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Abstract

We present a generalization of the divide-expand-consolidate (DEC) framework for

local coupled-cluster calculations to periodic systems and test it at the second-order

Møller-Plesset (MP2) level of theory. For simple model systems with periodicity in

one, two, and three dimensions, comparisons with extrapolated molecular calculations

and the local MP2 implementation in the Cryscor program show that the correlation

energy errors of the extended DEC (X-DEC) algorithm can be controlled through a

single parameter, the fragment optimization threshold. Two computational bottlenecks

are identified: the size of the virtual orbital spaces and the number of pair fragments

required to achieve a given accuracy of the correlation energy. For the latter, we propose

an affordable algorithm based on cubic splines interpolation of a limited number of pair-

fragment interaction energies to determine a pair cutoff distance in accordance with

the specified fragment optimization threshold.
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1 Introduction

While coupled-cluster (CC) theory1,2 is widely accepted as the most successful electronic-

structure method in the sense that it defines a convergent hierarchy of increasingly accurate

approximations to electronic ground- and excited-state energies and properties of molecular

systems, it is not the most frequently used method in computational chemistry. There are

two main reasons for this. First, the standard formulation of CC theory is based on a

single Hartree-Fock (HF) reference determinant, which generally must be a sufficiently good

approximation to the exact wave function3, thus excluding systems with multiconfigurational

(ground-) states. Second, the polynomial-scaling computational cost of CC theory limits the

applicability to small molecules. Consequently, much effort has been directed towards the

formulation of reduced-scaling implementations of CC methods in recent years.

The key to reduced-scaling or, ideally, linear-scaling calculations is exploitation of the

locality of electron correlation, as was pointed out by Sinanoǧlu4 and Nesbet5 more than

half a century ago. Local correlation algorithms were pioneered by Pulay and Sæbø6–10

in the 1980s, using the freedom granted by HF theory to select bases for the occupied and

virtual orbital spaces that expose the proper locality of electronic excitation amplitudes. This

has led to a variety of local correlation approaches, with the local CC methods by Werner

and co-workers11–14, and by Neese and co-workers15–18 as prominent recent examples. Note

that in this paper, second-order Møller-Plesset (MP2) theory is classified as the lowest-level

method in the CC hierarchy: MP2, coupled-cluster singles-and-doubles (CCSD), coupled-

cluster singles-and-doubles with perturbative triples (CCSD(T)), coupled-cluster singles-and-

doubles-and-triples (CCSDT), and so on.

Whether local or canonical, most CC developments have been aimed at finite systems,

whereas extended systems have received relatively little attention. The main reason is the

steep increase in computational cost compared to Kohn-Sham density-functional theory,

which is the undisputed workhorse of computational electronic-structure theory. Although

periodic boundary conditions allow us to formally map the infinite problem onto a single
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reference unit cell, Brillouin-zone sampling increases the computational effort by several

orders of magnitude compared to the cost of a single unit cell treated as a finite system.

Consequently, even for small unit cells, exact canonical (nonlocal) implementations of CC

theory face a steep scaling wall, especially for three-dimensional (3D) systems.

For one-dimensional (1D) systems, Hirata, Bartlett and co-workers19–22 have presented

Gaussian-based canonical CCSD implementations where infinite lattice sums are truncated

by prescreening. More recently, Grüneis, Kresse, Alavi et al.23–26 reported plane-wave-based

canonical MP2, CCSD, and CCSD(T) implementations applicable to 3D systems through

virtual space truncations. Using Gaussian basis functions, McClain et al.27 also reported

canonical MP2 and CCSD implementations for 3D systems, which avoid truncation of the

virtual space and thus are limited to modest Brillouin-zone sampling. In addition to ground-

state energies, McClain et al.27 implemented equation-of-motion CC28,29 for computing cor-

related band structures. Ayala et al.30 used Almlöf’s Laplace transform technique to elimi-

nate the orbital-energy denominators31–33 and recast the MP2 expression in Gaussian-type

atomic-orbital (AO) basis to exploit sparsity. Del Ben et al.34,35 devised a massively parallel

MP2 algorithm with a hybrid Gaussian and plane-wave basis and Brillouin-zone sampling

restricted to the Γ point, handling instead the finite-size problem by a supercell approach.

While embedding36–38 and incremental39–43 techniques may also be viewed as local cor-

relation approaches, the only implementation of a fully 3D periodic local CC method is the

MP2 approximation available in the Gaussian-based Cryscor program44–49. It is essentially

the molecular approach of Werner and co-workers11 subjected to periodic boundary condi-

tions, using (generalized) Wannier orbitals50–52 for the occupied space and Pulay’s projected

atomic orbitals (PAOs)6 for the virtual space.

Infinite periodic systems are significantly more challenging than finite molecular systems

from the perspective of numerical accuracy, since several cutoffs and other approximations

must be invoked to make the calculations feasible. This makes comparisons of, say, correla-

tion energies from different algorithms difficult, not least for advanced electronic-structure
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methods like CC theory, and a simple effective mechanism for controlling error is of the

utmost importance. In this paper we present a preliminary investigation of the periodic gen-

eralization of the divide-expand-consolidate (DEC) framework for molecular CC methods

developed by Jørgensen and co-workers53–58. The DEC framework supports the complete

hierarchy of ground-state CC models, including analytic evaluation of forces59, is massively

parallelizable60, and offers error control through a single parameter61. The single-parameter

error control is particularly important for the generalization of the DEC framework to peri-

odic systems, enabling self-validation by straightforward convergence tests.

