 % of the variation in the set of 54 variables  
subjected to ordination by Bakkestuen et al. (2008) shows that the oceanicity-continentality 
and temperature gradients, and the variables we used to represent them, can validly be used 
as continuous representations of the discrete vegetation sections and zones.

METHODS: DISTRIBUTION MODELLING BY MAXENT

Distribution models were developed using Maxent software, version 3.3.3k (Phillips et al. 2006), 
which apply the MaxEnt method (the software is referred to as Maxent and the modelling method 
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Fig. 13–16. Variation along the continuous oceanicity-continentality (13, 15) and temperature 
(14, 16) gradients (both scaled from zero to 1) over mainland Norway: frequency distributions 
of grid cells along each gradient (13, 14) and geographical distributions of gradient values (15, 
16). The oceanicity-continentality gradient runs from oceanic (blue, low values) to slightly 
continental (yellow) while the temperature gradient runs from arctic-alpine (blue, low values) 
to temperate (boreo-nemoral; red).

as MaxEnt). MaxEnt, which is based on the maximum entropy principle (Jaynes 1957a, 1957b), 
has been described alternatively as a machine-learning method (Phillips et al. 2006, Phillips & 
Dudík 2008, Elith et al. 2011), as a method that is based on principles of Bayesian estimation 
(Elith et al. 2011, Merow et al. 2013), and as a maximum likelihood estimation method (Halvorsen 
2013, Renner & Warton 2013, Halvorsen et al. 2014). MaxEnt estimates the relative probability 
distribution of maximum entropy for the modelled target (Phillips et al. 2004). 

13 14

15 16
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Spatial prediction models were obtained by the so-called default MaxEnt practice, i.e., by 
use of the default Maxent program settings for all options (see Phillips & Dudík 2008, Halvorsen 
et al. 2015) except one: the raw output format was used instead of the default, logistic, format in 
accordance with recommendations by Halvorsen (2013) and Yackulic et al. (2013). The default 
MaxEnt procedure implies: (1) that derived variables of up to five types (linear, quadratic, hinge, 
threshold and product) were obtained by the ‘autofeatures’ procedure for each combination of 
explanatory variable and species (M. aeneus excepted, this species had too low frequency for 
threshold and product variables to be generated), and (2) variable selection by ℓ1-regularisation 
(Hastie et al. 2009), also described as the lasso penalty (Tibshirani 1996), which is a parameter 
shrinkage model selection method (Reineking & Schröder 2006, Halvorsen 2013, Merow et al. 
2013) by which the strictness of the variable selection criterion is determined by a regulariza-
tion multiplier (the default parameter value of 1 was used). The number of derived variables 
selected for each model was read from the Maxent output file NN.lambdas as the number of 
nonzero model parameters (Warren and Seifert 2011).

Ecological response MaxEnt models were obtained by the forward stepwise variable 
selection procedure described by Halvorsen (2013) and Halvorsen et al. (2015). This subset 
selection method (Reineking & Schröder 2006) proceeds in two phases, each consisting of an 
iteration process that makes use of a model optimization criterion based upon comparison of 
variations accounted for by nested MaxEnt models (Halvorsen 2013). In phase (1) a parsimoni-
ous set of derived variables was selected to represent each explanatory variable, in phase (2) 
a parsimonious set of explanatory variables, each represented by the set of derived variables 
resulting from step (1), was selected. The model optimization criterion used was that the more 
complex model should improve the simpler model more than expected of a random model of 
comparable complexity, as judged by an F-ratio test with significance level α = 1•10–6. All five 
types of derived variables that were considered for spatial prediction models, except product 
(interaction) variables, were considered. In addition, a sixth derived variable type, the deviation 
variable, was obtained for all combinations of species and explanatory variables for which the 
FOP curve (after smoothing) had a distinct peak. The deviation variable is the set of absolute 
value differences between the estimated optimum and explanatory variable values, calculated 
for each grid cell.

Ecological response models were parameterized by use of customized R scripts (Halvorsen 
et al. 2015, Mazzoni et al. 2015), wrapped around the Maxent software (Phillips et al. 2006, Phil-
lips & Dudík 2008), now available in the MIAmaxent R package (Vollering et al. 2016). For each of 
the nine species, spatial prediction and environmental response MaxEnt models were obtained 
separately for two sets of background observations: (1) uninformed background (UB), which 
consisted of the respective presence observations and 10,000 randomly selected grid cells for 
which nothing was known about presence or absence; and (2) background target group (BTG) 
background, which consisted of all georeferenced presence observations in the database of the 
insect collection of the Natural History Museum, University of Oslo, for all species that belonged 
to the same family as the respective focal species, the focal species included (Table 2).  

The raw model output values were transformed into PRO (probability-ratio output) values 
(Halvorsen 2013, Halvorsen et al. 2015) by multiplication of each raw output value by the total 
number of background observations. Probability-ratio output differs from raw output by being 
independent of the number of background observations and by having a mean value of 1.
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METHODS: COMPARISON BETWEEN MAXENT MODELS

We used the area under the receiver operating curve (AUC), adjusted for use with presence-only 
data (transformed AUC, tAUC) in accordance with Halvorsen (2013), as a measure of model 
performance: 

	 tAUC= (AUC-ϕ/2)/ (1-ϕ)  , 

where ϕ is the number of presence observations divided by the number of background observa-
tions. Transformed AUC values are recorded on the full 0–1 scale, and are thus comparable with 
(untransformed) AUC values for presence/absence data. tAUC values of 0.5 and 1.0 correspond 
to models that are random, and that perfectly discriminate between presences and (pseudo-)
absences, respectively, AUC expresses variation in the fractions of correctly predicted presences 
and correctly predicted (pseudo-)absences over the entire range of threshold values for relative 
predicted probability of presence (Pearce & Ferrier 2000). AUC values above 0.9 are commonly 
considered to indicate ‘very good’ predictive performance (Araújo & Guisan 2006).

