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Abstract 

The ichthyotoxic flagellate Pseudochattonella has formed recurrent blooms in the North Sea, 

Skagerrak and Kattegat since 1998. Five strains of P. farcimen and two strains of P. 

verruculosa were examined in an assay comparing the light response of specific growth rates 

over a range of temperatures and salinities to get further knowledge on the autecology of 
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members of this genus. Temperature optima were lower in P. farcimen (9 - 15 ºC) than in P. 

verruculosa (12 - 20 ºC). P. farcimen also showed a somewhat lower salinity optimum (18 - 

26) than P. verruculosa (20 - 32). All strains showed light-dependent growth responses 

reaching saturation between 18 - 52 µmol photons . m-2 . s-1 at optimal temperature and salinity 

conditions. Compensation point estimates ranged from 4.2 - 15 µmol photons . m-2 . s-1. Loss 

rates increased with temperature and were lowest at salinities close to optimal growth 

conditions. Blooms of P. farcimen have been recorded in nature under conditions more 

similar to those minimizing loss rates rather than those maximizing growth rates in our culture 

study.  

 

Key index words: compensation irradiance; growth rates; light; loss rates; Pseudochattonella; 

salinity; saturating irradiance; temperature. 

 

Introduction 

The heterokontophyte flagellate Pseudochattonella (Y.Hara & Chihara) Hosoi-Tanabe, 

Honda, Fukaya, Inagaki & Sako has formed recurrent extensive blooms in the North Sea, 

Skagerrak and Kattegat since 1998 (Edvardsen et al. 2007, Riisberg and Edvardsen 2008). 

Strains isolated from the Skagerrak bloom in 2001 in 2006 were found to belong to a new 

species, P. farcimen (Eikrem, Edvardsen et Throndsen) Eikrem, Edvardsen et Throndsen. 

This species differs both genetically and morphologically from P. verruculosa (Y. Hara et 

Chihara) Tanabe-Hosoi, Honda, Fukaya, Inagaki et Sako (= Chattonella verruculosa Hara et 

Chihara) isolates from Japan and elsewhere (Edvardsen et al. 2007, Riisberg and Edvardsen 

2008, Eikrem et al. 2009). Pseudochattonella has also been observed blooming in the Baltic 

Sea (Łotocka 2009) and has occurred yearly along the Swedish west coast since the first 
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recording in 1998 (Karlson and Andersson 2003, Håkansson et al. 2007), but was recorded for 

the first time in the Oslo Fjord as late as October 2008 (Berge et al. 2009). P. verruculosa is 

known to form recurrent harmful algal blooms (HAB) in Japan (Imai et al 1998, Hallegraeff 

and Hara 2003, Hosoi-Tanabe et al. 2007) and has also been observed blooming in New 

Zealand (MacKenzie et al. 2011). The genus Pseudochattonella has been shown to be toxic to 

fish, although the mechanism of toxicity is not known (Skjelbred et al. 2011). Based on 

molecular phylogenetic analyses and morphological and ultrastructural data, the genus 

Pseudochattonella was shown to belong to the Class Dictyochophyceae and not the 

Raphidophyceae as previously presumed (Hosoi-Tanabe et al. 2006, 2007, Edvardsen et al. 

2007). Nuclear-, chloroplast- and mitochondrial-encoded DNA sequences identified one strain 

isolated from German North Sea in 2000 as P. verruculosa, while strains from Skagerrak 

isolated in 2001 and 2006 belonged to P. farcimen (Riisberg and Edvardsen 2008). Expressed 

sequence tags (EST) library has been analysed in strains from P. farcimen (Dittami et al.  

2012). 