The molecular DEC framework53–61 is based on localized occupied and virtual orbitals,

which are individually assigned to atomic sites by some physically motivated means such

as Mulliken charge, Löwdin charge, or orbital centroid. This allows us to recast the CC

correlation energy as a sum over atomic fragment energies EA and pair-fragment interaction

energies ∆EAB, that is,

E =
∑
A

EA +
∑
B>A

∆EAB (1)

While this expression is formally exact and offers no computational savings, reduced scaling

is achieved by restricting the orbital subspace accessible for each atom A to a neighbor-

hood of A in such a way that the error in the atomic fragment energy is less than a given

threshold, the fragment optimization threshold (FOT)53. The fragment orbital subspaces

thus obtained are then used to compute pair-fragment interaction energies ∆EAB. While

the size of each atomic fragment is asymptotically constant, leading to linear scaling for the

atomic fragment evaluations, the overall procedure scales quadratically with the number of

atoms due to the pair fragments. It can, however, be made linear-scaling by noting that

∆EAB decays asymptotically as r−6, with r the distance between A and B, thus allowing

truncation of the pair summation55. Since the atomic fragment optimizations and the sub-

sequent pair fragment calculations are independent, the algorithm is embarassingly parallel

by construction—provided, of course, enough memory is available to each compute process.

Adapting the DEC framework to extended periodic systems is, in principle, straight-
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forward using (generalized) occupied and virtual Wannier functions in place of localized

molecular orbitals. Very little work has been done on the localization of virtual Wannier

orbitals, presumably because they would be mainly useful for local correlation methods,

which have not been widely pursued for extended systems. For molecules, virtual orbitals

may now be routinely computed, even with diffuse AO basis sets, using suitable localization

functionals and state-of-the-art optimization algorithms62. Although translation symmetry

complicates the situation for extended systems, the fact that well localized occupied Wannier

functions can be obtained for gapped systems, including semiconductors63, makes it possible

to also obtain local virtual functions. Even if existing Wannierization algorithms may not be

well suited for the virtual space in all cases, an alternative procedure would be to formulate

the periodic DEC scheme starting from the direct-space PAOs, whose locality is limited by

the decay behavior of the density matrix. With appropriate handling of linear dependence,

the PAOs might be further localized using recently developed techniques for nonorthogonal

orbital localization64. In this work, however, we assume that virtual Wannier functions may

be computed.

For extended systems, we need to compute the correlation energy per unit cell, which is

easily achieved by summing only over atoms A belonging to the reference unit cell in eq. (1).

The sum over atoms B must formally extend over the entire infinite lattice, however. The

pair-fragment interaction energies still decay asymptotically as r−6 (for non-conducting sys-

tems) but the number of pairs within a sphere of radius R is proportional to R3 for a 3D

system, implying that the number of significant pairs to be computed increases dramati-

cally as we go from a finite molecule to an infinite 3D system. Even distant pair-fragment

interaction energies may thus be important for the total correlation energy46.

In this paper, we present an adaptation of the DEC algorithm to extended systems with

periodic boundary conditions—referred to as the extended DEC (X-DEC) algorithm. Using

very simple model systems, we validate the X-DEC algorithm by comparing MP2 correlation

energies with those obtained from Cryscor and extrapolated cluster calculations. Although
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computational performance is not a major concern in the present work, we analyze atomic

fragment sizes from a performance perspective and investigate a procedure to determine the

pair cutoff distance in a black-box manner using interpolation.

2 The extended Divide-Expand-Consolidate (X-DEC)

algorithm for periodic systems

In this section, the periodic formulation of the DEC algorithm is detailed for the MP2

approximation. The X-DEC algorithm follows closely the DEC approach originally developed

in the molecular framework53–55. For the sake of clarity, the original DEC algorithm will be

referred to as “molecular DEC” in order to distinguish it from its periodic counterpart.

A sketch of the main steps in the X-DEC method is given in Algorithm 1. Setup of a

reference state and orbitals is explained in Section 2.1, periodic amplitude and energy MP2

equations are presented in Section 2.2, and the specific procedures required by the periodic

boundary conditions in the different steps are detailed in Sections 2.3, 2.4, and 2.5.

2.1 Local Wannier representation of the periodic Hartree-Fock

wave function

The starting point for the X-DEC-MP2 calculation is a HF reference state, which is computed

by the periodic code Crystal65. This reference state is expressed in terms of intrinsically

delocalized Bloch orbitals and is expanded in an atom-centered Gaussian basis set. As men-

tioned above, in X-DEC, both the occupied and virtual spaces must be constructed from

localized orbitals. The X-DEC computations presented in this paper use Wannier functions

(WFs) that are obtained from the HF Bloch orbitals by the localization-wannierization pro-

cedure implemented in the Crystal program.52 Each Wannier function WpL is characterized

by an orbital index p and a cell index L, and orbitals outside the cell 0 are obtained by a
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Algorithm 1 Outline of the X-DEC algorithm. The main steps are essentially as in the
molecular DEC algorithm53,54, but in X-DEC, atomic fragments are optimized only within
the unit cell and fragments outside the unit cell are obtained by translation. Below, atoms
are denoted by A ≡ (A,LA), where A is an atom ID and LA is a cell coordinate vector.

1: for each atom A ≡ (A,0) do
2: Obtain an optimized atomic fragment F(A,0).
3: Compute the correlation energy E(A,0) of F(A,0).
4: Store F(A,0) and E(A,0).
5: end for

6: for each atom A ≡ (A,0) do
7: FA ← F(A,0)

8: Set up a list NA of all neighbor atoms within a chosen cutoff radius.

9: for each atom B = (B,LB) in the neighbor list NA do
10: if LB == 0 then
11: FB ← F(B,0) . Fragment of atom (B,0)
12: else
13: FB ← TLB

F(B,0) . Translate fragment by LB.
14: end if

15: Set up the pair fragment FA,B using FA and FB.
16: Compute and store the correlation energy EA,B of FA,B.
17: end for
18: end for

19: Sum the atomic and pair fragment energies as in Equation (9).
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translation

WpL(r) = Wp0(r−RL), (2)

where RL is the distance vector between the reference unit cell and the cell with coordinates

L. The Wannier orbitals satisfy the orthonormality condition

∫
WpL(r)WqM(r)dr = δpqδLM, (3)

where δ is the Kronecker delta. Crystal uses Boys localization,66 in which the sum of the

orbital second central moment (PSM-1)

ξSM1 =
∑
p

µp2 =
∑
p

〈p0|(r− 〈p0|r|p0〉)2|p0〉 (4)

is minimized, to construct the Wannier functions. Thus obtained, the Wannier functions are

often referred to as ’maximally localized’51 in the sense of smallest possible orbital spread,

σp =
√
µp2. For the purpose of the X-DEC algorithm, the set of Wannier orbitals obtained

from Crystal are then further localized by minimizing the second power of the second

central moment (PSM-2)62

ξSM2 =
∑
p

(µp2)
2, (5)

with respect to rotations among the occupied or the virtual orbitals in the referene unit cell

only. The PSM-2 functional penalizes outliers with relatively large orbital spread at the

expense of the most local orbitals, which become somewhat less local than with PSM-1.67

As part of the X-DEC calculation, a set of occupied and virtual Wannier functions is

assigned to each atomic center in the reference unit cell. Orbitals in other cells are obtained

by applying the translation operation (2). Details on the assignment of Wannier functions
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to atoms can be found in Section 2.3.

