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▪ Abstract 22 

A passive sampling device, the Polar Organic Chemical Integrative Sampler (POCIS), was calibrated in-23 

situ over a 4-week period in Oslo (Norway) for 10 illicit drugs and pharmaceuticals with the goal of 24 

developing an approach for monitoring long-term wastewater drug loads. The calibrations were 25 

performed in triplicate using three different overlapping calibration sets under changing environmental 26 

conditions that allowed the uncertainty of the sampling rates to be evaluated. All 10 compounds 27 

exhibited linear uptake kinetics and provided sampling rates of between 0.023 and 0.192 L d-1. POCIS 28 

were deployed for consecutive 2-week periods during 2012 and 2013 and the calculated time-weighted 29 

average (TWA) concentrations used to define different drug use trends. The relative uncertainty related 30 

to the POCIS data was approximately 40 % and, except for citalopram, 85% of all the long-term 31 

measurements of pharmaceuticals were within the confidence interval levels calculated to evaluate the 32 

effects of changing environmental conditions on the TWA estimations. POCIS was demonstrated to be 33 

sufficiently robust to provide reliable annual drug use estimates with a smaller number of samplers 34 

(n=24) than recommended for active sampling (n=56) within an acceptable level of sample size related 35 

uncertainty < 10 %. POCIS is demonstrated to be a valuable and reliable tool for the long-term 36 

monitoring of certain drugs and pharmaceuticals within a defined population. 37 

 38 
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1. Introduction 42 

Monitoring drug use has traditionally been performed by questionnaire-based surveys and police 43 

statistics. Estimating population drug use through the analysis of wastewater samples has been 44 

established as an approach for monitoring patterns of community drug use (Castiglioni et al. 2014). 45 

Wastewater-based epidemiology (WBE) studies for drugs have provided valuable information, showing 46 

spatial and temporal differences across different countries (Ort et al. 2014b, Thomas et al. 2012). More 47 

recently, WBE results have been also compared with other sources of information confirming its 48 

potential as a complementary approach for obtaining a more accurate picture of the drug use situation 49 

(Baz-Lomba et al. 2016b, Been et al. , Zuccato et al.). Furthermore, WBE has recently been applied to 50 

assess the community level exposure of humans to a range of environmental stressors (Gracia-Lor et al. 51 

2016, Rousis et al. 2016, Rousis et al. 2017)as well as their combined response to such stressors(Ryu et 52 

al. 2016). The generation of community level exposure data that can be compared with other 53 

complementary sources of data has a clear potential within environmental epidemiology.  54 

Despite good agreement with the other sources of data, it is possible that wastewater data may be 55 

typified by low temporal representativeness and high spatial variability due to the use of different 56 

substances and spatial and temporal trends in availability. WBE results therefore need to be carefully 57 

interpreted (Baz-Lomba et al. 2016b). Thus far, the temporal coverage of most of the WBE studies 58 

performed has been typically limited to a one-week sampling program (Ort et al. 2014b). In order to 59 

more accurately estimate the representative mean annual substance use by WBE a recent study 60 

recommended the use of stratified random sampling schemes (typically 56 samples per year) (Ort et al. 61 

2014a). Furthermore, different sampling strategies based on the sampling frequency or composite  62 

sampling mode have been evaluated in order to decrease the sampling uncertainty (Ort et al. 2010).  63 

However, increasing the sampling frequency implies an additional costs together with the power and 64 

space requirements of an automated sampling device and such a frequency may still prove inadequate 65 
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in certain circumstances such as the short-term changes in use patterns or variations in concentrations 66 

associated with other external factors such as precipitation (Ort et al. 2014a). 67 

Passive sampling devices (PSD) are an alternative sampling tool to overcome some of the above-68 

mentioned issues. PSD have been demonstrated as a good alternative for the monitoring of drugs and 69 

other micropollutants in wastewater providing time-integrated estimates that compensate for 70 

fluctuating concentrations (Harman et al. 2011b, Kaserzon et al. 2014). PSD may also decrease the limits 71 

of quantification compared with traditional sampling and be used as a screening tool for the detection 72 

of emerging compounds present at very low concentrations (Alvarez et al. 2014). Furthermore, the use 73 

of PSD over a specified period can be performed without human intervention, without any power 74 

requirements and at low cost. For example, the annual monitoring of drugs in wastewater can be 75 

performed with as few as 26 PSD (Harman et al. 2011b). 76 

The polar organic chemical integrative sampler (POCIS) has thus far been applied for the analysis of over 77 

300 polar organic substances in water (Harman et al. 2012, Morin et al. 2012). This includes a number 78 

of pharmaceuticals and illicit drugs, as well as other polar contaminants such as pesticides (Gonzalez-79 

Rey et al. 2015, Jones-Lepp et al. 2004, Metcalfe et al. 2011). The physicochemical properties of the 80 

compounds will determine whether they accumulate in the sampler based on the different solute-81 

solvent-sorbent interactions (i.e. the version of POCIS presented in this study has a good selectivity for 82 

compounds with log Kow approximately between 2 and 4) (Harman et al. 2011b). The theory and 83 

modelling of chemical uptake by POCIS have been explained in detail elsewhere (Alvarez et al. 2004, 84 

Huckins et al. 1993, Vermeirssen et al. 2012). There are however few studies that consider modelling 85 

uptake rates for real in situ environmental exposures. Depending on sampler design, PSD can be used 86 

in either equilibrium or time-weighted average (TWA) modes to give concentrations of the desired 87 

analyte. In contrast to PSDs for hydrophobic compounds, where sampling rates (RS) can be modelled by 88 

physicochemical properties such as molecular weight, RS for POCIS must first be calibrated 89 

experimentally. Laboratory generated RS can vary significantly between different studies depending on 90 
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the different calibration methods and conditions used and standardization of the different calibration 91 

methods has been recommended in order to reduce these discrepancies (Harman et al. 2012, Morin et 92 

al. 2012). Furthermore, RS generated in the laboratory under controlled exposure conditions may not 93 

be representative of the actual values under different and variable environmental conditions that can 94 

lead to biased data when calculating TWA concentrations (Miller et al. 2016). 95 

One of the primary uncertainties associated with the calculation of POCIS RS, which in turn 96 

fundamentally affects the reliability of POCIS derived TWA concentrations, is the influence of 97 

environmental factors, such as the rate of water flow (Kaserzon et al. 2013, Li et al. 2010b), temperature 98 

