
Extending TCP for Low Round
Trip Delay

Logarithmically Scaled Additive Increase
Multiplicative Decrease (LS-AIMD)

Asad Sajjad Ahmed

Thesis submitted for the degree of
Master in Programming and Networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2019

Extending TCP for Low Round
Trip Delay

Logarithmically Scaled Additive
Increase Multiplicative Decrease

(LS-AIMD)

Asad Sajjad Ahmed

© 2019 Asad Sajjad Ahmed

Extending TCP for Low Round Trip Delay

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Transmission Control Protocol (TCP) is a widespread protocol and has
evolved since the very beginning of the Internet. TCP implements
congestion control to hinder congestion collapse and to shareout the
capacity evenly across the participating flows.

Recent studies have shown that the acknowledgement clock TCP uses
to control its transmission rate has a remarkable weakness which makes
TCP perform not so well under shallow Round Trip Time (RTT). The
current deployment of DataCenreTCP (DCTCP) in data centres and Low
Latency Low Loss Scalable throughput (L4S) over broadband has helped in
cutting the generally deep queue of the Internet. However, Linux TCP has
a weakness which causes it to override the AQM whenever the base RTT
is also shallow because of its minimum transmission rate of two segments
per RTT. Shallow base RTTs is the typical environment within data centres
so by overriding the AQM TCP makes the job of the AQM undoubtedly
harder. TCP by going too fast brings back the once removed queue and
diminishes any benefits of the low queue AQM.

We propose Logarithmically Scaled Additive Increase Multiplicative
Decrease (LS-AIMD) in place for AIMD to scale over shallow base RTTs.
We evaluate LS-AIMD against AIMD under both Reno and DCTCP. Our
initial screening shows that LS-AIMD performs under shallow RTT more
than ten times better than AIMD. The gain of LS-AIMD continues to grow
as base RTT continues to descend to even lower values.

i

ii

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Problem . 5

1.2.1 Problem statement . 8
1.3 Limitations . 9
1.4 Main Contributions . 9
1.5 Statement of Originality . 10
1.6 Research Methods . 10
1.7 Outline . 10

2 Background 13
2.1 Bandwitdth Delay Product (BDP) 13

2.1.1 Long, Fat Network (LFN) 15
2.2 Queuing Delay . 15
2.3 TCP Background . 16
2.4 TCP Congestion Control in Linux kernel 16

2.4.1 State Machine . 17
2.5 Data Centre TCP (DCTCP) . 18

2.5.1 Improved ECN Signaling 18
2.5.2 Congestion Window Reduction 19
2.5.3 Deployment Issues . 20

2.6 Low Latency, Low Loss, Scalable Throughput (L4S) 20
2.6.1 Dual Queue AQM . 21
2.6.2 L4S ECN . 21
2.6.3 TCP Prague . 22

2.7 Summary . 22

3 Quantification 23
3.1 Data Centres . 24
3.2 Broadband . 26
3.3 Inter-Process Communication (IPC) 27
3.4 Summary . 29

4 Related Work 31
4.1 TCP - Many flows . 32
4.2 TCP - Adaptive RED & SUBTCP 33

iii

4.2.1 Adaptive RED . 33
4.2.2 SUBTCP . 34

4.3 TCP - The Initial Work on ECN 35
4.3.1 Linux TCP with ECN - Criticism 36

4.4 TCP - Extensive Testing with Many Flows 37
4.5 TCP - Delay Control . 38

4.5.1 Receiver-based Delay Control (RDC) 38
4.5.2 Sender-based Delay Control (SDC) 39

4.6 TCP Nice - A Background Transfer Protocol 41
4.7 TCP - The Sub-packet Regime 43

4.7.1 Sub-packet Regime . 43
4.7.2 Time Aware Queueing (TAQ) 44

4.8 LEDBAT - Sub-packet Regime 45
4.9 DCTCP - Packet Slicing . 45
4.10 DCTCP - ExpressPass . 46
4.11 Summary . 47

II The Project 49

5 Methodology 51
5.1 Experiment plan . 51

5.1.1 Traffic . 52
5.1.2 Active Queue Management (AQM) 53
5.1.3 Concrete Plan . 53

5.2 Metrics for the evaluation of TCP 55
5.2.1 Queuing Length & Link Utilisation 55
5.2.2 Smoothed Round Trip Time (SRTT) 56
5.2.3 Packet marking rate 56
5.2.4 Throughput . 56

5.3 The Framework . 56
5.3.1 The Configuration of the Testbed 58

5.4 Summary . 61

6 Design Proposal 63
6.1 Fractional Congestion Window 64
6.2 Packet Conservation Clock . 64
6.3 Stretch Acknowledgement . 66
6.4 Logarithmically Scaled Additive Increase 68

6.4.1 Choosing values for the growth constants 71
6.5 Multiplicative Decrease . 75

6.5.1 Loss Recovery . 75
6.5.2 LS-AIMD Reno . 75
6.5.3 LS-AIMD DCTCP . 76

6.6 Security Concerns & Deployment Challenges 76
6.7 Summary . 77

iv

7 Implementation 79
7.1 Design Decisions . 80
7.2 Fractional Congestion Window 80
7.3 Packet Conservation Clock . 81

7.3.1 Reschedule an Earlier Depature 81
7.3.2 Reschedule an Postponed Depature 82

7.4 Logarithmic Increase . 82
7.4.1 Add function in integer arithmetic 83

7.5 Packet Processing . 83
7.6 Modes of operation . 84

7.6.1 Non-submss . 84
7.6.2 Submss . 84

7.7 Linux Kernel Module . 85
7.8 Summary . 85

III Results 87

8 Evaluation 89
8.1 Functional Test . 90

8.1.1 Logarithmically Scaled Additive Increase Multiplic-
ative Decrease (LS-AIMD) 90

8.1.2 The Submss Regime 97
8.2 Stability & Syncronisation Test 105

8.2.1 Link Utilisation . 105
8.2.2 Queueing Delay . 106
8.2.3 Smoothed Round Trip Time (SRTT) 108
8.2.4 Marking Rate . 108
8.2.5 Additive Increase . 111
8.2.6 Throughput . 111

8.3 Exhaustive & Scalability Test 111
8.3.1 Link Utilisation . 114
8.3.2 Queueing Delay . 114
8.3.3 Smoothed Round Trip Time (SRTT) 116
8.3.4 Marking Rate . 118
8.3.5 Additive Increase . 121
8.3.6 Throughput . 121

8.4 Summary . 125

9 Results 127
9.1 Convergence Test . 127

9.1.1 Additive Increase Multiplicative Decrease (AIMD) . 127
9.1.2 Marking Rate . 128
9.1.3 Queueing Delay & Smoothed Round Trip Time (SRTT) 128
9.1.4 Throughput & Link Utilisation 130

9.2 The submss Regime . 130
9.2.1 Additive Increase Multiplicative Decrease (AIMD) . 130
9.2.2 Marking Rate . 131

v

9.2.3 Queueing Delay & Smoothed Round Trip Time (SRTT) 132
9.2.4 Throughput & Link Utilisation 132

9.3 Exhaustive & Scalability Test 134
9.3.1 Link Utilisation . 134
9.3.2 Queueing Delay . 134
9.3.3 Smoothed Round Trip Time (SRTT) 134
9.3.4 Marking Rate . 135
9.3.5 Throughput . 138

9.4 Queueing Delay Trends . 139
9.5 Final Discussion & Remarks 143
9.6 Summary . 143

IV Conclusion 145

10 Conclusion 147
10.1 Summary . 147
10.2 Main Contributions . 148
10.3 Future Work . 149

Appendices 157

A TCP Background 159
A.1 Transmission Control Protocol (TCP) 159

A.1.1 Explicit Congestion Notification (ECN) 160
A.1.2 Stretch vs. Delayed Acknowledgments 162
A.1.3 Nagle’s Algorithm . 163
A.1.4 Selective Acknowledgment (SACK) 165

A.2 Congestion Control (CC) . 166
A.2.1 Congestion Window 167
A.2.2 Congestion Window vs Flow Window 169
A.2.3 TCP Friendly Rate Control (TFRC) 169
A.2.4 Slow start . 170
A.2.5 Congestion Avoidance 170

A.3 Loss Recovery . 172
A.3.1 Retransmission Timeout (RTO) 173
A.3.2 Fast Retransmit . 174
A.3.3 Fast Recovery . 174
A.3.4 NewReno . 175
A.3.5 Recovery with SACK Information 176

A.4 Active Queue Management (AQM) 176
A.4.1 Random Early Detection (RED) 177

B Source Code 179

vi

List of Figures

1.1 Plot of congestion window sizes for 10Gbps 7

2.1 BDP for shallow RTTs . 13
2.2 Network elements with a single queue 15
2.3 DCTCP ECN ACK State Machine (figure 10 of DCTCP paper) 18
2.4 L4S Architecture [16] . 21

4.1 Adaptive RED . 34

5.1 Experiment Setup . 57

6.1 Packet Conservation Clock, no delayed acknowledgements . 65
6.2 Packet Conservation Clock with δ = 4 69
6.3 The Add function . 74
6.4 The Add function . 74

7.1 Fractional Congestion Window (4 bytes) 80
7.2 Packet conservation clock: early transmission 82
7.3 Packet conservation clock: postpone transmission 82

8.1 Experiment #1: W & S . 91
8.2 Experiment #1: Loss rates . 92
8.3 Experiment #1: Add . 93
8.4 Experiment #1: Queueing delay & SRTT 93
8.5 Experiment #2: W & S . 94
8.6 Experiment #2: Loss rates . 95
8.7 Experiment #2: Add . 96
8.8 Experiment #2: Queueing delay & SRTT 96
8.9 Experiment #2: Throughput & link utilisation 97
8.10 Experiment #3A: W & S . 98
8.11 Experiment #3A: Loss rates 99
8.12 Experiment #3A: Add . 100
8.13 Experiment #3A: Queueing delay & SRTT 100
8.14 Experiment #3A: Throughput & link utilisation 100
8.15 Experiment #3B (δ = 2): W & S 101
8.16 Experiment #3B (δ = 2): Marking rates 103
8.17 Experiment #3B (δ = 2): Additive increase constant 103
8.18 Experiment #3B (δ = 2): Queueing delay & SRTT 104
8.19 Experiment #3B (δ = 2): SRTT Pace 104

vii

8.20 Experiment #3B (δ = 2): Throughput & link utilisation . . . 105
8.21 Experiment #3: Link Utilisation dynamics 106
8.22 Experiment #3: Queue dynamics 107
8.23 Experiment #3: SRTT dynamics 109
8.24 Experiment #3: Marking rate dynamics 110
8.25 Experiment #3: Additive increase dynamics 112
8.26 Experiment #3: Throughput dynamics 113
8.27 Experiment #4: Link utilisation dynamics 115
8.28 Experiment #4: Queue dynamics 117
8.29 Experiment #4: SRTT dynamics 119
8.30 Experiment #4: Marking dynamics 120
8.31 Experiment #4: Additive increase dynamics 122
8.32 Experiment #4A: Throughput 123
8.33 Experiment #4E: Throughput 125

9.1 Experiment #2: W & S . 128
9.2 Experiment #2: Loss rates . 129
9.3 Experiment #2: Queueing delay & SRTT 129
9.4 Experiment #2: Throughput & link utilisation 130
9.5 Experiment #3A: W & S . 131
9.6 Experiment #3A: Loss rates 132
9.7 Experiment #3A: Queueing delay & SRTT 133
9.8 Experiment #3A: Throughput & link utilisation 133
9.9 Experiment #4: Link utilisation dynamics 135
9.10 Experiment #4: Queue dynamics 136
9.11 Experiment #4: SRTT dynamics 137
9.12 Experiment #4: Marking dynamics 138
9.13 Experiment #4A & #4E: Throughput 139

A.1 TCP Header . 160
A.2 Delayed acknowledgement: enabled 164
A.3 Delayed acknowledgement: disabled 164
A.4 Sliding window . 168
A.5 Slow start sliding window (Ws) 170
A.6 Congestion avoidance sliding window (Ws) 171

viii

List of Tables

2.1 Table of BDP (multiple flows) 14

3.1 Table of congestion window sizes in data centres for 4 sender 25
3.2 Table of congestion window sizes in broadband for 128 senders 27
3.3 Table of congestion window sizes in IPC for 2 sender 29

5.1 Experiments . 54

6.1 Values of constants . 74

9.1 RED ramp marking: queueing delay 140
9.2 RED step marking: queueing delay 141
9.3 RED instantaneous marking: queueing delay 142

ix

x

Acknowledgements

I would like to thank my supervisor Bob Briscoe for his trenmendous help.
I would also like to thank familiy. I would also like appreciate the help I
got from serval friends over at the UiO and Simula (Fornebu).

xi

xii

Part I

Introduction

1

Chapter 1

Introduction

We start by stating the motivation behind this thesis. Next, we describe the
exact problem we will investigate. We then give out various limitations
to scope down the length of our research. A summary follows of our
main contributions toward better understanding and solving the problem
in hand. We state our usage of typically conventional research techniques
found in computer science. These guidelines set the structure of our thesis.
Finally, we give out an outline of how the rest of our work will look alike.

1.1 Motivation

Low latency has become a never-ending quality of service requirement for
today’s applications. While the bitrate of the Internet has continued on its
rapid growth worldwide, do we not see the same trend in the direction
of latency. The enormous latency experienced on the Internet impacts the
lives of almost everyone worldwide and is a cost associated with just being
online. The low latency requirement does not equate to low capacity eating
traffic, the need for low latency has become as an essential requirement for
all greedy traffic run over the state of the art Transmission Control Protocol
(TCP).

The development of modern applications has led to the need for a very
low end-to-end delay, where the more shallow the delay is, the better
and more attractive is the service to the end-user. The gaming and VoIP
industry has long been one of those applications, but in today’s world has
the need shifted and the need for low latency has become as important,
if not more, as a high bitrate for literally all application. A modern
application which fulfils such need could be web, instant messaging,
virtual/augmented reality, cloud gaming, video conferencing/streaming,
emergency systems, remote assistance, drones, and many, many more. The
need is, of course, just the tip of the iceberg, surely the need will continue
to grow also in the future, and the benefits of lower latency remain ignored
until they start to be part of one’s everyday life.

The Round Trip Time (RTT) experienced by the application consists
of mainly irreducible base RTT, which consists of large chunks such as
transmission and propagation delays. Another part of the RTT exists of

3

parts which have the opportunity to be massively reduced. One such part
is the precedence of an outstanding queuing delay within the routers and
switches in the path between the end-hosts. The queueing delay usually
stands for the most substantial reducible chunk of the RTT and has been a
problem since the very beginning of the Internet.

Active Queue Management (AQM) schemes were introduced to take
care of the enormous queueing delay problem and is a research field of its
own. The bottleneck is made "smart" to solve the problem, so it either evict
or mark packets which stay queued for more extended periods. The queue
of the bottleneck then stays mostly short, and the remaining buffer absorbs
the bursts from synchronised traffic. The AQM is then in the full control of
the queue and may select a threshold just high enough to maintain full
utilisation of the link. However, the co-existence of TCP traffic and an
AQM optimised to keep a shallow queue do not mix well together. The
problem that this thesis is investigating is a not so unusual problem where
TCP traffic starts to override a shallow queue AQM in a network where the
base RTT is already low (more explained in the next section).

DataCentreTCP (DCTCP) tries to overcome some of the flaws of TCP
and scales well in-network with shallow queue AQMs because of its less
aggressive reduction of the transmission rate. Data centre often use DCTCP
because of this, but it comes with the same problem as TCP when it comes
to scalability for shallow base RTT. For DCTCP, the problem is a lot worse
since the processing nodes within a data centre are tightly packed together
to achieve a shorter base RTT. TCP Prague aims to be the next generation
of congestion control algorithms that follow a set of requirements given
out by the Internet Engineering Task Force (IETF). One such requirement
requires the sender to stay responsive in network path with very low end-
to-end delay.

Low Latency Low Loss Scalable throughput (L4S) is an ongoing project
to deliver low latency over the Internet. L4S is about making scalable
congestion control algorithms, such as DCTCP and TCP Prague safely
available to all applications over the Internet. The deployment of L4S gives
a golden opportunity to scale for such networks because of the isolation
delivered by this architecture in terms of an independent queue for new
traffic. The problem that this thesis undertakes is, therefore, vital to solve
in the earliest stage of deployment as possible, or else will the window to
scale for lower base RTT be a problem which continues to be hard to solve
also in the future.

The problem happens on Internet links where a low transmission rate
per RTT is required. Note that a low transmission rate does not necessarily
mean a low bitrate, but could instead mean a low base RTT. The likelihood
for the problem to happen on the Internet is, surprisingly, assumed to be
more common in a modern network topology. The problem is currently
non-existent on the Internet due to a proportionally massive queue at the
bottleneck compared to the bitrate delivered. However, this trend is about
to end with the deployment of shallow queue AQMs.

The same problem exists widely in current data centres due to the
more modern network infrastructure. Multiple groups are investigating

4

the problem and proposing their solution [19, 37, 38, 47], but the proposed
solutions remain targeted to fully controlled environments.

1.2 Problem

A capacity seeking sender tries to consume all the available capacity in
its path to the receiver. The sender continues to probe for more capacity
until the first sign of congestion. The bottleneck is forced to drop the
newly arrived packet as the buffer has run out. A new packet will first
start to enqueue again when the head of the queue has made space by
dequeuing a packet. Packet loss is an indication of congestion taking
place in the network. The queue got in this condition as a result of the
greedy behaviour of the sender. The sender must, therefore, reduces its
transmission rate when eventually the loss event is detected to prevent
buffer overflow. The queue will then have time to drain and reduce the
possibility of successive losses at the bottleneck. Each sender typically
does this through a congestion window made out of segments assembled
from the application data. The congestion window is reduced, typically to
half of its original size, upon the detection of packet loss. Congestion is
not an uncommon phenomenon in computer networks. Instead, it is the
usual outcome of the capacity-seeking process. Meaning, congestion does
not necessarily imply excessive traffic neither or insufficient capacity at the
bottleneck. The greedy sender will always be able to cause congestion no
matter how high bitrate the network can deliver and neither is a deeper
buffer of any help.

The sender uses acknowledgements to get reception of earlier trans-
mitted segments and usually except one to arrive after one RTT. The ac-
knowledgement usually tells the sender that some of the earlier transmit-
ted segments have now most likely left the network, and the earlier con-
sumed bitrate is now free to reuse. The sender can thus keep a constant
"clock" of segments in flight per RTT by clocking out as many new seg-
ments as just got delivered to the receiver. The sender does not only keep
constant of segments inflight per RTT but tries to probe for more capacity,
and do so by updating its congestion window through additive increase
schemes. The additive increase has linear growth of the congestion win-
dow per RTT. Meaning, the congestion window will continue to grow until
the next epoch of congestion. The sender will then releases half of its trans-
mission rate and try to regain the previous rate by increasing its congestion
window by one segment at a time per RTT. The goal of using an Addit-
ive Increase Multiplicative Decrease (AIMD) scheme is to converge a set
of senders to their appropriate share of the available capacity. However,
the capacity seeking behaviour of the sender has kept the queue of the bot-
tleneck mostly filled. Packets received at the bottleneck will, therefore, be
delayed since they must wait through the enormous queue. The queuing
delay further impacts the RTT, and the effective RTT between the sender
and the receiver appear to be longer than it is. The induced queueing delay
is, of course, the fault of the bottleneck who let the queue build-up and

5

silently absorbs the capacity-seeking traffic.
AQM schemes were introduced to battle the uprising problem with

high latency caused by the capacity-seeking traffic. An AQM makes a
proactive choice and evicts packets before the queue gets out of control
to induce a fake signal of congestion to the sender. The AQM fools the
sender and reinitiates the probing phase of the sender earlier. The AQM is
now in full charge of the queue by penalising traffic, which tries to build
an enormous queue. The bottleneck is now keeping a short queue, and
therefore deliver a lower base RTT to its traffic. The benefit of having
a bottleneck with a long buffer while maintaining a short queue through
AQM schemes is to absorb the burst of traffic. While by just having a short
buffer equates to a loss of utilisation whenever multiple senders arrive
synchronised at the bottleneck [33]. However, an AQM which utilises
the use of drop as a signal of congestion is cumbersome and wastes the
limited resources of the network [24]. An AQM is, therefore, often set up
to mark congestion through the use of Explicit Congestion Notification
(ECN). AQM modifies particular bits of the IP header of the packet for
packets which stays enqueued for an extended period. A receiver then
echoes the congestion signal back to the sender. However, this only works
if both hosts were willing to use ECN. An ECN-capable sender typically
sees ECN at the same level of congestion as packet loss and back off as if
the congestion were due to a tail loss episode. The real benefits of an AQM
will only be possible if all traffic follows the recommendation, packet loss
due to congestion will now be non-existent, and the buffer of the AQM will
now be freed to absorb a possible burst. However, the AQM will be forced
to drop packets of traffic which does not support ECN since this is the last
option left to slow them down.

The problem that this thesis tries to address is the sender refusal to go
slower than two segments, or 2*SMSS bytes, per RTT. The latest congestion
control TCP standard[4] (Section 3.1) does not require the sender to go
slower than this threshold. However, the standard mandates the sender
to reprobe from a single segment on Retransmission Timeout (RTO) (see
Section A.3.1). The sender also prefers to stay above two segments per
RTT to interwork with the delayed acknowledgement mechanism found
at the receiver (see Section A.1.2). The sender will, therefore, at this point,
become unresponsive, and continue to send at least two segments per RTT.
The AQM will emit even more signals to the sender to slow down, but
the sender will merely ignore these signals. The sender now contributes
to a long queue at the bottleneck than chosen by the AQM. The extra
queuing delay added by the sender now propagates to all other traffic at
the bottleneck. The AQM struggle to keep the RTT low for all traffic at the
bottleneck just because TCP traffic refuses to cooperate. The culprit is TCP,
and a better configuration of the AQM cannot solve this problem.

The problem happens in networks with low Bandwidth Delay Product
(BDP), which can be due to a low bitrate or low RTT. Our primary
motivation is a network path with low BDP due to a very high bitrate and
shallow RTT.

The BDP could also be low due to other factors such as a heavily

6

0.2 0.4 0.6 0.8 1

·1010

0

2

4

6

Bandwidth (Gbps)

C
on

ge
st

io
n

W
in

do
w

(s
eg

m
en

ts
)

Ethernet frame size = 1518B

Base RTT (µs)
1 4

16 64

10 20 30 40 50
0

2

4

6

Senders (#)

Ethernet frame size = 1518B

Base RTT (µs)
1 4

16 64

0.2 0.4 0.6 0.8 1

·1010

0

1

2

3

4

Bandwidth (Gbps)

C
on

ge
st

io
n

W
in

do
w

(s
eg

m
en

ts
)

Ethernet frame size = 9018B

Base RTT (µs)
1 4

16 64

5 10 15 20 25
0

1

2

3

4

Senders (#)

Ethernet frame size = 9018B

Base RTT (µs)
1 4

16 64

Figure 1.1: Plot of congestion window sizes for 10Gbps

congested path. A lower BDP equates to a lower congestion window (see
Figure 1.1). A network path with very high bitrate does not avoid the
small BDP problem. A network with responsive TCP traffic contra the
conventional TCP traffic opens up for a lower base RTT.

Data Centre TCP (DCTCP) is a congestion control algorithm often used
in data centres where processing nodes have a very high bitrate and low
latency in the network. DCTCP aims to keep a very low queuing delay
and do so by using moving average to make less drastically reduction of
the congestion window. However, DCTCP struggles as the AQM tries to
enforce a shallow RTT. DCTCP has the same problem as the conventional
TCP to transmit at a minimum of two segments per RTT. Therefore, solving
this flaw of TCP benefits data centres traffic. The RTT of the network
becomes more stable and shallow. Short-lived flows in data centres will,
therefore, not need to wait through an enormous queue caused by capacity
eating flows.

The traditional way to clock out packet conflicts with the problem since
the current way to clock out packet relies on the delayed acknowledgement
mechanism found at the receiver. The sender will thus be forced to wait for
a reception of earlier sent data to emit more bytes. The sender when in
low BDP network is neither able to send two whole segments within an
RTT to trigger the acknowledgement. Taking the commonly used delayed
acknowledgement into consideration cause problems since the receiver will

7

not return the acknowledgement before 40-500ms has passed. The timeout
of the delayed acknowledgement mechanism is a substantial penalty for
the sender when the RTT becomes low. For instance, an RTT of 5 ms equals
a penalty as significant as 8-100 RTTs.

1.2.1 Problem statement

We list problems in TCP which conflict with our objective to achieve
shallow RTT. The order of this list decides the priority of the problem (the
very first entry of this list has the highest priority). We will try to address
as many of the problem given here.

• Can we extend TCP for shallow base RTT?

The goal of this thesis is to research if the current specification of TCP
can be extended to allow a low queuing delay in computer networks.
The main problem this thesis tries to solve is the TCP ability to work
with shallow RTT. A Low RTT can only be possible if a bottleneck on
average has a small queue.

• Can we preserve stretch acknowledgements for low congestion
window values?

It is tempting to disable the delayed acknowledgement mechanism
to mitigate the problem. Although, we can make the network more
efficient if we can keep this mechanism untouched. Another goal
is, therefore, to preserve the delayed acknowledgement mechanism.
However, one must weight this up against drawbacks it sets on the
solution.

• Can we preserve a congestion window made out of segments in a
network with a low transmission rate per RTT?

TCP standard let the implementer use a congestion window based
on two different approaches, namely the byte-based approach and
segment-based approach. The congestion window must go below
SMSS bytes due to the requirement of the low BDP problem, but
this is difficult for the segment-based approach since it cannot
use a congestion window between 0 and SMSS bytes. Therefore,
another goal is to design a solution which does not conflict with this
requirement.

• Are we able to create a minimal solution which is easy to
implement?

A secondary goal is to solve the problem with minimal modification
done to the already existing TCP. A generic solution to the problem is
preferred. As it then allows a variety of other TCP congestion control
algorithms to take in use the solution.

8

1.3 Limitations

• Our research is solely focused on the use of ECN as a signal of
congestion. The loss recovery of TCP is already heavily researched,
and our work will not ignore it, but we will not focus too much on it.

• Our experiments are limited to the Linux kernel version 5.0.

• We limit our experiments to the Reno and DCTCP congestion control
algorithm. Reno is the most commonly understood congestion
control algorithm of TCP. We do not need to add more complexity
with other algorithms to show the prevalence of the problem. DCTCP,
on the other hand, is commonly used inside data centres. DCTCP is
mainly used to keep a short queue; we will conduct experiments to
see how it reacts when trying low queuing delay over a shallow RTT.

1.4 Main Contributions

• Can we extend TCP for shallow base RTT?

Yes, we have modified TCP such that the sender adds a local
transmission delay to keep a lower transmission rate. The protocol
is now capable of scaling in environments which mandates a shallow
transmission rate. We describe a solution where the transmission
rate has no lower bound unless the implementer sets an artificial
limitation.

• Can we preserve stretch acknowledgements for low congestion
window values?

Yes, we have designed the solution around this requirement. The
solution itself does not depend on when the receiver decides to send
an acknowledgement. The sender transmits packets at the minimum
of the stretch acknowledgement factor but adds delays between its
packets. The sender later subtracts the added delay. The solution is
meant to scale well with significant stretch acknowledgement factors.

• Can we preserve a congestion window made out of segments in a
network with a low transmission rate per RTT?

Yes, we propose the use of fractional congestion window. The con-
gestion window extends to have an additional congestion window
which allows finer transmission adjustments.

• Are we able to create a minimal solution which is easy to
implement?

Yes, the solution requires minimal modification to the sending host
and is, therefore, out of the box partially deployable over the Internet.
We not only made the solution simple but additionally made ease for
other congestion control algorithms to modify the rate of the sender
using a one confined congestion window.

9

1.5 Statement of Originality

The work of this thesis is solely the work of the author in cooperation with
the supervisor. The supervisor, Bob Briscoe, has been of massive help and
has helped make the correct design decisions. The contribution of this
thesis to the problem would not have given such a great outcome if it had
not been for the supervisor.

To our best knowledge, the work of thesis is original and does not exist
in any other publications1 except for work where we have given the explicit
reference to the rightful person or group of persons. The work of this thesis
has been a collaboration between the University of Oslo (UiO) and Simula
Reseach Laboratory (Fornebu) and contributes to the Reducing Internet
Transport Latency (RITE) project2. However, any opinions expressed in
this thesis remains the word of the author and no one else.

1.6 Research Methods

This thesis base its research methods on the final report from ACM:
"Computing as a Discipline" [21]. This report tries to address the long
debate on whether computer science is real science. The ACM published
the report on their 42nd anniversary in cooperation with the IEEE. This
report gives out reasons why computer science conducts real science
and gives out a guideline — our work bases on the principles of how
an engineer goes at solving a problem: we first state requirements and
specifications. We then characterise and quantify of the prevalence of the
problem. We propose a design and derive an implementation in an attempt
to solve the problem in an open-source manner into the Linux kernel. We
then evaluate our solution against the existing current best solution. We do
design, implementation and evaluation in one phase, and we repeat this
phase until we cannot further improve the results. Finally, we conclude
our work and gives way for others to continue our work.

1.7 Outline

This thesis is structured as follow:

• Chapter 2: Background

The thesis begins with the technical background of the problem.
We list as many details as needed to pinpoint the problem. The
reader will fast understand the complexity of the problem. We
must understand congestion control and loss recovery mechanism
of TCP to at a fine granularity. We further need to understand the
Linux kernel implementation of the TCP stack. A significant amount

1We wrote a paper and presented our main ideas in Netdev 0x13 [15], but the full project
is first now made public

2https://riteproject.eu/dctth/

10

https://riteproject.eu/dctth/

of work has been done first to explain TCP and how some of its
mechanisms conflict with our goal at achieving a low RTT in the
network. Another focus of this thesis directs toward data centres
where the problem is more common due to the low base RTT between
the processing nodes.

• Chapter 3: Quantification

The thesis quantifies the prevalence of the problem. We look into
how prevalent the problem is by investigating the perfect condition
needed for the problem to exist. We emphasise the vital role TCP play
in keeping long queue at the bottleneck by proactively overriding the
recommendation of the AQM.

• Chapter 4: Related Work

The thesis lists earlier work related to the problem. Earlier work
mostly talk about low BDP in situations where there is a magnitude
of senders at the bottleneck. This thesis addresses the same problem
with low BDP, but our primary motivation is to extend TCP for low
base RTT.

• Chapter 5: Methodology

The methodology chapter gives our experiment plan, which is
needed to conduct the proper experiments to confirm the prevalence
of the problem. We also list the metrics we use for our evaluation of
TCP. Finally, we make our configuration of the testbed transparent.

• Chapter 6: Design

We propose a design. This chapter gives in detail the modifications
needed for TCP to work in a network with shallow base RTT.

• Chapter 7: Implementation

We implement our work from the design proposal into a stable
version of the Linux kernel. We work out a Linux kernel module to
fulfil our needs and also make the necessary modification to the input
and output engine of TCP to support this module. Our prototype is
made simple with the intended goal to test out the main ideas of the
design proposal.

• Chapter 8: Evaluation

We evaluate our implementation under the Linux kernel. We test the
implementation for stability, durability and performance. We mainly
test if our design and implementation work as predicted.

• Chapter 9: Results

In the resulting chapter, we present data from our experiments. We
use our strategy from the methodology chapter to conduct the proper
experiments. We compare our results against the conventional TCP
to see if we were able to succeed in scaling TCP for low base RTT.

11

• Chapter 10: Conclusion

Finally, we express a summary of our work and list our contributions.
We list future works which we did not manage to address or was out-
of-scope for this thesis. Others can thus continue this research where
we now end.

12

Chapter 2

Background

2.1 Bandwitdth Delay Product (BDP)

Bandwidth Delay Product (BDP) stands for the number of bits a sender
must keep inflight to utilise the link capacity entirely[40]. In other words,
BDP is the number of bits the sender must emit every RTT to keep the
link utilised. The calculation of BDP is, therefore, just the product of the
link speed (bits/second) and the RTT (seconds), in bits (see Equation (2.1)).
The sender emits the application data in a quantum of octets/bytes (8-bits)
which again assembles into whole segments.

BDP = Bandwidth ∗ RTT (2.1)

Figure 2.1a shows how BDP varies with variety of bitrates and RTTs. It
is quite obvious from this figure that shallow RTTs yields a very low BDP
compared to some higher RTTs. Higher bitrate appears to have almost no
impact on how fast BDP increases for lower RTTs. The lower bound of
TCP, which is two segments, is added to show shallow RTTs which a non-
responsive sender cannot utilise. The sender has no other one to blame
than himself.

A receiver usually acknowledges every other segment to lower the

0.5 1

·109

0.5 1

·10−4

0

0.5

1

1.5

2

·105

Bandwidth [bps] RTT [s]

BD
P

[b
]

2 SMSS
16 SMSS

BDP

(a) A single sender with upto 10 Gbps link

5 10 15 20
0.5

1

·10−4

0

1

2

·105

Senders [#] RTT [s]

BD
P

[b
]

2 SMSS

BDP

(b) Mulitple senders sharing a 10 Gbps link

Figure 2.1: BDP for shallow RTTs

13

Flows (#) 1 5 10
Bandwidth
(Mbps) 5 10 20 5 10 20 5 10 20

RTT (ms) Fair Rate (Kb)
1 5 10 20 1 2 4 0.5 1 2
2 10 20 40 2 4 8 1 2 4
5 25 50 100 5 10 20 2.5 5 10
10 50 100 200 10 20 40 5 10 20
RTT (ms) Congestion Window (segments) ≈
1 0.41 0.82 1.65 0.08 0.16 0.33 0.04 0.08 0.16
2 0.82 1.65 3.29 0.16 0.33 0.66 0.08 0.16 0.33
5 2.06 4.12 8.23 0.41 0.82 1.65 0.21 0.41 0.82
10 4.11 8.23 16.46 0.82 1.64 3.29 0.41 0.82 1.64

Table 2.1: Table of BDP (multiple flows)

processing cost of the network. This technique is generally known as usage
of stretch acknowledgement (see Section A.1.2). A receiver is said to have
generated a stretch acknowledgement in this case. The benefits of lowering
the processing cost are the desired goal of data centres to utilise higher
bitrates with as low processing cost as possible. These benefits are not
limited to a data centre type network as a lower processing cost is beneficial
to a set of devices running on a portable power source. It further benefits
the wireless network as a whole since fewer acknowledgements are inflight
per RTT. A lower bound of 16 segments is also plotted to illustrate what
limitation it opposes to an implementation which tries to keep a more
substantial acknowledgement stretch factor.

Unfortunately, a typical scenario in computer networks is competition
from other senders. This possibility may further require the sender to
limit its transmission rate to share out the link speed evenly. The BDP
formula (Equation (2.1)) can easily be extended to equally share the link
speed among multiple competitors (see Equation (2.2)).

f air rate = Bandwidth / nr_o f _senders ∗ RTT (2.2)
Ws = Bandwidth / (nr_o f _senders ∗ 1518B ∗ 8) ∗ RTT (2.3)

Table 2.1 shows fair rates based on an increasing number of flows, link
speed and base RTT, in Kb. The table also shows how large the TCP
state variable congestion window must be of each sender, in segments
(Equation (2.3)). We use the typical Ethernet frame size of 1518B for the
calculation of the congestion window. BDP drastically reduces as more
competition occurs in the network. The BDP significantly reduces as
both lower base RTT, and more competition takes place in the network.
Therefore, to keep a link fully utilised with a lower BDP must each sender
emit fewer bytes per RTT. Figure 2.1b shows how fast the BDP drops below
the threshold of two segments for bitrate as high as 10 Gbps when the

14

ingress

ingress

10 Gbps

egress

10 Gbps

ingress

10 Gbpsegress

10 Gbps

ingress
10

Gbps
egress

Figure 2.2: Network elements with a single queue

dynamics of both the number of senders and base RTT plays together
against the higher bitrate.

2.1.1 Long, Fat Network (LFN)

Long, Fat Network (LFN)[11] are networks with an extensive BDP path. A
sender must send a massive number of segments within a single RTT to
utilise the link fully in this environment. Meaning, there is a high risk of
reusing old segment numbers for new segments. Old segment numbers
might still be inflight, and therefore unsafe to use for any new segment.
Changes were made to TCP to utilise the link capacity on such network
path efficiently. Timestamps (TS) were added to TCP for Protection Against
Wrapped Sequences (PAWS) and Round-Trip Time Measurement (RTTM).

The flow windows (see Section A.2.2) was also extended with the ability
to scale well beyond 16 bits with the TCP Window Scale (WS) option. A
sender cannot have BDP path longer than 64 KiB in the absence of such
scaling. WS option allows the receiver to announce a much larger receiving
window. The sender now uses the scaling factor and the flow window to
yield the permitted flow window.

LFN networks were all about solving a massive BDP path problem are
we here trying to address the low BDP problem caused by shallow base
RTT. The link speed of a low BDP path could be of the same order as a
massive BDP path. We see it of importance to emphasise that the low BDP
problem have very little to do with the bitrate when we push RTT to a
significantly lower level. A sender who scales for low BDP paths has the
benefit of utilising the same link speed with a lower base RTT.

2.2 Queuing Delay

A network element on the Internet uses a buffer as a storage space for
packets [62]. The network element has a maximum rate for each of its links

15

and a link can either be an ingress or egress link. Each egress link requires
a buffer to maintain link utilisation (see Figure 2.2).

The input rate of an ingress link is how fast packets arrive. Likewise,
the output rate of an egress link is how quick packets departure to the
next hop. An output rate of an egress link can have traffic from multiple
ingress links. The moment the combined input rate of all ingress links
exceeds the maximum output rate of an egress link will queue start to build
of packets. The buffer is used to temporarily hold packets until the first
possible transmission is possible to the next hop.

A simple First In First Out (FIFO) queue enqueues the newly arrived
packet and dequeues the packet first when all previous packets have
departed from a given egress link. The network element is forced to drop
any new arriving packets when eventually the limited buffer runs out. The
sender of the lost packet then gets to decide if retransmission is needed.
Packets start to enqueues again when the head of the queue dequeues a
packet. Queueing delay occurs when packets stay stored in the buffer
waiting for their transmission. The combined input rate of ingress links
must be reduced for a while to let the queue dry out of packets again.
In order to fully utilise an egress link must the combined input rate of
all ingress links be equal to the maximum output rate of the egress link.
However, if there is already an outstanding queue on the egress link must
the combined input rate of all ingress links be lower than the maximum
output rate of the egress link. The queue will then get a chance to dry out
of packets.

The desired goal is to have a short queue as it allows minimal queuing
delay through the network element which happens to be the bottleneck, so
new packets that may arrive at the bottleneck will then only wait through
the shorter queue. All senders traversing the bottleneck then achieves a
lower RTT as their packets spend less time waiting in the queues of the
network.

2.3 TCP Background

The background of TCP is vast and commonly understood. An excellent
understanding is needed of TCP to be able to realise how hard the problem
of scaling to lower congestion window value is (see Appendix A).

2.4 TCP Congestion Control in Linux kernel

The Linux kernel implements the congestion control for TCP[63]. Many
servers and network elements in the infrastructure of the Internet uses
Linux, and the performance of the Linux kernel TCP implementation
is therefore essential. The Linux kernel is open source; it is therefore
significantly used in research and updates throughout its lifetime. While
the problem persists in all the standard TCP implementations will this
paper only explain the implementation found in the Linux kernel. Linux
TCP implementation not only follows the guideline set by the IETF through

16

Request for comments (RFC) but also make additional modifications to
ensure the best overall performance for all participants on the Internet.

Congestion window in the Linux TCP only use a concept of whole
segments; the consequence is that Linux TCP considers every packet as
one segment in the congestion window regardless of its size. Linux TCP is,
therefore, more conservative than what is permitted by the TCP standard.

The Linux kernel also implements the TCP NewReno algorithm as a
non-removable module and used as a fallback by other congestion control
algorithms. The Linux kernel let the user load congestion algorithms
dynamically. Alternatively, the application can decide, if permitted, to use
another algorithm on a per-socket basis. A congestion control Linux kernel
module controls the additive increase and multiplicative decrease factor of
the connection. The Linux kernel has, otherwise, joint code for the other
mechanism of TCP. Meaning, loss recovery is taken care of by the Linux
kernel which decrements the congestion window toward the ssthresh value
set by the module. The user controls the use of SACK information through
a global setting. The host then negotiates the use of SACK information with
the remote host.

2.4.1 State Machine

The Linux kernel uses states for each of its TCP connection, the connection
by default starts in the open state. The TCP connection is in the normal flow
in the open state which means it is probing for more capacity.

The sender enters the disorder state upon reception of a duplicate
acknowledgement or an acknowledgement with SACK information. The
Linux kernel preserves the congestion window in this state and triggers
transmission of a new segment on each incoming acknowledgement.

The sender enters Congestion Window Reduced (CWR) state as an Explicit
Congestion Notification (ECN) mark is received. The CWR state mandates
the sender to decrease its congestion window and exits the state if the
congestion window reaches the new value of ssthresh. This state is also
declared over if the sender needs to retransmit a segment, which can
happen if the sender enters recovery or loss state.

The reception of three successive duplicate acknowledgements triggers
the recovery state. This state is mainly the fast retransmit and fast recovery
algorithm. The sender also reduces its congestion window as in the CWR
state. The sender transmits the first unacknowledged segment and stays in
the state until all transmitted segments before initiating recovery has been
acknowledged (NewReno/SACK). The sender goes over to the open state
again and initiate the congestion avoidance algorithm once the recovery
phase completes. Otherwise, the sender has no choice, but to enter the loss
state.

Finally, the sender enters the loss state when the Retransmission
Timeout (RTO) expires. All segments inflight are assumed lost, and the
sender reinitiates the slow start algorithm with a congestion window of
only one segment. The sender may only leave this state if the receiver
acknowledges all segments sent before entering this state.

17

CE = 0
ACK every
n packets
(ECE=0)

Immediate ACK (ECE=1)

CE = 1
ACK every
n packets
(ECE=1)

Immediate ACK (ECE=0)

Figure 2.3: DCTCP ECN ACK State Machine (figure 10 of DCTCP paper)

The Linux kernel does not transmit any new segments in any of
the states mentioned above. The approach is to instead update TCP
state variables in each of the states and have a common place for the
transmission of new segments. Linux TCP sender transmits a new segment
if the amount of segments in flight is less than the updated congestion
window. Additionally, the Linux TCP sender avoids transmission of
more than three new segments for each acknowledgement received. This
technique avoids excessive bursts in situations where the sender suddenly
is allowed to transmit a bucket of segments at once.

2.5 Data Centre TCP (DCTCP)

Data Centre TCP (DCTCP)[7] is a congestion control algorithm often used
inside data centres. The traffic of a data centre is often a mix of greedy
and delay critical flows. A data centre, therefore, needs the best of both
worlds, which means low latency and high throughput between hosts is
essential. Traditional TCP does not scale well in networks with those
requirements. The congestion window reduction phase of TCP effectively
lose a significant part of the congestion window, and the process of
regaining the previous window requires an enormous amount of RTTs for
bitrates typically found in data centres. The inefficiency of TCP translates
to the need of a massive queue at the bottleneck.

Meanwhile, a DCTCP sender reduces its congestion window more
gradually, so the AQM can get away with a shorter queue. The AQM
can then be easily configured to do a much more aggressively marking.
The AQM, therefore, for DCTCP usually have a single marking threshold
without any burst. The AQM is then set to mark as soon as the queue gets
higher than the selected threshold.