The Skagerrak blooms of Pseudochattonella in 2001, 2006, 2007 and 2011 occurred early in 

the year at water temperatures 2 - 5ºC, overlapping with the spring bloom of diatoms 

(Edvardsen et al. 2007, Riisberg and Edvardsen 2008, SMHI; AlgAware 

http://www.smhi.se/publikationer/Algrapporter, IMR; Algeinfo http://algeinfo.imr.no/). The 

Pseudochattonella blooms off the coasts of Germany, Denmark, Sweden and/or Norway in 

1998, 2000, 2002 and 2004 occurred later in the season (April – May) at higher water 

temperatures (Lu and Göbel 2000, Backe-Hansen et al. 2001, Riisberg and Edvardsen 2008). 

Whether these were P. farcimen or P. verruculosa has not been determined, but the presence 

of P. verruculosa in the considerably warmer water temperatures during these blooms in 2000 

and the presence of P. farcimen in the winter blooms of 2001 and 2006,  suggests that these 

blooms may be due to physiologically distinct species or strains. The salinity of surface water 
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in Skagerrak varied from 17 to 30 during the bloom in 1998 (Backe-Hansen et al. 2001) and 

from 22 to 28 with a drop down to 12 during the bloom in 2001 (Naustvoll et al. 2002) . 

Effects of temperature and salinity on growth responses, performed with a strain of P. 

verruculosa from Japan (Yamaguchi et al. 1997) and P. farcimen from Skagerrak (Skjelbred 

and Naustvoll 2006), indicated a difference in optimal temperature between these two species; 

different strains from each of these species might also differ in their growth optima. In this 

study, we used an assay of three independently varying environmental factors (irradiance, 

temperature and salinity) to assess their effects on specific growth and loss rates in strains 

from the two Pseudochattonella species. 

 

Material and methods 

Algal strains and culture conditions. Water samples were collected from Skagerrak by the 

Ferrybox system on the transect Oslo-Kiel (www.iis.niva.no/Ferrybox/), or off Flødevigen 

Biological Station, southern Norway, January - March 2006. Fifteen clonal, but non-axenic 

strains of P. farcimen were obtained in 2006 by a modified capillary isolation method, where 

single cells were transferred to 96-wells culture plates (Nunc AS, Denmark) containing algal 

medium. Three of these new strains, isolated from different samples, were used for this study 

(Table 1). P. farcimen strains isolated from Skagerrak in 2001 and P. verruculosa strains 

originating from Japan and Germany were also included. All strains were grown in IMR ½ 

medium (Eppley et al. 1967), supplemented with 10 nM selenium (Edvardsen et al.1990, Imai 

et al. 1996). Stock cultures were grown at a salinity of 25 and kept at temperatures 4 and 

12ºC, at an irradiance approximately 50 µmol photons . m-2 . s-1and a 14:10 light:dark (L:D) 

cycle. 
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Assay for estimating growth and loss rates. The main experiments were carried out essentially 

as described by Skjelbred et al. (2012) in 96-well culture plates with white walls and optical 

bottoms (Nunc AS, Denmark). Each strain was exposed to a 3-way factorial design with six 

temperatures (4 - 21ºC), five salinities (15, 20, 25, 30, 35), and eight irradiance levels (21.7 - 

96.7 µmol photons . m-2 . s-1; 14:10 L:D). Each treatment combination was performed in four 

replicates, giving a total of 960 experimental units per experiment. Additional experiments to 

study the low-light response of growth and maintenance were carried out for four of the seven 

strains (UIO109, UIO113, UIO115 and NIES670) in 24-well culture plates with black walls 

and optical glass bottom (Greiner Bio-one, Germany) at six different temperatures (4 - 20ºC), 

five salinities (15, 20, 25, 30, 35) and five light levels (5.3 - 29.5 µmol photons . m-2 . s-1; 

14:10 L:D). Each treatment combination was replicated times, giving 600 experimental units 

per experiment. The salinity of the medium was adjusted with distilled H2O before nutrient 

addition and controlled with a refractometer (S/Mill, ATAGO CO Ltd, Japan). Each plate was 

covered by a transparent sheet printed with a gray-scale gradient made in Adobe Photoshop 

(Adobe, San José, CA, USA) and laminated. Illumination was provided by Fluora L 18 W / 

