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Abstract. For various historical, practical, and foundational reasons, large

parts of mathematics are studied indirectly via countable approximations, also
called codes. It is a natural question whether this indirect study of codes is

faithful to the original development in mathematics, or whether approxima-

tions somehow distort the latter. Another natural question is which parts of
basic mathematics can(not) be studied via these representations. In this paper,

we formulate new answers to these old questions. Our answers stem both from

mathematics itself (via the study of the gauge integral) and its foundations
(via Hilbert-Bernays’ Grundlagen der Mathematik and its spiritual successor

Reverse Mathematics). We identify a number of basic theorems from (un-

countable) mathematics for which the logical and computational properties
are completely (and even maximally) distorted upon introducing countable

approximations. In a nutshell, while countable approximations are interesting
and important, even extremely basic ‘uncountable’ mathematics is infinitely

more complicated than the ‘countable picture’ involving codes suggests.

1. Introduction

1.1. Motivation and goal. Lest there be any doubt about our motivation, we
start with a clear caveat: we firmly believe countable approximations are interest-
ing and important; however, even basic uncountable mathematics is, as it turns
out, infinitely more complicated than the associated ‘countable picture’ suggests.
The goal of this paper is to communicate some of this fascinating (and surprising)
complexity of basic uncountable mathematics to an audience of mathematicians.

By way of background, it is a commonplace that large parts of mathematics are
studied indirectly via countable approximations. A prominent example is the pro-
gram Reverse Mathematics, as founded by Friedman and developed extensively by
Simpson (See Section 2.1). The underlying framework is second-order arithmetic Z2,
in which only natural numbers and sets thereof are available. Thus, Z2 is by design
restricted to countable objects, but the latter can be used to indirectly represent
e.g. continuous functions on R, separable spaces, and even some topologies. Second-
order arithmetic interprets a strong1 fragment of Zermelo-Fraenkel set theory (the
usual foundations of mathematics), and due to its ability to formalise analysis, Z2

is also called “analysis” ([53, p. 291]). Finally, countable representations are also
called codes, and the use of codes is generally deemed to be unproblematic.

By contrast, the goal of this paper is to show that the use of codes fundamentally
distorts mathematics. To this end, we provide a list of basic theorems (See Sec-
tion 1.3) for which the logical and computational properties are completely (and in
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a precise sense maximally) distorted upon introducing countable approximations.
Some of the listed theorems are well-established: the oldest (and most relevant)
theorem is the Cousin lemma from [13, p. 22], dating back about 125 years, while
the Lindelöf lemma ([34, p. 698]) dates back about 115 years. Some of the listed
theorems are of great conceptual importance as they pertain to the gauge integral
([3]), which provides a formalisation of the Feynman path integral ([11,38]).

Intuitively speaking, we show that the basic theorems from Section 1.3 live at the
outer edge of second-order arithmetic, while their ‘countable substitutes’ (if any)
live in very weak fragments of Z2. Besides being a huge leap in logical strength, our
results also call into question the ‘Big Five’ classification from Reverse Mathematics
(See Section 2.1). Nonetheless, we obtain in Section 3.3 a number of Reverse
Mathematics style equivalences involving the Cousin lemma and basic properties of
the gauge integral, like its uniqueness and its extension of the Riemann integral.

On a conceptual note, Reverse Mathematics is intimately connected to classical
computability theory; similarly, our results have an (almost) equivalent reformu-
lation in higher-order computability theory, and are even (often) obtained via the
latter. Furthermore, in light of this correspondence, we investigate in Section 4 the
strength of basic theorems like the Cousin and Lindelöf lemmas when combined
with fundamental objects from computability theory. This study yields surprising
results reaching all the way up to Gandy’s superjump ([23]), a ‘higher-order’ version
of Turing’s Halting problem ([58]), the prototypical non-computable object.

Next, we discuss the motivations for this paper (stemming both from mathemat-
ics and its foundations) in detail in Section 1.2.

1.2. Foundational and mathematical motivations. We discuss the motiva-
tions for this paper. Items (i) and (ii) motivate the study of mathematics beyond
second-order arithmetic, while a notable consequence is provided by item (iii).

(i) The gauge integral is a generalisation of the Lebesgue and (improper) Rie-
mann integral, and formalises Feynman’s path integral (See Section 1.2.1).
Second-order arithmetic cannot accommodate (basic) gauge integration.

(ii) The foundational studies of mathematics led by Hilbert take place in a
logical framework richer than second-order arithmetic (See Section 1.2.2).
It is natural to ask if anything is lost by restricting to the latter.

(iii) The compatibility problem for Nelson’s predicative arithmetic ([41]) was
solved in the negative ([12]). We solve the compatibility problem for Weyl-
Feferman predicative mathematics in the negative (See Section 1.2.3).

As an example of how items (i) and (ii) are (intimately) related: the uniqueness
of the gauge integral requires (Heine-Borel) compactness for arbitrary open covers.
The latter compactness cannot be formulated in second-order arithmetic, and will
be seen to have completely different logical and computational properties compared
to the ‘countable’ substitute, i.e. (Heine-Borel) compactness for countable covers.

1.2.1. Mathematical motivations. In this section, we discuss the mathematical mo-
tivations for this paper, provided by the study of the gauge integral. As will become
clear, the study of the latter goes beyond second-order arithmetic.

First of all, the gauge integral (aka Henstock-Kurzweil integral) was introduced
around 1912 by Denjoy (in a different form) and constitutes a simultaneous gen-
eralisation of the Lebesgue and (improper) Riemann integral. The gauge integral
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provides a formal framework for the Feynman path integral ([11, 38]), i.e. gauge
integrals are also highly relevant in (the foundations of) physics. As expected, the
gauge integral can handle discontinuous functions, which were around at the time
already: Dirichlet discusses the characteristic function of the rationals around 1829
in [14], while Riemann defines a function with countably many discontinuities via
a series in his Habilitationsschrift (See [31, p. 115]).

Secondly, since Lebesgue integration is studied in Reverse Mathematics (See
[55, X.1]), it is a natural next step to study the gauge integral. However, even
the definition of the latter goes beyond second-order arithmetic, as shown in Sec-
tion 3.3; the same holds for general discontinuous functions which are needed to
prove basic additivity results for the gauge integral. Furthermore, by Theorem 3.19,
the uniqueness of the gauge integral requires the Cousin lemma ([13, p. 22]), which
deals with uncountable covers, i.e. also beyond second-order arithmetic.

In conclusion, the gauge integral seems to require a logical framework richer
than second-order arithmetic. As suggested above, this study will yield surprising
results: the Cousin lemma expresses compactness for arbitrary open covers; this
lemma turns out to have completely different logical and computational properties
compared to the ‘countable’ substitute, i.e. compactness for countable covers.

1.2.2. Foundational motivations. We show that the foundational studies of math-
ematics led by Hilbert took place in a framework richer than second-order arith-
metic. First of all, in his 1917-1933 lectures on the foundations of mathematics
([27]), Hilbert used a logical system involving third-order Funktionfunktionen, i.e.
beyond second-order arithmetic. Ackermann’s 1924 dissertation (supervised by
Hilbert) starts with an overview of Hilbertsche Beweistheorie, i.e. Hilbertian proof
theory, which explicitly includes third-order parameters and the ‘epsilon’ operator.

Secondly, Hilbert and Bernays introduce2 the formal system H in [29, Supple-
ment IV], and use it to formalise parts of mathematics. The ‘epsilon’ operator is
again at the core of this formalism; this operator is used by Hilbert and Bernays to
define a certain object ξ in [29, p. 495]. Now, ξ maps functions to functions and is
hence a third-order object, not available in second-order arithmetic in particular.

Thirdly, Simpson3 positions Reverse Mathematics (See Section 2.1) in [55, p. 6]
as a continuation of Hilbert-Bernays’ research, namely as follows:

The development of a portion of ordinary mathematics within [second-
order arithmetic] Z2 is outlined in Supplement IV of Hilbert/Bernays
[115]. The present book may be regarded as a continuation of the
research begun by Hilbert and Bernays.

In conclusion, the foundational studies of Hilbert-Bernays-Ackermann take place
in a logical framework richer than second-order arithmetic, and it is a natural
foundational question if anything is lost by restricting to the latter.

1.2.3. Foundational consequences. We discuss the compatibility problem for pred-
icative mathematics à la Weyl-Fefermann. As it turns out, our results solve this
problem in the negative, providing another motivation for this paper.

2All other systems in [29, Suppl. IV] are either a variation of H or more limited than H.
3Note that the reference ‘[115]’ in the quote is [28,29] in Simpson’s list of references in [55].
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Russell famously identified an inconsistency in early set theory, known as Rus-
sel’s paradox, based on the ‘set of all sets’ ([59]). According to Russel, the source
of this paradox was circular reasoning : in defining the ‘set of all sets’, one quanti-
fies over all sets, including the one that is being defined. To avoid such problems,
Russel suggested banning any impredicative definition, i.e. a definition in which one
quantifies over the object being defined. The textbook example of an impredicative
definition is the supremum of a bounded set of reals, defined as the least upper
bound of that set. Weyl, a student of Hilbert, initiated the development of pred-
icative mathematics ([61]), i.e. avoiding impredicative definitions, which Feferman
continued ([17–19]). Finally, the fourth ‘Big Five’ system of Reverse Mathematics
is considered the ‘upper limit’ of predicative mathematics (See [55, §I.12]).

In an (similar but much more strict) effort to develop mathematics based on
a predicative notion of number, Nelson introduced predicative arithmetic ([41]).
Unfortunately, predicative arithmetic suffers from the compatibility problem: If two
theorems A,B are both acceptable from the point of view of predicative arithmetic,
it is possible that A ∧ B is not ([12]). In this light, the development of predica-
tive arithmetic seems somewhat arbitrary. It is then a natural question whether
the aforementioned Weyl-Feferman predicative mathematics suffers from the same
compatibility problem. We show that this is the case in Section 4.2.

1.3. Overview of main results. Our main results, to be proved in detail, are
that the Cousin and Lindelöf lemmas from Remark 1.1 live at the very edge of
second-order arithmetic Z2, in contrast to their countable substitutes (if existent)
which live in very weak fragments of Z2. The same result for the other theorems in
Remark 1.1 readily follows from our main results, as discussed in Section 3.2.2.

Our results thus subvert the ‘Big Five’ picture of Reverse Mathematics from
Section 2.1. We shall obtain our results by showing that it is extremely hard
to compute the objects (like a finite sub-cover from the Cousin lemma) from the
theorems in Remark 1.1. A precise statement is found at the end of this section.

Remark 1.1 (Basic theorems).

(i) Cousin lemma: any open cover of [0, 1] has a finite sub-cover ([13]).
(ii) Lindelöf lemma: any open cover of R has a countable sub-cover ([34]).
(iii) Besicovitsch and Vitali covering lemmas as in e.g. [1, §2].
(iv) Basic properties of the gauge integral ([3]), like uniqueness, Hake’s theorem,

and extension of the Riemann integral.
(v) Neighbourhood Function Principle NFP ([57, p. 215]).
(vi) The existence of Lebesgue numbers for any open cover ([24]).

(vii) The Banach-Alaoglu theorem for any open cover ([55, X.2.4], [10, p. 140]).
(viii) The Heine-Young and Lusin-Young theorems, the tile theorem [30,62], and

the latter’s generalisation due to Rademacher ([44, p. 190]).

