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Abstract. Under the background of global climate change
and local anthropogenic activities, multiple driving forces
have introduced various nonstationary components into low-
flow series. This has led to a high demand on low-flow fre-
quency analysis that considers nonstationary conditions for
modeling. In this study, through a nonstationary frequency
analysis framework with the generalized linear model (GLM)
to consider time-varying distribution parameters, the multi-
ple explanatory variables were incorporated to explain the
variation in low-flow distribution parameters. These vari-
ables are comprised of the three indices of human activi-
ties (HAs; i.e., population, POP; irrigation area, IAR; and
gross domestic product, GDP) and the eight measuring in-
dices of the climate and catchment conditions (i.e., total pre-
cipitation P, mean frequency of precipitation events A, tem-
perature T, potential evapotranspiration (EP), climate arid-
ity index Algp, base-flow index (BFI), recession constant K
and the recession-related aridity index Al ). This framework
was applied to model the annual minimum flow series of
both Huaxian and Xianyang gauging stations in the Weihe
River, China (also known as the Wei He River). The results
from stepwise regression for the optimal explanatory vari-
ables show that the variables related to irrigation, recession,
temperature and precipitation play an important role in mod-
eling. Specifically, analysis of annual minimum 30-day flow
in Huaxian shows that the nonstationary distribution model
with any one of all explanatory variables is better than the
one without explanatory variables, the nonstationary gamma
distribution model with four optimal variables is the best
model and Al is of the highest relative importance among

these four variables, followed by IAR, BFI and Algp. We
conclude that the incorporation of multiple indices related to
low-flow generation permits tracing various driving forces.
The established link in nonstationary analysis will be bene-
ficial to analyze future occurrences of low-flow extremes in
similar areas.

1 Introduction

Low flow is defined as the flow of water in a stream dur-
ing prolonged dry weather (WMO, 2009). Yu et al. (2014)
quantitatively described a low-flow event as a segment of hy-
drograph during a period of dry weather with discharge val-
ues below a preset (relatively small) threshold. According to
WMO (2009), annual minimum flows averaged over several
days can be used to measure low flows. During low-flow pe-
riods, the magnitude of river flow will greatly restrict its var-
ious functions (e.g., providing water supply for production
and living, diluting waste water, ensuring navigation, meet-
ing ecological water requirement). Therefore, the investiga-
tion of the magnitude and frequency of low flows is of pri-
mary importance for engineering design and water resources
management (Smakhtin, 2001). In recent years, low flows,
as an important part of river flow regime, have been attract-
ing an increasing attention of hydrologists and ecologists in
the context of the significant impacts of climate change and
human activities (HAs; Bradford and Heinonen, 2008; Du
et al., 2015; Kam and Sheffield, 2015; Kormos et al., 2016;
Liu et al., 2015; Sadri et al., 2016). In general, under the im-
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pact of a changing environment, combinations of multiple
factors, such as precipitation change, temperature change, ir-
rigation area (IAR) change and construction of reservoirs,
can drive various patterns of streamflow changes (Liu et al.,
2017; Tang et al., 2016). Unfortunately, when subjected to
a variety of influencing forces, low flow is more vulnerable
than high flow or mean flow. Therefore, it is a pretty impor-
tant issue in hydrology to identify low-flow changes, track
multiple driving factors and quantify their contributions from
the perspective of hydrological frequency analysis.

In hydrological analysis and design, conventional fre-
quency analysis estimates the statistics of a hydrological time
series based on recorded data with the stationary hypothesis
which means that this series is “free of trends, shifts or pe-
riodicity (cyclicity)” (Salas, 1993). However, global warm-
ing and human forces have changed climate and catchment
conditions in some regions. Time-varying climate and catch-
ment conditions (TCCCs) can affect all aspects of the flow
regime, i.e., changing the frequency and magnitude of floods,
altering flow seasonality and modifying the characteristics
of low flows. The hypothesis of stationarity has been sus-
pected (Milly et al., 2008). If this problematic method is still
used, the frequency analysis may lead to high estimation er-
ror in hydrological design. Therefore, considerable literature
has introduced the concept of hydrologic nonstationarity into
analysis of various hydrological variables, such as annual
runoff (Arora, 2002; Jiang et al., 2015a; Xiong et al., 2014;
Yang and Yang, 2013), flood (Gilroy and Mccuen, 2012;
Kwon et al., 2008; Yan et al., 2017; Zhang et al., 2015), low
flow (Du et al., 2015; Jiang et al., 2015b; Liu et al., 2015),
precipitation (Gu et al., 2017; Mondal and Mujumdar, 2015;
Villarini et al., 2010) and so on. Compared with the literature
on annual runoff, floods and precipitation, the literature on
the nonstationary analysis of low flow is relatively limited.

Previous hydrological literature on frequency analysis of
nonstationary hydrological series mainly focuses on two as-
pects: development of the nonstationary method and ex-
ploration of covariates reflecting changing environments.
Strupczewski et al. (2001) presented the method of time-
varying moment which assumes that the hydrological vari-
able of interest obeys a certain distribution type, but its mo-
ments change over time. The method of time-varying mo-
ment was modified to be the method of time-varying param-
eter values for the distribution representative of hydrologic
data (Richard et al., 2002). Villarini et al. (2009) presented
this method using the generalized additive models for lo-
cation, scale and shape parameters (GAMLSS; Rigby and
Stasinopoulos, 2005), a flexible framework to assess nonsta-
tionary time series. The time-varying parameter method can
be extended to the physical covariate analysis by replacing
time with any other physical covariates (Jiang et al., 2015b;
Kwon et al., 2008; Lépez and Francés, 2013; Liu et al., 2015;
Villarini and Strong, 2014). For example, Jiang et al. (2015b)
used reservoir index as an explanatory variable based on the
time-varying copula method for bivariate frequency analysis
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of nonstationary low-flow series in Hanjiang River, China.
Du et al. (2015) took precipitation and air temperature as the
explanatory variables to explain the inter-annual variability
in low flows of the Weihe River, China (also known as the
Wei He River). Liu et al. (2015) took the sea surface tem-
perature in the Nino3 region, the Pacific Decadal Oscillation,
the sunspot number (3 years ahead), the winter areal tem-
perature and precipitation as the candidate explanatory vari-
ables to explain the inter-annual variability in low flows of
Yichang station, China. Kam and Sheffield (2015) ascribed
the increasing inter-annual variability of low flows over the
eastern United States to the North Atlantic Oscillation and
Pacific North America.

