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A privacy-preserving framework for outsourcing
location-based services to the cloud
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Abstract—Thanks to the popularity of mobile devices numerous location-based services (LBS) have emerged. While several
privacy-preserving solutions for LBS have been proposed, most of these solutions do not consider the fact that LBS are typically
cloud-based nowadays. Outsourcing data and computation to the cloud raises a number of significant challenges related to data
confidentiality, user identity and query privacy, fine-grained access control, and query expressiveness. In this work, we propose a
privacy-preserving framework for outsourcing LBS to the cloud. The framework supports multi-location queries with fine-grained
access control, and search by location attributes, while providing semantic security. In particular, the framework implements a new
model that allows the user to govern the trade-off between precision and privacy on a dynamic per-query basis. We also provide a
security analysis to show that the proposed scheme preserves privacy in the presence of different threats. We also show the viability of
our proposed solution and scalability with the number of locations through an experimental evaluation, using a real-life OpenStreetMap
dataset.

Index Terms—database outsourcing, privacy-preserving, efficiency, multi-location, Bloom filter, LBS.
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1 INTRODUCTION

THE ubiquity of mobile devices has brought the popular-
ity of location based services (LBSs). LBSs are used in

a broad variety of applications areas: location-based search
such as Foursquare, social networks with location sharing
in Google Latitude or Facebook, location-aware gaming and
entertaining systems, e.g. BotFighters [1] and Ingress [2], or
global navigation systems, such as GPS.

In order to mitigate the cost of scaling LBS deployment
and data storage, location-based service providers (LBSPs)
turn to cloud service providers (CSPs) for help. As a promi-
nent example, Foursquare and Yelp use the cloud services of
Amazon.com. However, outsourcing query processing and
data to the cloud raises additional privacy and confidential-
ity concerns because query content and user’s location need
to be protected from both the LBSP and CSP, in addition to
protecting LBS data from the CSP. Since the CSP can observe
the search process, it may launch a variety of attacks on
input patterns and distribution of values in the query. By
doing so, the CSP may threaten the location privacy of the
users. Unfortunately, most proposed solutions for privacy-
preserving LBSs do not consider outsourcing data to CSP in
a privacy-preserving way (see Table 1).

Non-disclosure of user identity and distribution of roles
between the CSP and the LBSP also raise a challenge of
query expressiveness (e.g., the ability to search by attributes
other than location) because the LBSP cannot easily disclose
its search index to the CSP. They additionally complicate
mechanisms for fine-grained access control (see Table 1). For
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instance, the CSP can only return a record in response to a
client query if the client is granted access to that record. The
authorization process should not allow the CSP to establish
client’s identity, nor should it allow the LBSP or CSP to find
a link between the query, identity, and location. Integration
of additional mechanisms for fine-grained access control
and for privacy-preserving attribute-based search into the
existing solutions requires complex encryption methods,
which leads to longer query processing times.

In many cases, an LBS client is a company or an organi-
zation that is interested in dozens of locations at the same
time. For example, Uber handles multiple taxi scheduling
requests in the same geographic area in parallel. To this
end, Uber queries LBS data from Foursquare, which are
outsourced to Amazon.com [12]. In such a scenario, it is
advantageous if the system supports multi-location-queries
because (a) it is more efficient to scan a search index once
for multiple locations than to scan it multiple times for a
single location, and (b) it makes it more difficult for the CSP
to link returned query results to a location in the query. In
particular, it is even possible to hide the number of locations
in a query from the CSP.

There is a well-known inherent tradeoff between privacy
and relevance/precision of query results. In most solutions,
it is possible to control this tradeoff by explicitly setting
a limit on the maximum privacy exposure or on another
related system parameter. Ideally, it is desirable to let the
user control the privacy limit dynamically on a per-query
basis (or even on a per-location basis in case of a multi-
location query) because various locations may have a differ-
ent degree of sensitivity for the same user.

In this work, to the best of our knowledge, we pro-
pose the first privacy-preserving outsourced LBS system
with multi-location queries and per-query privacy limit. We
propose a novel query scheme in which the user specifies
locations of interest along with a minimum privacy degree
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TABLE 1: Comparing privacy-preserving location based service works

Approach query DB search fine-grained per-query multi-loc
encryption outsourcing efficiency access control privacy query

Spatio-temporal cloaking [3] No No ? No No No
Casper [4] No No ? No No No

Personalized k-anonymity [5] No No ? No Yes No
Mix zone [6] No No ? No Yes No

User-centric LPPM [7] No No ? No Yes No
Geo-indistinguishability [8] No No ? No Yes No

Private query [9] Yes No O(N) No No No
Fine [10] Yes Yes O(N) Yes No No

EPLQ [11] Yes Yes O(logN) No No No
Proposed solution Yes Yes O(logN) Yes Yes Yes

“No” means not considered
? means not described but can be implemented in O(logN)

N denotes the number of locations in the dataset

(expressed as an entropy value), and for each location A,
the CSP returns an area B containing A that is sufficiently
large to satisfy the constraint on the minimum entropy. Im-
portantly, the CSP cannot infer information about A beyond
the fact that it is contained in B. The proposed framework
supports search by location attributes in addition to loca-
tions themselves. In order to enable efficient search over
the encrypted data, the LBSP prepares an auxiliary index
structure and transfers it to the CSP, which utilizes it during
the search. To construct it, the LBSP builds a hierarchical
index, which closely mimics the geographic hierarchy of
the locations. Then, each node in the index is replaced
by a Bloom filter representing both the location and its
attributes. The reason for using a Bloom filter is threefold:
(i) a cryptographic hash function makes it hard to recover
the data content from the hash result, (ii) a Bloom filter is
space efficient which is important when dealing with many
locations, and (iii) the size of a Bloom filter is independent of
the number of locations in a multi-location query, which in
combination with subsequent encryption, makes it difficult
for the CSP to establish the number of locations in a query.

In order to hide the searched data and the pattern of the
Bloom filter from the CSP, we encrypt the Bloom filter using
function-hiding inner product encryption (FHIPE) [13]. The
challenge, however, is to allow the CSP to search by the
location or location attributes over the encrypted Bloom
filter representing both. To this end, we utilize the ability of
FHIPE to calculate the number of matching bits. This way,
the CSP determines whether a query vector matches an in-
dex vector by separately comparing the number of matching
bits for the location and for the attributes. Thanks to this
design, the CSP can realize the search without learning the
distribution of elements in the Bloom filter. The novel real-
ization of searchable privacy-preserving hierarchical index
for LBS data is a significant technical contribution of this
work.

We analyze location privacy provided by the proposed
technique in Section 6. Our analysis shows that the proposed
scheme keeps location private from the LBSP under the
semi-honest threat model. Furthermore, our solution allows
verification of user subscription (i.e., access control) without
violating his privacy. For this, we utilize blind signatures
to allow the LBSP to sign the query without learning any
information about it. We also employ key policy attribute-
based encryption (KPABE) to realize fine-grained access

control.
We conduct an experimental evaluation using the Open-

StreetMap dataset [14] to evaluate the time cost of query
signature and generation, as well as the search process.