2.5.1 Improved ECN Signaling

An ECN-Capable TCP sender detects congestion if one of the segments
transmitted gets ECN marked. Recall from earlier the receiver repeats
ECE-bit until the sender responds with CWR-bit. This feedback does,
therefore, not tell the sender much more than to reduce its transmission
rate. Although, an ECN mark confirms true congestion in the network

18

meanwhile packet loss is just merely an assumption of congestion based
on a timeout.

A DCTCP implementation uses a modified version of the ECN to detect
the number of bytes that caused the congestion. The sender can then
update its congestion window precisely. The sender gets this information
through improved ECN signalling done by the receiver. The receiver
uses an acknowledgement state machinery to decide when to transmit an
acknowledgement with the ECE-bit set (see Figure 2.3).

The DCTCP implementation has a boolean state variable to decide
when to transmit an acknowledgement with the ECE-bit set. The state
variable is updated based on the CE codepoint received. Reception
of the first CE codepoint changes the state variable from false to true
and triggers acknowledgement immediately with the ECE-bit set. The
acknowledgement with the ECE-bit is then repeated and sent after every
n segments received. The state variable changes back to false when the first
segment comes without the CE codepoint and triggers another immediate
acknowledgement. This time the acknowledgement does not have the
ECE-bit set. The receiver also repeats this acknowledgement same as
earlier, but now without the ECE-bit set and do so until a CE codepoint is
once again received. The receiver is then able to forward the current level
of congestion immediately to the sender. The DCTCP sender measures the
duration of the congestion based on the number of segments marked. The
DCTCP sender can thus pinpoint the exact amount of bytes that caused the
congestion.

2.5.2 Congestion Window Reduction

The sender updates its congestion window more gradually (see Equa-
tion (2.4)).

Ss = max(in f lights ∗ (1− α/2), 2s) (2.4)

DCTCP use alpha as a moving estimate of the number of segments
marked within an RTT. The DCTCP sender updates this estimate for every
acknowledgement received. The initial estimate of the fraction alpha is 1.
Meaning, DCTCP reduces its congestion window by exactly half. The value
of alpha updates according to Equation (2.5). The congestion window is
reduced more gradually as the equation yields a smaller alpha.

α = α ∗ (1− g) + g ∗ F (2.5)

The DCTCP sender can now efficiently utilise high bitrates with a
low queue at the bottleneck. However, a DCTCP sender does not
let its congestion window fall below two whole segments in an RTT
as the conventional TCP. DCTCP experience the same problem as the
conventional TCP and does not scale well for very low RTTs.

19

2.5.3 Deployment Issues

In order to deploy DCTCP must full control of the network be necessary,
that is control of each host and the infrastructure made out of switches.
The benefits of using DCTCP is only relevant if the whole network relies
on ECN. However, this is not the case for the Internet. DCTCP does
neither rely on negotiation between hosts since it was designed to use in
a controlled environment. A TCP endpoint cannot detect if the sender is
using DCTCP.

Conventional TCP does not compete evenly with DCTCP over the
Internet since the conventional TCP reduces its congestion window much
more aggressively than DCTCP on a mark. The AQM on the internet is
neither set up to mark when the instantaneous length of the queue exceeds
a threshold, but rather on an average queue estimate. The DCTCP sender,
therefore, also lack fast feedback from the receiver to detect changes in
dynamic of the queue length.

DCTCP must, therefore, not be deployed over the Internet as is.
However, DCTCP could work as L4S (see Section 2.6) traffic since the
regular traffic segregates into a separate queue. The DCTCP sender must
still fall back to standard TCP in the event of packet loss. Packet loss is
an indication that there may be network elements which do only have a
single queue. The fall back ensures DCTCP reacts same as TCP in scenarios
where the network has legacy network elements which share queue for all
its traffic.

2.6 Low Latency, Low Loss, Scalable Throughput
(L4S)

L4S[16] is an ongoing project to build a clean state Internet service with the
purpose of achieving Low latency, Low Loss, Scaleable throughput (L4S)
in the network. The L4S architecture is designed to be deployed over the
Internet incrementally with the use of dual queue AQMs (see Figure 2.4).
The primary goal of the architecture is to deliver low latency to its traffic.

The L4S network has scalable senders who use a modified version of
ECN. The idea of using a modified version of ECN in the network has the
same goal as DCTCP has in data centres. The use of modified ECN let the
sender make a more gradual reduction of its congestion window.

It is not possible to achieve this goal with the traditional TCP traffic
without Dual Queue AQM as managing L4S scalable senders requires a
more aggressively marking. The conventional TCP does neither respect
L4S requirement of a shallow queue. Finally, the constant add in the
additive phase of TCP is problematic when the AQM aims for shallow
RTTs.

20

Scalable
sender

Classical
sender

IP-ECN
Classifier

L4S

Classic

Mark

1

Mark/
drop

C
ou

pl
in

g

Priority
scheduler

Figure 2.4: L4S Architecture [16]

2.6.1 Dual Queue AQM

A Dual Queue AQM segregates the per-flow or per-class scheduling
algorithms. The Dual Queue AQM take care of queue management
between these scheduling algorithms[6] which makes implementation
of new scheduling algorithms more straightforward since each of the
scheduling algorithms has their unique queue.

The new scheduling algorithm then does not need to compete with the
legacy TCP traffic. The legacy TCP traffic does not always respect the
Quality of Service (QoS) goals set by the new scheduling algorithm. The
legacy TCP traffic either force a long queue and generally struggle to keep
up with the excessive signals emitted by the AQM. The fix cannot be done
to the conventional TCP yet as there will always be some sender who does
not respond correctly to the requirements set by the scheduling algorithm.
The problem, legacy TCP, is moved into its queue where it cannot disturb
the balance of other queues. Although, the use Dual Queue AQM should
not cause starvation of some scheduling algorithm. The AQM should also
refrain from keeping packets of some algorithms for unnecessarily long
periods.

2.6.2 L4S ECN

In the L4S architecture, the use of ECT(1) codepoint let the AQM detect
L4S traffic[10]. The conventional TCP traffic must only use the ECT(0)
codepoint. The AQM can then respond appropriately for the legacy TCP
traffic. The Dual Queue AQM signal the L4S traffic much more aggressively
to achieve low queuing delay since the L4S traffic uses an ECN mark to
reduce its transmission rate less aggressively.

21

2.6.3 TCP Prague

TCP Prague will be one of the new generations of TCP congestion control
algorithm which takes part as L4S traffic. However, there is a set of
requirements which TCP Prague or any other modern congestion control
must fulfil. One of the requirement is to operate in the sub-mss regime.
A new way to clock out packet is needed to allow congestion window
sizes needed to operate in this regime. When operating in the sub-mss
regime, the congestion window must not increase as aggressively as in the
conventional TCP. Increasing by one full segment per RTT is too aggressive
when the congestion window may be less than one segment.

2.7 Summary

We have talked about BDP and how queueing delay has its role in
networking. We also explained the vast background of TCP in order to
pinpoint the problem. We then briefly explain how Linux implements TCP.
DCTCP was introduced to explains its benefits. Finally, we talked about
L4S and how it requires a solution to this problem.

22

Chapter 3

Quantification

We shall now quantify the prevalence of the problem by investigating how
TCP performs in a set of network topologies typically found on the Internet.
We address the question of how likely the problem is to occur within each
of these topologies. With this work, we would like to give reasons for why
the network is not in the fault for causing the problem, and why the limited
scalability lies in the state-of-art TCP.

First, we test our hypothesis on a data centre like a network to
emphasise the importance of how a low propagation delay serves in
impacting the performance of the protocol. A Data centre type network
is what motivated our work. We saw TCP becoming unresponsive
on a shallow buffered AQM over an already tiny base RTT [14]. The
unresponsiveness of TCP resulted in a steady growth in queueing as the
number of competitors increased.

Secondly, we evaluate the likelihood of the problem to happen in
the typical environment of TCP on the Internet, generally known as
broadband. The propagation delay is not as low as in data centres due
to the geographical placement of the sender and receiver. The lowest
achievable base RTT grows as the distance between the endpoints increases
because a signal can only travel approximately as fast as the speed of light.
Our goal here is to investigate if a more significant base RTT is enough to
hinder the problem.

Finally, we look at one last not so ideal environment for TCP, the now
increasing use of TCP in place for Inter-Process Communication (IPC) over
an unknown network topology. IPC is indeed a communication channel
with a shallow base RTT. The evaluation of isolation over the same physical
host, e.g. Virtual Machines (VMs) and containers, is in no way an execution
environment for TCP. However, the now increasing use of migration of
application closer to its peer makes it impossible to assume the location of
the other endpoint. An application may be communicating to a local peer
without realising it, so we see the need for a more scalable TCP to perform
well over IPC topologies. By going from a data centre to broadband we
were purely interested in knowing when the problem disappears (best
case), but now by doing IPC, we want to see the other side of the spectrum
and see how bad it can get (worst case).

23

3.1 Data Centres

Data centres typically operate at much higher bitrates and lower base RTT
than the traditional broadband networks [8, 9]. A data centre tries to
maximise throughput between processing nodes with an extensive bitrate
in the network. The processing nodes are also tightly packed together to
achieve a shallow base RTT. A data centre is often set up with a higher
Maximum Transmission Unit (MTU) between its processing nodes. The
advantage of using larger packets is to yield an even better efficiency of the
network by reducing the overhead caused by network headers.

Cisco published a whitepaper which forecasts the evaluation of data
centres in the period 2016-2021 [51]. This papers forecasts are almost
doubling in hyperscale data centres and believe these type of data centre
will stand for half of the total data centres. A hyperscale data centre is
a public cloud with excessive yearly revenue and is backed up by some
of the world-leading cooperations. Hyperscale data centres have excellent
storage and networking capabilities. These type of data centres are used
by cooperations to deliver a better quality of service to their massive user
base. Another use case for such data centres is their significant processing
capability in Big Data processing.

The bitrate typically found in a data centre range from 1 Gbps and
may be as high as 40 Gbps. The base RTT in data centre usually lies in
the sub-millisecond region and could be as low as some microseconds.
Additionally, a data centre vendor might use frame size as significant as
9KB (jumbo frames) to yield better efficiency of the network [14, 57].

We now have the data we need to calculate the appropriate congestion
window for four senders:

Ws = 40Gb / (4 ∗ 9018B ∗ 8) ∗ 10µs (3.1)
Ws ≈ 1.39 (3.2)

We try bitrate remarkably as high as 40 Gbps to illustrate the funda-
mental problem with TCP and its derivatives. We use DCTCP in our ex-
ample as the congestion algorithm optimises for the data centre environ-
ment. Although, the problem also applies to a broad set of other commonly
used congestion control algorithms. We only need to include four senders
to show the problem in action. A 10 Gb throughput should be more than
enough for DCTCP to keep a very short queue at the bottleneck. DCTCP
in comparison to TCP only reduces its congestion window gradually, so
DCTCP should stabilise to a very short queue selected by the AQM. How-
ever, the critical question remains how fast should the sender go to keep a
ten µs RTT. The answer to that question might be shocking to some, but the
answer is no larger than 1.39 segment per RTT (see Equation (3.2)). DCTCP
will under no circumstance let its congestion window fall below two seg-
ments per RTT. Our handful of four DCTCP senders push the effective RTT
to 15 µs.

One might think that is not bad at all, and it is quite easy to blame the
network. One could argue that adding more bitrate prevails the problem.

24

Bandwidth
(Gbps) 1 2 5 10 20 30 40

Base RTT (µs)
10 0.03 0.07 0.17 0.35 0.69 1.04 1.39
20 0.07 0.14 0.35 0.69 1.39 2.08 2.77
50 0.17 0.35 0.87 1.73 3.47 5.20 6.93
100 0.35 0.69 1.73 3.47 6.93 10.40 13.86
200 0.69 1.39 3.47 6.93 13.86 20.79 27.72
300 1.04 2.08 5.20 10.40 20.79 31.19 41.58
400 1.39 2.77 6.93 13.86 27.72 41.58 55.44

Table 3.1: Table of congestion window sizes in data centres for 4 sender

The network must deliver roughly an additional 20 Gbps to satisfy our
four DCTCP senders. Now let us imagine, a not uncommon scenario, four
additional short-lived DCTCP flows joins and start probing for capacity.
The congestion window is now barely one segments per RTT for 60 Gbps
and, as we know, DCTCP cannot go this low. These DCTCP flows double
the RTT, now 20 µs, of the network with unnecessarily queue at the
bottleneck. Do we still blame the network? No, there is no reason why the
network has to deliver a staggering 120 Gbps to keep these senders happy.
This flaw is the fault of DCTCP and is genuinely how traditional and
modern TCP congestion control algorithms works. This flaw has always
been there, and for DCTCP, it is just more severe as the network is capable
of delivering a shallow base RTT.

DCTCP has built-in support for the receiver to maintain a stretch
acknowledgement factor of uncertain size to keep the processing cost of the
network low as possible [7]. However, a DCTCP sender must then keep its
congestion window at a minimum of this new stretch acknowledgement
factor to overcome the delayed acknowledgement mechanism of the
receiver. Up until now, we assumed a stretch factor of two segments per
RTT, so let us see where this goes. For the sake of efficiency, DCTCP might
be set up to acknowledge every sixteen segments. As earlier, a DCTCP
sender cannot and will not hold a congestion window of 1.39 segments
per RTT (see Equation (3.2)), so our four senders induce a base RTT as
significant as 120 µs since they refrain from using a lower congestion
window than sixteen segments (see Table 3.1). Now, how much bitrate is
the network lacking? The network must provide our senders with a total of
roughly 460 Gbps, so they can keep clocking out sixteen segments per RTT.
As we see, a more significant stretch acknowledgement factor cause the
sender to stabilise to a higher minimum congestion window, which results
in higher RTTs in the network. A low congestion window is unavoidable
for a shallow base RTT, and it gets worse when larger packets and more
senders are present in the network. The bitrate alone is of little help and
cannot keep the congestion window above the more sustainable stretch
acknowledgement factor. The argument for applying more bitrate to fix
a queueing problem does not hold as the counter-argument, which is to

25

scale the congestion window below the stretch acknowledgement factor,
makes the achievable RTT less dependent on the bitrate of the network. An
AQM would generally never try to keep less than two packets in the queue
since the risk of running out of packets increases, and link underutilisation
becomes unavoidable. By increasing the bitrate, the queueing delay of two
packets declines proportionally.

For a data centre type network has a shallow RTT shown to be enough
to break down some of the fundamental mechanisms of TCP. Even though,
TCP shares the bitrate reasonably is it of little use when the AQM must
keep a long outstanding queue at the bottleneck.

In other words, TCP does not scale for shallow RTTs or any significant
stretch acknowledgement factors.

3.2 Broadband

In broadband, the situation is a bit different as the environment is not so
controlled anymore. The physical distance between endpoints is variable
and several times longer than in data centres. The distance alone makes
it for a variety of cases impossible to achieve base RTT of less than one
millisecond1. The bitrate also severely degrades compared to a data centre
as it depends on the infrastructure of the specific country and is indeed no
more than 1 Gbps. The achievable MTU is limited as well since all network
elements in the path between the sender and receiver have to support the
larger MTU.

The bitrate typically found in broadband networks ranges from as low
as 2 Mb and may be as high as 400 Mb. On the other hand, the typical base
RTT start as low as one millisecond and is at its worst at 60ms. The frame
size is often no more than 1500 B [14].

We can as before calculate the appropriate congestion window, but now
with 32 senders:

Ws = 320Mb / (32 ∗ 1518B ∗ 8) ∗ 1ms (3.3)
Ws ≈ 0.82 (3.4)

Broadband networks, at first glance, appear immune to the problem
due to smaller packets and the higher RTT present in the network. We
try a quick link as high as 320 Mb with base RTT of one millisecond. We
imagine a scenario of 32 senders sharing this bitrate. A bitrate of 10 Mb
should be more than enough for TCP to clock out the appropriate number
of segments per RTT. For instance, a 10 Mb with a frame size of 1518 B
translates to roughly 823 segments per second. However, recall from earlier
that TCP has no interest in transmitting less than two segments per RTT. A
base RTT of one millisecond translates to 2000 segments per second. The

1The now increasing use of Content Delivery Networks (CDNs) and Data centres helps
in distributing the workload of a single system through the use of geographically nearby
proxies. The use of nearby proxies helps in minimising the cost of serving adjacent peers
across continents.

26

Bandwidth
(Mbps) 10 20 50 100 200 300 400

Base RTT (ms)
1 0.01 0.01 0.03 0.06 0.13 0.19 0.26
2 0.01 0.03 0.06 0.13 0.26 0.39 0.51
5 0.03 0.06 0.16 0.32 0.64 0.96 1.29
10 0.06 0.13 0.32 0.64 1.29 1.93 2.57
20 0.13 0.26 0.64 1.29 2.57 3.86 5.15
30 0.19 0.39 0.96 1.93 3.86 5.79 7.72
40 0.26 0.51 1.29 2.57 5.15 7.72 10.29

Table 3.2: Table of congestion window sizes in broadband for 128 senders

sender becomes unresponsive at this point and continues to clock out at a
minimum of two segments per RTT no matter how congested the network
path is. The sender has thus failed in its mission to keep a rate of 10 Mb
and is instead holding a rate of roughly 24 Mb where the remeaning 14 Mb
translate into a queue at the bottleneck. Meaning, 32 senders contributes to
roughly 450 Mb of a queue at the bottleneck. As we see, TCPs contribution
to the queue doubles as senders present at the bottleneck doubles.

Now back to the idea of applying more bitrate to fix a queueing delay
problem. The network has to provide roughly 770 Mbps, bitrate of 320
Mbps plus 450 Mbps of a queue, to keep our 32 senders in check. Does
not sound that bad? The network has now enough capacity to let TCP
do its two segments in an RTT. As the network is not usually capable of
achieving a lower RTT or larger packets in a broadband setting is our last
resort to introduce more senders to test TCPs scalability. We can try to
double the number of senders to see which implications TCPs floor sets
to the network. As we go for 64 senders is the now required bitrate to
overcome the machinery of TCP as significant as 1.56Gbps. Let us not
stop there, a further doubling to 128 senders moves the requirement of the
network to roughly 3 Gbps (see Table 3.2). Meaning, the network has to
double its bitrate whenever there is a doubling in the number of senders
present at the bottleneck.

In other words, TCP does not scale well for a magnitude of senders
with a moderate base RTT.

3.3 Inter-Process Communication (IPC)

Inter-Process Communication (IPC) refers to the communication channel
between processes on the same host. IPC offers much of the same
end-to-end performance as one would find in a data centre, meaning
excessive bitrate combined with a shallow base RTT. The RTT between two
processes is usually no more than a few microseconds and may even be
as low as a couple of hundred nanoseconds. The Operating System (OS)
provides several efficient and low-cost communication channels between

27

two running applications [41], e.g. through pipes, shared memory, local
sockets or mailboxes. However, the use of containers and virtual machines
makes it nearly impossible for an application to detect its current execution
environment. For instance, applications intended to run in separate
physical hosts initially could eventually shift to isolated environments
located just in one physical machine. Applications are now more likely
to migrate closer geographically in terms of data centres to its peer to keep
the obtainable latency as low as possible. Thus, we need TCP to perform
well in doing IPC in place for other more fit solutions due to the limited
knowledge application has of the current execution environment.

An application could then use TCP for IPC to achieve both portability
and abstraction from OS-specific IPC implementations. During a migration
process, the communication channel between two running applications
can be kept as is without requiring another mean of communication. It
is better to make one protocol fit a changing execution environment than to
synchronise the use of other non-widely used protocols back and forth. A
typical TCP/IP implementation remains a complex beast and one generally
avoid it for IPC because of the computational footprint it has. However, we
might not always be able to distinguish a local peer from a remote one, so
the use of a transport protocol like TCP might be required.

Another problem with using TCP for IPC has not surprisingly also to
do with a very tiny RTT between the sender and receiver. The OS may
optimise aswell and build large segments since the application data never
leaves the physical host, so no external limitations impose for what defines
the maximum size of the segment. The segment size could, for example, be
65KiB.

We now have the data we need to calculate the appropriate congestion
window for one sender:

Ws = 400Gb / (65KiB ∗ 8) ∗ 1µs (3.5)
Ws ≈ 0.76 (3.6)

A single sender is enough to cause trouble when using TCP for IPC.
The bitrate is incredibly 400 Gbps but is in no way enough to go around
the problem (see Equation (3.6)). A good network consists of two simple
fundamental properties; high bitrate and low propagation delay. So,
as the bitrate goes sky high, a similar trend happens to the base RTT,
thus negating the need for a high transmission rate or a large congestion
window. It also does not help, for TCP, that the size of the segment is
now much more significant. One could think that by refraining the use
of large segments alleviates the problem to some degree, but this increases
the overhead footprint of TCP. A better approach would be to make TCP
hold a lower transmission rate and let it use the maximum segment size
available.

The bitrate must keep doubling for when the base RTT decreases on a
network with unresponsive senders. However, what if the bitrate is already
high, like in IPC? For instance, continuing on the previous example, the

28

Bandwidth
(Gbps) 10 20 50 100 200 300 400

Base RTT (µs)
1 0.01 0.02 0.05 0.10 0.19 0.29 0.38
2 0.02 0.04 0.10 0.19 0.38 0.57 0.76
5 0.05 0.10 0.24 0.48 0.95 1.43 1.91
10 0.10 0.19 0.48 0.95 1.91 2.86 3.81
20 0.19 0.38 0.95 1.91 3.81 5.72 7.63
30 0.29 0.57 1.43 2.86 5.72 8.58 11.44
40 0.38 0.76 1.91 3.81 7.63 11.44 15.26

Table 3.3: Table of congestion window sizes in IPC for 2 sender

system has to deliver roughly 1 Tbps to satisfy one single malfunctioning
sender. A doubling in the RTT may sound like a doable compromise, but
this is a burden which contradicts with our intended goal, and no doubt
is the motivating factor of our work. TCP should never be allowed to
decide when to overrule the AQM and become unresponsive, at least not
without any consequences. A proper penalty for an unresponsive sender
will as always be an AQM performing an eviction policy; TCP should,
therefore, cooperate with the AQM or risk losing packets. An argument
which requires other more sophisticated solutions elsewhere to play cool
with TCP no matter if its responsive or not is nonsense. TCP should adopt
to the current execution environment and not the other way around.

We should as earlier raise the stretch acknowledgement factor of the
receiver to reduce the computation cost of the host to say 16 segments. TCP
will, thus, struggle to keep a short queue locally to maintain the typically
RTT one would expect between two local peers.

In other words, TCP does not scale well for a single sender with an
extremely tiny base RTT and a tremendous bitrate.

3.4 Summary

We have now made it clear why TCP needs to scale further to yield
better performance in a variety of network topologies. The minimum
transmission rate of TCP prevents an AQM from doing its job correctly;
the fault is TCP and not the network. The use of higher-bitrate is of little
help as the resource demand the protocol sets to the network is without any
grounds; the requirement for bitrate to grow proportionally as either RTT
shrinks, higher MTU, more competition at the bottleneck or less frequent
response from the receiver makes up a bad recipe for a scalable congestion
control algorithm. The AQM is only able to deliver a shallow queue to
its traffic if all senders promises to scale well below the two segments
in an RTT threshold. Otherwise, the existence of a single unresponsive
sender at the bottleneck is enough to neglect any benefits a shallow queue
AQM was designed to deliver. The AQM can, of course, defend against

29

such unresponsive senders by evicting packets from such flows, but if
the majority of traffic stands for the unresponsive traffic is high loss rate
unavoidable. We would then loose out all the benefits of ECN and instead
be controlling TCP by just using the exponentially growing RTO backoff
mechanism.

We will now take a step back and look at how TCPs congestion control
has evolved in the past for other researches around the precedence of the
problem. The earlier work should help us in better understanding the
problem and know if the problem is already solved or not. We are also
interested in knowing if we can reuse some of the earlier work to work out
a scalable solution ourself if there is no appropriate solution available from
the past.

30

Chapter 4

Related Work

We summarise some of the earlier work found in the literature about the
problem and others contribution to solve the problem. This work mostly
talks about the problem as a consequence of a magnitude of flow sharing
at the bottleneck. Our quantification chapter has already shown why such
a requirement is not necessarily needed for the problem to exist. A small
propagation delay in the network achieves the same effect. The previous
work is still relevant as TCP suffers from the same symptoms and breaks
as quickly as the rate of the flow falls below the stretch acknowledgement
factor. A solution to this problem serves as an opening for TCP to scale for
a variety of network topologies.

We differentiate between the sub-packet, and sub-mss regime as
follows; A flow is said to be in the sub-mss regime when the flow has to
send fewer segments than the stretch acknowledgement factor, usually two
segments, per RTT. However, a flow is first in the sub-packet regime when
the capacity is less than one segment per RTT. There is no real reason for
this segregation as both regimes severely degrade the performance of TCP.
The term sub-packet frequently occurs in the literature to talk about the
problem. We, on the other hand, actively use the term sub-mss regime
to generalise the problem for a broader definition which also includes the
penalty of the delayed acknowledgement mechanism.

The sub-packet regime is a common weakness of TCP implementations
since there is no easy way to let a flow hold a congestion window of less
than one segment per RTT. TCP needs to transmit at least one segment per
RTT to maintain its acknowledgement clock.

The sub-mss regime, on the other hand, occurs due to the delayed ac-
knowledgement mechanism found at the receiver. Stretch acknowledge-
ments make better use of the limited resources of the network. This regime
is not so different from the sub-packet regime, but in this case, the selfish
sender has a mechanism to clock out fewer segments but refuses such that
the acknowledgement clock gives accurate RTT measurements.

The related work introduces two less-than-best-effort congestion con-
trols algorithms; we briefly explain their motivation and how they are re-
lated to our work. The IETF posted a survey for this type of congestion
control [69].

31

4.1 TCP - Many flows

Morris investigates TCP behaviour on a heavily congested network path
in 1997 [49]. He ran two identical simulations in Network Simulator (ns)
to test the scalability of TCP. The network consisted of a simple topology,
where a fixed number of senders shared a bottleneck with an equal number
of receivers on the opposite side. The AQM used for these simulations was
RED in an attempt to keep the queue short for the whole duration of the
experiment.

The first simulation had a few flows to validate that the congestion
control algorithm of TCP did work as intended, and as we expected each
flow got their equal share of the bandwidth and stabilised on a reasonable
congestion window. The flow observed almost no packet loss and was thus
able to recover from loss episode efficiently by initiating the combination
of fast retransmit and fast recovery algorithm.

Meanwhile, the second simulation was set up with an excessive number
of flows over the very same configuration. The meaning of excessive here
does not necessarily mean more than the usual number of flow observed
over the Internet. Morris did analyse packet traces of three type of Internet
links and observed that some of these links had this level of flow through
the bottleneck. The second simulation had the same level of throughput
through the link, but the achieved bitrate of each flow severely varied
throughout the simulation. Each flow observed a higher packet loss rate
resulting in frequent silent periods followed by RTO. An RTO event would
push the flow back exponentially and eventually resume its transmission
of one segment per RTT. A flow would either be in good standing and
maintain a large congestion window or be unlucky and get repeating
occurrence of timeout.

A temporary solution was proposed to increase the buffer size as more
flows competed. The bottleneck would then have enough buffer storage to
let each flow send at their minimum congestion window of one segment
per RTT. This solution made a certain number of flows share the bitrate
equitably, but this at the cost of extra queueing delay in the network. The
extra queueing delay inflates the RTT of all traffic to higher levels. The
short-sighted solution does not scale well either since the size the buffer
has to grow proportionally as more flows go through the bottleneck and
thus resulting in even higher RTTs. Morris next solution of using RED,
or any other more sophisticated AQM for that matter, does not overcome
the problem either as we have already shown in our quantification chapter.
As the RTT of TCP becomes shallow will any effort of the AQM to keep
a shallow queue be of little help, and the contribution of each flow would
make the job of AQM undoubtedly impossible.

Morris did, however, suggest an optimal solution which was to make
TCP less aggressive by not rapidly increasing the low congestion window.
He also suggested taking advantage of rate control for low congestion
window values over traditional acknowledgement clock approach. Morris
also claimed that the exponential backoff mechanism of TCP yields a
terrible receipt for a scalable congestion control algorithm.

32

4.2 TCP - Adaptive RED & SUBTCP

Feng et al. investigates the overall loss rate of TCP in not so different
network topologies using the Network Simulator (ns) [24]. Their study
takes place in the same year as Morris first discovered the problem.
They benchmark the performance of TCP by doing an in-depth analysis
in revealing some severe flaws in the current way of doing congestion
control, which substantially contributes to a loss rate of extreme levels.
Their finding shows that even with the use of RED, the suggestion of
Morris does not overcome the high loss rate from happening during times
of congestion. In their study, RED falls short in pushing back enough
sources to hinder buffer overflow, while in some other setups it becomes
too aggressive and thus periodically let the link go unused[23]. The
other part of their work is more relevant for us as they look at how TCP
sources contribute at keeping high loss rates in networks where a correctly
equipped AQM malfunction.

4.2.1 Adaptive RED

They first look into what role the number of TCP sources plays in the
early detection of RED and do so by disabling the maxth length parameter
of RED, i.e. maxth equals the maximum buffer capacity. It is clear from
their result that RED is highly sensitive to the parameter selected for the
experiment. They are either able to optimise RED for a small or moderate
number of flows, but not for both at the same time with one unique
configuration. Feng et al. find that to keep a link utilised for a small set
of senders the maxp parameter of RED has also to stay low while under
heavy periods of congestion the maxp parameter has to be kept sustainable
high to prevent packet loss due to a buffer overflow. They repeat the same
experiments with maxth set lower than the buffer size and still see packet
drops due to a buffer overflow. It is first when they add a very deep buffer
that they can eliminate packet drops, but RED keeps malfunctioning as it
is neither able to keep the average queue it was configured for and often
let the link go underutilised. Meaning, that they saw the need for a more
intelligent AQM which would react more aggressive in the presence of a lot
of capacity-seeking sources and an otherwise more conservative response
from the AQM.

They propose an adaptive AQM, which they call Adaptive RED1, to
circumvent issues related to changing network topology. Their approach
was to adjust the maxp parameter dynamically such that the average queue
stays bound within the minth and maxth parameter of RED. Adaptive RED
increases the maxp parameter once by α if the average queue was shorter
than the minth parameter, and if the average was higher than the maxth
parameter the maxp parameter was also decreased once by β. The maxp

1Floyd et al., the primary author of RED, later continued this work, and he calls this
version also Adaptive RED [31]. The Adaptive RED algorithm was further improved and
eventually made its way to lots of researchers. The main idea stays the same, but we have
left out details of the new algorithm as they are irrelevant for the oncoming explanation.

33

betweenstart

below above

minth ≤ Q ≤ maxth

Q > maxth
maxp ∗= β

Q < minth
maxp /= α

Q < minth

minth ≤ Q ≤ maxth

Q > maxth
maxp ∗= β

Q > maxth

minth ≤ Q ≤ maxth

Q < minth
maxp /= α

Figure 4.1: Adaptive RED

parameter was, otherwise, kept as is until the average queue crossed the
other boundary (see state machine in Figure 4.1).

4.2.2 SUBTCP

They additionally investigate the performance of the end-to-end conges-
tion control of TCP in scenarios where heavy congestion unfolds. Their
work resumes the work of Morris and looks into the need of making TCP
less aggressive in the sub-packet regime to maintain low loss rate through
the bottleneck. Feng et al. tell that an AQM cannot alone guarantee a low
loss rate without cooperating sending endpoints. They argue that for the
typical Internet Service Provider (ISP) networks, this environment is quite
common, and the current use of TCP may lead to high loss rates through
their respective network.

They look at two major weakness of TCP, first the minimum transmis-
sion rate and then the linear increase probing. However, their study does
not touch upon the impact of the delayed acknowledgement mechanism;
they instead evaluate against TCP with a minimum congestion window of
either one or two segments per RTT. They mention that the backoff mech-
anism of TCP falls short as RTO reinitiate upon one successful transmis-
sion and thus causing a very aggressive probing. The capacity is no longer
shared evenly across the competitors of the bottleneck as some flow are
stuck in repetitive silent periods, whereas other flows accelerate to inap-
propriate and unjustified transmission rates.

They propose a modified TCP, which they call SUBTCP, to overrule

34

the default action of TCP for when the congestion window is merely one
segment and only let regular TCP to rule again when there is sufficient
capacity available. First, they keep the backoff mechanism as is, that
is whenever the sender detects a loss the congestion window cuts by
half. Now instead of reprobing the network after successful transmission,
they reduce the penalty of the sender by half. The results are indeed
slightly improved, but they quickly understand that using Multiplicative
Increase Multiplicative Decrease (MIMD) is not the way to go as it loses
the convergence property of TCP and make it impossible to keep a stable
queue. This problem motivates their next idea, which is to scale down the
additive increase of TCP. They explain that the constant additive increase
is troublesome when the congestion window is low as it causes the queue
to fracture too much. So, they try to scale the additive increase down
by a constant factor whenever TCP run out of congestion window and
otherwise let TCP do its thing. They find that even by scaling down the
additive increase; they are stuck with an additive increase phase which
does not adapt well to change in congestion. As a last resort, they try
to let the additive increase phase depend on the available capacity and
probe a certain percentage over the offered bitrate. Meaning, the additive
increase phase becomes less aggressive for when the congestion window is
low and vice versa. They also use this method to probe for capacity in all
environments of TCP.

By looking at their results, they are indeed able to scale TCP for low
BDP paths with excellent results. They talk about continuing their work by
making TCP even less aggressive to maintain a more stable queue and also
look more into making TCP converge faster. At the moment, their proposed
solution makes a flow with a low rate to use a significant time to back off
other competitors keeping a higher rate, i.e. slow convergence.

4.3 TCP - The Initial Work on ECN

Floyd et al. wrote a short validation paper on ECN[30]. This paper was
later used to justify the appropriate response from the sending host in the
standardisation of ECN[59, 60]. They look at a variety of scenarios using
ECN which they verify through experimentations.

The experiment of most interest talks about TCP equipped with ECN
over a low BDP network path. They consider a sender holding a congestion
window of only one segment per RTT. They explain that TCP with ECN
must still back off when receiving marking when holding a congestion
window of only one segment. They describe that instead of doing
transmission based on the principle of acknowledgement clock, the sender
must only use the retransmit timer for further transmission. The sender
continues to grow the retransmit timer exponentially for any successive
marking and do so until a segment arrives without the ECN-Echo (ECE) bit
set. Their approach fakes a loss episode locally at the sender and effectively
back off the sender indefinitely without needing to modify the congestion
window any further. There is a minor flaw in depending on an exponential

35

growing transmission then reprobe upon a single successful transmission.
Such sender grows its congestion window faster than a slow start probing
and comes at a high cost of overshooting the capacity of the AQM for
shallow thresholds.

They also briefly talk about another approach where instead of using
the RTO to back off, the sender could shrink the size of the packet to achieve
a similar effect. However, they seemed this to be unsafe because this would
let TCP with ECN to accelerate faster than the standard TCP and would
result in an uneven share of the capacity.

4.3.1 Linux TCP with ECN - Criticism

The Linux way of interpreting the work of Floyd et al. and the correspond-
ing standard document remains questionable. The Linux sender always re-
set its retransmit timer on the reception of an acknowledgement and clock
out the next segment without performing any backoff for when the conges-
tion window is two segments 2. Reason for it being two segments and not
one has directly to do with the penalty of the delayed acknowledgement
at the receiver. The Linux sender chooses to become unresponsive when
the proposed standard tells otherwise is missing a justification. A solution
where the sender clocks out two segments back-to-back using an exponen-
tial growing retransmit timer would surely have given a responsive sender
indefinitely. Scalability of such solution might become a concern, but not
reacting upon congestion is always wrong.

The choice of merely ignoring the concern yield degraded performance
from the state-of-the-art Linux implementation, a misbehaving sender will
struggle to yield any excellent performance. The poor performance of
Linux could derive from the evolution of the standard ECN document
of TCP. In the first version[59], which is now obsolete, the requirement
to backoff while holding a low congestion window was optional but
recommended and quantified. The specific part of the document which
might light up their reasoning read as follow:

After the source TCP reduces its congestion window in response to a
CE packet, incoming acknowledgements that continue to arrive can
"clock out" outgoing packets as allowed by the reduced congestion
window. If the congestion window consists of only one MSS
(maximum segment size), and the sending TCP receives an ECN-Echo
ACK packet, then the sending TCP should in principle still reduce
its congestion window in half. However, the value of the congestion
window is bounded below by a value of one MSS. If the sending TCP
were to continue to send, using a congestion window of 1 MSS, this
results in the transmission of one packet per round-trip time. We
believe it is desirable to still reduce the sending rate of the TCP sender
even further, on receipt of an ECN-Echo packet when the congestion
window is one. We use the retransmit timer as a means to reduce

2The Linux implementation while cleaning up its retransmission queue in acknowledge-
ment processing sets a flag. The flag is later checked to rearm the retransmit timer.

36

the rate further in this circumstance. Therefore, the sending TCP
should also reset the retransmit timer on receiving the ECN-Echo
packet when the congestion window is one. The sending TCP will
then be able to send a new packet when the retransmit timer expires.

The document is unambiguous in explaining the problem and why the
sender should back off when receiving successive marked segments while
holding a congestion window of merely one segment. The implementer
is made aware of a possible scenario where the sender may become
unresponsive, but the lack of a more accurate wording allows the decision
to be up to the individual implementation. They turned this work later into
a mandatory requirement for all sending host and gave the details in the
current version of the document[60]. The previous paragraph now reads:

After the source TCP reduces its congestion window in response to a
CE packet, incoming acknowledgements that continue to arrive can
"clock out" outgoing packets as allowed by the reduced congestion
window. If the congestion window consists of only one MSS
(maximum segment size), and the sending TCP receives an ECN-
Echo ACK packet, then the sending TCP should in principle still
reduce its congestion window in half. However, the value of the
congestion window is bounded below by a value of one MSS. If the
sending TCP were to continue to send, using a congestion window of
1 MSS, this results in the transmission of one packet per round-trip
time. It is necessary to still reduce the sending rate of the TCP sender
even further, on receipt of an ECN-Echo packet when the congestion
window is one. We use the retransmit timer as a means of reducing the
rate further in this circumstance. Therefore, the sending TCP MUST
reset the retransmit timer on receiving the ECN-Echo packet when the
congestion window is one. The sending TCP will then be able to send
a new packet only when the retransmit timer expires.

Note the use of "MUST". The last two sentences now mandate the
transmission to happen only through the retransmit timer when holding
a congestion window of one and receiving marked segments.

The latest congestion control standard of TCP does not either put any
light on their reasoning. The congestion control standard reinforces the
message of the new paragraph above by citing the up to date standard
document.

4.4 TCP - Extensive Testing with Many Flows

Qiu et al. profile TCP under heavy load to see how well the protocol
scale in a variety of network topologies[58]. Additionally, they investigate
what effect a varying propagation delay has on the performance of TCP. In
their analysis and simulations, they evaluate the aggregated throughput,
goodput and the loss rate of TCP in a simple network topology consisting
of just one bottleneck between the sending and receiving hosts. They test

37

the scalability of TCP under three set of bottleneck scenarios: a small,
medium and massive buffered bottleneck. They evaluate the performance
of TCP without the support of ECN.

They start by using an identical propagation delay for all the sending
hosts through a simple drop-tail bottleneck; they quickly observe a long-
lasting synchronisation among the competing flows. Flows repeatedly
departure and arrive within a short period, which leads to periods
with underutilisation of the link once multiple senders recover from loss
simultaneously, and synchronised losses once the buffer occupancy reaches
its maximum length. They try to either add random processing time to the
sending host or introduce a RED gateway to minimise the risk of global
synchronisation among the competitors.

The experiment of most interest runs on a small buffered bottleneck.
Qiu et al. find that TCP yields terrible performance leading to an uneven
share of the capacity and periodically silent periods among the competing
flows. By adding random processing at the sending host, they can break
up the synchronisation and tells that one need to add at least 10% of the
RTT worth of processing to break up the synchronisation. The use of
random processing delay ends up weakening the performance of TCP by
introducing higher loss rates and less even share of the capacity.

Finally, in their last resort at improving the results they use RED
without ECN to mitigate the issues regarding synchronisation. Under RED,
they no longer see any synchronisation between the flows. However, the
capacity sharing remains uneven when using a shallow queue AQM, and
neither is the buffer occupancy of RED any stable. They can achieve better
performance with RED on the other schemes, but this is not relevant for our
work as we mainly focus on an overall shallow base RTT, which implies a
shallow queue AQM too.

Lastly, their results indicate that RED can reduce an unfair bias between
two greedy competitors with different base RTT. TCP performs poorly with
different RTT; a flow with a lower base RTT gets an advantage over other
competitors. A flows with lower base RTT achieve a much higher portion
of the capacity.

Their work does indeed confirms the earlier work that the culprit is
TCP which either stays stuck in an exponential growing retransmit timer
or accelerate above its appropriate transmission rate. The network or the
AQM has surely no blame to take in this matter. An indefinitely responsive
sender which uses the retransmit timer to back off does not yield any
significant results.

4.5 TCP - Delay Control

4.5.1 Receiver-based Delay Control (RDC)

Hsiao et al. investigate the performance of TCP over the use case of unicast
layered video streaming[35, 36]. Applications doing video streaming are
susceptible to variation in both delay and throughput. The standard TCP

38

is not well fit for these applications since the rate halving behaviour of
TCP introduces massive jitter in both the achieved latency and bitrate
over small periods. Nonetheless, this problem is precisely the motivation
behind TCP Friendly Rate Control (TFRC) [27, 32]. Hsiao et al. propose a
quite simple Receiver-based Delay Control (RDC) for smoother congestion
control. They do not modify the existing congestion control mechanism of
the sender, but instead, extend the receiver to help with congestion control
in the reverse path of the origin of the greedy traffic (from the sender to the
receiver).

Their approach is to make the receiver add a calculated penalty to
the processing procedure of a stretch acknowledgement. The receiver
makes the RTT seen by the sender longer in the event of congestion and
effectively reduce the maintained rate of the sender and even when the
congestion window is held constant by an unresponsive TCP. They look
at two different methods to calculate the penalty. First, they employ a
simple token bucket mechanism at the router to insert tokens as part of
the queueing process of the router. They then drain the token bucket
at a lower rate than the actual output rate of the link, the selection of
the drain ratio decide the balanced equation between the link utilisation
and buffer occupancy. The lower the drain ratio, the higher the buffer
occupancy and vice versa, but now the link periodically underflows. The
information, the token, obtained from the token bucket gets forwarded to
the receiver, so the piggybacking acknowledgement gets delayed with the
appropriate time unit. However, this requires additional information in
the TCP header and more functionality at each network element, so they
found a better solution which was to measure the extent of congestion
from the marking level observed at the receiver. A low percentage of
marking resulted in an additive decrease of the delay, and whenever the
marking level became significant, above a certain threshold, the delayed
doubled. The receiver measures the level of congestion for every RTT
of the sender, but since the receiver lack this information it has to be
approximated. Additionally, to additive decrease the delay, they rely on
an approximation of the congestion window of the sender as well. The
receiver is, thus, smoothing out the probing of TCP by working against the
congestion control algorithm of the sender.

They were able to achieve great results with RDC; better fair-sharing
of the capacity and overall reduced latency. The queue was kept low by
keeping the sender responsive even during an extreme level of competition
at the bottleneck. RDC has no issues in competing fair with standard TCP
since the sender was not modified.

4.5.2 Sender-based Delay Control (SDC)

Hsiao et al. continue their work, but this time, they tackle the problem from
the sending host[44, 52]. Their reasoning for not doing congestion control
from the receiver is because both the congestion window and RTT has to
be approximated, which makes the solution hard to scale. So, they propose
a Sender-based Delay Control (SDC) algorithm to induce a delay during

39

transmission of segments.