The two model properties, tAUC and the number of derived variables, were tested for 
differences among model selection methods, background datasets and species, by generalized 
linear models (GLM; Crawley 2013). Identity link and normal errors and log link and Poisson-
distributed errors were used for the two response variables, respectively. 

METHODS: APPLYING THE BIAS ASSESSMENT AND THE BIAS EFFECTS FRAMEWORKS

Presence of sampling bias in the datasets was evaluated by using the procedure outlined in the 
bias assessment framework (Fig. 1). Hence, the observed FoP curves for each species along the 
oceanicity-continentality and the temperature gradients, respectively, were compared with 
theoretical FoP curves for each combination of species and gradient, obtained by first choosing 
the appropriate template from Figs 2–9 and adjusting it by use of information about species 
ranges and abundances in Table 2.

The FoP curves were made by the method proposed by Loehle (2012): each explanatory 
variable was first divided into 20 quantiles (each comprising 5% of all grid cells in the study 
area) and for each quantile, the ratio of number-of-presence to number-of-background observa-
tions was calculated. FoP curves were obtained by plotting observed FoP against the quantile 
midpoints. In order to improve the visualization of the observed FoP curves, we applied a three-
point moving average smoothing procedure three consecutive times to the raw observed FoP 
values (with weights of 1, 2 and 1 for the three consecutive quantile classes).

Effects of sampling bias on MaxEnt models were evaluated by using the bias effects frame-
work. We first obtained predicted relative FoP curves from MaxEnt modelling results, using the 
modelled relative predicted probabilities of presence (RPPP values, in PRO format) instead of 
observed presences for calculating aggregated performance values. In total, 72 predicted rela-
tive FoP curves were obtained [9 species × 2 MaxEnt modelling setups × 2 sets of background 
observations × 2 explanatory variables] by averaging model output predictions for each of the 
20 quantiles into which each explanatory variable was divided. Thereafter we compared the pre-
dicted relative FoP curves with the corresponding observed FoP and theoretical FoP curves. 
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RESULTS: IDENTIFICATION OF SAMPLING BIAS 

The observed FoP curves along the oceanicity-continentality gradient, using uninformed 
background (Fig. 17–52), fell into two groups. The first group consisted of the five core species 
(Table 2) for which observed FoP curves varied considerably: R. mordax had a uni- to bimodal 
curve (Fig. 17), P. napi had an irregular, bi- to trimodal curve (Fig. 49), whereas V. bombylans 
(Fig. 33), R. limbata (Fig. 41) and E. intricaria (Fig. 45) had more or less irregular curves that 
decreased towards the continental end of the gradient. The second group, which consisted of 
the intermediate, urban and satellite species (Table 2), had distinctly unimodal observed FoP 
curves: For G. alexis, an almost smooth observed FoP curve was obtained (Fig. 25), whereas the 
observed FoP curves for P. apollo (Fig. 37), D. hyalipennis (Fig. 21) and M. aeneus (Fig. 17) were 
somewhat irregular, with sharper peaks than expected (compare with Figs 2–9).

All observed FoP curves along the temperature gradient, using uninformed background 
(Figs 19, 23, 27, 31, 35, 39, 43, 47 and 51), increased more or less monotonously towards 
the high-temperature gradient end and only minor irregularities were observed, even before 
smoothing.

Observed FoP curves along the oceanicity-continentality gradient, using the BTG back-
ground, varied in an unique way for the five core species (Fig. 30, 34, 42, 46 and 50), whereas 
unimodal curve shapes were obtained, even after smoothing, for the satellite (Fig. 26) and in-
termediate species (Fig. 18 and 22). A bimodal curve was obtained for P. apollo, the only urban 
species (Fig. 38). 

The tendency for the observed FoP curves based on uninformed background data to in-
crease towards high temperatures was weakened for all the nine species when BTG was used 
(Fig. 20, 24, 28, 32, 36, 40, 44, 48 and 52). [Note that the vertical axes of corresponding unin-
formed background- and BTG-based curves (see Figs 17–52) have different scales. The curves 
are therefore comparable only with respect to shape and not with respect to amplitude along 
the vertical axis.] Concerning the temperature gradient, all observed FoP curves calculated with 
BTG were more irregular than the corresponding curves based on uninformed background. 
Four species had observed FoP–BTG curves that differed considerably from the correspond-
ing uninformed background curves: the satellite species, G. alexis (Figs 27 and 28), the core 
species, R. mordax (Figs 31 and 32) and R. limbata (Figs 43 and 44), and the urban species, P. 
apollo (Figs 39 and 40). 

Fig. 17–52. Observed frequency of presence (FoP) curves for combinations of explanatory vari-
able (the oceanicity-continentality and temperature gradients), type of background data used 
[uninformed background and background target group (BTG), which together with presence 
observations make up the background], and species. Explanatory variables were divided into 
20 quantile classes. Black lines show observed FoP curves, calculated for each quantile class as 
the number of presences divided by the number of background observations. Red, dashed lines 
show smoothed observed FoP curves. The grey areas in observed FoP curves for BTG background 
show intervals along the horizontal axis that are devoid of BTG observations.
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RESULTS: ASSESSMENT OF EFFECTS OF SAMPLING BIAS 

The predicted relative FoP curves with respect to the oceanicity-continentality gradient, using 
uninformed background (Fig. 53–88), were relatively smooth, and for the most similar within 
the ecological response models and the spatial prediction models (i.e. applying the two dif-
ferent model selection approaches), and with only small differences from the corresponding 
observed FoP curves.

Predicted relative FoP curves obtained using BTG differed more strongly from the observed 
FoP curves than curves obtained using uninformed background data (compare Figs 17–52 with 
corresponding Figs 53–88). Of the three species with unimodal observed FoP–BTG curves along 
the oceanicity-continentality gradient, only one, the satellite species, G. alexis, had a distinctly 
unimodal predicted relative FoP curve (Fig. 62). For the other two species, M. aeneus (Fig. 54) 
and D. hyalipennis (Fig. 58), the predicted relative FoP-BTG curve for the ecological response 
model showed no distinct trend along the oceanicity-continentality gradient whereas the spatial 
prediction model predicted a complex, unimodal relationship. For the remaining six species, 
predicted relative FoP–BTG curves were more or less similar to the observed FoP curves (Figs 
66, 70, 74, 78, 82 and 86). 