77 (OSRAM, Germany). Different temperature treatments were kept in thermostat-controlled 

rooms and placed upon a water bath containing 5 L of water as a heat reservoir against 

external temperature fluctuations. Temperature stability was verified by continuous 

monitoring with temperature recorders (LogTag Recorders Ltd, Hong Kong). Inoculum 

cultures were kept in exponential growth under the same light source as in the experiment at a 

salinity of 25 and temperature of 4 or 12ºC. For three strains (UIO113, UIO114 and UIO115) 

inoculum cultures from both temperatures were used. Concentration of inoculum for the 

experiments was approximately 1000 cells . mL-1.  

Growth trajectories in individual wells were monitored by in vivo fluorescence (IVF) as a 

proxy for chlorophyll concentration. While cellular chlorophyll content is known to vary 
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strongly with light adaptation, one should expect a direct proportionality between biomass and 

chlorophyll in cells adapted to the same growth conditions.  In vivo fluorescence was 

determined daily at the same time of day using a microplate reader (FLx 800, BioTek, Inc. 

Vermont, USA) with excitation at 460 nm (40 nm bandwidth) and emission at 680 nm (30 nm 

bandwidth). 

 

Calculations of specific growth and loss rates. Specific growth rate µ (d-1) in each 

experimental unit was calculated as the slope of a linear regression for log-transformed in 

vivo fluorescence against time. Data from at least four consecutive days after d two were used 

in the analysis. All experiments were terminated before reaching stationary phase. This first 

level of data reduction gave a single specific growth rate estimate for each experimental unit. 

In the second level of data reduction, a light response curve was fitted to all pairs of specific 

growth rate (µ; d-1) and irradiance (E; µmol photons . m-2 . s-1) for each combination of 

temperature and salinity. The light response curve was based on a Poisson single-hit model 

(Dubinsky et al. 1986, Baumert 1996): 

0
max

0

1 exp
k

E E

E E
μ μ

⎛ ⎞⎛ ⎞−= − −⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
 

This model has three parameters (µmax = the light-saturated maximal growth rate, E0 = the 

compensation light level where growth becomes zero, and Ek = the saturating light level 

where the initial slope of the curve extrapolates to the asymptotic level), which are treated as 

random effects across the temperature and salinity treatment levels (Pinheiro and Bates 2009). 

Finally, the fitted values for the light response parameters µmax and E0 were analyzed as 

functions of temperature and salinity by generalized additive models (GAMs; Wood 2006). A 

GAM model was first fitted to show the overall temperature and salinity response pattern 

across all strains. GAM models for each strain were then used to estimate parameter values 
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and their associated standard errors at optimal growth conditions (maximal µmax and minimal 

E0). The locations of temperature and salinity optima were estimated by resampling with 

replacement within each strain/species and calculating the µmax - or 1 / E0 -weighted mean 

temperature and salinity of each bootstrap sample. This procedure yielded a cloud of 

bootstrapped optima which can be visualized as 95% confidence ellipses in temperature, 

salinity space. Loss rates were estimated as the negative of the net, specific growth rate 

extrapolated to zero light.  The statistical computing environment R (www.r-project.org) was 

used for all analyses. 

 

Comparison between IVF and cell counts. Subsamples for cell counting in a FACSCalibur 

flow cytometer (Becton Dickinson, San Jose, CA, USA) were fixed in 0.5% glutaraldehyde 

(Electron Microscopy Sciences, Hatfield, PA, USA) and 0.5% paraformaldehyde (Merck 

KGaA, Damstadt, Germany) final concentration, quickly frozen in liquid nitrogen, and stored 

at - 80ºC until analysis. TrueCount beads (Becton Dickinson, San Jose, CA, USA) and 0.5 µm 

latex beads (Polysciences Inc, USA) were used as internal standards for converting flow 

cytometry counts to absolute cell concentrations. 

