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V 

Abstract 
The focus of this thesis is on finding a softcore processor that is capable of performing 

scientific calculations for applications such as the 4DSpace project. The required softcore 

processor should have an easy and well-documented development process, as well as usefull 

customization options. The portability of a softcore processor to application-specific 

integrated circuits (ASIC) is also an important requirement. An open-source LEON3 softcore 

processor was chosen for this purpose and tested for the multi-needle Langmuir probe (m-

NLP) application. The test was conducted with the source code from an m-NLP project, 

which calculates plasma parameters. LEON3 was configured to meet the time requirements 

for the m-NLP project. Results for the performance, resource utilization and power 

consumption of each configurations are presented. The results conclude that a LEON3 

configuration with a lite version of a floating-point unit (FPU) is required to meet the set 

requirements. Estimates for an ASIC implementation of LEON3 demonstrate that LEON3 is a 

viable option for a softcore processor for the intended use in the 4DSpace project.   
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ADC  Analog-to-Digital Converter 
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 Introduction 
 

The Nanoelectronics Group at the Institute of Informatics (IFI) develops application-

specific integrated circuits (ASICs) for application areas such as medical, space, biology, 

health, and high-quality measurements. The group's intent is to have its own small general 

processor that could be synthesized on a field programmable gate array (FPGA) and on an 

ASIC. The softcore processor should be described in hardware description language or very-

high-speed integrated circuit hardware language (VHDL).  

The departments of Physics, Informatics, and Mathematics at the University of Oslo 

(UiO) are currently working with the 4DSpace strategic research initiative. The main goal of 

this initiative is to identify an integrated approach for understanding ionospheric plasma 

instabilities and turbulence and their role in space weather.  

The multi-needle Langmuir probe (m-NLP) project is one part of that integrated 

approach. An instrument with four needle probes is placed in an Investigation of Cusp 

Irregularities (ICI) sounding rocket[1] or satellite, where it measures and collects the in-situ 

current from the individual needle probes [2]. On a satellite, for example NORSAT-1, the 

collected data is converted to voltage, then filtered and digitized. The plasma parameters are 

then calculated and sent to the central telemetry system for downlink to the ground stations. 

For a sounding rocket system, the data is collected, processed, and sent to the ground stations 

without calculating the plasma parameters. This is because of mission time limitations and 

onboard processing times. In the thesis written by Erik Nobuki Kosaka the possibility of 

doing plasma parameter calculation on the sub-payloads of the ICI sounding rocket's 4DSpace 

module was proven to be realistic. Onboard processing is considered because of the 

bandwidth limitations which does not allow for all of the raw data to be sent to ground.  

 In this thesis, softcore processor options will be explored and tested for possible use in 

the m-NLP project. There are many open-source softcore processors that are at different 

developmental and confirmation stages, as well as many commercial softcores for sale in a 

broad price range.  
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1.1 Motivation 
One of the main reasons for using a softcore processor instead of a hardcore processor 

is that the development, testing, and redesigning times are exceedingly faster because of a 

simpler design cycle, a more predictable project cycle, field reprogrammability, rapid 

prototyping, and a feasibility study.  

The advantage of a softcore processor is its simple customizability, processor parts can 

be added or removed in a relatively short amount of time. A softcore is also advantageous 

because of the relatively easy portability to ASICs. The test of a softcore processor on an 

FPGA takes less time because of multiple test patterns can be tested faster on an FPGA board 

than the protracted simulations for an ASIC design.  

  When the softcore processor is tailored, tested, and meets the application 

requirements, it can be ported to ASIC technologies, where it can support higher speeds, 

lower power consumption, lower or higher temperatures, and more radiation. The latter is 

possible to counter with mitigation propagation processes of single event upsets (SEUs) and 

radiation-hardened technology processes. The SEUs are caused by ionized particles that strike 

a micro-electronic device and can change the state of a logic element. Once ported to an 

ASIC, a softcore processor will have a lower unit price and a smaller size, and it may include 

other parts such as random memory access (RAM), microelectromechanical systems 

(MEMS), an image sensor, and power regulators.  

The plasma parameter calculations for the m-NLP project are currently tested with a 

microcontroller unit (MCU) (TMS570ls1224), which possesses an advanced reduced 

instruction-set computer machine (ARM) Cortex-R4F central processing unit (CPU). These 

test results are used in the present thesis as benchmarks to determine wether the chosen 

softcore processor is capable of performing those calculations within the given time 

specifications.  

The potential future use of the chosen softcore processor in this project is only one of  

many possible utilizations. Since softcore processors can be tailored to practically any extent, 

many possibilities exist for their utilization in other projects, both at the physics department 

and in the Nanoelectronics Group. 
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1.2 Goals  
The objective of this thesis can be divided into three different main goals. The first 

goal is to understand the principles of softcore processors, identify the available softcore 

processors, analyze and compare them, and then draw a conclusion about which is the most 

suitable for use in this study. Since a significant amount of in-depth research has already been 

conducted by other researchers, the analysis and comparison herein are done based on the 

results reported in those studies. 

The second goal of this thesis is to further analyze the chosen processor; describe its 

features and development tools; implement it on an FPGA; and test it against the Cortex-R4F 

processor, used in a 4D module, with the science routine for plasma parameter calculations. 

The third goal of this thesis is to determine the resource utilization, power consumption, and 

predictions for future implementation of the chosen softcore processor on an ASIC.  

1.3 Thesis Outline  
The remainder of this thesis is outlined as follows: Chapter 2 presents the data 

acquisition techniques and explains the main differences between hardcore processors, digital 

signal processors, and softcore processors. Then, Chapter 3 describes what a softcore 

processor is and discusses the processor architectures. It also presents an overview, analysis, 

and comparison of different softcore processors. In Chapter 4 in-depth information is 

provided about the chosen softcore processor and its development tools and Chapter 5 

addresses the implementation processes of the chosen softcore processor on an FPGA. 

Thereafter, Chapter 6 discusses the testing, resource, and power consumption characterization 

of the softcore processor implementation, and in Chapter 7 the challenges for ASIC 

implementation of a softcore processor are presented followed by discussion about the rough 

estimates for its power, area, and price. Finally Chapter 8 concludes this thesis. 
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 Data Acquisition and Signal 
Processing for Lower Data Rates 
            Most of the sensor data acquisition and digital signal processing (DSP) can be done 

using simple CPUs with specific techniques. Those techniques and possible CPU solutions 

are discussed in this chapter. 