For all combinations of species, MaxEnt model (spatial prediction model or ecological 
response model), and type of background data, the observed FoP and the predicted relative 
FoP curves along the temperature gradient had similar shapes (compare Figs 17–52 with cor-
responding Figs 53–88).

Ecological response models in which one explanatory variable was represented by few or 
no derived variables (Table 3) gave rise to predicted relative FoP curves without clear patterns. 
This was evident in the ecological response models with BTG background for D. hyalipennis 
along the oceanicity-continentality gradient (Fig. 58) and for V. bombylans along the temperature 
gradient (Fig. 72). Predicted relative FoP curves with piecewise flattened or linear segments 
resulted from models with derived variables of the threshold and/or hinge types (Appendix 
1–4, Fig. 60, 66, 68, 70 and 74). Maps of the geographical distribution of probability-ratio output 
values from all models are shown in Figs 89–124.

Fig. 53–88. Predicted relative frequency of presence curves for combinations of explanatory 
variable (the oceanicity-continentality and temperature gradients), type of background data 
used [uninformed background and background target group (BTG), which together with pres-
ence observations make up the background], and species. Black lines and predictions show 
predictions from ecological response models from spatial prediction models by red, dashed 
lines. Explanatory variables were divided into 20 quantile classes. Average predicted relative 
FoP, calculated for each quantile class, is shown on the vertical axes. The grey areas in predicted 
relative FoP curves for BTG background show intervals along the horizontal axis that are de-
void of BTG observations. Each grey dot represents one predicted value from the ecological 
response model.
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Table 3. GLM (generalized linear model) tests of the null hypotheses that model type (ecological 
response model or spatial prediction model), background dataset used (uninformed or BTG), 
and species identity (nine species) (1) do not affect tAUC (AUC corrected for use with presence-
only data) and (2) do not differ with respect to the number of derived variables in MaxEnt 
models. df = model degrees of freedom (total number of observations = 36).  F and p value refer 
to an F-ratio test of each model against the null model of the intercept only. Trend = category 
for which the highest value for the response variable was predicted by a model significantly 
different from the null model.

Response 	 GLM	 Predictor	 df	 Deviance	 F	 p value	 Trend
variable				    explained			 

tAUC	 identity 	 model type	 1	 0.034	 1.19	 0.283	 –
	 link, 	 background	 1	 0.566	 44.29	 < 0.001	 uninformed
	 normal 						      background
	 errors	 Species	 8	 0.260	 1.19	 0.344	 –
				  
No. of 	 log link,	 model type	 1	 0.813	 168.58	 <0.001	 spatial
derived 	 Poisson						      prediction
variables	 errors						      model
		  background	 1	 0.529	 24.03	 <0.001	 uninformed
							       background
		  Species	 8	 0.516	 1.72	 0.089	 –

RESULTS: COMPARISON BETWEEN MAXENT MODELS

The tests for differences in performance (measured by tAUC) among MaxEnt models obtained 
with different model selection methods (i.e., the spatial prediction and ecological response 
models), were non-significant, both for each species and for all nine species together. However, 
models trained with uninformed background data obtained significantly higher tAUC values 
than models trained with BTG data (Table 3).

The number of derived variables included in models did not differ significantly among 
species, but was significantly higher for the spatial prediction models than for the ecological 
response models, and higher for models trained with uninformed background data than for 
models trained with BTG data (Table 3). 

Fig. 89–106: Maps of the geographical distribution of probability-ratio output (PRO) values from 
the spatial prediction models (SPM) for all nine species, obtained with uninformed background 
(UB) and background target group (BTG). The scaling of the color gradient differs between maps, 
except for the value 1 which1, which is always represented by the transition between green- and 
yellow-colored patches to facilitate comparisons between maps and models. Presence observa-
tions are shown as black dots in the uninformed background (UB) maps.
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Fig. 107–124. Maps of the geographical distribution of probability-ratio output (PRO) values from 
the ecological response models (ERM) for all nine species, with uninformed background (UB) 
and background target group (BTG). Background target-group PRO values were only calculated 
for pixels used as background cells in the modeling. The scaling of the color gradient differs 
between maps, except for the value 1, which is always represented by the transition between 
green- and yellow-colored patches to facilitate comparisons between maps and models. Pres-
ence observations are shown as black dots in the uninformed background (UB) maps.

DISCUSSION                                                    

DETECTING SAMPLING BIAS 

The bias assessment framework relies on two assumptions: (1) that theoretical FoP curves can 
be used to approximate true FoP curves, with which observed FoP curves can be compared; and 
consequently, (2) that deviations of observed FoP curves with respect to the major complex-
gradients from the expected smooth and unimodal (or truncated unimodal) theoretical FoP 
curves indicate presence of sampling bias. For all example species, we find larger or smaller 
discrepancies between observed FoP and theoretical FoP curves. The nature of these discrepan-
cies does not seem to bear any relationship to species-specific properties such as the shape of 
observed FoP curves or which CURS category.  The species belongs to  Observed FoP curves along 
the oceanicity-continentality gradient, calculated with uninformed background data, are more or 
less distinctly bi- and trimodal and do not resemble ecologically realistic species response curves 
(cf. Figs 2–9). We therefore interpret these curves as examples of under- and over-sampling of 
different sections of the gradient. Other deviant curve shapes, such as the weak central mode of 
the observed FoP curve for P. napi (along the oceanicity-continentality gradient and calculated 
with uninformed background), may either represent a unimodal true response over-sampled 
near the oceanic extreme and under-sampled for intermediate oceanicity-continentality values, 
or a monotonously declining response over-sampled near the species’ optimum. Access to em-
pirical FoP curves, obtained by use of an independently collected set of presence/absence data 
(Austin 2007, Edvardsen et al. 2011, Halvorsen 2012), is necessary to decide which of these 
alternative explanation(s), if any, which actually apply to each case. 