To our knowledge, compared with the nonstationary flood
frequency analysis, the studies on the nonstationary fre-
quency analysis of low-flow series are not very extensive
because of incomplete knowledge of low-flow generation
(Smakhtin, 2001). Most of these studies explain nonstation-
arity of low-flow series only by using climatic indicators or
a single indicator of human activity. However, the indica-
tors of catchment conditions (e.g., recession rate) related to
physical hydrological processes have seldom been attached
in nonstationary modeling of low-flow series. This lack of
linking with hydrological processes makes it impossible to
accurately quantify the contributions of influencing factors
for the nonstationarity of low-flow series, and such a sci-
entific demand for tracing the sources of nonstationarity of
low-flow series and qualifying their contributions motivated
the present study. The knowledge of low-flow generation has
been increased by efforts of hydrologists, which can help
develop physical covariates to address nonstationarity. Low
flows generally originate from groundwater or other delayed
outflows (Smakhtin, 2001; Tallaksen, 1995). Their genera-
tion relates to both an extended dry weather period (leading
to a climatic water deficit) and complex hydrological pro-
cesses which determine how these deficits propagate through
the vegetation, soil and groundwater system to streamflow
(WMO, 2009). Thus, not only climate condition drivers (e.g.,
potential evaporation exceeds precipitation), but also catch-
ment condition drivers (e.g., the faster hydrologic response
rate to precipitation) can cause low flows.

The significant factors such as precipitation, temperature,
evapotranspiration (EP), streamflow recession, large-scale
teleconnections and human forces may play important roles
in influencing low-flow generation (Botter et al., 2013; Giun-
toli et al., 2013; Gottschalk et al., 2013; Kormos et al.,
2016; Sadri et al., 2016). Gottschalk et al. (2013) presented
a derived low-flow probability distribution function with cli-
mate and catchment characteristics parameters (i.e., the mean
length of dry spells A ! and recession constant of streamflow
K ) as its distribution parameters. Botter et al. (2013) derived
a measurable index (A‘l/ K) which can be used for discrim-
inating erratic river flow regimes from persistent river flow
regimes. Recently, Van Loon and Laaha (2015) used climate
and catchment characteristics (e.g., the duration of dry spells
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in precipitation and the base-flow index, BFI) to explain the
duration and deficit of the hydrological drought event and of-
fered a further understanding of low-flow generation. These
studies indicated that climate and catchment conditions play
an important role in producing low flows.

The goal of this study is to trace origins of nonstation-
arity in low flows through developing a nonstationary low-
flow frequency analysis framework with the consideration of
the time-varying climate and catchment conditions and hu-
man activity. In this framework, the climate and catchment
conditions are quantified using the eight indices, i.e., mete-
orological variables (total precipitation P, mean frequency
of precipitation events A, temperature 7 and potential evapo-
transpiration), basin storage characteristics (base-flow index,
recession constant K) and aridity indexes (climate aridity in-
dex Algp, the recession-related aridity index Alg). The spe-
cific objectives of this study are (1) to find the most important
index to explain the nonstationarity of low-flow series, (2) to
determine the best subset of TCCCs indices and/or human
activity indices (i.e., population, POP; irrigation area; and
gross domestic product, GDP) for the final model through
the stepwise selection method to identify nonstationary mode
of low-flow series and (3) to quantify the contribution of se-
lected explanatory variables to the nonstationarity.

This paper is organized as follows. Section 2 describes the
methods. The Weihe River basin and available data sets used
in this study are described in Sect. 3, followed by a presen-
tation of the results and discussion in Sect. 4. Section 5 sum-
marizes the main conclusions.

2 Methodology

The flowchart of how to organize the nonstationary low-
flow frequency analysis framework is shown in Fig. 1. The
whole process is divided into three steps. The first step is the
preliminary analysis, including the graphical presentation of
both explanatory variables and low-flow series, the statisti-
cal test for nonstationarity, and the correlations between each
explanatory variable and each low-flow series. The second
step is the single covariate analysis for the most important
explanatory variable. The third step is the multiple covari-
ate analysis for the optimal combination. We use a low-flow
frequency analysis model and stepwise regression method to
accomplish the last two steps. In the following subsections,
first, the low-flow frequency analysis model is constructed
based on the nonstationary probability distributions method,
in which distribution parameters serving as response vari-
ables can vary as functions of explanatory variables. Second,
the distribution types used to build the nonstationary model
are outlined. Then, the candidate explanatory variables re-
lated to the time-varying climate and catchment conditions
and human activity are clarified. Finally, estimation of model
parameters and selection of models are illustrated.
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2.1 Construction of the low-flow nonstationary
frequency analysis model

Generally, a nonstationary frequency analysis model can be
established based on the time-varying distribution parame-
ters method (Du et al., 2015; Lopez and Francés, 2013; Liu
et al., 2015; Richard et al., 2002; Villarini and Strong, 2014).
For the nonstationary probability distribution fy (Yt |0t ), let
Y; be a random variable at time #(t = 1,2, ..., N) and vec-
tor 0 = [6],6),...,6},] be the time-varying parameters. The
number of parameters m in hydrological frequency analysis
is generally limited to three or less. The function relationship
between the kth parameter 9,: and the multiple explanatory
variables is expressed as follows:

gk (67) = hi (x]. x5, ..., x},), e))

where xi , xé, e x,’, are explanatory variables, n is the num-
ber of explanatory variables, gi(-) is the link function which
ensures the compliance with restrictions on the sample space
and is usually set to natural logarithm for the given nega-
tive predictions and h(-) is the function for nonstationary
modeling. The generalized linear model theory (GLM; Dob-
son and Barnett, 2012) is used to build function relationships
between distribution parameters and their explanatory vari-
ables. In GLMs, the response relationship can be generally
expressed as

gk (07) = ok + ) irx}, 2

i=1

where o (i =0,1,2,...,n,k=1,...,m) are the GLM pa-
rameters.