2.1 Fixed-point vs. Floating-point 
Digital signal processing can be categorized as: fixed-point DSP or floating-point 

DSP. This essentially means that the processing is conducted with positive and negative 

whole numbers for fixed-point DSP via minimum bits, yielding  216 (65,536) bit patterns. In 

contrast, floating-point DSP uses rational numbers via a minimum of 32 bits, which leads to 

232 bit patterns, where both large and small numbers can be represented. The latter is mostly 

used for a dynamic range, in which large data sets need to be processed and where they can 

also be unpredictable. 

Floating-point DSP units cost more area and power than fixed-point DSP units. It is 

easier to develop a floating-point algorithm than a fixed-point algorithm, since the latter 

requires greater manipulation to quantize noise. Greater performance efficiency can be 

achieved with a fixed-point processor, since it uses less area and consumes less power than a 

floating-point processor for the task that must be accomplished [3]. 

For the IFI’s Nanoelectronics group applications that require the use of a processor, 

the fixed-point calculations are the primary choice. However, the possible applications of 

floating-point calculations are still considered as options for some projects and is covered in 

this thesis.  
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2.2 Field-Programmable Gate Array vs Digital Signal 
Processors 

With the recent advances in FPGA technology, VHDL development, and testing tools, 

a designer can implement complex integrated functionality on a single die. This can be further 

extended to a complete microcomputer system. An FPGA consists of three main components: 

logic blocks, I/O blocks, and interconnection wires. Logic blocks are composed of several 

inputs and one output, look-up-tables (LUT), small RAM, flip-flops (FFs), and special 

arithmetic logic support. These programmable blocks are connected with wires and 

programmable switches used to set up desired connections between the logic blocks [4, p. 

100].  

The development life-cycle of an FPGA technology processor-based system can be 

significantly reduced by providing the ability to incorporate several digital cores as 

reconfigurable, embedded processors in a single die. Using an FPGA approach to implement 

a DSP processor can drastically reduce the time to market compared to ICs or ASICs. An 

FPGA’s flexibility reduces the long design time associated with ASICs, so that the delay in 

prototyping can be eliminated with FPGAs. By an using FPGA as one of the platforms for 

ASIC prototyping and testing, the development and verification of an ASIC processor can be 

achieved rapidly.  

Field programming allows one to bridge flexibility and performance gaps between 

general-purpose processors and ASICs. Hardcore DSP processors can be programmed with 

software; however, their architecture is not flexible, since they are constrained by factory 

settings such as bus width, certain numbers of multiply and accumulate (MAC) blocks, and 

limited data widths. Field-programmable gate arrays can provide complete hardware 

customization for any DSP application requirement; they have been used in many DSP 

embedded systems, and some comparisons of different DSP implementation technologies are 

represented in Table 1 [5, p. 5]. 
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Feature ASIC Structured 
ASIC FPGA 

Reconfigura
ble 
Hybrid 

DSP 
processor 

General- 
purpose µP 

Operating 
freq. (MHz) 

 
> 1,000 
 

 
> 1,000 
 

100–400 50–300 100–60 100–1,000 

Power 
consumption Moderate Moderate High Moderate Very High Very High 

Parallel 
execution Maximum Maximum Maximum 

(flexible) Moderate Serial (ILP) 
Serial 
(no spec. 
FUs) 

Complexity 
of design 

Very high 
(50–100-M 
gates) 

Very high Very high Moderate 
Very 
complex  
programs 

Very 
complex  
programs 

Size/are Large Large Very Large Moderate to 
high 

Moderate to 
high 

Moderate to 
high 

Migration/ 
evolution None Low Very high Moderate to 

high 

High 
(performance 
limited) 

High 
(performance 
limited) 

Customizati
on Difficult Moderate Easy Easy to 

moderate Easy Easy 

Design 
verification Very difficult Moderate Moderate Moderate to 

difficult Moderate Moderate 

Design tools Good, very 
expensive 

Good, 
moderately 
expensive 

Very good, 
less 
expensive 

Very poor Good, 
inexpensive 

Very good, 
inexpensive 

Table 1: Properties of different DSP implementation technologies 

 An FPGA permits the simultaneous execution of the algorithm’s subfunctions. The 

FPGA can outperform a DSP processor by as much as 1,000:1, although it depends on, for 

example, clock rates and the degree of parallelism. The typical gains lie between 10:1 and 

1,000:1 [6].  

In conclusion, an FPGA provides faster development cycle than that of an ASIC or 

DSP processor, reconfigurability, embedded resources integration, and the development tool 

efficiency as well as device cost. All these advantages come at the cost of a higher power 

consumption and higher per-unit cost when compared to other ASIC processors, which can be 

addressed by porting a VHDL softcore processor design into an ASIC.  

2.3 Softcore Processor Requirements for 4D Module 
Application 

Current 4Dspace modules use a Cortex-R4F processor. Considering it as the baseline 

for softcore processors, some basic requirements can be outlined.  
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The first requirement is an integer and floating-point performance. A softcore 

processor should be able to perform, to a certain degree, as well as the hardcore processor. 

The leeway here is because a softcore implementation on an FPGA will always perform 

slower than an equal implementation on an ASIC or than a dedicated hardcore processor.  

The second requirement is a broad spectrum of alternatives for communication 

interfaces. These alternatives should support basic interfaces such as Serial Peripheral 

Interface (SPI), Inter-Integrated Circuit (I2C), Universal Asynchronous Receiver-Transmitter 

(UART) among others. These interfaces are necessary for an easy integration of the chosen 

softcore processor in the existing 4D module.  

The third criteria for the softcore processor are power consumption and area. These 

should be within reasonable numbers, which were abstracted after consultation with the 

Nanoelectronics group and physics department.  

 The fourth requirement is a possibility to configure the softcore processor against 

SEUs, which are caused by hard radiation. The SEU mitigation is mostly considered for the 

use of a softcore processor in 4DSpace modules placed on satellites, where it is exposed to 

hard radiation over a prolonged mission time.  
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 Softcore Processor 
In this chapter, necessary information is presented to provide an understanding and 

definition of a softcore processor. An overview of different processor architectures and their 

roles is also presented. Three commercial and three open-source softcore processor are 

presented and explained, and five of them are compared against each other based on multiple 

study results. Finally, the most suited softcore processor is chosen as the main contender 

based on multiple aspects and criteria set earlier in this thesis.  