The species categorized as satellite, urban and intermediate all show unimodal, although 
not entirely smooth, observed FoP curves along the oceanicity-continentality gradient when 
calculated with uninformed background, with irregularities that suggest stochastic variation. 
Small irregularities in the observed FoP curves are expected if the gradient in question is not 
the only gradient of importance for the species and, in addition, not fully independent of vari-
ation along all other gradients, and/or if the number of presence observations is too small to 
estimate the observed FoP accurately.

All observed FoP curves along the temperature gradient, calculated with uninformed 
background, are right truncated, most likely, because all species (with the possible exception of 
E. intricaria) have their optima outside the sampled portion of the gradient (Eliasson et al. 2005, 
Ehnström & Holmer 2007, Bartsch et al. 2009). Moreover, this observed FoP-curve shape may 
have been accentuated by over-sampling near the high-temperature extreme of the gradient. 
The warmest, south-eastern, parts of Norway are the richest in insect host plant species (e.g., 
Grytnes et al. 1999, Aarvik et al. 2009), have the largest regional insect species pools (Aarvik 
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et al. 2009), are most densely populated, and have therefore probably also been subject to the 
largest insect-collecting effort. 

BACKGROUND TARGET GROUP: CORRECTION OF SAMPLING BIAS OR INTRODUCTION OF 
NEW BIAS?

Contrary to viewpoints expressed in the literature, we find that the observed FoP curves obtained 
with BTG data deviate more strongly from the expected theoretical FoP curves than the observed 
FoP curves calculated with uninformed background data. This was most clearly exemplified by 
R. limbata, P. apollo and R. mordax, for which the shapes of the observed FoP curves change from 
unimodal (truncated unimodal along the temperature gradient) to complex and almost bimodal, 
complex and almost monotonous, and a monotonous shape without any trace of unimodality left, 
respectively,  along the two gradients. These results can only be understood by taking properties 
of the BTG data into account: an observed FoP curve obtained with BTG data is a model for the 
ratio between the frequency by which the focal species is recorded and the frequency by which 
the species of the BTG are recorded, as a function of position along a gradient. Thus, by defini-
tion, the observed FoP curve obtained with BTG data estimates a quantity different from the 
targeted species’ true FoP with respect to the gradient in question. In fact, flattened observed 
FoP curves are the logical outcome when the ratio between the probabilities for encountering 
the focal species and the species of the BTG is more or less constant along the gradient.

The examples also include cases in which sampling bias may have been corrected by BTG: 
along the oceanicity-continentality gradient, the observed BTG-FoP curve for E. intricaria is 
similar to the corresponding curve calculated with uninformed background, except for being 
smoother. This indicates a reduction of stochastic sampling bias by BTG. P. napi provides another 
example of possible correction of sampling bias by BTG: whereas the observed uninformed-FoP 
curve (along the oceanicity-continentality gradient) is bimodal, probably due to oversampling 
of the left extreme of the gradient and/or under-sampling around 0.4 units along the gradient, 
the corresponding BTG-curve is increasing more or less rather monotonously. 

Observed BTG-FoP curves in this study tend to be more irregular than the corresponding 
curves calculated with uninformed background. One likely explanation for this is that the BTG 
datasets are much smaller than the uninformed background datasets (211–1541 observations, 
compared with more than 10 000, cf. Table 2), which implies that the variance of the observed 
FoP estimates is higher when calculated from BTG than when calculated from uninformed back-
ground data. Sparse data for a realistic background target group, as seen for some of the groups 
in this study, is likely to be a common situation. Our results thus suggest that great caution is 
needed when available BTG datasets are small. This agrees with the finding of Phillips & Dudík 
(2008) that model performance improves with increasing number until ca 10,000 background 
observations are used. Stokland et al. (2011) do, however, find small effects of varying the number 
of pseudo-absence observations in species distribution models obtained by boosted regression 
trees from 64 to over 4000 records compared to effects of sampling design and properties of 
the focal species. Furthermore, Mateo et al. (2010) claim that species distribution models may 
be improved by use of BTG datasets consisting of as few as 15 observations. Based upon our 
results, as well as theoretical reasoning, we however do, seriously, question these claims. Careful 
studies of the number of observations needed to form a robust BTG dataset, and whether cases 
exist for which no appropriate BTG dataset can be obtained, are clearly needed.

In contrast to the common view that BTG background is an effective means of mitigating 
sampling bias in presence-only data (Phillips & Dudík 2008, Phillips et al. 2009, Mateo et al. 
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2010, Yackulic et al. 2013), we recommend that BTG is used with great caution. BTG background 
will correct sampling bias in presence-only data if and only if presence observations for the 
species used for BTG have similar bias as the presence observations of the modelled target and 
BTG presences cover an interval along each major complex-gradient that extends well beyond 
the tolerance limits of the focal species. The literature contains many examples of the BTG ap-
proach being applied for SDM without data properties being explored prior to modelling and 
without other background designs being applied in parallel (Graham et al. 2011, Crall et al. 
2013). Because results obtained with BTG, that are compared with results obtained with other 
types of background data, vary from inferior (Heibl & Renner 2012, Millar & Blouin-Demers 
2012, Fourcade et al. 2014) to superior (Bystriakova et al. 2012, Kramer-Schadt et al. 2013), 
we recommend that any use of BTG for SDM should be preceded by careful examination of FoP 
curves for BTG as well as for other types of background data.  

EFFECTS OF SAMPLING BIAS 

We show by examples that sampling bias may be disguised in different and, to a large extent, 
unpredictable ways and that no short cuts exist by which effects of sampling bias on species 
distribution models can be circumvented. Accordingly, to leave it to the SDM method to ‘correct’ 
for sampling bias comes without guarantee and instead incurs a great danger that new bias is 
introduced. We therefore argue (1) that sampling bias should be judged by the realism of the 
observed FoP curve as an issue of its own, kept separate from methodological issues related to 
SDM such as choice of modelling method, and (2) group discriminative SDM  methods should 
be judged by their ability to reproduce observed FoP curves with a degree of detail that matches 
the level of generalization required by the purpose of the study (Halvorsen 2012).