According to Bourbaki’s historical note in [8, Ch. I], the by far most important
‘acquisition’ of Schoenflies’ monograph [52] is a theorem which constitutes a gener-
alisation of the Cousin lemma. Another historical note is that Cousin (and Lindelöf
in [34, p. 698]) talks about (uncountable) covers on [13, p. 22] in the following way:

if to each point of S there corresponds a circle of finite radius . . .

In particular, any f : S → R+ gives rise to a cover in the sense of the previous
quote by Cousin as follows: ∪x∈S(x− f(x), x+ f(x)) covers S ⊂ R.
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We now make our main results precise, for which some definitions are needed.
Detailed definitions may be found in Section 2.2.

Definition 1.2. Let Z2 be second-order arithmetic as defined in [55, I.2.4] and let
Π1
k-CA0 be the fragment of Z2 with comprehension restricted to Π1

k-formulas.

As noted above, to formulate the theorems from the list, we require a richer
language than that of Z2. We shall make use of RCAω0 , Kohlenbach’s ‘base theory’
of higher-order Reverse Mathematics ([32, §2]), and the associated language of all
finite types. We introduce this framework in full detail in Section 2.2.

Definition 1.3. Let (∃3) be the functional deciding set quantification from [7,
p. 713], and let (S2

k) similarly be the functional deciding Π1
k-formulas; see Section 2.3

for the exact definition. For k = 1, the subscript is omitted and (S2) is usually called
the Suslin functional. Let QF-AC be the axiom of choice restricted to quantifier-
free formulas as in [32, §1]. We define Zω2 ≡ RCAω0 + QF-AC + (∃3) and Π1

k-CA
ω
0 ≡

RCAω0 + QF-AC + (S2
k). The former (resp. the latter) system is the ‘higher-type’

analogue of Z2 (resp. Π1
k-CA0).

Our main results from Section 3 are now as follows: (i) Zω2 proves the Cousin and
Lindelöf lemmas from the above list, (ii) Π1

k-CA
ω
0 cannot prove any of the theorems

in the above list, and (iii) the Cousin lemma is equivalent to basic properties of the
gauge integral in Kohlenbach’s aforementioned framework. In a nutshell, we show
that full second-order arithmetic, in the form of (∃3), is needed to prove the Cousin
and Lindelöf lemmas, and the same for related theorems from Remark 1.1. Besides
constituting a huge leap in logical strength (compared to Π1

1-CA0, the strongest Big
Five system), the equivalences involving the gauge integral also seriously challenge
the ‘Big Five’ classification from Reverse Mathematics (See Section 2.1).

Finally, as noted above, Reverse Mathematics is intimately connected to com-
putability theory, and the same holds for our results; for instance, the functional
defined by (∃3) (resp. (S2

k)) can (resp. cannot) compute (in the sense of Section 2.3)
the finite sub-cover from the Cousin lemma on input an open cover of [0, 1].

Our main results in Section 4 are then as follows: inspired by the aforementioned
connection, we study the interaction between the theorems from the above list
and the Big Five of Reverse Mathematics given by the Suslin functional S and
Feferman’s search functional µ from Section 2.3. This leads to surprising results in
(higher-order) Reverse Mathematics, as follows:

(1) The combination of the Cousin lemma and Feferman’s µ yields transfinite
recursion for arithmetical formulas, i.e. the fourth Big Five system. We
derive novel theorems about Borel functions from this result.

(2) The combination of the Cousin lemma and the Suslin functional S yields
Gandy’s superjump, the aforementioned ‘higher-order’ Halting problem.

(3) The combination of the Lindelöf lemma for Baire space (given by a func-
tional) and Feferman’s µ yields the Suslin functional S, i.e. the fifth Big
Five system, and by the previous item also Gandy’s superjump.

As will become clear in Section 4.2.2, the third item solves the compatibility problem
of Weyl-Feferman predicativist mathematics from Section 1.2.3 in the negative. We
also point out that the Lindelöf lemma (resp. the Cousin lemma) and Feferman’s
µ are rather weak in isolation, and only become strong when combined.
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2. Preliminaries

We sketch the program Reverse Mathematics in Section 2.1 and discuss the asso-
ciated framework second-order arithmetic in Section 2.2, as well as its generalisation
higher-order arithmetic. As our main results will be proved using techniques from
computability theory, we discuss some essential elements of the latter in Section 2.3.

2.1. Introducing Reverse Mathematics. Reverse Mathematics (RM) is a pro-
gram in the foundations of mathematics initiated around 1975 by Friedman ([21,22])
and developed extensively by Simpson ([55]) and others. We refer to [55] for an
overview of RM and introduce the required definitions (like the ‘base theory’ RCA0)
in Section 2.2.1; we now sketch some of the aspects of RM essential to this paper.

The aim of RM is to find the axioms necessary to prove a statement of ordinary,
i.e. non-set theoretical mathematics. The classical base theory RCA0 of ‘computable
mathematics’, introduced in Section 2.2.1, is always assumed. Thus, the aim is:

The aim of RM is to find the minimal axioms A such that RCA0

proves [A→ T ] for statements T of ordinary mathematics.

Surprisingly, once the minimal axioms A have been found, we almost always also
have RCA0 ` [A ↔ T ], i.e. not only can we derive the theorem T from the axioms
A (the ‘usual’ way of doing mathematics), we can also derive the axiom A from the
theorem T (the ‘reverse’ way of doing mathematics). In light of these ‘reversals’,
the field was baptised ‘Reverse Mathematics’.

Perhaps even more surprisingly, in the majority of cases, for a statement T of
ordinary mathematics, either T is provable in RCA0, or the latter proves T ↔ Ai,
where Ai is one of the logical systems WKL0,ACA0, ATR0 or Π1

1-CA0, which are
introduced in the next section. The latter four together with RCA0 form the ‘Big
Five’ and the aforementioned observation that most mathematical theorems fall into
one of the Big Five categories, is called the Big Five phenomenon ([37, p. 432]).
Furthermore, each of the Big Five has a natural formulation in terms of (Turing)
computability (See [55, I]). As noted by Simpson in [55, I.12], each of the Big Five
also corresponds (loosely) to a foundational program in mathematics.

Finally, we note that the Big Five systems of RM yield a linear order:

Π1
1-CA0 → ATR0 → ACA0 →WKL0 → RCA0. (2.1)

By contrast, there are many incomparable logical statements in second-order arith-
metic. For instance, a regular plethora of such statements may be found in the
Reverse Mathematics zoo in [16]. The latter is intended as a collection of (some-
what natural) theorems outside of the Big Five classification of RM. However, the
results sketched in Section 1.3 fundamentally distort the elegant picture (2.1).

2.2. The framework of Reverse Mathematics. We introduce axiomatic sys-
tems essential to RM. We start with a sketch of second-order arithmetic (See
[55, I.2.4]), the framework of Friedman-Simpson RM, and finish with higher-order
artihmetic, the framework of Kohlenbach’s higher-order RM (See [32]).

2.2.1. Second-order arithmetic and fragments. The language L2 of second-order
arithmetic Z2 has two sorts of variables: number variables n,m, k, l, . . . intended
to range over the natural numbers, and set variables X,Y, Z, . . . intended to range
over sets of natural numbers. The constants of L2 are 0, 1, <N,+N,×N,=N and ∈,
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which are intended to have their usual meaning (by the axioms introduced below).
Formulas and terms are built up from these constants in the usual way.

Definition 2.1. Second-order arithmetic Z2 consists of three axiom schemas:

(1) Basic axioms expressing that 0, 1, <N,+N,×N form an ordered semi-ring
with equality =N.

(2) Induction: For any X,
(
0 ∈ X∧(∀n)(n ∈ X → n+1 ∈ X)

)
→ (∀n)(n ∈ X).

(3) Comprehension: For any formula ϕ(n) of L2 which does not involve the
variable X, we have (∃X)(∀n)(n ∈ X ↔ ϕ(n)).

Induction is well-known, while comprehension intuitively expresses that any L2-
formula ϕ(n) yields a set X = {n ∈ N : ϕ(n)} consisting of exactly those numbers
n ∈ N satisfying ϕ(n). Now, fragments of Z2 are obtained by restricting compre-
hension (and induction), for which the following definition is needed.

Definition 2.2. [Formula classes]

(1) A formula of L2 is quantifier-free (Σ0
0 or Π0

0) if it does not involve quantifiers.
To be clear: variables are allowed; only quantifiers are banned.

(2) A formula of L2 is arithmetical (Σ1
0 or Π1

0) if it only involves quantifiers over
number variables, i.e. set quantifiers like (∃X) and (∀Y ) are not allowed.

(3) An arithmetical formula is Σ0
k+1 (resp. Π0

k+1) if it has the form (∃n)ϕ(n)

(resp. (∀n)ϕ(n)) with ϕ in Π0
k (resp. in Σ0

k).
(4) A formula of L2 is Σ1

k+1 (resp. Π1
k+1) if it has the form (∃X)ϕ(X) (resp.

(∀X)ϕ(X)) with ϕ in Π1
k (resp. in Σ1

k).
(5) A formula of L2 is ∆i

k+1 if it is both Πi
k+1 and Σik+1 for i = 0, 1.

Intuitively, a Σ0
k-formula is a quantifier-free formula pre-fixed by k alternating

number quantifiers, starting with an existential one; a Σ1
k-formula is an arithmetical

formula pre-fixed by k alternating set quantifiers, starting with an existential one.
The Π-formulas are (equivalent to) negations of the corresponding Σ-versions.

Using the above, the third and fifth ‘Big Five’ systems ACA0 and Π1
1-CA0 are

just Z2 with comprehension restricted to resp. arithmetical and Π1
1-formulas. Al-

ternatively, ACA0 allows one to build sets using finite iterations of Turing’s Halting
problem ([58]), aka the Turing jump; intuitively, ATR0 extends this to transfinite
recursion, i.e. the unbounded iteration of the Turing jump along any countable
well-ordering. Furthermore, the ‘base theory’ RCA0 is Z2 with comprehension re-
stricted to ∆0

1-formulas, plus induction for Σ0
1-formulas. As discussed in [55, II

and IX.3], ∆0
1-comprehension essentially expresses that ‘all computable sets exists’,

while Σ0
1-induction corresponds to primitive recursion in the sense of Hilbert’s fini-

tistic mathematics. The system WKL0 is just RCA0 extended by the weak König’s
lemma which states that an infinite binary tree has a path.

Finally, in light of the previous and (2.1), the Big Five only constitute a very tiny
fragment of Z2; on a related note, the RM of topology does give rise to theorems
equivalent to Π1

2-CA0 ([39]), but that is the current upper bound of RM to the best
of our knowledge. In particular, if Π1

k-CA0 is Z2 restricted to Π1
k-comprehension,

then this system can be said to ‘go beyond Friedman-Simpson RM’ for k ≥ 3.

2.2.2. Higher-order arithmetic and fragments. As suggested by its name, higher-
order arithmetic extends second-order arithmetic. Indeed, while the latter is re-
stricted to numbers and sets of numbers, higher-order arithmetic also has sets of
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sets of numbers, sets of sets of sets of numbers, et cetera. To formalise this idea,
we introduce the collection of all finite types T, defined by the two clauses:

(i) 0 ∈ T and (ii) If σ, τ ∈ T then (σ → τ) ∈ T,

where 0 is the type of natural numbers, and σ → τ is the type of mappings from
objects of type σ to objects of type τ . In this way, 1 ≡ 0→ 0 is the type of functions
from numbers to numbers, and where n + 1 ≡ n → 0. Viewing sets as given by
their characteristic function, we note that Z2 only includes objects of type 0 and 1.