3.1 System-on-chip 
A system-on-chip (SoC) is a system containing multiple computer components or non-

computational components in a single, integrated chip (IC). In contrast to a circuit board, where 

components are assembled on-to it, an SoC fabricates the components into one unit. Most SoCs 

include components such as CPU and system memory like RAM or read-only-memory (ROM) 

[7, p. 1]. An SoC may also include, but may not be limited to the following: 

• Real-time clocks, counters and timers. 

• Digital Signal Processor  

• External interfaces such as USB, Ethernet, or SPI 

• Radio frequency (RF) interfaces 

• Analog frontends towards sensors  

3.2 Microprocessor 
A microprocessor (µP) is the CPU of a single IC or at most a few integrated circuits. A 

µP works mostly in the same way as a CPU does, where it is driven by clocks, which are 

based on registers where it accepts binary data as an input and processes it according to 

instructions stored in its memory.  

The main difference is that integrating a whole CPU onto single or a few ICs greatly 

reduces the cost of the processing power, and the price of a µP is lower than that of a CPU, 

since the former is produced in high numbers by highly automated processes.  
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Microprocessors are also used in many applications that are not computation related: 

mostly control systems. A µP in an embedded system controls and processes sensor inputs 

and outputs as well as other related processes. 

3.3 Softcore Processor Definition  
A soft µP or a softcore processor is a µP core that is described in an HDL and is 

implemented in an FPGA, an ASIC, or a complex programmable logic device (CPLD). Since 

most of softcores on FPGA have low gate utilization and rely on memory technology and 

LUTs, FPGAs tend to have higher power usage. This can be fixed by porting them to ASIC.  

The FPGA implementation also causes lower speeds than compared to hardcore 

processors, the typical softcore processor has speeds from 200MHz up to 500MHz, whereas a 

hardcore processor will have speeds anywhere from 100MHz up to 4GHz. This is often 

addressed by the use of multi-softcore processors and parallel programming. Table 2 [8, p. 4] 

presents an overview of flexibility and speed tradeoffs for processors in different 

technologies; the flexibility decreases from the ASIC down to generic technology, while the 

speed increases from generic up to ASIC technology.  
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Technology Performance/ 
Cost 

Time until 
running 

Time to high 
performance 

Time to change 
code 
functionality 

Flexibility decrease 

ASIC 
 
Very High 
 

Very Long Very Long Impossible 

Custom 
Processor or 
DSP 
Processor 

 
Medium 
 

Long Long Long 

FPGA 

 
Low to 
Medium 
 

Short Short Short 

Generic 

 
Low to 
Medium 
 

Short Not Attainable Short 

Table 2: Speed and flexibility tradeoffs 
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3.4 Microprocessor Architecture and Instruction Set 
Architecture 

This section covers the necessary background for a µP architecture and instruction-set 

architecture. A number of different µP architecture types are available; the most used types 

for both softcore and hardcore µP are described in this section.  

 Harvard Architecture  

The Harvard architecture is a computer architecture that stores machine instructions 

and data in separate memory units that are connected by different buses. This architecture 

allows a processor to run a program and access data independently and therefore 

simultaneously. 

 Complex Instruction Set Computer 

Complex instruction set computer (CISC) [9, p. 39] is a computer architecture family 

that incorporates multi-clock complex instructions where one instruction can execute several 

low-level operations. These operations include loading and storing from or to memory and 

arithmetic operations. Most of the later instruction sets evolved from CISCs.  

 Reduced Instruction Set Computer 

A RISC [10, p. 11] is a type of µP architecture that was optimized from CISCs, where 

it shifted the analytical process of a computational task from the execution (run-time) to the 

preparation (compile time). The optimization allows a RISC to have much lower cycles per 

instruction than a CISC. A RISC generally utilizes a small, highly-optimized set of 

instructions, rather than a more specialized set of instructions often found in other types of 

architectures. This does not mean that it has a small amount of instructions; later versions of 

RISCs have a larger instruction set than most CISC CPUs. Furthermore, a RISC is a 

forerunner for the major architectures today, such as ARC, ARM, Atmel AVR, MIPS, RISC-

V, SuperH and SPARC, some of which are discussed below. 
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 Advanced RISC Machines   

An advanced RISC Machine (ARM) is a RISC type of µP, that has been enhanced 

with an optimized instruction set and pathways, thereby requiring fewer transistors; this 

enables a smaller die size for IC and lower power consumption then the other type of RISC 

µP. The ARM processor’s smaller size, reduced complexity and lower power consumption 

make it suitable for increasingly miniaturized devices. The processors of ARMs possess the 

same features as a RISC, (load/store architecture, single-cycle execution), which includes but 

is not limited to an orthogonal instruction set and an enhanced power-saving design [11, p. 2]. 

 Microprocessor without Interlocked Pipeline Stages  

A Microprocessor without Interlocked Pipeline Stages (MIPS) is a RISC-type µP 

architecture based on a 34/64-bit instruction set, and it uses a load/store data model, which is 

also known as register-register architecture. The architecture is streamlined to support the 

optimized execution of high-level languages. To further increase efficiency of instructions 

processing, MIPSs use a technique called pipelining, and since all instructions are 32 bits 

long, these µP simplify the accessing and decoding instructions [12].   

 The MIPS is now well developed, tested, and used in many devices around the world. 

It is a prime architecture for becoming acquainted with how CPUs work, and the guides and 

support for this architecture are numerous.  

 Scalable Processor Architecture 

Scalable processor architecture (SPARC) [13] is heavily based on early RISC 

processors (I and II), with minimal operation codes and instruction execution rate at almost 

one instruction per clock cycle. This makes it a similar architecture to that of MIPS, although 

it lacks instructions like multiply and divide in the early versions. One primary feature of 

SPARC is that it is a scalable processor that is implemented with the use of 3 to 32 register 

windows. By implementing a chosen number of windows, there is a possibility to have 

maximum call-stack efficiency or reduced cost and complexity if needed. 
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3.5 Commercial Softcore Processors  
Various commercial softcore processors exist. However, in this section only, the most 

popular ones are discussed.  