In order to compare the nonstationary models constructed
by various combinations of explanatory variables, Eq. (2) is
modified in this study using the dimensionless method for the
standard GLM parameters. The value of 6; could be assumed
to be equal to its mean (6;) when all explanatory variables
are equal to their mean (x;), i.e.,

Of (x} =%1, x5 =%2,...,x, =X,) = Or. A3)
Equation (2) is then modified as
9]5 i=n
8k (——) = Pox + 2 Bikz}
x.’ —)_Ci

7= Ji=1,2,...,n “)
Si

0! _
Box = gk (_—k |6; =9k) =gr (1),
Ok

where z! is the normalized explanatory variable, s; is the
standard deviation ofxl? and Bix(i =1,2,...,n,k=1,...,m)
are the standard GLM parameters. Letting the link function
gk (+) be the natural logarithmic function In(-) and 9[ be the
distribution parameter in [6], 0}, .. ., 6} ] with the most signif-
icant change, the degree of nonstationarity in low-flow series
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Figure 1. The framework of nonstationary low-flow frequency analysis.

can be defined as In(6]) — In(6;). Then, the contribution ¢}
of each explanatory variable x; to In(f/) —In(6;) could be
defined as

x!I—%;
¢ =Bu="—— ©)

1

2.2 Candidate distribution functions

We need to select the form of probability distribution fy (-)
to determine what type of nonstationary frequency curves
will be produced. Various probability distributions have been
compared or suggested in modeling of low-flow series (Du
et al., 2015; Hewa et al., 2007; Liu et al., 2015; Matalas,
1963; Smakhtin, 2001). An extensive overview of distribu-
tion functions for low flow is given in Tallaksen et al. (2004).
Following these recommendations, we consider five distri-
butions, i.e., Pearson type III (PIII), gamma (GA), Weibull
(WEI), lognormal (LOGNO) and generalized extreme value
(GEV) as candidates in this study (Table 1). In the case of
Pearson type III distribution, considering that the parameter
03 of Pearson type III as lower bound should approach zero
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and the parameter 63 of GEV is quite sensitive and difficult
to be estimated, we assume them to be constant in this study.

2.3 Candidate explanatory variables

We look for variables x{, x}, ..., x} that can explain parts of
the variations in distribution parameters #°. From the per-
spective of low-flow generation, the dependency between
low-flow regime and both climate and catchment conditions
has been presented by previous studies (Botter et al., 2013;
Gottschalk et al., 2013; Van Loon and Laaha, 2015). We
focus on eight measuring indices: precipitation, mean fre-
quency of precipitation events, temperature, potential evap-
otranspiration, climate aridity index, base-flow index, reces-
sion constant and recession-related aridity index. These in-
dices were chosen to incorporate time-varying climate and
catchment conditions in nonstationary modeling of low-flow
frequency and serve as candidate explanatory variables. Cli-
mate variables (i.e., precipitation, mean frequency of pre-
cipitation events, temperature, potential evapotranspiration
and climate aridity index) are related to both water supply
source and water loss and are therefore selected as candi-
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Table 1. The probability density functions and moments (the mean and variance) for the candidate distributions in this study.

Distributions Probability density function Distribution moments
=09/ y—63
Pearson type Il  fy (v01,6»,03) = ey Aosd by E[Y]=01+63
r(1/6)0n63) """ 7
(PIID) y>63,03>0,6,>0,0, >0 Var[Y]= 0263
e :
Gamma fr(y101,02) = ey A Gyl E[Y]=06,
r(1/63)0163)"/" L
(GA) y>0,6;>0,6, >0 Var[Y]= 0262
; _ (%) (x> v\ _
Weibull fy (7101,6) = (@) (@) exp _(W) E[Y]=6,T(1+1/6y)
(WEI) y>0,6,>0,60 >0 Varly1 =67 [ (14 2) -2 (1+ 4 )]
_ 1 _ [log(»)—611* _ 1726,
Lognormal fr (v161,62) = Yoo exp[ 207 E[Y]=w'/"¢
(LOGNO) y>0,6, >0 Var[Y] = w (w — 1) e
w = exp (922)
_ —1/63—1 — —1/63
. . 6 6
Generalized fr (y|91,92,93)=é[1+93 (yg—zl)] exp’—[l +63 (’92‘)] ] E[Y]=6, —%-ﬁ-%m
extreme —00 < 6] <00,6 >0, —00 < 3 <00 Var[Y]=€22 (772*77%) /932
value Nm =T 1 —mbz)
(GEV)

Table 2. Description of the developed nonstationary models using time, TCCCs indices and/or HA indices as explanatory variables.

Model codes Distribution Description
GA WEI LOGNO PIII GEV Variable category  The numbers of variables
MO GA_MO WEI_MO LOGNO_MO PIII_MO GEV_MO - Zero
Ml GA_M1 WEI_M1 LOGNO_M1 PIII_M1 GEV_MI Time One
M2a GA_M2a WEI_M2a LOGNO_M2a PIII_ M2a GEV_M2a TCCCs One
M2b GA_M2b WEIL.M2b LOGNO_M2b PII_M2b GEV_M2b HA One
M3 GA_M3 WEI_M3 LOGNO_M3 PIII_M3 GEV_M3 TCCCs Two
M4 GA_M4 WEI_M4 LOGNO_M4 PIII_M4 GEV_M4 TCCCs Identified by
the stepwise selection
M5 GA_MS5 WEI_M5 LOGNO_M5 PIII_M5 GEV_M5 HA Identified by
the stepwise selection
M6 GA_M6 WEI_M6 LOGNO_M6 PIII_M6 GEV_M6 TCCCs +HA Identified by

the stepwise selection

date variables. It has been shown that the base-flow index
and recession constant reflect the storage and release capa-
bility of the catchments (Van Loon and Laaha, 2015). The
recession-related aridity index reflects both the water supply
and storage capability (Botter et al., 2013). In addition to TC-
CCs indices, the three indices of human activity (irrigation
area, population and gross domestic product) are related to
water withdrawal loss for agricultural, domestic and indus-
trial purposes and are therefore included. The detailed rea-
sons for selecting all indices are summarized in Table 3. The
values of them at each year could be estimated from hydro-
meteorological data and human activity data. Annual precip-
itation (P) and temperature (7') are calculated directly by
meteorological data. The remaining TCCCs indices need to
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be estimated indirectly. Detailed estimation procedures are
shown in the following subsections.

2.3.1 Annual mean frequency of precipitation events

()

Annual mean frequency of precipitation events is defined as
an index to represent the intensity of precipitation recharge
to the streamflow:

1Y N (A)
)»—W Z — (6)

w=1

where Ny, (A) is the number of daily rainfall events A (with
values more than the threshold 0.5 mm) in wth windows with
a length #,; W is the number of windows.