(Li et al. 2010a), pH (Li et al. 2011) and biofouling (Harman et al. 2009). Different approaches have been 99 

proposed, such as the use of external RS corrections (Alvarez et al. 2007), the performance reference 100 

compounds (PRC) approach used for hydrophobic PSD (Huckins et al. 2002) and more recently the 101 

development of the diffusive gradient in thin-film sampler for organics (Challis et al. 2016). All of these 102 

approaches have challenges, but a comprehensive method for relating the uptake in POCIS to 103 

environmental factors remains elusive (Harman et al. 2012). In-situ calibration of POCIS has been 104 

proposed as an alternative strategy to generate more reliable and constant RS for a specific site, however 105 

only a few papers have published in-situ RS values (Harman et al. 2011b, Jacquet et al. 2012, Mazzella 106 

et al. 2010, Zhang et al. 2008). However, in-situ calibration is also not without its challenges; largely due 107 

to the extra costs and the need for more extensive water sampling, compared with laboratory methods. 108 

An overall lack of understanding of the sorption phenomena for different compounds means that it is 109 

prudent to consider POCIS derived water concentration data as semi-quantitative (Harman et al. 2011a, 110 

Miège et al. 2015). Dalton and colleagues (Dalton et al. 2014) have described the variability of in-situ Rs 111 

associated with environmental factors (Morin et al. 2012) and more recently, Poulier and colleagues 112 

(Poulier et al. 2014) estimated that the uncertainty related to their POCIS data for several pesticides 113 

might be as high as 138%. 114 



7 
 

The aim of the current study was to evaluate whether POCIS are a suitable and cost-effective alternative 115 

to grab sampling for the long-term monitoring of substance use and potentially exposure at community 116 

level through WBE. The in-situ RS was determined for a number of pharmaceuticals (atenolol, 117 

citalopram, carbamazepine, oxazepam, metoprolol, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine 118 

(EDDP) and morphine) and illicit drugs (cocaine, benzoylecgonine and methamphetamine) in POCIS to 119 

estimate substance use trends over 2012 and 2013. The reproducibility of RS was estimated by 120 

overlapping three in-situ calibrations to mitigate the potential confounding effects and impact of 121 

different environmental conditions. The accuracy of the POCIS RS was evaluated by assessing two 122 

different uncertainty levels, taking into account the coefficient of variation of the three RS calculated 123 

during the three different calibration periods and the repeatability for each of the triplicates deployed 124 

during subsequent long-term (2-yr) monitoring.  125 

2. Materials and methods 126 

Chemicals, materials and POCIS samplers 127 

Information on chemicals, materials and POCIS samplers is provided in the Supporting Information. 128 

Wastewater and POCIS extraction and analysis 129 

Information on wastewater and POCIS extraction and analysis is provided in the Supporting Information. 130 

Quality Assurance 131 

Information on quality assurance is provided in the Supporting Information. 132 

In situ calibration study design  133 

All samples were collected at the VEAS wastewater treatment plant (WWTP) in Oslo (Norway). VEAS 134 

treats sewage for approximately 600 000 people of which the city contributes about 70.5 % and the 135 

adjoining areas representing the other 29.5% (8% from Asker and 21.5 % from Bærum, see Figure S1). 136 
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The total length of the sewer line is 42.3 km and the mean residence time in the sewer system is 5 hours 137 

(see www.veas.nu for further details).  138 

The in situ calibration took place during February 2014. The calibration experiment was performed over 139 

a 4-week period using triplicate POCIS deployed for varying periods of time and in three different sets 140 

for a total of 54 POCIS including 3 blanks (Figure 1). POCIS were immersed in wastewater in a 141 

perpendicular direction to the wastewater flow. The main set consisted of 10 POCIS triplicates while the 142 

two supporting sets consisted of 4 and 3 triplicates. The rationale for overlapping calibration periods 143 

was to study the reproducibility of determining the RS under changing environmental conditions. These 144 

data also provided valuable information to determine confidence intervals for the TWA based on the 145 

uncertainty associated in the RS calculation.  146 

An ISCO Avalanche Portable Refrigerated Sampler (Lincoln, NE, USA) was used to collect a total of 96 147 

wastewater samples during the course of the calibration, three daily samples (8-hour composites, 148 

comprising of 15 mL/15 min) from Monday to Thursday and four daily samples (6-hour composites) 149 

from Friday to Sunday.  150 

Wastewater samples and POCIS for both the calibration and long-term monitoring were collected in the 151 

same location from an overflow channel following a sedimentation tank. Flow rate, temperature and 152 

pH were provided by VEAS WWTP (All data in SI). The mean flow rate measured with an hourly 153 

measurement resolution was 16,369 m3 hour-1 and the range between the flow rate for dry days and 154 

rainfall days was 7698 - 33,184 m3 hour-1. The mean flow data for the three calibration sets considering 155 

only the first 14 days of each set was 23,340, 23,751 and 21,882 m3 hour-1 respectively. The water 156 

temperature was stable during the calibration with a mean value of 7.1 °C while the mean pH was 7.5. 157 