 NIOS II 

The NIOS II processor [14] is Altera Corporation’s flagship softcore general purpose 

RISC processor; it features a Harvard memory architecture and is one of the most widely used 

softcore processors in the FPGA industry. The processor features a 32-bit ISA, 32 general-

purpose registers, single-instruction 32x32 multiply and divide operations, and dedicated 

instructions for 64-bit and 128-bit products of multiplication. NIOS II comes in three 

versions: economy, standard, and fast. Each core varies in size, register, and pipeline number, 

and it is possible to scale them for the desired performance, logic number, and power usage. 

Figure 1 [15, p. 10] illustrates a the standard NIOS II softcore processor block diagram. 

 

Figure 1: NIOS II Processor Core 
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 MicroBlaze 

MicroBlaze [16] is a 32-bit Harvard architecture softcore processor developed by 

Xilinx. It possesses 32 fixed 32-bit general-purpose registers, a 32-bit instruction word with 

three operands and two addressing modes, and a 32-bit bus. It also has optional 3 to 5 pipeline 

depths, a hardware divider, a barrel shifter, and debug logic, as well as a floating-point unit 

(FPU) and the local memory bus (LMB). The fast simplex link (FSL) interface allows it to 

include up to eight dedicated, 32-bit input and output ports. MicroBlaze targets Virtex and 

Spartan families of FPGAs. Figure 2 [17, p. 7] depicts a MicroBlaze core block diagram with 

fixed and optional features.  

 

Figure 2: Block diagram of MicroBlaze core 

 The MIPS Warrior M-Class M5100   

The M5100 [18] is a relatively new 32-bit MIPS softcore processor developed by 

Imagination Technologies; it features state-of-the art power reduction and management, fast 

interrupt handling, an advanced debug or profile, and total hardware virtualization. The 

processor implements over 150 instructions, including 70 single instructions and multiple data 

(SIMD) and 38 multiply or MAC instructions, as well as a seven-stage pipeline, an FPU, and 
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a memory controller. Figure 3 [18] illustrates an M5100 softcore processor block diagram 

with included and optional features.  

 

Figure 3: Block diagram of M5100  

3.6 Open-Source Softcore Processors  
A surprising number of open-source softcore processors exist. Since 1999 the open-

source project called OpenCores [19] has published, collaborated, and shared almost 200 

different softcore processors under the following licenses: The GNU General Public License 

(GPL), the Berkeley Software Distribution (BSD) license, and the GNU Lesser General 

Public License (LGPL) licenses. Although the number of softcore processors available at 

OpenCores is impressive, only a few are complete designs that have been tested on different 

FPGAs. Furthermore, not all projects provide the source code files, which made it difficult to 

study and understand them. Couple of the major ones, which have been utilized and 

developed by small groups as well as large organizations such as the European Space Agency 

(ESA) are discussed in the next subsection.  
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 OpenRISC1200  

OpenRISC1200 (OR1200) [20] comprises one of the most well-known and popular 

32-bit and 64-bit RISC softcore processors found at the Open Core page. It features a five-

stage pipeline, a virtual memory support memory management uinit (MMU), a power 

management unit (PMU), and an interrupt handler. Supplemental facilities include a debug 

unit for real-time debugging, a high-resolution tick timer, a hardware multiplier, and a divider 

available with the right configuration. Flextronics have also turned the processor design into 

an ASIC by Flextronics. The OR1200 is intended for embedded, portable, and networking 

applications. Figure 4 [21, p. 3] presents an OR1200 core block diagram.    

 

Figure 4:  Block Diagram of OpenRISC1200  

 The Lattice Semiconductor LM32 

The LM32 [22], similarly to most other processors described in this essay, is a 32-bit 

RISC Harvard architecture softcore processor with 32 32-bit general-purpose registers. It 

features a six-stage pipeline, with register-register arithmetic operations, although it does not 

possess an FPU. Three configurations are available to optimize area and performance, and 

several peripheral components might be integrated, for example memory controllers: parallel 

flash, DDR, DDR2, I/O DMA controller, and UART, among many others. Figure 5 [22] 

illustrates an LM32 block diagram. 
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Figure 5:  Block diagram for LatticeMicro 32 

 LEON3 

LEON3 [23] is a 32-bit SPARC-V8 open-source softcore processor developed by 

Cobham Gaisler. An early version of the LEON processor was developed by the ESA and 

was targeted to eliminate SEUs caused by hard radiation. The LEON2 fault tolerant (FT) 

version was created and used in many satellites, including the Intermediate eXperimental 

Vehicle (IXV) [24]. Later versions were contracted to Cobham Gaisler, where LEON3, 

LEON3-FT, LEON4 and LEON4-FT have been developed. The latter is one most powerful 

64-bit softcore processors in the world. LEON3 features a seven-stage pipeline, a hardware 

multiplier, divider and MAC units, as well as an FPU, an MMU, symmetric multi-processor 

support (SMP), and power management capabilities. Both LEON4 and LEON4-FT are 

commercial softcore processors.  

3.7  Comparison 
The research on the processors portrayed in this chapter are found online. All of the 

benchmarks rely on research and articles done by several different entities. This might cause 

inconsistencies in test conditions, so the portrayed data in the benchmarks can only be used to 

form a basic understanding of the relations between the processors in question. Any further 

assumptions are confirmed with coinciding data from multiple researches. The final choice of 

softcore processor will mostly depend on specifications, appliances, community, support, and 
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the documentation around it. Nevertheless, some benchmarks are included to understand 

softcore processor performances. Table 3 lists the features of both the commercial and open-

source softcore processors, only the most promising and best-documented processors are 

listed.  

 

Table 3: Feature overview of softcore processors 

 Comparison of MicroBlaze and LEON3(FT) 

In “The Evaluation of Soft-Core Processors on a Xilinx Virtex-5 Field Programmable 

Gate Array” [25], Mark W. Learn compared the MicroBlaze, LEON3, and LEON3FT 

softcore processors. All figures and diagrams shown in this section were taken from Learn’s 

evaluation, and two performance benchmark applications were used to evaluate the different 

softcore processors. The first one was the Dhrystone benchmark, and the second was the 

Whetstone benchmark.  

