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S U M M A R Y
Based on Hager and O’Connell’s solution to mantle flow equations, the stresses induced by
mantle convection are determined using the density and viscosity structure in addition to to-
pographic data and a plate velocity model. The solution to mantle flow equations requires the
knowledge of mantle properties that are typically retrieved from seismic information. Large
parts of the world are, however, not yet covered sufficiently by seismic surveys. An alternative
method of modeling the stress field was introduced by Runcorn. He formulated a direct relation
between the stress field and gravity data, while adopting several assumptions, particularly dis-
regarding the toroidal mantle flow component and mantle viscosity variations. A possible way
to overcome theoretical deficiencies of Runcorn’s theory as well as some practical limitations
of applying Hager and O’Connell’s theory (in the absence of seismic data) is to combine these
two methods. In this study, we apply a least-squares analysis to combine these two methods
based on the gravity data inversion constraint on mantle flow equations. In particular, we use
vertical gravity gradients from the Gravity field and steady state Ocean Circulation Explorer
that are corrected for the gravitational contribution of crustal density heterogeneities prior to
applying a localized gravity-gradient inversion. This gravitational contribution is estimated
based on combining the Vening Meinesz-Moritz and flexural isostatic theories. Moreover, we
treat the non-isostatic effect implicitly by applying a band-limited kernel of the integral equa-
tion during the inversion. In numerical studies of modeling, the stress field within the South
American continental lithosphere we compare the results obtained after applying Runcorn and
Hager and O’Connell’s methods as well as their combination. The results show that, according
to Hager and O’Connell’s (mantle flow) solution, the maximum stress intensity is inferred
under the northern Andes. Additional large stress anomalies are detected along the central and
southern Andes, while stresses under most of old, stable cratonic formations are much less pro-
nounced or absent. A prevailing stress-vector orientation realistically resembles a convergent
mantle flow and downward currents under continental basins that separate Andean Orogeny
from the Amazonian Shield and adjacent cratons. Runcorn’s (gravimetric) solution, on the
other hand, reflects a tectonic response of the lithosphere to mantle flow, with the maximum
stress intensity detected along the subduction zone between the Nazca and Altiplano plates
and along the convergent tectonic margin between the Altiplano and South American plates.
The results also reveal a very close agreement between the results obtained from the combined
and Hager and O’Connell’s solutions.
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1 I N T RO D U C T I O N

The first low-degree global gravity models in the 1960s determined
from orbital parameters of the early satellite missions were used,

among other studies, to investigate the global mantle convection
pattern and its relation with the global tectonic plate configuration
and lithospheric stresses. Kaula (1963), for instance, developed
a method based on minimizing the strain energy and using the
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low-degree gravitational and topographic harmonics to estimate the
minimum stresses in an elastic Earth. McKenzie (1967) studied
heat flow in the mantle using gravity anomalies. Marsh & Marsh
(1976) compiled a 2-D mantle convection model based on global
gravity anomalies. Runcorn (1964, 1967) formulated a functional
relation between the stress and gravity field based on solving the
Navier–Stokes’ equations for modeling the horizontal shear stresses
in the mantle, while considering a two-layered model for the Earth,
a lithosphere overlaying mantle of uniform viscosity. He then used
the low-degree spherical harmonics of the Earth’s gravity field to
deduce the global horizontal stress pattern, and found a relation with
convergent and divergent sites established by plate tectonic theory.
Liu (1977, 1978) applied Runcorn’s theory to construct maps of the
convection-generated stresses driving movements of tectonic plates.
McNutt (1980) used regional gravity data to interpret stresses within
the crust and upper mantle. Fu & Huang (1983) extended Runcorn’s
definition for the full stress tensor. Ricard et al. (1984) investigated
the connection between lithospheric stresses and geoid undulations.
In a more recent study, Eshagh (2014) modified Runcorn’s theory
for the satellite-gradiometry data.

The direct modeling of mantle convection pattern or stresses
solely from gravity data has no unique solution. Moreover, some
objections were raised against using Runcorn’s theory, particularly
questioning approximations adopted in his formulation of the stress
field. He, for instance, took into consideration only the poloidal
flow component in the mantle, while disregarding the toroidal com-
ponent. Phillips & Ivins (1979) argued that his theory could not
realistically describe the actual global mantle convection pattern,
because Runcorn assumed only a constant viscosity within the sub-
lithospheric mantle. To overcome these theoretical deficiencies of
Runcorn’s theory, Hager & O’Connell (1981) solved for mantle
flow by incorporating the plate velocity model, radially variable
viscosity as well as both the poloidal and toroidal flows in the man-
tle. Steinberger et al. (2001) applied this method to investigate the
global lithospheric stress pattern induced by a global mantle cir-
culation, and Medvedev (2016) inferred the stress pattern within
the African tectonic plate based on combining methods for model-
ing thermal isostasy and gravitational potential energy. Hager and
O’Connell’s solution based on mantle flow equations, however, re-
quires information on mantle density anomalies that is typically in-
ferred from seismic tomography. Ricard et al. (1984) and Richards
& Hager (1984) suggested to use the global geoid model as infor-
mation to constrain radial viscosity structure for solving Hager and
O’Connell’s theory. In this way, the gravity information is incor-
porated into the mantle flow solution. Following this idea, we pro-
posed here a different approach that combines Runcorn (gravimet-
ric) and Hager and O’Connell’s (mantle flow) solutions by applying
a least-squares approach to solve jointly both types of observation
equations.

To enhance the mantle signature in gravity data used for modeling
the stresses induced by mantle convection, the gravitational signal
of crustal density heterogeneities should be removed. Some authors
solve this problem by applying a spectral filtering or spectral decom-
position. These methods, however, do not provide a unique solution,
because the long-wavelength gravity spectrum comprises not only
the gravitational signature of mantle density heterogeneities, but
also a significant contribution from the crust. If a crustal density
model is available, gravimetric forward modeling could be applied
to remove the gravitational contribution of the crustal density struc-
ture (e.g. Tenzer et al. 2015). The refined gravity data corrected
for the gravitational contribution of crustal density heterogeneities
still comprise an additional gravitational signal that could not