The sender no longer uses congestion window purely to back off but
additionally rely on SDC to become responsive in environments with
extreme competition. They split up the congestion control of TCP into
two modes. Regular TCP perform the congestion control when there is
sufficient capacity available and otherwise let the SDC algorithm take over.
They define a low congestion window to be when the sender has to send
fewer than eight segments per RTT. Reason for them to choose such a high
threshold is to maintain the efficiency of both the fast retransmit and fast
recovery algorithm and avoid the cost of the RTO. As the success of an
efficient loss recovery phase severely degrades when fewer segments are
inflight per RTT. The sender needs enough segments inflight to trigger
three duplicate acknowledgements from the receiver in addition to those
segments which were lost by the network.

They explain that to bring down the packet rate, Ws/RTT, of the
sender is only possible by expanding the RTT. Nonetheless, a packet rate
of 8/(0.001 + 0.001) is the same as 4/0.001. The former sender reduces
its packet rate by inflating its RTT and keeping its congestion window
constant. While making the sender add a local delay to its transmission
may sound counter-intuitive do they argue that this is better for the
network. A bottleneck which employs an AQM is then able to keep a
minimal queue because all senders stay responsive. A sender should
instead do a deferred transmission through a shallow queue and only
add a small delay that corresponds to 1/N of the delay a deep buffered
bottleneck would have needed, where N is the number of competitors at
the bottleneck. They also find that by extending the RTT of the individual
sender, one also minimise another common problem of TCP, which is an
uneven share of capacity between senders with different base RTT. By,
emitting more congestion signals to a sender with low base RTT, the AQM
can help in levelling off the difference among the competing senders.

SDC approximately increases the transmission rate as fast as the
traditional TCP congestion control to stay fair. They also evaluate
the impact of reducing the added delay faster and slower than TCP.
More importantly, SDC offers to go slower when performing delayed
transmission. They evaluate SDC against regular TCP equipped with ECN
and observe an overall performance boost from SDC. TCP is fragile and
goes more often silence because of the RTO, while SDC needs to be less
often rescued by the RTO.

Their work has the potential to scale on the Internet because it generally
requires minimal modification to the sender. The receiver remains as is
and the network is also just required to support ECN. However, they do
not look into the challenges of the delayed acknowledgement mechanism.
Stretch acknowledgements are much prefered as they keep the resource
demand of the network contained.

40

4.6 TCP Nice - A Background Transfer Protocol

TCP Nice is a congestion control algorithm designed for background
traffic. The goal of TCP Nice is to use the available spare capacity
in the network. The congestion control algorithm base itself on TCP
Vegas RTTs measurements approach and signal congestion for higher RTT
measurements. TCP Nice has a more conservative approach and is more
sensitive to congestion than TCP Vegas. TCP Nice does this by detecting
the congestion early and reduce its transmission rate more aggressively.
TCP Nice is also one of the few congestion control algorithms that permits
a congestion window below one segment per RTT. The developers of
TCP Nice, Venkataramani et al.[68], conducted experiments in Network
Simulator (ns) to confirm that their congestion control algorithm was less
aggressive than the standard TCP NewReno and TCP Vegas. TCP Nice was
designed not to interfere with foreground traffic even if it meant that some
of the available spare capacity did go unused.

The idea behind background traffic is to improve the overall Quality of
Service (QoS) for non-critical tasks in order to give a smoother experience
to the user. QoS goals for a service, which runs in the foreground, could
be better availability, reliability or latency. The foreground flow then saves
time when the service later needs data, which has already been prefetched
by the background traffic.

The idea behind TCP Nice was to detect congestion early and avoid
interfering with the foreground flows at all cost. TCP Nice uses RTT
samples to detect the queue in the process of building at the bottleneck
and thus back off early, so no foreground flow notice its appearance.
TCP Nice maintains minRTT and maxRTT over time just like TCP Vegas.
The congestion algorithm uses minRTT to detect an empty queue at
the bottleneck. Meanwhile, the maxRTT is used to find the maximum
capacity of the queue at the bottleneck. Initially, the maxRTT is the very
first minRTT times two. These measurements are used by TCP Nice to
understand the queue dynamics and make intelligent decisions on when
to emit more into the network and when to yield for other traffic.

TCP Nice back off when a fraction (f), usually a half window, of packets
encounter congestion in an RTT. A packet is said to be causing congestion
when the packet is measured to have RTT of more than the base minRTT
plus an offset. TCP Nice indicate congestion as follow (Pseudocode from
the paper[68]):

41

//Per ACK operation
if (curRTT > (1− t) ∗minRTT + t ∗maxRTT)

numCong++;

//Per RTT operation
if (numCong > f ∗Ws)

Ws = Ws/2;
else

//TCP Vegas congestion avoidance

The threshold (t) controls the sensitivity which determines if the current
RTT measurement is an indication of congestion. The developers of TCP
Nice selected a threshold of 0.2, which they argue gives a great queue
dynamic at the bottleneck. TCP Nice achieve a good chunk of the spare
capacity without being too aggressive against other critical flows. TCP
Nice reduce its transmission rate similar to the conventional TCP, which is
to reduce the transmission rate to half of the original congestion window.

TCP Nice use the same additive increase approach as TCP Vegas
to probe for additional capacity at the bottleneck. TCP Nice uses the
TCP Vegas congestion avoidance algorithm until enough segments in the
current window have resulted in a congestion signal. The congestion
avoidance phase of TCP Vegas goes as follow (Pseudocode from the paper
[68]):

E← Ws

minRTT
//Expected throughput

A← Ws

curRTT
//Actual throughput

Di f f ← (E− A) ∗minRTT

if (Di f f < α)

Ws ←Ws + 1
else if (Di f f > β)

Ws ←Ws − 1

TCP Vegas use α = 1 (minimum) and β = 3 (maximum) to indicate
how many of its packets should remain queued at the bottleneck. TCP
Vegas in comparison to other congestion control algorithms does not make

42

a multiplicative reduction of its congestion window. TCP Vegas uses linear
increase and linear decrease to keep the number of packets enqueued
between α and β for the currently observed RTT.

TCP Nice implements congestion window sizes below one segment
per RTT by deferring transmission of new segments for a given amount
of smoothed RTTs. TCP Nice use a timer on the socket to clock
out two successive packets (burst) as the congestion window of the
flow drops below two segments. TCP Nice uses transmission of two
segments to counter a receiver which plans to delay acknowledgement
of the first segment. The deferring process causes the flow to lose
its acknowledgement clock temporarily, but the transmission is still in
full control of the sender. TCP Nice behave in a more conservative
behaviour than its counterpart of other congestion control algorithms and
effectively maintain a fixed number of bytes per RTT. This behaviour
should conceptually not be an issue as the flow goes slower than the
acknowledgement clock permits. TCP Nice has an artificial floor for the
congestion window of one segment every 48 RTT. Meaning, the scalability
of TCP Nice has limitation to the transmission of two successive segments
every 96 smoothed RTTs.

TCP Nice is impractical for our use case due to the reasons we list
here. First, TCP Nice only look attractive for background traffic due to
its less than best-effort mechanism. We, on the other hand, wants to solve
the problem for a broader set of congestion control algorithms typically
used over the Internet. Secondly, TCP Nice solution of transmitting at least
two successive segments is not a great solution to the challenging delayed
acknowledgement mechanism. A significant stretch acknowledgement
factor makes this approach infeasible since TCP Nice would then have to
transmit more successive segments at once. Although, the developer of
TCP Nice was at that time aware of this weakness and planned to improve
this by pacing packets out evenly. Their work, therefore, validates our
problem statement as we are not the only one that requires a scalable
solution to the delayed acknowledgement mechanism for lower congestion
window values. Finally, the implementation of TCP Nice is outdated and
requires a tremendous effort to work on a newer version of the Linux
kernel.

4.7 TCP - The Sub-packet Regime

4.7.1 Sub-packet Regime

Chen et al. [17] describes and validates an analytical model to examine
the stationary distribution for a given number of flows in the sub-packet
regime. They explain that the sub-packet regime paths are common in
developing countries. Their approach is to use a simple variant of the full
Markov model3 to understand the backoff behaviour of TCP in the sub-

3A Markov model capture states and transitions of a generally random system. Markov
is a memoryless probability model, so it has no history of the previous states. This property

43

packet regime. The model constructs around the RTO of TCP which they
explain is a widespread phenomenon during the sub-packet regime.

They validate our concerns that TCP breaks under the sub-packet
regime and yield terrible performance as a result. TCP no longer share
out the capacity evenly and suffer high packet loss. The regime causes TCP
to suffer from repetitive occurrence of RTO and thus growing periods of
silence. A sender at the bottleneck either probe faster than its competitors
or is held back by the exponential growing RTO of TCP.

The model is meant to be used by network elements to optimise for the
TCP traffic. The assumptions behind the model are that there will be lots
of packet loss events per flow, and each flow operates in the sub-packet
regime with small congestion window sizes. Finally, the last assumption
they make is to model packet loss as one single loss parameter to the model.
They validate the prediction of the model through ns2 simulations for a
variety of bottleneck scenarios.

4.7.2 Time Aware Queueing (TAQ)

Chen et al. employ their previous work by introducing Timeout Aware
Queuing (TAQ) [18]. TAQ is designed around the requirement to minimise
the level of RTO observed by TCP in sub-packet regimes. They do not
change the standard TCP and instead implement a smart network element
which models the current state of the congestion control of TCP.

They explain that it is tough to make a model of TCP generally and
is even harder to predict a sender in the sub-packet regime without the
knowledge of all the previous states. TAQ, therefore, keeps per-flow
state information of each flows at the bottleneck over a short period,
approximated to be the RTT for a given flow. They use an idealised
version of the model to predict the current state of each flow traversing the
bottleneck. Using the model, they classify flows within a given state and
makes the bottleneck aware of the congestion control of TCP. They use a
multi-class priority queue schedule policy to perform a more aggressive
action against flows that are probing faster than their fair share of the
capacity and tries to keep timeout of each flow no more than its needed.
TCP flows should then be able to observe an equal number of silence
periods and thus shareout the capacity evenly.

They improve the sharing of capacity between flows in the sub-packet
regime. TAQ allows a more significant number of senders through the
bottleneck by inducing less often RTO to fragile flows. They, conclusively,
say they will continue their investigation and try to find a more optimal
solution from the end-to-end congestion control of TCP. A solution from
the host itself is prefered as it let all the network elements of the Internet to
stay stateless and not be required to predict the current state of each flow.

is crucial as it makes the model feasible to implement.

44

4.8 LEDBAT - Sub-packet Regime

Low Extra Delay Background Transport (LEDBAT)[64] is a less than best
effort congestion control algorithm developed by BitTorrent. The goal of
such scavenger transport is to take the spare capacity found in the network.
A LEDBAT flow does not probe as aggressively as TCP, and neither does
LEDBAT wants to disturb a TCP flow. LEDBAT actively measures the one-
way delay and signals congestion after the flow has built a small queue at
the bottleneck. A LEDBAT flow retreats as a TCP competitor probe for
capacity. A scavenger transport method is well suited for an extensive
background bulk-transfer, as in pair-to-pair file-sharing networks, since
such transfer does not induce the same level of congestion as traditionally
congestion control algorithms.

Komnios et al. [43] investigate the performance of the scavenger
transport protocol LEDBAT/fLEDBAT vs the conventional TCP in an
emerging region type network setting where the sub-packet regime is
more likely to occur. The sub-packet regime, as we know, happens as the
throughput of the flow goes below the one segment per RTT threshold.
Their findings show that LEDBAT acts more aggressively than TCP in the
sub-packet regime.

TCP, as we know, gets stuck in an exponential growth period of silence.
TCP flows at the bottleneck, therefore, fails to contribute with enough
queue in the sub-packet regime. LEDBAT flows are misled to think they
can continue probing for more capacity when the situation is the opposite.
They tell that AQM is not the answer to the problem. They plan to
extend LEDBAT machinery with a new mechanism to preserve the goal
of scavenger transport in the sub-packet regime. As we see, other protocols
like LEDBAT has to be more complicated in the sub-packet regime just
because of the scalability issues of TCP. By scaling TCP properly, other
protocols can be kept simple and not be required to cooperate with a non-
scalable TCP.

4.9 DCTCP - Packet Slicing

Huang et al. investigate the performance of DCTCP in a data centre
environment in recent years, the period 2015-2018 [37, 38]. They argue
that DCTCP starts to struggle in data centres because of the presence of
a magnitude of concurrent flows and a low propagation delay between
the processing nodes. Their focus is on application load which needs
many concurrent flows traversing to one single processing node, e.g. the
design pattern aggregate/partition. They find that merely reducing the
congestion window is not enough to avoid the incast problem, which
results in periodically buffer overflow and underutilisation of the link.
They use ECN, but the shallow buffered switches typically found in data
centres run quite fast out of the buffer. The outcome they see is frequent
loss periods, which is severe enough to cause loss of the whole window of
segments. The efficient algorithms such as fast retransmit and fast recovery

45

fall short, and cause uneven silent periods across the set of flows (RTO).
They see that the solution has to come from DCTCP and not the network,
as the typical switches in data centres use shared memory across all ports
and the use of more expensive hardware is out of the question. Although,
the use of expensive switches is in no way going to solve the problem if the
concurrency origin from one port.

They propose dynamically adjusting the size of the segment, in addition
to the congestion window, as a means to reduce the transmission rate of
the sender. To choose the optimal size of the segment, they introduce
packet slicing, which relies on Internet Control Message Protocol (ICMP)
signalling to propagate the appropriate size to all the traversing flows.
They argue that by using packet slicing, they can keep the packet overhead
as low as possible in even the presence of extreme congestion levels,
through the use hardware optimations to reduce the utilisation of the
CPU. Another problem they face is bursty arrival of flows because of
synchronised senders, the likelihood of synchronised sawtooth increases
as more flows competes. They use the pacing facility of the Linux kernel
to spread out the bursty arrival and also look into adding random delay to
the transmission process of the sender.

In the end, they can achieve better results than pure DCTCP. They claim
to have solved the incast problem of TCP by evaluating their results in both
network simulator (ns) and a real small-testbed. In their evaluation, they
mainly use the number of concurrent flows and the goodput achieved to
determine the success of their approach.

The switch, in their system, needs to do the packet slicing periodically
which add complexity since the switch must maintain the state of each flow
and requires a firmware update.

4.10 DCTCP - ExpressPass

Cho et al. look at some scalability issues of DCTCP in data centre
environment[19]. Their work is quite recent and dates only back to late
2017. They examine the performance of DCTCP under shallow RTT with a
moderate level of traffic over link speed as high as 10/100 Gbps. This setup
is indeed the same network topology, high bitrate and shallow RTT, as we
would like to benchmark DCTCP over.

Not surprisingly, they stun upon the same problem as the one
motivating our work, which proves that this is, in fact, a problem out
in the wild and is starting to gain momentum among researchers in data
centre environments. They show that a moderate level of greedy senders
is enough to reach this limitation of DCTCP even with a tremendous link
speed as high as 100 Gbps.

They propose a new architecture called ExpressPass which bases on
credit packet going in the reverse path of the origin of traffic, so from
the receiver to the sender. The receiver uses the credit packets to govern
the transmission rate of the sender. A credit packet does the congestion
control of the sender; the sender is only allowed a new transmission if

46

the receiver has permitted such transfer through non-accumulative credits.
The switches in the data centres then regulate the rate of the credit packet
to maintain shallow queue in the reverse direction. Their approach is
different from standard congestion control as it hinders the transmission
of new segments, even before congestion takes place. The sender, usually,
reacts upon a request to go slower after an RTT passes. Their system
yield excellent performance in even the extreme scenarios, e.g. the sub-
packet regime, since the sender has minimal control of the transmission and
instead rely on the network on an individual packet basis. The scalability
problem of DCTCP, or any other modern congestion control algorithm, is
then avoided because of the passive congestion control at the sending node.

However, their promises of the architecture do not come free as
it introduces some significant drawbacks. ExpressPass depends on
asymmetric routing path between the two endpoints. The credit packets
need to flow the same path as the traffic or else may the bottleneck in
the reverse direction by a different node. ExpressPass is also not easy to
deploy outside of data centres since they assume a minimal presence of
other traffic. Simply segregating the new traffic from the legacy traffic is
not enough to share out the capacity evenly with the existing traffic.

4.11 Summary

To summarise, there are lots of closely related work out there describing,
quantifying and solving the problem we have in front of us. The sub-packet
regime was located early on by Morris and was all about the presence of a
high number of incast flows. The problem more or less lost its momentum
for a decade because of the significant increase in bitrate around the globe,
the rapid evolvement of the Internet. At the end of this period, the network
elements of the Internet started to become bloated by the excessive buffer
occupancy and masked away the negative impact of higher loss rate by
ramping up the latency of the Internet. The problem is now making
a comeback and becoming unavoidable because more factors are now
pushing the higher bitrate to lower levels of fair share among competing
flows.

The earlier work tends to either go around the problem using various
techniques, involve assumptions which are not necessarily applicable to
the Internet, degree of higher complexity or happens to be a not so
straightforward solution. Nonetheless, there exist only a few earlier work
which goes in the right direction and tries to solve the problem from
the root. Feng et al. and Hsiao et al. do precisely that, but they only
solve the problem partly as they lack a proper solution to the delayed
acknowledgement mechanism.

The need for a solution is, of course, now starting to be taken seriously
by the data centre community, but there is no scalable solution out there.
A solution worked out by data centre vendors usually scope the fix to
be constrained within a controlled environment, which is not the only
problem we are solving here. Packet slicing tradeoffs the achieved goodput

47

to deliver a shallow latency to the application, which may not be an
acceptable solution if the need for bitrate is also high. ExpressPass, on the
other hand, does not solve the problem from the root and therefore add
unwanted complexity and constraints.

Now that we have fully understood, quantified its precedence and
seen others earlier attempt at solving the problem, we will give our
methodology. In our methodology chapter, we ought to explain in detail
how we plan to conduct our experiments.

48

Part II

The Project

49

Chapter 5

Methodology

We define our experiment plan in the first section of the methodology
chapter. We plan to run a set of experiments in order to understand how
TCP operates in networks with very thin RTTs. The primary goal of these
experiments is to investigate how well TCP cooperate with a proper fine-
tuned shallow queue AQM over an already low base RTT. We assume that
TCP will become unresponsive by not going slower than two segments per
RTT and keep overriding the AQM. We also believe that one single source
of unresponsive flow is enough to cause serious trouble for an AQM which
do not perform eviction policy.

We list all the metrics which we will use in the process of evaluating our
experiments. One of the most vital metrics we look into is the queueing
delay of the bottleneck. The queueing delay stands for the currently
imposed delay through the AQM for all traffic. Another metric which
closely relates to the queuing delay is the respective RTT of a flow that is
currently traversing the bottleneck. We hope to see a higher queuing delay
and RTT in our experiments when TCP flows in our network misbehaves.

The methodology chapter ends with the configuration of the testbed.
We go for a testbed topology to test the scalability of TCP on a network
path with a tremendous bitrate and a shallow RTT. We limit our testing to
the Linux kernel implementation of two commonly understood congestion
control algorithms, namely TCP Reno and DCTCP.

5.1 Experiment plan

We plan to run several experiments to get a deep insight into TCP’s
behaviour for our problem statement. We base our experiments on the
calculation of the Bandwidth Delay Product (BDP).

BDP is, as we already know, the number of bits a set of sender combined
needs to emit per RTT to fully utilise the link. Going lower than the
BDP leaves the link underutilised when eventually the queue dries up.
However, going any faster than the BDP builds a queue at the bottleneck.
We place an AQM equipped with ECN in our network to keep the link fully
utilised for the whole duration of the experiment with a shallow queue.

Our focus is on experiments with high bitrates and shallow base RTTs.

51

We know that we can still get a low BDP path with tremendous bitrates
when the network is capable of delivering shallow base RTTs. We want to
show that the conventional TCP refuses to slow down when dealing with
such paths and builds an enormous queue in the process.

Our main goal is to show that the real issue lies in TCP’s congestion
control, which prevents the congestion window from falling below two
segments per RTT. No matter how much effort an AQM makes to keep,
a shallow queue is it of no use and becomes an impossible task when the
transport protocol proactive refuses to cooperate. TCP pushes the overall
RTT of the network to higher grounds and keep overriding the AQM in the
process. The consequence is not only limited to other competing TCP flows
but is a massive problem for any other delay critical traffic as the queue is
a shared resource. TCP is greedy by the pure definition of the protocol
and is eager to maximise the achievable throughput over a network path
as long as the application permits. A single TCP flow is, therefore, enough
to cause serious issues when it starts to malfunction and result in a higher
constant contribution of queuing delay at the bottleneck. The delay critical
flows, not a competitor of TCP, is caught up in all of this just because of the
appearance of TCP traffic.

5.1.1 Traffic

The objective of our experiments is to show TCP refusal to cooperate with
the AQM for low base RTTs. The problem we are trying to address is
specific to TCP, and our experiment plan is, therefore, to run a set of TCP
flows. In other words, we assume that the only traffic present in our
experiment, and therefore in our network, is made of just TCP flows.

We also assume that TCP flows which run in our experiments will be
SACK-capable and makes intelligent decisions in the loss recovery phase.
Further, the TCP implementation will use the standard[11] which cover the
extension for a high-performance network. The idea is to give TCP perfect
environment with a decent network and all the latest improvements.

We may now select our congestion control algorithm to evaluate in our
experiments. Modern TCP congestion control algorithms will not permit
their ssthresh to fall below two segments, which then limits the congestion
window to two segments per RTT. The reason for rounding up as we now
are first due to the delayed acknowledgements mechanisms at the receiver,
but we also now that the latest congestion control standard[4] do not
demand these algorithms to fall below two segments per RTT. A congestion
control algorithm will risk being outcompeted by other TCP flows if it
allows its congestion window to fall below two segments per RTT. We are
therefore not so strict in our selection of the congestion algorithm since
every modern congestion control algorithm will quickly fail this criterion.

• TCP Reno. We do not need to choose a more complicated congestion
control algorithm than the standard TCP Reno as if it refuses to slow
down then neither will any other algorithm do. Going slower than

52

the standard TCP is surely not a requirement for any sane modern
algorithm which intends to fight with TCP Reno.

• DCTCP. We also try DCTCP to see if a more modern congestion
control algorithm is up for the challenge as it optimises for a low
queuing delay AQM.

5.1.2 Active Queue Management (AQM)

We mainly use RED to enforce a low queuing delay in our network. There
is no specific reason to use RED other than that it is well understood and
heavily used over the Internet and in data centres. We do, however, need
to use distinct configurations of RED for each of our congestion control
algorithm. DCTCP only need a straightforward configuration of RED,
whereas TCP Reno needs a more advanced configuration to smooth out
the queue.

• TCP Reno requires a complicated AQM scheme to hold a low
queueing delay. RED must work on average queue length and also
have an allowance for bursts before making any marking. We also
use RED in adaptive mode to not deal with the same problem as
Feng et al. had. We follow the guideline given here [29] for our
configurations.

• DCTCP, on the other hand, only requires a straightforward AQM
scheme to produce a stable shallow queue. The AQM can be very
simple since the complexity shifts to the congestion control algorithm.
The AQM only needs one single threshold parameter and mark on
instantaneous queue sizes without any form of smoothing or bursts
[1].

K = max(Bandwidth/8 ∗min, 2 ∗MTU)

Where K is the capacity of the queue in bytes, and min is the desired
queue length in seconds. We need to use a floor of 2*MTU bytes in
queueing capacity to overcome the time needed to serialise a packet
on slow links 1. We do, however, want to test how a ramp setup of
RED work out on DCTCP, but without any smoothing or bursts (RED
instantaneous).

5.1.3 Concrete Plan

We list all our experiments in Table 6.1. This overview helps in
understanding where we focus on with our experiments.

1https://tools.ietf.org/html/draft-ietf-tsvwg-aqm-dualq-coupled-08 (Work in progress)

53

https://tools.ietf.org/html/draft-ietf-tsvwg-aqm-dualq-coupled-08

Experim
ent(#)

1
2

3A
3B

4A
4B

4C
4D

4E
4F

4G
4H

B
itrate

(M
bps)

200
200

200
200

600
600

600
600

600
600

600
600

B
ase

R
T

T
(us)

300
300

100
100

250
500

750
1000

250
500

750
1000

M
T

U
(B

)
1500

1500
1500

1500
1500

1500
1500

1500
9000

9000
9000

9000
SM

SS
(B

)
1448

1448
1448

1448
1448

1448
1448

1448
8948

8948
8948

8948
Stretch

A
C

K
s

(bool)
false

false
false

true
false

false
false

false
false

false
false

false
Flow

s
(#)

1
2

8
8

16
16

16
16

16
16

16
16

Flow
tim

e
(sec)

10
20

40
40

40
40

40
40

40
40

40
40

Flow
pace

(sec)
-

1
1

1
1

1
1

1
1

1
1

1
Targetqueue

(us)
500

500
500

500
250

250
250

250
250

250
250

250
EC

N
(bool)

true
true

true
true

true
true

true
true

true
true

true
true

D
C

T
C

P
g

(w
eight)

1/16
1/16

1/16
1/16

1/16
1/16

1/16
1/16

1/16
1/16

1/16
1/16

B
uffer

capacity
(m

s)
200

200
200

200
200

200
200

200
200

200
200

200
R

ED
R

am
p

M
arking

M
in

us
500

500
500

500
250

250
250

250
250

250
250

250
M

ax
us

1500
1500

1500
1500

750
750

750
750

750
750

750
750

M
ax

probability
(%

)
10

10
10

10
10

10
10

10
10

10
10

10
B

urst(packets)
20

20
20

20
31

31
31

31
31

31
31

31
M

in
W

s
13.18

6.59
1.24

1.24
1.54

2.32
3.09

3.86
0.26

0.39
0.52

0.65
M

ax
W

s
29.64

14.82
3.29

3.29
3.09

3.86
4.63

5.40
0.52

0.65
0.78

0.91
A

daptive
true

true
true

true
true

true
true

true
true

true
true

true
R

ED
Step

M
arking

K
us

500
500

500
500

250
250

250
250

250
250

250
250

W
s

13.18
6.59

1.24
1.24

1.54
2.32

3.09
3.86

0.26
0.39

0.52
0.65

R
ED

Instantaneous
M

arking
M

in
us

500
500

500
500

250
250

250
250

250
250

250
250

M
ax

us
1000

1000
1000

1000
500

500
500

500
500

500
500

500
M

in
W

s
13.18

6.59
1.24

1.24
1.54

2.32
3.09

3.86
0.26

0.39
0.52

0.65
M

ax
W

s
21.41

10.70
2.26

2.26
2.32

3.09
3.86

4.63
0.39

0.52
0.65

0.78

Table
5.1:Experim

ents

54

5.2 Metrics for the evaluation of TCP

We base our evaluation of TCP on previous works found in the literature
[5, 26]. We select metrics to measure by looking at how frequent the metric
appears in previous work and what value it brings in our evaluation. We
log these measurements for the whole duration of the experiment. We can
measure a variety of metrics since we have full control of every node in the
network. We also measure metrics for every packet processed at each node
and can, therefore, get a very accurate reading of each metric at any given
time in our experiments.

We do, however, not address flow rate fairness in our work as it is
a meaningless metric. The flow rate alone has shown to give a false
premise of fairness. The flow rate fairness metric has repeatedly been used
in the literature to claim fairness among congestion control algorithms.
This metric alone has been used to measure the quality of congestion
control algorithms by looking at how good one such algorithm share out
the rate with another participating algorithm. The dynamics of the first
standardised TCP is commonly used as a baseline to defend any new
proposals. Briscoe wrote about this dilemma in: "Flow Rate Fairness:
Dismantling a Religion" [13]. He said that the internet communities kept
on using this broken fairness requirement to address resource allocation
and accountability, which base on no inheritance in any previous work
found in philosophy or social science. Briscoe also mentioned that flow
rate fairness does not even address what it is originally designed to tackle.
Flow rate fairness only looks at the current rate of one flow compared to
all other competing flows and does, therefore, not look at one single entity
connected to the Internet. A malicious user or a cheating program could
easily create multiple TCP connections to get a more significant quantum
of the capacity and thus setting other users in the network at a significant
disadvantage. Briscoe meant that we should base the fairness mechanism
on the cost we impose other users in the network and that the flow rate
would then be the outcome from such a fairness metric.

In other words, we do not base our work on this broken ideology and
neither claim that our proposal is compatible with one such metric. Our
work tries to scale TCP for lower RTTs and is therefore not compatible
with most modern congestion control algorithm in this region. Our goal
is to achieve low queuing delays in the submss regime and not look at how
good other algorithms competes with our proposal. Fairness is, therefore,
not a priority in our work as we are building a new baseline for a new set
of modern congestion algorithms. The definition of what fairness means
for TCP, or in general networking, has yet to be fully defined and agreed
on and requires far more work other than what we intend to address here.

5.2.1 Queuing Length & Link Utilisation

One of the most critical metrics measured in our experiments is the queuing
delay and link utilisation at the bottleneck. Queuing delay is the time taken
from a packet takes to enqueues at the egress interface of the host and

55

until it departures to the next hop in the network. A lack in queue means
underutilisation of the link.

We measure the queueing delay at the AQM. An AQM is often placed
between the endpoints in the network to shorten the length of the queue.
The queue length is often easily configured, and the main goal of the AQM
is to keep a stable queue of this length. The length of this queue decides
how fast the TCP flow should go. A shorter queue means the TCP flow
must send fewer bytes per RTT. We want to measure the length of the queue
when TCP is asked to send less than two segments per RTT. Therefore, the
goal is to test if TCP obeys the recommendation given by the AQM. As we
already know, a shorter queue means lower delays in the network.

5.2.2 Smoothed Round Trip Time (SRTT)

We will, besides, measure the RTT for every TCP flow in our experiment.
We should be able to see the impact of the queuing delay to the RTT. We
also want to see how the delayed acknowledgement mechanism impacts
this reading when losing up the acknowledgement clock.

5.2.3 Packet marking rate

We also intend to measure the effectiveness of the AQM by checking the
impact of a higher queue has on the marking rate of RED.

5.2.4 Throughput

We also measure the throughput of the individual sender to see whether or
not the competitors of the bottleneck shareout the capacity evenly.

5.3 The Framework

We use a testbed topology to conduct our experiments. The reason we go
for a testbed setup is to better understand TCPs behaviour with a variety
of real network delays. We want to demonstrate that the problem we
are addressing still exist with actual propagation delays in the network.
We ought to emphasise the importance of queuing delay contra all other
delays, which may impact the RTT of TCP. Our primary goal would be to
show that TCP refuses to comply with the AQM in our testbed for lower
RTTs. A testbed also let us examine the real TCP implementation of the
Linux kernel. There are also other pitfalls in using simulation-based or
emulation-based testing as outlined in "On the effective evaluation of TCP"
[5].

We have set up the testbed as illustrated in Figure 5.1 totalling of
three hosts connected in a private network. This setup consists of two
dedicated hosts directly connected which the sole purpose of conducting
experiments. The client node receives the traffic of importance from the
server node as a downstream. The bottleneck is, therefore, placed on
the upstream of the server host. The AQM is not a standalone host in

56

Manager

ClientAQM
1Gbps 150µs

Server

Figure 5.1: Experiment Setup

our network as the functionality of the AQM can easily be configured
on the link between the server and client node as a queuing discipline.
Our testbed replicates a typical network topology and is essentially how
servers over the Internet, or a data centre, competes to deliver services
to their clients. It is essential to keep in mind that we mainly care about
the performance of the transport protocol over a data centre type network
since the existence of the problem is more likely to occur there due to
shallow RTTs. We believe our findings will assist researchers in better
understanding the difficulties and limitations of the transport protocol in
networks with very low RTTs.

The managing host is used as an administration host in our testbed
to delegate out work to the server and client host. The managing
host does not participate in the experiment as a processing node but
is instead responsible for the experiment to complete within the given
test parameters. The use of a managing node eases our need to
reconfigure the processing nodes for each experiment manually. We
believe this allows us to test the transport protocols behaviour with
greater complexity and produce more reliable results. The manager
issue commands on the respective host through WebSocket as a mean
of communication. The manager then waits for confirmation before
proceeding to the next command to keep our processing nodes syncronised
throughout the experiment. The processing nodes in our testbed do not
initiate experiments by themselves but instead wait for the administrative
host. The processing nodes receive test parameters as soon as the manager
chose to schedule a new experiment and then reconfigure themselves based
on this configuration.

Server instances run inside of the server host and listen for their client.
The server is, in other words, not multiplexed and close the "listen" socket

57

as soon as accepting the client. The server host is instead set up to run
several instances of the server to accept an equal pair of clients. We can
then use the unique port of the server as a unique identifier for a given
flow in our analysis.

5.3.1 The Configuration of the Testbed

We have set up the testbed with one-gigabit link speed and configured each
node to use ECN. The bitrate does not replicate the optimal conditions of
data centres but is much higher than what most network paths typically
offers in a broadband setting. We do this because of some resource
constraints we currently have. We chose not to limit our scope of the
problem statement as we know from the quantification chapter that more
bitrate will not be able to solve queuing problems for data centres. We
believe that our current chosen approach will be enough to reveal some
otherwise ignored concerns and help cast some light on the problem in the
research community.

We evaluate our experiments under the Linux kernel version 5.0.0. We
place several levels of queueing disciplines on the egress interface of the
server host to regulate the outbound traffic. We first let the propagation
delay be a configurable test parameter in our experiments through Netem.
Next, we add a Hierarchy Token Bucket (HTB) to limit the bitrate of the
link artificially. It is crucial to limit the bitrate such that we measure the
pure performance of the congestion control mechanism of TCP and not
evaluate the quality of the driver of the NIC currently being used. The
bitrate is a configurable parameter in our framework and is needed to test
TCP under a variety of bitrates. Finally, we place the AQM as one final
queueing discipline on the link to regulate the length of the queue in our
network.

We launch a measuring tool at the server host to log metrics of senders
as soon as a new experiment starts. We use trace events to logs congestion
window. Trace events record metrics of our senders as new packets arrive
from their receivers. Meaning, each acknowledgement from a client adds a
new entry in our log for the corresponding server instance. We also run a
similar packet monitoring tool2 on the client node. This tool lets us extract
various metrics that were added to the packet by the AQM. Meaning, we
have measuring tool at both hosts to log a variety of metrics for all packets
transmitted throughout our experiments.

We have designed our framework to permit flow with different
congestion control algorithms within the same experiment. Although,
our primary goal is not to make a detailed comparison of a variety of
congestion control algorithms but to test some commonly used algorithms
in a network with low RTTs.

The Maximum Transmission Unit (MTU) of the link is also a configur-
able parameter in our framework. A higher MTU enables us to test TCP in

2Written in C using PCAP API, this application uses techniques from here: ht-
tps://github.com/henrist/aqmt

58

a data centre like a network where larger segment sizes are typically used
to reduce the overhead caused by network packet headers. We want to
compare the performance of the transport protocol with the typical frame
size of 1500 bytes against the jumbo frame size (9KB). We expect the trans-
port protocol to perform worse with jumbo frame sizes as the appropriate
congestion window, in segments, for the same bitrate is significantly smal-
ler (by a factor of 6). TCP would then be more vulnerable to the submss-
regime for even higher RTTs and bitrates.

Hardware optimisation is often used by the operating system to offload
as much work as possible to the Network Interface Card (NIC). The
operating system can thus keep a more efficient system by saving CPU
cycles. Higher gigabit-ethernet speeds become harder to achieve as the
processing time in the operating system is too costly and the timeslot
to process a single packet decline when moving to higher bitrates since
a magnitude more packets has to be processed within the same period.
Offloading work to the NIC usually give better results, but the success of
such offloading may vary between different vendors and driver versions.
Such optimisations are, therefore, often disabled by researchers before
conducting experiments to not evaluate the effectiveness of their NIC at
hand [45]. There also exist other non-hardware optimisation done by the
operating system which might shew our results. The operating system also
makes these optimisations with good intentions, but we must disable these
when benchmarking TCP to reveal the actual performance of the transport
protocol in an isolated setting. We have quite decent equipment at hand, so
limitations due to turning off optimisation should not be a problem in our
setup. Although, we keep a close eye on the utilisation of the CPU during
our experiment to not get shewed results. We list each optimisation and
explain what purpose they serve, and why we choose to disable them:

• TCP metric saving is used by the transport protocol to reinitiate new
flows with information obtained from previous flows to the same
destination. Information about a variety of state variables is reused to
achieve this goal. The metric saving is essentially a cache mechanism
which becomes invalidated after a long enough duration since the
last update took place. We, therefore, disable metrics saving to not
bias our new experiments from earlier conducted experiments. We
also flush this cache periodically, so we get rid off any existing cache.

• Segment offloading is used by the operating system to postpone the
process of splitting the user data into appropriately sized segments
and vice versa. The NIC usually assists in making this process more
efficient by reducing the number of packets that the operating system
has to handle and thus saving CPU cycles. Segment offloading is
typically disabled by researchers due to the reason is given above
(unpredictable behaviour). We make no difference and turn off all
form for segment offloading in both software and hardware. We
as, other researchers, want to benchmark TCP as is and without any
surprises that might come from buffering of segments. However, we

59

let TCP use Nagle’s algorithm to reduce small transmission from non-
greedy applications.

TCP Segment Offload (TSO), or Large Segment Offload (LSO), is a feature
commonly found on NICs. TSO helps the operating system by
offloading the procedure of partitioning data into appropriately sized
segments. The segmentation process attaches the network header
passed by the operating system to each now smaller sized segment.
TSO plays a vital role for servers which aim to fully utilise higher
bitrates with as little CPU utilisation as possible.

Generic Segmentation Offload (GSO) is a software-based segmentation
which does not need support from the NIC and is also available
to other protocols other than TCP in contrast to TSO. GSO tries
to achieve the same goal as TSO by postponing the process of
segmentation as much as possible to save CPU cycles.

Large Receive Offload (LRO) is the opposite of TSO and can be used to
reassemble broken segments into a whole chunk of data and produce
a single copy of the network headers. The operating system can
thus reduce the number of packets that need attention and lower
the overall load on the system at the client’s side of the conversation.
However, LRO is slightly aggressive in its merge process and could
end up losing some vital information from the network headers. The
merge process is, therefore, not lossless and could break the end-to-
end principle if it were to be used by a network element in the path
between the endpoints.

Generic Receive Offload (GRO) is as the counterpart GSO designed
to improve efficiency in cases where the NIC does not support
offloading and just like GSO it generalises to benefit all traffic. GRO
effectively reassemble segments into a stream of data but has a stricter
restriction for which segments to combine. GRO is, therefore, lossless
and produce one single header for a set of joined segments and
usually prefered over LRO. GRO is essentially the reverse process of
what GSO accomplish.

• Scatter-gather I/O is an optimisation done by the NIC to read data
from adjacent buffers located in memory efficient. A NIC that does
not support scatter-gather I/O requires that the buffer passed to
be in contiguous memory. Usually, the operating system has to
assemble a linear buffer in the physical memory of the data passed
from userspace and first, then instruct the NIC to read from this
now duplicated memory region. Scatter-gather I/O, therefore, helps
to reduce the need for otherwise expensive memory duplications.
However, the efficiency of such vectored I/O may vary between
different vendors and may not be available in all NICs. We, therefore,
see the need to turn off this feature.

• Interrupt coalescing is a technique used by the operating system to
defer interrupts from NICs with the hope that multiple events from

60

hardware are only seen as one single interrupt periodically. The
operating system can thus avoid expensive computations and context
switches, which comes part of the procedure in handling interrupts.
However, moderation of interrupts does not come free per se as the
hardware must refrain from generating an interrupt for an extended
period and thus cause delays in responding. The hardware generates
an interrupt first when a certain number of events enqueues or when
a timer expires from the first event took place. These parameters are
usually configurable by the operating system. Combining interrupts
from devices might yield different behaviour across different vendors
of NICs. We chose, therefore, to react upon each event from hardware
as a single interrupt in our framework to produce easily reproducible
results.

• Pause frames are part of the ethernet flow control which let an
overwhelmed node in the network request halt of transmission of a
sending node. The pause frame tells the sender to pause transmission
for a given interval before resuming to avoid further congestion.
However, the problem, oversubscription of a link, pause frames
are designed to solve in our case resolved at a higher level in the
hierarchy of the OSI-model, namely by the transport layer. Ethernet
pause frames are also vulnerable to head-of-line blocking it can
cause and are, therefore, most often not sent by an overwhelmed
node but instead circumvented by implementing a virtual output
queue. On the other hand, a sending node usually respects pause
frames received in order not to overwhelm the receiver. We disable
ethernet flow control in our framework to let TCP’s congestion
control algorithm deal with those issues. We can then measure the
quality of TCP’s congestion control algorithm and not rely on the
link layer to provide such a mechanism for us. We are aware that
priority-based flow control, a successor of pause frames for Data
Centre Bridging (DCB) over lossless ethernet, exists and its use case.
We chose to put this way to control congestion out-of-scope from our
work due to its applicability to only a particular class of traffic and
being unavailable to the majority of the traffic over the Internet.

5.4 Summary

We have listed our experiment plan and the various metrics we are going
to evaluate. We have also made our simple setup transparent and the
corresponding configuration.

We are now ready to design a better version of TCP which cooperates
with the AQM to keep shallow queue under shallow base RTT.

61

62

Chapter 6

Design Proposal1

The main contribution of this thesis is given here as a design proposal
which defines a scalable solution to the submss regime. Our goal with
this design is to extend TCP’s machinery to work more efficiently in
networks with shallow RTTs. We are trying to solve the now uprising
problem with long queueing delays caused by TCP because it refuses to
lose up its acknowledgement clock. TCP has no grounds in keeping a long
outstanding queue at the bottleneck when operating in low BDP networks.

We are, however, dealing with a hard problem as we need to change
some of the fundamentals of how TCP currently operates. The protocol is
poorly designed to scale in networks with low congestion window values
[4, 60]. TCP also struggles to maintain a small congestion window due to its
congestion avoidance phase of constant add of one segment per RTT. The
constant additive increase of one segment per RTT is also the culprit, which
makes the conventional TCP inefficient in enormous BDP network paths.
We do not address fairness in our work, and neither has fairness been the
basis behind this design document. Our main objective is to relook at how
much better TCP can perform given the freedom of minimal backward
compatibility. Our design introduces a new variant of a scalable congestion
control algorithm in respect to TCP, and we are also exploring an otherwise
ignored region that often the network gets the blame for lacking bitrate. We
restrict to only propose minimalism modification in this design such that
the current TCP implementations only require minor modification. The
end goal of this design is, of course, to make up a scheme which helps to
solve some of the current scalability issues of TCP.

1As mentioned in the introductory chapter, the work given here is with considerable
help from the supervisor. The final design document is a product of continuous
development cycles. The design proposal started as a rough idea and discovery of new
problems and ideas updated it throughout its lifetime. The initial work was taken directly
from the submss paper explaining and proposing a solution to the problem [14]. The
supervisor has also helped in working out the design and contributed with ideas; this
proposal reflects this work.

63

6.1 Fractional Congestion Window

We propose adding a fractional congestion window to TCP so it can operate
efficiently in networks where the requested transmission rate must be low
values on average due to shallow RTTs. We are primarily looking for a
way to hold congestion window values in bytes so that TCP can keep less
than one segment inflight per RTT. This requirement forces a significant
modification to the protocol since the congestion window consists of whole
segments, and most congestion control mechanism relies on this window
to make decisions, e.g. the acknowledgement clock. We should, therefore,
still keep a congestion window in segments and instead find a solution that
works around these criteria.

We propose to add a separate state variable for the fractional part of
the window. By doing this, we can keep the congestion window as is and
maintain the fraction, values from 0 to SMSS bytes, in another variable.