Hydrol. Earth Syst. Sci., 22, 1525-1542, 2018
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2.3.2 Annual climate aridity index (Algp)

The ratio of annual potential evaporation to precipitation,
commonly known as the climate aridity index, has been used
to assess the impacts of climate change on annual runoff
(Arora, 2002; Jiang et al., 2015a). The climate aridity index
largely reflects the climatic regimes in a region and deter-
mines runoff rates (Arora, 2002). Therefore, we choose the
annual climate aridity index as a measure of time-varying
climate and catchment conditions and estimate its value in a
whole region using

EP
Algp = —, 7
EP= )

where P is annual areal precipitation (mm) and EP is an-
nual areal potential evapotranspiration (mm). The Harg-
reaves equation (Hargreaves and Samani, 1985) is applied to

calculate EP using the R package “Evapotranspiration” (Guo,
2014).

2.3.3 Annual base-flow index (BFI)

The base-flow index (BFI) is defined as the ratio of base flow
to total flow. This index has been applied to quantify catch-
ment conditions (e.g., soil, geology and storage-related de-
scriptors) to explain hydrological drought severity (Van Loon
and Laaha, 2015). We also choose annual base-flow index as
a measure of TCCCs. BFI is estimated using a hydrograph
separation procedure in the R package “Ifstat” (Koffler and
Laaha, 2013).

2.3.4 Annual streamflow recession constant (K)

The recession constant is an important catchment character-
istic index measuring the timescale of the hydrological re-
sponse and reflecting water retention ability in the upstream
catchment (Botter et al., 2013). Various estimation methods
have been developed to extract recession segments and to pa-
rameterize characteristic recession behavior of a catchment
(Hall, 1968; Sawaske and Freyberg, 2014; Tallaksen, 1995).

In this study, annual recession analysis (ARA) is per-
formed to obtain the annual streamflow recession constant
(K). In ARA, the linearized Dupuit-Boussinesq equation is
used to parameterize characteristic recession behavior of a
catchment and is written as

do; 1
= - _0,, 8
a ~k? ®
where Q; is the value at time ¢. Equation (8) is investigated

by plotting data points dd—t’ against Q; of all extracted re-

cession segments from hydrographs at each year. The crite-
ria of recession segment extraction are based on the Man-
ual on Low-flow Estimation and Prediction (WMO, 2009).
Then, the annual recession rate (K1) is estimated as the
slope of the fitted straight line of these data points with the
least-squares method. We calculated K using the R package
“Ifstat” (Koffler and Laaha, 2013).

Hydrol. Earth Syst. Sci., 22, 1525-1542, 2018

2.3.5 Annual recession-related aridity index (Alg)

In this study, the recession-related aridity index is defined as
the ratio of recession rate (K ~!') to mean precipitation fre-
quency (1), denoted as
K—l

Alg = ——. )
This ratio plays an important role in controlling the river
flow regime (Botter et al., 2013; Gottschalk et al., 2013) and
serves as an indicator measuring the recession-related aridity
degree of the streamflow in the river channel. For example,
the faster recession process or lower precipitation frequency
may lead to increased runoff loss or decreased precipitation
supply. Consequently, the higher the value Al is, the more
likely low-flow events occur, and vice versa.

2.4 Parameter estimation

The model parameters including 0 (k=1,2,...,m) and
Bix@G=1,2,...,n,k=1,...,m) need to be estimated.
0r(k=1,2,...,m) are estimated from outputs of stationary
frequency analysis through the maximum likelihood method.
We have

t

) =

I
2

L(gl,gz,.. ln[fy (y, |§1,§2,..

1

20m)].  (10)

-
I

where y; is observed low flow at time # and N is the number
of samples. The parameters Bix(i = 1,2,...,n,k=1,...,m)
are estimated through the maximum likelihood method to
produce nonstationary low-flow frequency curves:

Bit, - Bui t=N
=Zln (11)
:Blmv ceey ,Bnm =1

{fY (yt |9{ (Zi,---,Z; |ﬁ]17"'1ﬁ"1)1"'70;n (Ztlv---vzi, |;31ms---7/3nm))}~

L

The residuals (normalized randomized quintile residuals) are
used to test the goodness of fit of fitted model objects (Dunn
and Symth, 1996):

Fo= ! (Fy (y, ‘é’)), (12)

where Fy (-) is the cumulative distribution of y; and o )
is the inverse function of the standard normal distribution.
The distribution of the true residuals 7; converges to standard
normal if the fitted model is correct. A worm plot (Buuren
and Fredriks, 2001) is used to check whether 7, have a stan-
dard normal distribution.

2.5 Model selection

Model selection contains the selection of the type of proba-
bility distribution and the selection of the explanatory vari-
ables to explain the response variables (i.e., distribution pa-
rameters 61 and 6,). In order to obtain the final optimal
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B. Xiong et al.: Multiple causes of nonstationarity in the Weihe annual low-flow series 1531
103°00" E 104°0'0" E 105°00" E 106°0'0" E 107°00" E 108°0'0" E 109°00" E 110°00" E
_ | Legend .
. z
5 @  Meteorological station =
g A Hydrological station g
| = River )
[ Huaxian drainage arca
:' 1 Xianyang drainage area =/
;’; " Elevation (m) ;';
- my 3671 @
318
Z. z
4 4
i Lan :
®
Z. z
=1 =}
53 Jf' ® g
- :’J\\.\ — \\.'7 @
Qellow RIiW ® °
5 7 5
zr e 3
i e 0 30 60 120 180 240 i
- | = = - B -
103°00" E 104°0'0" E 105°00" E 106°00" E 107°00" E 108°0'0" E 109°0'0" E 110°00" E
Figure 2. Location, topography, hydro-meteorological stations and river systems of the Weihe River basin.
Table 3. The summary of candidate explanatory variables and reason of selection.
Category Name Indices Reason of selection (related to) Unit
TCCCs
P Precipitation Main supply source mm
A Mean frequency of precipitation events ~ Water supply intensity per day
T Temperature Evaporation loss °
EP Potential evapotranspiration Evaporation loss mm
Algp  Climate aridity index Degree of meteorological drought -
BFI Base-flow index Water storage capability -
K Recession constant Water storage capability day
Alg Recession-related aridity index Both the water storage and supply -
capability
HA
IAR Irrigation area Both irrigation diversion and evapora- 106 hm?
tion loss
POP Population Water withdrawal loss for agricultural, 106
domestic and industrial purposes
GDP  Gross domestic product Water withdrawal loss for agricultural, CNY 10°