The language of Lω consists of variables xρ, yρ, zρ, . . . of any finite type ρ ∈ T.
Types may be omitted when they can be inferred from context. The constants of
Lω includes the type 0 objects 0, 1 and <0,+0,×0,=0 which are intended to have
the same meaning as their N-subscript counterparts in Z2. Equality at higher types
is defined in terms of ‘=0’ as follows: for any objects xτ , yτ , we have

[x =τ y] ≡ (∀zτ11 . . . zτkk )[xz1 . . . zk =0 yz1 . . . zk], (2.2)

if the type τ is composed as τ ≡ (τ1 → . . . → τk → 0). Furthermore, Lω also
includes the recursor constant Rσ for any σ ∈ T, which allows for iteration on type
σ-objects as in the special case (2.3). Formulas and terms are defined as usual.

Definition 2.3. The base theory RCAω0 consists of the following axioms:

(1) Basic axioms expressing that 0, 1, <0,+0,×0 form an ordered semi-ring with
equality =0.

(2) Basic axioms defining the well-known Π and Σ combinators (aka K and S
in [2]), which allow for the definition of λ-abstraction.

(3) The defining axiom of the recursor constant R0: For m0 and f1:

R0(f,m, 0) := m and R0(f,m, n+ 1) := f(R0(f,m, n)). (2.3)

(4) The axiom of extensionality : for all ρ, τ ∈ T, we have:

(∀xρ, yρ, ϕρ→τ )
[
x =ρ y → ϕ(x) =τ ϕ(y)

]
. (Eρ,τ )

(5) The induction axiom for quantifier-free4 formulas.
(6) QF-AC1,0: The quantifier-free axiom of choice as in Definition 2.4.

Definition 2.4. The axiom QF-AC consists of the following for all σ, τ ∈ T:

(∀xσ)(∃yτ )A(x, y)→ (∃Y σ→τ )A(x, Y (x)) (QF-ACσ,τ )

for any quantifier-free formula in the language of Lω.

As discussed in [32, §2], RCAω0 and RCA0 prove the same sentences ‘up to lan-
guage’ as the latter is set-based and the former function-based. Recursion as in (2.3)
is called primitive recursion; the class of functionals obtained from Rρ for all ρ ∈ T
is called Gödel’s system T of all (higher-order) primitive recursive functionals.

We use the usual notations for natural, rational, and real numbers, and the
associated functions, as introduced in [32, p. 288-289].

Definition 2.5 (Real numbers and related notions in RCAω0 ).

(1) Natural numbers correspond to type zero objects, and we use ‘n0’ and
‘n ∈ N’ interchangeably. Rational numbers are defined as signed quotients
of natural numbers, and ‘q ∈ Q’ and ‘<Q’ have their usual meaning.

4To be absolutely clear, similar to Definition 2.2, variables (of any finite type) are allowed in
quantifier-free formulas: only quantifiers are banned.
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(2) Real numbers are coded by fast-converging Cauchy sequences q(·) : N→ Q,

i.e. such that (∀n0, i0)(|qn − qn+i)| <Q
1

2n ). We use Kohlenbach’s ‘hat

function’ from [32, p. 289] to guarantee that every f1 defines a real number.
(3) We write ‘x ∈ R’ to express that x1 := (q1

(·)) represents a real as in the

previous item and write [x](k) := qk for the k-th approximation of x.
(4) Two reals x, y represented by q(·) and r(·) are equal, denoted x =R y, if

(∀n0)(|qn − rn| ≤ 1
2n−1 ). Inequality ‘<R’ is defined similarly.

(5) Functions F : R → R mapping reals to reals are represented by Φ1→1

mapping equal reals to equal reals, i.e. (∀x, y)(x =R y → Φ(x) =R Φ(y)).
(6) The relation ‘x ≤τ y’ is defined as in (2.2) but with ‘≤0’ instead of ‘=0’.
(7) Sets of type ρ objects Xρ→0, Y ρ→0, . . . are given by their characteristic

functions fρ→0
X , i.e. (∀xρ)[x ∈ X ↔ fX(x) =0 1], where fρ→0

X ≤ρ→0 1.

We sometimes omit the subscript ‘R’ if it is clear from context. Finally, we
introduce some notation to handle finite sequences nicely.

Notation 2.6 (Finite sequences). We assume a dedicated type for ‘finite sequences
of objects of type ρ’, namely ρ∗. Since the usual coding of pairs of numbers goes
through in RCAω0 , we shall not always distinguish between 0 and 0∗. Similarly, we
do not always distinguish between ‘sρ’ and ‘〈sρ〉’, where the former is ‘the object
s of type ρ’, and the latter is ‘the sequence of type ρ∗ with only element sρ’. The
empty sequence for the type ρ∗ is denoted by ‘〈〉ρ’, usually with the typing omitted.

Furthermore, we denote by ‘|s| = n’ the length of the finite sequence sρ
∗

=
〈sρ0, s

ρ
1, . . . , s

ρ
n−1〉, where |〈〉| = 0, i.e. the empty sequence has length zero. For

sequences sρ
∗
, tρ

∗
, we denote by ‘s∗t’ the concatenation of s and t, i.e. (s∗t)(i) = s(i)

for i < |s| and (s∗t)(j) = t(|s|−j) for |s| ≤ j < |s|+|t|. For a sequence sρ
∗
, we define

sN := 〈s(0), s(1), . . . , s(N − 1)〉 for N0 < |s|. For a sequence α0→ρ, we also write
αN = 〈α(0), α(1), . . . , α(N−1)〉 for any N0. By way of shorthand, (∀qρ ∈ Qρ∗)A(q)
abbreviates (∀i0 < |Q|)A(Q(i)), which is (equivalent to) quantifier-free if A is.

2.3. Higher-order computability theory. As noted above, our main results
will be proved using techniques from computability theory. Thus, we first make our
notion of ‘computability’ precise as follows.

(I) We adopt ZFC, i.e. Zermelo-Fraenkel set theory with the Axiom of Choice,
as the official metatheory for all results, unless explicitly stated otherwise.

(II) We adopt Kleene’s notion of higher-order computation as given by his nine
clauses S1-S9 (See [35,49]) as our official notion of ‘computable’.

For the rest of this section, we introduce some existing functionals which will be
used below. These functionals constitute the counterparts of Z2, and some of the
Big Five systems, in higher-order RM. First of all, ACA0 is readily derived from:

(∃µ2)
[
(∀f1)((∃n)f(n) = 0→ f(µ(f)) = 0)

]
, (µ2)

and ACAω0 ≡ RCAω0 + QF-AC + (µ2) proves the same Π1
2-sentences as ACA0 by

[48, Theorem 2.2]. The (unique) functional µ2 in (µ2) is also called Feferman’s µ
([2]), and is clearly discontinuous at f =1 11 . . . ; in fact, (µ2) is equivalent to the
existence of F : R→ R such that F (x) = 1 if x >R 0, and 0 otherwise ([32, §3]).

Secondly, Π1
1-CA0 is readily derived from the following sentence:

(∃S2)(∀f1)
[
(∃g1)(∀x0)(f(gn) = 0)↔ S(f) = 0

]
, (S2)
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and Π1
1-CAω0 ≡ RCAω0 + QF-AC + (S2) proves the same Π1

3-sentences as Π1
1-CA0

by [48, Theorem 2.2]. The (unique) functional S2 in (S2) is also called the Suslin
functional ([32]). By definition, the Suslin functional S2 can decide whether a Σ1

1-
formula (as in the left-hand side of (S2)) is true or false. We similarly define the
functional S2

k which decides the truth or falsity of Σ1
k-formulas; we also define the

system Π1
k-CAω0 as RCAω0 + QF-AC + (S2

k), where (S2
k) expresses that S2

k exists.

Thirdly, full second-order arithmetic Z2 is readily derived from the sentence:

(∃E3)(∀Y 2)
[
(∃f1)Y (f) = 0↔ E(Y ) = 0

]
, (∃3)

and we define Zω2 ≡ RCAω0 + QF-AC + (∃3). The (unique) functional from (∃3) is
also called ‘∃3’, and we will use a similar convention for other functionals.

Fourth, there is primitive recursive function U such that ‘U(e, k, n) =0 m + 1’
expresses that the e-th Turing machine with input k halts after n steps with output
m. By definition, Feferman’s µ2 provides an upper bound on this n if it exists, i.e.
we can use µ2 to solve the Halting problem. Similarly, Gandy’s superjump solves
the Halting problem for higher-order computability as follows:

S(F 2, e0) :=

{
0 if {e}(F ) terminates

1 otherwise
, (S3)

where e is an S1-S9-index. A characterisation of S in terms of discontinuities may
be found in [26]. Hence, there are a number of similarities between µ2 and S.

Finally, recall that the Cousin lemma from Remark 1.1 states the existence of
a finite sub-cover for an open cover of the unit interval. Since Cantor space is
homeomorphic to a closed subset of [0, 1], the former inherits the same property. In
particular, for any G2, the corresponding ‘canonical cover’ of 2N is ∪f∈2N [fG(f)]

where [σ0∗
] is the set of all binary extensions of σ. By compactness, there is

a finite sequence 〈f0, . . . , fn〉 such that the set of ∪i≤n[f̄iF (fi)] still covers 2N.
We now introduce the specification SCF(Θ) for a (non-unique) functional Θ which
computes such a finite sequence. We refer to such a functional Θ as a realiser for
the compactness of Cantor space, and simplify its type to ‘3’ to improve readability.

Definition 2.7. The formula SCF(Θ) is as follows for Θ2→1∗
:

(∀G2)(∀f1 ≤1 1)(∃g ∈ Θ(G))(f ∈ [gG(g)]). (2.4)

where ‘f ∈ [gG(g)]’ is the quantifier-free formula fG(g) =0∗ gG(g).

Clearly, there is no unique Θ as in (2.4) (just add more binary sequences to
Θ(G)); nonetheless, we have in the past referred to any Θ satisfying SCF(Θ) as
‘the’ special fan functional Θ, and we will continue this abuse of language. We shall
however repeatedly point out the non-unique nature of the special fan functional Θ
in the following. While Θ may appear exotic at first, it provides the only method we
can think of for computing gauge integrals in general, as discussed in Remark 3.24.

Finally, as to its provenance, Θ was introduced as part of the study of the Gandy-
Hyland functional in [50, §2] via a slightly different definition. These definitions
are identical up to a term of Gödel’s T of low complexity.
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3. Main results I

We establish our main results as sketched in Section 1.3. We treat the Cousin
lemma in full detail in Section 3.1, while similar ‘covering theorems’ from Re-
mark 1.1 are treated analogously in Section 3.2. We show in Section 3.3 that the
Cousin lemma is equivalent to various basic properties of the gauge integral.