WB = Ws ∗ SMSSB + W f rac

SB = Ss ∗ SMSSB + S f rac

Of course, this adds complexity to the protocol as we now have to
update Ws whenever the fractional part surpasses the SMSS threshold
and also update the fractional part with the reminder. However, this
should only be a minor annoyance, whereas doing the opposite is more
complicated. We would then have to convert the congestion window all the
time into a unit of segments. This approach is cleaner and helps in keeping
the congestion window segregated into two distinct part, one in segments
and another one in bytes. No form for conversation is done, except when
we want to know the exact value of the congestion window 2.

6.2 Packet Conservation Clock

We now need to look at how we can use the new congestion window, given
in bytes, to transmit packets. We need to extend TCP to be able to use a
congestion window of less than SMSS bytes per RTT.

A naive solution to this problem could be to send a packet of size WB
per RTT. The sender then goes slower, but this is not a suitable solution
since smaller packet means a larger portion of the packet now consists
of control data (network headers). The submss regime will then result
in very small packets from all senders traversing the bottleneck, and
overhead from such packets must not be ignored as the overhead will grow
proportionally as more competitors enter the battle. The network shifts
over in a useless state where each sender emit almost no useful application
data per packet and the available bandwidth of the bottleneck is wasted on

2We have also explored the idea of using a mirrored (negative) version of the congestion
window when in the submss regime. This modification sounded initially like a good idea,
but it was hard to work with and became a source of confusion. We also had to deal with
other mechanisms of TCP, so we dropped this approach over the one just described.

64

sB

ACK

ACK

sB

SRTTµs

d
µs

Figure 6.1: Packet Conservation Clock, no delayed acknowledgements

such packets. Additionally, this solution requires that at least one packet
must be processed per sender for every RTT, and for shallow RTTs this
result in lots of packets. This solution requires a significant increase in
processing cost at all network elements in the path between the sender and
receiver. Additionally, this also results in more processing done at both the
sender and receiver, i.e. there is nothing good about this solution except
for being simple. This naive solution results in identical behaviour as if
the sender were not using the Nagle’s algorithm and had application who
did small writes all the time. This approach is, therefore, not scaleable and
bring us to a dead-end.

dµs + SRTTµs =
sB ∗ SRTTµs

WB

dµs = (
sB

WB
− 1) ∗ SRTTµs

A scaleable solution could be to add a locally computed delay, dµs,
between each packet and simulate a congestion window of less than SMSS
bytes per RTT. All senders continue to transmit full packets containing
SMSS bytes, but now at a slower rate. This means that the gap between
each packet grows as congestion window descends toward zero (can not
be zero). For instance, if the sender where to send a packet of size SMSS
bytes and waits for two RTT, this is indeed the same as sending two half-
full packets per RTT. We can say that the sender has effectively sent the
packet while holding a congestion window of a half, but notice that we
this time never actually sent any less than one full packet containing SMSS
bytes. A question that may arise; Why would the sender want to add
delay to its own transmission when the same delay could be added later
by the network as queueing delay? The difference lies in where such delay
occurs, a localised delay within the host is always prefered over a shared
delay across the network. All senders should prefer to add a short duration
of the delay to their transmission such that whenever a sender does its
transmission it happens through a shallow queue AQM. The self-motivated

65

goal of the sender is thus if all sender obeys by this principle it is more
benefit able for everyone at the bottleneck.

This is indeed the same idea as used by TCP Nice, but our solution
scales better and has some advantages. We never send more than one
packet in a single transmission, so our solution is scalable as we do
not cause any noticeable burst at the bottleneck. We know that this
becomes a problem when our receiver starts to defer transmission of
acknowledgements, but we solve this problem separately (see Section 6.3).
Next, we use the whole range of the congestion window, while TCP Nice
only let the sender defer transmission in an exact number of smoothed-
RTTs. Finally, our approach makes senders competing at the bottleneck
responsive for very low BDPs, whereas TCP Nice does not scale beyond
96 smoothed-RTTs. The scalability of our preservation clock depends on
the sender’s maximum segment size and the lowest permitted value of the
congestion window.

6.3 Stretch Acknowledgement

We will now look at some of the challenges that come with having a re-
ceiver who merge acknowledgements. The receiver defers transmission
of the acknowledgement until either δ, usually 2, segments have arrived
resulting in a stretch acknowledgement, or a delayed acknowledgement
returns because of an expired timer. This invariant makes the sender com-
mitted to keeping at least δ segments inflight per RTT, the receiver will then
never get a chance to postpone the transmission of the acknowledgement
and always return a stretch acknowledgement. The sender surely does not
want to come in a situation where the acknowledgement clock block fur-
ther transmission and at the same time have a receiver who is holding back
the acknowledgement in expectation for more data to arrive.

Our solution to defer transmissions in the submss regime explicit this
problem, so unless we address this issue will all our effort yield degraded
performance from such receivers. Actually, it might sound like we are
solving a non-existent problem or rather an easy problem to overcome.
The use of stretch acknowledgement in the submss regime might not be
required since we will always clock out less than δ segments per RTT, so
acknowledgements which return back to back per RTT will also be less than
δ. We will, therefore, generally perform better off than the conventional
TCP in keeping the stress level of the network low, so we would be more
than happy to just toggle off this mechanism at the receiver. The idea is to
toggle the use of stretch acknowledgements whenever the sender enters
or leave the submss regime. However, this information needs to travel
to the receiver as a TCP option and would require negotiation between
endpoints3. This will limit the scalability of the solution to only work in
networks where the receiver supports this extension to the TCP header. We

3 https://www.ietf.org/proceedings/97/slides/slides-97-tcpm-tcp-options-for-low-latency-00.
pdf,https://tools.ietf.org/html/draft-wang-tcpm-low-latency-opt-00 (Work in progress)

66

https://www.ietf.org/proceedings/97/slides/slides-97-tcpm-tcp-options-for-low-latency-00.pdf
https://www.ietf.org/proceedings/97/slides/slides-97-tcpm-tcp-options-for-low-latency-00.pdf
https://tools.ietf.org/html/draft-wang-tcpm-low-latency-opt-00

will also struggle to keep the processing cost of the network low for when
the receiver uses any significant δ values.

We should, therefore, keep this mechanism enabled all the time and
instead try to look for other solutions which do not compromise the benefits
of this mechanism. The first problem we need to overcome is to not hinder
the sender from clocking out more packets in the event of no feedback
from the receiver. This might sound crazy, but as long as the sending host
keeps its packets evenly distributed with the packet conservation clock
it should not be a problem (see Section 6.6). The penalty of the timer is
thus avoided when enough segments arrive at the receiver and a stretch
acknowledgement returns. It should also not be a problem if the timer of
the receiver expires before enough segments have arrived at the receiver,
so there is no hard requirement for the sender to reach transmission of
δ segments. This is not the same as sending a window of segments and
waiting for the feedback to return since this approach do not cause the link
to go underutilised for when the receiver goes temporarily silent.

We need to solve another problem before this solution has any
possibility of working. The sender is now no longer able to measure the
RTT to the receiver since we have broken up the acknowledgement clock.
The acknowledgement may arrive after multiple of RTTs later since we
delayed the transmission of the sender. The measured RTT will appear to
be longer than it really is since it includes all the time the acknowledgement
was delayed at the receiver. We could maybe use the addition of Round-
Trip Time Measurement (RTTM) to get precise RTT information through
the use of timestamps [11]. However, even though this is a proposed
standard it is not this easy; The receiver is required to echo the earliest
timestamp received rather than the latest (see section 4.3 of RFC7323),
so this does not bring us any further. The reason why the receiver has
to echo the earliest timestamp is to give the sender a better picture of
how long into the future the loss recovery (e.g. RTO) has to be set, this
prevents unnecessarily retransmissions. We surely still want to keep this
behaviour intact so the loss recovery adjusts to reflect the delay we add to
our transmissions. We also need to know the RTT of the network so we are
able to calculate the length of the gap.

The sender calculates the RTT with a timestamp as:

SRTTloss
µs = Tcj − ETsi

where Tcj is the current timestamp of the sender for j-th RTT, and ETsi
is sender’s first timestamp echoed back from a set of segments. Therefore,
the RTT measurement which includes the penalty of the receiver can be
calculated from the delta between the echoed and current timestamp. The
details of the smoothing process are not relevant to us, so we leave out
these details. This method of measuring the RTT only becomes a problem
when we are not bound by the acknowledgement clocked.

67

SRTTpace
µs = SRTTloss

µs − (Tsi+δ−1 − ETsi)

SRTTpace
µs = Tcj − Tsi+δ−1

Our first idea was to store N most recent timestamps entries of the
sender, so eventually, when a new acknowledgement arrives we could
simply calculate the delta as before, but now with the corresponding
entry in the list. We could then evict all previous entries which just got
acknowledged from the list and start storing the next batch of timestamps.
We can not simply store the lastest timestamp since we do not know the
exact number of segments which gets acknowledgement by the receiver,
so we may end up transmitting more segments than what the receiver
acknowledges. However, this is impractical in practice since this requires
the sender to store a potential very long list of timestamps in memory. This
limits the scalability of this approach since we would be required to keep
an upper bound for what δ could be to prevent this list from taking up too
much memory.

SRTTpace
µs = SRTTloss

µs − (δ− 1) ∗ di
µs

Our next idea was to take advantage of the fact that the gap, dµs,
between all transmitted packets stays constant until the arrival of the next
acknowledgement. The delay accumulated at the receiver is indeed the
same delay as the sum of all gaps we have appended to the transmission of
the sender.

6.4 Logarithmically Scaled Additive Increase

The constant additive increase phase of TCP does not scale well for either
small or large congestion window values. We surely do not want to add one
whole segment to the congestion window per RTT when dealing with small
window values. The reason could be that the sender may have less than
one segment inflight per RTT and adding one additional segment to the
network gives faster than slow-start probing. Likewise, this also become
an issue in networks where the sender has to maintain a large congestion
window per RTT. The problem is now that the sender has to use a massive
number of RTTs to regain lost capacity post a reduction phase [25, 61]. A
possible scenario could be that the sender emits one million segments per
RTT and reduces its congestion window to half of its original size. The
process to regain the million takes the sender half a million RTTs. This
process is, therefore, slow and inefficient and is the main reason why other
congestion control algorithms were deployed over the standard TCP, e.g.
Cubic [61]. Most modern congestion control algorithm tries to optimise
TCP better in such networks, whereas no significant work has been done to
do the same for low BDP path networks. The reason is simply that modern

68

SRTTloss
µs

SRTTpace
µs

S

sB

sB

sB

sB

sB

sB

sB

Tsi

Tsi+1

Tsi+2

Tsi+3

Tsi+4

Tsi+5

Tsi+6

Tsi+7

R

ETsi

ETsi+4

Tcj

Tcj+1

(a) First idea

SRTTloss
µs

SRTTpace
µs

S

sB

sB

sB

sB

sB

sB

sB

d
iµs

d
i+

1
µs

R

ACK

ACK

(δ−
1)*

d
iµs

(δ−
1)*

d
i+

1
µs

(b) Second idea

Figure 6.2: Packet Conservation Clock with δ = 4

69

congestion control algorithms often have to design around the legacy TCP.
The conventional TCP is also a headache when a new congestion control
algorithm tries to probe slower since they risk being outcompeted.

The problem lies in how fast we grow the congestion window per RTT
[61]. Currently, we always add one segment per RTT no matter the current
value of the window, this results in a linear probe of the window per RTT.
This behaviour needs to change such that we add a variable number of
bytes to the congestion window. We must work in bytes since the addition
of one segment does not work well in the submss regime.

We now need to select a slow-growing function for our window in
bytes. A good candidate for this environment is the logarithmic growth
function. The number of segments added to the congestion window per
RTT should then only change when the input value of the function changes
by a two order of magnitude. This property is essential when competing
with the legacy TCP since we still need to behave properly through
bottlenecks which have yet to segregate L4S traffic (scalable senders)
from the legacy TCP (classical senders), so the freedom we thought we
had turned out to be not so free after all. We intend to replace the
current constant additive increase phase of TCP with a logarithmic increase
counterpart. Although, the use of logarithmic increase has already been
attempted in the literature [42] before, but not in the direction of the low
BDP path problem.

We define a function, namely the add function, which is essentially a
logarithmic growth function (see Equation (6.1)). We use this function to
add a variable number of bytes to the congestion window per RTT (see
Equation (6.2)).

addB = k0B ∗ lg(SB/k1B + 1) (6.1)
WB += addB (6.2)

The add function is a logarithmic increase function with two growth
constants, k0 and k1. We add by 1 before calculating the logarithmic of
base 2 to ensure that the add function scale well from higher values of
ssthresh to preferably all the way down the minimum value of 1B. We
use ssthresh rather than the current value of the congestion window to
keep the processing cost to compute this function as low as possible per
acknowledgement. The add function is then only recalculated whenever
ssthresh changes, which happens either upon congestion (a sawtooth) or in
the absence of congestion for longer periods [22]. We should, therefore, not
be required to recalculate the add function more frequent than this interval
and the worst scenario to encounter either of the condition is no more than
once in an RTT.

It is important to notice that the additive increase phase is now varying
and not constant for all values of ssthresh. It might be easier to imagine
the growth as a linear increase function per RTT, where the angle of the
function changes whenever ssthresh gets a new value. A low value of
ssthresh equates to a slow additive increase phase, whereas the opposite

70

cause a steeper angle and therefore a more aggressive probing. The
add function should now scale well for both small and large congestion
window values, but we must first select appropriate growth constants to
know whether this scales (see the proof in Section 6.4.1).

We need to update the congestion window differently between the
normal operation of TCP and submss regime. This needs to be done such
that we always accumulate addB per RTT.

WB += addB/Ws, Ws >= δ (6.3)
WB += addB ∗ SMSSB/WB, Ws < δ (6.4)

A sender who use the packet conservation technique to clock out packet
needs to adjust the window such that the increase represents the period
which has been missed out due to the lack of acknowledgement clock (see
Equation (6.4)). While a sender who uses the acknowledgement clock can
just spread out the additive increase phase over the number of packets in
flight per RTT (see Equation (6.3)).

However, we discovered that unless the intention is to build a large
sawtooth this will not work. We were not able to find any good solution
to this problem so we instead simply scaled down the additive increase
phase of LS-AIMD in some experiments using a scaling factor to see which
benefits we were missing out.

6.4.1 Choosing values for the growth constants

Before we go loose and choose what would likely be good values for
growth constants which would ensure scalability of the add function, we
should look more deeper into what consequenses it bring to the protocol
and existing traffic over the Internet. We list some contstraints which we
believe needs to be taken into consideration before we make our choise:

1. We should try to add roughly one segment to the congestion window
per RTT around the average of ssthresh currently experienced in the
typical environments of TCP. We could then be able to share out the
capacity evenly with the legacy TCP through both L4S and non-L4S
bottlenecks. However, some cautions needs to be taken so we do
not end up using a wrong estimate of the average of sshthresh. We
may end up hurting the existing traffic by going too fast or risk being
outcompeted by the legacy TCP if we try to go slower. On the other
hand, the add function is an extremely slow growing function so we
should be rather safe and not be required to use the exact average
estimate. As long as we keep our estimate of ssthresh in the same
ballmark as the real estimate by a two order of magnitude it should
not be a problem, we will just then induce a minor disturbance at
its worst. Ideally, we should also be able to choose the constants
such that the protocol could coexist in a data centre setting with for
instance DCTCP. The idea here is that we want our protocol to be easy

71

to fit a changing network topology, and should allow a more smooth
deployment across private and isolated networks. However, we do
not need the protocol to be compatible with both broadband and data
centre environment at the same time. Therefore, to summarise we are
looking for two set of growth constants, one for broadband and the
other one for data centres.

2. We should try to keep the retransmission rate of TCP below the
goodput it is able to utilise through the link. We should then be able
to keep TCP efficient for the whole range of ssthresh. This contraint
essentially limits how often TCP is able to hit the marking threshold
after a reduction phase has taken place.

3. The constants should ideally hold numbers which represents a power
of two such that both multiplications and divisions result in one
single bit-shift operation. This is an important detail to keep in
mind when doing the design phase since implementations which
may derivere from this design should try to be as efficient as possible
when it comes to CPU utilisation.

Starting with the first constraint (#1), we need to show that the add
function from Equation (6.1) approxmiately equals to SMSS bytes, given
the following condition:

addB = k0B ∗ lg(SB/k1B + 1) ≈= SMSSB (6.5)
(6.6)

where Ss denotes the ssthresh experienced either over a broadband or data
centre environment in segments of 1448B or 8948B respectively. The exact
length of the segment may vary depending on which TCP options are in
use (upto 40 bytes), but for our use case it is enough to prove that the
approximation technique falls just within the ballmark of the TCP option
space.

We now need to look at which restrictions the second constraint (#2)
impose for our selection of the constants. The second contraint can
generally be expressed for TCP as:

g = r(1− p)/p, r < g ⇐⇒ p < 0.5

where g is the goodput for a given sender with a certain retransmission
rate (r) and loss probability (p). We see that in order to keep the constraint
satisfied, r < g, the loss probability has to be less than 50%. This means that
TCP should not induce a loss episode more often than every second RTT
for all values in the congestion window. We should then be able to keep
the retransmission rate of TCP below the achieved goodput. An additive
increase from the add function should, therefore, be less than or equal to
one decrease of the congestion window. We are happy as long as we are
able to keep the inefficieny of TCP below 50% of the congestion window.

72

addB <= SB

We should thus always add no more than the value of ssthresh, which
can be at its worst be upto half way to the congestion window (rate
halving). Meaning, we do not discriminate between the graduall decend of
DCTCP over the classic Reno backoff mechanism in our additive increase
phase.

The slope of lg(x) monotonically decreases as x increases, so if we can
show that the lowest value of SB (1B) has a slope of less than 1. We then
know that the slope of the add function will always be constrained for all
other values of SB. We must, therefore, prove the following condition:

k0B ∗ lg(1B/k1B + 1) <= 1B (6.7)

where the add function of SB = 1B has to yield an answer which is
also no higher than 1B. We can solve lg(x) by inserting the Taylor series
expansion of ln(1 + x):

lg(1B/k1B + 1) ≈= 1/(k1B ∗ ln(2))
k0B/(k1B ∗ ln(2)) <= 1B

Then, k0B can be given as:

k0B <= ln(2) ∗ k1B

<= 0.7 ∗ k1B

However, the last constraint (#3) require that we keep both constants as
a power of two nuumber. This means, that we should try k0B to be half
way to k1B rather than a factor of 0.7:

k0B = k1B/2

Now updating the first constraint (Equation (6.5) & ??) whith the
information we have gathered so far (a subsitution of k1B), we now have:

addB = k0B ∗ lg(SB/(2 ∗ k0B) + 1) ≈= SMSSB

daddB

dSB
< 1, SB = 1B

= k0B/(ln(2) ∗ k1B ∗ (1B/k1B + 1))
= k0B/(ln(2) ∗ (1B + k1B))

= 0.72

73

0 20000 40000 60000 80000 100000 120000 140000 160000
SB

0

1000

2000

3000

4000

5000

6000
Ad

d B

AddB, Adds | k0 16 k1 32
AddB, Adds | k0 32 k1 64
AddB, Adds | k0 64 k1 128
AddB, Adds | k0 128 k1 256

AddB, Adds | k0 256 k1 512
AddB, Adds | k0 512 k1 1024
AddB, Adds | k0 1024 k1 2048
AddB, Adds : SMSSB, 1s

0 20 40 60 80 100 120
Ss

0

1

2

3

4

Ad
d s

(a) SMSSB: 1448

0 200000 400000 600000 800000 1000000
SB

0

5000

10000

15000

20000

25000

Ad
d B

AddB, Adds | k0 16 k1 32
AddB, Adds | k0 32 k1 64
AddB, Adds | k0 64 k1 128
AddB, Adds | k0 128 k1 256
AddB, Adds | k0 256 k1 512

AddB, Adds | k0 512 k1 1024
AddB, Adds | k0 1024 k1 2048
AddB, Adds | k0 2048 k1 4096
AddB, Adds | k0 4096 k1 8192
AddB, Adds : SMSSB, 1s

0 20 40 60 80 100 120
Ss

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ad
d s

(b) SMSSB: 8948

Figure 6.3: The Add function

MTUB SMSSB k0B k1B K0 K1

1500 1448 256 512 8 9
9000 8948 1024 2048 10 11

Table 6.1: Values of constants

0 5000 10000 15000 20000 25000
SB

0

200

400

600

800

1000

1200

1400

Ad
d B

AddB, Adds | k0 256 k1 512
AddB, Adds : SMSSB, 1s

SB, Ss : SMSSB, 1s

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Ss

0.0

0.2

0.4

0.6

0.8

1.0

Ad
d s

(a) Ssthresh: Linear scale, SMSSB: 1448

212 214 216 218 220 222

SB

0

500

1000

1500

2000

2500

3000

3500

Ad
d B

AddB, Adds | k0 256 k1 512
AddB, Adds : SMSSB, 1s

SB, Ss : SMSSB, 1s

20 22 24 26 28 210 212
Ss

0.0

0.5

1.0

1.5

2.0

Ad
d s

(b) Ssthresh: Lg scale, SMSSB: 1448

0 100000 200000 300000 400000 500000 600000 700000 800000
SB

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ad
d B

AddB, Adds | k0 1024 k1 2048
AddB, Adds : SMSSB, 1s

SB, Ss : SMSSB, 1s

0 20 40 60 80 100
Ss

0.0

0.2

0.4

0.6

0.8

1.0

Ad
d s

(c) Ssthresh: Linear scale, SMSSB: 8496

215 217 219 221 223 225

SB

0

2000

4000

6000

8000

10000

12000

14000

Ad
d B

AddB, Adds | k0 1024 k1 2048
AddB, Adds : SMSSB, 1s

SB, Ss : SMSSB, 1s

20 22 24 26 28 210 212
Ss

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ad
d s

(d) Ssthresh: Lg scale, SMSSB: 8496

Figure 6.4: The Add function

74

We can, therefore, say that the following formulas satisfies all our
constraints:

addB = 256B ∗ lg(SB/512B + 1)

6.5 Multiplicative Decrease

Now that we have a scalable way to increase our congestion window we
should next be looking at how we can preserve the multiplicative decrease
of TCP. It turns out, that we only need to make a minor modification to the
protocol to achieve this. First, we must also work in bytes here since the
window could be less than one segment per RTT. We, at the same time,
also moves the lower bound of the ssthresh, from being a minimum of
δ segment per RTT, to a floor of two bytes per RTT. This should give us
enough room to scale for lower RTT, and a floor has to be chosen anyways
to prevent the congestion window from falling to zero so why not two
bytes. A congestion window of two bytes should give sufficient scalability
to the protocol for the time being, but this could be the recipe for the next
scalability issue in the future. However, this should let us test the scalability
of the design and also let us know if the scalability it brings to the protocol
is worth the extra complexity added to the protocol. The artificial limitation
put on the design can then be shifted to lower threshold, this should not
require any major modification to the design as most work given in this
design should scale fine for an even lower threshold.

6.5.1 Loss Recovery

In order to make LS-AIMD resistant against losses, we follow the ideas
of Hsiao et al. to insert enough segment paced to counter multiple
losses. Then when some segments are lost, we still get enough duplicate
acknowledgements to trigger retransmission.

6.5.2 LS-AIMD Reno

LS-AIMD Reno has a very simple backoff mechanism, and this design does
not change this. We simply extend the rate halving of Reno into the submss
regime:

SB = max(in f lightB/2, 2B)

LS-AIMD Reno simply set ssthresh to half of the current congestion
window. This reduction makes a set of sender competing at the bottleneck
eventually converge. A sender who reduces its congestion window by half
will do an exponential decay, it does not matter if the sender is in submss
regime or not it still cause the appropriate reduction.

75

6.5.3 LS-AIMD DCTCP

Surprisingly, LS-AIMD DCTCP keeps a very identical reduction phase as
earlier. We also extend the reduction phase of DCTCP such that:

SB = max(in f lightB ∗ (1− α/2), 2B)

Initially, we thought maybe we would need to do a more complex
reduction phase as a sender in submss regime grows its RTT. However, we
then understood that by simply extending the RTT the congestion signal
weakens, but this is the same as two senders with different base RTT. Just
that one sender only has one signal for each RTT.

6.6 Security Concerns & Deployment Challenges

We should now look at how existing traffic over the Internet may be
affected by the proposed modifications. Our modifications only change
the server-side of the conversation, so we only look at the possibility for
our senders to be lured into malfunctioning. We have to think of all
scenarios where the feedback returned by the network has some form of
evil intentions. We have yet to confirm that the proposed modifications
suggested in this design document actually works, but for the time being,
we assume that our modifications work as given out in this design. Our
focus here is thus to only discuss in the direction where the incorrect
information provided to the sending host is now causing stability issues.
We first look at how one malicious peer could accomplish such an attack
against a scalable sender and then we give out details of what the possible
outcome would be.

Our modification to TCP tries to preserve the acknowledgement clock
of TCP for all values in the congestion window with the information
available so far. The acknowledgement clock ensures that we are able
to insert a fixed segment count into the network by assuming that the
acknowledgement clock provides a form of guarantee that the previously
sent data leaves as new data enters the network. We could say that the
safety of the protocol remains as is since we trust our changes to accomplish
this to be working, i.e. if we are wrong here then there is no point in
breaking the protocol since it is already broken.

We also refrain from probing faster in scenarios where the receiver
keeps returning partial acknowledgements so we do not reintroduce ACK
Division Attack. We wait instead until at least one new segment has been
acknowledged before we make modifications to the congestion window.

We could still be a victim one attack vector which is caused by the
scalability promise of the design, so some caution should be taken when
using some of the ideas given here.

An attack vector could be executed by a third-party in an attempt
to reduce the performance of the sender and thus cause a significantly
downgraded performance to the receiver. The sender could be lured into

76

thinking that the network path to the receiver is heavily congested and thus
be pushed back resulting in a non-optimal performance to the receiver. If
such an attack is possible it would also impact the conventional TCP, but
our choice to scale for submss regime gives a much worse worst case. The
scalable sender would keep backing off toward the new floor of 2 bytes
per RTT vs. the previous floor of two segments per RTT. This would
result in terrible performance in networks where either the bitrate or RTT
is extremely high. The motivation behind such an attack could be to take
out service if done in large-scale or just to gain an advantage over another
sender at the bottleneck.

Such an attack could be prevented if ECN nonce was used to detect
tampering of ECE endpoints, but ECN nonce was never fully deployed
over the Internet and has now become obsoleted [10, 65]. Instead, there
exist several other viable methods which can be used by the sender to
detect cheating receivers [60, 66]4.

6.7 Summary

We have in this chapter given out a detailed plan on how we intend to
scale TCP for the submss regime. We introduced a fractional congestion
window to keep congestion window values between segment boundaries
and also explained how TCP will now be able to hold values which
are less than one segment. We have also explained how TCP could
use the packet conservation clock to transmit segments in the submss
regime. Additionally, we have come up with a scheme which allows the
sender to clock out segments even in the event of the challenging stretch
acknowledgement mechanism at the receiver. Our work contributes with
the born of a new scalable congestion control algorithm that is meant to
rework the additive increase phase of TCP which scales for both low and
large BDP paths.

We are next going to look at how convenient an implementation could
be by employing this work into action.

4https://tools.ietf.org/html/draft-ietf-tsvwg-ecn-l4s-id-06 Appendix C.1 (Work in pro-
gress)

77

https://tools.ietf.org/html/draft-ietf-tsvwg-ecn-l4s-id-06

78

Chapter 7

Implementation

We are now ready to produce our first implementation from the design
document as an initial prototype. We first decide what needs to be included
in our prototype; we certainly needs to limit ourself from trying to do a full
implementation this time. Our first goal should be to test the main ideas of
the design and only when we have tested them fully should we continue
our work, then complete the remaning parts of the implementation in as
efficient manner as possible.

We started intially with Linux kernel version 4.13.16, but we were later
in the project forced to upgrade to the latest stable version 5.0.0 at that time.
A lot of work went down to track down scalability issues which made
4.13.16 inconvient and hard to use for our intentions. These scalability
issues were solved in the latest stable version of the kernel, but it then
meant that we had to reinitate our project. We thought we now were in
a better position, but it did not went long before we started to have issues.
We, eventually, found a possible regression bug in the kernel. We intend
to report this bug as soon as possible, but we need more time to verify
that this is not due to some fault in our setup. A lot of work went down
the road at track the bug and find a possible fix so we could continue our
developement, but this did not happend before we had already spent a lot
of time blaming ourself for introducing the bug. An important lesson was
learned that day; always retest the vanilla implementation of the kernel
whenever you perform an upgrade.

The implementation started as a rather complex beast and has more
or less become a quite simple prototype. This is indeed the result of a
continous cycle of trail and error.

We make an implementation of the design proposal as a pluggable
Linux kernel congestion control module. The module introduce both
algorithms, LS-AIMD Reno/DCTCP, in a joint module. Our work also
modifies other part of the Linux TCP stack to support our module. These
changes are made such that other congestion control algorithms modules
of the kernel may eventually take the benifits of our design.

79

W f rac S f rac

Mantissa (9-bits)Window in bytes (23-bits)

31 0

3 2 1 0

222 20 2−9

Figure 7.1: Fractional Congestion Window (4 bytes)

7.1 Design Decisions

We must include all modifications needed to extend TCP for the submss
regime, since this requirement is the problem statement we are trying
to solve. Unfortunaely, this means that we have to implement all
consept of the design to a certain degree. We are first satisfied with our
implementation when we are able to produce a prototype which scales for
the submss regime without any compromises.

We are, however, not making any modifications to the receiving host of
the conversation. The Linux kernel is unfortunaely not made such that we
can easily change δ of the receiver (yet), so our prototype will only scale
for the default value of δ = 2. An alternative approach could be to let the
receiver be a Windows endpoint, and then change TcpAckFrequency = δ
through registry 1. Our prototype will work with receiver who try to keep
a more substainal δ, but this require the tester to change a global constant
which we have defined to the new value of δ.

In the future, our plan is to be able to dynamically adjust the global
constant of the sender. This will enable the soluton to work seamless to a
variety of receiver with different stretch acknowledgement factor. We will
also turn off loss recovery of TCP when evaluating LS-AIMD since loss
should not occur very often in our simple topology. This should enable us
to benchmark the performance of pure ECN. Since we have turned off fast
retransmit and fast recovery, we simply set congestion window to ssthresh
whenever we receiver the first mark of the RTT.

7.2 Fractional Congestion Window

We implement the fractional congestion window as an unsigned 4-byte
value in the control block of TCP. Our reasoning for placing the fractional
congestion window in the control block of TCP is to let it be available to all
other congestion control modules. We constrain the value of the fraction
congestion window to be within the range of 0 and SMSS bytes.

We scale up the fractional congestion window and ssthresh such that
we can keep a window of fractional bytes (see Figure 7.3) 2. We use the 9

1 https://support.microsoft.com/en-us/help/328890
2 this is required for what follows for the rest of this chapter.

80

https://support.microsoft.com/en-us/help/328890

rightmost bits to store the mantissa part of the window; the window can
then hold byte values with a precision as low as 2−9. However, this restrict
the maximum segment size we can support. The maximum segment size
we support is then only 223 bytes rather than the full size of 232 bytes, but
this is still way more than what we would ever need. We now have to deal
with scaled integer arithmetic, but this should only be a minor annoyance.
We are also opening for the possibility for fraction congestion window to
scale well below a single byte per RTT some time in the future.

7.3 Packet Conservation Clock

Our design gives out an idea of how packet conservation clock may be
used to clock out segments in the submss regime efficiently. There is no
point in reinventing the wheel, so we use the pacing facility found in the
Linux kernel to clock out segments in the submss regime. We are not using
the pacing mechanism to maintain a rate, but merely to defer transmission
of the sender, i.e break up the acknowledgement clock.

The acknowledgement clock helps to spread out the bursts of a sender
and also play a vital role in reducing the risk of synchronised senders.
The transmission of the sender is bound by the acknowledgement clock,
so the queue dynamics of the bottleneck keeps the sender in check.
A queue reduce the risk of repeative burst to occur since the time an
acknowledgements takes to return shifts according to its position in the
queue. The queue is therefore useful in spreading out the sender’s next
round of transmission.

The problem with using pure pacing to keep a clock is that it schedule
next depature from the time the last segment was transmitted and use
congestion window as an upper limit. The sender using pacing generally
keeps a rate which reflects the averaged rate reported back by the
acknowledgements of that round. A sender whom decides to pace react,
therefore, more slowly to changes in the queue and end up repeating the
previous round of burst. Another problem that occurs with the use of
pacing is that multiple senders can more easily become synchronised at
the bottleneck. The AQM will then have hard time in desyncronising the
flows since the propability to be marked will periodically switch between
0 and 100% for all senders.

We, therefore, extend the pacing facility of the Linux kernel to act more
like the acknowledgement clock. Our approach is to make adjustements
to the timeout whenever the network report back with more recent
information. We still use the pacing timer to schedule a transmission some
time in the future, but we addionally validate the timeout as soon as new
intel arrives.

7.3.1 Reschedule an Earlier Depature

The pacing timer is set some time in the future and the incoming
acknowledgement tells us about a queue which is in the process of

81

ACK ACK ACK ACK

di
µs di+1

µs di+2
µs di+2

µs

sB sB sB sB

sB sB sB sB sB

Figure 7.2: Packet conservation clock: early transmission

ACK ACK ACK ACK

di
µs di+1

µs di+2
µs

sB sB sB sB

sB sB sB sB

Figure 7.3: Packet conservation clock: postpone transmission

draining. We should make a proactive action and reschedule the pacing
timer so the the segment departs earlier. We, by doing this, minimise the
gap between the previous sent segment and next segment. We are not
going any faster than what the congestion window permits, rather we are
just fixing the gap to be the exact minimum distance allowed by the packet
conservation clock.

7.3.2 Reschedule an Postponed Depature

Simmarlirarly, we should also reschedule the pacing timer when we detect
that a queue is in the process of building. We could found ourself in a
situation where we our previous RTT information is now no longer valid.
We should postpone the next transmission of the sender so we do not end
up reinforcing the previous round of burst. Note, that our approach is
simmilar here too and we do not cause the sender to go slower than what
the packer conservation clock permits.

7.4 Logarithmic Increase

We replace the constant additive increase phase of TCP with a logarithmic
phase. The logaritmic increase phase is done in two stages; We first
accumulate the fractional congestion window with either add bytes after
one full window of segments has been acknowledged (one RTT) or if the
sender is in submss regime we advance on each acknowledgement enough

82

to give the same effect. We then check if the fractional congestion window
now represents at least one whole segment, if so update increase the
congestion window by one and then keep the remainder in the fractional
congestion window.

7.4.1 Add function in integer arithmetic

addB = k0B ∗ lg(SB/k1B + 1)
addB = lg((SB � K1) + 1)� K0

We must be able to implement add function using only integer
arithmetic as Linux does not allow floating point calculation in the kernel.
The add function cannot be as is since it loses precision whenever ssthresh
is lower than k1B. The bit-shift of K1 will result in 0 whenever ssthresh is
less than k1B.

addB = k0B ∗ lg((SB + k1B)/k1B)

= k0B ∗ (lg(SB + k1B)− lg(k1B))

= (lg(SB + k1B)− K1)� K0

We can imporve the precision by adding k1B inside lg and then subtract
K1 afterward. It is the same calculation, but now we do not need to add
by one and neither do we have do the division. However, we still lose
precision when we calculate the logarithmic. The addition needs to yield
at least 1024, and sstresh needs to be higher than 512 to yield the first
integer. It gets worse as we try out next integer due to the property of
the logarithmic function. The logarithmic function grows very slowly, and
the input of the function must double to get the next successive integer.
We need to calculate the logarithmic function with floating point precision
using only integer arithmetic. We need to select a precision and yield the
answer with the given precision. One must see the accuracy in comparison
with the performance of the function. The lg needs to be very fast such
that when RTT is very shallow, we can still apply the add function once
every RTT. The whole point of operating in submss regime is to achieve
very shallow RTT. It can also be other factors which may play a role such
as battery consumption of the device.

We implement the logrithmically function based on earlier work since
the effiency of this function was out of scope[67]3.

7.5 Packet Processing

We use a state variable in the control block of TCP to cache the current value
of the add function to make it easy access to the whole TCP stack. We
ask the current congestion control module to update the value whenever

3https://github.com/dmoulding/log2fix

83

https://github.com/dmoulding/log2fix

ssthresh changes. By default, if the hook is not implemented we simply
use the value of a single segment. However, the additive increase is still in
the hand of the module and the use of the state variable is thus optional.

We also implement hooks which allows the current congestion control
module to know about event such as when the TCP stack is about to enter
or leave the submss regime.

7.6 Modes of operation

We need to distungish between the normal operation of TCP and when
we need to use fractional window. Therefore, we need to extend TCP to
operate in two modes, namely submss and non-submss. By default, TCP
starts in the non-submss mode and goes into the submss mode when the
congestion window is less than two segments. The reason for it being two
is to interwork with delayed acknowledgement, we do not want to use
acknowledgement clock if we risk being delayed by the receiver. Likewise,
we leave the submss mode when the congestion window goes above two
segments again. We add a new state variable, snd_submss, to TCP which
functions as a boolean to detect if the flow is currently in submss regime
or not. When TCP changes modes we need to either upscale or downscale
cwnd, ssthresh and add. Any previous saved value from cwnd or ssthresh
must also be updated. We also need to make sure that we transfer these
variables correctly such the only difference is the scalling.

7.6.1 Non-submss

This mode is mostly unchanged for the typical TCP, but we use logarithmic
increase instead of the constant additive increase in the congestion
avoidance phase. We keep using acknowledgement clock to clock out more
segments. The additive increase is spread over the whole RTT, each ACK
adds "add" bytes to a counter. When this counter reaches above SMSS*W
bytes, will we add counter/(SMSS*W) segment to the congestion window
and finally subtract the counter with the number of segment added. We
need to do this way so that we do not lose any precision.

In other word, TCP will continue to have information about both
number of whole segments and fraction of a segment. In situation where
an ACK does not advance the congestion window to a new segment is
the congestion window left untouched and the fraction saved to the next
update.

7.6.2 Submss

The congestion window is now less than 2 segments and we must therefore
starts using the fractional congestion window. The inital value of the
fractional window must be 1 segment, since we only enter this mode
when congestion window is less than 2 and above 0. We do not send
new segments upon receiption of old segments, we instead delay our
transmission and pace out new segments based the penalty we calculate.

84

7.7 Linux Kernel Module

We implement our congestion control algorithms in a joint Linux kernel
module. Our module is inter-connected with our modified DCTCP
module, such that we can reuse existing code which measures the extent
of the congestion.

We implemented the mandatory additive increase phase of TCP. The
logarithmic increase phase is common between TCP Prague LIMD and TCP
Reno LIMD, where as ssthresh is set seperately by the algorithm. We kept
the standard slow start as is, but we do not double the congestion window
directly when in submss regime since we already have an advantage
through the pacing timer.

Our module also implement serveral new hooks which get called by the
kernel during packet processing.

7.8 Summary

Ironically, the only reuqirement we set to a congestion control module is to
implement the hook which demands a additive increase constant (add) and
to move the floor of congestion window from 2 segments to 2 bytes. Our
modification done to the input and output engine of TCP will kick in as
soon as the congestion window falls below 2, or δ, segments.

85

86

Part III

Results

87

Chapter 8

Evaluation

We now have an implementation that should satisfy all our design goals
and scales well for lower RTTs in the network. It is tempting to right
away test the implementation against the existing Linux TCP. However,
evaluating in such a manner might lose vital aspects of the solution and
risk hiding away some of the added benefits or flaws which are otherwise
not explored by such a direct comparison. Our approach is, therefore, to
construct a baseline with our best current solution and first later check if
some of the existing congestion control algorithms can match our results.
We did initially construct a set of experiments to look for the need for a
solution. This process was essential to confirm earlier research, and it is first
later that we are on the path to scale TCP for the submss regime. We are also
testing the motivation behind the need for the DCTCPs ECN feedback loop
to control senders; the question boils down to how much gain do we get
from using the extent of congestion over merely the existence of congestion.
A Reno like backoff mechanism is preferred as it is much simpler. The
benefits of DCTCP like congestion detection technique may out-beat rate
halving by a large margin, but the dynamics of TCP in the submss regime
are not well known and not certainly for our design proposal. We are,
therefore, retesting prior research to see if our algorithms have the same
remarks in terms of scalability. We confine our best current solution to be
the one congestion control algorithm which scales the most. Our choice is
thus limited to be either LS-AIMD DCTCP or Reno. We also evaluate two
configurations of RED for DCTCP to see which scales best.

We plan to let each congestion control algorithms undergo a set
of extensive testing to nominate a winner. We construct each test
to have their own independent set of requirements. We initially test
simple configurations and slowly lean toward more and more complex
configurations. As soon as we reach the scalability of our solution, we halt
our testing and summerise our conclusion. In other words, when none of
our algorithms fulfils the requirements we have set for the test, we stop
testing. We pick a random 100ms time slot of the experiment to evaluate,
but we are strict in our selection, so we do not end up benchmarking the
slow start phase of TCP. A 100ms time slot is enough to see the dynamics
of TCP as we are mainly dealing with low base RTTs. However, we look at

89

more extended periods when performing a final scalability test.

8.1 Functional Test

First out, we do a systematic functional test of our implementation against
the design proposal. We start by testing each of the components in the
design separately and continue until we are satisfied with the results. We
then see the need to test the interaction between these isolated features.
If we find any significant flaws during testing, we see it as an indication
of a bug in the implementation or likely a faulty assumption we made in
the design period. In this case, we abort testing and look for which part
of the design is to blame, and then find an appropriate fix to the fault
and only then resume testing. We repeat all previous tests to look for
other bugs produced by the fix. We have to go this route as changing a
significant part of the TCP machinery can be both challenging and time-
consuming process. On the other hand, we have attempted to split up
the design into as small and independent chunks as possible, but we
still have significant components. We must, therefore, evaluate each of
these components extensively to reveal any flaws before testing the whole
algorithm.

8.1.1 Logarithmically Scaled Additive Increase Multiplicative
Decrease (LS-AIMD)

One of the requirements we had to solve when scaling for submss regime
was to take in use a fraction window. The fractional window holds
a value between zero and SMSS bytes. The fractional window is also
scaled up to hold a mantissa part to increase precision in our calculations.
The congestion window holds the original congestion window and the
fractional window. Our goal with this test is to verify the correctness of
the fractional window and fractional ssthresh, but this is not so easy to do
without inspecting the whole congestion window and ssthresh. We plot
the current value of the congestion window and ssthresh as follow:

WB = Ws ∗ SMSS + (Wfrac � 9)
SB = Ss ∗ SMSS + (Sfrac � 9)

We have no interest in looking at the mantissa part of the window, so
we scale it down before plotting. We are then able to look at both window
values in bytes over an RTT. Additionally, we add dashed lines to mark
segment boundaries to make our plots easier to compare against other
conventional congestion control algorithms. We also add indicators to the
plot to reveal the min and max threshold of RED; this includes the base RTT,
so we get the real picture as seen from the senders’ perspective. We can then
look at the current values of the window vs the experiment parameters.