Assuming a basis of real Wannier functions {WpL}, the two-electron integrals over these

orbitals are denoted

(pq|rs) ≡
∫
dr1

∫
dr2Wp(r1)Wq(r1)

1

|r1 − r2|
Wr(r2)Ws(r2), (6)

where the composite index p ≡ (p,L) is introduced for the sake of compactness.

2.2 MP2 energy and amplitude equations

In the spin-restricted formalism with a set of orthonormal HF Wannier orbitals, the MP2

correlation energy per unit cell may be written as

E =
∑
ijab

Eab
ij , (7)

where i runs over the occupied orbitals in the reference unit cell, j over all occupied orbitals,

and a and b over all virtual orbitals. In eq. (7),

Eab
ij = tabij {2 (ia|jb)− (ib|ja)} (8)

is the contribution to the MP2 energy coming from the orbitals i, j, a, and b, and tabij are

the MP2 amplitudes.

As in the molecular case53–55, the summation over the orbitals i, j, a, and b can be

re-organized in terms of (on-site) atomic and pair-fragment contributions. The MP2 energy

is then written as

E =
∑
A

E(A,0) +
∑
A<B

∆E(A,0),(B,0) +
∑
A

∑
B

∑
LB 6=0

∆E(A,0),(B,LB), (9)

where the first term is a sum over atomic fragments and the two last terms represent pair-
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fragment interaction energies. In an atomic fragment, i and j are assigned to the same atomic

center A in the central unit cell, whereas in a pair fragment, one of the occupied orbitals is

assigned to an atomic fragment A in the central unit cell and the other is associated with

an atomic fragment located on atom (B,LB), where LB refers to any cell.

In eq. (9), the atomic-fragment energy E(A,0) is given by

E(A,0) =
∑

i,j∈(A,0)

∑
ab

Eab
ij , (10)

and involves an infinite sum over all virtual orbitals, which can be truncated in the same

way as in the molecular DEC framework, giving53,54

E(A,0) '
∑

i,j∈(A,0)

∑
a,b∈V(A,0)

Eab
ij . (11)

The finite set V(A,0) is called the energy orbital space (EOS) and is composed of virtual

orbitals assigned to centers in the vicinity of the atom (A,0). The EOS is determined in a

black-box manner by the fragment optimization, as explained in Section 2.4.

The second and third terms of eq. (9) correspond to the pair-fragment interaction energies,

where the first atomic center (A,0) is within the central unit cell, while the second one

(B,LB) runs over the entire system and is obtained by translation of the corresponding

center in the central unit cell (B,0). The pair-fragment interaction energy is approximated

by

∆E(A,0),(B,LB) '

 ∑
i∈(A,0)

∑
j∈(B,LB)

+
∑

i∈(B,LB)

∑
j∈(A,0)

 ∑
a,b∈

V(A,0)∪V(B,LB)

Eab
ij . (12)

where EOSs obtained from atomic fragment optimizations are used. The lattice sum over

LB in eq. (9) is in principle infinite. However, the fast decay of the correlation energy

with respect to the atomic center distance allows for truncation of this sum, as will be
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detailed in Section 2.5. Note that the pair-fragment interaction energy in eq. (12) is ob-

tained from a Boys-Bernardi counterpoise correction68 for basis-set superposition-like errors:

∆E(A,0),(B,LB) = E(A,0),(B,LB)−E(A,0)−E(B,LB) where the atomic fragment energies are com-

puted in the orbital spaces of the pair fragment. This procedure was found to be superior

to the uncorrected approach for molecules54.

The amplitudes for each atomic and pair fragment are obtained independently by solving

the noncanonical MP2 equations,

0 = (ia|jb) +
∑
c

{
tcbij 〈a|f |c〉+ tacij 〈c|f |b〉

}
−
∑
k

{
tabik 〈i|f |k〉+ tabkj 〈k|f |j〉

}
, (13)

where f is the periodic Fock operator. These equations are solved in an amplitude orbital

space (AOS)54 which includes, in addition to the EOS, both occupied and virtual orbitals

centered on atoms in the vicinity of the EOS. Like the EOS, the AOS is determined inde-

pendently for each atomic fragment during the fragment optimization procedure. For pair

fragments, the union of the two AOSs is employed. The amplitude equations are solved

noniteratively using a pseudocanonical formulation obtained by diagonalizing the occupied

and virtual blocks of the Fock matrix within the AOS, as explained by Kristensen et al.54

2.3 Orbital assignment and orbital extents

The Wannier functions are expanded in contracted Gaussian-type AOs centered on atoms

in unit cells within a domain D0, which has the reference cell 0 at its center. Thus,

|Wp0〉 =
∑
L∈D0

∑
µ

|χµL〉C−Lµp , (14)

where C−Lµp is the Wannier coefficient associated with the AO |χµL〉 in cell L. The size of

the domain D0 (Born-von Karman supercell) is determined by the k-point sampling used for

generating the reference HF determinant in Bloch basis. Even for small unit cells, this often
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means that each Wannier function is expanded in thousands of basis functions. However,

the localized Wannier functions have non-negligible contributions only in a small subdomain

of D0 and a sufficently accurate description of the orbitals can be obtained by using a

significantly smaller set of basis functions.