readily be modeled and removed based on applying the gravimet-
ric forward modeling, because the isostatic balance depends on the
loading and effective elastic thickness, rigidity and rheology of the
lithosphere, and viscosity of the asthenosphere (Watts 2001). More-
over, glacial isostatic adjustment, present-day glacial melting, plate
tectonics, mantle convection and other geodynamic processes con-
tribute to the overall isostatic balance. To address these issues, we
propose and apply an alternative method for modeling the gravita-
tional contribution of crustal density structure based on combining
the Vening Meinesz-Moritz’s (VMM) and flexural isostatic theo-
ries. This is possible, because these two methods for the gravimet-
ric Moho recovery are equivalent if the elastic lithosphere thickness
and lateral crustal density variations are chosen appropriately. In this
way, we can assume that both methods yield the same Moho result,
thus can be combined in order to derive other parameters which are
functionally related either to the VMM or flexural isostatic model.
A similar principle was proposed already by Stewart & Watts (1997)
and Braitenberg et al. (2002) in order to estimate the elastic thick-
ness of the lithosphere. Theoretical foundations for combining these
two isostatic theories were given by Eshagh (2016), who investigated
their agreement for Moho modeling under the Tibetan Plateau. It
is important to mention here that this combination can be applied
only for the long-to-medium-wavelength topographic features and
crustal density heterogeneities that are mostly in an isostatic equi-
librium. This principle, however, does not hold for more detailed
features, because loads shorter than 100 km are not isostatically
compensated (e.g. Turcotte & Schubert 2014, p. 252). This corre-
sponds to a spatial resolution of about 1 arcdeg, or a maximum
degree of loading coefficients about 180 (e.g. Abrehdary 2016).
Moreover, the isostatic equilibrium does not hold, for instance, along
oceanic subduction zones. To address this issue, we used the gravity
spectrum only up to spherical harmonic degree 31, corresponding to
long wavelengths larger than 1200 km. The numerical investigations
in this study were conducted within the South American continen-
tal lithosphere, where we compared the results of lithospheric stress
modeling based on applying Runcorn’s and Hager and O’Connell’s
methods and investigated a possibility of combining these two
methods.

2 V M M A N D F L E X U R A L I S O S TAT I C
M O D E L S

In this section, we briefly summarize the VMM and flexural isostatic
theories, before combining them for deriving the relation between
the crustal density structure and its gravitational contribution in
Section 3.

2.1 VMM model

Eshagh (2017) formulated the VMM problem for finding the Moho
depth T from the gravity disturbances δg in the following spectral
form

T = R

3

[
1 −

(
1 − T0

R

)3
]

+ 1

4πG�ρ

∞∑
n=0

(
2n + 1

n + 1

)
βn

−1

×
n∑

m=−n

(
δgTB

nm + δgSed
nm + δgCrys

nm − δgnm

)
Ynm (θ, λ), (1a)
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where T0 is the mean Moho depth, R is the Earth’s mean radius, G
is Newton’s gravitational constant, �ρ is the Moho density contrast
and the parameter βn is given by

βn =
{

1 − (n + 2) T0
2R over continents

1 over oceans
. (1b)

The gravity data used to compute the Moho depth according to
eq. (1a) are corrected for the gravitational contributions of topog-
raphy and density contrasts of bathymetry (i.e. the ocean density
contrast), sediments and consolidated crust. These gravity data and
gravity corrections are described by the corresponding spherical
harmonics of the gravity disturbances δgnm and the spherical har-
monics of the gravitational contributions of topography/bathymetry
δgTB

nm , sediments δgSed
nm and density heterogeneities within the con-

solidated crust δgCrys
nm .

Disregarding the terms –T0
2/R and +T0

3/R2 on the right-hand side
of eq. (1a), the expression for computing the Moho depth correction
�T was found to be (cf. Eshagh 2017)

�T = 1

4πG�ρ

∞∑
n=0

(
2n + 1

n + 1

)(
1 − (n + 2)

T0

2R

)−1

×
n∑

m=−n

(
δgTB

nm + δgSed
nm + δgCrys

nm − δgnm

)
Ynm (θ, λ). (1c)

The Moho depth correction �T computed according to eq. (1c)
is added to the mean value T0 in order to obtain the gravimetric
Moho depth; that is, T = �T + T0.

2.2 Flexural isostatic model

The assumption that the crust (corrected for anomalous density
structures) is in an isostatic equilibrium is adopted for solving the
VMM model (Sjöberg 2009) as described by eq. (1c). However,
the original idea of Vening Meinesz (1931) was that the load of
topographic mass is bending the lithosphere, while the bathymetric
mass deficiency has an opposite effect. To describe mathematically
a flexural deformation due to loading, the elastic shell theory can
be adopted (cf. Kraus 1967, p. 156). Turcotte & Schubert (1982)
studied the flexure of elastic lithosphere under the topographic load,
while assuming a uniform lithospheric density structure. Here, we
generalized their method for modeling the lithospheric flexure more
realistically by taking into consideration the heterogeneous litho-
spheric density structure. Moreover, the load in partial differential
equations that should be solved for computing the lithospheric flex-
ure propagates directly to Moho undulations.

To begin with, we write the loading theory for an elastic litho-
spheric shell in the following form (Kraus 1967)[

D

R4

(∇6 + 4∇4
) + ETe

R2

(∇2 + 2
)]

�T + (∇2 + 1 − ν
)

× �T �ρg = (∇2 + 1 − ν
)

K̄ g, (2a)

where g is the Earth’s mean gravity at sea level, E is Young’s
modulus, Te is the elastic thickness of the lithosphere, v is Poisson’s
ratio,∇ denotes the gradient operator and the parameter D of flexural
rigidity is given by

D = ET 3
e

12 (1 − ν2)
. (2b)

We further define the density parameter K̄ as follows

K̄ = ρ̄H + ρsed H sed + ρCrys H Crys, (2c)

where ρsed and H sed are the density and thickness parameters of
sediment layers, and the corresponding parameters ρCrys and H Crys

are defined for the consolidated crustal layers. The density distribu-
tion function ρ̄ within the topography and bathymetry in eq. (2c) is
defined as

ρ̄ =
{
ρc H ≥ 0
ρw − ρc H < 0

, (2d)

where H is the topographic/bathymetric height, ρc = 2670 kg m−3

is the topographic density and ρw = 1027 kg m−3 is the sea water
density (e.g. Gladkikh & Tenzer 2011).

Eshagh (2016) presented the solution of the differential equation
in eq. (2a) in the following spectral form[

D

R4

(
κ3

n + 4κ2
n

) + ETe

R2

(
κ2

n + 2
)]

(�T )nm + (
κn + 1 − ν

)
× (�T )nm�ρg = (

κn + 1 − ν
)

K̄nm g, (2e)

where

κ2
n = n2(n + 1)2. (2f)

We further rearrange the expression in eq. (2e) for computing the
Moho depth correction as follows

�T =
∞∑

n=0

Cn

n∑
m=−n

(
K̄

)
nm

Ynm (θ, λ), (2g)

with the parameter Cn given by

Cn = κn − (1 − ν)(
κ3

n − 4κ2
n

)
D

R4g
+ ETe

R2g

(
κn − 2

) + (
κn − (1 − ν)

)
�ρ

. (2h)

The expressions in eqs (1c) and (2h) describe two different meth-
ods for computing the Moho depth, but their solutions should the-
oretically be the same if the lithospheric shell is elastic, while an
isostatic equilibrium exits in all regions globally. As stated in Sec-
tion 1, the assumption of isostasy is also warranted, because in our
solution we limited the spherical harmonic resolution up to the de-
gree 31. We can then combine both theoretical models to derive a
functional relation linking the crustal density structure and its grav-
itational contribution. To utilize the Gravity field and steady state
Ocean Circulation Explorer (GOCE) data for solving this problem,
we reformulated this functional relation in terms of the vertical
gravitational gradient. These expressions are given in the next sec-
tion.