domestic and industrial purposes

model, the selection of the explanatory variables for 6; and
6, is conducted by stepwise selection strategies (Stasinopou-
los and Rigby, 2007; Venables, 2002): i.e., select a best sub-
set of candidate explanatory variables for 61 using a forward
approach (which starts with no explanatory variable in the
model and tests the addition of each explanatory variable us-
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ing a chosen model fit criterion); given this subset for 6 se-
lect another subset for 8, (forward). The stepwise selection
strategies can get a series of stepwise models with different
numbers of explanatory variables, as shown in Fig. 1. In or-
der to detect how the number of explanatory variables influ-
ences the performance of the model for describing nonsta-
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Figure 3. The annual minimum low flows and fitted trend lines in both Huaxian (H) and Xianyang (X) gauging stations.

tionarity, we investigate the eight types of stepwise models
as shown in Table 2: the zero-covariate model or stationary
model (MO), the time covariate model (M1), the single physi-
cal covariate model M2 (single TCCCs covariate model M2a
or single HA covariate model M2b), two TCCCs covariates
model (M3), the optimal TCCCs covariates model (M4), the
optimal HA covariates model (M5) and the final model (M6).
The model fit criterion is based on the Akaike’s information
criterion (AIC; Akaike, 1974) as shown by the following
AIC = —2ML + 2df, (13)
where ML is the log-likelihood in Eq. (11) and df is the num-
ber of degrees of freedom. The model with the lower AIC
value was considered better.

3 Study area and data
3.1 The study area

The Weihe River, located in the southeast of the north-
west Loess Plateau, is the largest tributary of the Yel-
low River, China. The Weihe River has a drainage area of
134766 km?2, covering the coordinates of 33°42'-37°20' N,
104°18’-110°37'E (Fig. 2). This catchment generally has a
semi-arid climate, with extensive continental monsoonal in-
fluence. Average annual precipitation of the whole area over
the period 1954-2009 is about 540 mm and has a wide range
(400-1000 mm) in various regions. Under the significant im-
pacts of climate change and human activities in the Weihe
River basin in recent decades, the hydrological regime of the

Hydrol. Earth Syst. Sci., 22, 1525-1542, 2018

river has changed over time (Du et al., 2015; Jiang et al.,
2015a; Xiong et al., 2015).

In the Weihe basin, the impacts of agricultural irrigation on
runoff have been found to be significant (Jiang et al., 2015a;
Lin et al., 2012). Lin et al. (2012) mentioned that the annual
runoff of the Weihe River was significantly affected by ir-
rigation diversion of the Baoji Gorge irrigation district. The
irrigated area of the Baoji Gorge irrigation district increased
over time since the founding of PR. China in 1949, and, due
to one influential irrigation system project in that area, it be-
came more than twice as large as the original irrigation area
since 1971. Jiang et al. (2015a) demonstrated that, in the
Weihe basin, irrigated area, as compared with the other in-
dices, e.g., population, gross domestic product and cultivated
land area, was a more suitable human explanatory variable
for explaining the time-varying behavior of annual runoff.
With the above background, it is important to consider the
effects of human activities that mainly originate from irriga-
tion diversion, especially for studying low-flow series in this
basin. The estimations of annual recession rate (K 1) by the
daily streamflow data are expected to incorporate the infor-
mation of impacts of water diversions on the low flows in the
river channel.

3.2 Data

We used daily streamflow records (1954-2009) provided
by the Hydrology Bureau of the Yellow River Conservancy
Commission from both Huaxian station (with a drainage area
of 106 500 km?) and Xianyang station (with a drainage area
of 46 480 km?). Low-flow extreme events were selected from

www.hydrol-earth-syst-sci.net/22/1525/2018/
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Figure 4. Frequency distributions (using the kernel density estimations) and time series processes of TCCCs variables in both Huaxian (H)

and Xianyang (X) stations.

the daily streamflow series using the widely used annual
minimum series method (WMO, 2009). AM,, is the annual
minimum n-day flow during hydrological year beginning on
1 March. Consequently, AM;, AM7, AMj5 and AM3( are
selected as low-flow extreme events in this study. The origi-
nal measure unit of streamflow data (m3 s~1) is converted to
10~*m? s~! km~2 for convenience of comparison of results
between the Huaxian and Xianyang gauging stations

We downloaded daily total precipitation and daily mean
air temperature records for 19 meteorological stations over
the basin from the National Climate Center of the China Me-
teorological Administration (source: http://www.cma.gov.
cn/). The areal average daily series of both variables above
Huaxian and Xianyang stations are calculated using the
Thiessen polygon method (Szolgayova et al., 2014; Thiessen,
1911). The annual average temperature (7)) and annual total
precipitation (P) over the period 1954-2009 are calculated
for each catchment.

Human activity data (i.e., gross domestic product, popu-
lation and irrigation area) were taken from annals of statis-
tics provided by the Shaanxi Provincial Bureau of Statistics
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(http://www.shaanxitj.gov.cn/) and Gansu Provincial Bureau
of Statistics (source: http://www.gstj.gov.cn/).

4 Results and discussion
4.1 Identification of nonstationarity

The graphical representation and statistical test provide a pre-
liminary analysis for low-flow nonstationarity. The graphical
representations of time-series data help visualize the trends
of related variables (i.e., low flow, TCCCs and HA variables),
the density distributions of TCCCs variables, and the cor-
relations between low-flow variables and these explanatory
variables. In Fig. 3, four annual minimum streamflow series
(AM;, AM7, AM;5 and AMj3g) in both Huaxian and Xi-
anyang gauging stations show overall decreasing trends, as
indicated by the fitted (dashed) trend lines. Compared with
Huaxian, Xianyang has a larger runoff modulus (the flow per
square kilometer) and a larger decrease in annual minimum
streamflow series. For example, the decline slope of AM3g is

Hydrol. Earth Syst. Sci., 22, 1525-1542, 2018
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H Algp BFI K Algx GDP POP IAR
1
AM, -0.42 036 -0.37 -0.15 -0.51 8:
0:4
AM; -0.45 0.36 -0.4 -0.15 -0.54 02
0
AM;;s -0.48 039 042 -0.41 -0.12 -0.52 gi
0:6
AM3, -0.49 042 04 -0.43 -0.07 -0.49 08

X P A T EP Algp BFI K Algx GDP POP IAR
AM; 042 0.34 -0.38 -0.33 -0.42 0.27 -0.39 -0.22
AM; 043 034 -0.39 -0.33 -0.43 0.28 -0.37 -0.22
AM;s 0.38 -0.45 -0.37 -0.49 0.31 0.42 -0.33 -0.26

AM3, -0.5 -0.38 -0.51 0.32 0.37 -0.33 -0.32

Figure 6. The Pearson correlation coefficients matrix between the
annual minimum flow series and candidate explanatory variables in
Huaxian (H) and Xianyang (X) stations; the darker color intensity
represents a higher level of correlation (blue indicates positive cor-
relation and red indicates negative correlations).