In the work of Jørgensen and co-workers, all molecular orbitals related to an atomic

fragment are expanded on a common atomic fragment extent, which is defined as the union

of all atomic extents in the AOS of that fragment54. Using a common atomic fragment

extent for an entire atomic fragment would break the translation property (2) of the Wannier

functions. Therefore, we expand all Wannier functions associated with the same atom on

a single atomic extent. Orbital extents are computed as described in ref. 54, while atomic

extents are set up as sketched in Algorithm 2. Instead of starting the optimization of each

orbital extent from an empty set, as in ref. 54, a temporary atomic extent is used as a

starting point (see Algorithm 2). This may give a different, and typically smaller, atomic

extent compared with the approach in ref. 54. Before setting up the atomic extent, the

Wannier functions associated with a considered atom are sorted with respect to decreasing

orbital spread. After having determined an atomic extent, the coefficients of all Wannier

functions associated with a given atom are fitted on the common atomic extent using least-

squares optimization. The long-range tails of the Wannier functions, which are caused by

the intercell orthogonality requirement (3), may be relatively poorly described on the atomic

extent, depending on the chosen extent threshold. Since the correlation energy is mainly

determined by the bulk of the orbitals, however, we do not expect this to pose significant

problems unless very high accuracy is requested.

As in ref. 54, new atoms for the orbital extents are chosen from a list containing all atoms

within D0, sorted with respect to the absolute-value Mulliken projection. The Mulliken

projection of orbital p in the reference cell on atom A ≡ (A,LA) in cell LA is computed as

QA,LA
p =

∑
µ∈A

C−LA
µp 〈χµLA

|Wp0〉. (15)
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Each Wannier function is assigned to the atom with the greatest absolute-value Mulliken

projection. If the greatest Mulliken projection of a given Wannier function is nearly the

same on more than one atom, then the function is associated with the atom with the fewest

previously assigned Wannier functions. Here, a relative difference smaller than 10−6 is used

as the definition of ’nearly the same’.

Algorithm 2 Setup of an atomic extent A for an atom A, as done in the present study. The
algorithm is otherwise as in ref. 54, but here the optimization starts from an initial extent,
similarly as in the Boughton-Pulay procedure69,70.

1: A ← An extent such that the sum of Mulliken projections for each Wannier function
associated with atom A is at least 0.9.

2: Sort the Wannier functions according to decreasing spread.
3: for each Wannier function p associated with atom A do
4: Compute the orbital extent O(p) of orbital p, using A as an initial extent.
5: A ← A∪O(p)
6: end for

2.4 Atomic Fragment Optimization

For each atomic fragment, the EOS and AOS are optimized in an iterative way, using the

same procedure as in the molecular DEC algorithm54, that is, first expanding the EOS,

and then the AOS. These successive expansions define a macro iteration and the fragment

optimization is complete when the energy difference between two macro iterations is smaller

than the FOT.

Before the atomic fragment optimization starts, every atom in the reference unit cell

is associated with a list of neighbor atoms, sorted with respect to the distance from the

considered central atom. In each step of the orbital-space expansion, the orbital space is

increased with a constant volume until at least No occupied or virtual orbitals have been

added.
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2.5 Pair-fragment interaction energies

Because the MP2 pair-fragment interaction energy contributions decay asymptotically as r−6,

one can obtain accurate total pair interaction energies for molecular systems by including

only pairs within a chosen cutoff radius53,54. For the same reason, for periodic systems,

we need to compute pair-fragment interaction energy contributions explicitly within the

MP2 approximation only for a finite number of pairs. Atoms in periodic systems occur

regularly on a lattice and, for 3D systems, the number of atoms increases as r3cut when the

cutoff radius rcut is increased. It is therefore both possible and necessary to interpolate

pair correlation energies at large distances. In the present study, we compute pair energies

only within a fixed cutoff distance, and in Sec. 4.3 we propose and test an algorithm to

determine the cutoff distance in a black-box manner and consistent with the FOT. In the

implementation of Cryscor46, orbital-pair energies at large distances may be approximated

by using extrapolations fitted to the London dispersion form Cr−6, where r is the orbital-

pair distance. Neese and co-workers have used collinear dipole-dipole interaction energy

estimates to automatically determine which pairs are computed explicitly and which pairs

are approximated by dipole-dipole interaction15,71.

3 Computational details

The algorithm described above has been implemented in a stand-alone library called X-DEC.

Orthonormal occupied and virtual Wannier functions, expanded in Gaussian-type AOs ac-

cording to eq. (14), and the direct-space Fock matrix in AO basis must be provided as input.

The X-DEC library is written in Python with C++ modules for efficient calculation of the

required (ia|jb) integrals, which is the most time-consuming step of the algorithm. The two-

electron integrals in AO basis are computed with Cauchy-Schwarz prescreening72 using the

Libint73 library, and OpenMP74 threading is employed. The fragment calculations are dis-

tributed to different compute nodes with the ZeroMQ75 library, which offers the opportunity
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to dynamically adjust the number of compute processes in a fault-tolerant manner. This is

an important aspect of our hybrid parallelization strategy, since the required computational

resources of an X-DEC calculation may not be easily estimated beforehand.

Since our main goals are validation of the X-DEC implementation and investigation of

computational bottlenecks, we use the small split-valence 6-31G basis set76 obtained from

the Basis Set Exchange portal77–79 for all calculations. For the same reasons, we choose

simple periodic model systems for our tests: a 1D chain of Ne atoms, 2D and 3D collections

of chains of Ne atoms, a 1D chain of ethylene molecules, and a 2D collection of ethylene

chains.

The 1D Ne unit cell is defined to contain a single Ne atom with a lattice constant of

4.7 Bohr. The 2D Ne unit cell is quadratic and also contains a single Ne atom with lattice

constant 4.7 Bohr. The 3D Ne unit cell is rectangular, again containing a single Ne atom,

with lattice constants 4.7, 4.8, and 4.9 Bohr. The lattice constants are much smaller than

the Ne-Ne distance in the face-centered cubic structure of solid neon and were chosen to

increase the correlation energy. The 1D and 2D ethylene unit cells contain a single C2v

ethylene molecule with RCC = 2.5 Bohr, RCH = 2.0 Bohr, and θHCH = 120◦. The 1D

system has a lattice constant of 7.0 Bohr and the periodic direction is chosen parallel to

the carbon-carbon bond. The 2D system is obtained from the 1D system by repetition in

the direction perpendicular to the plane of the ethylene molecule with lattice constant 10.0

Bohr. The lattice constant of 7.0 Bohr in the parallel direction implies that the nearest

distance between carbon atoms in neighboring molecules is 4.5 Bohr, significantly less than

the 7.2 Bohr in crystalline ethylene80 and thus artificially increasing the correlation energy.