The Dhrystone [26, p. 4] is a synthetic general-performance benchmark developed by 

Reinhold P. Weicker in 1984. This benchmark contains no floating-point operations and is 

Feature NIOS II/f MicroBlaze 
OpenRISCSC 

1200 
LEON3 M5100 

License Altera IP core Ships with 
Xilinx EDK 

GNU 
LGPL GNU LGPL  

Platform Altera FPGA, 
ASIC Xilinx FPGA FPGA, 

ASIC FPGA, ASIC FPGA 

  Architecture 32-bit RISC 32-bit RISC 32-bit RISC 32-bit RISC 32-bit MIPS 

  ISA NIOS II-ISA MicroBlaze ISA ORBIS32 SPARC V-8 MIPS32 Enhanced 

  Custom instructions Yes Yes Yes Yes Yes 
  Pipeline stages 6 3-5 5 7 5 
  Register file Flat Flat Flat Window Flat 
  Nr. of global registers 32 32 32 32 32 
  FPU support Yes Yes Yes Yes Yes 
  MMU Yes Yes Yes Yes Yes 
  Mac Yes N/A Yes Yes Yes 
  Cache hierarchy Harvard Harvard Harvard Harvard SRAM interface 
  Instruction cache size 512B to 64KB 64B to 64KB 512B to 8 KB  1B to 2MB N/A 

  System interface Ethernet, JTAG, 
RS232, SPI, PCI 

LMB, IBM 
OPB, FSL, 

PLB, ICL, XCL 

Wishbone 
SoC rev. B 

32-bit 

AMBA AHB, 
RS232, JTAG, 
PHY, LVDS, 
CAN, UART 

AMBA 3 AHB, 
AMBA lite, 
JTAG, UDI 

  Power management N/A Sleep mode 
Slow and idle 

mode, sleep mode, 
doze mode 

Power down 
and idle mode. Power down. 

  Memory interfaces 

SRAM, 
SDRAM, 

Flash, Memory 
mapped I/O 

DDR SDRAM, 
SDRAM, SRAM 

External Flash 

SDRAM, 
SRAM, 

SSRAM, 
FLASH 

SDRAM, 
SRAM, PROM 

Memory 
mapped I/O 

SRAM, ISRAM, 
DSRAM, FLASH 
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Figure 6: Virtex-5 Dhrystone comparison 

intended to be representative of integer programming; furthermore, it is heavily influenced by 

hardware and software design. The output from the Dhrystone benchmark is the number of 

iterations of the main code loop per second, most commonly referred to as Dhrystone million 

instructions per second (DMIPS). 

The Whetstone [26, p. 6] is a synthetic benchmark designed to measure the behavior 

of scientific programs. This benchmark test attempts to measure the speed and efficiency at 

which a computer performs floating-point operations. The output is usually given in units 

called kilo Whetstone instructions per second (KWIPS); however, in this thesis, it will be 

referred to as million Whetstone instructions per second or (MWIPS). 

The results clearly demonstrated that all three processors were greatly improvement 

with an FPU enabled, although the utilized resources were higher than the without an FPU but 

still tolerable. With a cache and FPU enabled, the MicroBlaze performance increased by a 

factor of 40, while LEON3 increased its performance by a staggering factor of between 400 

and 1,000. Without the FPU and cache, both processors utilized similar amounts of resources; 

Figure 6 [25, p. 24] and Figure 7 [25, p. 25] depict these results. LEON3 saw a larger increase 

in resource utilization in comparison to MicroBlaze once FPU was enabled as seen in Figure 

8 [25, p. 26]. This larger increase accounts for the large performance increase when running 

the Whetstone benchmark test. It should be noted that the MicroBlaze softcore FPU unit can 

only perform single-precision, floating-point operations, where-as the LEON3 FPU provides 

the ability to use both single and double-precision floating-point operations.
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Figure 7: Virtex-5 Whetstone comparison. 

Figure 8: Processor resource utilization 
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  Comparison of LEON3, MicroBlaze, OpenRisc1200 and 
Cortex-MO 

 
In “An Evaluation of Soft Processors as a Reliable Computing Platform” [27] by 

Michael Robert Gardiner, LEON3, MicroBlaze, OpeRisc1200, and Cortex-MO were tested 

and benchmarked against themselves and the radiation hardened processor RAD750. The tests 

in this evaluation were performed on two FPGA boards, the first one being LX110T [28], 

which is a generic Xilinx FPGA board, and the second being Virtex-5QV [29], which is a 

space grade FPGA board. The results demonstrated in the current thesis concentrate on the 

LX110T board.  

The Gardiner’s study used multiple benchmarks to determine the performance of the 

softcores. The benchmarks used in that study are the standard Whetstone and Dhrystone 

benchmarks; the CoreMark [30]; and ones such as basicmath, bitcount, dijsktra, fft and 

stringsearch from the MiBench suit [31]. For the purpose of this research, the results taken 

from Gardiner’s study focus on the Whetstone and Dhrystone benchmarks; however, data 

from the rest of benchmarks are also displayed. 

Although the study came to many interesting conclusions, only the benchmarks for 

softcores with enabled and disabled FPUs are discussed next. As concluded earlier, on the one 

hand, MicroBlaze has better integer performance than LEON3. This is also true when 

compared to the other two softcores, as indicated in Table 4 [27, p. 57]. On the other hand, 

LEON3 mostly outperforms other processors on the floating-point performance. As 

mentioned in the previous subsection, the LEON3 FPU has the capacity to perform double- 

precision, floating-point operations; this is reflected well in Table 5 [27, p. 62]. The 

MicroBlaze softcore processor performed over 10 times worse than LEON3 in the double- 

precision, Whetstone benchmark, but it performed better at single-precision Whetstone 

benchmark by a factor of less than two. In Table 6 [27, p. 64] the LEON3 demonstrates the 

best performance-scaling with frequency, and MicroBlaze coming in second.  
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  MicroBlaze LEON3 Cortex-M0 
DesignStart OpenRISC 1200 