We conduct a simple experiment to validate the congestion window
and ssthresh, the very first experiment (see Table 6.1 #1) is sufficient. A

90

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

10

15

20

25

30
W

s

15000

20000

25000

30000

35000

40000

45000

W
B

(a) W: LS-AIMD Reno Ramp

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

12

13

14

15

16

17

18

W
s

18000

19000

20000

21000

22000

23000

24000

25000

26000

W
B

(b) W: LS-AIMD DCTCP Step

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

12

14

16

18

20

22

W
s

18000

20000

22000

24000

26000

28000

30000

32000

W
B

(c) W: LS-AIMD DCTCP Instant-
aneous

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

10

15

20

25

30

S s

15000

20000

25000

30000

35000

40000

45000

S B

(d) S: LS-AIMD Reno Ramp

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

12.0

12.5

13.0

13.5

14.0

14.5

15.0

15.5

16.0

S s

18000

19000

20000

21000

22000

23000

S B

(e) S: LS-AIMD DCTCP Step

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

12

14

16

18

20

22

S s

18000

20000

22000

24000

26000

28000

30000

32000

S B

(f) S: LS-AIMD DCTCP Instantan-
eous

Figure 8.1: Experiment #1: W & S

single flow is enough to see if the TCP machinery is working as given out
in the design proposal. We are not testing scalability here, but merely the
interaction between our algorithms and the AQM.

Figure 8.1 shows the congestion window and ssthresh over the period:
5-5.1 seconds. The Figure 8.26b, Figure 8.1b and Figure 8.1c shows the
congestion window for LS-AIMD Reno and both variants of LS-AIMD
DCTCP respectively. Likewise, Figure 8.1d, Figure 8.1e and Figure 8.1f
gives the ssthresh in the same order.

We see that all algorithms perform well by looking at their ssthresh; the
value is indeed not very far from the minimum threshold of RED. This is
a good indication as it clearly shows the willingness of TCP to cooperate
with the AQM. Note that the additive increase phase is accumulating
approximately a segment to the congestion window per RTT. We now
know that the logarithmic aspect of the algorithm is working correctly
since Add of one segment approximately translates to 20 ∗ SMSS bytes
of ssthresh. Next, we see that the congestion window is kept very stable
for all configurations except LS-AIMD Reno which does rate halving. The
congestion avoidance phase of LS-AIMD Reno is slow and inefficient.
Remarkably, LS-AIMD DCTCP instantaneous has the most stable probing.
One question that may arise, LS-AIMD Reno configuration does rate
halving, but why is congestion window sometimes a fraction of a segment
over the new value of ssthresh? We have done this on purpose as we apply
the additive phase on all rounds, regardless of whether this round results
in a mark or not. The congestion window is, therefore, reduced to half and
additionally increased by the appropriate bytes per RTT.

In Figure 8.2, we look at the observed marking level of our configur-
ations. Starting with LS-AIMD Reno, we see that the algorithm has on
average a low level of marking. Meanwhile, we see that both DCTCP con-
figuration induces a higher level of marking. The step configuration keeps

91

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

0.24

0.26

0.28

0.30

0.32
DC

TC
P

(a) α: LS-AIMD DCTCP Step

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

0.165

0.170

0.175

0.180

0.185

0.190

0.195

DC
TC

P

(b) α: LS-AIMD DCTCP Instantaneous

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(c) p: LS-AIMD Reno Ramp

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(d) p: LS-AIMD DCTCP Step

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

0.16

0.18

0.20

0.22

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(e) p: LS-AIMD DCTCP Instant-
aneous

Figure 8.2: Experiment #1: Loss rates

the highest level of marking on average. Nonetheless, step marking was
expected to behave like this as the scheme has a simple on and off marking
policy based on the instantaneous queue length whereas the other two con-
figurations depend on a probability to produce a mark for the same queue
length.

We look at the respective alpha of both DCTCP configurations to
investigate our earlier observation of why LS-AIMD DCTCP instantaneous
yield a more stable congestion window dynamics than the others. In
Figure 8.2, we see that the step configuration is not well smoothed as
LS-AIMD DCTCP instantaneous. A ramp-up in alpha is a consequence
of multiple marks in a short period, and otherwise, a descend in alpha
comes from a period of silence. To keep a stable congestion window,
we except the alpha of DCTCP to have an even balance of marks over a
short period. Such that both up and down transitions occur with evenly
spaced interval. The step configuration relies on fast feedback from the
receiver about the queue dynamics to produce a smooth alpha, but from
the time the first mark takes place and gets delivered to the sender several
successive marks follow because the queue length is still above the single
instantaneous threshold. Therefore, the step configuration produces many
successive marks, followed by a period of silence when eventually the
queue length of the bottleneck goes below the marking threshold of RED.
The instantaneous configuration differs here as each packet that arrives for
enqueueing in RED has only a certain probability of being marked based
on the current queue length where a higher queue length is more likely to
produce a mark. These figures form a strong belief that RED is working,

92

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

0.85

0.86

0.87

0.88

0.89
ad

d s

1230

1240

1250

1260

1270

1280

1290

ad
d B

(a) LS-AIMD Reno Ramp

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

0.935

0.940

0.945

0.950

0.955

0.960

0.965

ad
d s

1360

1370

1380

1390

1400

ad
d B

(b) LS-AIMD DCTCP Step

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

0.970

0.975

0.980

0.985

ad
d s

1400

1405

1410

1415

1420

1425

1430

ad
d B

(c) LS-AIMD DCTCP Instantan-
eous

Figure 8.3: Experiment #1: Add

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

0

5

10

15

20

25

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

0

200

400

600

800

1000

1200

1400

1600

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(a) Q: LS-AIMD Reno Ramp

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

4

6

8

10

12

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

300

400

500

600

700

Qu
eu

ei
ng

 D
el

ay
 (µ

s)
(b) Q: LS-AIMD DCTCP Step

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

4

6

8

10

12

14

16

18

20

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

400

600

800

1000

1200

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(c) Q: LS-AIMD DCTCP Instant-
aneous

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

10

15

20

25

30

SR
TT

 (p
ac

ke
ts

)

600

800

1000

1200

1400

1600

1800

2000

SR
TT

 (µ
s)

(d) SRTT: LS-AIMD Reno Ramp

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

8

10

12

14

16

18

SR
TT

 (p
ac

ke
ts

)

500

600

700

800

900

1000

SR
TT

 (µ
s)

(e) SRTT: LS-AIMD DCTCP Step

5.00 5.02 5.04 5.06 5.08 5.10
Time (s)

8

10

12

14

16

18

20

22

24

26

SR
TT

 (p
ac

ke
ts

)

600

800

1000

1200

1400

SR
TT

 (µ
s)

(f) SRTT: LS-AIMD DCTCP In-
stantaneous

Figure 8.4: Experiment #1: Queueing delay & SRTT

but our experiment result tells that RED with the default configuration of
DCTCP is at a disadvantage. Even though the smoothness of the alpha may
come as a possible problem later are we still satisfied with how accurate the
sender can replicate the congestion level of RED.

In order to verify our finding so far, we take a look at the exact number
of bytes that get added to the congestion window per RTT. In Figure 8.3,
we confirm our earlier assertion that the add function adds approximately
one segment per RTT. Additionally, we see that the add function calculates
at most once per RTT. The Reno configuration is less resource-hungry than
the other configurations because it has fewer reduction phases. However,
as earlier, we see that the Reno variant is struggling in term of stability
because of rate halving. Both DCTCP configurations calculate the add
function more often, but unlike Reno, they perform well in keeping the
number of bytes to add stable.

We should now look at the dynamics of the instantaneous queue and
understand what impact it causes on the SRTT of the sender. In Figure 8.4,
we see the queueing delay on the top and the SRTT at the bottom for

93

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

4

6

8

10

12

14

16

18

20

W
s

5000

10000

15000

20000

25000

30000

W
B

(a) W: LS-AIMD Reno Ramp

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

3

4

5

6

7

8

9

10

11

12

W
s

6000

8000

10000

12000

14000

16000

W
B

(b) W: LS-AIMD DCTCP Step

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

5

6

7

8

9

10

11

12

W
s

8000

10000

12000

14000

16000

W
B

(c) W: LS-AIMD DCTCP Instant-
aneous

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

2

4

6

8

10

12

14

16

S s

5000

7500

10000

12500

15000

17500

20000

22500

S B

(d) S: LS-AIMD Reno Ramp

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

2

3

4

5

6

7

8

9

10

S s

4000

6000

8000

10000

12000

14000

S B

(e) S: LS-AIMD DCTCP Step

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

5

6

7

8

9

10

11

12

S s

8000

10000

12000

14000

16000

S B

(f) S: LS-AIMD DCTCP Instantan-
eous

Figure 8.5: Experiment #2: W & S

all configurations in the same respective order. First, we take note at
how the Reno variant has large sawteeth in both metrics. Rate halving
is cumbersome as it results in large sawteeth, which makes it impossible
to keep a stable RTT because of large fluctuations in queueing delay.
Meanwhile, both our DCTCP configurations were capable of keeping a
low queueing delay and delivering a stable end-to-end RTT over the same
experiment.

A take away from this experiment indicate that a proper smoothing of
the congestion level is beneficial to produce stable results, and LS-AIMD
Reno has no benefits except low marking level and lots of disadvantages.
We now move over to our next experiment, now experiment #2, and
introduce a competing flow to see how well the dynamics of LS-AIMD
work out between two competitors.

We, as earlier, look at congestion control of the sender by investigating
the congestion window and ssthresh. From Figure 8.5, we notice that
all algorithms converge to their appropriate share of the window and
well within the min and max parameter of RED. However, all LS-AIMD
algorithms appear to be diverging periodically to unite slowly again. This
uneven share of capacity could indicate an error in our solution if both
competitors observe the same level of loss. We, therefore, have to look into
the marking level of RED and additionally see if our DCTCP configurations
are holding a proper value of alpha to understand the reasoning behind this
shareout.

In Figure 8.6, we see the marking level of the network in an identical
layout as in our first experiment. On top, we see the respective alpha
of both DCTCP configurations, and upon inspecting them against the
shareout of the congestion window, we now understand why our senders
were probing slightly uneven. The capacity shareout between competitors
mirrors their knowledge about the congestion level, and if alpha is not

94

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

0.30

0.35

0.40

0.45

0.50

DC
TC

P

(a) α: LS-AIMD DCTCP Step

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

0.22

0.24

0.26

0.28

0.30

DC
TC

P

(b) α: LS-AIMD DCTCP Instantaneous

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(c) p: LS-AIMD Reno Ramp

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(d) p: LS-AIMD DCTCP Step

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

0.20

0.25

0.30

0.35

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(e) p: LS-AIMD DCTCP Instant-
aneous

Figure 8.6: Experiment #2: Loss rates

equal, then it does not make any sense for the congestion window to be of
equal size. DCTCP’s adjustment to the congestion window bases itself on
the current level of congestion so a lower alpha will always result in a more
significant congestion window. However, we see that both of our DCTCP
configurations calculate alpha accurately as the marking level of RED is no
different. Nonetheless, if stability is a concern, it may be a good idea to
smooth out alpha with a different set of weights such that alpha becomes
stable, which again would make the congestion window of the sender and
marking level of RED stable. However, some caution should be taken as a
slower adapting alpha impacts the rate at which two competitors converge
to an even share.

We also see that the instantaneous configuration of DCTCP has the most
stable alpha, while the alpha of the step configuration periodically results
in spikes. Another vital remark to notice about the step configuration
is its now higher marking rates. On the other hand, the remaining
configurations also slightly increased marking rate from the previous
experiment do we not the same degree of rapid increase. In other words,
our earlier observation that a stable alpha produces better results stands.

As earlier, in Figure 8.7, we see the same trend in the calculation of the
add function. The number of bytes added strictly follow the dynamic of
the other metrics. However, notice that the number of bytes to add is now
slightly less because of a lower ssthresh. We can also now with certainty say
that our logarithmically aspect of the algorithm is working correctly since
a ssthresh of 10 KB equals to approximately 1100 bytes of add. Taking
another look back at the congestion window, we see that the congestion

95

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

0.60

0.65

0.70

0.75

0.80

0.85

ad
d s

900

950

1000

1050

1100

1150

1200

1250

ad
d B

(a) LS-AIMD Reno Ramp

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

0.65

0.70

0.75

0.80

0.85

ad
d s

900

950

1000

1050

1100

1150

1200

1250

ad
d B

(b) LS-AIMD DCTCP Step

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

ad
d s

1120

1140

1160

1180

1200

1220

1240

ad
d B

(c) LS-AIMD DCTCP Instantan-
eous

Figure 8.7: Experiment #2: Add

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

5

10

15

20

25

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

400

600

800

1000

1200

1400

1600

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(a) Q: LS-AIMD Reno Ramp

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

4

6

8

10

12
Qu

eu
ei

ng
 D

el
ay

 (p
ac

ke
ts

)

200

300

400

500

600

700

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(b) Q: LS-AIMD DCTCP Step

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

4

6

8

10

12

14

16

18

20

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

400

600

800

1000

1200

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(c) Q: LS-AIMD DCTCP Instant-
aneous

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

10

15

20

25

30

SR
TT

 (p
ac

ke
ts

)

600

800

1000

1200

1400

1600

1800

2000

SR
TT

 (µ
s)

(d) SRTT: LS-AIMD Reno Ramp

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

8

10

12

14

16

18

SR
TT

 (p
ac

ke
ts

)

500

600

700

800

900

1000

SR
TT

 (µ
s)

(e) SRTT: LS-AIMD DCTCP Step

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

8

10

12

14

16

18

20

22

24

26

SR
TT

 (p
ac

ke
ts

)

600

800

1000

1200

1400

SR
TT

 (µ
s)

(f) SRTT: LS-AIMD DCTCP In-
stantaneous

Figure 8.8: Experiment #2: Queueing delay & SRTT

window is indeed increasing by slightly fewer bytes now than earlier.
Going back to the network delay aspect of our evaluation in Figure 8.8,

we surprisingly see no significant change in this experiment vs the previous
one. Although, in Reno configuration, our readings now tells that both
queueing delay and SRTT is more at the centre of the ramp of RED.
Meaning, RED works better at stabilising the queueing delay with a higher
number of senders since, unlike DCTCP configurations, RED marks on
average queueing delay.

Finally, one crucial detail left to investigate would be the link utilisation
and the capacity shareout between the two competitors. Staying with the
same layout for our algorithms, we notice that all of our configurations
maintain full link utilisation throughout this experiment in Figure 8.9. Our
use of shallow base RTT in our experiments allows a very rapid startup
phase, which results in full utilisation immediately, but since we are not
evaluating slow-start can we ignore it for now.

However, when moving forward with the evaluation of the respective
capacity shareout among the two senders, we see massive fluctuations

96

0 5 10 15 20
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5
Th

ro
ug

hp
ut

 (b
yt

es
)

1e7

(a) Throughput: LS-AIMD Reno
Ramp

0 5 10 15 20
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(b) Throughput: LS-AIMD
DCTCP step

0 5 10 15 20
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(c) Throughput: LS-AIMD
DCTCP Instantaneous

0 5 10 15 20
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(d) Utilisation: LS-AIMD Reno
Ramp

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(e) Utilisation: LS-AIMD DCTCP
step

0 5 10 15 20
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(f) Utilisation: LS-AIMD DCTCP
Instantaneous

Figure 8.9: Experiment #2: Throughput & link utilisation

over short periods in both the Reno and DCTCP step configuration. The
Reno configuration performs worst as it does rate halving. The second
place goes to the step configuration because of the lack of a smooth
alpha. Not surprisingly, LS-AIMD DCTCP instantaneous beats the other
configurations with large margins. A smoother alpha translates into better
stability because of less drastically modifications happens to the congestion
window.

Our conclusion for this experiment undermines our observations
from the first experiment. There is a particular advantage in using the
extent of congestion over merely the existence of congestion for smooth
congestion control. We have additionally proven that LS-AIMD does
indeed converges, and when it does the algorithm distribute the capacity
evenly among the competitors while maintaining low queueing delay at
the bottleneck.

8.1.2 The Submss Regime

We are now ready to move over to the more exciting aspect of our work. We
have, up until now, evaluated the probing requirement of TCP to scale for
the submss regime, but it is first now that we test out our hypothesis about
whether or not keeping a lower congestion window gives results of similar
quality. To achieve the environment of submss regime, we introduce a few
more flows, now 8, and lower the base RTT from 300 to 100 microseconds.
We want to show that by only running a small number of flows in parallel
over a low base RTT enforces a low congestion window on average for
a bitrate as significant as 200 Mbps. LS-AIMD should have no problem
in sharing the capacity among the competitors evenly and additionally
maintain the shallow queue of RED.

97

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0

1

2

3

4

5

6

W
s

0

1000

2000

3000

4000

5000

6000

7000

8000

W
B

(a) W: LS-AIMD Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
s

0

500

1000

1500

2000

2500

3000

3500

4000

W
B

(b) W: LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0

1

2

3

4

5

W
s

0

1000

2000

3000

4000

5000

6000

7000

W
B

(c) W: LS-AIMD DCTCP Instant-
aneous

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S s

0

1000

2000

3000

4000

5000

S B

(d) S: LS-AIMD Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S s

0

500

1000

1500

2000

2500

S B

(e) S: LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S s

0

1000

2000

3000

4000

5000

S B

(f) S: LS-AIMD DCTCP Instantan-
eous

Figure 8.10: Experiment #3A: W & S

We continue our evaluation in the same fashion as earlier. Starting with
the congestion window and ssthresh in Figure 8.10, we notice that there
is always some flows which periodically keeps a transmission rate low
enough to be considered inside the submss regime. However, all senders
within the DCTCP step experiment appears to be synchronised. DCTCP
step configuration is not able to keep a stable congestion window as all
flows increase and reduce their congestion window together. Additionally,
we observe that the other configurations appear to be also having some
issues of their own. More specifically, we see that, unlike the previous
experiment, LS-AIMD probe a little bit faster than the desired rate.
Although we do not see any severe problems in them as they continue to
converge, we would have dig into the marking level of RED to understand
why LS-AIMD seems to be going faster than it should.

Investigating the marking rate of the network in Figure 8.11, we imme-
diately notice a remarkably high loss rate in the DCTCP step configuration.
Surprisingly, all senders appear to be arriving simultaneously at the bot-
tleneck within a short period. On the other hand, when we look at the
DCTCP instantaneous configuration, we see that there is no apparent syn-
chronisation between the senders, but the DCTCP alpha does not seem to
be as smooth as earlier. However, when we compare the alpha of DCTCP
to the marking rate of RED, it is clear that the approximation of DCTCP
is not to blame. We see identical dynamics in both metrics for all senders.
Additionally, we observe the same problem in the marking rate of RED in
the ramp configuration.

Now by comparing the loss rate against the congestion window, we see
that the respective flow within each experiment does whats indeed it is
told to do and adequately react on the higher marking rate by lowering its
congestion window to yield for other traffic. However, we learn that the
uneven balance happens precisely at the convergence point between the

98

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.60

0.65

0.70

0.75

0.80

0.85

0.90
DC

TC
P

(a) α: LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.4

0.5

0.6

0.7

0.8

DC
TC

P

(b) α: LS-AIMD DCTCP Instantaneous

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.0

0.1

0.2

0.3

0.4

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(c) p: LS-AIMD Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(d) p: LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(e) p: LS-AIMD DCTCP Instant-
aneous

Figure 8.11: Experiment #3A: Loss rates

group of senders that probe within the submss regime, against the other
group of senders not currently in the submss regime.

Our concluding remark for the possible cause for this problem to under
folds lies in the way the sender transmits its segments. A sender within the
submss regime uses the pacing timer of the Linux TCP implementation to
schedule a segment sometime in the future. However, there is no guarantee
that the pacing timer work with the same accuracy as a sender maintaining
the acknowledgement clock, so divergence occurs whenever either of the
mechanism probes faster than the other and since we are working with
shallow RTTs a small mismatch turns into a fatal outcome. This problem
could be minimised by manually adjusting the ratio of the pacing rate via
an already existing global option in the Linux implementation. However,
we found it hard to equalise them and improve the result any further.
Therefore, another possible cause could be that the pacing timer repeats
previous rounds of congestion, which is not the case for an acknowledge
clocked sender since a queue help in spreading synchronisation of the next
round.

In Figure 8.12, we see that the number of bytes added to the congestion
window per RTT shares a similar trend because ssthresh is neither stable.

Moving on to the queueing delay and SRTT in Figure 8.13, we see a
small increase in both metrics for all configuration. The queueing delay
now resides closer to the centre of the thresholds of RED. However, LS-
AIMD DCTCP step turns into periods with high variations in a span
of a short period because of continuous synchronisation among the
competitors.

99

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.30

0.35

0.40

0.45

0.50

0.55

ad
d s

450

500

550

600

650

700

750

800

ad
d B

(a) LS-AIMD Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

ad
d s

450

500

550

600

650

ad
d B

(b) LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

ad
d s

450

500

550

600

650

700

750

800

850

ad
d B

(c) LS-AIMD DCTCP Instantan-
eous

Figure 8.12: Experiment #3A: Add

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

5

10

15

20

25

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

400

600

800

1000

1200

1400

1600

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(a) Q: LS-AIMD Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0

2

4

6

8

10

12
Qu

eu
ei

ng
 D

el
ay

 (p
ac

ke
ts

)

0

100

200

300

400

500

600

700

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(b) Q: LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

4

6

8

10

12

14

16

18

20

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

400

600

800

1000

1200

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(c) Q: LS-AIMD DCTCP Instant-
aneous

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

5

10

15

20

25

30

SR
TT

 (p
ac

ke
ts

)

400

600

800

1000

1200

1400

1600

1800

SR
TT

 (µ
s)

(d) SRTT: LS-AIMD Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

4

6

8

10

12

14

16

18

SR
TT

 (p
ac

ke
ts

)

400

600

800

1000

SR
TT

 (µ
s)

(e) SRTT: LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

SR
TT

 (p
ac

ke
ts

)

400

600

800

1000

1200

SR
TT

 (µ
s)

(f) SRTT: LS-AIMD DCTCP In-
stantaneous

Figure 8.13: Experiment #3A: Queueing delay & SRTT

0 10 20 30 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(a) Throughput: LS-AIMD Reno
Ramp

0 10 20 30 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(b) Throughput: LS-AIMD
DCTCP step

0 10 20 30 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(c) Throughput: LS-AIMD
DCTCP Instantaneous

0 10 20 30 40
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(d) Utilisation: LS-AIMD Reno
Ramp

0 10 20 30 40
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(e) Utilisation: LS-AIMD DCTCP
step

0 10 20 30 40
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(f) Utilisation: LS-AIMD DCTCP
Instantaneous

Figure 8.14: Experiment #3A: Throughput & link utilisation

100

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0

1

2

3

4

5

6

7

8

W
s

0

2000

4000

6000

8000

10000

W
B

(a) W: LS-AIMD Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

W
s

0

1000

2000

3000

4000

5000

W
B

(b) W: LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0

1

2

3

4

5

W
s

0

1000

2000

3000

4000

5000

6000

7000

W
B

(c) W: LS-AIMD DCTCP Instant-
aneous

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0

1

2

3

4

5

S s

0

1000

2000

3000

4000

5000

6000

7000

S B

(d) S: LS-AIMD Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S s

0

500

1000

1500

2000

2500

3000

3500

4000

S B

(e) S: LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S s

0

1000

2000

3000

4000

5000

S B

(f) S: LS-AIMD DCTCP Instantan-
eous

Figure 8.15: Experiment #3B (δ = 2): W & S

Finally, in Figure 8.14, we see that the throughput between all
competitors shareout evenly. LS-AIMD DCTCP step has the most stable
shareout. The even sharing of capacity comes from the fact that all
competitors induce only small modifications to the congestion window.
We also confirm that all configurations maintain full link utilisation for the
whole duration of the experiment period.

To sum up this experiment, we observe that some synchronisation is
going on the LS-AIMD DCTCP step configuration and for the other con-
figurations, we only see a slight decrease in performance from experiment
#2.

We now repeat the previous experiment, but now with stretch acknow-
ledgements enabled. The receiver is, thus, holding on to the acknowledge-
ment such that only one acknowledgement returns for every second seg-
ment received. We again look through the same set of metrics, but now we
additionally look at the SRTT pace.

In Figure 8.15, we immediately notice that the synchronisation among
the competitors in the LS-AIMD DCTCP step configuration is now gone.
This unsimilarity should explain to us why such a robust synchronisation
took place in the previous experiment. We only introduced a tiny difference
in our setup, which was to make the receiver hold on to every second
acknowledgement. Given that the sender keeps at least two segments
inflight paced in the submss regime will we always trigger the awaiting
acknowledgement, but what happens when the receiver returns every
acknowledgement? Moreover, what implication do we get if we are
required to keep above one, but below two segments inflight? Let us say
we have a congestion window of approximately 1.25 segments per RTT,
which is the case for experiment #3. The sender will invoke a transmission
of a full segment every 1/1.25 = 0.8 RTT. We further now that the pacing
timer initiates from the tail of the last transmission. We are, therefore,

101

clocking out next transmission before an acknowledgement of the previous
segment arrives. First, this means that any of our effort to postpone or
early transmit the pending segment is of no use. Next, since we must
transmit a new segment with outdated queue dynamics will we always
repeat the burst of the previous round. However, why does the use
of stretch acknowledgements eliminate synchronisation? Recall, that the
sender may only keep δ, which is two here, segments inflight in the submss
regime. When the sender sends its first segment, no credit is returned by
the receiver, so as soon as the next transmission occurs, this limit reaches.
Thus, no further segment may go inflight before an acknowledgement
crediting a whole segment arrives. The queue desynchronise the sender
since no further segment entered the network before new intel about
the queue arrived. This process repeats itself periodically such that new
transmissions only happens with updated queue dynamics.

We observe quite identical results in all configurations except the
LS-AIMD DCTCP step experiment. Not only is this experiment free
from any form of synchronisation, but additionally, no divergence occurs
between the set of competitors. Unfortunately, this confirms our earlier
claims we made in the previous experiment and the problem now
diverge into two separate hard to solve problems. Starting with the
first problem, we now know that that especially for a step marking
network scheme, we are required to take in use stretch acknowledgements
to hinder synchronisation. The next problem we deal with across all
configurations comes from a mismatch between the pacing timer and the
acknowledgement clock. The only reason why the step configuration is
free from divergence dynamics in this experiment comes from the fact
that all senders probe right below the boundary of the submss regime.
Even though, all configurations mark close the boundary do the other
configurations take in use a more complex AQM.

Next, in Figure 8.16, we relook at the marking probability of each
configuration and compare it to the previous experiment. We notice that
the step marking scheme no longer induce synchronisation in the marking.
Meaning, all configurations now stay desynchronised. Otherwise, we do
not see any marginal difference in the marking, which indicates that a more
substantial stretch acknowledgement factor would not necessarily cause a
higher marking rate. The design of LS-AIMD is, thus, assumed to scale just
fine in an environment with a higher stretch acknowledgement factor.

In Figure 8.17, we see that like every other metric does we a similar
trend in how each sender in each configuration applies their additive
increase phase. The step configuration has the most stable additive increase
phase.

Next, in Figure 8.18, we take another round at evaluating the queueing
delay and SRTT of the network. We notice no significant change in
the queueing delay of the bottleneck except desynchronisation of the
step configuration. However, we see a slight increase in the SRTT in
all schemes. The added delay comes from the delay appended to the
transmission by the sender in the submss regime and since the receiver
uses stretch acknowledgements do we see an increase in the RTT between

102

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

DC
TC

P

(a) α: LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.45

0.50

0.55

0.60

0.65

0.70

DC
TC

P
(b) α: LS-AIMD DCTCP Instantaneous

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.0

0.1

0.2

0.3

0.4

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(c) p: LS-AIMD Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.4

0.5

0.6

0.7

0.8

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(d) p: LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.4

0.5

0.6

0.7

0.8

0.9

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(e) p: LS-AIMD DCTCP Instant-
aneous

Figure 8.16: Experiment #3B (δ = 2): Marking rates

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

ad
d s

500

600

700

800

900

ad
d B

(a) LS-AIMD Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

ad
d s

450

500

550

600

650

700

750

ad
d B

(b) LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.35

0.40

0.45

0.50

0.55

0.60

ad
d s

450

500

550

600

650

700

750

800

850

ad
d B

(c) LS-AIMD DCTCP Instantan-
eous

Figure 8.17: Experiment #3B (δ = 2): Additive increase constant

103

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

5

10

15

20

25

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

400

600

800

1000

1200

1400

1600

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(a) Q: LS-AIMD Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

4

6

8

10

12

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

300

400

500

600

700

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(b) Q: LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

4

6

8

10

12

14

16

18

20

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

400

600

800

1000

1200

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(c) Q: LS-AIMD DCTCP Instant-
aneous

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

5

10

15

20

25

30

35

40

SR
TT

 (p
ac

ke
ts

)

250

500

750

1000

1250

1500

1750

2000

2250

SR
TT

 (µ
s)

(d) SRTT: LS-AIMD Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

4

6

8

10

12

14

16

18

20

SR
TT

 (p
ac

ke
ts

)

400

600

800

1000

1200

SR
TT

 (µ
s)

(e) SRTT: LS-AIMD DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

5

10

15

20

25

SR
TT

 (p
ac

ke
ts

)

400

600

800

1000

1200

1400

1600

SR
TT

 (µ
s)

(f) SRTT: LS-AIMD DCTCP In-
stantaneous

Figure 8.18: Experiment #3B (δ = 2): Queueing delay & SRTT

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

5

10

15

20

25

30

35

40

SR
TT

 P
ac

e
(p

ac
ke

ts
)

250

500

750

1000

1250

1500

1750

2000

2250

SR
TT

 P
ac

e
(µ

s)

(a) LS-AIMD Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

4

6

8

10

12

14

16

18

SR
TT

 P
ac

e
(p

ac
ke

ts
)

400

600

800

1000

SR
TT

 P
ac

e
(µ

s)

(b) LS-AIMD DCTCP step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

5

10

15

20

25
SR

TT
 P

ac
e

(p
ac

ke
ts

)

400

600

800

1000

1200

1400

1600

SR
TT

 P
ac

e
(µ

s)

(c) LS-AIMD DCTCP Instantan-
eous

Figure 8.19: Experiment #3B (δ = 2): SRTT Pace

the endpoints. An increase might indicate the thoughts off a bug in the
implementation or design, but this is, in fact, nothing else than a feature
of the LS-AIMD algorithm. This dynamic let the sender schedule loss
recovery long enough into the future to avoid spurious loss recovery.

In Figure 8.19, we investigate the dynamics of the SRTT pace. First,
we notice that unlike SRTT, the pace version is sometimes lower. That is
done intentionally such that the sender removes the appended delay to
maintain a proper packet conservation clock. However, we observe a lack
of stability caused by spikes in the measurements. We believe this comes
from the fact that the sender does not know whether or not the incoming
acknowledgement is from transmission in the submss regime or not. We
have, thus, failed in instructing the sender to make the proper action as
both have separate logic for what constitutes a valid RTT measurement.

Finally, in Figure 8.20, we go back to the evaluation of the throughput
and link utilisation. There is no significant change in our measurements
of these metrics contra the previous experiment. However, between 32-
36 seconds in all configurations, we see a single episode of spurious

104

0 10 20 30 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5
Th

ro
ug

hp
ut

 (b
yt

es
)

1e7

(a) Throughput: LS-AIMD Reno
Ramp

0 10 20 30 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(b) Throughput: LS-AIMD
DCTCP step

0 10 20 30 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(c) Throughput: LS-AIMD
DCTCP Instantaneous

0 10 20 30 40
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(d) Utilisation: LS-AIMD Reno
Ramp

0 10 20 30 40
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(e) Utilisation: LS-AIMD DCTCP
step

0 10 20 30 40
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(f) Utilisation: LS-AIMD DCTCP
Instantaneous

Figure 8.20: Experiment #3B (δ = 2): Throughput & link utilisation

retransmission. We never lost any packets in any of our experiments, so the
exact reason for why the spurious retransmission took place is uncertain,
but most likely indicate some problems as the bug happens consistently
across all configurations in the same period.

8.2 Stability & Syncronisation Test

We continue evaluating Experiment #3 but now look more closely at the
stability and synchronisation among the competitors. This additional intel
should let us know about how good all our LS-AIMD algorithms performs
throughout the experiment. We, as before, compare the experiment with
stretch acknowledgements enabled against the other experiment where the
receiver returns acknowledgements immediately. The primary purpose of
this additional evaluation is to build up new knowledge to know where
more work should be put in to get even more excellent results.

8.2.1 Link Utilisation

We, first, need to make sure that the link stays fully utilised while all
competitors participate. It is crucial to prioritise this metric as any loss
of utilisation is never desirable.

In Figure 8.21, we see that in each configuration the link never goes be-
low 0.999 utilisation over an average of 10 ms. The step configuration has
the most stable utilisation for the experiment without stretch acknowledge-
ments. However, the instantaneous configuration performs best overall
when also taking account of stretch acknowledgements. The ramp scheme,
on the other hand, is in no way performing any worse but loses due to a

105

Congestion Control Algorithm
0.95

0.96

0.97

0.98

0.99

1

1.01

0.
99

95
8

0.
99

99
8

0.
99

99
2

A
ve

ra
ge

lin
k

ut
ili

sa
ti

on

Experiment #3A

Congestion Control Algorithm
0.95

0.96

0.97

0.98

0.99

1

0.
99

97
0

0.
99

97
2

0.
99

99
4

Experiment #3B (δ = 2)

LS-AIMD Reno ramp
LS-AIMD DCTCP step
LS-AIMD DCTCP instantaneous
Full Link Utilisation (1.0)

Figure 8.21: Experiment #3: Link Utilisation dynamics

marginal lack of stability. We can not make any conclusion from these res-
ults except that all configurations fulfil the requirement of full utilisation.

8.2.2 Queueing Delay

Next, we investigate the queue occupancy of RED to see what the typical
wait time for a packet is when entering the bottleneck.

In Figure 8.22, we see the average queueing delay and its corresponding
deviation. We, first, notice how well the ramp and instantaneous
configuration perform in keeping the average a queueing delay a little
bit above the middle of the minimum and maximum parameters of RED.
However, the instantaneous configuration yields a smoother queue on
average, deviation of 59 vs 107 microseconds, because of its less drastically
reduction phase. We get an insight into what our earlier observations of
synchronisation mean for the step configuration. The step configuration is
not able to keep a stable queue, deviation of 176 microseconds, as long
as the receiver returns an immediate acknowledgement. On the right-
hand side, we see how the use of stretch acknowledgements get rid off the
synchronisation. When step configuration is kept desynchronised, it not
only performs as good, deviation of 107 microseconds, as the instantaneous
configuration but additionally keeps a lower queue occupancy on average.
When comparing the rest of the configurations between the use of stretch
acknowledgement or not, we see a small decrease in the queue occupancy,

106

Congestion Control Algorithm
0

200

400

600

800

1,000

1,200

1,
03

5

61
9

81
8

A
ve

ra
ge

qu
eu

ei
ng

de
la

y
(µ

s)

Experiment #3A

Congestion Control Algorithm
0

200

400

600

800

1,000

1,200

1,
02

4

56
5

80
5

Experiment #3B (δ = 2)

LS-AIMD Reno ramp
LS-AIMD DCTCP step
LS-AIMD DCTCP instantaneous
Minimum queueing delay (500 µs)
Middle queueing delay (1000 µs)
Maximum queueing delay (1500 µs)

Figure 8.22: Experiment #3: Queue dynamics

107

but a significant higher deviation.
We conclude that the use of stretch acknowledgements does not cause

any significant penalty for all configuration, but further analysis is needed
to see how a more substantial stretch acknowledgement factor works out.

8.2.3 Smoothed Round Trip Time (SRTT)

We should now look at how each configuration traverses the bottleneck
and investigate how the queue impacts the RTT of the traversing traffic.
We should, as earlier, try to justify the use of stretch acknowledgements.
However, since the SRTT of the stretch acknowledgement enabled exper-
iment includes the penalty of the receiver, would it make more sense to
compare the SRTT pace against the other experiments SRTT. Any signific-
ant difference in our measurements should then be able to tell us about
an improper calculation of the SRTT pace. We expect the experiment with
stretch acknowledgement enabled to perform with a slightly lower average
SRTT but be less stable based on our findings from the queue occupancy
dynamics of the bottleneck.

In Figure 8.23, we see that the SRTT across all senders in both
experiments is of identical length and that the deviation spreads equally
between the competitors. However, the first two flows of the bottom
experiment are not as stable as the rest. We learn that this shewed result
comes from the fact that both flows observed a single episode of spurious
retransmission. It is essential to notice that the queueing delay stands for
about 80% of the SRTT in both of our experiments, so maintaining a deeper
queue is not the appropriate solution to deal with the submss regime.

We see that according to our expectation, the experiment with stretch
acknowledgements has more fluctuations in the RTT, but the difference
is a lot higher than expected. The average estimate is also not as
low as predicted. We believe that by improving the accuracy of the
calculation of SRTT pace should minimise the difference and equalise the
two experiments.

8.2.4 Marking Rate

We will now inspect the marking rate of RED to verify that the state of
marking saturation is out of reach from all configurations. We also want to
crosscheck that our algorithms remains stable even with the use of stretch
acknowledgements.

In Figure 8.24, we see the average marking probability for the indi-
vidual sender over a 10 ms interval. RED and LS-AIMD interact very
nicely; notice how all senders see one unified marking probability and how
the deviation is extremely stable between the competitors of the bottleneck.
Remarkably, we do not see any significant change when we rerun the same
experiment with stretch acknowledgements. The reason why we no longer
observe the spurious retransmission to have any significant impact on the
results is due to the 10 ms smoothing. We believe that by measuring the sta-
bility of the marking probability over approximately 10 RTTs is more than

108

400

600

800

1,000

1,200

1,400

1,
25

6

1,
25

5

1,
25

6

1,
25

5

1,
25

7

1,
25

4

1,
25

6

1,
25

6

83
1

83
1

83
3

83
1

83
2

83
2

83
1

83
1

1,
03

6

1,
03

5

1,
03

6

1,
03

5

1,
03

5

1,
03

5

1,
03

6

1,
03

5

A
ve

ra
ge

SR
T

T
(µ

s)

(a) Experiment #3A

Se
nder

#1

Se
nder

#2

Se
nder

#3

Se
nder

#4

Se
nder

#5

Se
nder

#6

Se
nder

#7

Se
nder

#8
400

600

800

1,000

1,200

1,400

1,600

1,800

1,
52

7

1,
52

7

1,
54

9

1,
54

7

1,
55

3

1,
55

0

1,
54

7

1,
54

6

84
8

84
8

85
1

84
8

85
0

85
0

84
9

84
9

1,
09

4

1,
09

4

1,
10

2

1,
10

3

1,
10

4

1,
10

5

1,
10

4

1,
10

5

A
ve

ra
ge

SR
TT

Pa
ce

(µ
s)

LS-AIMD Reno ramp
LS-AIMD DCTCP step
LS-AIMD DCTCP instantaneous
Minimum SRTT (600 µs)
Middle SRTT (1100 µs)
Maximum SRTT (1600 µs)

(b) Experiment #3B (δ = 2)

Figure 8.23: Experiment #3: SRTT dynamics

109

0

0.2

0.4

0.6

0.8
0.

15

0.
15

0.
14

0.
14

0.
15

0.
14

0.
14

0.
14

0.
77

0.
77

0.
78

0.
78

0.
78

0.
78

0.
78

0.
78

0.
6

0.
6

0.
6

0.
61

0.
61

0.
61

0.
6

0.
61

A
ve

ra
ge

m
ar

ki
ng

pr
ob

ab
ili

ty
(p

)

(a) Experiment #3A

Se
nder

#1

Se
nder

#2

Se
nder

#3

Se
nder

#4

Se
nder

#5

Se
nder

#6

Se
nder

#7

Se
nder

#8
0

0.2

0.4

0.6

0.8

0.
11

0.
11

0.
11

0.
11

0.
11

0.
11

0.
11

0.
11

0.
7

0.
7

0.
7

0.
7

0.
7

0.
7

0.
7

0.
7

0.
58

0.
58

0.
58

0.
58

0.
58

0.
58

0.
58

0.
58

A
ve

ra
ge

m
ar

ki
ng

pr
ob

ab
ili

ty
(p

)

LS-AIMD Reno ramp
LS-AIMD DCTCP step
LS-AIMD DCTCP instantaneous
Marking saturation (1.0)

(b) Experiment #3B (δ = 2)

Figure 8.24: Experiment #3: Marking rate dynamics

110

sufficient to show the essential characteristics of the individual configura-
tion.

8.2.5 Additive Increase

Going over to the evaluation of additive increase, we now look at the
stability of the additive increase phase. We expect the configuration which
the lowest SRTT to keep a slower additive increase phase and vice-versa.
However, since the add function is a slow-growing function, do we not
expect a significant difference.

In Figure 8.25, starting with the upper experiment, we observe as
expected a slower additive increase phase from the step configuration.
We also see that it does fluctuate on average by just 12%. Surprisingly,
we see that the ramp configuration keep a slower additive increase
phase on average than the instantaneous configuration and that both
configurations maintain deviation of the same degree. We can explain
this by remembering that Reno does rate halving which means that the
sawtooth falls into a much lower ssthresh value, and has enough of a drop
to give the ramp configuration a slower additive increase phase.

8.2.6 Throughput

Finally, inspecting the last metric, we now investigate whatever the
capacity between the senders shares evenly, and we further look into how
the stability of this shareout.

In Figure 8.26, we see that all configurations in upper experiments
have a stable share of the capacity among the competitors. The ramp
configuration performs worst with a deviation of 22.3%, whereas the step
and instantaneous configuration have a small deviation of 5.6% and 16.3%
respectively. Going to the lower experiment, we do not quite see the same
shareout as the first two senders, as earlier, shew the balance for a more
extended period of the experiment. The ramp configuration still performs
worst, and we now observe deviation ranging from 25% to as significant as
50%. Similarly, we see that the step and instantaneous configuration now
lies in a range of 6.4− 54% and 18.5− 55% respectively.

8.3 Exhaustive & Scalability Test

We should now have a rough idea of how well LS-AIMD perform under
a variety of network topologies. The last thing we want to do before
benchmarking it against other conventional congestion control algorithms
is to see how far we can push LS-AIMD before it starts to misbehave.
We would then know about any scalability issues which constraints the
performance of our algorithm when pushed to the extreme. We resort at
evaluating all configuration as before, but now under a variety set of base
RTTs. The idea is to understand the performance of LS-AIMD better when
moving to a lower transmission rate per RTT. We increase the bitrate from

111

200

300

400

500

600

700

800

63
1

63
3

62
7

63
2

63
1

63
1

62
5

62
7

48
0

48
0

47
8

47
9

48
0

47
9

47
9

48
0

64
7

64
2

64
5

64
4

64
7

64
8

64
8

64
5

A
ve

ra
ge

ad
di

ti
ve

in
cr

ea
se

(B
)

(a) Experiment #3A

Se
nder

#1

Se
nder

#2

Se
nder

#3

Se
nder

#4

Se
nder

#5

Se
nder

#6

Se
nder

#7

Se
nder

#8
200

300

400

500

600

700

800

900

67
8

68
3

66
8

67
5

67
2

67
1

67
8

67
6

53
2

53
2

51
1

51
0

51
1

51
0

51
2

51
0

71
2

70
9

68
9

68
0

68
9

68
5

68
2

68
8

A
ve

ra
ge

ad
di

ti
ve

in
cr

ea
se

(B
)

LS-AIMD Reno ramp
LS-AIMD DCTCP step
LS-AIMD DCTCP instantaneous
Minimum additive increase (569 B)
Middle additive increase (755 B)
Maximum additive increase (878 B)

(b) Experiment #3B (δ = 2)

Figure 8.25: Experiment #3: Additive increase dynamics

112

1

1.5

2

2.5

3

3.5

4

4.5
·106

3.
34
·1

06

3.
37
·1

06

3.
32
·1

06

3.
35
·1

06

3.
35
·1

06

3.
35
·1

06

3.
3
·1

06

3.
34
·1

06

3.
23
·1

06

3.
23
·1

06

3.
2
·1

06

3.
22
·1

06

3.
22
·1

06

3.
21
·1

06

3.
22
·1

06

3.
22
·1

06

3.
27
·1

06

3.
26
·1

06

3.
25
·1

06

3.
26
·1

06

3.
27
·1

06

3.
28
·1

06

3.
27
·1

06

3.
27
·1

06

A
ve

ra
ge

th
ro

ug
hp

ut
(B

)

(a) Experiment #3A

Se
nder

#1

Se
nder

#2

Se
nder

#3

Se
nder

#4

Se
nder

#5

Se
nder

#6

Se
nder

#7

Se
nder

#8
0

1

2

3

4

5

6

·106

3.
65
·1

06

3.
81
·1

06

3.
37
·1

06

3.
43
·1

06

3.
38
·1

06

3.
38
·1

06

3.
44
·1

06

3.
41
·1

06

3.
63
·1

06

3.
64
·1

06

3.
21
·1

06

3.
21
·1

06

3.
22
·1

06

3.
21
·1

06

3.
24
·1

06

3.
21
·1

06

3.
8
·1

06

3.
82
·1

06

3.
31
·1

06

3.
27
·1

06

3.
32
·1

06

3.
29
·1

06

3.
27
·1

06

3.
3
·1

06

A
ve

ra
ge

th
ro

ug
hp

ut
(B

)

LS-AIMD Reno ramp
LS-AIMD DCTCP step
LS-AIMD DCTCP instantaneous
Fair rate (3125 kB)

(b) Experiment #3B (δ = 2)

Figure 8.26: Experiment #3: Throughput dynamics

113

200 Mbps to 600 Mbps and at the same time double the number of senders,
from 8 to 16, at the bottleneck. The goal of using a higher bitrate is to be able
to set the marking threshold of RED even lower. We now aim for a queue
occupancy of merely 250 microseconds and a base RTT ranging from 250 to
1000 microseconds.