2 RELATED WORK

Table 1 gives a fine-grained comparison between the pro-
posed scheme and prior LBS-related solutions. In this sec-
tion, we present a taxonomy of the state-of-the-art. LBS
privacy protection problem has been studied for many
years [15], [16]. However, the existing techniques have been
designed for single-location queries, they do not consider
location attributes, and outsourcing the LBS to a cloud envi-
ronment has only been partially addressed. In the following,
we briefly discuss the existing work in this domain.
Spatial cloaking: [3] proposes spatial cloaking, in which
the exact location is replaced by a cloaking region that
also contains the original location. In addition, the cloaking
region should include at least k users in order to satisfy
the privacy requirement. In [17], [18], [19] a cloaking region
is created that includes at least k points sharing the same
properties. [3], [4], [5], [20], [21] aim at hiding a user’s
identity by executing queries with k�1 other users. [22], [23]
propose using dummy locations to achieve k anonymity.
[24] proposes a technique that initially sends a fake location
to the server and then incrementally searches the k nearest
neighbours of this fake location. In [25] location privacy is
quantified over a location obfuscation mechanism while in
[7] an optimal location privacy preserving mechanism is
proposed based on the former analysis result, considering
privacy requirement for users, the adversary’s background
knowledge, and maximum tolerable service loss. The au-
thors of [26] apply a Bayesian network to evaluate location
privacy while considering both geographical and semantical
dimensions of privacy. Our approach only focuses on the
geographical dimension.
Differential privacy: Differential privacy [27] is a privacy
concept mainly used to provide privacy guarantees against
inference attacks from statistical databases. It is used in
[28] to analyze the synthetic data generation in commute
scenario. [29] proposes a differentially private location pat-
tern mining algorithm. Both [8] and [30] are based on an
approach of geo-indistinguishability. [8] aims at protecting
a user’s exact location and uses controlled random noise to
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achieve location obfuscation while [30] additionally consid-
ers the balance of the utility and privacy. [31] incorporates
temporal correlations in location data based on differential
privacy. [32] recommends locations for a user based on
the query history while employing probabilistic differential
privacy to obfuscate the data. [33] detects social relations
by evaluating the correlation of movement trajectories. It
achieves ✏-differential privacy of released trajectories by
adding noise following the Laplace distribution.

It may be possible to extend these aforementioned ap-
proaches to handle multi-location queries, however this
will significantly increase the cost. For instance, assume a
scenario in which a user is interested in two locations. If
a traditional k-anonymity based technique is used, then
2k queries will be sent to the server and 2k data items
will be retrieved. In the case of differential privacy-based
approaches, taking [8] as an example, two queries are nec-
essary and for each query, the retrieved area can be 10 times
larger than the area of interest. Other differential privacy-
based techniques also have similar overheads.
Searchable encryption: Searchable encryption was intro-
duced in [34]. Its idea is to encrypt the content in such
a way that the encrypted content is searchable. Since the
first introduction, significant body of research, e.g., [35],
[36], [37], [38], has been published. In [35] the authors
propose a semantic security framework with the purpose of
protecting against adaptive chosen keyword attack. In [38],
a highly scalable symmetric encryption method is proposed.
[39] aims at realizing similarity search over encrypted data
while [40] considers similarity search in combination with
outsourcing to the cloud. Although both schemes provide
similarity search, they do not support per-query privacy
setting. Apart from searchable encryption, the private in-
formation retrieval (PIR) technology is utilized to retrieve
location indices from a cloud service provider. [41] pro-
poses a retrieving mechanism based on Ring-Leaning with
error (Ring-LWE) while [9] proposes private query based
on quadratic residuosity assumption (QRA). Since the client
needs to have knowledge about the plaintext index structure
before launching a query in PIR, we cannot use PIR in
our proposed scheme where only the LBSP has knowledge
about the index structure.
Beyond state-of-the-art: Existing body of work does not
consider the privacy of location attributes used in a query,
which can also reveal sensitive information. For example,
if a user of the popular Pokemon Go app reveals location
attributes (e.g., PokeStop or Gym), the adversary may infer
the user location. Similarly, Ingress also reveals users’ loca-
tion as the task is set by the app based on a real location.
[10] proposes an access control mechanism for outsourcing
LBS data. However, it does not allow users to customize the
privacy-sensitivity of the locations. Moreover, efficiency is
an issue as all the records have to be sequentially scanned to
search for a single location. In a recent work [11], the authors
propose a range query mechanism. For improving search
efficiency, ss tree is built by recursively clustering points into
bigger clusters. The time complexity of the search process
is improved from N to logN . However, the scheme in [11]
does not achieve per-query privacy limit, nor does it support
access control or location attributes.

In our proposed system, we address all these weaknesses

of existing work and propose a privacy-preserving cloud-
based LBS that supports fine-grained access control, multi-
location queries, and also allows the users to set a different
minimum privacy degree for different locations on a per-
query basis.

3 PRELIMINARIES

In this section, we briefly present the cryptographic tech-
niques that we utilize in our solution.
Asymmetric bilinear groups: Let G1 and G2 be two distinct
groups of prime order p and g1 2 G1 and g2 2 G2 be the
generators of G1 and G2, respectively. Let e : G1⇥G2 ! G

T

be a function which maps two elements from G1 and
G2 to a target group G

T

of prime order p. The tuple
(G1, G2, GT

, p, e) is an asymmetric bilinear group if follow-
ing properties hold:
(a) the group operations in G1, G2, G

T

are efficiently com-
putable.
(b) the mapping e from G1, G2 to G

T

is efficiently com-
putable.
(c) the mapping e is non-degenerate: e(g1, g2) 6= 1.
(d) the mapping e is bilinear: for all a, b 2 Z

p

, e(ga1 , gb2) =

e(g1, g2)
ab.

In our work, vectors of group elements are often used.
Let g

v represent {gv1 , · · · , gvn} where {v1, · · · , vn} 2 Zn

p

.
The mapping of two vectors of group elements is written
as: e(gu, gv) = e(g, g)

uv

= ⇧

n

i=1e(g, g)
uivi .

Function-hiding inner product encryption (FHIPE): The
concept of FHIPE [13] is based on the correctness of the fol-
lowing: iv·qv = iv·M ·M�1

qv and iv·qv = ↵·iv·qv·�/(↵·�),
where ↵  Z⇤

p

and �  Z⇤
p

. M is an invertible matrix.
iv and qv are two n dimensional vectors, representing
the index and the query in our scheme, respectively. Both
the multiplication and division operations are computed in
Z
p

. The FHIPE is designed to securely calculate the inner
product between two vectors D1, D2 as follows:

f(D1, D2, S) =

(
z if 9 z 2 S, such that Dz

1 = D2,

fail otherwise.
(1)

where S is the set containing all possible inner product
results.
Key policy attribute-based encryption (KPABE): KPABE is
based on the concepts of user attributes and access policy.
AP denotes the access policy. It considers the attributes of
a user and determines whether the user should be granted
access to a data record. Technically, it is a secret sharing
structure and if the input can be used to reconstruct the
secret, then it is legitimate, otherwise the input is illegit-
imate. Details can be found in [42]. MK represents the
master key of attribute based encryption, which is applied
to generate decryption key k

c

for client c. The technique has
the following key steps [42]:
Setup: Given a security parameter that defines the key space,
output public parameters PK and a master key MK.
Encryption: Given a record m, set of user attributes AS, and
public parameters PK, output ciphertext C.
Key Generation: Given an access policy, master key, attributes
and public parameters, output a decryption key k

c

.
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Decryption: Given ciphertext C and decryption key k, output
plaintext m.

In our work, KPABE is utilized to encrypt each data
record in the database, which enables fine grain access
control over the database.
Blind signature: The concept of a blind signature is first
introduced in [43]. It is a form of digital signature in which
the content is blinded before it is signed. The resulting signa-
ture can be publicly verified against the original, unblinded
messages similarly to a regular signature. According to [44],
the following key steps are involved in realizing blind
signature:
KeyGen(1n) : Given a security parameter n, output a secret-
public key pair (sk, pk).
BSphase1 : Given a public key pk and a message m, output a
blinded message M and a random number r, which is used
as a parameter in the blinding procedure.
BSphase2 : Given M and a secret key sk, output an intermedi-
ate signature.
BSphase3 : Given an intermediate signature and r used in
BSphase1 , unblind the message and output the final signature.
BSverify: Given pk, m, and a signature, output 1 if the signa-
ture is valid, otherwise 0.