3 L I T H O S P H E R I C M A S S
H E T E RO G E N E I T I E S F RO M C O M B I N I N G
V M M A N D F L E X U R A L M O D E L S

Under the adopted assumption that both Moho solutions obtained
by solving the VMM and flexural isostatic models in eqs (1c) and
(2h) are identical, we could establish a direct mathematical model
that functionally relates the crustal density structure with its gravi-
tational contribution. This principle has been used, for instance, by
Braitenberg et al. (2002) and Stewart & Watts (1997) to estimate
the elastic thickness of the lithosphere. This assumption is generally
valid in the absence of regional changes in the lithospheric config-
uration, but could be applied for studies of the lithospheric stress
field based on the analysis of the long-to-medium-wavelength grav-
ity spectrum. For this purpose, we generalized the functional model
in eq. (2c) by means of crustal density heterogeneities. It is worth
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mentioning here that density heterogeneities within the whole litho-
sphere could readily be included into this model either by applying
an additional gravity correction due to subcrustal lithospheric den-
sity heterogeneities, or by assuming variable Moho density contrast,
which implicitly incorporates lateral density variations in the sub-
crustal lithosphere. The former approach was applied in this study.
We have used the CRUST1.0 seismic model to compute the gravita-
tional contribution of crustal density heterogeneities, meaning that
the flexural and VMM Moho results are inherently constrained by
this seismic model.

To derive the functional relation between the crustal density struc-
ture and its contribution to the vertical gravity gradient (i.e. the
second-order radial derivative of the disturbing potential), we first
write a functional relation between the spherical harmonics of the
gravity disturbance δgnm and the corresponding spherical harmon-
ics of the vertical gravity gradient Vrr,nmas follows (cf. Eshagh &
Hussain 2016)

δgnm = R

n + 2

1

sn+3
Vrr,nm, S = R

r
. (3a)

After applying the functional relation between δgnm and Vrr,nm to
gravity corrections defined in eq. (1a), we get

(�T )nm = R

4πG�ρ

(2n + 1)

(n + 1) (n + 2)
βn

−1s−n−3

× (
V TB

rr,nm + V Sed
rr,nm + V Crys

rr,nm − Vrr,nm

)
, (3b)

where V TB
rr,nm , V Sed

rr,nm and V Crys
rr,nm are, respectively, the gravity-gradient

corrections due to topography/bathymetry, sediments and consoli-
dated crust.

Combining eqs (2g) and (3b), solving the result for Vrr,n , and
applying summations (for n and m) on both sides of eq. (3b), we
finally arrive at

− 4πG�ρ

R

∞∑
n=0

(n + 1) (n + 2)

(2n + 1)
βnsn+3Cn

n∑
m=−n

(
K̄

)
nm

Ynm (θ, λ)

+(
V TB

rr + V Sed
rr + V Crys

rr

) = V crust
rr . (3c)

The expression in eq. (3c) describes the contribution of crustal
density heterogeneities on the vertical gravity gradient. We empha-
sized this by introducing the notation V crust

rr instead of Vrr .

4 L I T H O S P H E R I C S T R E S S F RO M
G R AV I T Y DATA

Runcorn (1967) assumed a two-layered model of the Earth, and
developed a theory for Newtonian constant-viscosity Stokes’ flow
to correlate the gravity field with the global mantle convection
pattern. He explicitly related the gravity potential to a volume in-
tegral of the poloidal velocity function and through application of
Green’s theorem, further transformed this functional relation after
several approximations to surface integrals over the inner and outer
boundaries of the spherical shell of the assumed Earth’s model
(cf. Runcorn 1967, Phillips & Ivins 1979). Based on these assump-
tions, he introduced the lithospheric shear stress components in the
following spectral form

Srθ = κ

∞∑
n=2

2n + 1

n + 1

(
R

R − D

)n+1 n∑
m=−n

Vnm
∂Ynm (θ, λ)

∂θ
, (4a)

and

Srλ = κ

∞∑
n=2

2n + 1

n + 1

(
R

R − D

)n+1 n∑
m=−n

Vnm
∂Ynm (θ, λ)

sin θ∂λ
, (4b)

where Vnm are the spherical harmonics of the disturbing potential,
and D denotes the mean depth of the lithospheric base (i.e. the
lithosphere–asthenosphere boundary). The parameter κ in eq. (4b)
reads

κ = Mg

4π (R − D)2
, (4c)

where M is the total mass of the Earth (including its atmosphere).
Eshagh (2014) reformulated Runcorn’s theory so that the stress-

generating function Sr is defined as a function of spherical harmon-
ics instead of their partial derivatives (see eqs 4a and 4b). Hence,
we have

Sr = κ

∞∑
n=2

2n + 1

n + 1

(
R

R − D

)n+1 n∑
m=−n

VnmYnm (θ, λ). (4d)

In this way, the stress-generating function Sr is first computed
according to eq. (4d), and the northward and eastward stress com-
ponents Srθ and Srλ are then obtained from the stress-generating
function Sr by applying a numerical differentiation. The idea be-
hind applying this modification, instead of using original formulae
given by Runcorn, was to improve the spectral resolution due to the
divergence of an asymptotically convergent series in eqs (4a) and
(4b). Moreover, the stress-generating function (in eq. 4d) defined
in terms of the gravitational potential represents the most generic
form, suitable for deriving the stress field as a function of any type
of gravity field quantities, such as the geoid undulations, gravity,
deflections of the vertical, or gravity-gradient components. The in-
tegral equation that links the vertical gravity gradient Vrr with the
stress-generating function Sr is then defined by

1

4πκ(R − D)2

�
σ

K (k, ψ) Sr dσ = Vrr − V crust
rr , (4e)

where σ is the unit sphere, and dσ is the surface integration element.
The kernel function K in eq. (4a) reads

K (k, ψ) =
∞∑

n=2

(n + 1)2 (n + 2) kn+3 Pn (cos ψ), k = R − D

r
,

(4f)

where Pn(cos ψ) denotes the Legendre polynomial of degree n for
the argument of the spherical angle ψ between the computation and
integration points, and r is the geocentric distance.