The nearest carbon-carbon distance of 10.0 Bohr in the perpendicular direction, on other

hand, is significantly greater—also compared with the equilibrium distance of 8.5 Bohr of

the corresponding molecular dimer81. The 2D ethylene structure thus is expected to lead

to more spread in the pair-fragment interaction energies, posing a challenge to accurate

determination of a pair cutoff distance.
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If a value is not explicitly given, the minimum number of added orbitals per expansion

step in the atomic-fragment optimization, No, has the default value of ten for the neon and 1D

ethylene systems and 15 for 2D ethylene. For comparison, Jørgensen and co-workers61 chose

an No parameter equal to 5η for molecular systems, with η the average number of molecular

orbitals per atom. For the neon and ethylene systems, this corresponds to No values of 45 and

33, respectively. Our fragment optimizations thus are more fine-grained than the molecular

ones, which potentially leads to smaller atomic fragments but also increases the risk of adding

less important orbitals before the more important ones, giving false convergence.

The HF calculations were performed with the Crystal65 program, using a Brillouin-zone

shrinking factor SHRINK of 8 (i.e., 8×8×8 k-point sampling in 3D), a convergence threshold on

the energy of 10−12 Ha, and an integral threshold of 10−16 Ha (all ITOL parameters set to 16).

The wannierization was performed with the Brillouin-zone shrinking factor NEWK set to 16

(i.e., the converged Bloch orbitals were converted to a 16×16×16 k-point grid before starting

the localization-wannierization procedure). The Fock, overlap, and molecular coefficient

matrices were obtained through a locally modified version of the Crystal interface program

cryapi_inp82.

For validation purposes, we used the local MP2 implementation of the Cryscor pro-

gram48. In order to compare the energies obtained with X-DEC for a given FOT, the

parameters of Cryscor were pushed towards the convergence limit.

Calculations for clusters of 3, 5, 10, 15, 20, and 30 ethylene molecules were performed with

the molecular DEC-MP2 implementation in the quantum chemistry package LSDalton83,84.

In these computations, the FOT was set to 10−5 Ha, the HF convergence threshold (gradient

norm) was set to 10−8 Ha, and the no-core approximation was switched off. Default values

were used for all other parameters. The cluster correlation energies EN were fitted to the

linear expression a 1
N

+ b, where N is the number of monomers. The extrapolated energy per

monomer is equal to b, which corresponds to the limit when N approaches infinity.
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4 Results

4.1 Validation of X-DEC-MP2 correlation energies

In Table 1, X-DEC-MP2 correlation energies for neon systems in one and two dimensions,

and a one-dimensional periodic chain of ethylene molecules, are compared with results85

from Cryscor48. For the 1D systems, extrapolated correlation energies obtained from

finite-chain molecular DEC calculations with LSDALTON83,84 are also shown. The results

in Table 1 were obtained with an extent tolerance 10−7 and a pair cutoff at 30.0 Bohr.

For the neon systems presented in Table 1, the correlation energy obtained with X-DEC

and Cryscor are within 1 FOT of one another. The difference between the X-DEC and

extrapolated molecular results for the 1D systems is at most four times the FOT. Both with

FOT 10−4 and 10−5, the difference of the X-DEC-MP2 correlation energy for 1D ethylene

was below 10−4 Ha. Despite the simplicity of the model systems used here, these results

confirm that the X-DEC algorithm provides error control when computing the MP2 energy

for periodic systems.

Table 1: Comparison of MP2 correlation energies in milli-Hartree, as obtained using X-DEC,
Cryscor48, and LSDalton83,84. The FOT is given in Hartree.

System X-DEC (FOT) Cryscor LSDalton
1D neon −114.36319 (10−7) −114.36316 −114.36285
2D neon −114.470 (10−4) −114.463 −

−114.470 (10−5)
1D ethylene −187.191 (10−4) −187.248 −187.303

−187.344 (10−5)

The key to the correlation-energy error control is the atomic fragment optimization. As

can be seen from Table 2, the minimum number of orbitals, No, per expansion step in the

atomic fragment optimization must be sufficiently large to avoid that the algorithm stops

before the energy is truly converged to within one FOT. In the 1D ethylene system, the

occupied and virtual Wannier orbitals are all assigned to one of the two carbon atoms,
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which are atoms 4 and 5 in our input sequence; hence the carbon atoms are referred to by

these numbers in the following. In an exact treatment (or using full space group symmetry),

the two carbon atoms are exactly equivalent. Not explicitly using point-group symmetry, the

X-DEC algorithm may treat the carbon atoms differently, leading to fragment energies that

differ beyond the FOT. With a FOT of 10−5 Ha the optimization for atom 5 stops at −63.15

mHa when No = 2, while an atomic fragment energy of −63.24 mHa is obtained when at least

ten orbitals is required per expansion step. Thus, in the former case, the atomic fragment

energy is not truly converged to within one FOT. This shows that sorting of orbitals based on

distance is not necessarily the optimal choice, as sometimes orbitals farther from the center

may give a larger contribution to the energy. Kristensen and co-workers61 handled this

problem by first using a large expansion parameter No and then reducing the orbital spaces

with a binary search algorithm. As shown in Table 2, a minimum expansion parameter No

of 20 gives the same atomic fragment energies to within one FOT as when the parameter

is set to ten. We therefore assume that the atomic fragment energy for the 1D ethylene

system is converged to within the given FOT value when minimum ten orbitals is required

per expansion step.