POCIS sampling rate calculation 158 

The accumulation of target compounds in the receiving phase of PSD follows first order kinetics with an 159 

initial linear regime, followed by curvilinear and equilibrium stages (Morin et al. 2012). Thus the overall 160 

accumulation of a chemical in a passive sampler can be described by  161 
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1) 𝐶𝑠 =  𝐾𝑠𝑤  𝐶𝑤  [1 − 𝑒−𝑘𝑒𝑡] 162 

where Cs is the concentration of the given compound in the sampler, Cw the average concentration in 163 

the wastewater or TWA, Ksw the sampler-water partition coefficient, ke the elimination rate constant of 164 

the pollutant from the receiving phase and t the exposure time. The time to reach half of the equilibrium 165 

concentration (t1/2) corresponding to the limit between the kinetic regime and the curvilinear regime 166 

can be estimated from the first order curves fitted to calibration data to corroborate their linearity 167 

during the exposure time. 168 

The mechanisms controlling the uptake of chemicals by POCIS are complex and remain only superficially 169 

described. A range of sorbate-sorbent interactions are possible and interactions with the PES membrane 170 

are also compound specific, although these appear to be related to hydrophobicity (Vermeirssen et al. 171 

2012). Thus there is some evidence of bi-phasic uptake in POCIS (Fauvelle et al. 2014). In addition, the 172 

adsorption of chemicals to POCIS sorbents is a surface phenomenon that can be competitive. For these 173 

reasons the above equation, although regularly applied, may be invalid for use with POCIS. Therefore, 174 

for simplicity POCIS is often considered as an infinite sink for contaminants with uptake in the linear 175 

phase. The relation between Cs and Cw can be expressed by  176 

2) 𝑅𝑠 =  
𝐶𝑠𝑀𝑠

𝐶𝑤 𝑡
 177 

Where RS is the sampling rate and MS is the mass of the sorbent. POCIS uptake was described as 178 

concentration factors (CF), by dividing by the water concentrations (Cs/Cw), to normalize for fluctuating 179 

concentrations in wastewater: 180 

3) 𝐶𝐹 =
𝐶𝑆

𝐶𝑊
=  

𝑅𝑠 𝑡

𝑀𝑆
 181 

Long-term measurements and TWA calculations 182 

POCIS (n=3) were replaced every two weeks from December 29th of 2011 to January 3rd of 2014 for a 183 

total of 49 measurements. Sampling periods remained stable during the two year-long period with a 15 184 
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day average, with some exceptions largely for practical reasons such as summer and Christmas holidays. 185 

As mentioned previously, environmental conditions affect POCIS RS and therefore the accuracy of 186 

subsequent TWA concentrations. Wastewater flow rate, temperature and pH were recorded during the 187 

two year-long study showing seasonal differences.  188 

Average RS obtained from the 3 in-situ calibrations (14 day data) were used to estimate the average 189 

water concentration of the target compounds during each exposure time. The concentration obtained 190 

in the POCIS extract was used to calculate the TWA (Cw) by using the eq. 2. TWA concentrations were 191 

normalized to the median concentrations. 192 

Pharmaceutical sales data. Comparison between predicted environmental trends and WBE. 193 

The environmental mass loads for atenolol, citalopram, carbamazepine, oxazepam and metoprolol in 194 

wastewater were estimated from the per capita monthly sales data from 2012 to 2014 obtained from 195 

the Norwegian Institute of Public Health (FHI) (Norwegian Drug Wholesales statistics; FHI, Oslo, 196 

Norway). These data are gathered from the same catchment area connected to the sewer system under 197 

investigation. The consumption of these pharmaceuticals is relatively stable as the general population 198 

regularly uses them. Furthermore, these compounds are present in wastewater at detectable and 199 

quantifiable concentrations. The monthly turnover by dosage was multiplied by the defined daily dose 200 

(DDD), considered as the average maintenance dose per day in milligrams for a drug used for its main 201 

indication in adults. Correction factors for excretion, degradation and the ratio purchase/consumption 202 

were not considered since are expected to remain constant during study within the same catchment.  203 

These predicted environmental pharmaceutical trends were calculated only to estimate their variability 204 

during the study from 2012 to 2014. This information was then compared with the wastewater samples 205 

and POCIS results. In parallel, the uncertainty related with the sample size for both sampling modes was 206 

also compared via calculating the standard error of the mean (SEM) using equation 4 as described 207 

elsewhere (Ort et al. 2014a). The coefficients of variation (CV) were calculated using the population-208 

normalized loads (mg/day/1000 inh.) for the 28 wastewater samples daily analysed during the in-situ 209 
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calibration and the 49 TWA concentrations (ng L-1) determined with POCIS for the long-term monitoring, 210 

where n is the number of samples. The average flow rates during the exposure of POCIS were not 211 

applied to the TWA concentrations in order to avoid a deviation on the standard error. 212 

4) 𝑈 =  
𝐶𝑉

√𝑛
 213 

TWA confidence intervals 214 

The study of the confidence intervals associated with POCIS data was carried out as described elsewhere 215 

(Poulier et al. 2014). The variations in RS due to environmental conditions during POCIS exposure are 216 

considered the primary contributor to the overall uncertainty associated with the POCIS data and were 217 

considered to be within a factor of two (Harman et al. 2012, Morin et al. 2012). The accuracy of the RS 218 

herein was evaluated as the coefficient of variation of the three in-situ calibrations intending to capture 219 

the variations during the three different sampling periods. Despite the fact that the three in-situ 220 

sampling sets were performed during the same season, the water flow rates varied substantially 221 

providing a realistic measure of the reproducibility of RS. The evaluation of the repeatability on POCIS 222 

triplicates following the two-week exposure was also included as a contributor of uncertainty by 223 

calculating the relative standard deviation (RSD) of all the POCIS triplicates exposed in wastewater.  224 

The overall equation is described below, where % accuracy are the upper and lower limits of the 225 

accuracy range calculated in the in-situ calibration, k is the coverage factor that produces an expanded 226 

uncertainty to an approximate level of confidence (in this study k=2, leading to a confidence interval of 227 

about 95%), % RSD is the repeatability and UPOCIS the POCIS data uncertainty: 228 

5) %𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑙𝑜𝑤 − 𝑘 𝑥 % 𝑅𝑆𝐷 ≤ 𝑈𝑃𝑂𝐶𝐼𝑆 ≤  %𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑢𝑝 + 𝑘 𝑥 % 𝑅𝑆𝐷 229 