Predicted relative FoP curves for spatial prediction models as well as ecological response 
models for the nine example species do, in most cases, resemble the observed FoP curves closely. 
For the species with the most distinctly unimodal observed FoP curves, the MaxEnt models 
predict unimodal responses and effectively remove small irregularities in the responses. For 
the many species with complex and ecologically unrealistic observed FoP, curves, most clearly 
seen when using the BTG data, predicted relative FoP curves obtained by MaxEnt reflect these 
patterns. This demonstrates that MaxEnt has the flexibility with respect to the fitted functional 
relationship required of a good SDM method and explains why MaxEnt often performs best or 
among the best in comparative tests of SDM methods (e.g., Elith et al. 2006, Mateo et al. 2010, 
Elith et al. 2011). Furthermore, this shows that data quality is likely to have stronger impact on 
the quality of SDMs than choice of modelling method.  

The number of derived variables in the spatial prediction models is significantly higher 
than in the ecological response models while the AUC values show no significant difference 
(Appendix 1–4). Complex models often result when inclusion of many variables of the threshold 
and hinge types is opened for (Phillips & Dudík 2008, Elith et al. 2011), as is the case with the 
default spatial prediction models. The spatial prediction model exemplifies complex models for 
G. alexis for uninformed background data. In this model, the oceanicity-continentality variable 
was represented by nine derived variables, whereas in the corresponding ecological response 
model this variable was represented by only one variable of the deviation type. Nevertheless, 
the tAUC values (calculated from the data used to train the model) and the predicted relative 
FoP curves for the two models are very similar (Fig. 61). This shows that simple models with 
few parameters (derived variables) can be as good as (and sometimes even better than) more 
complex models in representing general features of species responses to gradients. Our results 
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thus concur with previous advice against building overly complex spatial prediction models, 
which may fail to assist understanding of the focal species’ relationship to the environment (An-
derson & Gonzalez 2011, Halvorsen 2013, Syfert et al. 2013). Worked examples in this study do, 
however, also include examples of ecological response models that are too simplistic: in models 
for P. apollo and D. hyalipennis, one of the bioclimatic variables was not at all represented by 
derived variables. The irregular, unimodal shape of the observed FoP curve of the latter clearly 
indicates that the omitted bioclimatic gradient is of importance for predicting the distribution 
of the species. In other cases, exemplified by predicted relative FoP curves obtained from BTG 
data for P. apollo and R. mordax derived variables of the hinge and threshold types give rise to 
predicted relative FoP curves with long, linear segments along the oceanicity-continentality 
gradient. These patterns deviate strongly both from the observed and the theoretical FoP curves 
and demonstrate that these types of derived variables may, and most likely often do, give rise to 
predicted relative FoP curves with shapes that are ecologically unrealistic. These types of derived 
variables may therefore be inappropriate for ecological response models, except when responses 
are truncated, as found in all the nine species with respect to the temperature gradient. 

CONCLUSIONS

By applying the suggested bias frameworks on data for nine insect species, we demonstrate that 
comparison between observed and theoretical FoP curves is a promising tool for detecting and 
categorizing sampling bias in presence-only data. We show that presence-only data can give 
rise to observed FoP curves that can deviate strongly from the expected smooth, unimodal or 
truncated unimodal theoretical FoP curves. Furthermore, we show that these deviations can 
be confidently interpreted, in most cases, as indications of sampling bias of different types. 
Strong signs of stochastic variation have been demonstrated for restrictedly distributed spe-
cies, and large discrepancies between observed and theoretical FoP curves revealed for some 
of the more widespread species, indicates under- and over-sampling of different portions of 
influential gradients. We show cases in which the deviation from expected curve shapes remain 
ambiguous because several mechanisms may explain the observed patterns.  However, we also 
show cases in which the smooth and unimodal observed FoP curves indicate a lack of sampling 
bias in the data. Furthermore, we show that use of background target group (BTG) data offers 
no general solution to problems related to sampling bias. We therefore advise against uncritical 
use of this broadly accepted approach to deal with potential bias in the data and recommend 
that inspection of observed FoP curves for the focal species, calculated with different kinds of 
background data, are used to inform the choice of background data for SDM. Our results highlight 
the importance of disentangling shortcomings of the data from shortcomings of the modelling 
method, and demonstrate that comparison between observed and predicted relative FoP curves 
is a potentially important tool in making this distinction. Our study clearly demonstrates that 
bias in data is more important for the quality of the distribution model than the modelling 
method as such, supporting similar views axpressed by Lobo (2008). This is important, given 
the strong focus on choice of method for SDM in recent literature (Elith et al. 2006, Mateo et 
al. 2010, Fitzpatrick et al. 2013). However, our examples also show the importance of choosing 
a level of model complexity that is appropriate for the modelling purpose. Spatial prediction 
models, typically including a significantly higher number of derived variables than ecological 
response models, do not necessarily perform significantly better than simpler ecological re-
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sponse models, even in terms of training AUC. This suggests that simpler models are generally 
preferable to more complex models, even when models are evaluated by predictive performance 
in the geographical space.
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Appendix 1. Derived variables and their coefficients in the nine ERM models fitted with unin-
formed background. Types of derived variables: Dev = deviation, Hrk = reverse hinge, Hfk = 
forward hinge, Thk = threshold. Threshold variables are supplied with information about the 
knot, i.e. the position of the breaking-point along the explanatory variable. Hinge variables are 
also supplied with information about the knot, i.e., the point along the explanatory variable 
where values change from 0 to nonzero. This information is given as quantile class (1 to 20). 