We will now also evaluate the performance of LS-AIMD under MTU
sizes of 1500 and 9000 bytes. A higher MTU should let us know if LS-
AIMD is capable of attaining a low queue over the very same set of base
RTTs. We follow our guideline in choosing an appropriate growth constant
for the additive increase for both MTU sizes. More precisely, we choose k0
to be 256 for an MTU of 1500 bytes, and k0 equals 1024 for jumbo frames.

We will also test for two sets of scale factors (C) since we are now
pushing our senders into holding a congestion window of less than one
segment. We test for both a very low and a very high C corresponding to
0.78125% (2−7) and 100% respectively. There is no good reason for selecting
such a low C other than to keep the low and high value segregated by
a large enough margin such that we can see a clear and distinguishable
pattern between the two.

8.3.1 Link Utilisation

Same as earlier, it is essential to verify that the link never goes underutil-
ised. A loss in link utilisation should not be a common occurrence in our ex-
periments. We consider a configuration with lower utilisation to be worse
than any other configuration with a higher link utilisation. Therefore, a loss
in link utilisation is enough to disqualify the configuration based solely on
this metric.

In Figure 8.27, we see four sets of experiments based on the combination
of MTU and C. On top, we find the standard ethernet frame, and at the
bottom, we have the same experiments just with jumbo frames. We notice
how the link utilisation varies because of the size of C and at the same time
gets affected by the frame size. We see that a small C is a better fit for lower
base RTT because a lower transmission rate makes the sender build large
sawtooth if C is also high, and a large sawtooth has no desirable properties
as our previous results indicate. We also see that the opposite is also valid
as the use of a higher C yield better utilisation for higher base RTTs. These
properties can be best seen in the jumbo frame experiments because a larger
frame size yields a lower congestion window for the same bitrate and base
RTT. We additionally see a trend where a lower C on a low base RTT and
high C on a high base RTT yield more stable utilisation of the link. We
need to look at the queue of the bottleneck to better understand the cause
of such a varying deviation of the link utilisation across the conducted
experiments.

8.3.2 Queueing Delay

We will now evaluate the queueing delay part of this experiment. We
compare the average link utilisation against the queueing delay to form

114

0.96

0.98

1

1.02

0.99862 0.99947
0.99572 0.99599

0.99274

0.99889
0.99733 0.99885

0.99542
0.99884 0.99975 0.99951

A
ve

ra
ge

lin
k

ut
ili

sa
ti

on

MTU: 1500 (B), C: 0.78125%

0.98

0.99

1

1.01

0.99850
0.99719 0.99702

0.99558

0.99813 0.99835 0.99795 0.997250.99799
0.99925 0.99910

0.99796

MTU: 1500 (B), C: 100%

250 500 750 1,000

0.85

0.9

0.95

1
0.99976 0.99939 0.99919 0.99611

0.93976

0.91313

0.88959

0.86398

0.93790

0.99563 0.99321
0.98684

Base RTT (µs)

A
ve

ra
ge

lin
k

ut
ili

sa
ti

on

MTU: 9000 (B), C: 0.78125%

250 500 750 1,000

0.85

0.9

0.95

1

0.94308 0.94138
0.93595 0.93380

0.98500
0.99520 0.99833 0.998650.99507 0.99869 0.99973 0.99943

Base RTT (µs)

MTU: 9000 (B), C: 100%

LS-AIMD Reno ramp
LS-AIMD DCTCP step
LS-AIMD DCTCP instantaneous
Full utilisation (1.0)

Figure 8.27: Experiment #4: Link utilisation dynamics

115

a better picture of what causes the link to go underutilised.
In Figure 8.28, we observe three patterns across the different values of

MTU and C. We, first, see that the use of MTU of 1500 and C equals to 100%
achieves the most optimal result. Meaning, the average queueing delay
is kept within the desireable queue length of RED, and all configuration
seems to have almost no impact between the base RTTs. Additionally,
we notice that the deviation keeps on declining as the base RTT falls to
some lower values. This property is intended as LS-AIMD take in use
a logarithmically scaled additive increase phase which depends on the
transmission rate of the sender; a lower transmission rate per RTT equates
to a slower probing per RTT.

We do not get results of similar quality when going to C equals
0.78125% for the same experiment. We immediately see that all config-
urations happen to probe below the minimum queueing delay set for this
experiment. This low queue occupancy explains our earlier observation of
a steady decline in link utilisation. However, we observe that the queue
occupancy of the bottleneck seems now to be more stable.

When we move to experiments conducted with larger frame sizes, is
it clear that C at 100% is now way too much. The queue occupancy of
the bottleneck seems to be on average above the maximum queue length
throughout this experiment. Initially, this might indicate contradicting
results, but when one remembers that the congestion window bases itself
on the frame size is it evident that a prolonged transmission rate per
RTT cause all configurations to misbehave widely. Reasoning, why some
configurations managed to underutilise the pipe has to do with rapid
fluctuations in the queue occupancy causing massive spikes in the queue
periodically. Notice how the length of the spikes only gets deeper and
deeper when going for lower base RTT. This fluctuation comes as a result
of an additive increase, which is very low per RTT but is now magnitude
larger because the sender has to apply the additive increase phase over
more and more RTTs. Nonetheless, the theory of applying more additive
increase phase for a sender pacing over a more extended period is to ensure
that two competitors which different base RTT still converge. The length of
the sawtooth is decided by the sender who travels with the most extended
base RTT.

Finally, looking at the last viable permutation, we see that the queue
occupancy of the bottleneck is no longer as high as earlier. While we still
do not see optimal results for jumbo frames, do we now know that it is
possible to select one optimal C which would give results of similar quality
as the first permutation. However, this increases the complexity as we
are now required to use two very different C because of a change in the
transmission rate per RTT.

8.3.3 Smoothed Round Trip Time (SRTT)

We have seen that by making TCP cooperate with the AQM under a lower
transmission rate, we can maintain a very stable queue over shallow base
RTTs. However, this is just a metric measured at the AQM and do not tell us

116

160

180

200

220

240

260

280

300

259

247

238

225

199 200 199 198

238 237 236 234

A
ve

ra
ge

qu
eu

ei
ng

de
la

y
(µ

s)

MTU: 1500 (B), C: 0.78125%

200

300

400

500

600

496 487 495

469

260 263 267 261

420

388
368

353

MTU: 1500 (B), C: 100%

250 500 750 1,000

0

200

400

600

465

420
403

375

161
142 129 119

160

261
245 231

Base RTT (µs)

A
ve

ra
ge

qu
eu

ei
ng

de
la

y
(µ

s)

MTU: 9000 (B), C: 0.78125%

250 500 750 1,000

500

1,000

1,500

2,000

2,500

3,000

1,764

1,567
1,452

1,289

1,631

1,179

887

709

1,476

1,146

915
812

Base RTT (µs)

MTU: 9000 (B), C: 100%

LS-AIMD Reno ramp
LS-AIMD DCTCP step
LS-AIMD DCTCP instantaneous
Minimum queueing delay (250 µs)
Middle queueing delay (500 µs)
Maximum queueing delay (750 µs)

Figure 8.28: Experiment #4: Queue dynamics

117

how significant the RTT of the traversing traffic is. We, therefore, as earlier
slay the doubt of whatever it is working or not by analysing the smoothed
RTT of our senders.

In Figure 8.29, a look a the SRTT over the same set of experiments,
we see that the RTT closely follow the queueing delay of the bottleneck.
We also notice that since SRTT is as its name indicates a smoothed metric
is its deviation more stable than the instantaneous queueing delay of the
bottleneck. We also now start to see whats otherwise is not the usual case;
a majority of the RTT is now something other than the queue occupancy
of the bottleneck. Meaning, even at base RTT of 250 microseconds the
queueing occupancy of the bottleneck stands for 40% of the total RTT seen
by the sender. The only reason why we do not see a severe mismatch
between the SRTT and the queueing delay comes from the fact that we
can operate under a shallow base RTT. Other delays, such as propagation,
transmission and processing delays, are not given a chance to undertake
the now heavily reduced queueing delay. Adding more bitrate to this
equation does not change anything as we can then maintain a proportional
lower queueing delay with the now reduced transmission delay; so they
balance each other out. Neither or does a lower possible propagation delay
serve any difficulty as LS-AIMD has no intention in building a queue just
because of a lower base RTT. However, we need to figure out a way to
control C correctly all the time such that we can do exactly that and keep a
shallow queue no matter the requested transmission rate per RTT.

8.3.4 Marking Rate

Let us now investigate how RED has done in its job at keeping the queueing
delay within the parameter set for the experiments. We, as earlier, measure
the average marking rate of RED over a 10 ms duration.

In Figure 8.30, we see the same layout as earlier of experiments and
observe an experiment which draws our attention; an experiment seems
to reach marking saturation periodically. This experiment is no other than
the experiment with jumbo frames where C was 100%. This result does not
come as a surprise as this experiment is indeed the same experiment which
built a longer queue. Therefore, this proves that RED did do all it could to
demand the competing traffic to slow down, but was unable to achieve the
desired queue length because senders had no means to back off. The same
experiment with C set to 0.78125% shows no sign of unresponsive traffic
and is merely inducing any congestion, which implies that we should have
set C to some higher value. Nonetheless, this experiment was not able to
build a sufficient queue to maintain full utilisation.

Finally, we verify the optimal experiment where MTU was 1500 bytes,
and C equals 100%. Our result indicates that the probability of being
marked increases as base RTT becomes lower, and as expected the ramp,
instantaneous and step configuration maintains marking probability from
very low, moderate to extremely high levels respectively. Additionally, we
learn that C impacts severely on how fast the marking probability grows
towards holding a lower transmission rate. Nonetheless, we should refrain

118

600

800

1,000

1,200

1,400

63
1

86
9

1,1
09

1,3
44

57
2

82
2

1,0
70

1,3
17

61
3

85
8

1,1
07

1,3
53

50
0

75
0

1,0
00

1,2
50

75
0

1,0
00

1,2
50

1,0
00

1,2
50

A
ve

ra
ge

SR
T

T
(µ

s)

MTU: 1500 (B), C: 0.78125%

600

800

1,000

1,200

1,400

1,600

86
3

1,1
08

1,3
68

1,5
88

62
7

88
3

1,1
35

1,3
81

78
6

1,0
05

1,2
35

1,4
72

75
0

1,0
00

1,2
50

75
0

1,0
00

1,2
50

1,5
00

1,0
00

1,2
50

1,5
00

MTU: 1500 (B), C: 100%

250 500 750 1,000

600

800

1,000

1,200

1,400

1,600

92
9

1,1
34

1,3
68

1,5
88

61
9

85
2

1,0
87

1,3
28

61
9

97
2

1,2
07

1,4
42

50
0

75
0

1,0
00

1,2
50

75
0

1,0
00

1,2
50

1,5
00

1,0
00

1,2
50

1,5
00

1,7
50

Base RTT (µs)

A
ve

ra
ge

SR
TT

(µ
s)

MTU: 9000 (B), C: 0.78125%

250 500 750 1,000

1,600

1,800

2,000

2,200

2,400

2,600

2,800

2,2
15 2,2

69

2,4
05

2,4
92

2,0
87

1,8
86

1,8
43

1,9
151,9

31

1,8
52 1,8

72

2,0
17

1,5
00

1,5
00

1,7
50

Base RTT (µs)

MTU: 9000 (B), C: 100%

LS-AIMD Reno ramp
LS-AIMD DCTCP step
LS-AIMD DCTCP instantaneous
Minimum SRTT (500-1250 µs)
Middle SRTT (750-1500 µs)
Maximum SRTT (1000-1750 µs)

Figure 8.29: Experiment #4: SRTT dynamics

119

0

0.02

0.04

0.06

1.23247 · 10−3 7.0597 · 10−4 4.80737 · 10−4 3.44076 · 10−4

0.03348

0.02893
0.02678

0.028820.02917

0.02418 0.02326 0.02218

A
ve

ra
ge

m
ar

ki
ng

pr
ob

ab
ili

ty
(p

)

MTU: 1500 (B), C: 0.78125%

0

0.2

0.4

0.6

0.8

0.14253

0.09455
0.06733 0.05272

0.69433

0.62006
0.58587

0.549510.56425

0.48873

0.43198

0.38810

MTU: 1500 (B), C: 100%

250 500 750 1,000

0

0.05

0.1

0.15

0.2

8.42587 · 10−3 6.55067 · 10−3 5.10109 · 10−3 4.1817 · 10−3

0.13966

0.11156

0.09346
0.08085

0.13969

0.09362

0.07833
0.06807

Base RTT (µs)

A
ve

ra
ge

m
ar

ki
ng

pr
ob

ab
ili

ty
(p

)

MTU: 9000 (B), C: 0.78125%

250 500 750 1,000

0.4

0.6

0.8

1

0.76442
0.73964

0.69481
0.66434

0.89772

0.96181
0.97968

0.958980.94613
0.97568 0.97059

0.92610

Base RTT (µs)

MTU: 9000 (B), C: 100%

LS-AIMD Reno ramp
LS-AIMD DCTCP step
LS-AIMD DCTCP instantaneous
Marking saturation (1.0)

Figure 8.30: Experiment #4: Marking dynamics

120

from using a C high enough to cause marking saturation, but at the same
time not a so low value that we lose up the utilisation of the link.

8.3.5 Additive Increase

Up until now, we have only prioritised the delay aspect of our experiments.
We shall now investigate how good LS-AIMD perform in keeping additive
increase phase of good value throughout our experiments.

In Figure 8.31, we look at the same set of plots, but for this metric now
with indicators to show where we want our additive increase to stay for the
different base RTT. These values are simply derived from the BDP of our
experiments and fed straight into the add function with the appropriate
growth constants and C. Although, we have one small remark which is
that since we did not log the mantissa part of the additive increase values
do we lack the sufficient information to get a very accurate reading for
those experiments with low C. The value, therefore, has to be a more or
less an approximation of the actual value.

We see that the additive increase grows very close to the desired
parameters of the individual experiment. However, notice how the
experiment with MTU of 9000 bytes and C set to 100% struggle to lie within
the desired parameters of the experiment. We see that the line flattens out
because the sender applies the additive increase phase more often than
the multiplicative decrease phase. Performing multiple increase phases
are needed when pacing over more extended periods, but doing the same
with the multiplicative decrease phase is not desirable as we would then
have large sawtooth in the queue. The outcome is a sender which is unable
to back off since the growth per RTT is magnitude higher than what gets
taken away. We say that the sender has become unresponsive and refuses to
cooperate with the AQM. The AQM should have evicted the packets of the
unresponsive traffic such that they are held responsible for the action they
cause on others. A such AQM would have prevented the unresponsive
traffic from building a longer queue than the desired range. However,
an AQM only need to intervene when proper warnings have been given,
through marking, and the traversing traffic fails to back off on its own.

8.3.6 Throughput

Finally, let us not forget to investigate how well the capacity shares among
the competitors. We evaluate only the experiment with the lowest base
RTT as we have already seen how well LS-AIMD converge under a high
transmission rate. We still evaluate this experiment over both a changing
MTU and C.

In Figure 8.32, we start with MTU of 1500 bytes. The low C is on the
top while the other one is at the bottom. We should now be able to see
how even the capacity shareout is between a set of senders with different
RTT. Nonetheless, a sender who paces grows its RTT to match the desired
transmission rate, so there might be senders not pacing. We, therefore, need
to test whatever these competitors can reach equilibrium.

121

3

4

5

6

7

8

4

4

5

5

4

6

7

7

5

6

7

7

5

6

7

7

6

7

7

8

7

7

8

8

A
ve

ra
ge

ad
di

ti
ve

in
cr

ea
se

(B
)

MTU: 1500 (B), C: 0.78125%

500

600

700

800

900

1,000

649

727

789

835

581

745

828

895

728

826

897

959

634

761

856

931

761

856

931

993

856

931

993

1,046

MTU: 1500 (B), C: 100%

250 500 750 1,000

6

8

10

12

14

16

8

9

10

11

8

10

11

13

8

11

13

14

9

12

14

16

12

14

16

14

16

Base RTT (µs)

A
ve

ra
ge

ad
di

ti
ve

in
cr

ea
se

(B
)

MTU: 9000 (B), C: 0.78125%

250 500 750 1,000

1,800

1,900

2,000

2,100

1,898
1,918

1,947
1,966

1,988

1,918
1,898

1,9441,936

1,903
1,920

2,011

1,758

1,995

1,758

1,995

1,758

1,995

Base RTT (µs)

MTU: 9000 (B), C: 100%

LS-AIMD Reno ramp
LS-AIMD DCTCP step
LS-AIMD DCTCP instantaneous
Full utilisation (1.0)

Figure 8.31: Experiment #4: Additive increase dynamics

122

MTU: 1500 (B), C: 0.78125%

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)
1e7

(a) LS-AIMD Reno Ramp

MTU: 1500 (B), C: 0.78125%

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(b) LS-AIMD DCTCP step

MTU: 1500 (B), C: 0.78125%

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(c) LS-AIMD DCTCP Instantan-
eous

MTU: 1500 (B), C: 100%

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(d) LS-AIMD Reno Ramp

MTU: 1500 (B), C: 100%

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)
1e7

(e) LS-AIMD DCTCP step

MTU: 1500 (B), C: 100%

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(f) LS-AIMD DCTCP Instantan-
eous

Figure 8.32: Experiment #4A: Throughput

As expected, the very same experiment with C equals to 100%, which
had the most stable queue now has the best convergence property, i.e.
the competitors at the bottleneck have reached equilibrium. We also
notice that each configuration almost follows the same pattern as earlier,
where the step configuration had the most stable capacity shareout, ramp
the worst and instantaneous fell in-between. However, we expected the
step configuration to be more stable than the other configurations, but
this is not the case as the DCTCP step configuration relies on a fine
granularity marking signal from the AQM to smooth out the congestion
level. Step configuration struggles as less than one measurement are taken
per RTT, which translates into either 0% or 100% marking per RTT. The step
configuration is, therefore, unable to smooth the congestion level properly
as it lacks the proper information to achieve this.

Additionally, we can confirm this by reinvestigating the average
marking probability of this experiment. We indeed observe that the step
configuration keep a much higher marking rate, which explains why it is
struggling, and it does not help that its probability grows faster than the
other configurations. However, we can lower C to increase the accuracy
of the congestion signal since a lower C translate into less fluctuation in
the queue of the bottleneck. A queue with fewer spikes is much prefered
as we can then achieve a more smoothed signal, but the consequence is of
course that the sender is now slower to adapt to a significant change in the
signalling.

For example, consider a scenario where a sink is full of water,
simulating a draining queue, and let us say that when it reaches above a
specific size, the threshold of the AQM, it is considered too much. Now
further consider that we have a person, simulating a competitor of the

123

bottleneck, emptying water bottles into the sink. Let us say one third-
person, simulating a receiver, spectate this experiment and is supposed to
signal congestion within a given granularity, forming the RTT between the
sender and receiver. Let us now take the more straightforward example
first, emptying a bottle with fast feedback requires the person to only add
a slight amount of water to the sink per RTT to maintain a shallow queue
at the bottleneck.

Now let us make the matter a little more complicated, it is much
prefered to empty larger bottles all at once, than empty smaller bottles one
by one; think of the size of the bottle as the payload of a network packet.
However, this requires the AQM to have at least two bottle size of water
such that there is enough time for the sender to reach the bottleneck before
it goes empty. The congestion window is thus the number of bottles that
one person is allowed to empty within an RTT. Let us now say we have a
few more persons emptying their bottles and in total inducing high enough
congestion to makes all senders committed at keeping fewer than one bottle
inflight per RTT. A person, of course, still want to empty their whole bottle
if possible, so each person starts pacing, extending their RTT, such that not
all persons empty their bottle all at once. A person is, of course, only first
made aware of congestion after they have already emptied their bottle, and
this feedback goes to only those who actively emptied their bottle in the
previous RTT.

However, we have up until now ignored a vital detail, which is how fast
should each sender increase their transmission rate; obviously, a person
who waits to empty his bottle has the right to next time empty his bottle
sooner than the rest who did not wait, i.e. forming a queue. Now recall that
in the step configuration, the likelihood for a transmission to end with a
mark depends on only the instantaneous queue length. Now if competitors
of the bottleneck have to increase their send rate rapidly, then how do they
know when they have gone too far? We can say that a person weakens its
knowledge of congestion by waiting long times between its transmissions.
Therefore, waiting for a long duration does not necessarily mean that it is
now safe to do a rapid increase in the congestion window. If the person
instead only slightly reduced its pacing timer, then the meaning of the
congestion signal is much more valuable. However, to compete against
other senders who have yet to know the precedence of congestion must a
rapid increase in the congestion window sometimes be forced to reach a
state of equilibrium.

It does not come as a surprise that all configurations in the other
experiment, where C is a lower value, struggles to maintain the state
of equilibrium. The competitors are not inducing enough congestion to
maintain the proper fair share of the capacity over short periods.

In Figure 8.33, we see the same set of configurations over the now
higher MTU. Jumbo frames bring the required transmission rate per RTT
to shallow levels. This experiment is a stress test in an attempt to break
LS-AIMD such that it malfunction. Starting with C equals 100%, we notice
how all configurations appear to go silence for serval seconds, this episode
of loss happens at the end stage of the experiment. Our explanation is that

124

MTU: 9000 (B), C: 0.78125%

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)
1e7

(a) LS-AIMD Reno Ramp

MTU: 9000 (B), C: 0.78125%

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(b) LS-AIMD DCTCP step

MTU: 9000 (B), C: 0.78125%

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(c) LS-AIMD DCTCP Instantan-
eous

MTU: 9000 (B), C: 100%

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(d) LS-AIMD Reno Ramp

MTU: 9000 (B), C: 100%

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)
1e7

(e) LS-AIMD DCTCP step

MTU: 9000 (B), C: 100%

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(f) LS-AIMD DCTCP Instantan-
eous

Figure 8.33: Experiment #4E: Throughput

since LS-AIMD became unresponsive and had a long queue until the last
period of the experiment, which caused a shift in the queue, resulting in a
majority of the queue occupancy to disappear. This cause TCP to perform
spurious retransmissions.

We notice how more stable the capacity sharing is between the
competitors of DCTCP configurations when C is lower. This outcome
has the same explanation as earlier; a smaller C yields a finer congestion
signalling when the transmission rate per RTT is also low.

8.4 Summary

We have, in this chapter, evaluated LS-AIMD under a variety of experi-
ments to verify that our design and implementation does indeed work, but
not without some scalability issues we discovered late in our evaluation
period which makes LS-AIMD misbehave when pushed to the extreme.
However, we have found the cause of this to under fold, and we were addi-
tionally able to scale in this extreme environment, but not without making
the overall algorithm unable to scale for the other environment.

We have, therefore, come to a conclusion which states that we should
be able to scale well for both environments if we manage to adapt C to the
desireable value depending on the transmission rate. However, this is not
such an easy problem to solve as it requires one to find the optimal C such
that all competitors remain in the state of equilibrium and at the same time
does not go unresponsive.

Now that we fully understand how well LS-AIMD performs do we
want to continue our evaluation by comparing it against the standard Reno

125

and DCTCP.

126

Chapter 9

Results

We shall now see how well the standard Reno and DCTCP match our
results from the previous chapter. We rerun the same experiment over
the same network and configurations. We preserve all, but the congestion
control algorithm from our evaluation. Any change in our results comes
from the performance of the individual congestion control algorithm. It is
also important to emphasise that both Reno and DCTCP variants run over
the very same configurations of RED. No one can, thus, blame a change in
the results on the AQM or the network. We do, however, append the same
modifications as earlier to DCTCP to increase precision in its calculation
of alpha. These modifications are needed to ensure that DCTCP performs
well also under low congestion levels.

We evaluate experiments based on the same routine as last time. First,
we do a simple convergence test to verify that both Reno or DCTCP
competitors perform well from the start. Next, we repeat the experiment #3
to inspect results for any form of malfunctions. We continue the evaluation
by testing Reno and DCTCP in scalability over both the standard ethernet
frame size and jumbo frames in a network with high to low base RTTs. We,
finally, have one last discussion to talk about the significant difference in
the results.

9.1 Convergence Test

We start with a convergence test between two senders in each configura-
tion. Our goal with this test is to verify an excellent initial performance
from both Reno and DCTCP.

9.1.1 Additive Increase Multiplicative Decrease (AIMD)

We inspect the congestion window and ssthresh of the two senders. As
earlier, we expect both senders to fall within the markers of the experiment
parameters.

In Figure 9.1, we notice how well all configuration performs in keeping
their congestion window and ssthresh to the appropriate value of the
experiment. Additionally, we observe the typical AIMD style congestion

127

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

W
s

5000

10000

15000

20000

25000

30000

W
B

(a) W: Reno Ramp

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

5

6

7

8

9

10

W
s

8000

9000

10000

11000

12000

13000

14000

W
B

(b) W: DCTCP Step

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

5

6

7

8

9

10

11

12

W
s

8000

10000

12000

14000

16000

W
B

(c) W: DCTCP Instantaneous

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

2

4

6

8

10

12

14

16

S s

5000

7500

10000

12500

15000

17500

20000

22500

S B

(d) S: Reno Ramp

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

S s

8000

9000

10000

11000

12000

13000

S B

(e) S: DCTCP Step

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

5

6

7

8

9

10

11

12

S s

8000

10000

12000

14000

16000

S B

(f) S: DCTCP Instantaneous

Figure 9.1: Experiment #2: W & S

control, where one segment gets added to the congestion window per RTT.
However, the multiplicative decrease seems to be slow and inefficient. The
sender uses an RTT to decrease its congestion window to the new value of
ssthresh.

9.1.2 Marking Rate

Next, we investigate the marking probability of the individual configura-
tion. We expect a similar trend in AIMD as the one experienced by our
LS-AIMD algorithm.

In Figure 9.2, we see that the step configuration still induces a very high
marking rate and seems to be some synchronisation ongoing between the
two senders. In the marking probability, we can see spikes hitting 50%
periodically. On the other hand, the ramp configuration continues yielding
the lowest marking rate. The instantaneous configuration does neither
change and has, on average, a moderate level of congestion with a small
deviation. We are, therefore, satisfied with how similar the marking rate of
current Linux TCP compares to our algorithm.

9.1.3 Queueing Delay & Smoothed Round Trip Time (SRTT)

Going over to the delay aspect of the experiment, we are once again
interested finding out whatever Reno and DCTCP keep the queue within
the parameters of RED. We are also looking into what form of stability each
configuration bring vs the same configuration of LS-AIMD.

In Figure 9.3, we observe no major contradicting results. Reno and
DCTCP appear to be going approximately as fast as recommended by
the AQM. Neither algorithm causes any form of added delay due to
unresponsiveness. We do, however, see that the ramp configuration yield
the worst performance and is unable to keep a smooth queue.

128

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

0.30

0.32

0.34

0.36

0.38

0.40

DC
TC

P

(a) α: DCTCP Step

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

0.18

0.20

0.22

0.24

0.26

0.28

DC
TC

P

(b) α: DCTCP Instantaneous

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

0.00

0.01

0.02

0.03

0.04

0.05

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(c) p: Reno Ramp

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(d) p: DCTCP Step

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

0.15

0.20

0.25

0.30

0.35

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(e) p: DCTCP Instantaneous

Figure 9.2: Experiment #2: Loss rates

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

5

10

15

20

25

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

400

600

800

1000

1200

1400

1600

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(a) Q: Reno Ramp

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

4

6

8

10

12

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

300

400

500

600

700

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(b) Q: DCTCP Step

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

4

6

8

10

12

14

16

18

20

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

400

600

800

1000

1200

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(c) Q: DCTCP Instantaneous

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

10

15

20

25

30

SR
TT

 (p
ac

ke
ts

)

600

800

1000

1200

1400

1600

1800

2000

SR
TT

 (µ
s)

(d) SRTT: Reno Ramp

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

8

10

12

14

16

18

SR
TT

 (p
ac

ke
ts

)

500

600

700

800

900

1000

SR
TT

 (µ
s)

(e) SRTT: DCTCP Step

10.00 10.02 10.04 10.06 10.08 10.10
Time (s)

8

10

12

14

16

18

20

22

24

26

SR
TT

 (p
ac

ke
ts

)

600

800

1000

1200

1400

SR
TT

 (µ
s)

(f) SRTT: DCTCP Instantaneous

Figure 9.3: Experiment #2: Queueing delay & SRTT

129

0 5 10 15 20
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(a) Throughput: Reno Ramp

0 5 10 15 20
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(b) Throughput: DCTCP step

0 5 10 15 20
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(c) Throughput: DCTCP Instant-
aneous

0 5 10 15 20
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(d) Utilisation: Reno Ramp

0 5 10 15 20
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(e) Utilisation: DCTCP step

0 5 10 15 20
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(f) Utilisation: DCTCP Instantan-
eous

Figure 9.4: Experiment #2: Throughput & link utilisation

9.1.4 Throughput & Link Utilisation

Finally, we retake the throughput and link utilisation part of the evaluation.
We dig into the rate at which all senders converge to the fair share of the
capacity. Additionally, we measure the utilisation of the link. A small as
possible deviation is prefered in both metrics.

In Figure 9.4, we observe very similar results when comparing the
AIMD side by side to LS-AIMD. However, we notice a very slight
improvement in the rate at which the two senders converge in the ramp
and step configuration in our former evaluation of LS-AIMD. On the other
hand, the link utilisation is not a problem for neither of the algorithm.

9.2 The submss Regime

We are now ready to see how well Reno and DCTCP perform in the
submss regime. We expect both algorithms to perform slightly worse in
all configurations since each sender now has to keep a low congestion
window made of just 1.24 segments per RTT. However, we expect the step
configuration to have massive trouble as it has no maximum threshold,
whereas the other two configurations have room to relax.

9.2.1 Additive Increase Multiplicative Decrease (AIMD)

We are now going to evaluate two major weakness of the AIMD style
congestion control. The first problem is that a sender most often increases
its congestion window by one segment per RTT, and another problem is
that TCP refuses to keep a lower transmission rate than two segments per

130

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0

1

2

3

4

5

6

7

W
s

0

2000

4000

6000

8000

10000

W
B

(a) W: Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
s

0

500

1000

1500

2000

2500

3000

3500

4000

W
B

(b) W: DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0

1

2

3

4

5

W
s

0

1000

2000

3000

4000

5000

6000

7000

W
B

(c) W: DCTCP Instantaneous

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0

1

2

3

4

5

S s

0

1000

2000

3000

4000

5000

6000

7000

S B

(d) S: Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S s

0

500

1000

1500

2000

2500

3000

3500

4000

S B

(e) S: DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S s

0

1000

2000

3000

4000

5000

S B

(f) S: DCTCP Instantaneous

Figure 9.5: Experiment #3A: W & S

RTT. A shallow base RTT makes use of AIMD inconvenient, so we are not
expecting any excellent performance from either Reno or DCTCP.

In Figure 9.5, we see precisely what we predicted, notice how neither
of configuration has a congestion window of fewer than two segments.
Meaning, the sender has never kept fewer than two segments inflight per
RTT in either of the experiment. Notice how the step configuration is stuck
at exactly two segments per RTT since the instantaneous marking threshold
is lower than two segments. A Linux sender refrains from increasing
its congestion window when all RTT ends up with a congestion mark.
The instantaneous configuration also suffers as a probe of an additional
segment inflight is too severe in the environment of submss regime and
ends with a mark at least every second RTT. Finally, the ramp configuration
comes out best but has the advantage of a wider gap between the minimum
and maximum threshold of RED. However, Reno is nonetheless very
aggressive in its attempt at occupying any additional chunk of the capacity.

9.2.2 Marking Rate

We investigate the marking probability of RED to understand how severe
the congestion was and what picture each sender had of the bottleneck.

In Figure 9.6, we are not surprised when we see that the step
configuration has reached marking saturation. It is the same reason why
the sender has no chance at probing for additional capacity as holding two-
segment inflight per RTT induce congestion mark every RTT. Notice how
the ramp and instantaneous configuration now has slightly higher level
congestion than under LS-AIMD.

131

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.96

0.98

1.00

1.02

1.04
DC

TC
P

(a) α: DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

DC
TC

P

(b) α: DCTCP Instantaneous

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(c) p: Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.96

0.98

1.00

1.02

1.04

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(d) p: DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

0.5

0.6

0.7

0.8

0.9

M
ar

k
Pr

ob
ab

ilit
y

(p
)

(e) p: DCTCP Instantaneous

Figure 9.6: Experiment #3A: Loss rates

9.2.3 Queueing Delay & Smoothed Round Trip Time (SRTT)

Next, we examine the queueing delay and the SRTT to reveal what kind
of penalty going unresponsive for a more extended period has when the
AQM is not performing any form of eviction of packets, i.e. pure ECN plus
tail-drop.

In Figure 9.7, we notice how the queueing delay of all configuration
has gone slightly up, and we see the same trend in the SRTT because a
significant part of SRTT is the queueing delay. It is not a surprise that both
queueing delay and SRTT is kept more stable now than before as a sender
who reaches marking saturation cannot probe for additional capacity, i.e.
an unresponsive sender. How much additional queue we get depends on
how low the base RTT is and how many senders goes unresponsive. The
queueing delay grows proportionally for either case. However, even under
marking saturation, we do not see any form of synchronisation in the step
configurations queue. Ironically, the problem we are solving is that the
sender refuses to lose up its acknowledgement clock and builds a queue,
but the fix to the synchronisation problem is also the acknowledgement
clock. The transmission of a set of "acknowledge clocked" sender cannot
become synchronised over more extended periods as the queue of the
bottleneck break up the synchronisation.

9.2.4 Throughput & Link Utilisation

Finally, we go back at evaluating the throughput and link utilisation of the
different configurations.

132

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

5

10

15

20

25

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

400

600

800

1000

1200

1400

1600

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(a) Q: Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

4

6

8

10

12

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

300

400

500

600

700

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(b) Q: DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

4

6

8

10

12

14

16

18

20

Qu
eu

ei
ng

 D
el

ay
 (p

ac
ke

ts
)

200

400

600

800

1000

1200

Qu
eu

ei
ng

 D
el

ay
 (µ

s)

(c) Q: DCTCP Instantaneous

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

5

10

15

20

25

30

SR
TT

 (p
ac

ke
ts

)

400

600

800

1000

1200

1400

1600

1800

SR
TT

 (µ
s)

(d) SRTT: Reno Ramp

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

4

6

8

10

12

14

16

18

20

SR
TT

 (p
ac

ke
ts

)

400

600

800

1000

1200

SR
TT

 (µ
s)

(e) SRTT: DCTCP Step

20.00 20.02 20.04 20.06 20.08 20.10
Time (s)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

SR
TT

 (p
ac

ke
ts

)

400

600

800

1000

1200

SR
TT

 (µ
s)

(f) SRTT: DCTCP Instantaneous

Figure 9.7: Experiment #3A: Queueing delay & SRTT

0 10 20 30 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(a) Throughput: Reno Ramp

0 10 20 30 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(b) Throughput: DCTCP step

0 10 20 30 40
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(c) Throughput: DCTCP Instant-
aneous

0 10 20 30 40
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(d) Utilisation: Reno Ramp

0 10 20 30 40
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(e) Utilisation: DCTCP step

0 10 20 30 40
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
ilis

at
io

n

(f) Utilisation: DCTCP Instantan-
eous

Figure 9.8: Experiment #3A: Throughput & link utilisation

133

In Figure 9.8, we notice how well smoothed all configuration has
become compared to LS-AIMD. Well, the only benefit of having a set of
competitors being unresponsive is that the capacity shareout between them
becomes very stable as the sender cannot probe. However, the benefit of a
very smooth capacity is not worth trading for a penalty of more queueing
delay.

9.3 Exhaustive & Scalability Test

One last thing left to do is to perform an extensive test under different
base RTT and MTU sizes, and compare these results against LS-AIMD. An
important goal with these experiments is to locate some of the different
trends between AIMD and LS-AIMD. Nonetheless, we are looking to
achieve the same set goals as we did in the evaluation of LS-AIMD. The
question we want an answer to is who scales the most.

9.3.1 Link Utilisation

First, as always, we need to verify the utilisation of the link. We expect
AIMD to perform better at keeping the link utilised as there is no risk
of running out of a deep queue among unresponsive senders, whereas a
shallow queue is extremely hard to maintain over a more extended period
and especially when performing paced transmission greater than one RTT.

In Figure 9.9, we see that AIMD goes well in keeping the link utilisation
quite nicely over the different experiments. However, we notice how the
ramp configuration struggles to maintain the utilisation of a shallow queue
over higher base RTTs. We can explain this outcome by remembering
that Reno does rate halving, and is neither efficient at recovering loss of
a high congestion window. This process is slow, and if enough sender gets
marked, not hard with a shallow queue, then Reno is unable to recover fast
enough to prevent the queue from drying. Remarkably, we observe that
under jumbo frames the link in the most cases kept fully utilised without
any form of deviation.

9.3.2 Queueing Delay

We inspect the queueing delay of the AQM to further look into what causes
such a proper utilisation of the link for such a long period.

In Figure 9.10, we see a slight increase in the queueing delay for the
experiment with MTU of 1500 bytes. However, under jumbo frames, we
see remarkably high queueing delays and a steady increasing queue for
lower base RTT. A deep queue explains why the link never got a chance to
go unutilised.

9.3.3 Smoothed Round Trip Time (SRTT)

Further inspection of the SRTT of all senders should tell us what kind of
impact a steady growing queue has on the traversing traffic. This delay

134

250 500 750 1,000
0.96

0.97

0.98

0.99

1

1.01

0.99738
0.99547

0.99686

0.98503

0.99966 0.99925 0.99937
0.99728

0.99985 0.99959 0.99953 0.99961

Base RTT (µs)

A
ve

ra
ge

lin
k

ut
ili

sa
ti

on
MTU: 1500 (B)

250 500 750 1,000
0.96

0.97

0.98

0.99

1

1.01

0.99976 1.00000 1.00000 1.000000.99999 0.99982 1.00000 1.000001.00000 1.00000 0.99995 1.00000

Base RTT (µs)

MTU: 9000 (B)

Reno ramp
DCTCP step
DCTCP instantaneous
Full utilisation (1.0)

Figure 9.9: Experiment #4: Link utilisation dynamics

is approximately the average response time an application sees, so any
growth in the RTT harms all applications over the bottleneck.

In Figure 9.11, we notice how the SRTT is straightening out horizontally
instead of just being linear across the diagonal. So any advantage a lower
RTT gives slowly decreases when going for a lower RTT since at the same
time the queue grows. Remarkably, the jumbo frame experiment turns into
sky-high queueing occupancy, and the sender sees a fully horizontal line
across all base RTTs. Meaning, no particular benefit is gained through
a lower base RTT, and neither has the network, or AQM has any blame
in this. The reason why the line at its worst becomes a horizontal line
comes from the fact that the BDP proportionally decreases for lower
base RTT, and the competitors’ contribution of queueing delay keeps on
proportionally increasing since they have no mean in backing off. Meaning,
a lower base RTT is enough to yield terrible results when TCP starts to
malfunction. However, what about other factors such as higher MTU or
more competitors? A higher MTU or any more level of congestion places
the horizontal line higher up, resulting in a deeper queue.

9.3.4 Marking Rate

We once again have to revisit the marking probability of RED to get a clear
picture of why our results indicate proportionally growing queue. We
expect the marking rate of RED to be near marking saturation since the

135

250 500 750 1,000

100

200

300

400

500

600

700

514
500

463
442

275

317
285 272

457

407
375

353

Base RTT (µs)

A
ve

ra
ge

qu
eu

ei
ng

de
la

y
(µ

s)

MTU: 1500 (B)

250 500 750 1,000

2,600

2,800

3,000

3,200

3,400 3,386

3,129

2,893

2,638

3,382

3,142

2,651 2,634

3,381

3,140

2,887

2,631

Base RTT (µs)

MTU: 9000 (B)

Reno ramp
DCTCP step
DCTCP instantaneous
Minimum queueing delay (250 µs)
Middle queueing delay (500 µs)
Maximum queueing delay (750 µs)

Figure 9.10: Experiment #4: Queue dynamics

136

250 500 750 1,000

600

800

1,000

1,200

1,400

1,600

88
4

1,1
19

1,3
31

1,5
61

64
5

93
9

1,1
54

1,3
91

82
4

1,0
25

1,2
42

1,4
69

75
0

1,0
00

1,2
50

75
0

1,0
00

1,2
50

1,5
00

1,0
00

1,2
50

1,5
00

1,7
50

Base RTT (µs)

A
ve

ra
ge

SR
TT

(µ
s)

MTU: 1500 (B)

250 500 750 1,000

3,600

3,700

3,800

3,900

4,000

3,8
37

3,8
28 3,8

43
3,8

43
3,8

42
3,8

44

3,6
02

3,8
43

3,8
42

3,8
43

3,8
43

3,8
43

Base RTT (µs)

MTU: 9000 (B)

Reno ramp
DCTCP step
DCTCP instantaneous
Minimum SRTT (500-1250 µs)
Middle SRTT (750-1500 µs)
Maximum SRTT (1000-1750 µs)

Figure 9.11: Experiment #4: SRTT dynamics

137

250 500 750 1,000
0

0.2

0.4

0.6

0.8

1

0.22176

0.13612 0.12512 0.11931

0.97705

0.71592

0.58678
0.55413

0.65991

0.53805

0.45834

0.39554

Base RTT (µs)

A
ve

ra
ge

m
ar

ki
ng

pr
ob

ab
ili

ty
(p

)

MTU: 1500 (B)

250 500 750 1,000
0.985

0.99

0.995

1

1.005

1.01

1.015

0.99974 1.00000 1.00000 1.000001.00000 1.00000 1.00000 1.000001.00000 1.00000 1.00000 1.00000

Base RTT (µs)

MTU: 9000 (B)

Reno ramp
DCTCP step
DCTCP instantaneous
Marking saturation (1.0)

Figure 9.12: Experiment #4: Marking dynamics

queue is nowhere near the parameters of the experiment.
In Figure 9.12, we see that the average marking rate of RED keeps

on steady growing when nearing lower base RTT. The growth is much
steeper than what LS-AIMD achieved. We see that the step configuration
reaches marking saturation under the lowest base RTT we test. Even the
ramp configuration has a way higher probability of being marked. In both
experiments, RED show an apparent effort with the intent to reduce the
transmission rate the traversing traffic. The experiment with jumbo frames
reaches marking saturation across all configurations and all base RTTs. The
transmission rate of traversing traffic is nowhere near the parameters of the
experiment.