Two different diagnosis levels based on uncertainty data were calculated for POCIS. The % RSD based 230 

on the repeatability was the same for both, while the first level used the % accuracy obtained from the 231 

in-situ RS calculation and the second level used two predefined levels of -50% and + 100% based on the 232 

assumption that RS values vary within a two-fold range(Harman et al. 2012). Finally, the confidence 233 
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interval levels were evaluated using TWA concentrations for the 5 pharmaceuticals included in this 234 

study. 235 

3. Results and discussion 236 

Sample rates: Three in situ calibrations in one 237 

All of the target compounds were detected and quantified in both POCIS and wastewater samples with 238 

the exception of methamphetamine in POCIS-Set 1 (after 18 days of exposure), which suffered from 239 

high ion suppression due to the complexity of the matrix. Water concentrations for all of the target 240 

compounds were mainly influenced by the wastewater flow rates due to the heavy periods of rain during 241 

calibration. When comparing the water flow-corrected loads, cocaine, and its main urinary metabolite 242 

benzoylecgonine, showed an increase during the weekend while methamphetamine and the other 243 

pharmaceuticals presented a more stable trend, in agreement with previously reported data (Baz-244 

Lomba et al. 2016b, Ort et al. 2014b, Salvatore et al. 2015). Wastewater and POCIS concentrations are 245 

presented in Figure S2.  246 

Accumulation curves obtained for each of the 10 target compounds were assessed for the three time 247 

periods. RS were calculated as the slope of the linear part of the fitted curves that were forced through 248 

the origin (Figure 2). No lag in uptake was observed. Half-time (t1/2) to equilibrium values were estimated 249 

where possible from the fitted non-linear curves and complementary RS were also calculated from the 250 

linear portion of these curves (Figure S3). Citalopram, oxazepam and EDDP showed very similar curves 251 

when using non-linear or linear models. Carbamazepine showed curvilinear accumulation kinetics 252 

especially for the set 1 (28 days) with a t1/2 of 6.7 days. For the other compounds the linear model 253 

appeared to better fit the data, therefore this was used for RS calculation and it was not possible to 254 

estimate t1/2. It is possible to overestimate the linear part of the curve through using the linear fit model, 255 

however results obtained using the curvilinear model appear to be somewhat ambiguous. Fouling was 256 

not removed from the samplers during the exposure periods as has been performed in previous studies 257 
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(Harman et al. 2011b) . Therefore, the amount of fouling accumulated on POCIS was considerably high 258 

after three or four weeks, which may reduce uptake and cause the apparent non-linearity. 259 

In-situ sampling rates were calculated over the three different exposure times (Table 1). The average 260 

CV for the three different in-situ calibration sets was higher using all of the measurements than when 261 

just using the results from the first 14 days. Using a linear fit for the in-situ calibration during the first 262 

14 days, the average CV for all the studied compounds was 17.1 %. Atenolol and morphine had the best 263 

reproducibility during the three different calibration exposures with a coefficient of variation of 10.1% 264 

whereas benzoylecgonine showed a CV of 26.3 %. POCIS RS ranged from the lowest values presented by 265 

morphine, methamphetamine and EDDP with 0.023, 0.026 and 0.027 L d-1 respectively, to 0.192 L d-1 266 

for metoprolol. When compared with the results reported by Harman et al. (Harman et al. 2011c), a 267 

study performed at the same WWTP in 2010, the RS seem to be approximately half for all of the 268 

compounds except for methamphetamine for which RS is about a fifth lower. In general, the results 269 

obtained herein compare well to in-situ RS reported in previous studies (Fedorova et al. 2014, Morin et 270 

al. 2012). As suggested elsewhere (Alvarez et al. 2004), the mass transfer of compounds into PSD is 271 

mainly controlled by the aqueous boundary layer, implying a correlation between sampling rates and 272 

the water flow velocity and turbulence, although results in the literature are somewhat ambiguous for 273 

POCIS (Harman et al. 2012, Morin et al. 2012). 274 

Two heavy rainfall events occurred during the course of the calibration and the average wastewater 275 

flow rates varied considerably during the calibration period. For example, during the first 4 days of the 276 

in-situ calibration the wastewater average flow rate was 284,298 m3 day-1 while during the first 4 days 277 

of the second in-situ calibration it was 677,410 m3 day-1. Concurrently, the wastewater average 278 

concentrations for metoprolol for example, were 362 ng L-1 during the first 4 days of the first calibration 279 

and 145 ng L-1 for the second set (Figure S2). The heavy rain increased the water flow rates “diluting” 280 

the water concentrations, but the mass loads in wastewater (Cw x Qw) for the pharmaceuticals remained 281 

stable. Despite the water flow rate more than doubling, the mass adsorbed in POCIS decreased from 282 
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235 ng POCIS-1 in the first in-situ calibration set to 134 ng POCIS-1 in the second set. This shows that 283 

POCIS was able to capture the lower concentrations, but that sampling rates were not significantly 284 

affected by the increased flow rates. This may be due to the increasing volume of wastewater not 285 

translating into an equivalent increase in laminar flow that might reduce the aqueous boundary and 286 

increase uptake. Furthermore, the heavy rainfall events prevented the assessment of the competitive 287 

sorption/dissipation of the target compounds by interfering substances. 288 

Li et al. (Li et al. 2010b) observed an increase in POCIS sampling rates for most of the pharmaceuticals, 289 

personal care products (PPCPs) and endocrine disrupting substances (EDS) evaluated in their study 290 

when flow velocities increased from 2.6 to 37 cm s-1. Certain compounds, such as atenolol, appeared 291 

not to be influenced by the changes in flow rate, whereas other compounds, such as carbamazepine 292 

and citalopram, exhibited greater uptake in POCIS when the flow rate increased. Kaserzon and 293 

colleagues (Kaserzon et al. 2013) also found that the dependence of sampling rates on the flow rate was 294 

analyte specific. Furthermore, those experiments were performed under very stable wastewater 295 

concentrations. Therefore when POCIS are exposed to extreme fluctuations in flow rate and 296 

concentrations, as in the current study, the expected uncertainty should be higher. 297 