Species	 AUC	 Environmental variable	 Derived variable	 Coefficient

Dioctria hyalipennis	 0.944	 Oceanicity–continentality	 Dev1	 –3.872
			   HRk14	 1.061
		  Temperature	 Dev08	 8.312
Eristalis intricaria	 0.872	 Oceanicity–continentality	 HRk08	 –0.017
			   HRk13	 0.327
			   HRk18	 –2.029
		  Temperature	 Dev14	 3.440
			   ZSk	 3.490
Glaucopsyche alexis	 0.963	 Oceanicity–continentality	 Dev2	 –5.905
		  Temperature	 HFk18	 –15.019
Rhagonycha limbata	 0.717	 Oceanicity–continentality	 HRk09	 –0.076
			   HRk18	 –2.777
		  Temperature	 Dev16	 2.915
			   HFk11	 –3.656
Meligethes aeneus	 0.936	 Oceanicity–continentality	 Dev1	 –3.865
		  Temperature	 Dev07	 8.171
Parnassius apollo	 0.853	 Oceanicity–continentality	 Dev2	 –4.102
			   HRk09	 1.364
		  Temperature	 Dev10	 2.614
			   HRk18	 0.794
Pieris napi	 0.803	 Oceanicity–continentality	 Dev1	 –1.364
			   Dev13	 1.874
		  Temperature	 Dev08	 4.585
Rhagium mordax	 0.849	 Oceanicity–continentality	 Dev3	 –4.127
			   HRk14	 0.232
		  Temperature	 Dev05	 6.234
Volucella bombylans	 0.890	 Oceanicity–continentality	 Dev05	 –0.612
			   HRk14	 –0.510
		  Temperature	 Dev07	 3.041
			   Dev12	 3.028
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Appendix 2. Derived variables and their coefficients in the nine ERM models fitted with target 
background. Types of derived variables: Dev = deviation, Hrk = reverse hinge, Hfk = forward 
hinge, Thk = threshold. Threshold variables are supplied with information about the knot, i.e. 
the position of the breaking point along the explanatory variable. Hinge variables are also sup-
plied with information about the knot, i.e., the point along the explanatory variable where values 
change from 0 to nonzero. This information is given as quantile class (1 to 20). 

Species	 AUC	 Environmental variable	 Derived variable	 Coefficient

Dioctria hyalipennis	 0.588	 Temperature	 Thk10	 4.047
	 		  Thk18	 0.473
Eristalis intricaria	 0.651	 Oceanicity–continentality	 HRk14	 1.741
	 	 Temperature	 HFk18	 0.893
Glaucopsyche alexis	 0.825	 Oceanicity–continentality	 Dev2	 –4.080
	 		  Thk14	 0.758
	 	 Temperature	 HRk18	 –10.780
	 		  ZSk	 –2.643
Rhagonycha limbata	 0.658	 Oceanicity–continentality	 Thk08	 –1.000
	 	 Temperature	 Thk14	 –0.550
Meligethes aeneus	 0.614	 Temperature	 Linear	 2.090
	 		  Thk09	 3.421
Parnassius apollo	 0.572	 Oceanicity–continentality	 Thk10	 0.709
Pieris napi	 0.570	 Oceanicity–continentality	 HRk14	 0.724
	 	 Temperature	 HFk16	 0.583
Rhagium mordax	 0.588	 Oceanicity–continentality	 Thk10	 –0.563
	 	 Temperature	 Thk10	 –0.586
Volucella bombylans	 0.718	 Oceanicity–continentality	 HRk13	 1.566
			   Thk10	 –1.090
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Appendix 3. Derived variables and their coefficients in the nine SPM models fitted with unin-
formed background. Types of derived variables: Dev = deviation, Hrk = reverse hinge, Hfk = 
forward hinge, Thk = threshold. Threshold variables are supplied with information about the 
knot, i.e. the position of the breaking point along the explanatory variable. Hinge variables are 
also supplied with information about the knot, i.e., the point along the explanatory variable 
where values change from 0 to nonzero. The oceanicity–continentality gradient spans the in-
terval from –0.00493 to 0.00438 and the temperature gradient spans the interval from –0.0056 
to 0.00477.

Species	 AUC	 Environmental variable	 Derived variable	 Coefficient

Dioctria hyalipennis	 0.957	 Oceanicity–continentality	 Quadratic	 –2.360
			   Thk –0.00116	 0.012
			   Thk –0.00106	 0.199
			   Thk –0.00042	 0.063
			   Thk 0.00221	 0.367
			   Thk 0.00250	 1.448
			   HRk –0.00020	 –2.635
			   Thk 0.00047	 –0.175
			   Thk 0.00085	 –0.116
			   Thk 0.00053	 –0.007
		  Temperature	 Linear	 8.793
			   Quadratic	 1.143
			   Thk 0.00093	 1.854
			   Thk 0.00363	 0.036
			   Thk 0.00366	 0.367
			   HFk 0.00308	 0.082
			   Thk 0.00435	 –0.434
			   Thk 0.00115	 –0.519
			   HFk 0.00420	 –0.099
			   HFk 0.00343	 0.085
			   Thk 0.00210	 –0.121
			   Thk 0.00164	 –0.049
			   HFk 0.00341	 0.078
			   HFk 0.00335	 0.048
		  Interaction	 Interaction	 3.235
Eristalis intricaria	 0.883	 Oceanicity–continentality	 Linear	 2.976
			   Quadratic	 –0.034
			   Thk –0.00005	 0.153
			   Thk –0.00008	 0.212
			   Thk –0.00296	 –0.483
			   Thk 0.00237	 0.306
			   Hfk 0.00296	 –2.779
			   Thk –0.00020 	 0.059
			   Thk –0.00040	 0.006
			   Thk 0.00039	 –0.205
			   Thk  0.00070	 –0.023
			   Thk 0.00095	 –0.016
			   Thk 0.00073	 –0.001



SOMMERFELTIA 38 (2018)  Støa & al.: Sampling bias in presence-only data 48

Appendix 3 (Continued).