Table 2: Atomic-fragment and total correlation energies of 1D ethylene, as obtained using
different FOTs and minimum orbital expansion parameters No. The symbols E4 and E5

denote atomic fragment energies for the two (carbon) atomic fragments in the system, and
EX-DEC-MP2 is the total X-DEC-MP2 correlation energy. In these computations, the extent
tolerance was 10−7 and the pair cutoff was set to 30.0 Bohr.

FOT/Ha No E4/mHa E5/mHa EX-DEC-MP2/mHa
10−4 2 −63.22 −63.09 −187.11
10−4 10 −63.15 −63.22 −187.19
10−4 20 −63.23 −63.24 −187.33
10−5 2 −63.22 −63.15 −187.19
10−5 10 −63.24 −63.24 −187.34
10−5 20 −63.24 −63.24 −187.34
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4.2 Analysis of atomic fragments

Figures 1 and 2 show the number of atoms in the different orbital spaces for the 1D and 2D

neon systems for different FOT values. For too big a FOT, the orbital spaces only contain

one atom, which means that the atomic-fragment MP2 correlation energy only takes into

account the underlying periodicity via the shape of the Wannier functions. As the FOT

decreases, the occupied AOS includes first the nearest neighbor atoms, then the second-

nearest neighbors. For the virtual EOS and AOS, the number of included atoms corresponds

to second- and third-nearest neighbors, respectively. The change in the correlation energy is

significant, ca. 0.5 mHa, when the nearest neighbors are included, but is then minimal (10−8

Ha) when the second-nearest neighbors are added in the occupied AOS. Even larger virtual

spaces were also explored for Neon 1D (fourth- and sixth-nearest neighbors for the EOS and

AOS respectively) but this had no significant effect on the total correlation energy.

Converging the correlation energy below 1 mHa thus requires inclusion of at least second-

nearest neighbors in the virtual AOS. While this does not pose a severe computational

challenge in 1D, it quickly becomes a problem in 2D and 3D. Table 3 shows the AOS sizes

(union of the two atomic fragment AOSs) and timing of selected pair fragments at similar

distances in the 1D, 2D, and 3D neon systems. Evidently, not only the number of orbitals in

the AOS but also the atomic fragment extents make the calculations expensive. Note that

we use neither screening of the AO-to-Wannier transformation nor integral approximations,

which would decrease the timing by 1–2 orders of magnitude but leave the increasing trend

unchanged.

For 2D ethylene, all occupied Wannier orbitals are assigned to the two carbon atoms,

while the virtual Wannier orbitals are distributed among all six atoms. This implies that only

the two carbon atomic fragments are optimized, giving AOSs composed of occupied Wannier

orbitals on 24 (carbon) atoms and virtual Wannier orbitals on 38 atoms with a FOT of 10−4

Ha. With an extent tolerance of 10−4, these orbitals are expanded on basis functions on

more than 170 atoms. Calculations of pair fragments thus involve systems with hundreds of
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Figure 1: Number of atomic centers in the different orbital spaces as a function of the FOT,
here for the 1D Ne system. The atomic-fragment MP2 correlation energies for the FOT
values 10−3, 10−4, and 10−6 Ha are −0.1138401565, −0.1143028172, and −0.1143028173
Ha, respectively. These results were obtained with the minimum number of orbitals per
expansion No = 2.

Table 3: Sizes of pair fragments for the 1D, 2D, and 3D Ne systems with FOT 10−4 Ha and
extent tolerance 10−4. The pair distance is denoted by r. Nocc is the number of occupied
orbitals and Nvirt the number of virtual orbitals of the AOS, while Nbasis is the number of
basis functions used to span the AOS.

System r (Bohr) Nocc Nvirt Nbasis Time (s)
1D neon 23.5 30 72 180 5
2D neon 23.5 50 104 432 382
3D neon 24.0 30 152 1026 11212
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Figure 2: Number of atomic centers in the different orbital spaces as a function of the FOT,
here for the 2D Ne system. The atomic-fragment MP2 correlation energies for the FOT
values 2 · 10−3, 10−4, and 10−5 Ha are −0.113420366, −0.114344148, and −0.114344155 Ha,
respectively.
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occupied and virtual orbitals and more than 1000 basis functions, which is clearly too big

for routine calculations. Again, integral approximations and efficient screening procedures

would speed up the calculations tremendously but would not address the central problem:

the AOS is too large.

While we are currently investigating different options for spanning the virtual space,

which is the main problem of the AOS, we will in the following focus on the major computa-

tional bottleneck, both in terms of memory consumption and time, of the X-DEC algorithm,

which is the pair-fragment calculations. Even with a reduced AOS, which is the subject of

a forthcoming publication, the sheer number of pairs is a challenge. This motivates a study

of pair interpolation procedures.

4.3 Determination of the pair cutoff distance

Provided the distributions |ia) and |jb) are sufficiently separated, it follows from the bipolar

multipole expansion86 of the integrals (ia|jb) that, to leading order, the pair-fragment inter-

action energies decay as54,55 r−6, where r is the pair distance. This implies that pairs beyond

a certain cutoff distance rcut may either be neglected or approximated by an expression of

the form CABr
−6
AB, with the constant CAB determined for each pair of atoms through simple

least-squares fitting using just a few points. The challenge is to determine rcut in a black-box

manner consistent with the specified FOT.

We first verify that the pair-fragment interaction energies indeed decay as expected (see

Figures 3 and 4 for 3D neon and 2D ethylene, respectively). For 3D neon, all pair energies

lie very close to the function 0.2 · r−6.2 obtained by least-squares fitting. The pair energies

for the 2D ethylene system are more spread but still show an overall decay approximately

given by 141.1 · r−6.4.

With a given cutoff distance rcut, the total pair-fragment interaction energy may be
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Figure 3: Atomic and pair-fragment correlation energies for 3D neon as a function of the
pair distance. The dashed line represents a least-squares fitting to the formula Cr−α, which
gives the parameters C = 0.2006 and α = 6.2126. The X-DEC-MP2 calculation was done
with FOT = 10−4 Ha, extent tolerance 10−4, and pair cutoff distance of 30.0 Bohr. Both
axes are given in logarithmic scale.

written as

∆Epairs =
∑
A

(∑
B

∆E<
AB +

∑
B

∆E>
AB

)
, (16)

where the superscripts < and > denote contributions from pairs within and beyond the

cutoff distance, respectively, and

∆E<
AB = ∆E(A,0),(B,0) +

r(A,0),(B,LB)<rcut∑
LB 6=0

∆E(A,0),(B,LB), (17)

∆E>
AB =

r(A,0),(B,LB)≥rcut∑
LB

∆E(A,0),(B,LB). (18)

Note that that the first term of eq. (17) is included only if B > A, in agreement with eq. (9).