Annual TWA concentrations 298 

All of the target substances were detected at quantifiable levels in all of the POCIS samples (n=147) 299 

deployed during 2012 and 2013. Metoprolol, oxazepam and carbamazepine showed the highest 300 

average concentrations detected in POCIS with concentrations of 1560, 928 and 434 ng POCIS-1 301 

respectively. Morphine showed the lowest levels with an average concentration of 80 ng POCIS-1 while, 302 

in contrast to what is normally reported for wastewater samples, the average concentration of cocaine 303 

in POCIS was higher than benzoylecgonine (271 and 164 ng POCIS-1 respectively). 304 

TWA concentrations for pharmaceuticals were generally stable with certain exceptions. Atenolol, 305 

citalopram and carbamazepine showed the highest TWA concentrations in February 2012. Oxazepam 306 

and metoprolol showed the highest TWA concentration during September and October 2012. Also all 307 
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of the measurements performed during January and March 2013 were noticeably higher for all of the 308 

pharmaceuticals. All the aforementioned events concurred with dry seasons during which the water 309 

flow rates were considerably lower than average (Figure S4). The fact that the water flow rates during 310 

the in-situ calibration were extremely high could result in an underestimation of the RS and therefore 311 

an overestimation of the TWA concentrations during low flow rate seasons. When the turbulent 312 

conditions are very high, the aqueous boundary layer may thin-out to the point that it is no longer the 313 

limiting barrier to solute transport (Alvarez et al. 2004). Under such conditions the controlling factor for 314 

uptake into POCIS is poorly defined but is likely to be compound specific and may be either the 315 

membrane or the boundary layer surrounding the sorbent surface. 316 

Wastewater temperature during the in-situ calibration was stable (7.1 ± 0.6 °C) while the annual mean 317 

during 2012 and 2013 shows a broader variability (11.1 ± 2.9 °C). VEAS WWTP provided 41 pH 318 

measurements during the studied period with a very stable pH average of 7.5 (CV = 1.6%) (both 319 

temperature and pH information is presented in Figure S5). 320 

Wastewater temperature fluctuations during the year can also influence the uncertainty and therefore 321 

decreasing the accuracy of TWA concentrations. Assuming that consumption of the studied 322 

pharmaceuticals was stable during the period of investigation, the fact that there are large increases in 323 

POCIS accumulations during certain periods (e.g. February 2012 or January 2013) (Figure 3), or do not 324 

occur for certain compounds such as cocaine and morphine (Figure S6), lead us to hypothesize that 325 

these fluctuations are due to compound-dependent physicochemical properties or other unknown 326 

factors. Direct disposal of pharmaceuticals into the sewer system may be one reason for these 327 

fluctuations. Recently, Petrie et al. (Petrie et al. 2016) confirmed the direct disposal of fluoxetine into 328 

wastewater by comparing its metabolite profiling with enantioselective analysis and differentiating 329 

between consumed and non-consumed drugs, similar to a previous study where the direct disposal of 330 

MDMA was identified in wastewater through comparing its enantiomeric ratio (Emke et al. 2014).  331 

Data variability and TWA confidence intervals  332 
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The predicted environmental trends estimated from the pharmaceutical sales data from 2012 and 2013 333 

was used as a complementary information to evaluate the TWA concentrations measured in POCIS 334 

(Table 2). The sales trends for the five pharmaceuticals were very stable during the two-year study. 335 

Carbamazepine sales loads showed the highest variability (CV = 13.9 %) while oxazepam was the most 336 

stable (CV = 7.3 %), all within an acceptable level of uncertainty below 3 %, confirming the stability of 337 

sales during the monitoring period.  338 

The variability of the population-normalized loads for the consecutive 28 wastewater samples collected 339 

in February 2014 was also low, showing a good agreement with previous publications (Ort et al. 2014a). 340 

Metoprolol population-normalized loads showed the highest variability for composite samples (CV = 341 

37.9 %) while citalopram showed the lowest variability (CV = 13.6%). The uncertainty levels related with 342 

the sample size for the 28 samples were all below 10 %, confirming good agreement with sales data 343 

although these results must be interpreted carefully since sampling on consecutive days cannot account 344 

for seasonal variations during the rest of the year. Ort et al. (Ort et al. 2014a) estimated that the relative 345 

error for the annual mean estimation of cocaine consumption was approximately 60 % when using 7 346 

consecutive wastewater samples, mainly due to the temporal variations linked with the types of drug 347 

use. Furthermore, they suggested that using 56 stratified wastewater samples per year the uncertainty 348 

for most of the substances and locations is approximately 10 %.  349 

POCIS TWA concentrations showed higher variability during the sampling campaign with a CV ranging 350 

from 47 % for oxazepam to 26 % for atenolol in 2012 and 35 % for carbamazepine to 27 % also for 351 

atenolol in 2013. The uncertainty due to the sample size for the five pharmaceuticals was lower than 10 352 

%. In this case the variability is higher than sales loads and composite samples, but still at a very good 353 

level considering that the annual TWA concentrations might be influenced by drastic changes in flow 354 

rates due to the different environmental conditions and, especially in Oslo, where there are known to 355 

be large shifts in the city´s population during the summer vacation in July and Christmas 356 

holidays(Norway 2014). 357 
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Concurrently, the uncertainty of POCIS TWA concentrations was assessed by calculating two different 358 

confidence intervals based on: 1) The accuracy of POCIS RS during the in-situ calibration and the POCIS 359 

triplicates repeatability during the 2-year monitoring. 2) The assumption that RS values vary within a 360 

two-fold range (Harman et al. 2012). Atenolol showed the highest RS accuracy levels during the in-situ 361 

calibration with a CV of 10.1 % while metoprolol showed the highest variance with 27.4 %. The average 362 

CV calculated from the 49 deployments of POCIS triplicates ranged from 15.6 % for citalopram to 19.1 363 