In our work, the client has to send a query to the LBSP
for authentication. To prevent the LBSP from learning the
query content during the authentication, blind signature is
utilized. Specifically, BSphase1 and BSphase3 are conducted in
the client, BSphase2 in the LBSP, and BSverify in the CSP.
Bloom filter: A Bloom filter is a bit array. At the beginning,
all the values are set to 0. There exists a family of k different
hash functions, each function mapping a data item to a
position inside the array. Consequently, each data item will
be represented by k non-zero bits inside the bit array. Even
if a data item has not been mapped to the bit array, there is
still a probability for the k corresponding bits to be non-
zero because of the other data items represented in the
array. Such a situation is called false positive. Let m be the
length of the bit array and n be the number of distinct data
items mapped to the array. The false positive probability is
expressed as (1� e

�(kn)
m

)

k, and it achieves minimum value
when k = ln 2

m

n

.

4 MODEL

In this section, we describe the system, query, and threat
models.

4.1 System model

As shown in Figure 1, the system consists of three entities:
client, LBSP, and CSP. Initially, the LBSP collects LBS data
and constructs an index. Then LBSP encrypts LBS data and
index by KPABE and FHIPE, respectively. After the encryp-
tion, both of them are outsourced to the CSP (step 1). The
client registers itself with the LBSP, negotiates the service,
and gets a certificate that it later uses to issue queries (steps
2 and 3). Every client’s query is first encrypted, blinded,
and sent to the LBSP for signature (steps 4 and 5). Then, the
CSP processes the query and returns the results to the client
(steps 6 and 7).

4.2 Access control
The access control scheme is based on the concept of user
attributes. In order to be granted a read access to a record in
the database, a user needs to possess a certain combination
of attributes, as expressed through an access policy. When
a user registers with the LBSP, the LBSP assigns the user a
subset taken from the universe of user attributes, e.g., based
on the paid subscription. We use KPABE (see Section 3) to
allow the LBSP to manage the access rights and encrypt data
records in order to protect the data from the CSP.

4.3 Query model
Our solution supports a query with three parameters: (i)
a list of locations of interest, (ii) a list of desired location
attributes, and (iii) a desired privacy degree, which governs
the tradeoff between precision, privacy, and performance.
Albeit we do not put an artificial cap, the number of loca-
tions in the list has a moderate impact on the performance,
which we analyze in Section 7.

Prior to deploying the service and outsourcing it to
the cloud, the LBSP constructs a hierarchical (tree-based)
schema of locations. An illustrated example of such a
schema is shown in Figure 2, where the Earth is parti-
tioned into countries, countries are partitioned into states
or regions, and states are further partitioned into cities (i.e.,
leaves of the schema). Each location in the schema is as-
signed a unique id string. In a query, only leaf locations are
allowed, though the privacy degree may result in each leaf
location being mapped to a non-leaf location, as explained
below.

The depth and granularity of the partitioning signif-
icantly affects the balance between performance, privacy,
and precision of query results. We explain how the LBSP
decides upon the depth and granularity in Section 5.1.

Similar to the locations, the LBSP also generates a
schema for location attributes. For example, the users might
be interested only in locations that have entertainment or
food amenities, or the ones that offer a discount entry on
a given day. As we illustrate in Figure 7 later, the attribute
schema is also hierarchical: e.g., entertainment may be di-
vided into theme parks and cinema. Note that we support
a query with a list of multiple desired attributes. Due to the
space limitations, we only show how to implement query
matching semantics based on a disjunction of attributes
in the list. Support for conjunctive and other semantics is
possible as well.

In the proposed solution, the user can control the bal-
ance between precision and privacy as follows. We assume

Fig. 1: System model for outsourced LBS.
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TABLE 2: System’s core APIs.

API Call Input Purpose of the Call Steps in Fig. 3 and Fig. 4

For the client
Registration attribute set for the client register the client 3.5
QueryGen location list, attributes list, privacy degree generate a query 4.1
TrapdoorGen query signature, encrypted query vector generate a trapdoor 4.2, 4.3, 4.6
Decrypt encrypted results, a set of decryption keys decrypt retrieved results 4.8

For the LBSP
Setup security parameter generate parameters 3.2
IndexGen database build index over the data 3.3
DBEnc database encrypt the data and index 3.4
Authorization registration request authorize a client and share private info 3.5, 3.7
Verify public key verify the legitimation 4.4
Sign query generate the signature 4.5

For the CSP
Verify trapdoor verify the trapdoor 4.7
Search trapdoor, index, encrypted data search over the index and retrieve data 4.7
Note: in the last column, x.y denotes step y in Fig. x.

Fig. 2: Example of a hierarchical schema of locations.

that prior to outsourcing the service to the CSP, the LBSP
collects information about the number F

i

of accesses for
each leaf node i in a schema of locations over a period of
time. Then, for each non-leaf node i with a set L

i

of leaf
nodes under i, the LBSP computes access probabilities as
follows: 8j 2 L

i

, P

i

(j) = F

j

/

P
jj2Li

F

jj

. Then, the LBSP
calculates the entropy of the access probability distribution
for the leaf set L

i

as S

i

= �
P

j2Li
P

i

(j) log2(Pi

(j)). The
entropy values for leaf nodes are zero. Thus, the entropy
values range from 0 to the entropy value for the root of the
schema of locations. The LBSP uses entropy values for non-
leaf nodes to construct the index structure, as explained in
Section 5.4.

As part of the query, the client specifies the desired mini-
mum privacy degree pd

j

, which is essentially, the minimum
entropy value. When performing the search for leaf location
j, the CSP will traverse the schema of locations from the
root to j and find the lowest node i in the traversal path
whose entropy is as least as big as pd

j

. Then, the CSP
will return either information about i or the entire leaf
set L

i

, depending on how the system is configured. The
sophistication of the traversal algorithm, however, is that
the CSP cannot continue the traversal from i to j even if it
wants to, and thus, cannot deduce additional information
about j beyond the fact that it is a leaf node under i.

This method of controlling the balance between precision
and privacy is superior to, e.g., traditional k-anonymity [3],
[4], [5] because the latter does not take access frequencies
into account. The recent work, e.g., [45], [46] consider access
frequency for selecting proper dummy locations to obfus-
cate the target location. In contrast, dummy locations are
not required in our solution and searching is conducted over
encrypted data without data confidentiality loss.

The value of the privacy degree also has a moderate
impact on the performance because it decreases the length
of the traversal path (e.g., rather than traversing all the way
to the leaves, the search ends at an intermediate node in the
hierarchical schema).

The user sets minimum privacy degree on a per-query
basis, which allows for greater configurability with respect
to the sensitivity of locations. Note that the client software
can apply machine learning algorithms to recommend a
value of the privacy degree to the user. This can be done
based on the historic data, e.g., about performance, preci-
sion, and user satisfaction by the privacy provided.

In summary, the response to a multi-location query
includes a matching record for each valid location in the
input location list. An input location is valid if the client
is granted access to it by the access policy. The matching
is subject to constraints on both location attributes and
minimum privacy degree. Specifically, a leaf location in the
input can be mapped to a non-leaf location in the output
by the mechanism of privacy degree matching, as described
above.

4.4 Threat model

Our threat model is mostly consistent with other works in
this area [38], [11]. The CSP and LBSP are assumed to
be honest-but-curious, that is they honestly follow the de-
signed protocol while trying to infer and analyze available
data. The LBSP may attempt to analyze the query generated
by the client to learn the query content. It may also try
to track client activities by correlating anonymized query
requests with the information supplied by the client during
service registration. The CSP may attempt to analyze not
only the submitted query, but also the encrypted data in its
storage which includes the index and encrypted database.
Note that while the schema of locations is publicly available,
the LBSP keeps the information (attribute values and other
descriptions) about each location hidden from the CSP.
Furthermore, the CSP and LBSP are assumed not to collude
in their attempt to gather information about the client. We
specifically consider the following threats in our system.
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Tracking threat: As the client may continuously send
location queries, the CSP is able to record queries. Based
on the analysis of recorded queries, it may attempt to infer
approximate locations if CSP is able to learn any significant
information from recorded queries.