In the molecular DEC-MP2 algorithm, ∆E>
AB is neglected for all A,B. For an extended

system, however, this may not be a sufficiently good approximation. Introducing the long-
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Figure 4: Atomic and pair-fragment correlation energies for 2D ethylene as a function of
the pair distance. The dashed line represents a least-squares fitting to the formula Cr−α,
which gives the parameters C = 141.0948 and α = 6.4026. The calculation was done with
FOT = 10−4 Ha, extent tolerance 10−4, and a pair cutoff distance of 25.0 Bohr. Both axes
are given in logarithmic scale.

range approximation

∆E>
AB ' CAB

r(A,0),(B,LB)≥rcut∑
LB

r−6(A,0),(B,LB) (19)

and replacing the summation by integration46, we get

∆E>
AB ≈


1
5
CABr

−5
cut (1D)

π
2
CABr

−4
cut (2D)

4π
3
CABr

−3
cut (3D),

(20)

which may not be negligible relative to the FOT unless a very large cutoff distance is chosen.

On the other hand, computational performance considerations force us to choose rcut as

small as possible.

We therefore investigate an algorithm to identify a reasonable cutoff distance in a pre-

defined interval [r1, r2]. Spline interpolation, and possibly also least-squares fitting using
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eqs. (19) and (20), may be used to estimate the energy contributions outside the obtained

cutoff. First, a limited number of pairs with distances between r1 and r2 are computed. A

cubic spline is then obtained using the computed energies, and, depending on the radius r2,

possibly also using one or a few energies at pair distances greater than r2. The extra data

points at large pair distances may be needed to avoid unphysical oscillations in the interpo-

lation around r2. Second, a few pairs beyond r2 are computed explicitly and the constants

CAB are determined by least-squares fitting for each pair A,B. The total pair energy beyond

r2, E
r2
AB, is estimated using eq. (20) with r2 in place of rcut. To find a pair cutoff rcut, pair

energies from the cubic spline interpolation, ordered with respect to decreasing distance,

are added until the sum of Er2
AB and the interpolated energies is approximately equal to a

tolerance, which should be determined indirectly by the FOT. The distance at which this

happens defines the cutoff distance. Finally, we can evaluate the total correlation energy

from eq. (9) via explicit calculation of interaction energies for all pairs within the cutoff

distance.

Using cubic spline interpolation, this algorithm does not rely on an assumed (polynomial)

decay behavior in the crucial interval [r1, r2], which implies that a rather large interval may

be used without a severe computational penalty. In the following, we test this algorithm on

the 3D Ne and 2D ethylene model systems.

For 2D ethylene, the interpolation limits r1 and r2 were chosen to be 0.0 and 25.0 Bohr,

respectively. In this interval, the 2D ethylene system has 15 pairs with the carbon atoms

A = 4 and B = 5. Out of these, 6 pairs with a pair distance smaller than 25.0 Bohr,

and additionally one pair with a distance of approximately 41.6 Bohr, were used for the

cubic splines interpolation. The splines interpolation was computed with the Scipy library

interpolate.splrep87 and a smoothing factor88 of 1.0. The used spline data points and

the resulting spline interpolation for 2D ethylene are shown in Figure 5. To test the quality

of the spline interpolation, a least-squares fit of a function Cr−α was obtained based on

interpolation points between 25.0 and 40.0 Bohr. This gave α ≈ 6.7, indicating that the
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spline interpolation is not very far from a r−6 decay in the considered interval.
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Figure 5: Illustration of pair interpolation for the carbon atoms A = 4 and B = 5 of 2D
ethylene. C = −292.929 Ha and α = 6.668.

Starting from this spline interpolation of 2D ethylene, pair cutoff distances were de-

termined for given tolerances. Pair contributions beyond 25.0 Bohr were neglected. As

explained above, interpolated energies for all pairs within [r1, r2] were sorted with respect to

the corresponding pair distance. When summing energies according to decreasing distance,

the cutoff rcut was determined as the pair distance of the first pair giving a sum larger than

the tolerance. The total pair energy for the pairs (A,B), A = 4 and B = 5, of the 2D ethy-

lene system was then approximated as the sum of all “exact” X-DEC-MP2 energies within

rcut plus the sum of interpolated energies for all pairs within the interval [rcut, r2], where

r2 is as defined above. Letting Eapprox
AB be the approximated energy and Eexact

AB the sum of

all “exact” X-DEC-MP2 pair energies within [r1, r2], the error of the approximation using

interpolated values within [rcut, r2] is

ε = |Eapprox
AB − Eexact

AB |. (21)
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As shown in Table 4, for tolerances 10−4, 10−5, and 10−6 Ha, the obtained errors are all

smaller than the tolerance values, and the pair cutoff rcut is found to decrease significantly

with decreasing tolerance. The obtained pair cutoffs are comparable to orbital-pair cutoffs

used in typical Cryscor calculations46, but with our approach the pair cutoffs are deter-

mined based on a given error threshold. As seen from Table 5, for 3D neon with r1 and r2

set to 0.0 and 30.0 Bohr, respectively, the errors for this system are also smaller than the

given tolerances.

These results indicate that the proposed algorithm may be useful for computing the pair

correlation energy to a precision restricted by the FOT, without having to use a too large

pair cutoff. By reducing the pair cutoff, the number of pairs for which the energy has to be

computed explicitly may be reduced significantly. This would give a reduction in computing

time roughly proportional to the reduction of number of pairs. The relative reduction in

computing time obtained with a smaller pair cutoff is generally larger for three-dimensional

systems, because the number of pairs increases as rdcut, where rcut is the cutoff radius and d

the number of periodic dimensions. This is here illustrated by the speedups for 2D ethylene

and 3D neon, given in Tables 4 and 5. For the 3D neon system, the number of needed spline

data points is smaller compared to the total number of pairs in a given interval, and therefore

the speedup is more significant than for 2D ethylene.