% for metoprolol. The accuracy and repeatability of the POCIS RS for the selected pharmaceuticals are 364 

shown in Table S1 and were used in equation 4 to define two different uncertainty levels. The 365 

uncertainty estimated for level 1 using the experimental data obtained from the in-situ calibration was 366 

lower than that calculated for the level 2 (RS values vary within a two-fold range). In both cases atenolol 367 

had the lowest uncertainty range (± 35.4%) while metoprolol showed the highest (43.1%), due to the 368 

higher variability during the in-situ calibration (Table 2). 369 

Figure 3 shows the normalized TWA concentrations for the selected pharmaceuticals within the 370 

different uncertainty ranges. Citalopram showed the biggest variations during the two-year monitoring 371 

period, presenting 2 measurements outside of the level 2 (red dotted line) and 9 measurements outside 372 

of level 1 (green dashed line). For the remaining pharmaceuticals, atenolol, carbamazepine, oxazepam 373 

and metoprolol showed no or a single data point outside of level 2 and 4, 5, 4 and 2 outside of level 1 374 

respectively. With the exception of citalopram, 85% of all the measurements where within level 1 of 375 

uncertainty. 376 

POCIS annual estimations 377 

The annual mass loads in 2012 and 2013 for atenolol, citalopram, carbamazepine, oxazepam and 378 

metoprolol, using the median of the TWA concentrations and the annual flow rate average shown in 379 

Table 2 are in agreement with wastewater grab samples analysed in the same WWTP during the last 380 

years (Baz-Lomba et al. 2016a, Baz-Lomba et al. 2016b). Cocaine and benzoylecgonine were present at 381 

stable concentrations over the two-years. The cocaine mass loads reported in wastewater, based on a 382 
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week-long sampling during the last 3 years(Ort et al. 2014b) showed that the average loads in Oslo were 383 

96, 70 and 271 mg/day/1000 inhabitants during 2012-2014 respectively. More recently, and also for a 384 

1-week sampling campaign in Oslo in 2015, we have reported cocaine average mass loads of 152 385 

mg/day/1000 inhabitants (EMCDDA 2015). The previously mentioned mass loads were calculated for 386 

benzoylecgonine. When comparing these results with those presented herein using the 387 

benzoylecgonine median concentration and the total annual wastewater average flow rate, the average 388 

cocaine mass load during 2012 and 2013 in Oslo estimated from POCIS was 120 mg/day/1000 389 

inhabitants which agrees well with active sample measurements in wastewater in Oslo during the last 390 

four years.  391 

Methamphetamine showed a decreasing trend from an average of 645 ng L-1 in 2012 to 363 ng L-1 in 392 

2013 in good agreement with previous reports on methamphetamine trends in Norway (Bramness et 393 

al. 2015). The reported methamphetamine mass loads during 2012-2014 were 169, 108 and 237 394 

mg/day/1000 inhabitants respectively while in 2015 the weekly average was 172 mg/day/1000 395 

inhabitants. The methamphetamine mass loads average during 2012 and 2013 measured in POCIS was 396 

263 mg/day/1000 inhabitants, showing a good agreement with the aforementioned wastewater results. 397 

Finally, morphine showed a very small variability across the 49 POCIS measurements with a TWA median 398 

concentration of 234 ng L-1 while EDDP had two big peaks in October 2012 and February 2013 and a 399 

TWA median concentration of 278 ng L-1 (Figure S6). 400 

4. Conclusions 401 

POCIS TWA concentrations have been shown as a good complementary tool for the monitoring of 402 

certain pharmaceuticals and drugs present in wastewater when performing in-situ calibration. The poor 403 

knowledge of modelling uptake and the use of proper exposure corrections are the main issues related 404 

with the estimation of POCIS TWA concentrations and were solved by performing three overlapped in-405 

situ calibrations under different environmental conditions. Furthermore, in-situ data allowed the 406 

determination of the RS accuracy and POCIS uncertainty 407 
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The reliability of this procedure was tested by comparing the POCIS TWA annual concentrations trends 408 

for certain pharmaceuticals with those from their sales data within the same catchment area. The 409 

annual variability of the POCIS TWA concentrations for the five pharmaceuticals ranged between 25.9 410 

to 46.7 % with uncertainty levels around 40 % (lower than previous publications (Miège et al. 2012, 411 

Poulier et al. 2014)) while pharmaceuticals sales data confirmed a very stable consumption trend over 412 

time. In addition, TWA concentrations for the other five drugs were measured and compared with 413 

previously reported concentrations in wastewater showing good agreement within similar levels of 414 

uncertainty. TWA concentrations for the target pharmaceuticals were found to be within an acceptable 415 

level of uncertainty demonstrating that POCIS can be a valuable tool for the widespread and long-term 416 

application of WBE. 417 
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Figure 1. Distribution of POCIS deployments during the in-situ calibration. Number of exposure days 

during which POCIS were deployed at VEAS WWTP (Oslo, Norway) in February 2014. 

 



 

Figure 1. Linear fits in POCIS obtained for each of the 10 target compounds assessed over three time 

periods in, concentration factor vs time. Set-1: 28 days (solid line, circles); Set-2: 21 days (dashed line, 

squares); Set-3: 14 days (dotted line, triangles). 

Atenolol

Days

C
F

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

Citalopram

Days

C
F

0 10 20 30
0

2

4

6

8

10

Carbamazepine

Days

C
F

0 10 20 30
0.0

0.5

1.0

1.5

2.0

Oxazepam

Days

C
F

0 10 20 30
0

2

4

6

8

Cocaine

Days

C
F

0 10 20 30
0

1

2

3

Benzoylecgonine

Days

C
F

0 10 20 30
0.0

0.5

1.0

1.5

EDDP

Days

C
F

0 10 20 30
0.0

0.5

1.0

1.5

2.0

Methamphetamine

Days

C
F

0 5 10 15 20
0.0

0.2

0.4

0.6

Morphine

Days

C
F

0 10 20 30
0.0

0.2

0.4

0.6

0.8

Metoprolol

Days

C
F

0 10 20 30
0

2

4

6



 
Figure 1. Uncertainty ranges and normalized time-weighted average concentrations in POCIS (n=3) for 
atenolol, citalopram, carbamazepine, oxazepam and metoprolol (right axis). Wastewater flow rate (m3 
L-1) is represented in the background (left axis). Dates (x axis) represent the mid-point of the exposure 
time. 