Linkage threat: The index is encrypted before sent to
CSP for protecting query and data privacy, e.g., location,
location attributes and privacy degree inside the query. The
CSP stores the encrypted index and executes the search
operation. Based on these operations, the CSP may attempt
to link the query with the retrieved result. In addition, the
CSP may also try to infer the query based on the index.

5 PROPOSED SCHEME

The APIs of the client, CSP, and LBS are described in Table 2.
We illustrate our implementation of the initialization and
query processing in Figures 3 and 4, respectively.

As shown in Figures 3, initialization encompasses sys-
tem setup and client registration. Prior to deploying the
service, the LBSP runs the setup to initialize the system and
generates the index from the database by calling IndexGen.
The database is encrypted by calling the DBEnc function.
Then, the LBSP outsources the encrypted database to the
CSP along with the index and setup parameters (see Ta-
ble 3). The client needs to register with the LBSP in order
to be able to get a service from the CSP and send queries.
During the registration, the client negotiates client attributes
that affect access rights to groups of data records, e.g. all
records in New York, or all hotels in a given area. The
groups can be overlapping; we use the concept of attribute-
based access policy to determine whether the client has
permissions to access a record. After the registration, the
LBSP assigns a secret decryption key to client (based on the
client’s attributes) according to the access policy.

The flow of query processing is depicted in Figure 4.
During the query generation phase, the client first generates
a query and encrypts it by using FHIPE. Then the encrypted
query is blinded by using the blind signature scheme and
sent to the LBSP for signing, along with the user identity.
The LBSP runs Verify to establish the legitimacy of the
identity. If legitimate, the LBSP signs the blinded query
with its private key using the blind signature scheme (pre-
viously described in Section 3), otherwise an error message
is returned. Upon getting the signature from the LBSP, the
client unblinds the query and sends it with the signature to
the CSP. The CSP first verifies the legitimacy of the query.
If legitimate, the CSP searches the index and returns the
matching content. Otherwise, it returns an error message.
Upon receiving the retrieved records, the client decrypts
them using the decryption key and obtains the result.

5.1 Constructing a schema for locations
The LBSP needs to provide a schema for locations, which
represents a decomposition of the geographical space. In
many cases, the schema is induced by the actual geographi-
cal hierarchy: a region is partitioned into cities and villages,
which are partitioned into neighborhoods and streets, etc.
Alternatively, the LBSP can partition the location space in
a balanced way. To this end, there is a need to take into

index
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4

indexGen

database 
Enc
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access
keygen

negotiate 
attributes 

CSP

6

1

identity,  
decryption key, setup parameters 

    schema  
construction 

Fig. 3: Initialization

Fig. 4: Query processing

account the number of users, access frequency, and the
number of attributes for each location. We assume without
limiting the generality that the LBSP has an estimate about
the number of users and access frequency for each individ-
ual location, e.g., thanks to past profiling.

To assess the suitability of different spatial data struc-
tures as a basis for the partitioning solution, we consider
the analysis in [47]. According to the analysis, B-tree, R-tree,
and cell tree structures do not lend themselves to the task:
B-tree and R-tree do not result in a disjoint decomposition
of space while cell tree relies on a specific data distribution.
Since each of the three location characteristics (number of
users, access frequency, and number of location attributes)
can be considered as a separate spatial dimension, the point
region octree [48] is a suitable data structure in which each
node is represented as a point in a three-dimensional space
and which is suited for arbitrarily distributed data.

Note that the above problem of schema construction
needs to be solved only once in an offline fashion. If the
values of the parameters significantly change, it may require
repartitioning. However, such a need is not expected to arise
too often. This implies that the overhead of partitioning is
not as important compared, e.g., to the overhead of query
processing.
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5.2 Notation
Let G1 and G2 be two asymmetric bilinear group, G

T

be
the target group, e be the mapping operation from G1 and
G2 to G

T

, and p be a big prime as previously described in
Section 3. M is an invertible matrix of size n ⇥ n, which is
generated from a general linear group GL

n

(Z
p

). M⇤ is the
adjoint matrix, equal to det(M)(M

�1
)

T .
The parameters h1, h2, and h3 are three keyed-hash

function families with corresponding keys of k1, k2, and
k3. As explained in Section 5.4, our solution uses Bloom
filters. Each hash function within h1 maps one location to
a position inside a Bloom filter. Similarly, h2 and h3 are
respectively used to map attributes and privacy degree into
a Bloom filter. The input domain of all the hash functions is
a binary string of length �, where � is a security parameter,
and the output domain is an integer range from 1 to the size
of the corresponding Bloom filter.

Note, however, that entropy values are real numbers. In
order to transform an entropy value to a string, we first
apply a normalization and rounding function F

N

, that maps
real values to a sufficiently big integer range so that different
entropy values will likely be mapped to distinct integers.
Then, we represent each integer as a string.

As discussed in Section 3, AP denotes the access policy.
MK represents the master key of attribute based encryption
and k

c

is the decryption key generated from the master key.
The BS is the abbreviation of blind signature and the ith

phase of blind signature is denoted as BSphasei . sk
s

is the
private key of blind signature and the corresponding public
key is pk

s

.
A identity for client c is denoted by id

c

. id
c

is generated
by the LBSP. T = {tloc, tattr, tpd} is the set of thresholds
applied in query processing, detailed in Section 5.8.

5.3 Initialization
Given a database and a set T of thresholds, the LBSP does
the space partition (step one in Fig. 3). In the setup phase
(step two in Fig. 3), the LBSP first selects a big prime
p and constructs two distinct asymmetric bilinear group
G1 and G2 with prime order p. Then the LBSP generates
an invertible matrix M and its adjoint matrix M

⇤. After
that, three keyed-hash function families (h1, h2, and h3)
with corresponding keys of k1, k2, and k3 are selected. In
addition, the LBSP generates a private key sk

s

and a public
key pk

s

for the blind signature mechanism. Once the above
parameters have been generated, the LBSP constructs an
index (step three in Fig. 3) based on the location schema and
encrypts the index and database before outsourcing them to
CSP (step four in Fig. 3).

The LBSP registers a client c and assigns it a set (AS
c

)
of attributes based, e.g., on the paid subscription (step five
in Fig. 3). After the negotiation of attributes, the LBSP
generates an identity id

c

for c. In addition, the LBSP uses
access policy AP, the universe of the user attributes UA,
and master key MK to generate a decryption key k

c

that the
client can use to decrypt query results. Finally, the identity
and decryption key are sent to the client with the setup
parameters (step six in Fig. 3).

The output of the initialization process includes pub-
lic information {p, e, T, pk

s

} and private information

{M⇤
, k1, k2, k3, kc, sks,MK,AP,UA}. Table 3 shows all the

parameters used by different parties.

5.4 Index Generation
Given a hierarchical schema of locations, we construct a
vector for each location in the schema using the following
steps:

Vector construction for location: Each location in the
hierarchical schema is mapped into a vector.

Vector construction for location attributes: The
attributes of each node in the hierarchical schema are
represented by a vector.

Vector construction for location entropy: Following
the previous work [49], the privacy of each node in the
schema is measured by using entropy.
In the construction of the hierarchical schema of location, the
space partition is conducted in such a way that every point
is accessed similarly, detailed in Section 5.1. The privacy is
encoded by a vector rather than a single number for the sake
of efficient privacy-preserving query matching, as explained
below.

Thus, the index structure is a hierarchy mimicking the
schema for locations, where each location is replaced by an
encrypted vector of a fixed size. Figure 5 visualizes the index
construction. We now describe each step in detail.

Fig. 5: Process of index construction.