5 L I T H O S P H E R I C S T R E S S F RO M P L AT E
M O T I O N S A N D M A N T L E F L OW

In principle, the lithospheric stresses induced by mantle convec-
tion can be derived from large-scale mantle flow and plate motions.
The motion and geometry of tectonic plates represent the boundary
conditions for a mantle circulation pattern. By assuming radially
variable Newtonian viscosity, and 3-D mantle density anomalies,
the mantle flow can be determined analytically. Stresses induced by
mantle flow can then be expressed in the following form (Stein-
berger et al. 2001)

Srr =
∞∑

n=0

n∑
m=−n

Srr,nmYnm (θ, λ), (5a)
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Srθ =
∞∑

n=0

n∑
m=−n

(
Sp,nm

∂Ynm (θ, λ)

∂θ
+ St,nm

∂Ynm (θ, λ)

sin θ∂λ

)
, (5b)

and

Srλ =
∞∑

n=0

n∑
m=−n

(
Sp,nm

∂Ynm (θ, λ)

sin θ∂λ
− St,nm

∂Ynm (θ, λ)

∂θ

)
, (5c)

where Sp,nm and St,nm are the poloidal and toroidal spherical har-
monics of the stress field, respectively. These stress components
can be computed directly from the flow calculation according to the
theory of Hager & O’Connell (1981), which reduces the spherical
harmonic expansion of mantle flow to a set of ordinary differential
equations. For more details, we refer readers to Steinberger et al.
(2001).

As follows from eqs (4a) and (4b), and (5b) and (5c), the shear
stresses induced by mantle convection can be derived by applying
two independent methods and using two different data types. As
mentioned above, Runcorn (1967) oversimplified the mantle rhe-
ology in order to find a direct mathematical relation between the
gravity field and the lithospheric stresses. By comparing eq. (5b)
with eq. (4a) and eq. (5c) with eq. (4b), we can see that the toroidal
component of mantle circulation is absent in Runcorn’s definition.
Obviously, Runcorn (1967) clarified that the stresses presented in
eqs (4a) and (4b) ignore the toroidal component. In fact, Runcorn
mentioned that

Sp,nm = κ
2n + 1

n + 1

(
R

R − D

)n+1

Vnm, for n ≥ 2. (5d)

So far, we briefly summarized two methods for modeling the
stress field based on the gravity and mantle flow information.
As stated above, Runcorn’s method for modeling the stress field
solely from gravity data does not provide a unique solution with-
out using additional geophysical constraints. The mantle flow so-
lution according to Hager and O’Connell, on the other hand, re-
quires the knowledge of mantle rheology as well as mantle den-
sity heterogeneities, which might be restricted by the absence of
seismic data over large parts of the world. It is thus natural to
combine these two methods in order to find a solution for mod-
eling the stress field. In the next section, we present a combina-
tion of the two methods by means of applying the least-squares
analysis.

6 S O LU T I O N O F I N T E G R A L
E Q UAT I O N S A N D T H E I R
C O M B I NAT I O N

To define the combined solution for stress field modeling, we
formulate the functional relations that incorporate the equa-
tions for finding the stress-generating function from the gravity-
gradient data and from the mantle flow equations. Obviously,
the gravity-gradient data used for this purpose are corrected for
the gravitational contribution of crustal density heterogeneities
in order to extract the gravitational signature of the mantle
(Section 3).

6.1 Stress-generating function

The integral equation in eq. (4e) relates the vertical gravity gradient
Vrr with the stress-generating function Sr. Optimally, the number of
input data should exceed the number of estimated values Sr. Such

an overdetermined system can then be written as the Gauss–Markov
adjustment model in the following form

Asr = L − ε, E
{
εεT

} = σ 2
0 Q, and E {ε} = 0, (6a)

where A is the coefficient matrix of the system, which is derived
after discretization of the integral in eq. (4e) according to the res-
olution of parameters being recovered, L is the observation vector
containing Vrr with ε as their errors and (.)T denotes a transposi-
tion operator. The vector of unknown parameters sr is formed by
values of Sr over the recovery area. The a priori variance factor σ 2

0

is set equal to 1, Q = I is the positive definite cofactor matrix of
the observations and E{.} denotes a statistical expectation. Eq. (6a)
shows that the statistical expectation of the observation noise is
zero, and its quadratic form defines the variance–covariance ma-
trix of measurements. This means that data noise is random and
follows Gaussian distribution. The integral equations in eq. (4e)
after discretization form the observation equations that define a
functional relation between the observed values Vrr and the un-
known (and sought) values of Sr. Therefore, the number of equa-
tions is equal to the number of measurements or the number of
rows in the matrix A, and the number of Sr equals to the number of
columns in A.

Since the system of equations in eq. (6a) is ill-conditioned,
Tikhonov’s (1963) regularization is applied based on minimizing
the following objective function

min
(‖Asr − L‖2 + α2‖sr‖2

)
, (6b)

where ‖ • ‖2 denotes the L2 norm, and α2 is the regularization
parameter.

The regularized solution of eq. (6b) that comprises the estimated
values of Sr and the vector L formed by the gravity-gradient data
(corrected for the gravitational contribution of crustal/lithospheric
density heterogeneities) reads

sr = (
ATA + α2I

)−1
ATL. (6c)

As explained above, Runcon’s theory produces the shear stress
components, which are the northward and eastward derivatives of
Sr. Such a process can be described mathematically as follows

∂Sr

∂θ
= Srθ , (6d)

∂Sr

sin θ∂λ
= Srλ, (6e)

where Srθ and Srλ are the northward and eastward stress compo-
nents.

The values of the stress-generating function (Sr) form elements
of the estimated vector sr . According to the chosen resolution for
a stress recovery and the size of area, Sr can be presented in a
matrix or grid form. Therefore, taking these derivatives numer-
ically according to values of these functions on a grid and the
distance between them is rather straightforward. For the vector sr ,
eqs (6d) and (6e) can be rewritten into the following vector-matrix
form

srθ = Bsr , (6f)

srλ = Dsr , (6g)

where B and D are the matrix operators for the conversion of the
stress-generating functions Sr to the stress components Srθ and Srλ

that form the vectors srθ and srλ. In other words, they are matrices,
which subtract each two adjacent values on a grid and divide this
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difference by a distance between them. The matrix B operates on
the columns of the grid and represents the northward derivatives,
and D on the rows and eastward.