9.3.5 Throughput

As a concluding confirmation of whatever the stability in the capacity
continues the same trend as earlier, we reexamine the throughput level of
the experiment with the lowest base RTT for both MTU sizes.

In Figure 9.13, we verify that all except two configurations with lower
MTU has a long-lasting period with unresponsive senders. Nonetheless,
this level of stability in the capacity shareout indicates that the senders
over the bottleneck stopped probing for an extended period and were
proactively contributing toward a state of marking saturation.

138

MTU: 1500 (B)

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)
1e7

(a) Reno Ramp

MTU: 1500 (B)

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(b) DCTCP step

MTU: 1500 (B)

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(c) DCTCP Instantaneous
MTU: 9000 (B)

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(d) Reno Ramp

MTU: 9000 (B)

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7
Th

ro
ug

hp
ut

 (b
yt

es
)

1e7

(e) DCTCP step

MTU: 9000 (B)

0 10 20 30 40 50
Time (s)

0

1

2

3

4

5

6

7

Th
ro

ug
hp

ut
 (b

yt
es

)

1e7

(f) DCTCP Instantaneous

Figure 9.13: Experiment #4A & #4E: Throughput

9.4 Queueing Delay Trends

We present a summary of our findings here about the dynamics of
queueing delay across all configuration over the conducted experiments.
We show a little bit more statistics about our data on what the instant-
aneous queueing delay was in each experiment over the period where all
competitors participated.

We now give out the minimum and maximum value of the instantan-
eous queue to show some interesting remarks. We show the values of mean
and standard deviation from earlier on. We also include 95th and 99th per-
centile to know what the highest queueing delay observed is in the respect-
ive percentages group of observation.

In Tables 9.1 to 9.3, we notice that already at the two first experiments,
LS-AIMD has better stability in the results. For the next two following
experiments, we notice how the maximum queueing delay sky-rockets for
some configurations. We need to analyse more to locate the cause for
this. We also notice how LS-AIMD keep lower percentiles than AIMD.
Otherwise, the results are relatively similar.

Moving to the fourth experiment with MTU of 1500 bytes, we see that
LS-AIMD is generally closer to the middle of the ramp of RED and the
percentiles do not indicate any queue build up either. We also notice how
the standard deviation slowly decreases when moving to lower base RTT.
However, LS-AIMD experience a higher maximum queue occupancy in all
these experiments. LS-AIMD with a lower C underperforms as it held
an inappropriate low queueing delay and no form of stability. Meaning,
a lower queueing delay does not always mean a better configuration; it
depends on the parameter of RED and how stable TCP is at cooperating
with RED at holding them. RED has more information available, and TCP

139

Experim
ent(#)

1
2

3A
3B

4A
4B

4C
4D

4E
4F

4G
4H

R
eno

M
in

(µs)
0

0
720

294
196

0
0

0
0

950
2162

2424
M

ax
(µs)

1146
1572

6127
1998

917
1277

1474
1081

3768
3178

2916
2686

M
ean

(µs)
555

875
1067

1047
514

500
463

441
3385

3129
2893

2638
Standard

deviation
(µs)

212
214

145
188

77
134

202
234

93
163

15
16

95th
precentile

(µs)
917

1212
1310

1376
655

720
753

786
3407

3145
2916

2654
99th

precentile
(µs)

983
1343

1409
1507

688
786

819
851

3407
3178

2916
2654

LS-A
IM

D
R

eno
(C

:0.78125%
)

M
in

(µs)
-

-
-

-
0

98
0

0
0

0
0

0
M

ax
(µs)

-
-

-
-

688
1343

491
458

1114
1081

1114
1933

M
ean

(µs)
-

-
-

-
258

247
237

225
464

420
402

375
Standard

deviation
(µs)

-
-

-
-

41
34

38
44

161
162

161
161

95th
precentile

(µs)
-

-
-

-
327

294
294

294
720

688
655

622
99th

precentile
(µs)

-
-

-
-

327
327

327
327

819
786

786
753

LS-A
IM

D
R

eno
(C

:100%
)

M
in

(µs)
0

131
393

393
0

0
0

0
0

0
0

0
M

ax
(µs)

1081
1572

1540
1605

1572
1769

1867
2818

3571
3178

2916
2686

M
ean

(µs)
571

866
1033

1016
495

487
495

469
1763

1567
1452

1289
Standard

deviation
(µs)

185
184

103
138

54
67

74
87

1096
987

923
839

95th
precentile

(µs)
851

1146
1212

1245
589

589
622

589
3342

3014
2654

2392

RED Ramp Marking

99th
precentile

(µs)
950

1277
1277

1343
622

622
655

655
3407

3145
2883

2555

Table
9.1:R

ED
ram

p
m

arking:queueing
delay

140

Ex
pe

ri
m

en
t(

#)
1

2
3A

3B
4A

4B
4C

4D
4E

4F
4G

4H

D
C

T
C

P
M

in
(µ

s)
29

4
22

9
0

26
2

0
0

0
0

31
45

28
83

21
62

24
90

M
ax

(µ
s)

65
5

72
0

10
48

10
81

10
48

46
53

65
5

95
0

34
73

32
11

26
86

26
86

M
ea

n
(µ

s)
47

2
48

0
74

8
65

1
27

5
31

6
28

5
27

1
33

81
31

42
26

51
26

33
St

an
da

rd
de

vi
at

io
n

(µ
s)

50
83

14
15

5
26

12
5

14
6

16
2

15
13

10
19

95
th

pr
ec

en
ti

le
(µ

s)
55

7
62

2
75

3
91

7
29

4
52

4
52

4
52

4
34

07
31

45
26

54
26

54
99

th
pr

ec
en

ti
le

(µ
s)

58
9

62
2

78
6

98
3

32
7

58
9

55
7

55
7

34
07

31
78

26
54

26
54

LS
-A

IM
D

D
C

T
C

P
(C

:0
.7

81
25

%
)

M
in

(µ
s)

-
-

-
-

0
0

0
0

0
0

0
0

M
ax

(µ
s)

-
-

-
-

36
0

17
03

75
3

72
0

91
7

95
0

88
4

88
4

M
ea

n
(µ

s)
-

-
-

-
19

8
20

0
19

8
19

7
16

0
14

2
12

8
11

9
St

an
da

rd
de

vi
at

io
n

(µ
s)

-
-

-
-

33
30

31
32

13
5

13
1

12
7

12
4

95
th

pr
ec

en
ti

le
(µ

s)
-

-
-

-
26

2
22

9
22

9
22

9
42

5
39

3
39

3
36

0
99

th
pr

ec
en

ti
le

(µ
s)

-
-

-
-

26
2

26
2

26
2

26
2

52
4

52
4

52
4

49
1

LS
-A

IM
D

D
C

T
C

P
(C

:1
00

%
)

M
in

(µ
s)

29
4

0
0

19
6

0
0

0
0

0
0

0
0

M
ax

(µ
s)

16
05

65
5

79
29

33
09

13
10

43
25

19
33

62
2

34
07

31
78

29
16

26
54

M
ea

n
(µ

s)
48

2
49

6
62

1
56

9
25

9
26

2
26

6
26

1
16

30
11

79
88

6
70

8
St

an
da

rd
de

vi
at

io
n

(µ
s)

55
62

17
3

11
1

49
63

87
95

10
75

56
5

35
7

33
7

95
th

pr
ec

en
ti

le
(µ

s)
55

7
58

9
75

3
75

3
32

7
36

0
42

5
42

5
33

75
24

24
14

41
13

43

REDStepMarking

99
th

pr
ec

en
ti

le
(µ

s)
55

7
62

2
78

6
75

3
36

0
42

5
45

8
49

1
34

07
31

45
23

59
19

00

Ta
bl

e
9.

2:
R

ED
st

ep
m

ar
ki

ng
:q

ue
ue

in
g

de
la

y

141

Experim
ent(#)

1
2

3A
3B

4A
4B

4C
4D

4E
4F

4G
4H

D
C

T
C

P
M

in
(µs)

393
393

557
393

229
98

0
98

2785
2490

2392
2490

M
ax

(µs)
655

786
1179

1310
622

819
819

753
3407

3178
4030

2686
M

ean
(µs)

546
584

885
893

456
407

375
353

3380
3139

2886
2630

Standard
deviation

(µs)
46

45
59

99
40

34
38

47
14

13
18

20
95th

precentile
(µs)

622
655

983
1048

524
458

425
425

3407
3145

2916
2654

99th
precentile

(µs)
622

688
1048

1114
557

491
458

491
3407

3145
2916

2654
LS-A

IM
D

D
C

T
C

P
(C

:0.78125%
)

M
in

(µs)
-

-
-

-
0

0
0

0
0

0
0

0
M

ax
(µs)

-
-

-
-

491
5275

655
786

950
1114

1081
7012

M
ean

(µs)
-

-
-

-
238

236
235

234
159

261
244

230
Standard

deviation
(µs)

-
-

-
-

33
35

28
30

135
137

138
149

95th
precentile

(µs)
-

-
-

-
294

294
262

262
425

491
491

458
99th

precentile
(µs)

-
-

-
-

294
294

294
294

557
589

589
589

LS-A
IM

D
D

C
T

C
P

(C
:100%

)
M

in
(µs)

229
425

557
327

0
0

0
0

0
0

0
0

M
ax

(µs)
720

786
1114

2752
3211

1605
2490

1474
5210

3178
2916

2654
M

ean
(µs)

556
604

821
812

419
388

367
352

1476
1145

914
811

Standard
deviation

(µs)
37

45
58

101
53

49
61

58
713

406
281

299
95th

precentile
(µs)

622
688

917
983

491
458

458
458

3211
1802

1343
1310

RED Instantaneous Marking

99th
precentile

(µs)
655

720
950

1015
524

491
491

491
3407

2850
1835

1998

Table
9.3:R

ED
instantaneous

m
arking:queueing

delay

142

should, therefore, go as fast as RED permits such that the bottleneck has
enough queueing occupancy to maintain link utilisation.

Moving to the last set of experiments, now jumbo frames, we see
that both AIMD and LS-AIMD with a high C build a very deep queue.
However, notice how LS-AIMD did not become unresponsive but instead
is unable at keeping the standard deviation low since too much get added
and taken away from the congestion window. On the other hand, LS-AIMD
with a low C performs exceptionally well, more than ten times better than
the other, by both being responsive and accumulate just enough to keep a
low deviation, although C should have been a little bit higher to avoid link
underutilisation.

9.5 Final Discussion & Remarks

We have now evaluated the results of LS-AIMD against the Linux TCP
AIMD for both Reno and DCTCP. We have additionally tried out two
distinguishable setups of RED for DCTCP in an attempt at locating
problems with the AQM. We have been unsuccessful in finding any
problems with RED or the network. From our understanding, the problem
lies in TCP and nothing else. We can always continue to ignore this
problem and hope a higher quantity of bitrate would save us, but we have
demonstrated that by making small changes to TCP, we can perform way
better than we currently do. We have briefly explained how hard it is to
maintain a shallow queue of two packets, but it is possible as our results
of LS-AIMD show. The removal of a deep queue through the use of AQMs
makes the transmission rate of a sender more depended on what base RTT
the network delivers, the size of the packets and the number of competitors
at the bottleneck. The precedence of the problem will, therefore, always be
there when base RTT shrinks and a higher bitrate throughout the network
does not help as the AQM can then keep a proportionally lower queue
occupancy. E.g., a queue of two packets on a one Gbps link with MTU
of 1500 bytes is roughly 24 microseconds of queueing delay, while the
same setup with a 10 Gbps link allows approximately 2.4 microseconds
of queueing delay.

We have also seen a trend where as soon as the traversing traffic stop
following the recommendation of the AQM a lower base RTT result in a
higher queue occupancy, and this added queueing delay diminishes any
gain in the now lower base RTT.

However, LS-AIMD is not entirely perfect yet as it should adapt to the
appropriate C by itself.

9.6 Summary

In this chapter, we have rerun the very same set of experiments as in our
evaluation chapter. We have seen why clamping the congestion window
is a problem that prevents the standard TCP from yielding any excellent
performance in an environment mostly dominated by low base RTT.

143

We intend to conclude our work in the next chapter and give a summary
of our main contributions. We also plan to give ideas on how our work can
be continued to improve the results and perform tests under more realistic
environments.

144

Part IV

Conclusion

145

Chapter 10

Conclusion

We are now ready to summarise up our work on the problem we initially
thought was easy to solve. We then continue with our main contributions
and finally end with a section on what we could have done differently
and also look at what else we could have done to improve the results
further. We also talk about experiments which could be worth testing
against but were simply out of reach for our work because a tremendous
work went into just scaling TCP for the submss regime. Experimentation
was, therefore, a low priority, but still enough to give away the most
vital properties of LS-AIMD. As far as our results predicate a further
improvement of LS-AIMD should be worth testing out. We also believe
that other researchers should criticise every aspect of our work and take
nothing for granted. We could have overseen some more straightforward
solutions because we had to add the complexity of C since we were at the
beginning not aware that our problem is very similar to the problem of TCP
were RTT bias cause one flow to accelerate faster than the other. We did,
however, remember that flows in the submss regime should add more to
the congestion window per ACK and expected this to work out just fine.

10.1 Summary

We have in this thesis worked against a problem of TCP, which prevents
low queueing delays over already low base RTT. The problem boils down
to a fundamental problem in TCP, which prevents a lower transmission
rate than two segments per RTT. We, first, quantified the prevalence of
the problem for broadband, data centre and IPC environments. We then
revisited earlier work to form a better understanding of the problem and
try to find any particular already existing solutions. This problem, at the
beginning of our adventure, had no clear visibility in the previous work
and had only gained the interest of a few researchers. It was first in
the later stage of the project that we realised some of the work done a
decade ago had some similarity with our work. However, it was more
about reducing the loss level of TCP under sparse link rates. We also later
found some researching teams working on DCTCP, but they suggested
drastically modifications which would require a significant change in how

147

TCP operates and was therefore deemed not to scale over the Internet.
We then went on testing out TCP to see the problem in action and thus

formed a set of experiments which we wanted to improve the results on.
This brought us to a long design period where we had to solve two severe
problems of TCP. First, we had to solve the problem of AIMD not scaling
for either a very low or high congestion window. Then, we had to solve
another problem which required us to implement a packet conservation
clock which would allow us to sender fewer than one segment per RTT, or
two when working with delayed acknowledgements.

We then dealt with the complexity of Linux and managed to implement
a very simple implementation out of the design. This work was of course
not without much hassle since we had to update our version of the kernel
midway through the project and then we were surprised by a regression
bug in the kernel. Much time went out at first understanding there was
a bug there and then locating the cause of the bug. We implemented
our work as mainly as a new congestion control module inside the Linux
kernel, but some additional changes were needed to support the new
functionality of our module.

We further continued our work by testing the implementation extens-
ively to find any scalability issues; these three phases were repeated until
we were happy with our results. By three phases, we mean design, imple-
mentation and testing period. We were stuck for a while in a period where
we found scalability issues one after another. These three phases helped us
in improving the design, implementation and also how we tested TCP. We
also learned to be more transparent with how we conducted tests of TCP
such that it would allow easily replicable tests for our self and others.

Finally, we compared our results against AIMD to reveal how better LS-
AIMD performed under both Reno and DCTCP. In total, we tested three
RED configurations to see if we could improve the results also from the
AQM.

10.2 Main Contributions

• Can we extend TCP for shallow base RTT? Yes, we have modified
TCP such that the sender adds a local transmission delay to keep
a lower transmission rate. The protocol is now capable of scaling
in environments which mandates a shallow transmission rate. We
describe a solution where the transmission rate has no lower bound
unless the implementer sets an artificial limitation.

• Can we preserve stretch acknowledgements for low congestion
window values?

Yes, we have designed the solution around this requirement. The
solution itself does not depend on when the receiver decides to send
an acknowledgement. The sender transmits packets at the minimum
of the stretch acknowledgement factor but adds delays between its

148

packets. The sender later subtracts the added delay. The solution is
meant to scale well with significant stretch acknowledgement factors.

• Can we preserve a congestion window made out of segments in a
network with a low transmission rate per RTT?

Yes, we propose the use of fractional congestion window. The con-
gestion window extends to have an additional congestion window
which allows finer transmission adjustments.

• Are we able to create a minimal solution which is easy to
implement?

Yes, the solution requires minimal modification to the sending host
and is, therefore, out of the box partially deployable over the Internet.
We not only made the solution simple but additionally made ease for
other congestion control algorithms to modify the rate of the sender
using a one confined congestion window.

10.3 Future Work

We now describe what most likely would be our next steps. Even though,
much work has gone into making LS-AIMD do we think more time should
be used to do proper experimentation.

More experiments should be conducted under different topologies.
For instance, we should test LS-AIMD in a data centre and IPC like
environment to reveal any surprises we may have overseen. We also need
to perform some realistic tests over, for instance, a path on the Internet and
measure whatever we cause starvation or not.

We need to perform experiments where the base RTT varies between
the competitors. Although, we did test LS-AIMD in the sub-packet regime
are we not confident whatever it would also scale among competitors with
different base RTT.

We should also prioritise to benchmark LS-AIMD under a mix of delay
critical and long-lasting flows. Another metric we should look closer at
is the completion time of flows under a low base RTT environment. We
expect LS-AIMD to perform better in either case since an LS-AIMD sender
has no mean to build a queue over the maximum threshold of the AQM.

We should also benchmark TCP from the application layer to verify our
results. We need to evaluate the goodput and response time between two
applications in a typical server-client like setup. Realistic scenario

To further improve the scalability of LS-AIMD, we need to form a way
to approximate the correct C such that LS-AIMD always performs well.
However, since a sender may need to use a high C even when probing
inside the submss regime, do we not see any possible ways to make them
converge to a certain C without performing another level of AIMD. But
even then, what should be the appropriate increase in C over which time
scale? Since the RTT may not be the same.

149

We have benchmarked against Linux TCP, but it would also be useful
to dig into how well TCP perform when correctly following RFC3168. It
would also be worth testing against other proposals from earlier research.

We should have conducted experiments to measure the load our code
cause to the system and compare against both Reno and DCTCP. It is good
that we were able to achieve excellent performance under low base RTT
but to scale for even lower base RTT we need to take the processing cost of
LS-AIMD more seriously. For shallow base RTT, we may end up running
in a network where the cost of LS-AIMD may be higher than the base RTT
itself. Additionally, the computational footprint of TCP should also not be
as severe that we steal the majority of CPU performing non-critical tasks.
The CPU utilisation is critical to keep under low level per TCP connection
to allow a higher level of multiplexing. For example, a server serving
many clients should not use more CPU than needed for TCP to allow more
incoming connections.

We are, of course, expecting our code to utilise more CPU as we have
extended the scalability of the protocol, but it would be interesting to
find the exact impact of LS-AIMD contra AIMD. We already know that
the computation of the add function may have a severe impact even
when performing the calculation at most once per RTT. However, the
add function, at the moment, gives an accurate answer down to a given
precision, we could have approximated the answer and even used lower
precision. So, we see ways to bring the utilisation of the CPU within
reasonable limits, but not easy to know without any concrete proof.

150

Bibliography

[1] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta and
Murari Sridharan. ‘Data center tcp (dctcp)’. In: ACM SIGCOMM
computer communication review 41.4 (2011), pp. 63–74.

[2] M. Allman. TCP Congestion Control with Appropriate Byte Counting
(ABC). RFC 3465. http : //www. rfc - editor . org/ rfc/ rfc3465 . txt. RFC
Editor, Feb. 2003. URL: http://www.rfc-editor.org/rfc/rfc3465.txt.

[3] M. Allman, S. Floyd and C. Partridge. Increasing TCP’s Initial Window.
RFC 3390. http://www.rfc-editor.org/rfc/rfc3390.txt. RFC Editor, Oct.
2002. URL: http://www.rfc-editor.org/rfc/rfc3390.txt.

[4] M. Allman, V. Paxson and E. Blanton. TCP Congestion Control. RFC
5681. http ://www.rfc - editor .org/rfc/rfc5681 . txt. RFC Editor, Sept.
2009. URL: http://www.rfc-editor.org/rfc/rfc5681.txt.

[5] Mark Allman and Aaron Falk. ‘On the effective evaluation of TCP’.
In: ACM SIGCOMM Computer Communication Review 29.5 (1999),
pp. 59–70.

[6] F. Baker and G. Fairhurst. IETF Recommendations Regarding Active
Queue Management. BCP 197. RFC Editor, July 2015.

[7] S. Bensley, D. Thaler, P. Balasubramanian, L. Eggert and G. Judd.
Data Center TCP (DCTCP): TCP Congestion Control for Data Centers.
RFC 8257. RFC Editor, Oct. 2017.

[8] Theophilus Benson, Aditya Akella and David A. Maltz. ‘Network
Traffic Characteristics of Data Centers in the Wild’. In: Proceedings
of the 10th ACM SIGCOMM Conference on Internet Measurement. IMC
’10. Melbourne, Australia: ACM, 2010, pp. 267–280. ISBN: 978-1-4503-
0483-2. DOI: 10.1145/1879141.1879175. URL: http://doi.acm.org/10.
1145/1879141.1879175.

[9] Theophilus Benson, Ashok Anand, Aditya Akella and Ming Zhang.
‘Understanding Data Center Traffic Characteristics’. In: Proceedings of
the 1st ACM Workshop on Research on Enterprise Networking. WREN
’09. Barcelona, Spain: ACM, 2009, pp. 65–72. ISBN: 978-1-60558-443-0.
DOI: 10.1145/1592681.1592692. URL: http://doi .acm.org/10.1145/
1592681.1592692.

[10] D. Black. Relaxing Restrictions on Explicit Congestion Notification (ECN)
Experimentation. RFC 8311. RFC Editor, Jan. 2018.

151

http://www.rfc-editor.org/rfc/rfc3465.txt
http://www.rfc-editor.org/rfc/rfc3465.txt
http://www.rfc-editor.org/rfc/rfc3390.txt
http://www.rfc-editor.org/rfc/rfc3390.txt
http://www.rfc-editor.org/rfc/rfc5681.txt
http://www.rfc-editor.org/rfc/rfc5681.txt
https://doi.org/10.1145/1879141.1879175
http://doi.acm.org/10.1145/1879141.1879175
http://doi.acm.org/10.1145/1879141.1879175
https://doi.org/10.1145/1592681.1592692
http://doi.acm.org/10.1145/1592681.1592692
http://doi.acm.org/10.1145/1592681.1592692

[11] D. Borman, B. Braden, V. Jacobson and R. Scheffenegger. TCP
Extensions for High Performance. RFC 7323. http : / /www . rfc - editor .
org/ rfc/ rfc7323 . txt. RFC Editor, Sept. 2014. URL: http ://www. rfc -
editor.org/rfc/rfc7323.txt.

[12] Robert Braden. Requirements for Internet Hosts - Communication Layers.
STD 3. http://www.rfc- editor.org/rfc/rfc1122.txt. RFC Editor, Oct.
1989. URL: http://www.rfc-editor.org/rfc/rfc1122.txt.

[13] Bob Briscoe. ‘Flow rate fairness: Dismantling a religion’. In: ACM
SIGCOMM Computer Communication Review 37.2 (2007), pp. 63–74.

[14] Bob Briscoe and Koen De Schepper. ‘Scaling tcp’s congestion window
for small round trip times’. In: Tech. rep., Technical report TR-TUB8-
2015-002, BT (2015).

[15] Bob Briscoe, Koen De Schepper, Olga Albisser, Joakim Misund,
Olivier Tilmans, Mirja Kühlewind and Asad Sajjad Ahmed. ‘Im-
plementing the ‘TCP Prague’ Requirements for L4S’. In: Proc. Net-
dev 0x13. Mar. 2019. URL: https : / / www . files . netdevconf . org / f /
4d6939d5f1fb404fafd1/?dl=1.

[16] Bob Briscoe, Koen Schepper and Marcelo Bagnulo. Low Latency, Low
Loss, Scalable Throughput (L4S) Internet Service: Architecture. Internet-
Draft draft-ietf-tsvwg-l4s-arch-01. http://www.ietf.org/internet-drafts/
draft-ietf-tsvwg-l4s-arch-01.txt. IETF Secretariat, Oct. 2017. URL: http:
//www.ietf.org/internet-drafts/draft-ietf-tsvwg-l4s-arch-01.txt.

[17] Jay Chen, Janardhan Iyengar, Lakshminarayanan Subramanian and
Bryan Ford. ‘TCP Behavior in Sub Packet Regimes’. In: Proceedings of
the ACM SIGMETRICS Joint International Conference on Measurement
and Modeling of Computer Systems. SIGMETRICS ’11. San Jose,
California, USA: ACM, 2011, pp. 157–158. ISBN: 978-1-4503-0814-4.
DOI: 10.1145/1993744.1993804. URL: http://doi .acm.org/10.1145/
1993744.1993804.

[18] Jay Chen, Lakshmi Subramanian, Janardhan Iyengar and Bryan Ford.
‘TAQ: Enhancing Fairness and Performance Predictability in Small
Packet Regimes’. In: Proceedings of the Ninth European Conference on
Computer Systems. EuroSys ’14. Amsterdam, The Netherlands: ACM,
2014, 7:1–7:14. ISBN: 978-1-4503-2704-6. DOI: 10 . 1145 / 2592798 .
2592819. URL: http://doi.acm.org/10.1145/2592798.2592819.

[19] Inho Cho, Keon Jang and Dongsu Han. ‘Credit-Scheduled Delay-
Bounded Congestion Control for Datacenters’. In: Proceedings of the
Conference of the ACM Special Interest Group on Data Communication.
SIGCOMM ’17. Los Angeles, CA, USA: ACM, 2017, pp. 239–252.
ISBN: 978-1-4503-4653-5. DOI: 10 .1145/3098822 .3098840. URL: http :
//doi.acm.org/10.1145/3098822.3098840.

[20] J. Chu, N. Dukkipati, Y. Cheng and M. Mathis. Increasing TCP’s Initial
Window. RFC 6928. http://www.rfc- editor.org/rfc/rfc6928.txt. RFC
Editor, Apr. 2013. URL: http://www.rfc-editor.org/rfc/rfc6928.txt.

152

http://www.rfc-editor.org/rfc/rfc7323.txt
http://www.rfc-editor.org/rfc/rfc7323.txt
http://www.rfc-editor.org/rfc/rfc7323.txt
http://www.rfc-editor.org/rfc/rfc7323.txt
http://www.rfc-editor.org/rfc/rfc1122.txt
http://www.rfc-editor.org/rfc/rfc1122.txt
https://www.files.netdevconf.org/f/4d6939d5f1fb404fafd1/?dl=1
https://www.files.netdevconf.org/f/4d6939d5f1fb404fafd1/?dl=1
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-l4s-arch-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-l4s-arch-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-l4s-arch-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tsvwg-l4s-arch-01.txt
https://doi.org/10.1145/1993744.1993804
http://doi.acm.org/10.1145/1993744.1993804
http://doi.acm.org/10.1145/1993744.1993804
https://doi.org/10.1145/2592798.2592819
https://doi.org/10.1145/2592798.2592819
http://doi.acm.org/10.1145/2592798.2592819
https://doi.org/10.1145/3098822.3098840
http://doi.acm.org/10.1145/3098822.3098840
http://doi.acm.org/10.1145/3098822.3098840
http://www.rfc-editor.org/rfc/rfc6928.txt
http://www.rfc-editor.org/rfc/rfc6928.txt

[21] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J.
Turner and P. R. Young. ‘Computing as a discipline’. In: Computer 22.2
(Feb. 1989), pp. 63–70. ISSN: 0018-9162. DOI: 10.1109/2.19833.

[22] G. Fairhurst, A. Sathiaseelan and R. Secchi. Updating TCP to Support
Rate-Limited Traffic. RFC 7661. RFC Editor, Oct. 2015.

[23] W. -. Feng, D. D. Kandlur, D. Saha and K. G. Shin. ‘A self-configuring
RED gateway’. In: IEEE INFOCOM ’99. Conference on Computer
Communications. Proceedings. Eighteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. The Future is Now (Cat.
No.99CH36320). Vol. 3. Apr. 1999, 1320–1328 vol.3. DOI: 10 . 1109 /
INFCOM.1999.752150.

[24] Wuchang Feng, Dilip Kandlur, Debanjan Saha and Kang Shin. ‘Tech-
niques for eliminating packet loss in congested TCP/IP networks’.
In: U. Michigan CSE-TR-349-97 (1997).

[25] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649. http:
//www.rfc-editor.org/rfc/rfc3649.txt. RFC Editor, Dec. 2003. URL: http:
//www.rfc-editor.org/rfc/rfc3649.txt.

[26] S. Floyd. Metrics for the Evaluation of Congestion Control Mechanisms.
RFC 5166. http://www.rfc-editor.org/rfc/rfc5166.txt. RFC Editor, Mar.
2008. URL: http://www.rfc-editor.org/rfc/rfc5166.txt.

[27] S. Floyd, M. Handley, J. Padhye and J. Widmer. TCP Friendly Rate
Control (TFRC): Protocol Specification. RFC 5348. http://www.rfc-editor.
org/ rfc/ rfc5348 . txt. RFC Editor, Sept. 2008. URL: http ://www. rfc -
editor.org/rfc/rfc5348.txt.

[28] S. Floyd, J. Mahdavi, M. Mathis and M. Podolsky. An Extension to
the Selective Acknowledgement (SACK) Option for TCP. RFC 2883. RFC
Editor, July 2000.

[29] Sally Floyd. ‘RED: Discussions of Setting Parameters’. In: (1st Nov.
1997). URL: http://www.icir.org/floyd/REDparameters.txt (visited on
11/05/2019).

[30] Sally Floyd and Kevin Fall. ‘ECN Implementations in the NS
Simulator’. In: (1998).

[31] Sally Floyd, Ramakrishna Gummadi, Scott Shenker et al. Adaptive
RED: An algorithm for increasing the robustness of RED’s active queue
management. 2001.

[32] Sally Floyd, Mark Handley, Jitendra Padhye and Jörg Widmer.
‘Equation-based congestion control for unicast applications’. In:
ACM SIGCOMM Computer Communication Review 30.4 (2000), pp. 43–
56.

[33] Sally Floyd and Van Jacobson. ‘Random early detection gateways
for congestion avoidance’. In: IEEE/ACM Transactions on networking
4 (1993), pp. 397–413.

153

https://doi.org/10.1109/2.19833
https://doi.org/10.1109/INFCOM.1999.752150
https://doi.org/10.1109/INFCOM.1999.752150
http://www.rfc-editor.org/rfc/rfc3649.txt
http://www.rfc-editor.org/rfc/rfc3649.txt
http://www.rfc-editor.org/rfc/rfc3649.txt
http://www.rfc-editor.org/rfc/rfc3649.txt
http://www.rfc-editor.org/rfc/rfc5166.txt
http://www.rfc-editor.org/rfc/rfc5166.txt
http://www.rfc-editor.org/rfc/rfc5348.txt
http://www.rfc-editor.org/rfc/rfc5348.txt
http://www.rfc-editor.org/rfc/rfc5348.txt
http://www.rfc-editor.org/rfc/rfc5348.txt
http://www.icir.org/floyd/REDparameters.txt

[34] T. Henderson, S. Floyd, A. Gurtov and Y. Nishida. The NewReno
Modification to TCP’s Fast Recovery Algorithm. RFC 6582. http://www.
rfc-editor.org/rfc/rfc6582.txt. RFC Editor, Apr. 2012. URL: http://www.
rfc-editor.org/rfc/rfc6582.txt.

[35] Pai-Hsiang Hsiao, H. T. Kung and Koan-Sin Tan. ‘Video over
TCP with Receiver-based Delay Control’. In: Proceedings of the 11th
International Workshop on Network and Operating Systems Support for
Digital Audio and Video. NOSSDAV ’01. Port Jefferson, New York,
USA: ACM, 2001, pp. 199–208. ISBN: 1-58113-370-7. DOI: 10 . 1145 /
378344.378372. URL: http://doi.acm.org/10.1145/378344.378372.

[36] Pai-Hsiang Hsiao, HT Kung and Koan-Sin Tan. ‘Streaming video
over TCP with receiver-based delay control’. In: IEICE transactions
on communications 86.2 (2003), pp. 572–584.

[37] J. Huang, Y. Huang, J. Wang and T. He. ‘Adjusting Packet Size to
Mitigate TCP Incast in Data Center Networks with COTS Switches’.
In: IEEE Transactions on Cloud Computing (2018), pp. 1–1. ISSN: 2168-
7161. DOI: 10.1109/TCC.2018.2810870.

[38] J. Huang, Y. Huang, J. Wang and T. He. ‘Packet Slicing for Highly
Concurrent TCPs in Data Center Networks with COTS Switches’. In:
2015 IEEE 23rd International Conference on Network Protocols (ICNP).
Nov. 2015, pp. 22–31. DOI: 10.1109/ICNP.2015.39.

[39] V. Jacobson. ‘Congestion Avoidance and Control’. In: Symposium
Proceedings on Communications Architectures and Protocols. SIGCOMM
’88. Stanford, California, USA: ACM, 1988, pp. 314–329. ISBN: 0-
89791-279-9. DOI: 10 .1145/52324 .52356. URL: http ://doi . acm.org/
10.1145/52324.52356.

[40] V. Jacobson and R. Braden. TCP extensions for long-delay paths. RFC
1072. Oct. 1988. DOI: 10.17487/RFC1072. URL: https://rfc-editor.org/
rfc/rfc1072.txt.

[41] Filip Johansson and Christoffer Lindström. Inter-Process Communica-
tion in a Virtualized Environment. 2018.

[42] Dzmitry Kliazovich, Fabrizio Granelli and Daniele Miorandi. ‘Log-
arithmic window increase for TCP Westwood+ for improvement in
high speed, long distance networks’. In: Computer Networks 52.12
(2008), pp. 2395–2410.

[43] I. Komnios, A. Sathiaseelan and J. Crowcroft. ‘LEDBAT performance
in sub-packet regimes’. In: 2014 11th Annual Conference on Wireless
On-demand Network Systems and Services (WONS). Apr. 2014, pp. 154–
161. DOI: 10.1109/WONS.2014.6814738.

[44] H. T. Kung, Koan-Sin Tan and Pai-Hsiang Hsiao. ‘TCP with sender-
based delay control’. In: Proceedings ISCC 2002 Seventh International
Symposium on Computers and Communications. July 2002, pp. 283–290.
DOI: 10.1109/ISCC.2002.1021691.

154

http://www.rfc-editor.org/rfc/rfc6582.txt
http://www.rfc-editor.org/rfc/rfc6582.txt
http://www.rfc-editor.org/rfc/rfc6582.txt
http://www.rfc-editor.org/rfc/rfc6582.txt
https://doi.org/10.1145/378344.378372
https://doi.org/10.1145/378344.378372
http://doi.acm.org/10.1145/378344.378372
https://doi.org/10.1109/TCC.2018.2810870
https://doi.org/10.1109/ICNP.2015.39
https://doi.org/10.1145/52324.52356
http://doi.acm.org/10.1145/52324.52356
http://doi.acm.org/10.1145/52324.52356
https://doi.org/10.17487/RFC1072
https://rfc-editor.org/rfc/rfc1072.txt
https://rfc-editor.org/rfc/rfc1072.txt
https://doi.org/10.1109/WONS.2014.6814738
https://doi.org/10.1109/ISCC.2002.1021691

[45] Yee-Ting Li, Douglas Leith and Robert N Shorten. ‘Experimental
evaluation of TCP protocols for high-speed networks’. In: IEEE/ACM
Transactions on Networking (ToN) 15.5 (2007), pp. 1109–1122.

[46] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow. TCP Selective
Acknowledgment Options. RFC 2018. RFC Editor, Oct. 1996.

[47] M. Miao, P. Cheng, F. Ren and R. Shu. ‘Slowing Little Quickens
More: Improving DCTCP for Massive Concurrent Flows’. In: 2015
44th International Conference on Parallel Processing. Sept. 2015, pp. 689–
698. DOI: 10.1109/ICPP.2015.78.

[48] Greg Minshall. A suggested modification to Nagle’s algorithm. Tech. rep.
Internet-Draft draft-minshall-nagle-01, Internet Engineering Task
Force, 1999. URL: https://tools.ietf.org/html/draft-minshall-nagle-01.

[49] R. Morris. ‘TCP behavior with many flows’. In: Proceedings 1997
International Conference on Network Protocols. Oct. 1997, pp. 205–211.
DOI: 10.1109/ICNP.1997.643715.

[50] J. Nagle. Congestion Control in IP/TCP Internetworks. RFC 896. RFC
Editor, Jan. 1984. URL: http://www.rfc-editor.org/rfc/rfc896.txt.

[51] Cisco Visual Networking. ‘Cisco global cloud index: Forecast and
methodology, 2016–2021’. In: White paper. Cisco Public, San Jose (2016).

[52] Pai-Hsiang Hsiao, H. T. Kung and Koan-Sin Tan. ‘Active delay
control for TCP’. In: GLOBECOM’01. IEEE Global Telecommunications
Conference (Cat. No.01CH37270). Vol. 3. Nov. 2001, 1626–1631 vol.3.
DOI: 10.1109/GLOCOM.2001.965855.

[53] V. Paxson, M. Allman, J. Chu and M. Sargent. Computing TCP’s
Retransmission Timer. RFC 6298. http://www.rfc-editor.org/rfc/rfc6298.
txt. RFC Editor, June 2011. URL: http://www.rfc-editor.org/rfc/rfc6298.
txt.

[54] V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner, I. Heavens,
K. Lahey, J. Semke and B. Volz. Known TCP Implementation Problems.
RFC 2525. RFC Editor, Mar. 1999.

[55] J. Postel and J. Reynolds. Telnet Protocol Specification. STD 8. http://
www.rfc- editor.org/rfc/rfc854.txt. RFC Editor, May 1983. URL: http:
//www.rfc-editor.org/rfc/rfc854.txt.

[56] Jon Postel. Transmission Control Protocol. STD 7. http://www.rfc-editor.
org / rfc / rfc793 . txt. RFC Editor, Sept. 1981. URL: http : / /www . rfc -
editor.org/rfc/rfc793.txt.

[57] Pawan Prakash, Myungjin Lee, Y Charlie Hu, Ramana Rao Kompella
et al. ‘Jumbo frames or not: That is the question!’ In: (2013).

[58] Lili Qiu, Yin Zhang and Srinivasan Keshav. ‘Understanding the
Performance of Many TCP Flows’. In: Comput. Netw. 37.3-4 (Nov.
2001), pp. 277–306. ISSN: 1389-1286. DOI: 10 . 1016/S1389 - 1286(01)
00203-1. URL: http://dx.doi.org/10.1016/S1389-1286(01)00203-1.

[59] K. Ramakrishnan and S. Floyd. A Proposal to add Explicit Congestion
Notification (ECN) to IP. RFC 2481. RFC Editor, Jan. 1999.

155

https://doi.org/10.1109/ICPP.2015.78
https://tools.ietf.org/html/draft-minshall-nagle-01
https://doi.org/10.1109/ICNP.1997.643715
http://www.rfc-editor.org/rfc/rfc896.txt
https://doi.org/10.1109/GLOCOM.2001.965855
http://www.rfc-editor.org/rfc/rfc6298.txt
http://www.rfc-editor.org/rfc/rfc6298.txt
http://www.rfc-editor.org/rfc/rfc6298.txt
http://www.rfc-editor.org/rfc/rfc6298.txt
http://www.rfc-editor.org/rfc/rfc854.txt
http://www.rfc-editor.org/rfc/rfc854.txt
http://www.rfc-editor.org/rfc/rfc854.txt
http://www.rfc-editor.org/rfc/rfc854.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
https://doi.org/10.1016/S1389-1286(01)00203-1
https://doi.org/10.1016/S1389-1286(01)00203-1
http://dx.doi.org/10.1016/S1389-1286(01)00203-1

[60] K. Ramakrishnan, S. Floyd and D. Black. The Addition of Explicit
Congestion Notification (ECN) to IP. RFC 3168. http://www.rfc-editor.
org/ rfc/ rfc3168 . txt. RFC Editor, Sept. 2001. URL: http ://www. rfc -
editor.org/rfc/rfc3168.txt.

[61] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert and R. Scheffeneg-
ger. CUBIC for Fast Long-Distance Networks. RFC 8312. RFC Editor,
Feb. 2018.

[62] KW Ross and JF Kurose. ‘Delay and Loss in Packet-Switched
Networks’. In: (7th June 2000). URL: https://www.net.t-labs.tu-berlin.
de/teaching/computer_networking/01.06.htm (visited on 08/07/2019).

[63] Pasi Sarolahti and Alexey Kuznetsov. ‘Congestion Control in Linux
TCP.’ In: USENIX Annual Technical Conference, FREENIX Track. 2002,
pp. 49–62.

[64] S. Shalunov, G. Hazel, J. Iyengar and M. Kuehlewind. Low Extra Delay
Background Transport (LEDBAT). RFC 6817. http : //www. rfc - editor .
org / rfc / rfc6817 . txt. RFC Editor, Dec. 2012. URL: http : / /www . rfc -
editor.org/rfc/rfc6817.txt.

[65] N. Spring, D. Wetherall and D. Ely. Robust Explicit Congestion
Notification (ECN) Signaling with Nonces. RFC 3540. RFC Editor, June
2003.

[66] J. Touch, A. Mankin and R. Bonica. The TCP Authentication Option.
RFC 5925. RFC Editor, June 2010.

[67] Clay S Turner. ‘A fast binary logarithm algorithm [DSP tips & tricks]’.
In: IEEE Signal Processing Magazine 27.5 (2010), pp. 124–140.

[68] Arun Venkataramani, Ravi Kokku and Mike Dahlin. ‘TCP Nice: A
Mechanism for Background Transfers’. In: SIGOPS Oper. Syst. Rev.
36.SI (Dec. 2002), pp. 329–343. ISSN: 0163-5980. DOI: 10.1145/844128.
844159. URL: http://doi.acm.org/10.1145/844128.844159.

[69] Michael Welzl and David Ros. A Survey of Lower-than-Best-Effort
Transport Protocols. RFC 6297. June 2011. DOI: 10.17487/RFC6297. URL:
https://rfc-editor.org/rfc/rfc6297.txt.

156

http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.rfc-editor.org/rfc/rfc3168.txt
http://www.rfc-editor.org/rfc/rfc3168.txt
https://www.net.t-labs.tu-berlin.de/teaching/computer_networking/01.06.htm
https://www.net.t-labs.tu-berlin.de/teaching/computer_networking/01.06.htm
http://www.rfc-editor.org/rfc/rfc6817.txt
http://www.rfc-editor.org/rfc/rfc6817.txt
http://www.rfc-editor.org/rfc/rfc6817.txt
http://www.rfc-editor.org/rfc/rfc6817.txt
https://doi.org/10.1145/844128.844159
https://doi.org/10.1145/844128.844159
http://doi.acm.org/10.1145/844128.844159
https://doi.org/10.17487/RFC6297
https://rfc-editor.org/rfc/rfc6297.txt

Appendices

157

Appendix A

TCP Background

A.1 Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP)[12, 56] is a standardised transport
protocol by the Internet Engineering Task Force (IETF). TCP is widely
used over the Internet Protocol (IP) and has evolved through updates
given as Request For Comments (RFC). A TCP implementation uses a
variable header for communication with another TCP endpoint, and the
application data is appended on top of this header (see Figure A.1). TCP
in contrast to the alternative User Datagram Protocol (UDP) also have a
source, destination port and Cyclic Redundancy Check (CRC). The source
and destination port allow process-to-process communication, and CRC is
used to detect transmission errors. In TCP the use of CRC is mandatory
for both the sender and the receiver, while in UDP it is optional. UDP
is a straightforward protocol, and if applications need some mechanisms
found in TCP, it must be either be implemented by the application or use
other protocols that extend UDP.