Species	 AUC	 Environmental variable	 Derived variable	 Coefficient

		  Temperature	 Linear	 1.403
			   Quadratic	 4.546
			   Thk –0.00053	 0.454
			   HRk –0.00019	 –4.436
			   Thk 0.00433	 –0.357
			   HRk –0.00017	 –1.145
			   Hfk 0.00463	 0.032
		  Interaction	 Interaction	 –2.113
Glaucopsyche alexis	 0.97	 Oceanicity–continentality	 Linear	 0.807
			   Quadratic	 –6.245
			   Thk –0.00110	 0.579
			   Thk –0.00076	 0.094
			   Thk –0.00039	 0.168
			   Thk –0.00029	 0.253
			   Thk 0.00064	 0.032
			   Thk 0.00029	 –0.163
			   Thk 0.00007	 –0.057
		  Temperature	 Linear	 16.089
			   HFk 0.00386	 –0.025
			   HFk 0.00385	 –1.719
			   Hfk 0.00375	 –0.315
		  Interaction	 Interaction	 4.652
Rhagonycha limbata	 0.76	 Oceanicity–continentality	 Linear	 2.593
			   Quadratic	 1.407
			   Thk 0.00282	 –0.709
			   HFk 0.00282	 –3.326
			   Thk –0.00110	 –0.199
			   Thk –0.00371	 0.046
			   HRk –0.00372	 –0.374
			   HRk –0.00337	 –0.146
			   HRk –0.00370	 –0.305
			   Hfk 0.00280	 –0.233
		  Temperature	 Quadratic	 2.087
			   Thk 0.00331	 0.200
			   Thk –0.00178	 0.973
			   Hfk 0.00301	 0.149
			   Hfk 0.00302	 0.084
			   Thk 0.00049	 –0.141
			   HRk –0.0035	 –2.099
			   Hfk 0.00302	 0.092
			   HFk 0.00304	 0.077
			   Hfk 0.00305	 0.282
			   Hfk 0.003056	 0.080
			   HRk –0.0026	 –0.735
			   Hfk 0.00306	 0.061
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Appendix 3 (Continued).

Species	 AUC	 Environmental variable	 Derived variable	 Coefficient

			   HRk –0.00025	 –0.242
			   HRk –0.00004	 –1.246
		  Interaction	 Interaction	 –1.522
Meligethes aeneus	 0.95	 Oceanicity–continentality	 Linear	 8.035
			   Quadratic	 –1.497
			   HFk 0.00081	 –0.594
			   HFk 0.00080	 –0.258
		  Temperature	 Linear	 12.490
			   Hfk 0.00323	 0.212
			   Hfk 0.00443	 1.229
			   Hfk 0.00329	 0.218
			   Hfk 0.00331	 0.094
Parnassius apollo	 0.879	 Oceanicity–continentality	 Quadratic	 –6.093
			   Thk –0.00085	 0.448
			   Thk 0.00116	 –0.091
			   Thk –0.00023	 0.228
			   Thk 0.00050	 –0.181
			   Thk –0.00020	 0.282
			   Thk 0.00035	 –0.192
			   Thk  0.00241	 0.697
			   Thk 0.00216	 0.339
			   HRk –0.00015	 –0.296
			   HRk –0.00014	 –0.733
			   HRk –0.00010	 –1.382
			   HRk –0.00009	 –0.397
			   Thk 0.00041	 –0.003
		  Temperature	 Linear	 1.693
			   Quadratic	 1.033
			   Thk 0.00077	 0.512
			   Thk0.00005	 0.668
			   Hfk 0.00347	 0.015
			   Hfk 0.00323	 0.450
			   Hfk 0.00322	 0.426
			   Hfk 0.00322	 0.733
			   Hfk 0.00432	 –0.350
			   Thk 0.00194	 –0.256
Pieris napi	 0.813	 Oceanicity–continentality	 Linear	 1.416
			   Thk–0.00095	 0.312
			   Thk –0.00034	 0.186
			   Thk 0.00305	 –1.163
			   Thk 0.00049	 0.081
			   Thk 0.00232	 0.204
			   Thk –0.00302	 –0.243
			   Thk –0.00182	 0.053
			   HRk –0.00395	 –0.221
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Appendix 3 (Continued).

Species	 AUC	 Environmental variable	 Derived variable	 Coefficient

			   Hfk 0.00305	 –0.642
			   Thk 0.00270	 –0.069
			   Hfk 0.00304	 –0.197
			   Hfk 0.00293	 –0.086
		  Temperature	 Linear	 3.538
			   Quadratic	 1.823
			   Thk 0.00313	 0.173
			   Thk –0.00113	 0.503
			   Thk –0.00241	 0.071
			   Hfk 0.00307	 0.028
			   Thk 0.00437	 –0.405
			   HRk 0.00031	 –0.949
			   Thk 0.00331	 0.020
			   Hfk 0.00302	 0.010
		  Interaction	 Interaction	 –0.921
Rhagium mordax	 0.87	 Oceanicity–continentality	 Linear	 2.212
			   Quadratic	 –3.676
			   Thk 0.00225	 0.866
			   Thk 0.00121	 0.186
			   Thk 0.00189	 0.338
			   Hfk 0.00162	 0.600
			   Hfk 0.00162	 0.681
			   Hfk 0.00160	 0.310
		  Temperature	 Linear	 5.630
			   Quadratic	 1.337
			   Thk –0.00055	 0.495
			   Thk –0.00110	 1.372
			   Hfk 0.00422	 –3.472
			   Thk 0.00031	 –0.159
		  Interaction	 Interaction	 –2.203
Volucella bombylans	 0.904	 Oceanicity–continentality	 Linear	 3.741
			   Quadratic	 1.686
			   Thk 0.00127	 –1.382
			   Thk 0.00066	 0.093
			   Thk –0.00393	 0.109
		  Temperature	 Linear	 7.185
			   Quadratic	 1.349
			   Thk –0.00046	 0.587
			   Thk 0.00419	 0.012
			   Thk 0.00443	 –0.330
			   Linear	 –0.141
			   Thk 0.00127	 –0.026
			   Hfk 0.00378	 0.031
		  Interaction	 Interaction	 –2.688



SOMMERFELTIA 38 (2018)  Støa & al.: Sampling bias in presence-only data 51

Appendix 4. Derived variables and their coefficients in the nine SPM models fitted with target 
background. Types of derived variables: Dev = deviation, Hrk = reverse hinge, Hfk = forward 
hinge, Thk = threshold. Threshold variables are supplied with information about the knot, 
i.e. the position of the breaking point along the explanatory variable. Hinge variables are also 
supplied with information about the knot, i.e., the point along the explanatory variable where 
values change from 0 to nonzero. The oceanicity–continentality gradient spans the interval 
from –0.00493 to 0.00438 and the temperature gradient spans the interval from –0.0056 to 
0.00477.