6.2 Stress-generating function from GOCE and mantle
flow model

We further incorporated the stresses generated from the mantle flow
model into the gravity-gradient data inversion. However, the man-
tle flow models are defined in terms of the northward and eastward
shear stress components instead of the stress-generating function Sr,
which is obtained from the gravity-gradient data inversion. There-
fore, in order to perform a joint inversion, the system of equations
should be constructed in such a way that the unknowns are either Sr

or the shear stress components. However, since Vrr is used in this
study, it is better to have the system for estimating Sr, otherwise, the
kernel of the integral equation will be off bell-shaped and inappro-
priate for a local inversion. In this case, the matrix A and the vector
L remain the same as defined in the previous section. Nevertheless,
the shear stress components derived from the mantle flow model
play roles of additional measurements to our system of equations.
This means that the mathematical relation between Sr and these
stresses should be established in such a way that by solving the
system the values of Sr are derived from both, the gravity-gradient
data as well as from the shear stress components of the mantle flow
solution. Here, we assumed that the noise in all measurements is
random. We further assumed that the weights of all measurements
are equal. We then write⎡
⎣A

B
D

⎤
⎦ s∗

r =
⎡
⎣L

srθ

srλ

⎤
⎦ −

⎡
⎣εL

εsrθ

εsrλ

⎤
⎦ , E {εL} = E

{
εsrθ

} = E
{
εsrλ

} = 0,

and

E
{
εLεL

T
} = E

{
εsrθ

εT
srθ

} = E
{
εsrλ

εT
srλ

} = σ 2
0 I, (6h)

where the vector εL comprises errors of the gravity-gradient data in
L, and the vectorsεsrθ

and εsrλ
comprise errors of the stress-vector

components srθ and srλ that are derived from a mantle flow model.
By adding eqs (6f) and (6g) into the system of equations in

eq. (6a), the instability problem of the system is solved without a
regularization. The least-squares estimate for ŝ∗

r in eq. (6h) is then
described by:

ŝ∗
r = (

ATA + BTB + DTD
)−1 (

ATL + BTsrθ + DTsrλ

)
. (6i)

As seen in eq. (6i), no weighting scheme has been considered in
the solution. This means that each value of the stress component
of the flow model has the same weight as that attributed to each
value of the gravity gradient. The structure of A, B and D matrices
thus determine the contribution of L,srθ and srλ to the final joint
solution of ŝ∗

r . As demonstrated numerically, since the matrix A
is ill-conditioned, the gravity-gradient data have weaker influence
onto the final solution. The equations related to the shear stress
components from the mantle flow model then dominate the solution,
even if the number of gravity-gradient data used for the inversion is
much higher. Finally, it is worth mentioning here that the system in
eq. (6i) defines the least-squares solution for Sr, instead of directly
for the stress components. In order to obtain a joint solution for the
shear stress components, sr should be replaced by ŝ∗

r in eqs (6f) and
(6g) and the matrices B and D take the northwards and eastwards
derivatives of it.

7 S T U DY A R E A A N D DATA
A C Q U I S I T I O N

In this section, we briefly discuss the geological setting of study area
comprising South America and then present input data and models
used for computing the stress field according to theoretical models
summarized in Sections 4–6.

7.1 Study area

The eastern part of South America (see Fig. 1) is formed by the Ar-
chaean to Palaeoproterozoic cratons (Amazonia, Sao Francisco, Rio
de la Plata) that are separated from each other by the Mesoprotero-
zoic to Neoproterozoic mobile belts associated with the amalgama-
tion of Gondwana (e.g. Cordani & Sato 1999). The Transbrasiliano
Lineament suture that is associated with one of the seismically ac-
tive belts (Assumpçao et al. 2004) extends from the northwest and
continues southwards. During the Phanerozoic some of the regions
between the Precambrian fragments became the centre of intra-
continental basins (Amazon and Paraná), later modified by flood
basalt volcanism during the Mesozoic contemporaneous with the
rifting between South America and Africa and the opening of the
Atlantic Ocean. The western part of South America is character-
ized by the accretion of terrains to Gondwanaland during the Early
Palaeozoic, the construction and collapse of a Late Palaeozoic sub-
duction orogen, and the ongoing construction of another orogen
since the Jurassic that is dominated by east-directed subduction of
the Pacific oceanic lithosphere (e.g. Ramos 1999). The accelera-
tion of the South American tectonic plate westwards resulted in
compressive deformations along the convergent margin that forms
the Andes. This area witnesses a strong along-strike morphological
segmentation characterized by oroclinal bending of the Altiplano–
Puna plateau. Bird (2003), analysing seismic and geodetic data,
proposed the existence of separated tectonic blocks of Panamá,
Northern Andes and Altiplano, which are moving more or less
as rigid blocks relative to the South American plate. The eastern
boundary of the Altiplano plate corresponds to the active margin
of the Sierras Subandinas thrust-fold belt, and the northern and
southern ones gradate to zones of diffuse crustal deformation. The
southern part of South America formed by the Patagonian Plat-
form is a geologically distinct lithospheric block with respect to
the rest of the continent (e.g. Ramos 1999). Spreading centres be-
tween the Nazca, Cocos and Antarctic plates are subducted in the
Andean trench, whereas the age of the Nazca plate increases to-
wards the Central Andes, reaching a maximum of 45 My (Müller
et al. 1997).

7.2 Input data

The data sets and models used for computations comprised the
GOCE gravity-gradient data, the SRTM30 topographic/bathymetric
model (Farr et al. 2007), the CRUST1.0 global seismic crustal
model (Laske et al. 2013) and the elastic thickness model compiled
by Tassara et al. (2007).

7.2.1 GOCE data

We used the GOCE satellite data over the study area observed dur-
ing 2013 January with a 10 s data-sampling interval to compute
the vertical gravity gradient (in total 21920 values) corrected for
the normal gravity-gradient component according to the GRS80
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Figure 1. Geotectonic setting of South America. Tectonic plate boundaries are marked by red lines. The map also shows solid Earth topography.

parameters (Moritz 2000). Since we used only the long-wavelength
gravity spectrum up to the spherical harmonic degree 31 that is not
detected sufficiently by the GOCE gravity gradiometry, it is impor-
tant to emphasize here that the GOCE Level 2 products have im-
proved long-to-medium gravity spectrum. This is assured by using
a global gravity model during the transformation of GOCE observ-
ables from the gradiometer frame to the local north-oriented frame,
with subsequent filtering of GOCE data with high-pass filters, re-
placing low frequencies by GOCE-QL model, and incorporating
the reduced dynamic orbit of GOCE into the solution (see GOCE
Level 2 Product Data Handbook).

As seen in Fig. 2, large positive values of vertical gravity gradient
are distributed along Andes with maxima (up to 1.5 E) in its central
part. The largest negative values mark locations of the oceanic sub-
ductions along the Puerto Rico and Peru-Chile trenches. Elsewhere,
the values are typically within the interval of ±0.5 E.