Network elements over the Internet try their best to deliver the
packets (end-to-end principle), but there is no guarantee for either the
delivery, ordering or free-for-error transmission. TCP recovers from this
by implementing retransmission of lost segments, reordering of incoming
segments and use of Cyclic Redundancy Check (CRC). Meaning that TCP
provides reliable and inorder communication between two nodes in the
network, the application only sees an in-order stream of bytes.

Packets loss usually occur over the Internet due to queue constraint
at the network element in the path between the sender and receiver. The
packet could also get corrupted during transmission between two links in
the network. Although, corrupted packets are more likely to happen in
wireless communication. TCP, therefore, uses acknowledgement number
to receipt newly received data. TCP sets the ACK flag in the TCP header to
acknowledge data. The flag is used to indicate that the acknowledgement
number in the TCP header is the next expected bytes in the stream. The
acknowledgement let the sender knows that the receiver has successfully
received bytes sent before the acknowledgement number.

Segments may come in the wrong order over the Internet. A segment

159

D
at

a
O

ff
se

t(
32

-b
it

se
gm

en
ts

)

32-bits (4 Byte)

Source Port Destination Port

Sequence Number

Acknowledgement Number

Data Offset Reserved

C
W

R

EC
E

U
R

G

A
C

K

PS
H

R
ST

SY
N

FI
N Window

Checksum Urgent Pointer

Options Padding

Data

Figure A.1: TCP Header

loss could have occurred, and the next segment may arrive first, making
a hole in the data. A segment received in the wrong order cannot be
delivered to the application yet since the objective of TCP is to deliver the
data in the same order as sent by the sender. Therefore, TCP use sequence
numbers in the header to provide data in the right order to the receiving
application. Additionally, receiving TCP use the sequence number for the
selection of the acknowledgement number.

Maximum Segment Size (MSS) can be altered by both hosts when
initiating the connection to override the default value; the default value
is 536 bytes. The MSS value tells the sending host how large segments
the receiving host is willing to accept. This limitation does only limit
the amount of octets/bytes sent after the variable TCP headers (past any
TCP option used). However, the sender may not always be able to send
a segment as large as MSS bytes due to other factors such as MTU, path
MTU discovery or flow window. Therefore, the sender may send segments
of less than MSS bytes, known as Sender Maximum Segment Size (SMSS).
Conflicts occur as both hosts may have different requirements for what
fulfils a full segment. The receiver uses the MSS value for transmission
of stretch acknowledgements. However, the sender may be forced to
send smaller segments than MSS bytes. The latest TCP congestion control
standard[4] does not define how a receiver must respond to such packets.
The standard let the receiver freely choose an appropriate response.

TCP implements both flow control and congestion control, while UDP
implements neither of these.

A.1.1 Explicit Congestion Notification (ECN)

The Explicit Congestion Notification (ECN)[60] is an update to the IP
and TCP header. The moment the network element runs out of buffer

160

space is packet drop for incoming packets certain and packets continues
to drop until the previous packets start to dequeue (FIFO tail drop). Packet
loss is an indication of congestion based on a timeout from the sender’s
perspective. The disadvantage of only using packet loss as an indication
of congestion is the overwhelming queue that has buildup before the loss
event took place. Queue got huge since the senders went too fast for a long
enough period. ECN tries to solve the enormous queuing scenario with the
use of explicit congestion signal, but help from network elements is needed.
The network element currently bottlenecks in the path must let senders be
aware of the congestion so they can reduce their transmission rate before
the queue get a chance to build. A network element who actively tries
to control its queue is generally known as an Active Queue Management
(AQM) (see Section A.4). The AQM must remain stateless for the solution
to be scalable.

The IP header updates with two bits; these bits are used to tell if the
endpoint supports ECN for this particular packet. These bits are also used
by the AQM to notify about congestion in its queue. The hosts set these bits
to either the value 2 (ECT(0)) or 1 (ECT(1)) to indicate that the host supports
ECN for this packet, the recommended approach is to use of ECT(0) so its
backwards compatibility with earlier version of ECN[59]. Further, an AQM
in the path will set these bits to the value 3 (Congestion Encountered (CE))
when the packets end up being in the buffer for more an extended period.
An AQM only sets these bits if the host supports the use of ECN, in other
words, the value of these bits must not yield 0 (Not-ECT)). The reason for
using bits to detect if the host supports ECN is to be able to deploy ECN
incrementally; this extra information let the AQM take the correct decision
regarding ECN capable and other hosts. For the ECN-Capable hosts, an
ECN mark is enough to signal congestion, but only a packet loss gives
the same effect on other hosts. This functionality is, therefore, needed in
networks where it may coexist a mix of ECN-Capable and other hosts.

The use of ECN in TCP is optional and is decided between the sender
and the receiver when they initiate the connection (segments with the SYN-
bit set). Two bits are used in the TCP header to signalise ECN-Echo (ECE)
and Congestion Window Reduced (CWR). The very first segment that is
initialising the TCP connection has both the ECE and CWR bits set to
indicate that the TCP sender is ECN-Capable. The use of ECE-bit here
makes the sender committed to responding to the CE code point, and
likewise, the sender sets the CWR-bit to promise to make an appropriate
reduction of the transmission rate upon receiving a segment with the ECE-
bit set. The receiver responds to the very first segment with a segment,
SYN-ACK segment, with only the ECE-bit set to tell the sender that it will
participate as ECN-Capable host. The host may not change its commitment
later for this TCP connection.

The receiver sets the ECN-Echo (ECE) bit on a segment to signal
congestion to the sender and does so by inspecting the IP header for the
CE codepoint. The sender transmits the next segment with CWR-bit set
to acknowledge that the sender has received the segment with the ECE-bit
set, and thus acknowledging the appropriate reduction of the transmission

161

rate. The receiver continues to transmit any new segments with the ECE-bit
set until the segment with the CWR-bit set is received.

Senders are now more aware of how congested the network is and does
not observe packet loss anymore due to congestion. The sender reacts
the same way to ECN mark as it would to a packet loss, and that is a
reduction of the transmission rate by half (see Section A.2). An ECN mark is
usually only triggered once in an RTT and is also how NewReno responds
to congestion signals (see Section A.3.4).

A.1.2 Stretch vs. Delayed Acknowledgments

Stretch acknowledgements are used by a TCP implementation to reduce the
number of acknowledgements sent by the receiver. A stretch acknowledge-
ment means that the receiving host acknowledges every second full seg-
ment received[4, 12]. Usage of stretch acknowledgement is not a require-
ment per the TCP standard but merely a recommendation for better utilisa-
tion of the network. Stretch acknowledgements save on the bandwidth and
processing cost throughout the network since fewer control packets are in
flight per RTT.

The receiver is required to timeout the stretch acknowledgement to
prevent deadlock in situations where the sender cannot transmit more
segments (see Figure A.2). The TCP standard, therefore, requires the
receiver to not wait for more than 500 ms before finally returning the
acknowledgement to the sender. Although, most implementations initiate
the timer to no more than 40-200 ms. The receiver has, in this case,
transmitted a delayed acknowledgement. Although, the receiver still
returns the acknowledgement immediately, as one data segment, if both
hosts participate in the communication. The delayed acknowledgement
mechanism is the reason why the sender likes to maintains a congestion
window of a minimum of two whole segments, or 2*SMSS bytes, per
RTT. The sender then avoids delayed acknowledgements and can generally
expect stretch acknowledgements to arrive within an RTT (see Figure A.2a).

Delayed acknowledgement mechanism is very problematic as the
sender has to send at least 2*SMSS bytes per RTT, and does not allow a
shallow RTT in the network. A shallow RTT network may require the
sender to keep a congestion window of less than two whole segments
per RTT. The sender cannot choose to be less aggressive since the receiver
would end up delaying the acknowledgement in hope for more bytes
to arrive (see Figure A.2b) and the sender may risk waiting for a very
long time. Meanwhile, there is no extra delay to the RTT had the
receiver not used stretch acknowledgements and thus not delayed its
acknowledgements (see Figure A.3), but this results in lots of control
packets in the network. Control packets which will consume resources of
the network and only extend the sender to go as low as one segment per
RTT in scenarios where the sender continues to clock out new segments
based on the acknowledgement clock. The assumption here is that the
sender would never want to send segments containing less than SMSS
bytes where transmission of a full segment is possible. Transmission of

162

smaller segment impacts the goodput of the application since there is
more overhead from network headers compared to useful data per packet.
Meaning, the sender should not use its acknowledgement clock to clock out
new packets in this environment as it would yield terrible performance as
the RTT get smaller in the network. We call such an environment the sub-
mss regime. The sender is said to be in a sub-mss regime if the congestion
window of the sender fall below the stretch acknowledgement factor found
at the receiver. TCP does, therefore, not perform well in the sub-mss regime
and avoid the regime by keeping its congestion window at a minimum of
the stretch acknowledgement factor of the network.

A stretch acknowledgement violation happens when an implementa-
tion tries to keep a more significant stretch acknowledgement factor than
two. As discussed earlier a higher stretch acknowledgement factor is bene-
ficial to a variety type of network topologies. However, a TCP implement-
ation is said to have violated the principle of stretch acknowledgement if
no acknowledgement returns after two segments received. The problem is
so widespread that it got its name and is called stretch ACK violation. It
is a generally a known problem, and it has been an open issue for a very
long time[54] (Section 2.13). Although the latest TCP standard for conges-
tion control does not prohibit the implementer from using a more signi-
ficant stretch ACK factor, the standard clearly warns the implementer of
degraded performance. The penalties come from the direct fact that the
sender falls into the sub-mss regime. The sender is unable to send enough
segments to trigger the acknowledgement. The sender has no other choice
but to wait for the delayed acknowledgement to arrive. The sender, while
waiting for the delayed acknowledgement to arrive, assumes the worst
and initiates loss recovery and gets repetitive occurrence of timeouts. The
sender has to reprobe the network and yield poor performance as a result.
One could argue that in controlled environments, such as data centres, it is
easy to configure the sender from falling into the sub-mss regime, but this
only moves the problem to higher bitrates. We have successfully reduced
the processing cost of the sender and the network but at the cost of higher
RTTs. The problem gets even worse in not so controlled environments as a
negotiation between endpoints is needed to choose an appropriate stretch
acknowledgement factor.

A.1.3 Nagle’s Algorithm

Nagle’s algorithm[50] by John Nagle became part of the TCP standard[12].
The purpose of Nagle’s algorithm is to avoid having a network with
many small successive segments from the sender. For each packet,
there is overhead added from the TCP/IP stack headers which consume
bandwidth. Therefore it is better to send whole segments than many
small segments. This algorithm has shared goal as usage of stretch
acknowledgements which is to have fewer segments inflight per RTT to
save the limited resources of the network.

Nagle’s algorithm sends the segment always immediately if there are
no previous segment inflight. Any further small segments do not enter

163

SMSS
SMSS

ACK

SMSS
SMSS

RTT

(a) non-sub-mss

500
m

s

< 2*SMSS

ACK

< 2*SMSS

RTT

(b) sub-mss

Figure A.2: Delayed acknowledgement: enabled

non-sub-mss & sub-mss

< 2*SMSS >

ACK

< 2*SMSS >

RTT

Figure A.3: Delayed acknowledgement: disabled

164

the network as long as there are some previous segments inflight. The
segment is instead buffered up by the sender and held until a whole
segment is ready for transmission. The algorithm transmits the pending
small segment whenever there are no segments inflight. Meaning, the
sender may send one small segment for every RTT. This algorithm tries to
preserve bandwidth consumption in the network with the assumption that
the application will continue to send many small segments, e.g. Telnet[55].

Nagle’s algorithm has unintended effect when used together with
stretch acknowledgements. The application data may split up into two or
more segments, and the algorithm ends up buffering the last small seg-
ment. Usage of both Nagle’s algorithm and stretch acknowledgements
causes a soft deadlock between the two hosts. The delayed acknowledge-
ment eventually returns which in return allows the sender to transmit the
last missing segment. The whole process has caused the application to wait
for extra 40-500 ms for the response, and this limits short-lived flows which
depend on a quick response from the server (e.g. web-browser).

An alteration was suggested to Nagle to delay the last segment only if
the previous segment was also small[48]. Now when the application data
split into serval segments is the final segment sent immediately, while if
multiple small chunks of data are sent within an RTT by the application
does the algorithm have the same behaviour as earlier. Nagle’s algorithm
could also be disabled per socket basis using the TCP_NODELAY option
by the application.

A.1.4 Selective Acknowledgment (SACK)

Selective Acknowledgement (SACK)[46] is used in the recovery phase
of the standard TCP to recover from loss efficiently. The sender uses
the additional information appended to the acknowledgement to make
intelligent decisions in which segments to retransmit in the recovery phase.

The use of SACK is only permitted if both hosts during the connection
setup allowed its use, using a two-byte TCP option in the TCP header. The
receiver reports segments which arrive out-of-order. The receiver uses a
TCP option in the TCP header to report these segments; each segment
contains contiguous sequence space, the receiver reports the left and the
right edge of each segment. The left edge is the sequence number of the first
byte in the segment and where the right edge is the sequence number of the
next byte after this segment. The receiver can report up to 4 such entries
(blocks) in a single packet; the exact number depends on the use of other
TCP options since the TCP option space is limited. The sender can from
this information learn which segments have been successfully received by
the receiver out-of-order and know which segments to retransmit.

Duplicate-SACK (D-SACK)[28] is an extension to SACK and can be
used to report duplicate segments received (spurious retransmission). Each
segment may contain one single D-SACK block. When the D-SACK block
is a subset of larger contiguous sequence space is the next block used to
report this massive block. Remeaning blocks are used as before to report
segments which have been received out-of-order.

165

A.2 Congestion Control (CC)

Congestion Control (CC) is very fundamental to how senders on the
Internet work together in harmony to use the limited resources efficiently.
CC is a way to converge a set of consumers to share the limited resources
evenly.

The very first TCP standard[56] had a description of flow control, but
not any detailed description of a congestion control mechanism. The
receiver would return the flow window found in the TCP header to control
the transmission rate of the sender. The TCP standard did, however,
define Retransmission Timeout (RTO) which was used to retransmit lost
segments. A segment would be copied to the retransmission queue as
part of the transmission process and taken out once the segment was
acknowledged. The timeout had a lower and upper bound and was
calculated based on the smoothed RTT with a delay variance. The sender
would retransmit the very first unacknowledged segment once the timer
expired for a given segment in the retransmission queue. The sender then
reinitiates the RTO.

TCP implementations based on this simple transmission logic lead to
congestion collapse[50] in networks. Congestion collapse occurs when
the RTT suddenly increases, e.g. a large transmission is initiated, and is
high enough that the sender retransmits segments since the timer keeps
expiring (RTT > timeout). The estimate of the timeout is not updated fast
enough by the sender. The sender continues to retransmit segments and
generates multiple copies of the same segments in the network. These
packets are likely to be dropped or continue to keep the queue filled.
The receiver receives lots of duplicate segments and eventually some new
segments. The goodput of the sender remains severely degraded and leads
to a network with significantly reduced overall goodput.

A better way to control each sender was suggested in a paper by Van
Jacobsen[39]. The proposed solution preserved the flow control mechanism
and sent segments using an acknowledgement "clock" to keep a fixed
amount of segments inflight per RTT. The acknowledgement clock was
initiated using the new algorithm slow start (see Section A.2.4). The
RTO calculation was updated to use an exponential backoff timer for
segments in the retransmission queue, and the sender now had to reduce
its transmission rate upon detecting packet loss. The paper also defined
the congestion avoidance algorithm (see Section A.2.5) to probe for capacity
in the steady state of TCP. These algorithms become part of the next
TCP standard[12], and all TCP implementations are now required to
implement these two algorithms. Although the newest TCP congestion
control standard[4] gives details for two additional algorithms that a TCP
implementation should use to recover from a loss event: fast retransmit
and fast recovery (see Section A.3 for a more detailed discussion on loss
recovery).

The sender uses a slow start threshold (ssthresh) state variable to
determine to either use slow start or congestion avoidance algorithm in the
additive increase phase of TCP. The sender uses the slow start algorithm as

166

long as the sender has fewer segments inflight than the ssthresh value. The
sender uses the congestion avoidance algorithm otherwise. The congestion
avoidance algorithm, as the name predicates, is slower and probes for
additional capacity in a more conservative approach. Value of ssthresh,
therefore, decides how fast the sender probes for capacity. The loss
recovery mechanism of TCP essentially slows the sender down by reducing
the ssthresh value.

A sender initially set the ssthresh state variable to the maximum value
possible (all bits to 1). The slow start algorithm is therefore usually initiated
as a new connection is opened to explore a network with an unknown
level of congestion. In some scenarios may the ssthresh value be set
below the maximum value, but this is an optimation done by the TCP
implementation. The TCP implementation reuses various values saved
from an earlier flow. The goal is to initiate this flow as if it were an
earlier flow. The success of this depends on the current state of the
network. The condition of the network might not be the same as earlier.
Therefore, this lookup is often set up as a cache where the entry is valid if
it is recent enough. While such optimation is good and may yield better
performance, is it usually turned off when benchmarking TCP. The result
of the experiment is thus not biased from previous experiments.

A.2.1 Congestion Window

The Congestion Window (WB) specifies the number of bytes the sender is
allowed to emit into the network. A cumulative acknowledgement usually
arrives after one RTT and tells the sender that the receiver has received a
certain number of bytes. Such acknowledgement also tells the sender that
these bytes are no longer inflight in the network and permits the sender
to continue transmission of new bytes to what previously left the network.
The sender uses cumulative acknowledgement to keep a fixed number of
bytes inflight per RTT (acknowledgement "clock").

The congestion window can be visualised as a sliding window (see
Figure A.4). The sender will for every RTT emit WB new bytes (see
Figure A.4a), the byte-rate of the sender (see Equation (A.1)). Transmission
rate can thus be controlled by adjusting WB.

x = WB / RTT (A.1) r = Ws / RTT (A.2)

Alternatively, the sender may use the concept of whole segments,
where each segment contains up to SMSS bytes (see Figure A.4b). Now
the sender sends Ws segments every RTT , the senders’ packet rate (see
Equation (A.2)). The transmission rate can now be controlled by adjusting
Ws.

The idea behind the segment based approach is the reasoning that
transmission of segments which less than SMSS bytes is never a good
idea. The sender always wants to send a whole segment if possible to
minimise overhead from networks headers. A TCP implementation which
implements the segment approach can easily enforce a congestion window

167

SMSS of only 2 bytes, the size is choosen for visual purpose only

0 1 2 3 4 5 6 70 1

WB = 5

5 bytes inflight per RTT

(a) Sliding window (WB)

0 1 2 3 4 5 6 70

Ws = 4

4 segments inflight per RTT

(b) Sliding window (Ws)

ACK’ed inflight ready

Figure A.4: Sliding window

of a minimum of one whole segments to keep its packets filled with
whole segments. There may be situations where the sender is forced to
transmit smaller packets, but the sender can work around this by using
Nagle’s algorithm. In contrast, a TCP implementation using the byte-based
approach has to keep its congestion window at a minimum of SMSS bytes
and only transmit whole segments to achieve the same benefits. There
are, therefore, no apparent benefits of using the byte-based approach and
the use of the segment-based approach allows a more straightforward
implementation.

The congestion window is usually set to no lower than two segments
since the receiver might be using delayed acknowledgements. The sender
tries to send at a minimum of two segments per RTT to force an immediate
acknowledgement from the receiver. The sender only uses a congestion
window of one segment when the RTO expires (the loss window).

TCP standard[3, 4] defines an initial congestion window for a new
connection between two and four whole segments. A modification to boost
up the overall performance was an experimental standard[20] proposed to
allow an initial congestion window of ten whole segments. Short-lived
TCP connections benefit from this as they usually do not live long enough
to maintain a large congestion window.

A sender updates its congestion window based on the feedback
from the receiver. A cumulative acknowledgement let the sender either
increase or decrease its congestion window. Growth in the congestion
window usually refers to an acknowledgement in the steady state of TCP.
Meanwhile, an acknowledgement in the loss recovery phase of TCP refers
to a negative acknowledgement. The acknowledgement has a negative
meaning since it results in a reduction of the congestion window rather
than a growth.

168

Additive Increase Multiplicative Decrease (AIMD) schemes are widely
used by senders to update their congestion window. The sender updates
its congestion window based on the current congestion control algorithm
employed. A usual response to no congestion is to increase the congestion
window by one whole segment per RTT. The usual response to congestion,
on the other hand, is to reduce the congestion window to half of its original
size. Therefore, a sender with a large congestion window has a higher
penalty than those with smaller congestion window. All senders using
AIMD schemes eventually converge to have an equal share of the available
bandwidth as their congestion window becomes equal.

ACK Division attack is an attack used against TCP implementations
that increase their congestion window by precisely one whole segment for
every acknowledgement received. The receiver abuses the use of partial
acknowledgements and lures the sender to use a much larger congestion
window. The sender emits more bytes than what is leaving the network.
The malicious receiver breaks the acknowledgement clock of the sender.
Protection against such attack is to increase the congestion window using
Appropriate Byte Counting (ABC)[2] which is to only increase by the
number of bytes acknowledged by the receiver, but no more than one
whole segment.

A.2.2 Congestion Window vs Flow Window

Congestion window must not be confused with the flow window found
in the TCP header (16 bits). Flow window is the receivers’ storage
limitation and updated with every acknowledgement. Flow window keeps
the sender updated of how much storage capacity the receiver has at
the moment. A sender may not send more bytes to the receiver than
this limitation, bytes that are currently inflight also counts toward this
limitation. Instead, the sender needs to wait for the acknowledgement
from the receiver with an updated flow window and only then transmit
more bytes if the new flow window allows it. The congestion window
does not allow the sender to send beyond the flow window advertised by
the receiver. The sender governs its transmission by the minimum of flow
window, congestion window and senders’ send buffer size.

A.2.3 TCP Friendly Rate Control (TFRC)

TCP Friendly Rate Control (TFRC)[27] may be used in place for window
control to do congestion control. A TFRC unicast flow acts fair against
other TCP flow using AIMD schemes.

TFRC uses a throughput equation based on congestion signals and
RTT measurements. The sender uses feedback from the receiver for these
measurements. In contrast to window control, A TFRC sender has a more
stable throughput (small oscillations), but it is slower to adapt to changes
in the network. TFRC is a good fit for applications doing video streaming.
Meanwhile, TFRC is not a good choice if the application wants to reach
as high throughput as possible. A TFRC sender normally uses a fixed

169

RTTs & indices relative to the algorithm

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

0

0 1 2

R
T

T
0

R
TT

1
R

TT
2

1460 bytes (SMSS)

Ws = 1

Ws = 2

Ws = 4

ACK’ed inflight ready

Figure A.5: Slow start sliding window (Ws)

segment size and modifies its sending packet rate per second to control the
transmission rate. A sender should only use TFRC if a smooth throughput
is a requirement, as a general congestion control algorithm using AIMD do
rate halving.

A.2.4 Slow start

The sender starts by slowly probing the network using the slow start
algorithm and initiates the acknowledgement "clock". The slow start
algorithm increases the congestion window by maximum SMSS bytes,
or one full segment, on each incoming acknowledgement. Although,
the recommendation is to only increase by the number of bytes newly
acknowledged by the receiver, N bytes, to defend against ACK division
attack (see Equation (A.3)).

W += min(N, SMSS) (A.3)

The slow start algorithm has therefore exponential growth of the
congestion window for every RTT, doubling the congestion window every
RTT (see Figure A.5). The slow start algorithm grows very fast with the
goal to seek the available bandwidth as fast as possible and is prone to
"overshoot" above the available bandwidth. This behaviour may result in
queuing and bursty behaviour at the bottleneck.

A.2.5 Congestion Avoidance

The sender switches to the congestion avoidance algorithm when the
congestion window exceeds the ssthresh value. The congestion avoidance

170

RTTs & indices relative to the algorithm

0

0

0

1

1

1

2

2

2

3

3

3

4

4

4

5

5

5

6

6

6

7

7

7

0

0 1 2

R
TT

0
R

TT
1

R
TT

2
1460 bytes (SMSS)

Ws = 1

Ws = 2

Ws = 3

ACK’ed inflight ready

Figure A.6: Congestion avoidance sliding window (Ws)

algorithm is more conservative than the slow start algorithm. The
algorithm increases the congestion window by one full segment for every
RTT (see Figure A.6). The equation (A.3) from the slow start can still be
used to update the congestion window. The only difference is that the
equation is applied only once in an RTT, while in the slow start algorithm
it is applied for every acknowledgement received in the RTT. It means that
the congestion avoidance algorithm has linear growth of the congestion
window for every RTT where the slow start algorithm had exponential
growth of the congestion window for every RTT.

The sender can still update the congestion window on each received
acknowledgement since for every RTT are WB bytes inflight (see Equa-
tion (A.4)).

WB += SMSS ∗ SMSS / WB (A.4)

However, the latest congestion control standard[4] recommends updat-
ing the congestion window during congestion avoidance using an addi-
tional state variable. The number of bytes newly acknowledged increases
the state variable and the congestion window is first increased by one full
segment as the state variable is as significant as the congestion window.
The state variable is then reset back to 0 for the next RTT. This method
protects the TCP implementation against ACK Division attack, and ensure
that the congestion window has linear growth for every RTT in situations
where the receiver is using delayed acknowledgements.

Likewise, if the sender uses the concept of whole segments could the
congestion window still update on each acknowledgement since there are
Ws segments inflight. The sender updates the congestion window by 1/Ws
for each acknowledgement received. The same strategy can be applied by

171

the sender to defend against ACK division attack. The sender accumulates
the state variable whenever the receiver acknowledges reception of a whole
segment. The sender increases the congestion window by one segment
as soon as the state variable has acknowledged one window of segments
inflight.

Congestion avoidance algorithm preserves the already obtained band-
width and tries to claim for additional bandwidth until a congestion signal
is received. The sender reduces its transmission rate through the loss re-
covery phase. The congestion avoidance phase repeats as the loss recovery
phase completes. The nature of the congestion avoidance algorithm makes
the algorithm rather inefficient for an enormous BDP path. The congestion
window only increases by one full segment in an RTT no matter how large
the BDP path is. In such situations, the process of increasing the conges-
tion window from the reduced window back up to the limitation of the
network is slow and requires lots of RTTs. The congestion avoidance al-
gorithm is neither good for a low BDP path as add of one whole segment
could be more than what the low BDP path offer. In other words, the con-
gestion avoidance algorithm does not scale well for either a low or large
BDP paths in the network.

A.3 Loss Recovery

The loss recovery phase is initiated by the sender to recover from lost
segments. A lost segment is a segment which is assumed to be lost
by the network. TCP uses different approaches to detect segment loss
with varying efficiency. A loss is always eventually repaired by the
Retransmission Timeout (RTO), but this is rather inefficient. The sender
uses RTO as a fallback mechanism to reprobe the network when all other
intelligent mechanisms have failed.

The TCP implementation usually implements fast Retransmit and Fast
Recovery algorithms for an improved recovery phase. NewReno is an
optimation of the fast recovery algorithm and allows an efficient recovery
phase even with partial acknowledgements. A sender using NewReno
must updates the ssthresh state variable to half the data inflight as soon
as detecting segment loss. This update is essentially the Multiplicative
Decrease phase in the AIMD scheme and is needed to make senders
converge at the bottleneck. The sender only reduces ssthresh once for
a given segment in the window. However, the sender must reduce its
ssthresh value even further if the loss event happens after retransmission
has taken place. The state variable ssthresh also have to be at least two
full segments to interwork with delayed acknowledgements. The sender
only uses the new value of ssthresh if it is above the lower bound (see
Equation (A.5)).

ssthresh = max(in f light / 2, 2 ∗ SMSS) (A.5)

The sender has to limit transmission of new segments in the loss

172

recovery phase until there are less outstanding segments than the new
value of ssthresh. The sender has to wait until the recovery phase is over
and only then probe for more capacity through the congestion avoidance
algorithm. The recovery mechanism also kicks in whenever an ECN mark
returns from the receiver. The conventional TCP sees ECN mark as the
same level of congestion as a loss event. Meaning, the sender reacts with
the same response and reduce its transmission rate by half. (according to
Equation (A.5)).

Selective Acknowledgement (SACK) allows the sender to recover
from a loss very efficiently with the additional information the receiver
append to the acknowledgement. Duplicate-SACK (D-SACK) can be
used with SACK to detect spurious retransmissions. The use of Selective
Acknowledgement (SACK) information is the recommended way to
recover from a loss and should be used whenever possible.

A.3.1 Retransmission Timeout (RTO)

Retransmission Timeout (RTO) is used as a last resort if no acknowledge-
ment returns from the receiver within a given duration. The use of Re-
transmission Timeout (RTO) was updated and made mandatory[53]. The
sender has to restart the probing of the network given that condition of
the network has changed, which is to update ssthresh and set congestion
window to 1 (loss window). The sender reinitiates the slow start algorithm
and switches over to the congestion avoidance algorithm as the congestion
window reaches the new value of ssthresh.

Retransmission Timeout (RTO) specifies the duration a sender must
wait before retransmitting the first unacknowledged segment. The timeout
is set using Smoothed Round Trip Time (SRTT) which is calculated using
RTT measurements. The sender must update the timeout every RTT (take
at least one RTT measurement per RTT). Retransmitted segments can only
be used for RTT measurement if they held the timestamp option, else
the sender cannot distinguish the most recent segment from an earlier
segments sent (acknowledgement could be from the segment that was
assumed lost).

The timeout is set to initially one second when the sender lacks an RTT
measurement. The sender is not allowed to initiate an RTO of less than one
second. The sender must use a timeout of 3 seconds if the first segment
was lost (SYN). The timeout grows exponentially for each time the sender
retransmits using RTO[39]. The timeout reinitiates upon reception of a
new RTT measurement (successful delivery). The RTO work as a "backoff"
algorithm, the penalty grows for every time the sender fails to receive
an acknowledgement from the receiver within the timeout. RTO helps
avoid congestion collapse since the timeout grows at an exponential rate.
The sender is forced to wait for longer durations. The sender eventually
receives the acknowledgement as the timeout gets more significant than
the RTT. New RTT measurement is used to reinitiate the RTO.

173

A.3.2 Fast Retransmit

A high loss indicator is when a segment arrives making a hole in the
sequence number space. The receiver receives the segment out-of-order
and cannot forward the segment to the application yet since part of the
earlier data in the stream is missing. The arrival of out-of-order segments
is, therefore, of crucial information to the sender. The sender needs this
information to recover from a loss event efficiently.

The receiver uses duplicate acknowledgements to notify the sender
about the out-of-order event. A duplicate acknowledgement acknowledges
the very first missing segment rather than the incoming segment since
the receiver is not allowed to acknowledge beyond the next expected
byte in the stream. The receiver has, in this case, generated a duplicate
acknowledgement instead of an ordinary acknowledgement. The receiver
must not delay such acknowledgement so the sender can initiate the loss
recovery phase as soon as possible. Acknowledgements that repair parts of
the hole are also of importance as the sender needs to quick feedback in the
recovery phase. The receiver must, therefore, immediately acknowledge
any segment beyond the hole.

Although, it is not unheard of that a segment arrives earlier than
the next expected segment due to a couple of reasons (reordering, loss,
duplication). The sender does not initiate loss recovery right away on the
first duplicate acknowledgement hoping for a false positive. The sender
waits until at least three successive duplicate acknowledgements have
been received for the same segment[4] before initiating the fast retransmit
algorithm. This algorithm is the first phase of the loss recovery mechanism
with duplicate acknowledgements.

The sender must not update its congestion window before the third
duplicate acknowledges has arrived. Although, the sender may send
an additional segment as a duplicate acknowledgement arrives since
duplicate acknowledgement usually means that there is one less segment
in the network.

Finally, when three consecutive duplicates acknowledgements have
arrived can the sender with high probability assume the segment as lost.
The sender reduces its transmission rate by reducing the state variable
ssthresh (see Equation (A.5)). The sender now retransmits the missing
segment and updates its congestion window to the new value of ssthresh
+ 3. The addition of constant 3 is for all the segment that left the network
before entering fast retransmit. The sender then enters the next stage of the
recovery phase known as the fast recovery algorithm.

A.3.3 Fast Recovery

The sender initiates the Fast Recovery algorithm after Fast Retransmit
has retransmitted the lost segment. The sender temporarily increase the
congestion window during the fast recovery phase, by one whole segment
for any additional duplicate acknowledgement received[4]. The sender
may send one whole segment of new data if allowed by the new congestion

174

window and flow window.

The next acknowledgement that receipts new data should acknowledge
up to the last segment sent in response to the duplicate acknowledgement
in Fast Retransmit. The sender should have repaired the hole and must,
therefore, set the congestion window back to ssthresh before leaving the
fast recovery phase. The congestion avoidance is then reinstated to reprobe
for available capacity.

The sender has thus avoided the penalty of reinitiating slow start and
time has also been saved by not waiting for the RTO to expire.

A.3.4 NewReno

The Fast Retransmit and Fast Recovery algorithm are often called Reno.
NewReno[34] is an optimisation of the Fast Recovery algorithm in Reno.

The sender assumes the Fast Recovery algorithm repaired the hole
in the data as an acknowledgement receipting new data arrives. The
sender expects the acknowledgement to have acknowledged up to the
last segment sent before the start of loss recovery. However, this is
not always the case since the sender could have lost multiple segments,
or the network could have reordered segments. In a situation like
this, the sender only receives a partial acknowledgement. This partial
acknowledgement acknowledges some but not all data sent before entering
Fast Retransmit. The sender exits Fast Recovery upon reception of
a partial acknowledgement thinking the hole has been repaired, but
instead risk waiting until the RTO expires. The sender may recover
from multiple segment loss by going into Fast Retransmit again (three
additional duplicate acknowledgements received). However, the sender
does not perform well since by going through Fast Retransmit again
makes the sender reduce its transmission rate a second time. The Fast
Recovery algorithm, therefore, yields terrible performance in conditions
where partial acknowledgements are received.

NewReno does not declare the recovery phase over before the receiver
has receipts all missing data before the start of the loss recovery phase.
NewReno uses an additional state variable "recover" to keep track of the
beginning of the recovery phase.

As the sender receives a partial acknowledgement, which does not
acknowledge up to the state variable "recover", is the first unacknowledged
segment transmitted. The sender then updates its congestion window to
reflect the additional number of bytes acknowledged and sends another
segment containing new data if permitted by the new congestion window.
This approach ensures that the sender has a ssthresh amount of bytes
inflight as the recovery phase completes. Finally, the sender deflates
its congestion window as before and reprobes the network using the
congestion avoidance algorithm.

175

A.3.5 Recovery with SACK Information

The receiver notifies the sender about segments that have been received
out-of-order using duplicate acknowledgements with SACK information.
This information can be used by the sender to learn about multiple lost
segments in a single RTT, wherein the standard TCP recovery phase the
sender only learn about one lost segment for each RTT. However, the
sender must not be more aggressive, that is retransmissions of more
segments, than what is allowed in the standard TCP recovery phase.

The receiver must specify the most recent segment that triggered the
duplicate acknowledgement in the first block of the SACK information.
The sender gets timely information from the receiver in the recovery
phase. The sender can thus know which segment triggered the duplicate
acknowledgement and that the segment must be within the cumulative
acknowledgement number and SACK information of the first block.
The receiver fills rest of the SACK blocks with information of the
most recent isolated segments received. Meaning, that the sender will
receive the first block repeated three times in three successive duplicate
acknowledgements. Therefore the SACK information for each block is
repeated up to three times. SACK is, therefore, robust when the network
loses some acknowledgements containing SACK information. However,
it is a bit different with D-SACK as it also takes the first block of the
acknowledgement. The receiver does, therefore, not repeat the information
about the spurious retransmission.

The sender still has to depend on the RTO as a fallback mechanism.
The moment the RTO expires must the sender ignore any previous SACK
information provided. The sender then has to reprobe the network and
assume any segments above the cumulative acknowledgement as lost.

A.4 Active Queue Management (AQM)

Active Queue Management (AQM)[6] tries to eliminate the high queueing
delay observed in data networks due to an enormous queue (see Sec-
tion 2.2). The AQM evict packet from the queue as the queue starts to
get out of control. The AQM may ECN mark packets if both hosts support
ECN and if the host allowed its use on the current packet with the appro-
priate codepoint (see Section A.1.1). There exist serval AQM schemes with
different approaches and complexities, and is an actively researched field.
AQMs allows partial deployment on network elements found on the Inter-
net.

An AQM usually emits a congestion signal when a packet sits in the
queue for a more extended period. A sender does reduce its transmission
rate as soon as detecting the congestion signal. Meaning, the AQM can
suggest how fast each sender should go to achieve the desired queue
length. The primary goal of using AQM is to have an input rate that
corresponds to the output rate with a minimal queue. The idea is to let
the rest of the queue be available for bursts. Another goal often for an

176

AQM is to lower the probability for global synchronisation between flows.
The AQM does not want to signal all senders at the same time to prevent
the syncronised sawtooth behaviour of TCP in the queue. The congestion
window of senders converge and usually becomes the same values. The
unwanted scenario is when all senders go equally fast as it then becomes
period with a small queue and in other periods where there is no queue
at all. The AQM usually employs a random probability to signal a packet
after the queue has reached a certain threshold to desynchronise flows.

Deployment of AQMs seems to fix some of the queuing delay caused
by the capacity seeking behaviour of TCP, but this brings up another issue
which is most TCP implementation does not send less than two full-sized
segments per RTT. The sender likes to send at minimum two fully-sized
segments in an RTT to avoid the delayed acknowledgement mechanism
found at the receiver. The sender purposely ignores any recommendations
given by the AQM to keep the congestion window above the floor of two
segments. This cause problem as the AQM tries to force a shallow RTT.
No matter how many NACK the AQM emits are they ignored by the TCP
traffic, so the AQM ends with a longer queue than selected. The sender
refuses to cooperate with the AQM and becomes unresponsive.

A.4.1 Random Early Detection (RED)

Random Early Detection (RED) is an AQM scheme often used on the
Internet and data centres. RED is implemented as a classless qdisc on Linux
and allows configuration on a per-interface basis. RED uses average queue
size in the decision of marking the incoming packet. RED drops packets if
the configurable ecn parameter is not set or the hosts do not make use of
ECN.

RED defines two configurable parameter min and max, both in bytes.
Another configurable parameter probability is used to set the highest
probability to mark a packet, the probability grows linearly up to this
threshold. When the average queue length (in bytes) is below min RED
has the same behaviour as a FIFO scheduler. RED calculate the probability
to mark the packet as soon as the queue length exceeds min. The highest
probability (probability) is used by RED as soon as the average queue length
reaches max.

The maximum length of the queue is set using the configurable
parameter limit, in bytes. RED drop any new incoming packets when the
length of the queue grows this far and works same as tail-drop for a FIFO
scheduler.

177

178

Appendix B

Source Code

The source code can be obtained from here: https://bitbucket.org/asadsa/
kernel420/src/master.

179

https://bitbucket.org/asadsa/kernel420/src/master
https://bitbucket.org/asadsa/kernel420/src/master

	I Introduction
	Introduction
	Motivation
	Problem
	Problem statement

	Limitations
	Main Contributions
	Statement of Originality
	Research Methods
	Outline

	Background
	Bandwitdth Delay Product (BDP)
	Long, Fat Network (LFN)

	Queuing Delay
	TCP Background
	TCP Congestion Control in Linux kernel
	State Machine

	Data Centre TCP (DCTCP)
	Improved ECN Signaling
	Congestion Window Reduction
	Deployment Issues

	Low Latency, Low Loss, Scalable Throughput (L4S)
	Dual Queue AQM
	L4S ECN
	TCP Prague

	Summary

	Quantification
	Data Centres
	Broadband
	Inter-Process Communication (IPC)
	Summary

	Related Work
	TCP - Many flows
	TCP - Adaptive RED & SUBTCP
	Adaptive RED
	SUBTCP

	TCP - The Initial Work on ECN
	Linux TCP with ECN - Criticism

	TCP - Extensive Testing with Many Flows
	TCP - Delay Control
	Receiver-based Delay Control (RDC)
	Sender-based Delay Control (SDC)

	TCP Nice - A Background Transfer Protocol
	TCP - The Sub-packet Regime
	Sub-packet Regime
	Time Aware Queueing (TAQ)

	LEDBAT - Sub-packet Regime
	DCTCP - Packet Slicing
	DCTCP - ExpressPass
	Summary

	II The Project
	Methodology
	Experiment plan
	Traffic
	Active Queue Management (AQM)
	Concrete Plan

	Metrics for the evaluation of TCP
	Queuing Length & Link Utilisation
	Smoothed Round Trip Time (SRTT)
	Packet marking rate
	Throughput

	The Framework
	The Configuration of the Testbed

	Summary

	Design Proposal
	Fractional Congestion Window
	Packet Conservation Clock
	Stretch Acknowledgement
	Logarithmically Scaled Additive Increase
	Choosing values for the growth constants

	Multiplicative Decrease
	Loss Recovery
	LS-AIMD Reno
	LS-AIMD DCTCP

	Security Concerns & Deployment Challenges
	Summary

	Implementation
	Design Decisions
	Fractional Congestion Window
	Packet Conservation Clock
	Reschedule an Earlier Depature
	Reschedule an Postponed Depature

	Logarithmic Increase
	Add function in integer arithmetic

	Packet Processing
	Modes of operation
	Non-submss
	Submss

	Linux Kernel Module
	Summary

	III Results
	Evaluation
	Functional Test
	Logarithmically Scaled Additive Increase Multiplicative Decrease (LS-AIMD)
	The Submss Regime

	Stability & Syncronisation Test
	Link Utilisation
	Queueing Delay
	Smoothed Round Trip Time (SRTT)
	Marking Rate
	Additive Increase
	Throughput

	Exhaustive & Scalability Test
	Link Utilisation
	Queueing Delay
	Smoothed Round Trip Time (SRTT)
	Marking Rate
	Additive Increase
	Throughput

	Summary

	Results
	Convergence Test
	Additive Increase Multiplicative Decrease (AIMD)
	Marking Rate
	Queueing Delay & Smoothed Round Trip Time (SRTT)
	Throughput & Link Utilisation

	The submss Regime
	Additive Increase Multiplicative Decrease (AIMD)
	Marking Rate
	Queueing Delay & Smoothed Round Trip Time (SRTT)
	Throughput & Link Utilisation

	Exhaustive & Scalability Test
	Link Utilisation
	Queueing Delay
	Smoothed Round Trip Time (SRTT)
	Marking Rate
	Throughput

	Queueing Delay Trends
	Final Discussion & Remarks
	Summary

	IV Conclusion
	Conclusion
	Summary
	Main Contributions
	Future Work

	Appendices
	TCP Background
	Transmission Control Protocol (TCP)
	Explicit Congestion Notification (ECN)
	Stretch vs. Delayed Acknowledgments
	Nagle's Algorithm
	Selective Acknowledgment (SACK)

	Congestion Control (CC)
	Congestion Window
	Congestion Window vs Flow Window
	TCP Friendly Rate Control (TFRC)
	Slow start
	Congestion Avoidance

	Loss Recovery
	Retransmission Timeout (RTO)
	Fast Retransmit
	Fast Recovery
	NewReno
	Recovery with SACK Information

	Active Queue Management (AQM)
	Random Early Detection (RED)

	Source Code