Benchmark Units Design Score Design Score Score (CB0) Design Score 
Dhrystone DMIPS MB0 192.22 LB16 76.23 73.94 OB16 44.56 
CoreMark CM MB0 225.79 LB16 122.43 92.81 OB16 92.65 
bitcount BPS MB0 3.20 LB64 1.14 N/A OB16 0.77 
dijkstra BPS MB0 1.07 LB64 0.53 0.46 OB16 0.30 
qsort BPS MB0 642.17 LB64 295.73 148.94 OB16 140.30 
stringsearch BPS MB0 52.96 LB64 30.66 24.06 OB16 14.94 

 

Table 4: Highest integer benchmark scores and corresponding designs for each processor implemented in the 
LX110T 

  MicroBlaze LEON3 Cortex-M0 
DesignStart OpenRISC 1200 

Benchmark Units Design Score Design Score Score (CB0) Design Score 
WhetstoneDP WMIPS MB0 8.37 LB16 93.40 1.89 OB16 3.12 
WhetstoneSP WMIPS MB0 175.15 LB16 97.30 9.01 OB16 6.75 
basicmath BPS MB0 0.14 LB16 3.70 0.08 OB16 0.04 
fft BPS MB0 4.40 LB64 104.33 3.04 OB16 2.57 

 

Table 5: Highest floating-point benchmark scores (with FPUs enabled) and corresponding designs for each 
processor implemented in the LX110T 

  MicroBlaze LEON3 Cortex-M0 
DesignStart OpenRISC 1200 

Benchmark Units Design Score Design Score Score (CB0) Design Score 
WhetstoneDP WMIPS/MHz MB0 0.065 LB16 1.215 0.025 OB16 0.049 
WhetstoneSP WMIPS/MHz MB0 1.365 LB16 1.266 0.117 OB16 0.106 
basicmath BPS/MHz MB0 1.076E-03 LB16 0.048 1.063E-03 OB16 7.045E-04 
fft BPS/MHz MB0 0.034 LB64 1.357 0.040 OB16 0.040 

 

Table 6: Floating-point performance per MHz for each processor (with FPUs enabled) implemented in the 
LX110T 
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3.8 Conclusion to Chapter 3 
After analysis and comparison of the available commercial and open-source softcore 

processors, it seemed safe to conclude that performance-wise, some more-than-capable open-

source softcores exist. The major concern was the support and community around the open-

source processors, compared to commercial ones, where one receives guaranteed support with 

an IP license. However, further investigation refuted that concern. OpenRISC1200 and 

LEON3 have been tested, developed and conformed for quite a while, although LEON3 is a 

clear winner in this case. The amount of research and written publications on LEON3 is 

extensive [32, 33, 34, 35, 36]. Moreover, the Yahoo group [37] on LEON3 is highly active 

today. The activities in the group have been monitored since October of 2017; it is suffice to 

say that most questions asked by users are addressed within one to two days. 

The level of customization and scalability is the second aspect that makes LEON3 

most the attractive of all the previously mentioned softcores. This is mainly because it has 

SPARC architecture. The third reason is that development tools are extensive, compared to 

other open-source softcores, and the possibility exists to further develop a free licensed 

LEON3 to FT version, which has already been done by Gaisler and some other researchers 

[38, 39, 40]. The fourth reason is the extent of documentation and guides on LEON3, which is 

second to none of the open-source softcore processors [41, 42, 43, 44, 45, 46, 47, 48]. 
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 LEON3 
This chapter covers relevant parts of The Gaisler Research IP Library, its structure and 

IP cores. The IP cores are important parts of LEON3’s customizability, and they are 

collectively an adaptability for future implementations. Necessary LEON3 tools for 

development and testing are discussed in section 4.2. 

4.1 The Gaisler Research IP Library 
The Gaisler Research IP Library (GRLIB) [49] is an integrated set of reusable IP 

cores, designed for SoC development and provided under the GNU GPL license. This library 

includes a LEON3 processor; an advanced microcontroller bus architecture (AMBA) 

AHP/APB control; an FPU; an SPI; a UART with first in first out (FIFO); a modular timer 

unit; an interrupt controller, a 32-bit GPIO port; and memory and pad generators for Virage, 

Xilinx, UMC, Atmel, Altera, Actel, eASIC and Lattice among others. Some of the said IP 

cores are discussed further in this section. The library can be obtained from the Gaisler 

download page [50].  

 LEON3/FT - High-performance SPARC V8 32-bit Processor 

LEON3 is a 32-bit processor core conforming to the IEEE-1754 (SPARC V8) 

architecture. It is designed for embedded applications, combining high performance (HP) with 

low complexity and low power consumption. The LEON3 core has the following main 

features: a seven-stage pipeline with the Harvard architecture, separate instruction and data 

caches, an MMU, a hardware multiplier and divider, on-chip debug support, and multi-

processor extensions. The LEON3 core block diagram is depicted in Figure 9 [42, p. 1177]. 

 Integer Unit 

The integer unit includes a signed or an unsigned 32x32 multiplier module (MUL32), 

and a signed or an unsigned 64/32 divider module (DIV32), and it supports the collection of 

HP multipliers from the Arithmetic Module Generator at the Norwegian University of Science 

and Technology (MULTLIB).  
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 The MUL32 

The multiplier module takes two 32-bit signed or unsigned numbers and produces a 

64-bit result. The MUL32’s performance and latency is dependent on its configuration, which 

has many varieties. The module can be easily configured to perform DSP functions, with 

MAC operations.   

 The DIV32 

The divider module utilizes the radix-2, non-restoring, iterative division algorithm to 

perform 64-bit by 32-bit division. The division leaves no remainder and takes 36 clock cycles.  

 High-Performance IEEE-754 Floating-point Unit 

The GRLIB includes HP floating unit (GRFPU), which implements floating-point 

operations as defined in the IEEE Standard for Binary Floating-Point Arithmetic (IEEE-754) 

and the SPARC V8 standard (IEEE-1754). The GRFPU supports single- and double-precision 

floating-point formats, and it can be configured to utilize a non-blocking unit for the 

execution of divide and square-root operations.   

 

Figure 9: Block diagram of LEON3 
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 The IEE-754 Floating-Point Lite Unit 

The GRFPU-Lite FPU implements the same operation standards as the GRFPU. The 

key differences between the units are that GRFPU-Lite is not pipelined, and executes one 

floating-point operation at a time. This results in the GRFPU-Lite utilizing fewer resources at 

the cost of performance.  