Table 1. Sampling rates (RS) in L·day-1 for the three different in-situ sets (C1, C2 and C3), average value 
and coefficient of variation using a linear model during the whole exposure time and only the first 14 
days. 

Rs - Linear (C1=28 d; C2=21 d; C3=14 d)     

 C1 C2 C3 Av. CV (%) 

Atenolol 0.030 0.027 0.028 0.028 4.3 

Citalopram 0.242 0.109 0.111 0.154 49.6 

Carbamazepine 0.067 0.065 0.078 0.070 9.9 

Oxazepam 0.206 0.128 0.156 0.163 24.3 

Cocaine 0.097 0.074 0.090 0.087 13.4 

Benzoylecgonine 0.041 0.027 0.031 0.033 21.1 

EDDP 0.055 0.024 0.029 0.036 47.0 

Methamphetamine 0.030 0.027 0.021 0.026 16.3 

Morphine 0.021 0.019 0.021 0.021 5.4 

Metoprolol 0.168 0.143 0.250 0.187 29.7 

Av. 0.096 0.064 0.081 0.080 22.1 

Rs - Linear 14 d         

Atenolol 0.033 0.034 0.028 0.031 10.1 

Citalopram 0.136 0.112 0.111 0.119 12.0 

Carbamazepine 0.097 0.072 0.078 0.082 15.8 

Oxazepam 0.191 0.114 0.156 0.154 25.0 

Cocaine 0.107 0.090 0.090 0.096 10.4 

Benzoylecgonine 0.051 0.036 0.031 0.039 26.3 

EDDP 0.030 0.021 0.029 0.027 17.0 

Methamphetamine 0.031 0.027 0.021 0.026 17.4 

Morphine 0.021 0.025 0.021 0.023 10.1 

Metoprolol 0.147 0.179 0.250 0.192 27.4 

Av. 0.084 0.071 0.081 0.079 17.1 

 



Table 1. Pharmaceuticals variability and uncertainty due to sample size (in brackets). presented as coefficient of variation (CV = standard deviation 
divided by mean) and standard error of the mean (SEM = coefficient of variation divided by the square root of the number of samples). for the 24 
monthly sales loads data during 2012 and 2013, the 28 consecutive wastewater samples studied during the in-situ calibration and the 49 TWA 
concentrations estimated with POCIS during 2012 and 2013 (left). Estimated uncertainty levels associated with POCIS data using both, the in-situ 
accuracy levels and a predefined value (center). Estimated population-normalized loads using wastewater samples from 2014 and POCIS from 2012 and 
2013 (right). 

    Variability (Uncertainty); CV (SEM)   Confidence Intervals   Estimated Mean Value (mg/day/1000 inhabitants) 

  
Sales loads WW loads POCIS [TWA]  UPOCIS (in-situ)  UPOCIS (Rs ≤ 2)  WW loads  [TWA] POCIS 

Compound  n=24 n=28 2012 (n=24) 2013 (n=25)  %   % MIN % MAX  Feb 2014 (n=28)   2012 (n=24) 2013 (n=25) 

Atenolol  12.7 % (2.6 %) 15.2 % (2.9 %) 25.9 % (5.3 %) 27.4 % (5.5 %)  ±35.4  -81.4 131.4  166.3  231.6 182.2 

Citalopram 10.7 % (2.2 %) 13.6 % (2.6 %) 43.5 % (6.2 %) 33.5 % (4.8 %)  ±37.6  -81.2 131.2  54.6  75.4 57.2 

Carbamazepine 13.9 % (2.8 %) 15.7 % (3.0 %) 44.6 % (6.4 %) 35.1 % (5.0 %)  ±38.6  -82.8 132.8  263.6  163.8 164.0 

Oxazepam 7.3 % (1.5 %) 27.0 % (5.1 %) 46.7 % (6.7 %) 32.2 % (4.6 %)  ±40.5  -84.8 134.8  189.7  163.9 197.1 

Metoprolol 12.7 % (2.6 %) 37.9 % (7.2 %) 37.9 % (5.4 %) 28.6 % (4.1 %)   ±43.1   -88.2 138.2   129.5   257.1 252.8 
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Chemicals, materials and POCIS samplers 29 

Atenolol, citalopram, carbamazepine, oxazepam, morphine, metoprolol, methadone, EDDP, 30 

benzoylecgonine and methamphetamine were purchased from Nerliens Meszansky (Oslo, Norway) as 31 

solutions in methanol (MeOH) or acetonitrile (ACN) at concentrations of 1 mg mL-1. Deuterated 32 

standard analogs for each target compound (except for citalopram, morphine and EDDP for which 33 

buprenorphine-d4, atenolol-d7 and atomoxetine-d7 were used respectively) were purchased from 34 

Nerliens Meszansky as solutions of 100 ng mL-1 in MeOH or ACN and were used as surrogate isotope 35 

labelled internal standards (ILIS) for quantification. 36 

Ultrapure water was obtained by purifying demineralized water in an Elga Maxima Ultrapure Water 37 

purification system (Elga, Lane End, UK). Ammonium formate (for mass spectroscopy, ≥99.0%), HPLC-38 

grade formic acid (eluent additive for LC-MS) and UHPLC-grade water, MeOH and ACN (Fluka for 39 

HPLC) were acquired from Sigma-Aldrich, (Oslo, Norway). 40 

The pharmaceutical version of the POCIS was constructed in-house as previously described by Harman 41 

et al. [1]. Briefly, 220 ±5 mg of Oasis HLB sorbent (Waters, Milford, MA, USA) was sandwiched 42 

between two polyethersulphone membranes (Pall Supor 100 Membrane Disc Filters, 0.1 µm pore size, 43 