3.1. Cousin lemma. Cousin first proved (what is now known as) the Cousin
lemma before 1893 ([15]). This lemma implies that I = [0, 1] is Heine-Borel com-
pact, i.e. that any open cover of I has a finite sub-cover. The goal of this section is
to establish that, despite its seemingly elementary nature, the Cousin lemma can
only be proved in full second-order arithmetic, as sketched in Section 1.3. This
should be contrasted with the restriction to countable covers, which may be proved
in the weak fragment WKL0 of second-order arithmetic by [55, IV.1.2]).

First of all, a functional Ψ : R → R+ gives rise to the (uncountable) canonical
open cover ∪x∈IIΨ

x where IΨ
x is the open interval (x−Ψ(x), x+ Ψ(x)). Hence, the

Cousin lemma implies that ∪x∈IIΨ
x has a finite sub-cover; in symbols:

(∀Ψ : R→ R+)(∃〈y1, . . . , yk〉)(∀x ∈ I)(∃i ≤ k)(x ∈ IΨ
yi). (HBU)

The main goal of this section is now to prove the following theorem, which estab-
lishes that full second-order arithmetic is needed to prove the Cousin lemma.

Theorem 3.1. The system Zω2 proves HBU; no system Π1
k-CAω0 proves HBU.

The first part is a necessity as otherwise the aforementioned designation “anal-
ysis” for Z2 would be meaningless. The second part constitutes a surprise: the
restriction of HBU to countable covers is equivalent to WKL0 ([55, IV.1]), a system
with the (first-order) strength of RCAω0 . Kohlenbach has introduced generalisations
of WKL0 with properties similar to HBU ([33, §5-6]), but these axioms do not stem
from mathematics, i.e. are ‘purely logical’. Furthermore, HBU is robust ([37, p. 432])
in that restricting the variable x to the (Turing) computable reals or the rationals
in I does not make a difference. We now prove the first part of Theorem 3.1.

Theorem 3.2. The system Zω2 proves HBU.

Proof. We only sketch the proof as it makes use of items from Remark 1.1 to be
studied in Section 3.2. A full proof may be found in Theorem 3.14. Now, to derive
HBU, we note that the Lindelöf lemma provides a countable sub-cover for any open
cover of I. Since (∃3) immediately implies Z2, we may use [55, IV.1.2], which
implies that every countable open cover has a finite sub-cover. What remains is to
prove the Lindelöf lemma, which readily follows from the Neighbourhood function
principle NFP, i.e. item (v) in Remark 1.1, as will become clear in the proof of
Theorem 3.14. In turn, NFP has a straightforward proof in Zω2 , as will also become
clear in the proof of Theorem 3.14. �

As noted above, we shall make use of computability theory to establish Theo-
rem 3.1. Hence, we first show that HBU is equivalent to the existence of the special
fan functional Θ in Theorem 3.3. Theorem 3.1 will then be established by showing
that models of Π1

k-CAω0 do not always contain Θ as in Theorem 3.4. Note that the
functional Ω as in (3.1) is called a realiser for HBU.

Theorem 3.3. ACAω0 proves that (∃Θ)SCF(Θ) is equivalent to HBU and to

(∃Ω2→1∗
)(∀Ψ : R→ R+)(∀x ∈ [0, 1])(∃y ∈ Ω(Ψ)(x ∈ IΨ

y ). (3.1)
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Proof. We first point out two useful properties of Feferman’s µ: the axiom (µ2)
defining the latter functional is equivalent to the existence of F : R→ R such that
F (x) = 1 if x >R 0, and 0 otherwise ([32, §3]). Furthermore, by repeatedly applying
µ, we can show that any arithmetical formula is equivalent to a quantifier-free one.
We also recall the notation ‘f ∈ [σ]’ for covers of Cantor space from Definition 2.7.

Based on the previous, given Ψ, y1, . . . , yk as in HBU, we can decide if the inter-
vals IΨ

yi form an open covering or not: we just check (using µ) how the end-points
of these intervals are interleaved. Thus, using µ as a parameter, we can deduce
(3.1) from HBU by QF-AC. Likewise, given f1, . . . , fn ≤1 1 and k1, . . . , kn in N, we
can decide if the set of neighbourhoods [f̄iki] form a covering or not; hence, we may
use QF-AC to obtain Θ from the compactness of Cantor space in the same way.

Now define ξ(f) =
∑
i∈N f(i) · 2−(i+1) and ζ(f) =

∑
i∈N 2f(i) · 3−(i+1) for f ∈

{0, 1}N; note that ξ is a continuous projection of {0, 1}N to [0, 1], while ζ is the
homeomorphism between {0, 1}N and the classical Cantor space Cc. Using ξ and
ζ, we can convert canonical covers between I and Cantor space as follows:

- For Ψ : [0, 1]→ R+, define FΨ(f) as the least n such that [f̄n] ⊆ ξ−1(IΨ
ξ(f)).

- For F : {0, 1}N → N, we define ΨF (x) as the distance from x to Cc if
x 6∈ Cc, and as the least rational (in some canonical enumeration of Q+) q

such that ζ−1((x− q, x+ q)) ⊆ [ζ−1(x)F (ζ−1(x))] if x ∈ Cc.
These constructions are arithmetical, and the compactness property for the associ-
ated coverings are transferred from one space to the other in both directions. �

From the proof, we may also conclude that there is a term t such that if SCF(Θ)
and Ω := t(Θ, µ) then Ω satisfies (3.1), and conversely, there is a term s such that if
Ω satisfies (3.1) and Θ := s(Ω, µ), then SCF(Θ). The proof makes use of the Axiom
of Choice (as in QF-AC) to obtain a functional Θ as in SCF(Θ), resp. Ω satisfying
(3.1), from the existence of finite sub-coverings. Nonetheless, a careful analysis of
the known proofs of HBU yields such functionals Θ and Ω without the Axiom of
Choice. We discuss this in more detail in Remark 3.9 at the end of this section.

To establish Theorem 3.1, we now exhibit a model (aka type structure) of Π1
k-CAω0

in which there is no special fan functional; HBU is then false in that model by
Theorem 3.3, and hence Π1

k-CAω0 cannot prove HBU by the soundness theorem.

Theorem 3.4. There is a type structure validating Π1
k-CAω0 for all k and at the

same time satisfying (∀Θ3)¬SCF(Θ).

Proof. We introduce a family of type structures validating (∀Θ3)¬SCF(Θ). The-
orem 3.8 below tells us that one of those structures contains all S1

k and is closed
under S1-S9, establishing the theorem. Intuitively speaking, we start from a β-
model A and have that any functional G : A→ N which is computable in some S2

k

and elements from A will be total over NN by the same algorithm. By absoluteness,
there are f1, . . . , fn in A inducing a covering of 2N of the standard form. Since it is
flexible which objects of type 2 we include in an extension of A to a typed structure,
A together with the S2

k’s cannot “decide” whether there is Θ as in SCF(Θ).

Let A ⊆ NN be a countable set such that all Π1
k-statements with parameters from

A are absolute for A. Also, let S2
k be the characteristic function of a complete Π1

k-
set for each k; we also write S2

k for the restriction of this functional to A. Clearly,
for f ∈ NN computable in any S2

k and some f1, . . . , fn from A, f is also in A.
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Convention 3.5. Since A is countable, we write A as the increasing union
⋃
k∈N An

where A0 consists of the hyperarithmetical functions and for k > 0 we have:

• There is an element in Ak enumerating Ak−1.
• Ak is the closure of a finite set g1, . . . , gnk under computability in S2

k.

For the sake of uniform terminology, we rename ∃2 to S2
0 and let the associated

finite sequence g1, . . . , gn0 be the empty list.

We now define the functional F 2 on A as follows.

Definition 3.6. [The functional F ] Define F (f) for f ∈ A as follows:

• If f 6∈ 2N, put F (f) := 0.
• If f ∈ 2N, let k be minimal such that f ∈ Ak. We put F (f) := 2−(k+2+e).

where e is a ‘minimal’ index for computing f from S2
k and {g1, . . . , gnk}

as follows: the ordinal rank of this computation of f is minimal and e is
minimal among the indices for f of the same ordinal rank.

By definition, F as in Definition 3.6 is injective on A0 and on each set Ak+1 \Ak.
Moreover, if m is the usual measure on 2N, we see that

m
(⋃

f∈A0
[f̄F (f)]

)
≤ 2−1 and m

(⋃
f∈Ak+1\Ak [f̄F (f)]

)
≤ 2−(k+2).

As a consequence, if F is extended to a total functional G and Θ satisfies SCF(Θ),
then Θ(G) cannot be a finite list from A. So, for any type structure Tp = {Tpn}n∈N

where Tp0 = N, Tp1 = A and F ∈ Tp2, there is no instance of Θ as in SCF(Θ) in
Tp3. To establish the theorem, we require one such type structure, containing each
S2
k and F , and closed under Kleene’s S1 - S9; such a type structure is provided by

Theorem 3.8, i.e. the latter establishes the theorem, and we are done. �

For Theorem 3.8, we require some properties of F 2 from Definition 3.6.

Lemma 3.7 (Properties of the functional F ).

(1) For each k, the restriction of F to Ak is computable in the functions
g1, . . . , gnk from Convention 3.5, and the functional S2

k.
(2) Let G be any total extension of F , let f1, . . . , fm ∈ A, and assume that the

function f is computable in G, f1, . . . fm and some S2
k. Then also f ∈ A.

Proof. For the first part, we use induction on k. For k = 0, we use Gandy selection
([35, p. 210]) for ∃2 which permits us to compute an ∃2 index for each hyperarith-
metical function. For k > 0, we use that S2

l is computable in S2
k when l < k and

that we have enumerations of each of the sets A0, . . . Ak−1 computable in g1, . . . , gnk
and S2

k. Then we can apply the induction hypothesis for f ∈ Al for some l < k and
the Gandy selection method relative to S2

k for f ∈ Ak \Ak−1. For the second part,
without loss of generality, we may assume that f1, . . . , fm are all in Ak. By the
first part of this lemma, G restricted to Ak is computable in S2

k, and Ak is closed
under computations relative to S2

k. The claim now follows. �

Theorem 3.8. There is a type structure {Tpn}n∈N, closed under Kleene’s S1-S9,
such that Tp0 = N and:

(1) Tp1 is a countable subset A of NN such that all analytical statements (i.e.
any Π1

m-sentence, for any m) are absolute for A.
(2) Tp2 contains the restrictions of all S2

k to A.
(3) There exists F ∈ Tp2 inducing an open covering of A for which there is no

finite sub-covering in the type structure.
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Proof. The theorem expresses exactly what Tpn has to be for n = 0 and n = 1. For
n > 1 we recursively let Tpn consist of all functionals φ : Tpn−1 → N that are S1-
S9-computable in F , some S2

k, and elements from A, where F is as in Definition 3.6.
This type structure has the desired property. �

The proof of Theorem 3.1 is now done. We finish this section with a remark.

Remark 3.9 (The Axiom of Choice and Θ). First of all, while the (quantifier-free)
Axiom of Choice is used to establish the existence of Θ in Theorem 3.3, the special
fan functional Θ can be computed from ∃3 (via a term from Gödel’s T ) without any
use of the Axiom of Choice by [51, Cor. 3.29]. Furthermore, Borel’s construction
from [9, p. 52] can be applied to our notion of canonical cover, yielding a countable
sub-cover without using the Axiom of Choice. Furthermore, the instance Θ0 of the
special fan functional from [42, §5.1] is defined using Borel’s construction.