Vector construction for locations: The construction is from
the bottom to the top. We start by computing a Bloom filter
vector for each of the leaf locations. A vector for a non-
leaf location is calculated as a union of the vectors for child
locations. We show a construction example in Figure 6.

Since we support multi-location query, a query includes
a location list. A vector for the query is constructed by
mapping each of the locations in this list to the Bloom filter.
A query matches a location node in the index if and only if
the inner product of the query and index vectors is greater
than a threshold. If the threshold is set too small, there exists
too many false positives. However, if the threshold is set too
large, false negatives may occur. A practical solution is to set
the threshold as the same as the number of hash functions
used for mapping locations. Due to the construction, if a
query vector matches the vector of a non-root node x in the
index, it will necessarily match the vector of the parent node
of x.

TABLE 3: Notation used in the implementation(defined in
the initialization)

public info G1, G2, GT , T, p, e
pks, h1, h2, h3

info privately used by the LBSP AP, sks, MK, UA
info shared by the LBSP and all clients M⇤, k1, k2, k3
private info the LBSP gives to client c kc, FN , ASc

info locally generated by client c idc
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Fig. 6: Location vector construction. 59.91 and 10.72 are
the latitude and longitude of the Royal Palace in Oslo. A
Bloom filter with two hash functions is used to map this
location into positions 3 and 8 in the array. Other leaf
locations are processed similarly. The vector of the parent
node Oslo having two children Royal Palace and Frogner Park
is constructed by calculating the union of children’s vectors.

Fig. 7: Vector construction for location attributes. In the
example, there are two second-level attributes entertainment
and food. theme park and cinema belong to the entertainment
attribute while restaurant and deli belong to food. Based on
this structure, vectors are constructed from the bottom to
the top.

The size of the Bloom filter represents a tradeoff between
precision and efficiency. We use all hash functions from the
h1 hash function family to map values to the Bloom filter.
More specifically, the Bloom filter is divided into |h1| slices
and each slice is used for a different hash function in h1.
Vector construction for location attributes: We utilize a
hierarchical schema for attributes, as explained in Section 4.3
and illustrated in Figure 7. The schema is directly derived
from the records in the database.

We construct a vector for each node in the attribute
schema. The construction is from the bottom to the top,
similar to how we construct vectors for locations: first, we
use a Bloom filter for the leaf attributes. A vector for a non-
leaf node is calculated as a bitwise OR of the vectors for
child nodes. Finally, we construct an attribute vector for
each location. For example, if the “Frogner park” location
in Oslo has a cinema and a restaurant nearby, the attribute
vector for “Frogner park” is a bitwise OR of the vectors for
cinema and restaurant.
Vector construction for location entropy: The CSP also
needs to check, in a privacy-preserving way, if the location

0 0  0 0 0 0 0 10 1 

1 0 1 0 0 0 0 1 0 1 

1 0 1 0 1 1 0 1 0 1 

   0     0     0     0 

log2 log2

log4

h3,1
h3,2

h3,2
h3,1 

h3,2
h3,1

FN

Fig. 8: Vector construction for location entropy. In the ex-
ample, we assume that all leaf nodes have equal access
frequency. There are 3 different location entropy values, 0,
log 2 and log 4. The root matches minimum privacy degree
of 0, log 2, and log 4, while internal nodes match 0 and log 2.
The leaf node only matches the minimum privacy degree
of 0. Before the hash function is applied to the entropy
values, the values are normalized and rounded using the
F

N

function.

entropy is at least as high as the minimum privacy degree
specified by the user. To this end, the LBSP constructs a
privacy vector for each location in the schema. The vector
encodes location entropy as follows. First, the LBSP cal-
culates the entropy for each location node as described in
Section 4.3. Second, it prepares a sorted list (a sequence)
of entropy values from 0 (the value for the leaves) to the
value at the root node. Note that the list can be long (order
of N entries) if the location hierarchy is unbalanced, yet it
is short (order of logN entries) for balanced trees. Third,
the LBSP normalizes all entropy values and rounds them to
integers using the F

N

function. Finally, for an index location
with the (normalized and rounded to an integer) entropy
value of e, the LBSP produces a vector for e as follows:
it identifies all entropy values on the sorted list which
are smaller than e and uses hash functions in h3 to map
these entropy values to the Bloom filter. Figure 8 provides
an illustration of vector construction for location entropy,
under the simplifying assumption that all leaf nodes have
equal access frequency.

The construction for a vector in a query is simpler: given
the minimum privacy degree, the client software normalizes
it and rounds to an integer using F

N

. Then, the client
software finds the smallest entropy value on the sorted list
that is greater than the privacy degree and maps this value
to the Bloom filter, which becomes the privacy degree vector
for the query. Note that the LBSP shares both F

N

and the
sorted list of entropy values with the client.

The requirement of the minimum privacy degree in the
query is satisfied if the smallest entropy value on the sorted
list that is larger than the privacy degree is present in the
list of entropy values for the location. This occurs when the
inner product of query and index vectors is equal to |h3| (as
in the vector construction for locations, we divide the Bloom
filter into slices, one for each hash function in h3).

5.5 Database encryption

The database encryption consists of content encryption and
index encryption.
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Algorithm 1 DBEnc(DB)! CDB

1: input AP, MK, and UA
2: for all record 2 DB do
3: Crecord  RecordEnc(record,AP,MK,UA)

4: CDB  CDB [ Crecord

5: return CDB

Content encryption: For content encryption, a KPABE
scheme (previously described in Section 3) is applied. The
whole process of content encryption is to encrypt each
record in the database according to the designed fine-
grained access control policy. Details are shown in Algo-
rithm 1, where RecordEnc is the encryption procedure of
KPABE and AP is the access policy.
Index Encryption: We utilize the FHIPE for the index
encryption (previously described in Section 3). Based on
the FHIPE, we construct an index encryption algorithm
IndexEnc as shown in Algorithm 2, where M

i

is the i

th

column of the invertible matrix M (previously set in Section
5.3) and ↵ is a random value from Z⇤

q

.

Algorithm 2 IndexEnc(iv, M )! CIV

1: ↵ Z⇤
q

2: for i 1, n do
3: C

ivi = g

↵·iv·Mi
1

4: C

iv

 (C

iv1 , · · · , Civn)

5: return CIV  (g

det(M)·↵
1 , C

iv

)

5.6 Client registration
In negotiation phase of the initialization, the LBSP negoti-
ates with the client c to decide the attribute set AS

c

. After
that, LBSP generates a id

c

and selects k
c

according to access
policy based on the attribute set represented by id

c

. The
ensemble K = (M

⇤
, k1, k2, k3, kc) is sent to the client, which

is setup parameters and described in the Section 5.3. Details
are shown in Algorithm 3.

Algorithm 3 Authorization(id
c

)! K

1: k

c

 AP(id
c

)

2: K  (M

⇤
, k1, k2, k3, kc)

3: return K

5.7 Query generation
Input parameters include the location set, location attribute
set, and the minimum privacy degree and each of them will
be mapped into a vector as discussed in Section 5.4. The
BS is a blind signature mechanism achieving ciphertext-
indistinguishability under chosen plaintext attack (details
introduced in Section 3). All the above operations are de-
tailed in Section 5.4. Then, we call the QueryEnc function to
encrypt vectors as shown in Algorithm 4 where M

⇤
i

is the
i

th column of matrix M

⇤ (previously defined in Section 5.3)
and � is a random value from Z⇤

q

. The approach to generate
the optimal query for location anonymity is introduced in
technical report [50].

Before sending the final query to the LBSP for autho-
rization, client blinds the content of the query (BSphase1 )

Algorithm 4 QueryEnc(qv, M⇤)! CQV

1: �  Z⇤
q

2: for i 1, n do
3: Cqvi = g

�·qv·M⇤
i

2

4: Cqv  (C

qv1 , · · · , Cqvn)

5: return CQV  (g

�

2 , Cqv)

so that the LBSP cannot observe the location of the client.
The pseudocode is shown in Algorithm 5, where | denotes
bitwise OR operation over two vectors.