90 mm diameter; VWR, Oslo, Norway) clamped between two steel rings providing an exposure area of 44 

∼24 cm2 on each side. Assembled POCIS were kept in individual foil lined bags (to prevent cross-45 

contamination) and stored at -20°C prior to and following deployment in wastewater to prevent 46 

biodegradation of the analytes. 47 

Wastewater and POCIS extraction and analysis 48 

The method used for the extraction and analysis of the target compounds in wastewater has been 49 

described elsewhere [2]. Briefly, 50 ng of the ILIS solution mix was spiked into wastewater (100 mL) 50 

and then extracted using a fully automatable solid phase extraction (SPE) system (Horizon Technology, 51 

Salem, NH, USA) with HLB extraction disks (47 mm, I.D.; Horizon Technology, City, Country). 5 µL of the 52 

final eluent (evaporated to 100 µL and reconstituted to 400 μL with water) was injected into a LC-53 

QTOF system. The compounds were chromatographically separated on a Waters Acquity UPLC system 54 

(Milford, MA, USA) fitted with a Acquity UPLC HSS C18 column (2.1 x 150 mm, particle size 1.8 μm) 55 

(Waters, Milford, MA, USA). A Xevo G2-S Q-TOF mass spectrometer (Waters, Milford, MA USA) was 56 

used in positive ESI mode for acquisition using MSe, that allows both precursor and product ion data to 57 

be simultaneously acquired during a single run. The data processing took place using UNIFI screening 58 

platform (Waters Corporation, Milford MA, USA). 59 

Following deployment, POCIS were defrosted and the HLB sorbent transferred into an empty solid 60 

phase extraction cartridge (6 mL). Two cartridge volumes of 90:10 water:methanol were used to wash 61 

the sorbent and 100 ng of the isotopic labelled internal standards (ILIS) solution mix was added. The 62 

analytes were eluted using 5 mL of 5% ammonium hydroxide in methanol and 5 mL of 5% acetic acid 63 

in methanol. The final eluent was dried to approximately 0.1 mL under a stream of nitrogen (35°C) and 64 

reconstituted into 1.5 mL of H2O/MeOH (80/20, v/v). Finally, an aliquot was centrifuged at 20.000 x g 65 

for 2 minutes and 5 µL of the supernatant were injected into the UHPLC-QTOF using the same method 66 

described above [2]. 67 

  68 
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Quality Assurance 69 

The influence of the wastewater matrix on POCIS extracts was evaluated using the corresponding ILIS 70 

for each of the studied compounds. The final eluate was split into two fractions, evaporated, and then 71 

reconstituted into 500 µL of H2O/MeOH (80/20, v/v). Different dilution factors were tested by adding 72 

different volumes (250, 500, 750 and 1000 µL) of ultrapure water, resulting in a considerable 73 

reduction in ion suppression (Figure S7). A higher dilution factor would probably decrease the ion 74 

suppression, but a higher volume also involves a higher amount of ILIS. A compromise for ion 75 

suppression and dilution factor was found by diluting the eluent with 1 mL of ultrapure water. All of 76 

the studied compounds were recovered from the HLB sorbent at a satisfactory range of between 72 77 

and 118% [2]. The selection of the target compounds was based on two factors: frequency of 78 

occurrence in wastewater and at concentrations above LOQ. Blank POCIS were analyzed for both in-79 

situ calibration (n=3) and long-term sampling (n=3/new batch) and none of the target compounds 80 

were detected. 81 

The stability of analytes on POCIS during the deployment has not been assessed in this study due to 82 

the complexity of performing such a study. However, the possible loss of the analyte is assumed to be 83 

corrected by performing the in-situ calibration. Only Carlson et al. [3] studied the stability of 24 84 

pharmaceuticals stored on POCIS concluding that the losses were smaller than the variability 85 

associated with the use an application of POCIS. Therefore, further research is needed for the better 86 

understanding of both stability and competitive sorption of analytes during the deployment in 87 

wastewater.  88 
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 89 

 90 

Figure S1. Sewer system distribution in Oslo. Green area represents VEAS wastewater catchment area 91 

whereas the orange area represents BEVAS wastewater catchment area. 92 

 93 

  94 
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 95 

Figure S2. In-situ calibration data. Set 1, 2 and 3 represent the POCIS uptake for each of the target 96 

compounds displayed in blue, red and green respectively. Black line shows the different compound 97 

concentrations in wastewater. 98 
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 99 

Figure S3. Non-linear fits in POCIS obtained for each of the 10 target compounds assessed over three 100 

time periods in, concentration factor vs time. Set-1: 28 days (solid line, circles); Set-2: 21 days (dashed 101 

line, squares); Set-3: 14 days (dotted line, triangles).  102 
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 103 

Figure S4. Wastewater flow (m3 day-1) rate at VEAS WWTP during the monitoring study. 104 

 105 

Figure S5. Wastewater temperature (°C) at VEAS WWTP during the monitoring study. 106 
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 107 

Figure S6. Time-weighted average concentrations (ng L-1) in POCIS (n=3) for cocaine, benzoylecgonine, 108 

methamphetamine, EDDP and morphine (right axis). Wastewater flow rate (m3 d-1) is represented in the 109 

background (left axis). 110 
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 111 

 112 

Figure S7. Influence of the dilution factor of the POCIS eluent on the matrix effect (extract water). 113 
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Table S1. POCIS repeatability and RS accuracy for the selected pharmaceuticals. 115 

      

 Long-term repeatability In-situ accuracy 

 
POCIS (n = 49 triplicates) Rs (n=3) 

  Average CV CV 

Atenolol 15.7 ± 8.4 10.1 

Citalopram 15.6 ± 8.2 12.0 

Carbamazepine 16.4 ± 9.2 15.8 

Oxazepam 17.4 ± 10.4 25.0 

Metoprolol 19.1 ± 10.8 27.4 

  116 
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