3.2. Lindelöf lemma and similar theorems. We establish results analogous to
Theorem 3.1 for some of the other theorems from Remark 1.1. We discuss how
these theorems are used in mathematics in Remark 3.16.

3.2.1. Lindelöf lemma. We recall that Lindelöf proved the Lindelöf lemma in 1903
([34]) which states that any open cover of any subset of Rn has a countable sub-
cover. In this section, we study this lemma restricted to R, while Baire space is
studied in Section 4.2.2. We are interested in the following formulations.

Definition 3.10. [LIND] For every Ψ : R → R+, there is a sequence of open
intervals ∪n∈N(an, bn) covering R such that (∀n ∈ N)(∃x ∈ R)[(an, bn) = IΨ

x ].

Definition 3.11. [LIND2] (∀Ψ : R→ R+)(∃Φ0→1)(∀x ∈ R)(∃n0)(x ∈ IΨ
Φ(n)).

Definition 3.12. [LIND3] (∃Ξ)(∀Ψ : R→ R+)(∀x ∈ R)(∃n0)(x ∈ IΨ
Ξ(Ψ)(n)).

The following theorem establishes the connection between LIND and HBU, while
also showing that the introduction of Ξ does not change LIND much.

Theorem 3.13. The system RCAω0 proves [LIND+WKL0]↔ HBU and ACAω0 proves
LIND↔ LIND2 ↔ LIND3.

Proof. For the first part, WKL0 implies that every countable cover of I has a finite
sub-cover by [55, IV.1.2]. Hence, LIND + WKL0 → HBU is immediate, while HBU
clearly generalises to [−N,N ] for any natural number N0. Putting all the finite sub-
covers of [−N,N ] together, one obtains the countable cover needed for LIND. For
the second part, we only need to prove the forward implications. So assume LIND
and note that the formula ‘(an, bn) = IΨ

x ’ is just an =R x−Ψ(x)∧ bn =R x+ Ψ(x),
which is Π0

1, i.e. this formula is decidable using µ2, and we can treat it as quantifier-
free in ACAω0 . Now apply QF-AC0,1 to (∀n ∈ N)(∃x ∈ R)[(an, bn) = IΨ

x ] to obtain
LIND2. For the final implication, we use the same argument as in the first part,
establishing HBU relativised to [−N,N ], and now combined with the existence of
the functional Ω as in (3.1). �

We believe that the axiom QF-AC0,1 is essential in proving the second part. A
similar observation is made by Kohlenbach in [32] regarding the local equivalence
of ‘epsilon-delta’ and sequential continuity. We now have the following theorem.

Theorem 3.14. The system Zω2 proves LIND; no system Π1
k-CAω0 proves LIND.
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Proof. The second part is immediate from Theorems 3.1 and 3.13. The first part
is proved by proving item (v) from Remark 1.1 in Zω2 , and deriving LIND from this
item. Thus, consider the following for any Π1

∞-formula A with any parameter:

(∀f1)(∃n0)A(fn)→ (∃γ1 ∈ K0)(∀f1)A(fγ(f)). (NFP)

Here, ‘γ1 ∈ K0’ expresses that γ1 is an associate, which is the same as a code from
RM by [33, Prop. 4.4]. Formally, ‘γ1 ∈ K0’ is the following formula:

(∀f1)(∃n0)(γ(fn) >0 0) ∧ (∀n0,m0, f1, )(m > n ∧ γ(fn) > 0→ γ(fn) =0 γ(fm)).

The value γ(f) for γ ∈ K0 is defined as the unique γ(fn) − 1 for n large enough.
Now, since A as in NFP is a Π1

k-formula for some k, we may treat it as quantifier-

free given (∃3). Applying QF-AC1,0 to the antecedent of NFP, there is Y 2 such
that (∀f1)A(fY (f)). Define Z2 using (∃3) as follows: Z(f) is the least n ≤ Y (f)
such that A(fn) if it exists, and zero otherwise. Note that Z is continuous on NN

and hence has an associate by [33, Prop. 4.7]. Alternatively, define the associate
γ1 directly as follows: for w0∗

, define γ(w) as the least n ≤ |w| such that A(wn) if
such there is, and zero otherwise. Clearly, we have γ ∈ K0 and (∀f1)A(fγ(f)), i.e.
NFP follows. Finally, LIND follows from the latter by considering:

(∀x ∈ R)(∃n ∈ N)
[
(∃y ∈ R)(([x]( 1

2n )− 1
n , [x]( 1

2n ) + 1
n ) ⊂ IΨ

y )
]

(3.2)

for Ψ : R → R+, and where the formula in square brackets is abbreviated A(xn).
This is a slight abuse of notation, as (only) the first 2n elements in the sequence x1

are being used in (3.2). Applying NFP to (3.2), we obtain γ ∈ K0 such that:

(∀x ∈ R)(∃y ∈ R)
[
([x]( 1

2γ(x)
)− 1

γ(x) , [x]( 1
2γ(x)

) + 1
γ(x) ) ⊂ IΨ

y

]
. (3.3)

Note that the formula in square brackets in (3.3) is arithmetical (including the
formula needed to make the notation γ(x) work). Hence, using QF-AC and (µ2),
there is a functional Φ which provides the real y from (3.3) on input x ∈ R. The
countable sub-cover of ∪x∈RI

Ψ
x can then be found by enumerating Φ(qw) for all

finite sequences w0∗
of rationals which represent rationals q0

w and are such that
γ(w) >0 0. In particular, every x ∈ R is in IΨ

Φ(x) by (3.3), and since v0∗ := x2γ(x)

is in the aforementioned enumeration, we also have x ∈ IΨ
Φ(qv). �

By the first part of Theorem 3.13, the results regarding LIND have to be some-
what similar to those for HBU. However, the Lindelöf theorem for the Baire space
behaves quite differently, as will be established in Section 4.2. Furthermore, while
HBU implies WKL, LIND does not by the following corollary.

Corollary 3.15. The system RCAω0 +LIND proves the same L2-sentences as RCA0.

Proof. By the proof of [32, Prop. 3.1], if for a sentence A ∈ Lω, the system RCAω0
proves A, then RCA0 proves [A]ECF, where ‘[ · ]ECF’ is a syntactic translation which
-intuitively- replaces any object of type 2 or higher by a code γ1 ∈ K0. Thus,
to establish the corollary, it suffices to show that [LIND]ECF is provable in RCA0.
However, LIND only involves objects of type 0 and 1, except for the leading quan-
tifier. Hence, [LIND]ECF is nothing more than LIND with ‘(∀Ψ1→1)’ replaced by
‘(∀γ1 ∈ K0)’. Thus, by enumerating γ(w) as in the proof of the theorem, we
immediately obtain a countable sub-cover, and [LIND]ECF is provable in RCA0. �
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3.2.2. Other theorems. We discuss how the theorems in Remark 1.1 imply either
LIND or HBU, and hence have similar properties to the latter.

(1) The Besicovitsch and Vitali5 covering lemmas as in [1, §2] start from a
cover of open balls, one for each x ∈ E ⊂ Rn, and states the existence of a
countable sub-cover of E with nice properties, i.e. LIND follows. Note that
Vitali already (explicitly) discussed uncountable covers in [60, p. 236].

(2) The existence of Lebesgue numbers for any open cover is equivalent to HBU,
in the same way the countable case is equivalent to WKL0 ([24, Theo-
rem 5.5]). The same holds for the Banach-Alaoglu theorem; the equivalence
between the countable case and WKL0 is established in [10, p. 140].

(3) The principle NFP implies LIND by the proof of Theorem 3.14.
(4) The Heine-Young and Lusin-Young theorems from [62] are clearly refine-

ments of HBU, while the tile theorem [30,62], and the latter’s generalisation
due to Rademacher ([44, p. 190]) are clearly refinements of LIND.

(5) Basic properties of the gauge integral, like uniqueness and its extension of
the Riemann integral, are equivalent to HBU over the system ACAω0 , as
shown in Section 3.3. Note that ACAω0 is very weak compared to Zω2 , which
is in turn required to prove HBU by Theorem 3.1.

Finally, we discuss how some of the ‘countable covering theorems’, like the Lindelöf
and Vitali lemmas, from Remark 1.1 are used in mathematics.

Remark 3.16. The Cousin lemma is special because it deals with bounded sets (es-
sentially the unit interval), while the other covering theorems apply to unbounded
sets (e.g. Rn). Now, a cover of the latter is generally difficult to handle, but any
countable sub-cover ‘automatically’ has nice properties: e.g. the countable sub-
additivity of the Lebesgue measure. In fact, the proofs of Sard’s theorem and the
maximal theorem in [1], and of the Lebesgue density theorem in [54] are based on
this idea. In other words, the non-local character of some of the covering theorems
in Remark 1.1 has real applications in mathematics.

Similarly, for properties which hold in the unit interval minus a measure zero
set, like the differentiation theorem for gauge integrals ([3, p. 80]), one uses the
Vitali covering theorem to provide a countable sub-cover in which the complement
of a finite sub-sub-cover has small length. Hence, one can neglect this complement
and the finite nature of the sub-sub-cover then makes the proof straightforward.

3.3. The gauge integral. In this section, we provide a brief introduction to the
gauge integral (Section 3.3.1) and establish that basic properties of this integral, like
uniqueness and the fact it extends the Riemann and Lebesgue integral, are equiva-
lent to HBU (Section 3.3.2) over the (relatively weak) system ACAω0 . As will become
clear below, the gauge integral enjoys both greater conceptual simplicity and higher
generality than the Lebesgue integral. For this reason, there have been calls for
(a somewhat stripped-down version of) the gauge integral to replace the Riemann
and Lebesgue integral (and the associated measure theory) in the undergraduate
curriculum ([4–6]). In a nutshell, the gauge integral can only be called natural and
mainstream, and hence the same holds for HBU by the below equivalences.

5Not to be confused with the Vitali covering theorem ([3, p. 79]), which does follow from the
Vitali covering lemma via Banach’s proof from [40, p. 81]; we believe that the Vitali covering

theorem is weaker than HBU, but nonetheless requires full second-order arithmetic Zω
2 to prove.
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3.3.1. Introducing the gauge integral. The gauge integral is a generalisation of the
Lebesgue and (improper) Riemann integral; it was introduced by Denjoy (in a
different from) around 1912 and studied by Lusin, Perron, Henstock, and Kurzweil.
The exact definition is in Definition 3.17, which we intuitively motivate as follows.

A limitation of the ‘ε-δ-definition’ of the Riemann integral is that near a singu-
larity of a function f : [0, 1] → R, changes smaller than any fixed δ > 0 in x can
still result in huge changes in f(x), guaranteeing that the associated Riemann sums
vary (much) more than the given ε > 0. The gauge integral solves this problem by
replacing the fixed δ > 0 with a gauge function δ : R→ R+; the latter can single out
those partitions with ‘many’ partition points near singularities to compensate for
the extreme behaviour there. Similarly, δ : R→ R+ can single out partitions which
avoid ‘small’ sets whose contribution to the Riemann sums should be negligible. We
study 1√

x
and Dirichlet’s function in Example 3.18 after the following definition.