Algorithm 5 QueryGen(locs, attrs, pd)! (Q, r)

1: for all loc 2 locs do
2: for all h 2 h1 do
3: qv

loci  h(k1, loc)

4: qv

loc

 qv

loc

|qv
loci

5: for all attr 2 attrs do
6: for all h 2 h2 do
7: qv

attri  h2(k2, attr)

8: qv

attr

 qv

attr

|qv
attri

9: for all h 2 h3 do
10: qv

pdi  h(k3, pd)

11: qv

pd

 qv

pd

|qv
pdi

12: qv  (v

loc

, v

attr

, v

pd

)

13: eqv  QueryEnc(qv,M⇤
)

14: (eqv

0
, r) BSphase1(eqv, pks)

15: Q (eqv

0
, id

c

)

16: return (Q, r)

Upon receiving a query authorization request, the LBSP
extracts id

c

from query Q and verifies whether id

c

is ac-
cepted by the key policy AP. If id

c

is legitimate, then LBSP
signs the blinded query (BSphase2 ). Details are shown in
Algorithm 6.

Algorithm 6 Sign(Q)! �

1: extract id
c

, eqv

0 from Q

2: if AP(id
c

) = True then
3: �  BSphase2(eqv

0
, sk

s

)

4: else
5: return Not authorized

Upon receiving the result from the LBSP, the client
removes the blinding factor from the signature � returned
by the LBSP. The trapdoor contains the stripped signature
and eqv generated in QueryGen. The details are shown in
Algorithm 7.

Algorithm 7 TrapdoorGen(�, r, eqv)! Tr

1: �

0  BS
phase3(pks, r,�)

2: Tr (eqv,�

0
)

5.8 Query processing
Upon receiving the query, the CSP verifies the trapdoor first.
If it is valid, it outputs True, otherwise False. The details are
presented in Algorithm 8.
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Algorithm 8 Verify(Tr)! True/False

1: extract �0
, eqv from Tr

2: if BSverify(�
0
, pk

s

, eqv) = True then
3: return True
4: else
5: return False

After the verification, the CSP searches the index Ind
based on the input trapdoor Tr and returns matching data
items. Algorithm 9 details this function where function
MatchTest is called to check whether a node matches the
query or not. The MatchTest is detailed in Algorithm 10,
where e denotes a non-degenerate bilinear mapping func-
tion and is efficiently computable over groups G1, G2 and
G

T

(defined in Section 5.3).

Algorithm 9 Search(Tr, Ind, CDB)! C

res

1: extract eqv from Tr
2: if MatchTest(root of Ind, eqv) then
3: add the root of Ind onto a stack
4: while the stack is not empty do
5: pop a node nd from the stack
6: if nd is a leaf then
7: add nd to list
8: else
9: addedChildren 0

10: for all child ch of nd do
11: if MatchTest(ch, eqv) then
12: add ch to the stack
13: addedChildren addedChildren + 1

14: if addedChildren = 0 then
15: add nd to C

res

16: return C

res

Algorithm 10 MatchTest(CIV, CQV)! True/False

1: extract gdet(M)·↵
, C

iv

from CIV
2: extract g� , C

qv

from C

QV

3: if 9z = {z1, z2, z3} 2 S ^ e(Civ,Cqv)
e(g↵

,g

�)det(M)·z = 1 ^ z1 �
t
loc

^ z2 � t
attr

^ z3 < t
pd

then
4: return True
5: else
6: return False

Upon receiving the returned result, the client uses the
secret key k

c

to decrypt the results.

6 SECURITY ANALYSIS

In this section, based on the threat model in Section 4.4, we
first define the leakage function capturing all the informa-
tion that an adversary is allowed to learn about the query
and database. Then, we formally define data privacy and
query privacy under chosen plaintext attack model against
tracking threat and linkage threat. Finally, we prove that our
solution meets the security goals.

6.1 Leakage function
The leakage function is an important part of security anal-
ysis as it defines all the information that the adversary is
allowed to learn during the interaction with the system.
Following the concept proposed in [51] and [37], the leaked
information consists of the search pattern, the access pattern,
and the size pattern. The size pattern includes the size of the
encrypted database, the number of records, the size of the
index, the number of entries, and the size of the trapdoor.
To define the leakage function formally, we first present the
formal definition of the patterns.
Definition 1. Size Pattern ⌧ : Let CDB = {C1, · · · , Cn

},
CIV = {iv1, · · · , ivm}, and Tr be the encrypted database,
encrypted index and trapdoor respectively, where n is
the total number of records in the database and m

is the total number of entries in the index. The size
pattern is ⌧ = {|CDB|, |CIV|, |Tr|}, where |CDB| denotes
{|C1|, · · · , |Cn

|} and |CIV| denotes {|iv1|, · · · , |ivm|}.

Definition 2. Search Pattern ⇣ : Let {t1, t2, · · · , tq} be the
tuple of location, attribute, and privacy degree for q con-
secutive queries and {C1, · · · , Cq

} be the corresponding
retrieved records. Then, ⇣ is a three dimensional matrix
and ⇣[i, j, k] = 1 if location loc

i

, attribute attr

j

, and
privacy degree pd

k

appear at same time in the retrived
C

i

(1  i  q). Otherwise it is zero.

Definition 3. Access Pattern & : Let C

IV

be the encrypted
index and {C1, · · · , Cq

} be the retrieved records with
corresponding trapdoors, {Tr1, · · · , T rq}. Then the ac-
cess pattern is & = {(CIV(Tr1), C1), · · · , (CIV(Tr

q

), C

q

)}.

The leakage function captures the leakage of the above
defined patterns and is defined as follows.
Definition 4. Leakage Function L: Let CDB, CIV, Tr be the en-

crypted database, encrypted index, and trapdoor, respec-
tively. The leakage function is L = {CDB, CIV,Tr, ⌧, ⇣, &}.

6.2 Security definitions
Before giving the security definition of the proposed
scheme, we first introduce the definition of ciphertext-
indistinguishability of chosen plaintext attack [52], which
is achieved by our building tools.
Definition 5. A public key encryption scheme ⇡ =

(Gen,Enc,Dec) has ciphertext-indistinguishability un-
der a chosen-plaintext attack if for all probabilistic
polynomial-time (PPT) adversary A there exits a neg-
ligible function negl such that Pr[PubKcpa

A,⇡

= 1] 
1
2 + negl(�).

The CPA indistinguishability experiment PubKcpa

A,⇡

is de-
tailed in [52].

The private key encryption scheme with ciphertext-
indistinguishability under a chosen-plaintext attack is de-
fined similarly. The only difference is that the adversary can
not get the encryption key at the challenging phase.

Then, we formally define our scheme with indistin-
guishability under Selective-Plaintext Attacks (IND-SCPA)
[53]. Based on the above information leakage analysis,
specifically we define our scheme’s security in two aspects.
One is data privacy and another is query privacy.
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Data privacy. Informally, the data privacy is defined by first
uploading two databases DB0 and DB1 to the challenger
and the adversary is allowed to send adaptive queries
with constraint on the leakage function before making the
final decision about which database is utilised. The formal
definition is shown as follows.

Let ⇧=(Setup, IndexGen, DBEnc, QueryGen, TrapdoorGen,
Verify, Search) be a privacy-preserving outsourcing LBS
scheme. For a PPT adversary A, the advantage function
ADV⇡

A

(1

�

) is defined as follows: ADV⇡

A

(1

�

) = Pr(b

⇤
=

b)� 1
2 , where b

⇤ and b are generated as follows.
Init: The adversary submits two databases DB0 and

DB1 to the challenger with same number of records and
index structure.

Setup: The challenger runs Setup(1�) to generate re-
quired parameters and keys.