—0.0725 (10~*m3 s~ km—2 yr‘l) in Huaxian station while
Xianyang station it is —0.1338 (10™*m3 s~ km =2 yr~1).

Figure 4 shows the kernel density estimations and time
processes of TCCCs variables for both Huaxian (H) and Xi-
anyang (X) stations. The results show that these variables
have different variation patterns. For example, the mean fre-
quency of precipitation events (1) has a decreasing trend,
while temperature (7') has an increasing trend. As presented
by Fig. 5, three HA variables have a significant upward trend,
especially the irrigation area which is increased greatly after
about 1970, suggesting that the impact of human activities in
this basin has increased over time.

The significance of trends in the four annual minimum
streamflow series and TCCCs variables is tested by the
Mann—-Kendall trend test (Kendall, 1975; Mann, 1945; Yue
et al., 2002), and the change points in these series are de-
tected by Pettitt’s test (Pettitt, 1979). The results in Table 4
show that, in both Huaxian and Xianyang stations, the de-
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creasing trends in all the four low-flow series (AM1, AMy,
AM;5 and AM3() and two explanatory variables (A and P),
as well as the increasing trends in 7', EP, and Algp are sig-
nificant at the 0.05 level (Table 4), but BFI shows no sig-
nificant trends. However, K and Al had significantly de-
creasing trends only in Huaxian station (p value < 0.05). The
results of change-point detection show that all low-flow se-
ries are located at 1968—1971 (p value < 0.05) except AM3g
at Xianyang station whose change point is located at 1993
(p value < 0.05); for the eight candidate explanatory vari-
ables, the change points of the variables related to tempera-
ture (T, EP, Algp) in both stations are located at 1990-1993
(p value < 0.05), the change points of the variables related to
precipitation (A, P) in both stations are close at 1984—-1990
(p value < 0.186) and the change points of the variables re-
lated to streamflow recession (K, Alg) in Huaxian station
are located at 1968—1971 (p value < 0.05). However, BFI in
both stations and K and Al in Xianyang station show no
significant change points.

A preliminary attribution analysis is performed using the
Pearson correlation matrix to investigate the relations be-
tween the annual minimum series and eight candidate ex-
planatory variables. Figure 6 indicates that there are signifi-
cant linear correlations between the four minimum low-flow
series (AM, AM7, AMj5 and AM3() and all the explana-
tory variables except GDP have the absolute values of Pear-
son correlation coefficients larger than 0.27 (p value < 0.05).
These potential physical causes of nonstationarity in low
flows are further considered by establishing the low-flow
nonstationary model with TCCCs and HA variables in the
following section.

4.2 Nonstationary frequency analysis models

4.2.1 Single covariate models

Figure 7 presents the AIC values of the four types of models
(MO, M1, M2a and M2b) fitted for the low-flow series (AM,
AM7, AM5 and AM3p). Some interesting results are shown

as follows. First, nonstationary models (M1, M2a and M2b)
have lower AIC values than stationary model (MO0), which
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Table 4. The results of trend test and change-point detection for both the four low-flow series and TCCCs variables in Huaxian and Xianyang.

Station Variable Mann-Kendall test Pettitt’s test
S p value  Change point p value

Huaxian
AM; =564  6.91E—05(***) 1968 1.34E—03(*%*)
AM7; =560  7.79E—05(***) 1968 1.44E—03(**)
AMi5 —438 2.01E—03(**) 1971 4.85E—03(**)
AM3 —378 7. T1E—03(**) 1971 9.96E—03(**)
P —292 3.97E—02(*) 1985 1.86E—01( )
A —632  8.20E—06(***) 1984  3.02E—04(***)
T 752 1.11E—0Q7(**%*) 1993  8.17E—06(***)
EP 548  1.11E—04(***) 1993 1.98E—03(**)
Algp 384 6.79E—03(**) 1990 6.03E—02(*)
BFI 52 7.19E—01() 1998 3.88E—01()
K —312 2.79E—02(*) 1968 8.11E—02(*)
Alg 376 8.04E—03(**) 1971 3.60E—02(*)

Xianyang
AM; —517  2.65E—04(***) 1968 2.2E—03(*%)
AM7; —483  6.58E—04(***) 1970 2.5E—03(**)
AMi5 —474  8.29E—04(***) 1971 2.2E—03(*%*)
AM3 —570  5.78E—05(***) 1993 4 5E—04(*%*)
P —414 3.51E—03(*%*) 1990 1.45E—02(*)
A —652  4.21E—06(***) 1984  6.00E—05(**%*)
T 724 3.22E—07(¢*%*) 1993  5.41E—06(***)
EP 372 8.74E—03(**) 1993 3.01E—03(**)
Algp 454 1.37E—03(**) 1993 8.82E—03(**)
BFI 64 6.56E—01() 2003 8.65E—01()
K —-210 1.39E—01() 1966 2.03E—01()
Alg 290 4. 11E—02(*) 1968 1.63E—01()

Significance codes: 0 “***” (.001 “**” (.01 “*” 0.05 “*” 0.1 “” 1

suggests that nonstationary models are worth considering.
Second, for Huaxian station, irrespective of the chosen ex-
planatory variables, the distribution type plays an important
role in modeling nonstationary low-flow series. For example,
PIII, GA and WEI distributions in AMj5 and AMj3( cases
have lower AIC values than LOGNO and GEV distribu-
tions. However, for Xianyang, choosing a suitable explana-
tory variable may be more important than choosing a distri-
bution type. For example, variables ¢, P, T, Algp, POP and
IAR in most cases have lower AIC values than the other ex-
planatory variables. Finally, in Huaxian, the lowest AIC val-
ues for modeling AM;, AM7, AM15 and AM3 are found in
GEV_M2b_IAR, LOGNO_M2b_IAR, PIII_M2a_Alg and
GA_M2a_Alkg, respectively, while in Xianyang the lowest
AIC values for modeling AM;, AM7, AM;5 and AMj3( are
found in GEV_M2b_IAR, GEV_M2b_IAR, PIII_M2b_IAR
and GEV_M2b_IAR, respectively. These results indicated
that for explaining nonstationarity of low flow in Huaxian
station, IAR is the most dominant HA variable and Al g is the
most dominant TCCCs variable, while in Xianyang the most
dominant HA variable is IAR and the most dominant TCCCs
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variables causing nonstationarity in AM;, AM7, AM;5 and
AM3g are K, Algp, Algp and T, respectively.