Definition 3.17. [Gauge integral]

(1) A gauge on I ≡ [0, 1] is any function δ : R→ R+.
(2) A sequence P := (t0, I0, . . . , tk, Ik) is a tagged partition of I, written ‘P ∈

tp’, if the ‘tag’ ti ∈ R is in the interval Ii for i ≤ k, and the Ii partition I.
(3) If δ is a gauge on I and P = (ti, Ii)i≤k is a tagged partition of I, then P is

δ-fine if Ii ⊆ [ti − δ(ti), ti + δ(ti)] for i ≤ k.
(4) For a tagged partition P = (ti, Ii)i≤k of I and any f , the Riemann sum

S(f, P ) is
∑n
i=0 f(ti)|Ii|, while the mesh ‖P‖ is maxi≤n |Ii|.

(5) A function f : I → R is Riemann integrable on I if there is A ∈ R such that
(∀ε >R 0)(∃δ >R 0)(∀P ∈ tp)(‖P‖ ≤R δ → |S(f, P )−A| <R ε).

(6) A function f : I → R is gauge integrable on I if there is A ∈ R such that
(∀ε >R 0)(∃δ : R→ R+)(∀P ∈ tp)(P is δ-fine → |S(f, P )−A| <R ε).

(7) A gauge modulus for f is a function Φ : R→ (R→ R+) such that Φ(ε) is a
gauge as in the previous item for all ε >R 0.

The real A from items (5) and (6) in Definition 3.17 is resp. called the Riemann

and gauge integral. We will always interpret
∫ b
a
f as a gauge integral, unless ex-

plicitly stated otherwise. We abbreviate ‘Riemann integration’ to ‘R-integration’,
and the same for related notions. The following examples are well-known.

Example 3.18 (Two examples). Let f be the function 1/
√
x for x > 0, and zero

otherwise. It is easy to show
∫ 1

0
f =R 2 using the gauge modulus δε(x) := εx2 for

x > 0 and ε2 otherwise. Let g be constant 1 for x ∈ Q, and zero otherwise. It is

easy to show
∫ 1

0
g =R 0 using the gauge modulus δε(x) := 1 if x 6∈ Q and ε/2k+1 if

x equals the k-th rational (for some enumeration of the rationals fixed in advance).

Finally, using the Axiom of Choice, a gauge integrable function always has a
gauge modulus, but this is not the case in weak systems like RCAω0 . However,
to establish the Cauchy criterion for gauge integrals as in Theorem 3.21, a gauge
modulus is essential. For this reason, we sometimes assume a gauge modulus when
studying the RM of the gauge integral in Section 3.3.2. Similar ‘constructive en-
richments’ exist in Friedman-Simpson RM, as established by Kohlenbach in [33, §4].

3.3.2. Reverse Mathematics of the gauge integral. We show that basic properties
of the gauge integral are equivalent to HBU. We have based this development on
Bartle’s introductory monograph [3].
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First of all, we show that HBU is equivalent to the uniqueness of the gauge
integral, and to the fact that the latter extends the R-integral. Note that the
names of the two items in the theorem are from [3, p. 13-14].

Theorem 3.19. Over ACAω0 , the following are equivalent to HBU:

(i) Uniqueness: If a function is gauge integrable on [0, 1], then the gauge inte-
gral is unique.

(ii) Consistency: If a function is R-integrable on [0, 1], then it is gauge inte-
grable there, and the two integrals are equal.

Proof. We prove HBU → (i) → (ii) → HBU, where only the first implication re-
quires (µ2). To prove that HBU implies Uniqueness, assume the former, let f be
gauge integrable on I and suppose f satisfies for i = 1, 2 (where Ai ∈ R) that:

(∀ε > 0)(∃δ1
i : R→ R+)(∀P ∈ tp)(P is δi-fine → |S(f, P )−Ai| < ε). (3.4)

Fix ε > 0 and the associated δi : R → R+ in (3.4) for i = 1, 2. We define the
gauge δ3 : R → R+ as δ3(x) := min(δ1(x), δ2(x)). By definition, a partition which
is δ3-fine, is also δi-finite for i = 1, 2. Now assume there is P0 ∈ tp which is δ3-fine,
and note that we obtain the following by applying (3.4) for the final inequality:

|A1−A2| =R |A1−S(f, P0)+S(f, P0)−A2| ≤R |A1−S(f, P0)|+|S(f, P0)−A2| ≤R 2ε.

Hence, we must have A1 =R A2, and Uniqueness follows. What remains is to prove
that for every gauge δ there exists a δ-fine tagged partition. We emphasise the
crucial nature of this existence: (3.4) is vacuously true if there is no δi-fine tagged
partition; in other words: we can only make meaningful use of the conclusion of
(3.4), if we show the existence of a δi-fine tagged partition.

Thus, fix a gauge δ : R→ R+ and apply HBU to ∪x∈I(x−δ(x), x+δ(x)) to obtain
a finite sub-cover w := (y0, . . . , yk), i.e. we have I ⊂ ∪x∈w(x− δ(x), x+ δ(x)). The
latter cover is readily converted into a tagged partition P0 := (zj , Ij)j≤l (with l ≤ k
and zj ∈ w for j ≤ l) by removing overlapping segments and omitting redundant
intervals ‘from left to right’. By definition, zj ∈ Ij ⊂ (zj − δ(zj), zj + δ(zj)) for
j ≤ l, i.e. P0 is δ-fine. While the previous two steps are straightforward, it should
be noted that (i) HBU is essential by the equivalences in the theorem, and (ii) to
convert w into a tagged partition, we need to compare real numbers (in the sense
of deciding whether x >R 0 or not) and this operation is only available in ACAω0 .

To prove that Uniqueness implies Consistency, note that ‘P is dδ-fine’ is equiv-
alent to ‘‖P‖ ≤ δ’ for the gauge dδ : R → R+ which is constant δ > 0. Rewriting
the definition of Riemann integration with this equivalence, we observe that an
R-integrable function f is also gauge integrable (with a constant gauge dδ for every
choice of ε > 0). The assumption Uniqueness then guarantees that the number A
is the only possible gauge integral for f on I, i.e. the two integrals are equal.

To prove that Consistency implies HBU, suppose the latter is false, i.e. there is
Ψ0 : R→ R+ such that ∪x∈IIΨ0

x does not have a finite sub-cover. Now let f : I → R
be R-integrable with R-integral A ∈ R. Define the gauge δ0 as δ0(x) := Ψ0(x) and
note that for any P ∈ tp, we have that P is not δ0-fine, as ∪x∈IIΨ0

x would otherwise
have a finite sub-cover (provided by the tags of P ). Hence, the following statement
is vacuously true, as the underlined part is false:

(∀ε > 0)(∀P ∈ tp)(P is δ0-fine → |S(f, P )− (A+ 1)| < ε). (3.5)
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However, (3.5) implies that f is gauge integrable with gauge δ0 and gauge integral
A+1, i.e. Consistency is false as the Riemann and gauge integrals of f differ. Note
that δ0 also provides a gauge modulus by (3.5) in case ¬HBU. �

In passing, we discuss the question if ACAω0 in the previous (and subsequent)
theorem can be weakened to RCAω0 . In our opinion, this weakening would not be
spectacular, given that HBU requires Zω2 for a proof, as established above. Further-
more, even very basic properties of the gauge integral require ACAω0 , as follows.

Example 3.20 (Splitting the domain). As it turns out, proving
∫ 1

0
f =R

∫ x
0
f+
∫ 1

x
f

for 0 <R x <R 1 in general seems to require a discontinuous gauge. Indeed, if for
ε > 0 the functions δ1, δ2 are gauges for the right-hand side of the equation, a gauge
for the left-hand side is as follows ([3, p. 45]):

δ3(y) :=


min(δ1(y), 1

2 (x− y)) y ∈ [0, x)

min(δ1(x), δ2(x)) y =R x

min(δ2(y), 1
2 (y − x)) y ∈ (x, 1]

(3.6)

The function δ3 is discontinuous in general, but can be defined in ACAω0 .

Secondly, we prove the Cauchy criterion for gauge integrals, as this theorem is
needed below. Our proof is based on [3, p. 40] and illuminates the role of Θ.

Theorem 3.21 (ACAω0 + HBU; Cauchy criterion). A function f : I → R is gauge
integrable with a modulus if and only if there is Φ : R+ → (R→ R+) such that

(∀ε >R 0)(∀P,Q ∈ tp)(P,Q are Φ(ε)-fine → |S(f, P )− S(f,Q)| <R ε). (3.7)

Proof. The forward implication follows by considering a gauge modulus Φ for f and

|S(f, P )−S(f,Q)| = |S(f, P )−A+A−S(f,Q)| ≤ |S(f, P )−A|+ |A−S(f,Q)| ≤ ε

where P,Q are Φ(ε/2)-fine and A is the gauge integral of f over I. For the reverse
implication let Φ be as in (3.7); we need to find the real A from the definition of
gauge integration. This real A can be obtained as the limit of the sequence S(f,Qn)
where Qn is a Φ( 1

2n )-fine partition. Now, these partitions Qn can in turn be defined
by applying the functional Ω from Theorem 3.3 to the canonical cover associated to
Φ( 1

2n ) and using Feferman’s µ to convert the resulting finite sub-cover to a suitable
partition. Finally, (3.7) guarantees that the sequence S(f,Qn) is Cauchy, while
ACA0 proves that a Cauchy sequence has a limit by [55, III.2.2]. �

The previous proof explains the need for a gauge modulus: the latter is essential
in ‘reconstructing’ the gauge integral A as the limit in the proof, if A is not given.

Thirdly, we show that HBU is equivalent to the fact that the gauge integral en-

compasses the improper R-integral. The latter is a (usual) R-integral
∫ b
a
f(x)d(x)

where additionally a limit operation like lima→0 or limb→∞ is applied. This method
allows one to consider unbounded domains or use singularities as end points; as
suggested by its name, an improper R-integral is (generally) not an actual R-
integral. Now, Hake’s theorem ([3, p. 195]) implies that improper R-integrals are
automatically gauge integrals. We consider special cases of Hake’s theorem, includ-
ing item (iii) below which does mention gauge integrability but does not mention
gauge integrals or their uniqueness. As a result, it is fair to say that the following
equivalences are not (only) based on the uniqueness of the gauge integral.
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Theorem 3.22. Over ACAω0 , the following are equivalent to HBU:

(i) There exists a function which is not gauge integrable with a modulus.
(ii) (Hake) If f is gauge integrable on I with a modulus and R-integrable on

[x, 1] for x >R 0, then the limit of R-integrals limx→0+

∫ 1

x
f is

∫ 1

0
f .

(iii) (weak Hake) If f is gauge integrable with a modulus on I and R-integrable

on [x, 1] for x >R 0, then the limit of R-integrals limx→0+

∫ 1

x
f exists.

Proof. We shall prove HBU → (ii) → (iii) → (i) → HBU. Note that the second
implication is trivial. Now assume item (iii) and consider the function g : I → R
which is 0 if x =R 0, and 1

x otherwise. This function exists in ACAω0 by [32,
Prop. 3.12]. By the development of integration theory in [55, IV.2], the R-integral∫ 1

x
g exists for x > 0 and is readily seen to equal ln(x), the natural logarithm.

However, the limit x → 0+ of this function is −∞. Thus, the limit limx→0+

∫ 1

x
g

does not exist, and by the contraposition of weak Hake’s theorem, we conclude that
g is not gauge integrable with a modulus on I, i.e. item (i) follows.