Phase 1: The adversary adaptively submits requests in
one of the following types:
Ciphertext request: The adversary submits a database
DB

j

(j > 1) and requests one of the encrypt records
C

i

(1  i  |DB
j

|).
Trapdoor request: The adversary sends query Q to gener-
ate trapdoor Tr with the constraint L(Tr, C

IV0 , CDB0) =

L(Tr, C
IV1 , CDB1).

Challenge: The challenger randomly selects a bit b from
the set {0, 1} and then invokes the IndexGen and DBEnc to
build the index CIVb and encrypted database CDBb , respec-
tively.

Phase 2: The adversary continues to adaptively send
queries to the challenge with the same constraint as de-
scribed in Phase 1.

Guess: The adversary outputs a bit b0 as the guess of b.
We say the scheme ⇡ is privacy preserving in data pri-

vacy under chosen plaintext model if for any PPT adversary
A, the advantage function ADV⇡

A

(DB, 1�) is a negligible
function in �.
Query privacy. The query privacy is defined similarly and
the main difference is to submit two queries instead of
databases. Detail is shown as follows.

Let ⇧=(Setup, IndexGen, DBEnc, QueryGen, TrapdoorGen,
Verify, Search) be a privacy-preserving outsourcing LBS
scheme. For a PPT adversary A, the advantage function
ADV⇡

A

(1

�

) is defined as follows: ADV⇡

A

(1

�

) = Pr(b

⇤
=

b)� 1
2 , where b

⇤ and b are generated in following way.
Init: The adversary submits two raw queries q0 and q1

to the challenger.
Setup: The challenger runs Setup(1�) to generate re-

quired parameters and keys.
Phase 1: The adversary adaptively submits requests,

which are one of the following types:
Ciphertext request: The adversary submits a database DB
and requests one of the encrypt records i(0  i 
|DB

j

|). The challenger responses C

i

if L(q0, CIV

, CDB) =

L(q1, CIV

, CDB).
Trapdoor request: The adversary sends raw query q to the
challenger. The challenger runs QueryGen and then signs
the query before running TrapdoorGen to get trapdoor Tr.
The challenger sends Tr to the adversary.

Challenge: The challenger randomly selects a bit b from
the set {0, 1} and then runs the algorithm QueryGen with

input q

b

, resulting in query Q

b

. Then the challenger signs
the query and runs TrapdoorGen to generate trapdoor Tr

b

.
Phase 2: The adversary continues to adaptively send

queries to the challenge with the same constraint as de-
scribed in Phase 1.

Guess: The adversary outputs a bit b0 as the guess of b.
The scheme ⇡ is privacy preserving in query privacy

under chosen plaintext model if for any PPT adversary
A, the advantage function ADV⇡

A

(DB, 1�) is a negligible
function in �.

6.3 Security proof
In this section, we prove the security of the proposed
scheme and show that it provides the data privacy and
query privacy. In our scheme, the FHIPE is applied as the
encryption algorithm of the index generation IndexGen

and query generation QueryGen. The blind signature mech-
anism is embedded into the algorithm QueryGen and
TrapdoorGen. Specifically, the first step of blinding the
query happens in the QueryGen while the step of removing
the random scalar is in TrapdoorGen. The database is
encrypted by the KPABE achieving semantic security under
chosen plantext attack model, which is implemented in
the algorithm DBEnc. Therefore, we can draw following
conclusion.
Theorem 1. The proposed privacy-preserving outsourcing

LBS scheme achieves data privacy if the FHIPE, the
blind signature mechanism, and database encryption al-
gorithm (KPABE) achieve ciphertext-indistinguishability
under chosen plaintext attack.

Proof: The proof is based on the simulation of an
PPT simulator working as an challenger and demonstrates
compromising the proposed scheme is equivalent to break
the security of the building tools. Details are shown as
follows.

Init: The adversary A selects two database DB0 =

{DB0,1, · · · ,DB0,n} and DB1 = {DB1,0, · · · ,DB1,n} and
submits them to the challenger.

Setup: The challenger randomly selects parameters
from Z

q

and keys from 1

�.
Phase 1: The adversary adaptively generates one of the

following requests:
Ciphertext request: The adversary outputs a database
DB⇤

j

(j 2 {0, 1}) and target data record DB⇤
j,i

. As a response,
the challenger invokes DBEnc to encrypt the database DB⇤

j

and returns the encrypted target data record C

⇤
j,i

.
Trapdoor request: The adversary outputs a query Q

⇤
i

by
running QueryGen. Then the adversary sends the query Q

⇤
i

to the challenger. The challenger signs the query by using
the private key generated in the Init if the query satisfies
L(Tr(Q⇤

i

), CIV0 , CDB0) = L(Tr(Q⇤
i

), CIV1 , CDB1). Once re-
ceiving the signed query, the adversary runs the TrapdoorGen
and gets the trapdoor Tr⇤

i

.
Challenge: The challenger randomly selects a bit b from

the set {0,1} and then invokes the IndexGen and DBEnc to
build index C

IVb and encrypted database CDBb respectively.
Phase 2: The adversary continues to adaptively send

requests to the challenger as described in the Phase 1.
Guess: The adversary outputs a bit b0 as the guess of the

b.
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The scheme is successfully simulated by a PPT simulator
and it shows if an PPT adversary can break the proposed
scheme, it must be able to break one of the algorithms
among the FHIPE, the blind signature mechanism and
database encryption algorithm under chosen plaintext at-
tack model.
Theorem 2. The proposed privacy-preserving outsourcing

LBS scheme achieves query privacy if the FHIPE, the
blind signature mechanism and database encryption
algorithm achieve ciphertext-indistinguishability under
chosen plaintext attack.

The proof is similar to the proof of data privacy. Due to
the space limitation, we skip the full proof.

7 PERFORMANCE

In this section, we present our experimental findings. A
complementary theoretical analysis for the search perfor-
mance can be found in the technical report [50].

The experimental evaluation is performed on a 64-bit
Ubuntu system with an Intel i7 processor and 16GB RAM.
The open source Charm library [54] is used to implement
the pairing group operations, which is supported by the
standard PBC library [55]. FLINT [56] is utilized for the
finite field arithmetic in Z

q

. We use a real-life dataset taken
from OpenStreetMap [14]. Most of our experiments use
the dataset for the New York state, which contains 38307

locations of interest. This is in line with the typical dataset
size in the state-of-the-art (see, e.g., [11] and [57]). However,
in order to explore the scalability of our solution, we also
perform experiments with a dataset of bigger size.

The distribution of locations in the NY dataset is shown
in Figure 9. In the experiments, we use the given schema
for the dataset derived from the geography, rather than
solving the optimization problem described in Section 5.1.
The hierarchical schema of locations has five levels as shown
in Figure 10. Specifically, there are 62 counties, 62 cities, 892
towns, and 498 villages. The average number of locations is
around 297 in a city, 22 in a town, and 9 in a village.

Fig. 9: Distribution of locations in the New York state

All three thresholds t

loc

, t

attr

, t

pd

are set to be the same
as the number of hash functions used in the Bloom filter,
which is 4 in our experiments. The query contains multiple
locations (leaf nodes) along with the desired privacy degree.
The privacy degree effectively determines at what level in
the hierarchical index structure we need to establish a match
(see Section 5). As one of the metrics, we measure the time
cost of traversing the index to reach a node at a specific

level. For the sake of comparison, we ran the experiments
with two different capacities of the Bloom filter: 500 and
1000. The minimum false positive probability is set to 0.1.
Our experiments combine queries with a different number
of locations, namely 1, 100, 500, and 1000. Each experiment
is repeated ten times so that the reported values represent
averages across these runs.