Figure 8 shows the diagnostic assessment of the GA_M?2
model (with the optimal explanatory variable) for AM3g in
both Huaxian and Xianyang stations. The centile curve plots
of GA_M2 (Fig. 8a and b) show the observed values of
AM3, the estimated median and the areas between the Sth
and 95th centile. Figure 8a shows the response relationship
between AMj3qp and Alg in Huaxian: the increase in Alg
means the smaller magnitude of low-flow events because a
high value of Alx (faster stream recession or fewer rainy
days) may lead to faster water loss or less supply. In Fig. 8b,
the higher values of IAR means the smaller magnitude of
low-flow events, which suggests that AR plays an important
role in driving low-flow generation in Xianyang. Figure 8c
and d show that the worm points are within the 95 % con-
fidence intervals, thereby indicating a good model fit and a
reasonable model construction.
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Figure 7. Comparisons among M0, M1 and M2 based on the AIC values for the four observed low-flow series in Huaxian (H) at (a) and
Xianyang (X) at (b); darker red color represents a higher goodness of fit.

4.2.2 Multiple covariate models

Figure 9 shows the AIC values of the stationary model (MO),
time covariate model (M1) and physical covariate models
(M2a, M2b, M3, M4, M5 and M6) for AM3(. As shown in
Fig. 9, M4 (nonstationary GA distribution with the optimal

Hydrol. Earth Syst. Sci., 22, 1525-1542, 2018

TCCCs variables) has a good performance; after adding the
HA variables, M6 with the lowest AIC value is attained; it
can be found that the combination of multiple TCCCs vari-
ables plays a major role in changing the low flows of the
Weihe River, but the influence of HA variables should not be
ignored.
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A summary of frequency analysis based on nonstationary
GA distribution AM3 is presented in Table 5. We choose to
focus on M4, M5 and M6. When only using TCCCs vari-
ables to model nonstationary low-flow frequency distribu-
tion, the results of M4 show the optimal combination of ex-
planatory variables for all low-flow series contains more than
three variables. For example, for AM3( of Huaxian, the opti-
mal combination of TCCCs variables includes Alg, BFI and
Algp. When only HA variables are used, the results of M5
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show IAR is important to the low flows in this area. And M4
has a better performance than M5. When using both TCCCs
variables and HA variables, the results of M6 show the opti-
mal combination contains multiple TCCCs variables and the
irrigation area. For Huaxian, the optimal combination of all
explanatory variables is Alg, IAR, BFI and Algp, while for
Xianyang, the optimal combination is IAR, Algp and BFIL.
We can also find that if two TCCCs variables are highly cor-
related, they do not seem to be selected as the explanatory

Hydrol. Earth Syst. Sci., 22, 1525-1542, 2018
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Table 5. The summary of frequency analysis using GA distribution for AM3( in Huaxian and Xianyang.

Station  Model codes  Variables AIC Distribution parameters
In(6) In(®) 03
Huaxian
GA_MO - 2323 1.09 —-0.133 -
GA_M1 t 2255  1.09-0.32¢ -0.133 -
GA_M2 Alg 2174 1.09-0.59Alg -0.133 -
GA_M2b IAR 218.3  1.09-0.47IAR —0.133 -
GA_M3 Alg, BFI 2137  1.09-0.50AIg + 0.32BFI -0.133 -
GA_M4 Alg, BFI, Algp 211.1  1.09-0.40Alg + 0.32BFI — 0.34Algp -0.133 -
GA_MS5 IAR 218.3  1.09-0.47IAR —0.133 -
GA_M6 Alg,IAR, BFL, Algp 207.0 1.09-0.30Alx — 0.27IAR + 0.32BFI — 0.23Algp -0.133 -
Xianyang
GA_MO - 285.8 1.59 —-0.184 -
GA_M1 t 270.1  1.59-0.48¢ -0.184 -
GA_M2a T 270.1  1.59-0.50T —0.184 -
GA_M2b IAR 267.8  1.59-0.50IAR -0.184 -
GA_M3 T,P 267.1 1.59-0.34T +0.32P —-0.184 -
GA_M4 T, P,BFL, K 2654 1.59-0.33T +0.27P 4+ 0.22BFI 4 0.18K —0.184 -
GA_MS5 IAR 267.8  1.59-0.50IAR —-0.184 -
GA_M6 IAR, Algp, BFI 259.7  1.59-0.28IAR — 0.36 Algp + 0.26BFI —0.184+0.23IAR -
— (a) GA_MG: In(6,)=1.09-0.3047,-0.27IAR+ - (b) GA MG6: In(8,)=1.59-0.2814R-0.36 Al +
's 100.0 0.32BFI-0.234Igp. In(6,)=-0.133 ‘s 0.26BFI, In(6,)=-0.184+0.23[4R
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Figure 10. Performance assessments of GA_M6 for AMj3g in Huaxian (H) on the left panel and Xianyang (X) on the right
panel. (a) and (b) are the centile curves plots of GA_M6 (red lines represent the centile curves estimated by GA_M6; the 50th centile
curves are indicated by thick red; the yellow-filled areas are between the 5th and 95th centile curves; the filled black points indicate the
observed series); (¢) and (d) are the worm plots of GA_M6 for the goodness-of-fit test; a reasonable model fit should have the data points
fall within the 95 % confidence intervals (between the two red dashed curves).
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Figure 11. Contribution of selected explanatory variables to ¢! =1In (#]) —In () in different periods based on GA_M6.

variables at the same time. For example, in terms of air tem-
perature (7'), evapotranspiration and the climate aridity index
(Algp), only one of them will appear in the optimal combi-
nation. This suggests that multicollinearity problem in the
multiple variables analysis can be reduced, which will help
obtain more reliable GLM parameters for contribution anal-
ysis.