The implication (i) → HBU follows from the proof of Theorem 3.19: in the last
part of the latter proof, it is shown that ¬HBU allows us to define a gauge δ0 for
which there are no δ0-fine partitions. Hence, the underlined part in (3.5) is false,
making the formula trivially true for any f and A, i.e. every function is gauge
integrable (with a modulus). Contraposition now yields the desired implication.

Finally, we prove item (ii) in ACAω0 + HBU based on the proof in [3, p. 195].
In a nutshell, the latter uses the Saks-Henstock lemma to prove that the indefinite

integral F (x) :=
∫ 1

x
f is (ε-δ-)continuous in x on I. Hence limx→0+ F (x) =R F (0),

which is exactly as required for item (ii). First of all, the Saks-Henstock lemma
intuitively states that if one considers a sub-partition of a δ-fine partition, one in-
herets all the ‘nice’ properties of the original partition. The proof of this lemma is
a straight-forward ‘epsilon-delta’ argument, with one subtlety: the Cauchy crite-
rion (as is Theorem 3.21) for gauge integrals requires a gauge modulus, which we
(therefore) assumed in item (ii). The proof that the Saks-Henstock lemma yields the

continuity of F (x) :=
∫ 1

x
f is also a straight-forward ‘epsilon-delta’ argument. �

Fourth, we show that HBU is equivalent to the fact that the gauge integral
is a proper extension of the Lebesgue integral. In fact, f : [0, 1] → R is Lebesgue
integrable if and only if |f |, f are gauge integrable ([3, §7, p. 102]). We use the latter
variant as introducing the Lebesgue integral is beyond the scope of this paper.

Theorem 3.23. Over ACAω0 , HBU is equivalent to the following statement: There
exists a function κ : I → R which is gauge integrable with a modulus but |κ| is not.

Proof. The reverse implication is immediate by Theorem 3.22. For the forward

implication, define ak := 1− 1
2k

and κ(x) := (−1)k+1 2k

k if x ∈ [ak−1, ak) (k0 ≥ 1),
and 0 otherwise. Then for x >R 0, the area between the horizontal axis and the
graph of |κ| on [0, x] is just a finite collection of (bounded) rectangles, i.e. |κ| is
definitely R-integrable on [0, x] for x < 1. In particular, if x ≥R 1− 1

2k
, there are at

least k rectangles to the left of x; the first has base 1/2 and area 1, the second one
base 1/4 and area 1/2, . . . , the k-th one has base 1/2k and area 1/k. The R-integral∫ x

0
|κ| is thus at least

∑k
i=1

1
i . The limit of the latter is the divergent harmonic

series, and item (iii) from Theorem 3.22 yields that |κ| is not gauge integrable on I
with a modulus. To prove that κ is gauge integrable on I, note that (3.6) allows us
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to piece together gauges from sub-intervals. The following gauge modulus is based
on that idea:

δε(x) :=


d(x,E) x ∈ [0, 1] \ E
ε

4(k+1) x =R ak

2−m(ε) x =R 1

,

where E is the set consisting of the real 1 and all ak, and where m(ε) is such that

m(ε) ≥ 1
ε and the tail of the alternating harmonic series satisfies |

∑∞
k=n

−1k+1

k | ≤ ε
for n ≥ m(ε). We leave it as an exercise that this gauge can be defined in ACAω0 .
The proof that δε is a gauge for κ is completely straightforward and elementary, but
somewhat long and tedious. Hence, we omit this proof and refer to [3, p. 35]. �

Finally, we discuss in what sense we may evaluate general gauge integrals.

Remark 3.24 (Computing integrals). In the case of the R-integral, a modulus (of
R-integration) computes a δ > 0 in terms of any ε > 0 as in Definition 3.17. Hence,
if Pn is the equidistant partition of I with mesh 1/2n, we know that S(Pn, f) con-
verges to the R-integral of f on I, and the modulus provides a rate of convergence.
For the gauge integral, there is no analogue of the equidistant partition: even given
a gauge modulus δ(ε, x), we need to find, say for every ε > 0, a δ(ε, ·)-fine partition
Qε; only then can we consider the limit of S(Qε, f) for ε → 0, which converges
to the gauge integral of f on I as in Theorem 3.21. To find such a partition, the
only option (we can imagine) is to consider ∪x∈I(x− δ(ε, x), x+ δ(ε, x)) and apply
the realiser Ω for HBU as in (3.1) to obtain a finite sub-cover. The latter can be
modified using µ2 into a δ(ε, ·)-fine partition.

4. Main results II

We obtain some surprising results in higher-order RM related to the Cousin and
Lindelöf lemmas. In particular, we study the behaviour of the latter in combination
with Feferman’s µ and the Suslin functional S.

4.1. Jumping to transfinite recursion. In [42], we established that ACAω0 +HBU
proves arithmetical transfinite recursion as in ATR0, i.e. HBU suffices to jump from
the third to the fourth Big Five system. Moreover, we proved that there exists,
without constructing it, a term of Gödel’s T which computes a realiser for ATR0

from Θ and µ. Furthermore, in [43] we provide a direct construction of this fact,
with a proof that Θ restricted to arithmetical functions suffices. One consequence
is that HBU cannot be satisfied within the class of Borel functions. Now, the space⊕

n∈N[0, 1]n is a Polish space, and hence the following theorem makes perfect sense.

Theorem 4.1. There is a map Ψ : [0, 1]2 → R+ that is Borel at a finite level, and
such that whenever Φ : [0, 1]→ ⊕n∈N[0, 1]n is Borel, there is an x ∈ [0, 1] such that
{IΨx
y | y ∈ Φ(x)} is not a covering of [0, 1], where Ψx(y) = Ψ(x, y).

Proof. In [43, Cor. 4.14], we proved a similar result for Cantor space, and since the
latter is homeomorphic to a nice closed subset of [0, 1], the theorem follows. �

4.2. Jumping to the superjump. We show that the Lindelöf lemma for Baire
space and Feferman’s µ2 together give rise to the Suslin functional S and the su-
perjump S. We introduce the latter in Section 4.2.1, while the Lindelöf lemma for
Baire space and the associated functional Ξ (computing the countable sub-cover)
are introduced in Section 4.2.2. The following results are established below.
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(1) The superjump S is computable in the special fan functional Θ and the
Suslin functional S (Section 4.2.1).

(2) The Suslin functional S is (uniformly) computable in Feferman’s µ and
the functional Ξ which computes the countable sub-cover from the Lindelöf
lemma for Baire space (Section 4.2.2).

As a consequence, the combination of Feferman’s µ and any such Ξ computes the
superjump S. We recall the fact that the special fan functional Θ is not unique,
and neither is ‘the’ aforementioned functional Ξ.

4.2.1. Computing the superjump. We show that the combination of the Suslin func-
tional S and the special fan functional Θ computes the superjump. The latter cor-
responds to the Halting problem for computability on type two inputs. Indeed, the
superjump S3 was introduced in [23] by Gandy (essentially) as follows:

S(F 2, e0) :=

{
0 if {e}(F ) terminates

1 otherwise
, (S3)

where the formula ‘{e}(F ) terminates’ is a Π1
1-formula defined by Kleene’s S1-S9.

As to its history, Harrington has proved that the first ordinal not computable in
S is the first recursively Mahlo ordinal ([25]). In turn, the latter ordinal appears
in the study of constructive set and type theory and the associated proof theory
([45–47]). In particular, {R ⊆ N : R is computable from S} is the smallest β-
model of ∆1

2-CA0 + (M), where (M) expresses that every true Π1
3-sentence with

parameters already holds in a β-model of ∆1
2-comprehension ([47]). As discussed

in Remark 4.15, S lives far outside of predicative mathematics.

Theorem 4.2. The superjump S is computable in any Θ satisfying SCF(Θ) and
the Suslin functional S.

Proof. We first provide a sketch of the proof as follows. Recall that if σ is a finite
binary sequence, then [σ] is the set of total binary extensions of σ.

(1) Given F 2, let αF (e) = {e}(F, e) whenever the value is in {0, 1}, and let XF

be the set of total binary extensions of αF .
(2) Compute GF from F and S with the properties

i) if f 6∈ X, then GF (f) > 0
ii) if GF (f) > 0, then [f̄GF (f)] does not intersect XF

iii) for f ∈ XF , GF (f) = 0.
(3) Show that S(F ) is uniformly computable in S and f ∈ XF .
(4) Since Θ(GF ) has to intersect XF , and we can decide where, S(F ) is com-

putable in Θ and S, uniformly in F .

We work out the proof in full detail below. �

We will now list some basic lemmas needed for the detailed proof of Theorem 4.2.
We first define an important concept relating to S1-S9 computability with type two
inputs. Its importance stems from the fact that it is independent of the choice of
input functional F 2, as follows.

Lemma 4.3. There is a primitive recursive ξ of type level 1, independent of
the choice of F 2, such that {ξ(e,~a)}(F, ξ(e,~a)) is resp. (0, 1, undefined) whenever
{e}(F,~a) is resp. (= 0, > 0, undefined).
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Lemma 4.4. There is a primitive recursive function η such that for all e,~a, F

{η(e)}(F,~a) ' {e}(F,~a) ·−1,

where ‘'’ means that both sides are undefined or both sides are defined and equal.

Definition 4.5. Let f be a total binary function. By an application of the recursion
theorem for Turing computations in oracles we define

[e]f (~a) :=

{
0 if f(ξ(e,~a)) = 0

1 + [η(e)]f (~a) if f(ξ(e,~a)) = 1
.

Clearly, if the recursion goes on forever, [e]f (~a) will be undefined.

Intuitively speaking and from the outside, [·]f may look like an indexing of some
partial functions computable in some functional of type 2, but to what extent this
is correct, will depend on the choice of f .

We will now use F to define a relation, mimicking the subcomputation relation
relative to F , as far as possible. As a cheep trick, we will let an alleged computation
tuple be a subcomputation of its own if it is clear that something is wrong, in order
to force such objects into the non-well-founded part of the relation.

Definition 4.6. Given f , we let Ωf be the set of triples (e,~a, b) such that [e]f (~a) =
b. Given F as well, define the relation ‘≺’ (short for ≺f,F ) on Ωf as follows:

• If e is not a Kleene index for any of S1-S9, we put (e,~a, b) ≺ (e,~a, b).
• If e is an index for an initial computation, we let (e,~a, b) be a leaf in our

ordering if {e}(F,~a) = b, and its own sub-node otherwise. This decision
will be independent of the choice of the functional F .
• We treat the case S4. The rest of the cases, except S8, are similar or void

(e.g. S6). If e is an index for composition {e}(F,~a) = {e1}({e2}(~a),~a), c is
given and there is a b such that [e2]f (~a) = b, [e1]f (b,~a) = c and [e]f (~a) = c,
then we define (e2,~a, b) ≺ (e,~a, c) and (e1, b,~a, c) ≺ (e,~a, c). If there is no
such b , we let (e,~a, c) ≺ (e,~a, c).
• For the case S8, if we have {e}(F,~a) = F (λb.{d}(F, b,~a)), we let (e,~a, c) ≺

(e,~a, c) unless h(b) = [d]f (b,~a) is a total function and F (h) = c. In the
latter case, we let (d, b,~a, h(b)) ≺ (e,~a, c) for all b.