 

Results 

Four strains of Pseudochattonella (UIO109, UIO113, UIO115 and NIES670) were incubated 

in both black and white microplates and thus exposed to 390 different combinations of light, 

salinity and temperature, while the remaining three strains (UIO114, UIO125 and JG8) were 

exposed to 240 different combinations in white microplates. All strains showed a positive 

growth rate response to light, especially at optimal temperature and salinity conditions, which 

saturated between 20 and 50 µmol photons . m-2 . s-1. The strains of P. farcimen achieved 

positive, but low growth rates at the lowest temperature (4ºC), while none of these strains 
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grew at 20ºC. Both strains of P. verruculosa sustained positive growth at 20ºC. The strain JG8 

failed to grow at 4ºC, except at 25. The strain NIES670 failed to grow at the lower 

temperatures (4 and 7ºC), except at 25. 

Maximum growth rate estimates for P. farcimen were from 0.41 ± 0.04 d-1 (strain UIO109) to 

0.52 ± 0.05 d-1 (strain UIO113; Fig. 1; Table 2). Corresponding estimates for the P. 

verruculosa strains were 0.51 ± 0.15 d-1 for JG8 and 0.61 ± 0.07 d-1 for NIES670. The optimal 

salinity and temperature conditions of the five strains of P. farcimen differed just slightly 

from each other with salinity optima in the range 19 - 25. However, the lower bound of the 

95% confidence region for UIO113 went slightly lower (down to 18), while the upper bounds 

of UIO109 and UIO125 reached up to 26. Temperature optima for P. farcimen were generally 

in the range 10 - 14ºC, except for UIO125 and UIO113 where the confidence regions ranged 9 

- 13ºC and 11 - 15ºC, respectively. The P. verruculosa strain JG8 had slightly higher salinity 

and temperature optima ranging from 20 - 27 and 12 - 16ºC. Salinity optima for NIES670 

ranged from 24 - 32 and temperature optima from 14 - 20ºC. 

Light compensation point estimates for all strains of Pseudochattonella were in the range 

from 4.2 - 14.9 µmol photons . m-2 . s-1with salinity and temperature optima in the range 20 - 

30 and 8 - 18 ºC (Fig. 2; Table 2). P. farcimen strains UIO109, UIO113 and UIO114 and P. 

verruculosa strain JG8 had the lowest compensation points (range 4.2 ± 1.2 to 6.9 ± 3.0 µmol 

photons . m-2 . s-1), which were significantly different from the other strains. Somewhat higher 

light demands for positive net growth were observed for the remaining three strains, UIO115 

(11.4 ± 2.9 µmol photons . m-2 . s-1), NIES670 (13.6 ± 2.9 µmol photons . m-2 . s-1) and UIO125 

(14.9 ± 0.4 µmol photons . m-2 . s-1). Saturation light level estimates for all strains of 

Pseudochattonella were in the range from 18.3 - 51.8 µmol photons . m-2 . s-1 with salinity and 

temperature optima similar to those for compensation light. Saturation and compensation light 

levels were very closely correlated (R2 = 0.99; Fig. 3; Table 2). 
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Lowest rates of maintenance metabolism (or loss rates), estimated as the negative of the net, 

specific growth rate extrapolated to zero light, were observed at intermediate salinities and 

increased with temperatures (Fig. 4). Loss rates accounted for 5.4 - 59.7 % of daytime 

production for the different environmental conditions. 

Cell counts were measured by flow cytometry at the end of some of the growth experiments 

(Fig. 5). Some strains had noticeably higher (UIO109b) or lower (UIO115c) IVF per cell, but 

on the average IVF explained 85% of the cell count variance.  