 Cache Sub-system 

LEON3 has a configurable cache system consisting of separate instruction and data 

caches. Both caches can be configured with one to four sets, 1-256 KiB/way, and 16 or 32 

bytes per line. The cache system can be also configured to utilize least-recently-used (LRU), 

least-recently-replaced (LRR), or pseudo random replacement policies.  

 Memory Management Unit 

A SPARC V8 reference MMU (SRMMU) provides mapping between multiple 32-bit 

virtual address spaces and physical memory. The MMU can be configured to up to 64 fully 

associative translation lookaside buffer (TLB) entries per implemented TLB. 

 Interrupt Interface 

LEON3 supports the SPARC V8 interrupt model with a total of 15 asynchronous 

interrupts. The interrupt interface provides the functionality to both generate and acknowledge 

interrupts. 

 Advanced Microcontroller Bus Architecture 

An AMBA is a bus architecture standard devised by ARMs. Three key points of this 

standard are technology independence, electrical characteristics, and timing specifications. 

The GRLIB includes two cores with AMBA standards, an advanced HP bus (AHB) and AHP. 
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 Advanced High-Performance Bus 

An AHB is an HP SoC bus that can connect a maximum of 16 masters and 16 slaves. 

It has a plug-and-play (P&P) functionality and is provided with an interrupt controller. The 

LEON3 processor uses one AHB master interface for all data, instruction and MMU table-

walk accesses.   

 Advanced Peripheral Bus  

An advanced peripheral bus (APB) is a peripheral bus designed for low bandwidth 

control accesses, such as register interfaces and on system peripherals. An AHP is the main 

peripheral bus system of the GRLIB, and it is connected through the AHB.  

 The AHB and APB Interfaces, Bridges and Controllers 

The GRLIB includes many IP cores with AHB and APB interfaces as well as bridges, 

which increase the accessibility to other types of components. Some of the more notable 

bridges are AHB to AXI, I2C to AHB, SPI to AHB, PCI to AHB, Uni, and bi-directional 

AHB/AHB bridges. 

Some of the AHB and APB interfaces are the JTAG debug link with an AHB master 

interface, the single-port RAM/ROM with an AHB interface, the AMBA AHB serial debug 

interface, the APB UART serial interface, the on-chip SRAM with an EDAC and AHB 

interface.  

The main AHB controller is an AHB controller with P&P support. 
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 General-purpose I/O Port 

The GP I/O port (GRGPIO) is an I/O port that is scalable from a 2- to a 32-bit width 

with an optional interrupt support. Each bit in the GRGPIO can be individually set to input or 

output and can optionally generate an interrupt. 

 The GRLIB Directory Structure 

The main GRLIB directory includes five subdirectories: 

• The Bin directory contains all the files that are required for handling of the GRLIB. 
Graphical user interface for configuration and synthesis (xconfig) files are found in 
this directory.  

• The Boards directory contains folders with timing constraints, pin definitions and 
placing for most of the common FPGA boards in the market.  

• The Design directory contains folders with template designs of LEON3 for different 
FPGA boards. All the template designs include finished scripts for the synthesis, 
simulations and FPGA board programming. Scripts are available as single files or 
compiled through a Make function. The tailored LEON3 is configured according to 
FPGA constraints, and it is explained in a detailed README.txt for all the FPGA 
boards.  

• The Doc directory contains documentation such as the GRLIB IP Library User’s 
Manual, the GRLIB IP Core User’s Manual, the Configuration and Development 
Guide, and the SPARC V8 manual. 

Figure 10: A typical LEON/GRLIB design centered around one AMBA AHB bus and a AMBA APB bus that 
connects some peripherals cores via an AHB/APB bridge 
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• The Lib directory is the core of the GRLIB. It contains behavioral VHDL descriptions 
for all the IP cores. Subdirectories are mainly divided into vendors and standards. The 
tech and techmap subdirectories contain all the necessary packages and hardware 
descriptions to ensure technology independence.  

• The Software directory contains a few sample programs in C for LEON3 testing, 
GPIO interaction, and APB UART control.  

• The additional Netlist directory needs to be downloaded and installed for LEON3 
implementations on different FPGA boards.   

4.2 LEON3 Tools 
Cobham Gaisler provides several tools and utilities for LEON3 development, 

debugging, testing and simulation. Tools are also available from other vendors; they are 

important for monitoring, and simulation of LEON3. 

 Cobham Gaisler Monitor 

Cobham Gaisler provides two debug monitors (GRMON2 and GRMON3) for 

LEON3. GRMON provides a debug environment for real target hardware, and it is used with 

a LEON3 debug support unit (DSU). This DSU supports connection and communication 

through numerous interfaces by control through any AMBA AHB master.  

 GRMON2 

GRMON2 is a console-based debug monitor and provides (but is not limited to) the following 

basic features: 

• Read/write access to all LEON registers and memory 

• Download and execution of LEON applications 

• Breakpoint and watchpoint management 

• Remote connection to the GNU debugger (GDB) 

• GRLIB P&P support 

• Supported debug interfaces: PCI, USB, Ethernet, JTAG, UART, and SpaceWire 

• Tcl interactive interpreter support 
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• Common Flash interface (CFI) compatible Flash PROM programming 
 

• Auto-probing and initialization of LEON peripherals and memory settings 

 GRMON 3 

GRMON3 is a newer version of GRMON with new graphical user interface. Some of the 

newer features are as follow: 

• Execution control with support for multiple CPUs and OS threads 

• Context-based virtual memory handling 

• Basic execution control such as single-stepping, continuing, and breaking 

• An GRLIB SoC system hardware overview 

• An optimized SPARC/LEON IU register view 

• Memory, CPU register, and I/O register inspection and edit views 

• Tcl terminal views with history and tab-completion, among the other things 

• Application terminals via UART forwarding 

 LEON C/C++ IDE for Eclipse 

Aeroflex Gaisler provides a plugin for the Eclipse framework, which allows the 

Eclipse C/C++ development tooling (CDT) to be used for the development of LEON 

applications. Debugging through the GDB is available; however, it has limited performance. 

The simulation tool TSIM is available with this plugin.  

 The TSIM 

The TSIM is Cobham Gaislers HP behavioral LEON3 simulator. It emulates an 

instruction-based, single-processor computer system based on LEON3.  Additional custom 

I/O functions can be added through loadable modules.  