Table 4: Pair approximation based on a given tolerance parameter for 2D ethylene.

Tolerance (Ha) Cutoff (Bohr) Error (Ha) Speedup
10−4 10.3 3.5 · 10−5 3.0
10−5 15.2 7.1 · 10−6 2.3
10−6 21.0 3.2 · 10−7 1.5

For the spline interpolations, data points are chosen so that points with the shortest

distances are close to each other, and the interval between the chosen distances increase

with increasing distance. The reason for choosing points in this way, is that the pair data in

log-log plots generally have a larger curvature for smaller pair distances, and at large pair
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Table 5: Pair approximation based on a given tolerance parameter for 3D neon.

Tolerance (Ha) Cutoff (Bohr) Error (Ha) Speedup
10−4 4.7 6.4 · 10−5 116
10−5 6.7 8.2 · 10−8 91
10−6 12 5.5 · 10−9 22

distances the curve approaches linear, according to the multipole expansion approximation55.

As mentioned above, it is also important to include data points with large pair distances.

When choosing points following these principles, points may still be picked in different ways,

and therefore give different results. In the 2D ethylene example, we always used the three

first and the last pairs. With those points fixed, choosing the three remaining points in

several different ways always gave an error smaller than the tolerance. For the tolerance

10−4, the errors changed in the interval 2.4 − 3.6 · 10−5, for the tolerance 10−5 the errors

were in the range 6.3− 9.4 · 10−6, and spline interpolations with a tolerance 10−6 gave errors

between 8.9 · 10−8 and 7.7 · 10−7. Similarly, for 3D neon, the errors were always smaller

than the tolerance when fixing the first and last spline data point and choosing the four

intermediate points in different ways. Thus, as long as the general principles described

above were followed, the interpolation seemed to be stable with respect to exactly which

points were used.

5 Conclusions

We have described a generalization of the molecular DEC-CC approach to extended systems

with periodic boundary conditions. The X-DEC algorithm follows closely the molecular

DEC algorithm and we have shown that the crucial aspect of correlation energy error con-

trol is conserved. Although we have only presented results at the MP2 level of theory, the

X-DEC framework can be easily applied to other CC models such as the random-phase

approximation, CCSD, and CCSD(T). The X-DEC algorithm is currently too computation-
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ally demanding, however, and we have therefore used very simple model systems and a

small split-valence basis set only. The main challenges are the AOS sizes and the associated

atomic extents used to expand the AOS orbitals, and the sheer number of pair fragments,

which generally is much greater for extended systems than for molecules. We have proposed

and investigated a black-box approach based on cubic splines interpolation to determine a

pair cutoff distance with a low computational cost, while still maintaining the error control

characteristic of the DEC approach.

The AOS problem is more subtle and has not been solved in the present work. There are

two aspects of the AOS that must be considered. First, all the occupied Wannier functions

must be as local as possible, allowing the AOS to contain only virtual Wannier functions in

a close vicinity of the occupied ones. If just one occupied Wannier function is rather poorly

localized, the virtual part of the AOS may quickly become intractable. Second, the virtual

Wannier functions must be sufficiently localized to allow a physically reasonable assignment

to an atom. At the same time, however, the virtual Wannier functions of the reference cell

must remain orthogonal to the total occupied space and span as much of the total virtual

space as possible in order to get as compact a representation of the correlation energy as

possible. While recent advances in orbital localization, both for molecules62 and periodic

systems89, may be leveraged for the occupied Wannier functions, the conditions on the virtual

Wannier functions seem difficult to fulfill using existing orbital localization criteria. We are

currently investigating different options and will report on our findings in the near future.

Even with more compact AOSs, the X-DEC-MP2 algorithm presented here can be easily

accelerated using integral approximations such as the resolution-of-the-identity (RI) approx-

imation.90 This has recently been successfully done for molecular DEC-MP2 calculations57

and our own unpublished pilot implementation promises speedups of 1–2 orders of magni-

tude.

In conclusion, the X-DEC algorithm provides a framework for periodic local CC calcu-

lations with correlation energy error control but more work is required to accelerate the
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algorithm.
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(26) Booth, G. H.; Grüneis, A.; Kresse, G.; Alavi, A. Towards an exact description of

electronic wavefunctions in real solids. Nature 2013, 493, 365–370.

(27) McClain, J.; Sun, Q.; Chan, G. K.-L.; Berkelbach, T. C. Gaussian-Based Coupled-

Cluster Theory for the Ground-State and Band Structure of Solids. J. Chem. Theory

Comput. 2017, 13, 1209–1218.

(28) Stanton, J. F.; Bartlett, R. J. The equation of motion coupled-cluster method. A sys-

tematic biorthogonal approach to molecular excitation energies, transition probabilities,

and excited state properties. J. Chem. Phys. 1993, 98, 7029–7039.

(29) Krylov, A. I. Equation-of-Motion Coupled-Cluster Methods for Open-Shell and Elec-

tronically Excited Species: The Hitchhiker’s Guide to Fock Space. Annu. Rev. Phys.

Chem. 2008, 59, 433–462.

33



(30) Ayala, P. Y.; Kudin, K. N.; Scuseria, G. E. Atomic orbital Laplace-transformed second-

order Møller–Plesset theory for periodic systems. J. Chem. Phys. 2001, 115, 9698–9707.
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(42) Nolan, S. J.; Gillan, M. J.; Alfè, D.; Allan, N. L.; Manby, F. R. Calculation of properties

of crystalline lithium hydride using correlated wave function theory. Phys. Rev. B 2009,

80, 165109.

(43) Collins, M. A. Ab initio lattice dynamics of nonconducting crystals by systematic frag-

mentation. J. Chem. Phys. 2011, 134, 164110.

(44) Pisani, C.; Busso, M.; Capecchi, G.; Casassa, S.; Dovesi, R.; Maschio, L.; Zicovich-
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