7.2.2 CRUST1.0

We used 1 × 1 arcdeg data from CRUST1.0 to compute the variable
Moho density contrast. This density contrast was computed as the
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Figure 2. Regional map of the vertical gravity gradient.

Figure 3. Moho density contrast (kg m−3).

difference between the uppermost mantle density and the average
crustal density evaluated as the weighted mean of density values
within the CRUST1.0 layers according to the thickness of each layer.
The Moho density contrast is shown in Fig. 3. Maxima, exceeding
600 kg m−3, agree with locations of the Brazilian Shield and São
FranciscoCraton, and minima are typically along the mid-oceanic
ridges. A relatively small Moho density contrast is also detected
along the oceanic subduction under the Puerto Rico Trench, while
such a feature is absent along the Peru-Chile trench.

7.2.3 Gravity-gradient corrections

We further computed the gravity-gradient corrections due to to-
pography, bathymetry, sediments and consolidated crust, and ap-
plied them to the GOCE vertical gravity gradients. The computation
was realized according to the procedure developed by Tenzer et al.
(2012) which utilizes methods for a spherical harmonic analysis and
synthesis of the gravity and crustal structure data (see also Rexer
et al. 2016). The combined topographic/bathymetric correction was
computed using the SRTM30 data for the average density of the
upper continent crust 2670 kg m−3 (Hinze 2003). The same density
value was adopted to define the density contrasts for the stripping
gravity-gradient corrections. The sediment and consolidated crust
corrections were computed from the 1 × 1 arcdeg CRUST1.0 data.
The results are shown in Fig. 4.

The combined contribution of topography and bathymetry on the
vertical gravitational gradient (Fig. 4a) is typically negative offshore
while positive inland, with maxima in central Andes exceeding 6 E.
The sediment contribution (Fig. 4b) is typically within the interval
±0.5 E, except for large negative values along continental margins
characterized by significant marine sediment deposits attributed
mainly to a river discharge. The contribution of anomalous den-
sity heterogeneities within the consolidated crust is mostly negative
over the oceanic crust, while positive inland including continen-
tal margins. Maxima of this contribution up to about 2.5 E along
the central and southern Andes are separated from positive values
over cratons and intracratonic basins of eastern South America by
negative values along continental basins east of Andes.

7.2.4 Moho and elastic lithospheric thickness models

The lithospheric elastic thickness model used here was computed
by Tassara et al. (2007) by applying a wavelet-based method for
the Bouguer gravity data and topography inversion by means of a
spectral coherence. The result is shown in Fig. 5(a). As seen, the
lithospheric elastic thickness has a relatively smooth pattern with
values typically below 20 km along the active Andean margin and
the passive Atlantic margin, whereas the maximum value of 90 km
is located at the core of the Brazilian Shield.

We applied the flexural theory for computing the Moho depth,
while taking into consideration the variable Moho density contrast
(Fig. 3) and the elastic thickness of the lithosphere (Fig. 5a). The
spherical harmonic synthesis is done pointwise considering the elas-
tic thickness and density contrast at any point. The regional Moho
model (Fig. 5b) shows a typical pattern characterized by a sig-
nificant contrast between thin oceanic and thick continental crust.
The maximum Moho deepening under the Andes reaches roughly
70 km.

In order to compare the differences between the VMM and flex-
ural Moho models, we performed a sensitivity analysis depending
on the choice of the parameter of the lithospheric elastic thickness
Te. The statistical summary of differences between the VMM and
flexural Moho models for different values of Te is given in Table 1.
As seen from the results, the mean value of differences remains the
same (−2.5 km), while the root mean squares (rms) of differences
vary only slightly (from 3.5 to 3.9 km). We also computed these
differences for the model presented by Tassara et al. (2007). In this
case, the differences are smallest. These results showed that differ-
ences between the flexural and VMM Moho models are not signifi-
cant. The results of numerical analysis not presented here in detail
revealed that these differences do not propagate significantly into
the gravitational contribution of the crustal density heterogeneities

Downloaded from https://academic.oup.com/gji/article-abstract/213/2/1013/4831487
by Geoforschungszentrum Potsdam user
on 13 March 2018



Sub-lithospheric stress modeling 1021

Figure 4. Contributions on the vertical gravitational gradient due to: (a) topography and bathymetry, (b) sediments and (c) consolidated crust.

and subsequently into the lithospheric stress. This is explained by
the fact that these differences have mainly high-frequency character.

7.2.5 Contribution of crustal structure on gravitational gradient

The individual gravitational gradient contributions of topography,
bathymetry, sediments and consolidated crust are rather large, but
the topographic mass surplus, bathymetric mass deficiency as well
as crustal density heterogeneities are compensated not only within
the crust (variable crustal thickness), but also deeper within the
subcrustal lithosphere. Here, we used the Moho model (shown in
Fig. 5b) to apply the compensation effect on the gravitational gradi-
ent. This computation was done according to the expression in eq.
(3c) by applying the contribution of the variable Moho density con-
trast and the lithospheric elastic thickness. As a result, the combined

effect of these contributions is considerably smaller than the individ-
ual contributions, and also smaller than the gravity-gradient signal
itself. The combined contribution from the topography, bathymetry,
sediments and density heterogeneities within the remaining crust
(down to and including the Moho interface) is shown in Fig. 6, with
values mostly between −0.7 and 0.2 E. The isostatic signature of
Andes marked by the largest negative values is flanked on both sides
of the central Andes by large positive values along the subduction
zone of the Nazca plate and the zone of convergence between the
Altiplano and South American plates.

8 R E S U LT S

We applied the mantle flow (Hager and O’Connell) and gravimetric
(Runcorn) solutions (Sections 4 and 5) to model the lithospheric
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Figure 5. Regional maps of: (a) the elastic thickness of the lithosphere according to Tassara et al. (2007), and (b) the Moho depth.

Table 1. Sensitivity analysis of differences between the flexural and gravi-
metric Moho depths depending on the choice of lithospheric elastic thickness
Te.

Te (km) Max Mean Min rms

0 10.0 −2.5 −13.8 3.6
5 9.7 −2.5 −13.5 3.6
10 8.2 −2.5 −12.3 3.6
15 7.1 −2.5 −12.8 3.5
20 7.4 −2.5 −13.7 3.5
25 8.6 −2.5 −14.6 3.5
30 9.7 −2.5 −15.4 3.5
50 12.6 −2.5 −18.2 3.5
90 15.2 −2.5 −21.2 3.9
Tassara et al. 7.0 −2.5 −11.8 3.5

stresses within the study area of South America. We then repeated
the computation using the newly developed combined model (Sec-
tion 6) and compared the results.