 

Discussion 

The first bloom of Pseudochattonella recorded in North Europe in 1998 occurred at 

temperatures increasing from 8 to 13ºC during the bloom and with salinity varying from 17 - 

30 (Backe-Hansen et al. 2001). Since then, Pseudochattonella has also formed blooms in very 

cold water (2 - 5ºC), in the Skagerrak and Kattegat (Edvardsen et al. 2007), indicating a 

realized niche at lower temperatures as well. Some cold water species have shown higher 

temperature optima in cultures compared to the environment in which they occurred (Russell 

1990, Reay et al. 2001). This was also found in studies with snow algae (Hoham 1975), algal 

isolates from Antarctica (Seaburg et al. 1981) and diatoms (Fiala and Oriol 1990, Suzuki and 

Takahashi 1995), as well as for P. farcimen in this study. Ability to maintain positive net 

growth at lower temperatures may have several competitive advantages such as monopolizing 

available nutrient sources prior to the appearance of competing taxa with higher temperature 

requirements (Russell 1990, Reay et al. 2001, Beman et al. 2005) and reduced grazing 

pressure from herbivores by blooming before vernal emergence of zooplankton (Wiltshire et 

al. 2008). However, infectious parasites like chytrids and other fungi (Wei et al. 2010) seem 

to coexist with hosts throughout the growing season (Correa and Sánchez 1996), giving cold-

adapted species no advantage. Parasites are dispersed as propagules (Gleason et al. 2008) and 
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might affect the succession of phytoplankton populations (VanDonk and Ringelberg 1983, 

Kagami et al. 2007). 

Temperature optima for the P. farcimen strains were overlapping and only small differences 

were observed in this study. Significant differences were observed for temperature optima 

between P. verruculosa strain NIES670 and the strains of P. farcimen. Maximum temperature 

optima for strain NIES670 were in the range 14 - 20ºC in this study and 15 - 21ºC in the study 

by Yamaguchi et al. (1997). Strain JG8 showed intermediate temperature optima between 

NIES670 and P. farcimen strains, but this strain also achieved positive growth rates at 20 ºC. 

NIES670 failed to show positive growth rates at 4ºC in this study, although stock cultures 

could be maintained for several months at this temperature (B. Skjelbred, unpublished data). 

The distantly related Dictyocha speculum Ehrenberg reached maximum growth rates at 11 - 

15ºC and salinity 20 - 30; no growth were observed at 20ºC in that study (Henriksen et al. 

1993). 

Changes in salinity affect organisms in three ways: 1) osmotic stress with direct impact on the 

cellular water potential; 2) ionic stress caused by the inevitable uptake or loss of ions (this is 

dealt with by the acclimation); 3) change in the cellular ionic ratios due to the selective ion 

permeability of the membrane (Kirst 1990). Only slight differences in salinity optima were 

observed for the strains of P. farcimen while he strains of P. verruculosa showed somewhat 

higher salinity optima than those of P. farcimen. 

Phototaxis was observed for Pseudochattonella during 1998 cruise (Backe-Hansen et al. 

2001) and this behaviour was also observed for stock cultures in Erlenmeyer flasks (B. 

Skjelbred, unpublished data). Growth rates increased linearly with light at low irradiance and 

levelled off asymptotically to saturation with increasing irradiance. Saturation irradiances 

estimate ranged from 18.3 - 51.8 µmol photons . m-2 . s-1, which was similar to previous 

studies (Zondervan et al. 2002, Magaña and Villareal 2006, Aydin et al. 2009). The estimated 
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compensation points ranged from 4.2 - 14.9 µmol photons . m-2 . s-1  and were also in 

accordance with previous work (Laws and Bannister 1980, Duarte and Ferreira 1995, Lewitus 

and Kana 1995, Magaña and Villareal 2006). It should be noted that the validity of these 

compensation point estimates apply to the spectral composition and photoperiod used in our 

assays, while they may be different under other environmental conditions (Hobson and Guest 

1983). Our observations support the generalization by Kirst (1990) that growth primarily 

depends on light and temperature, with the tolerated salinity range becoming broader as these 

parameters approach optimality. 

 While respiration accounts for 30 - 50% of daytime primary production in plants, only 10% 

of light-saturated rates keep utilized for respiration in microalgae (Geider and Osborne 1989). 