The intuitive explanation of Definition 4.6 is as follows: The set of finite se-
quences (e,~a, b) such that {e}(F,~a) = b is defined by a strictly positive inductive
definition, so whenever a sequence is added to the set it is either initial or there is
a unique set of other sequences in the set causing that we accept the one chosen.
These are called immediate predecessors in the computation tree. The relation ‘≺’
is defined on the set of (e,~a, b) where [e]f (~a) = b as the immediate predecessor
relation wherever the inductive definition of the computation tree is locally correct.

Lemma 4.7. For any function f , the well-founded segment of 〈Ωf ,≺f,F 〉 is an
initial segment of the full computation relation of F .

Proof. This is trivial by induction over this well-founded segment. �

Lemma 4.8. For any f ∈ XF , if {e}(F,~a) = b, then [e]f (~a) = b.

Proof. We prove this by induction on b. If b = 0, then {ξ(e,~a)}(F, ξ(e,~a)) = 0, so
f(ξ(e,~a)) = 0 = [e]f (~a). If b > 0, we use the induction hypothesis on b ·−1 for the
index η(e) and the fact that [e]f (~a) = b in this case. �
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Lemma 4.9. If f ∈ XF and {e}(F,~a) = b, then (e,~a, b) is in the ≺f,F -well-founded
part of Ωf . Moreover, this well-founded part is exactly the full tree of terminating
computations {e}(F,~a) = b relative to F .

Proof. That the computation tree for computations relative to F is contained in
the well-founded part is proved by induction over the tree of real computations.
Now, if the well-founded part of 〈Ωf ,≺f,F 〉 contains more, we may consider one
alleged computation (e,~a, b) in Ωf that is not a real F -computation, but that is
minimal as such. Since it is in the well-founded part, (e,~a, b) is locally correct, so
either it is an initial computation or it has subcomputations that are real (because
we consider a minimal one). Being locally correct, we see in each case that (e,~a, b)
must be genuine after all. �

Lemma 4.10. If f ∈ XF , then S(F ) is uniformly computable in f , F and S.

Proof. From the data, we can compute the characteristic function of {(e,~a, b) |
{e}(~a) = b}, and S(F ) is primitive recursive in this characteristic function. �

We are now ready to provide the proof of Theorem 4.2 as follows.

Proof. We see from Lemma 4.7 that if the ≺f,F -well-founded part of Ωf is closed
under the Kleene schemes S1-S9 relative to F , then S(F ) is computable in f , F
and S as above. We need S to isolate the well-founded part, and (only) F and µ2

to decide if we have the closure.

Now, assume that f is such that the ≺f,F -well-founded part is not S1-S9-closed.
Let {e}(F,~a) = b be a computation of minimal rank such that we do not have
[e]f (~a) = b. By induction on b we see that there must be an index d such that
{d}(F, d) ∈ {0, 1} and {d}(F, d) 6= f(d). If we then put GF (f) := d + 1 we have
ensured that there will be no extension of fGF (f) in XF . Using Gandy selection
for F, µ and f , we can trivially find a d with this property from the well-founded
part of Ωf . In order to show that GF is definable from S, F, µ via a term in Gödel’s
T , we proceed as follows:

Given the well-founded part W of ΩF , we may arithmetically decide
if it respects S1-S9. If it does not, let Γ be the, arithmetically in
F , inductive definition of the computation tuples for computing
relative to F , and by one application of µ on Γ(W ) \W , we may
find the (e,~a, b) that leads us to the d we need.

In light of the previous, we put GF (f) := 0 if the ≺f,F -well-founded part of Ωf is a
fixed point of the inductive definition of computations relative to F , while we put
GF (f) := d + 1 for the d selected as above otherwise. Thus, Θ(GF ) must contain
a function from which, together with F and S, we can compute S(F ). �

4.2.2. Computing the Suslin functional. We show that the Suslin functional S can
be computed by the combination of Feferman’s µ and the functional Ξ arising from
the Lindelöf lemma for NN. Regarding the latter, we recall that Lindelöf already
proved that Euclidean space is hereditarily Lindelöf in [34] around 1903. Now, the
latter hereditary property implies that NN has the Lindelöf property, since NN is
homeomorphic to the irrationals in [0, 1] using continued fractions expansion.

Now, for any Ψ2, the corresponding ‘canonical cover’ of NN is ∪f∈NN

[
fΨ(f)

]
where [σ0∗

] is the set of all extensions in NN of σ. By the Lindelöf lemma for NN,



ON THE SIGNIFICANCE OF THE UNCOUNTABLE 25

there is a sequence f0→1
(·) such that the set of ∪i∈N[f̄iΨ(fi)] still covers NN, i.e.

(∀Ψ2)(∃f0→1
(·) )(∀g1)(∃n0)(g ∈

[
fnΨ(fn)

]
). (LIND4)

Similar to the specification SCF(Θ) for the special fan functional Θ, we introduce
the following specification based on LIND4. As for the former specification, the
functional Ξ2→(0→1) satisfying LIN(Ξ) is not unique.

(∀Ψ2)(∀g1)(∃n0)(g ∈
[
Ξ(Ψ)(n)Ψ(Ξ(Ψ)(n))

]
). (LIN(Ξ))

As for the special fan functional Θ in Theorem 3.3, the existence of Ξ as in LIN(Ξ)
amounts to the Lindelöf lemma LIND4 itself.

Theorem 4.11. The system Π1
1-CAω0 proves LIND4 ↔ (∃Ξ)LIN(Ξ).

Proof. We only need to prove the forward direction. We rephrase LIND4 to

(∀G2)(∃f0→1
(·) )

[
(∀g1)(∃n0)(g ∈

[
f+
n fn(0)

]
) ∧ (∀m0)(fm(0) = G(f+

m))
]
, (4.1)

where f+(k) = f(k + 1). Using the Suslin functional S and µ we see that the part
of (4.1) inside the (outermost) square brackets can be viewed as quantifier-free, and
thus the existence of Ξ follows from QF-AC. �

Theorem 4.12. RCAω0 + (∃Ξ)LIN(Ξ) proves the same L2-sentences as RCA0.

Proof. As in the proof of Corollary 3.15, it suffices to show that [(∃Ξ)LIN(Ξ)]ECF
is provable in RCA0. However, (∃Ξ)LIN(Ξ) only involves objects of type 0 and 1
except for the two leading quantifiers. Hence, [(∃Ξ)LIN(Ξ)]ECF is as follows:

(∃ξ1 ∈ K0)(∀γ1 ∈ K0)(∀g1)(∃n0)(g ∈
[
ξ(γ)(n)γ(ξ(γ)(n))

]
).

Thus, by defining ξ as the enumeration of γ(w) as in the proof of Theorem 3.14,
we obtain an associate for a functional producing a countable sub-cover, and the
sentence [(∃Ξ)LIN(Ξ)]ECF is therefore provable in RCA0. �

Theorem 4.13. The Suslin functional S is uniformly computable in Feferman’s µ
and any Ξ satisfying LIN(Ξ). Furthermore, ACAω0 + (∃Ξ)LIN(Ξ) proves (S2)

Proof. Recall the definition of the Suslin functional S as follows:

S(f) =

{
0 if (∃g1)(∀n0)(f(ḡn) = 0)
1 otherwise

.

Define F 2
f (g) as n+ 1 if n is minimal such that f(ḡn) > 0, and 0 if there is no such

n. Note that Ff is readily defined from f (in terms of µ2) inside ACAω0 , and note
that if Ff (h) > 0 and ḡFf (h) = h̄Ff (h), then Ff (g) = Ff (h). Let Ξ be such that
LIN(Ξ), and consider the following formula

S(f) = 0↔ (∃i0)(Ff (Ξ(Ff )(i)) = 0). (4.2)

The reverse direction in (4.2) is immediate by the definition of Ff . For the forward
direction, assume S(f) = 0 and let g1 satisfy (∀n0)(f(ḡn) = 0), i.e. Ff (g) = 0. As
observed above, if Ff (h) > 0, we have g 6∈ [h̄Ff (h)]; hence if Ff (hn) > 0 for all
n ∈ N where hn = Ξ(Ff )(n), the corresponding countable subset of the covering
induced by Ff will not be a covering. Thus Ff (Ξ(Ff )(n)) = 0 must hold for some
n, i.e. the right-hand side of (4.2) follows. Finally, (4.2) clearly characterises S(f)
in terms of µ, f and Ξ (via a term in Gödel’s T ), and we are done. �

Combining the above results, we obtain the following theorem.
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Theorem 4.14. The superjump S is computable in any Ξ satisfying LIN(Ξ) and
Feferman’s µ, by a term in Gödel’s T ..

Proof. Given such Ξ, there are terms t1, t2 such that SCF(t1(Ξ, µ)) (i.e. Θ is given
by t1(Ξ, µ)), and S =2 t2(Ξ, µ). Checking the details of the proof of Theorem 4.2
and the construction of GF , we see that there is a term t3 such that GF (f) =
t3(F, f, S, µ). Since S(F ) is primitive recursive in Θ(GF ), the theorem follows. �

Remark 4.15 (On predicativist mathematics). We have discussed the compati-
bility problem for Nelson’s predicative arithmetic (and its negative answer) in Sec-
tion 1.2.3. We now argue that Theorems 4.12 and 4.13 settle the compatibility
problem for Weyl-Feferman predicative mathematics in the negative. To this end,
we exhibit two theorems A and B which are both acceptable in predicative math-
ematics but A ∧ B is not. In a nutshell, ATR0 is considered the ‘upper limit’ of
predicative mathematics; both RCAω0 + (∃Ξ)LIN(Ξ) and ACAω0 fall ‘well below’ this
upper limit, while the combination ACAω0 +(∃Ξ)LIN(X) falls ‘well above’ the upper
limit. Hence, each of the former systems is acceptable in predicative mathematics,
but the combination is not. A more detailed discussion, for those familiar with the
required technical notions form mathematical logic, is as follows:

First of all, we elaborate on the notion of ‘acceptable in predicative mathemat-
ics’. On one hand there is Feferman’s notion of predicative provability ([17, 20]),
which is rather limited and clumsy when dealing with ordinary mathematics, ac-
cording to Simpson ([56, p. 154]). On the other hand, the weaker notion of pred-
icative reducibility is more flexible: a formal system T is predicatively reducible if
-intuitively speaking- it is not stronger than a system S which is predicatively prov-
able. Thus, while T may involve impredicative notions, the latter are ‘safe’ from
the point of view of predicative mathematics as these notions only provide as much
strength/power as S, and the latter’s ‘predicative status’ is well-known.

Secondly, Feferman and Schütte have shown (independently) that the least non-
predicatively provable ordinal is Γ0 (See [20, p. 607] for details and references).
Hence, a formal system T is called predicatively reducible if its ordinal |T | satisfies
|T | < Γ0. Note that |ATR0| = Γ0, which motivates the status of ATR0 as the
upper limit of predicative mathematics. Now, the proof-theoretic ordinal of RCAω0 +
(∃Ξ)LIN(Ξ) (resp. ACAω0 ) is ωω (resp. ε0) by Theorem 4.12 (resp. [48, Theorem 2.2])
and [55, IX.5]. Since ωω < ε0 < Γ0, both these systems are predicatively reducible.
By contrast, the combination of these systems, namely ACAω0 + (∃Ξ)LIN(Ξ) implies
Π1

1-CA0 by Theorem 4.13, and the ordinal for the latter system is far above Γ0. We
refer to [55, IX.5] for background concerning the cited results and further references.
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