8.1 Lithospheric stress based on mantle flow solution

The lithospheric shear stresses at a constant depth of 100 km were
taken from Steinberger et al. (2001, corresponding to their fig. 6d).
100 km depth is the base of the lithosphere in that model, which
only considers radial viscosity variations. If variations of litho-
sphere thickness were considered, the stress pattern is expected to
remain similar but with magnitudes somewhat changed, because,
for example, for a thicker lithosphere, the coupling with underly-
ing mantle flow is somewhat stronger. However, such effects were
not considered here. The result is shown in Fig. 7. A plate veloc-
ity model was used to formulate the surface boundary conditions
for solving the mantle-flow equations. However, plate velocities are
not prescribed, but chosen such that plates move at half the speed
(rotation rates) for which the forces acting at their bases would
exactly be balanced. The viscosity structure features a 100-fold
increase with depth and is consistent with geodynamic models of
the geoid (e.g. Hager & Richards 1989) and the postglacial re-

Figure 6. Combined contribution of crustal density heterogeneities and the
Moho depth on the gravitational gradient.

bound (e.g. Lambeck & Johnson 1998). It is worth mentioning that
the stresses do not considerably depend on the viscosity structure
(cf. Steinberger et al. 2001). Also, since they are dominated by
a large-scale mantle structure, they remain essentially similar if
one updates to more recent tomography-derived mantle density
models. The spherical harmonic series used for generating the
stress field was truncated at degree of 31, which corresponds
to the wavelength of about 1200 km and it is sufficient for
modeling the long-wavelength lithospheric stress anomalies (cf.
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Figure 7. Regional map of stress field in South America derived by Steinberger et al. (2001) based on Hager and O’Connell’s theory and the mantle density
model that is inferred from an earlier version of Grand’s (2002) tomography model: (a) the northward stress component, (b) the eastward stress component
and (c) the stress-vector orientation and intensity.

Steinberger et al. 2001). It is worth mentioning here that changes in
results due to using a higher degree resolution (above degree 31) are
negligible.

The northward and eastward stress components are shown in
Figs 7(a) and (b), respectively. Positive values in Fig. 7(a) represent
the northward orientation, while negative values have the opposite
(southward) orientation. Similarly, in Fig 7(b), positive values apply
to the eastward orientation, while negative to the westward orienta-
tion. As seen in Fig. 7(c), the maximum stress intensity is detected
below the Andean margin, distinctively marking its segmentation
and presenting larger stresses along flat segments of the subsided
Nazca slab. This stress distribution closely agrees with a mantle

flow pattern within the study area. The stress vectors have a prevail-
ing eastward orientation under the Nazca plate corresponding to its
motion. Moreover, the eastward stress-vector orientation beneath
the Altiplano plate agrees with its convergent motion relative to
the South American plate. The stress-vector orientation under the
Amazonian Shield together with intermediate old cratonic forma-
tions including São Francisco, Luis Alves, Alto Paraguay and Rı́o
de la Plata cratons is characterized by a prevailing westward orien-
tation. These two principal stress-vector orientations within South
America converge under the continental basins east of the Andes in
agreement with the convergent flow related to a downwelling in the
model.

Downloaded from https://academic.oup.com/gji/article-abstract/213/2/1013/4831487
by Geoforschungszentrum Potsdam user
on 13 March 2018



1024 M. Eshagh et al.

Figure 8. Regional map of stress field (MPa) in South America derived based on Runcorn’s theory from the GOCE data (eq. 4a) uncorrected for the crust
density heterogeneities: (a) the northward stress component, (b) the eastward stress component and (c) the stress-vector orientation and intensity.

8.2 Lithospheric stress based on gravimetric solution

We used the GOCE gravity-gradient data to model the stresses based
on solving the integral equation in eq. (4e), after applying the spatial
discretization on a 1 × 1 arcdeg grid corresponding to 4290 values
over the study area. The computation was realized with the spectral
kernel limited to degree of 31; see the integral kernel in eq. (4e) that
in reality serves as a low-pass filter to GOCE data. Here, we inverted
directly the GOCE data into the stress field without considering the
crustal density heterogeneities. For computing the stress-generating
function from the integral given in eq. (4e), this integral was dis-
cretized according to the used resolution of 1 × 1 arcdeg. In this
way, we solved the system of equations for 21920 measurements
and 4290 unknown values. Since the system of equations is ill

conditioned, we applied Tikhonov’s regularization to solve the in-
version problem and remove higher frequencies that are contami-
nated by data errors in combination with the quasi-optimal method
(Hansen 1998) that was used for a determination of the regulariza-
tion parameter. The obtained values of the stress-generating function
Sr were then converted to the northward and eastward stress com-
ponents by applying a numerical differentiation; see eqs (6f) and
(6g). The result is shown in Fig. 8.

As seen in Fig. 8(c), the stress pattern in this case coincides
more closely with tectonic plate boundaries, thus reflecting mainly
a tectonic response to mantle flow. The maximum stress intensity
is detected along two convergent tectonic margins, namely between
the Nazca and Altiplano plates and between the Altiplano and South
American plates. A prevailing convergent stress-vector orientation
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Figure 9. Regional map of stress field in South America derived based on Runcorn’s theory from the GOCE data (eq. 4a) corrected for the contributions of
topography and crustal density heterogeneities: (a) the northward stress component, (b) the eastward stress component and (c) the stress-vector orientation and
intensity.

along central Andes agrees with the compressional tectonism of
orogenic formations. This stress pattern indicates that the estima-
tion of the stress field from the uncorrected GOCE data reflects
more shallow stresses. Elsewhere, the stress intensity is relatively
small. Overall, maximum stress intensity occurs in tectonically ac-
tive regions, while old, stable cratons are characterized by the lower
stress magnitude.

We further took into consideration the effect of crustal den-
sity heterogeneities. For this purpose, we modeled the contribu-
tions of topography and density contrasts of bathymetry, sediments
and consolidated crust, and subtracted them from the GOCE data.

Furthermore, we computed and subtracted the compensation effects
of these contributions according to the flexural model of isostasy.
In this way, the spatial distribution of Sr becomes smoother, thus
reducing the intensity of the resulting stress field (compared to the
result from the uncorrected GOCE data). The stress field obtained
from the GOCE data corrected for the contributions of topography
and crustal density heterogeneities is shown in Fig. 9. By comparing
Figs 8(c) and 9(c), the overall spatial pattern of the stress field does
not change considerably, but the stress intensity decreased (by up to
about 4 MPa) after applying these corrections, especially on both
sides of the central Andes. Such reduction in the stress intensity was
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expected due to removing the lithospheric stress signature. Overall,
however, the stress field computed (for the corrected as well as un-
corrected GOCE data) according to Runcorn’s theory reflects more
likely stresses attributed to a tectonic respond of the lithosphere to
mantle flow.