In our study the loss rates accounted for 5.4 - 59.7% of daytime production for the different 

environmental conditions (e.g., salinity and temperature).  For Pseudochattonella strains, loss 

rates increased with temperature, in accordance with previous results (Staehr and Sand-Jensen 

2006). Lowest loss rates were observed at intermediate salinities, less energy was used for 

osmotic adjustment (Kirst 1990).  

Blooms of P. farcimen have been recorded in nature under conditions similar to lowest loss 

rates rather than optimal growth rates in this study (Lu and Göbel 2000, Backe-Hansen et al. 

2001, Edvardsen et al. 2007, Riisberg and Edvardsen 2008). Minimalizing loss rates are 

contributing to maintenance of the population, despite lower growth rates. 
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Figure Legends 

Fig. 1. a) Contour lines for a generalized additive model of maximum growth rates as function 

of temperature and salinity, using data from all Pseudochattonella strains. b) Optimal 

conditions for light-saturated growth for each strain, expressed as 95% confidence regions 

calculated from the optima of 10000 bootstrap samples. P. verruculosa strain NIES670 has 

higher temperature optimum and somewhat higher salinity optimum than P. farcimen strains.  
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Fig. 2. a) Contour lines for a generalized additive model of compensation point as function of 

temperature and salinity, using compiled data from all Pseudochattonella strains (five P. 

farcimen and two P. verruculosa strains). b) Optimal conditions for light-use efficiency (i.e., 

minimal compensation point) for each strain, expressed as 95% confidence regions calculated 

from the optima of 10000 bootstrap samples.  

 

Fig. 3. Relationship between saturation and compensation irradiances for all 

Pseudochattonella strains (five P. farcimen and two P. verruculosa strains) and temperature-

salinity combinations; R2 = 0.99.  

 

Fig. 4. Contour lines for a generalized additive model of loss rates as function of temperature 

and salinity. Compiled data from four Pseudochattonella strains (three P. farcimen and one P. 

verruculosa strains); black microplates were used in these experiments. 

 

 

Fig. 5. Comparison of in vivo fluorescence with cell counts measured by flow cytometry. 

Data from experiments in white microplates; R2 is 0.85.  
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Table 1. Origin of the Pseudochattonella strains used in this study. 

Species Strain Geographic origin Date of isolation Isolator 

P. farcimen UIO109 Skagerrak, Langesund 28.03.2001 Edvardsen B. 

P. farcimen UIO113 Skagerrak, Flødevigen 21.03.2001 Naustvoll L. 

P. farcimen UIO114 Skagerrak, Flødevigen 02.03.2006 Skjelbred B./ Riisberg I. 

P. farcimen UIO115 Skagerrak 30.01.2006 Skjelbred B./ Riisberg I. 

P. farcimen UIO125 Skagerrak, Flødevigen 09.03.2006 Skjelbred B. 

P. verruculosa JG8 Germany, North Sea 02.05.2000 Göbel J. 

P. verruculosa NIES670 Japan, Seto Inland Sea 16.07.1987 Yoshimatsu S. 

 

Table 2. Maximum growth rates (µmax ; d -1), compensation irradiances (E0; µmol photons . m-2 . s-1) 

and saturating irradiances (Ek; µmol photons . m-2 . s-1) for five strains of Pseudochattonella farcimen 

and two strains of P. verruculosa with 2·SE corresponding to approximate ± 95% confidence intervals. 

Strain µmax 2·SE   E0 2·SE   Ek 2·SE   

JG8 0.51 0.15 4.4 6.7 28.6 25.3 

NIES670 0.61 0.07 13.6 2.9 51.8 5.7 

UIO109 0.41 0.04 6.9 3.0 36.3 6.1 

UIO113 0.52 0.05 4.2 1.2 34.1 2.4 

UIO114 0.49 0.09 4.5 2.3 18.3 15.6 

UIO115 0.48 0.05 11.4 2.9 51.0 7.7 

UIO125 0.51 0.06 14.9 0.4 37.4 4.1 
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