Species	 AUC	 Environmental variable	 Derived variable	 Coefficient

Dioctria hyalipennis	 0.648	 Oceanicity–continentality	 Linear	 –0.569
	 		  Thk 0.00086	 –0.203
	 		  Thk 0.00054	 –0.097
	 	 Temperature	 Quadratic	 0.401
	 		  Thk 0.00090	 1.137
	 		  Hfk 0.00353	 0.414
	 		  Hfk 0.00440	 0.200
	 		  Hfk 0.00353	 0.157
	 		  Thk 0.00218	 –0.182
	 		  Hfk 0.00341	 0.102
	 		  Thk 0.00147	 –0.048
	 		  Thk 0.00132	 –0.031
	 	 Interaction	 Interaction	 1.650
Eristalis intricaria	 0.674	 Oceanicity–continentality	 Quadratic	 0.315
	 		  Thk –0.00073	 –0.161
	 		  Thk –0.00153	 –0.065
	 		  Thk 0.00039	 –0.195
	 		  Thk 0.00236	 0.229
	 		  Thk 0.00048	 –0.064
	 	 Temperature	 Thk 0.00411	 0.154
	 		  Hfk 0.00369	 0.276
	 		  Hfk 0.00464	 –11.424
	 		  Hfk 0.00430	 0.330
	 	 Interaction	 Interaction	 –1.160
Glaucopsyche alexis	 0.835	 Oceanicity–continentality	 Quadratic	 –3.161
	 		  Thk –0.00110	 0.076
	 	 Temperature	 Linear	 7.459
	 		  Thk 0.00167	 0.198
	 		  Thk 0.00399	 –0.015
	 		  Hfk 0.00374	 –0.665
	 		  Hfk 0.00372	 –1.030
	 	 Interaction	 Interaction	 4.162
Rhagonycha limbata	 0.678	 Oceanicity–continentality	 Linear	 –0.861
	 		  Quadratic	 0.240
	 		  Thk –0.00101	 –0.024
	 		  Hfk 0.00280	 –0.444
	 	 Temperature	 Linear	 –2.231
	 		  Hfk 0.00400	 0.215
	 		  Hfk 0.00399	 0.307
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Appendix 4 (Continued).

Species	 AUC	 Environmental variable	 Derived variable	 Coefficient

	 		  HRk –0.00128	 –1.966
	 		  HRk –0.00152	 –0.327
	 		  Hfk 0.00307	 0.064
	 		  HRk –0.00074	 –0.027
	 	 Interaction	 Interaction	 –1.783
Meligethes aeneus	 0.668	 Oceanicity–continentality	 Linear	 2.504
	 		  Quadratic	 0.165
	 		  HRk –0.00227	 1.816
	 	 Temperature	 Linear	 2.716
	 		  Hfk 0.00407	 0.218
	 		  HRk 0.00184	 –0.909
	 		  Hfk 0.00406	 0.681
	 		  Hfk 0.00442	 0.855
Parnassius apollo	 0.637	 Oceanicity–continentality	 Linear	 1.468
	 		  Quadratic	 –0.774
	 		  Thk –0.00023	 0.031
	 		  HRk –0.00009	 –0.093
	 		  HRk –0.00007	 –0.594
	 		  HRk –0.00054	 –0.172
	 		  HRk –0.00004	 –0.232
	 		  Hfk 0.00247	 0.282
	 	 Temperature	 Linear	 –0.681
	 		  Quadratic	 –0.130
	 		  Hfk 0.00419	 0.464
	 		  Hfk 0.00431	 0.115
	 	 Interaction	 Interaction	 –1.842
Pieris napi	 0.576	 Oceanicity–continentality	 Thk –0.00162	 –0.114
	 		  Thk –0.00016	 –0.039
	 		  Thk –0.00244	 –0.032
	 		  HRk –0.00130	 0.297
	 	 Temperature	 Thk 0.00313	 0.205
	 		  Hfk 0.00452	 0.250
	 		  Hfk 0.00452	 –5.877
Rhagium mordax	 0.61	 Oceanicity–continentality	 Linear	 –0.119
	 		  Quadratic	 –0.402
	 		  Thk –0.00226	 0.500
	 	 Temperature	 Linear	 –0.651
	 		  Thk 0.00031	 –0.060
	 		  Thk 0.00358	 –0.071
	 		  Thk –0.00110	 0.415
	 		  HRk –0.00109	 –0.732
	 		  Thk 0.00012	 –0.001
	 		  Hfk 0.00422	 –0.037
	 	 Interaction	 Interaction	 –1.979
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Appendix 4 (Continued).

Species	 AUC	 Environmental variable	 Derived variable	 Coefficient

Volucella bombylans	 0.768	 Oceanicity–continentality	 Quadratic	 0.373
			   Thk –0.00073	 –0.435
			   Thk 0.00127p	 –0.979
			   Hfk 0.00274	 0.312
			   Hfk 0.00265	 1.168
			   HRk–0.00383	 –0.226
			   Thk 0.00067	 0.086
		  Temperature	 Quadratic	 –0.306
			   Hfk 0.00401	 0.526
			   Hfk 0.00445	 –0.233
			   HRk 0.00086	 –0.481
			   Thk 0.000834	 0.044
			   Hfk 0.00406	 0.008
		  Interaction	 Interaction	 –2.847