Fig. 10: Hierarchical schema of locations in New York

We use the abbreviation of BF to denote a bloom filter
in the plots. Figure 11 shows the time cost of mapping
locations to a Bloom filter and of data encryption while
Figure 12 shows the time cost of the blind signature mech-
anism. In Figure 11, the left bar is based on the (500, 0.1)

Bloom filter while the right bar is based on the (1000, 0.1)

Bloom filter. In Figure 12, only the (500, 0.1) Bloom filter
is plotted since the (1000, 0.1) Bloom filter results in very
similar plots. Each bar consists of four parts, from bottom
to top: blinding the query, signing the query, unblinding the
query, and verification.

We observe that around 80 percent of the time cost is
used for encryption in the query generation and that this
cost is only moderately affected by the number of locations.
The capacity of the Bloom filter is the most important factor
for the time cost of query generation. We also observe that
when the number of locations reaches 500, the query time
does not increase significantly when increasing the number
of locations. This results in an obvious advantage compared
with issuing many single-location queries. In addition, the
capacity of Bloom filter does not have significant influence
on the time cost of blind signature and in the query gener-
ation, the percentage of time cost used by blind signature is
negligible.

The search efficiency of the proposed scheme is pre-
sented in Figures 13 to 18. These plots also show the trade-
off between efficiency and privacy. A search latency of an
order of ten seconds is a norm in the state-of-the-art when
searching encrypted dada (see, e.g., [11] and [58]). Our
scheme provides better efficiency compared to this baseline.

Figure 13 shows the time cost of traversing the hierar-
chical structure to reach the county level (i.e., the second
level in the hierarchy). While the time cost increases with
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the number of locations, we observe that a single multi-
location query is still significantly more efficient compared
to multiple single-location queries. This trend also holds in
the other figures.

Figures 14 and 15 show the time cost of traversing the
index to reach a location at the city/town level (i.e., the third
level in the hierarchy) for a city and town node respectively.
Comparing the figures, we observe that the time cost of
traversing the index to reach a node is significantly higher
for a town compared to a city. Analyzing the dataset, we
find that the total number of towns is significantly larger
than the total number of cities, and so is the number of
town nodes under an arbitrary county node compared to
the number of city nodes. Therefore, it takes more time to
scan town nodes under a given county node, which results
in longer times required to reach a matching town node. As
shown in Figures 16, 17 and 18, the time cost of traversing
the hierarchical structure to reach a village node is close to
the time required to reach a leaf location under a city node
but it is significantly shorter compared to reaching a leaf
location under a village node.

One conclusion we can make from Figures 13 to 18 is that
the capacity of the Bloom filter does not have a significant
effect on the search time at the CSP.

To show the scalability, generality, and consistency of
the proposed scheme, we conduct two additional sets of
experiments. The first set is for evaluating the scalability
of the proposed solution by varying the dataset size and
number of input locations. The second set is for proving
the generality and consistency of our findings by using a
different schema for the same locations and comparing the
results.

To show the influence of the dataset size, we compare
the results for a small, medium, and large dataset of 3831,
38307, and 383070 locations, respectively. All locations are
sampled from OpenStreetMap [14]. In these experiments,
we use 100 input locations in a query, which are selected
randomly from all the locations in the dataset. The capacity
of the Bloom filter used to generate queries is (1000, 0.1).
Based on the results in Figure 19, we can observe that the
search time grows sub-linearly as the number of locations
increases.

To show the influence of the number of input locations,
we conduct four additional experiments, where the number
of input locations in a query is set to 1, 100, 500, and 1000,
respectively. Based on the results in Figure 20, we observe
that the search time increases approximately linearly with
the number of input locations.

To show the generality and consistency of the proposed
solution, experiments are conducted using the same dataset
of 38307 locations in the New York state but organized
in a different hierarchical schema. In the new schema, the
index is built based on the location attributes instead of
geography. We have analyzed the dataset and observed that
out of the large number of location attributes, there are
seven attributes that dominate the dataset, corresponding
to almost 50 percent of locations. The seven attributes are
restaurant, school, park, fast food, cafe, bench, and convenience.
The remaining thousands of attributes cover the rest of
the locations so that each of them only corresponds to
one or two locations. Taking this into account, the new

schema essentially consists of eight clusters: The locations
corresponding to each of the seven attributes are organized
in a separate cluster whereas the rest of the locations are
clustered together. The big latter cluster is named others.
Since there are thousands of attributes in others, we build
a hierarchical index over the cluster. Specifically, we use k-
means clustering algorithm to recursively cluster locations
until each node directly above the leaf level contains fewer
than 3000 leaf locations, i.e., has < 3000 children.

The resulting schema is shown in Figure 21. There are
18335 locations corresponding to the listed 7 attributes and
19972 locations to others. Figure 22 shows the time cost
of search for the new schema. The notations used in the
figure is explained as follows. The time to reach a leaf under
named attributes is denoted as leaf under named. The time to
reach a leaf under the root of others is denoted as leaf under
others. The time to reach one of the seven named attributes
or others is denoted as top level. The time to reach the group
is denoted as group level. The time to reach the sub-group is
denoted as sub-group level. If we consider the time to search
for a leaf location under others, we observe that it is almost
the same as the time to search for a leaf location under a city
when using the geography-induced schema of Figure 10.
Therefore, we can conclude that even though the locations
are clustered in a different way in the two schemas, the
search time used to reach leaf locations (which are at the
fourth level in both schemas) is similar. We additionally
observe that the time cost of searching for a leaf location
is much higher for a leaf location under a named attribute
compared to a leaf location under others. We conclude that
already at a moderate scale of a thousand of leaf locations it
is suggested to use a hierarchical index structure in order to
improve the performance.

8 CONCLUSION

In this paper, we present a solution for outsourcing LBS
to the cloud in a privacy-preserving fashion. We allow the
cloud to perform the search while protecting the privacy
of users’ queries and identity. We also keep the service
data confidential from the cloud provider. Additionally, we
support multi-location queries in an efficient way and allow
the user to explicitly control the tradeoff between precision
and privacy on a per-query basis.

Since the CSP is able to track and record access frequen-
cies, there is a risk that the CSP be able to infer some loca-
tions by analyzing the access frequency. For example, a user
tends to visit the home and workplace more often compared
to other places. In the technical report [50], we analyze the
access frequency attack against the proposed scheme and
propose a solution to defend against the attack. As future
work, the experimental verification will be conducted.

Additionally, we will extend our framework to support
k-nearest neighbor search by using locality-sensitive hash-
ing (LSH) to build the Bloom filter instead of standard
hash functions. Thanks to locality-sensitive hashing, close
locations tend to be hashed into close positions. In that case,
the inner product of the query and index can be be used by
the CSP to evaluate the “distance”. The inner product can
be revealed to the CSP without disclosing other information
because the inner product can be securely revealed by using
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Fig. 13: Time to reach a county node
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Fig. 14: Time to reach a city node
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Fig. 15: Time to reach a town node
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Fig. 16: Time to reach a village node
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the FHIPE encryption algorithm. The k-nearest neighbors
are detected as the top k nodes in inner product among all
the nodes.
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Doctoral Researcher with École Polytechnique Fédérale de Lausanne,
Switzerland. His research interests include privacy-enhancing technolo-
gies (including big data and genomic privacy), wireless network security,
trust and reputation management, and recommender systems.

Roman Vitenberg is a professor at the Department of Informatics,
University of Oslo. His research interests lie broadly in the area of
distributed applications, middleware and algorithms; including specifi-
cation, design, analysis, implementation, performance evaluation, and
software engineering. In particular, he has been working on large-scale
communication, privacy and security, data storage, distributed event-
based systems, fault-tolerant distributed computing, and more recently,
blockchain. He is an Associate Editor for the EAI Transactions on Cloud
Computing and a Steering Committee member for ACM DEBS. He
has over 70 publications in peer-reviewed venues and 5 filed patents.
His papers were presented best paper awards at ACM/IFIP/USENIX
Middleware, ACM SAC, and ACM DEBS conferences.