The diagnostic assessment of the GA_M6 model for AM3q
at two stations is presented by Fig. 10. The centile curve
plots of GA_M6 (Fig. 10a and b) show a more sophisticated
nonstationary modeling than GA_M?2 (Fig. 8). When using
GA_MG6 to model AM3p in Huaxian (Fig. 10a), similar to
GA_M2, the lower low flows are found to also correspond
to a higher value of Alg, but GA_MB6 is able to identify the
more complex variation patterns of low flows through the in-
corporation of IAR, BFI and Algp. Figure 10c and d show
that the data points of worm plots of GA_M6 are almost
within the 95 % confidence intervals, thereby indicating an
acceptable model fit and a reasonable model construction.

Figure 11 presents the contribution of each selected ex-
planatory variable to In (6]) —In (61) in the observation year
based on GA_M6 for AM3( in Huaxian and Xianyang. We
can find that for Huaxian, the simulation value of In (9{ ) fre-
quently occurs below In (5 1) during the two periods of about
1970-1982 and 1993-2003, which is in accordance with
the observed decrease in AMj3p of Huaxian station during
these periods. In the former period 1970-1982, both Alx and
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BFI contribute a lot of negative amount to In (9{) —1In (5 1),
whereas, during 1993-2003, the contribution of both Alg
and BFI decreases significantly. However, IAR has almost
equal negative contribution to In (6) —In () in both peri-
ods. Unlike the former three variables, the significant neg-
ative contribution of Algp is only found in 1993-2003. For
AM3 of Xianyang, the contribution of IAR, Algp and BFI
is similar to that at Huaxian station in two periods; however,
Al is not included in the final model.

4.3 Discussion

The impacts of both human activities and climate change on
low flows of the study area led to time-varying climate and
catchment conditions. Nonstationary modeling for annual
low-flow series using TCCCs variables and/or HA variables
as explanatory variables is clearly different from either the
stationary model (MO) or the time covariate model (M1). The
result demonstrates that considering multiple drivers (e.g.,
the variability in catchment conditions), especially in such
an artificially influenced river, is necessary for nonstationary
modeling of annual low-flow series.

In this study area, nonstationary modeling considering
TCCCs is supported by the following facts and findings.
For human activities, an important milestone representative
is the completion and operation of the irrigation system on
the plateau in the Baoji Gorge irrigation district since 1971

Hydrol. Earth Syst. Sci., 22, 1525-1542, 2018
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(Sect. 3.1). Figure 5c shows the change in irrigation area in
this basin. And the change-point detection test in Sect. 4.1
shows that significant change points of low-flow series oc-
cur exactly at around 1971. This result demonstrates that
changes in AM3p may involve a consequence of this project.
In addition to human activities, climate change also makes a
considerable contribution to nonstationarity of low flows, as
suggested by nonstationary modeling using TCCCs variables
with stepwise analysis. Actually, climate driving pattern may
strengthen after nearly 1990, which is indicated by change-
point detection test of both annual mean temperature (7') and
annual precipitation (P) as well as the behavior of annual
low-flow series after nearly 1990. There are two faster reces-
sion periods, the 1970s and the 1990s, as shown in Fig. 4.
The reasons for the faster recession are likely to be related to
the above-mentioned project (e.g., the increasing diversion
for irrigation) and climate change (e.g., the intensified evap-
oration) but also could be human alterations on catchment
properties, such as vegetation cover change. In conclusion,
the temporal variability in irrigation area, air temperature,
precipitation (the frequency and volume of rain events) and
streamflow recession should be the main driving factors of
generating low-flow regimes in this basin. Overall, the causes
of nonstationarity in the category for two gauging stations
have no clear difference but have some differences in the rel-
ative importance. As shown in Table 5, when modeling the
low-flow series of Huaxian using TCCCs variables, the op-
timal model (M4) preferred the variables that are related to
recession process; however, for Xianyang, the preferred vari-
ables are related to temperature. The reason for this may be
that, as a downstream station, Huaxian station suffers more
intensive human activity, so that the importance of tempera-
ture change to the low-flow change is reduced meanwhile the
importance of streamflow recession (related to the capability
of water storage) change is enhanced. Ignoring the negative
impacts of the errors in estimating annual recession constants
(K') which are caused by insufficient data points of extracted
stream segments at some wet years may lead to the propaga-
tion of high errors in annual recession analysis and accord-
ingly affect the quality of nonstationary frequency analysis
when K is used as an explanatory variable. Further study
will give a more reliable estimation of K through the im-
provement of annual recession analysis. In addition, it should
be noted that the population recorded in the annals of statis-
tics may not be equal to the actual population living in the
catchment. If the population in the annals is used as the ex-
planatory variable, this difference may lead to the uncertainty
of model parameter estimations. Nonetheless, it is the best
population data so far and the explanatory variable POP is
excluded in the final model (M6).
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5 Conclusion

There is an increasing need to develop an effective nonsta-
tionary low-flow frequency model to deal with nonstation-
arities caused by climate change and time-varying anthro-
pogenic activities. In this study, time-varying climate and
catchment conditions in the Weihe River basin were mea-
sured by annual time series of the eight indices, i.e., total
precipitation (P), mean frequency of precipitation events (1),
temperature (7), potential evapotranspiration, climate aridity
index (Algp), base-flow index, recession constant (K) and
the recession-related aridity index (Alg). The nonstation-
ary distribution model was developed using these eight TC-
CCs indices and/or three HA indices as candidate explana-
tory variables for frequency analysis of time-varying annual
low-flow series caused by multiple drivers. The main driv-
ing forces of the decrease in low flows in the Weihe River
include reduced precipitation, warming climate, increasing
irrigation area and faster streamflow recession. Therefore, a
complex deterioration mechanism resulting from these fac-
tors demonstrates that, in this arid and semi-arid area, the
water resources could be vulnerable to adverse environmen-
tal changes, thus portending increasing water shortages. The
nonstationary low-flow model considering TCCCs can pro-
vide the knowledge of low-flow generation mechanism and
give a more reliable design of low flows for infrastructure
and water supply.
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