8.3 Lithospheric stress based on combined gravimetric
and mantle flow solutions

The maximum stress intensity computed according to Runcorn’s
theory reaches about 18 MPa (cf. Fig. 8c). After reducing the GOCE
data for the contributions of topography and crustal density hetero-
geneities, this value reduced down to about 14 MPa (cf. Fig. 9c).
In contrast, the maximum stress intensity inferred from the mantle
flow solution is only about 8 MPa (cf. Fig. 7c). From the spectrum
of Sr (eq. 4d), we can see that the series is not convergent as there
is an amplifying factor of (R/(R − D))n+1 which magnifies higher
frequencies of the solution when degrees increase. In fact, by or-
ganizing integral equations and solving their discretized form, the
problem of divergence and ill-conditioning of the system are mixed
and by the regularization both of them are solved simultaneously.
However, the regularization is a mathematical technique and it is
not clear how meaningful the result is. In such a case, some other
constraining parameters are needed. Phillips & Ivins (1979) have
mentioned that combining Runcorn’s solutions with other geolog-
ical parameters is required to compensate for oversimplifications
done by Runcorn.

Following this idea, we jointly inverted the GOCE data (corrected
for the crustal density heterogeneities) and the mantle flow equa-
tions for the shear stresses in order to estimate Sr. The system of
discretized equations (eq. 6h) was formed for 21920 GOCE gravity
gradients and 4290 values of the stress-generating function. The sys-
tem of equations further involved the stress components generated
according to the mantle flow equations as additional observations.
However, it is important to clarify that the unknown parameters in
our system are Sr, not the stress components. Hence, the stress com-
ponents are connected to Sr via eqs (6f) and (6g). The mantle flow
solution provided 4290 values of the northward and eastward stress
components. In this way, we added extra 8580 observations into
our system, so that the total number of observations increased to
30500, while the number of unknowns (4290) remain the same. By
combining the GOCE data inversion with the mantle flow solution,
the system becomes stable and well conditioned, so that a simple
least-squares analysis provided the combined solution directly. The
result of this combination is shown in Fig. 10. As seen from the re-
sults in Figs 7 and 10, the combined solution very closely resembles
the mantle flow solution, expect for some minor differences mainly
related to lessened stress intensity under the central and southern
Andes. The mantle flow solution thus contributes much more into
the combined solution than the GOCE data inversion. We explain
this by an instability of the system of equations formed only for the
GOCE data inversion.

9 S U M M A RY A N D C O N C LU D I N G
R E M A R K S

We have compared methods for the lithospheric stress modeling
based on gravimetric (Runcorn’s) and mantle flow (Hager and
O’Connell’s) solutions. We further developed and applied the com-
bined method based on the gravity data (in our case the GOCE ver-
tical gravity gradients) inversion by means of a least-square analysis

constrained by the mantle flow equations according to Hager and
O’Connell. The application of these constraining parameters stabi-
lized the GOCE data inversion, so that the regularization was not
needed. The GOCE vertical gravity gradients used for this purpose
were corrected for the gravitational contribution of crustal density
heterogeneities in order to reveal the gravitational signature of the
mantle. The mathematical model used for estimating the gravita-
tional contribution of crustal density heterogeneities was developed
based on combining the VMM and flexural models of isostasy, while
assuming that both models provide the same Moho result.

The comparison of results over the study area of South America
revealed that the mantle flow solution reflects mainly the litho-
spheric stresses due to mantle flow, while the gravimetric solution
reflects a tectonic response of the lithosphere to mantle flow. More-
over, the combined solution agrees very closely with the mantle flow
solution in terms of the stress pattern and its intensity. The main
difference between these two solutions is slightly lower stress inten-
sity in the combined solution under orogenic regions of the central
and southern Andes. In contrast, relatively large differences were
found between the combined and gravimetric solutions, with very
different stress pattern as well as stress intensity. The most signifi-
cant differences were at locations of the maximum stress intensity
which according to the combined (as well as mantle flow) solution
was detected under the northern part of the Central Andes of Peru,
while stress recovery from GOCE data according to Runcorn’s the-
ory showed the maximum stress intensity along the subduction zone
between the Nazca and Altiplano plates and further east along the
convergent tectonic margin between the Altiplano and South Amer-
ican plates. In contrast, the stress pattern inferred according to the
combined model, as dominated by the Hager and O’Connell’s so-
lution and therefore by the mantle circulation model, is strongly
correlated with the position of flat-slab segments of the subsided
Nazca plate. Indeed, when comparing the geological configuration
(Fig. 1) with the stress distribution (Fig. 10), it becomes clear that
the region where horizontal stresses are greater than 6 MPa under-
neath Peru (0◦–18◦S) is characterized by a large flat-lying segment
of the Nazca slab between 150 and 300 km depth, which itself is
associated with a gap of the volcanic arc and northward decreasing
elevations of the Cordillera. A similar spatial correlation can be es-
tablished between a region of relatively large intensity of horizontal
stresses (4–6 MPa) in the western part of Argentina (between ap-
proximate 25◦S and 33◦S) and the location of the Pampean flat-slab
segment with its associated volcanic gap (Fig. 1). In both cases,
the eastward motion of the Nazca slab at shallow depths under the
South-American lithosphere is likely dragging the continental plate
and pushing it towards the east, explaining the greater distance from
the trench that current crustal deformation has in these regions com-
pared to segments where the slab dip is normal (e.g. Ramos 1999).
In addition, the nuclei of Archean to Palaeoproterozoic cratons also
show relatively large amplitudes of horizontal stresses in our com-
bined model, with vector directions towards the west, implying that
upper-mantle circulation from the Atlantic ridge is actively dragging
the keel of these cratons and therefore the whole continent toward
the trench.

A very close agreement between the combined and mantle flow
solutions indicates that the observation equations related to the
mantle flow solution represent a more significant contribution to
the final stress solution, while the number of mantle flow equations
is lower than the number of observation equations used for the
GOCE data inversion. However, including the mantle flow solution
as additional observation equations into our system can control
the instability of the system based on Runcorn’s theory so that a
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Figure 10. Regional map of stress field (MPa) in South America derived from the GOCE data corrected for crustal density heterogeneities and based on
combining Runcorn’s and Hager and O’Connell’s theories for the mantle flow model: (a) the northward stress component, (b) the eastward stress component
and (c) the stress-vector orientation and intensity.

regularization is no longer required for solving the equations. Due to
this instability, the combined solution agrees more closely with the
mantle flow solution. The GOCE data information from Runcorn’s
theory can be used to determine the stress field in regions where
data used for the mantle flow solution are sparse or absent.
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