 LEON Bare-C Cross Compilation System 

The Bare-C Cross Compilation system (BCC) allows for cross compilation of C and 

C++ applications for LEON3, and it is provided with the following components: 
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• The GNU GCC 7.2.0 C11, C++11 cross-compiler for LEON 

• The LLVM (Clang) 4.0.0 C11, C++11 cross-compiler for LEON/LEON-REX 

• GNU Binutils (assembler, linker ...) 

• The Newlib embedded C library 

• The Bare-C run-time library for LEON applications 

• The GRLIB peripheral driver library 

 Other Types of Compilers and Toolchains 

Cobham Gaisler provides a multitude of other compilers and toolchain support for the 

following: 

• The RTEMS Cross-compiler system (RCC) 

• The VxWorks 7 SPARC architectural port and BSP 

• The VxWorks 6.9 SPARC architectural port and BSP 

• Linux for LEON 

• The ThreadX SPARC port 

 Xconfig 

The Xconfig GUI supports configuration editing, synthesis, implementation and 

programming of LEON3. Furthermore, it provides options for minimal, GP and HP LEON3 

configurations. Custom configurations are also available for almost all of the LEON3 parts. 

 Online Support 

Only the purchased commercial license provides customer support. However, Cobham 

Gaisler has a LEON3 Yahoo group [37] with active users, where most questions are answered 

by LEON3 developers. This group has 2,546 members and well over 25,000 messages, the 

first of which dates back to 1999 with LEON1 as a topic. While the Yahoo group may not be 

the optimal communication service, all archived topics can offer answers to the most common 

problems with LEON3. The standard time for receiving a reply is one to three work days.  

https://www.gaisler.com/index.php/products/operating-systems/vxworks-7
https://www.gaisler.com/index.php/products/operating-systems/vxworks-6-9
https://www.gaisler.com/index.php/products/operating-systems/linux?task=view&id=63
https://www.gaisler.com/index.php/products/operating-systems/threadx
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 Implementation 
This chapter covers the hardware and software used in this study to implement a 

LEON3 softcore processor on an FPGA. The LEON3 implementation section explains the 

processes and tools utilized in the implementation of LEON3 on a Zedboard.  

5.1 Hardware  
A personal laptop and an FPGA board were used for all the implementations and testing of 

LEON3.  

 ZedBoard  

A Digilent ZedBoard Zynq-7000 ARM/FPGA SoC[51] development board was 

provided by the robotics department as the main FPGA for LEON3 implementation and 

testing. The main ZedBoard features are as follows: 

• Xilinx Zynq-7000 AP SoC XC7Z020-CLG484 

• Dual-core ARM Cortex™-A9  

• 512 MB DDR3  

• 256 MB Quad-SPI Flash  

• On-board USB-JTAG Programming 

• 10/100/1000 Ethernet  

• USB OTG 2.0 and USB-UART  

The XC7Z020 SoC contains Atrix-7 PL, which has the following: 

• 85,000 logic cells 

• 53,000 (LUTs) 

• 106,000 flip-flops 
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 Computer  

A personal laptop was used for the implementation and testing of LEON3. The 

hardware specifications are as follows:  

• Intel Core i7-4710HQ 2.5GHz 

• 12-GB DDR3L RAM  

• 500-GB SSD 

It should be noted that the setup was tested with 8-GB of RAM and it had trouble 

compiling multiple configurations at the same time. The right amount of RAM for extensive 

research and testing proved to be 12-GB. Furthermore, a USB 2.0 cable was used to connect 

the FPGA test board with the laptop. 

5.2 Software  
The configuration, implementation and testing of LEON3 required a number of 

programs and software. The largest challenge was to make the whole setup work on the 

Windows 8 operating system.  

 Vivado Design Suite 2013.4 

The Vivado 2013.4 WebPACK (VDS13) [52] version was used because of the 

LEON3 design for ZedBoard provided by Cobham Gaisler. As mentioned previously, the 

GRLIB contains finished designs for different FPGA boards. LEON3 for ZedBoard was 

designed with VDS13; therefore, the easiest way to synthesize, implement, and program 

LEON3 for ZedBoard was by utilizing VDS13. However, VDS13 does not support GUI in 

Windows 8. A way around this was to run Vivado in Windows the 7 mode by adding the 

following lines in the Xilinx\Vivado\2013.4\bin\vivado.bat file: 

  41: set RDI_PATASK=yes 
  42: set __COMPAT_LAYER=WIN7RTM 
  43: call "%RDI_BINROOT%/loader.bat" -exec %RDI_PROG% %* 
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An additional shortcut needed to be created for vidado.exe with the following code: 

   Target: = “C:/Xilinx/Vivado/2013.4/bin/unwrapped/win32.0/vggl.exe 

C:/Xilinx/Vivado/2013.4/./bin/vivado.bat” and 

Start in = “%APPDATA%/Xilinx/Vivado” options.  

 Xilinx Microprocessor Debugger 2013.4 

The Xilinx µP debugger is required to program a LEON3 bitstream to the ZedBoard. 

 Cygwin  

Cygwin [53] is a POSIX-compatible environment that runs natively on Windows. 

Such an environment was needed to compile and run scripts for the implementation and 

programming of LEON3. Additional packages for Cygwin are required to be able to run some 

of the scripts, most notably the Tcl and Tk packages.  

 Cygwin-X 

To run the xconfig GUI, an XWIN server is required in addition to Cygwin. Exporting 

of the display is done by adding “EXPORT DISPLAY=:0.0” to the Cygwin .bashrc file. 

 GR Tools  

GR tools compromises a full set of cross-compilers, simulators, IDE, CTD, and 

environments for LEON3. In this setup only, a few selected tools were installed. These 

include Eclipse Kepler, CTD, LEON3 IDE, TSIM2, GRMON2, Sparc BareC, and BCC. 

5.3 LEON3 Implementation on ZedBoard 
To implement LEON3 on a ZedBoard, a design found in the GRLIB was used. The 

given design of LEON3 utilizes DDR3 memory attached to the Cortex-A9 processor system 

(PS) as the LEON3 memory and is accessed through a custom AHB-AXI bridge 

(ahb2xi.vhd). The top 256 Mbytes of the DDR3 are mapped to an AHB address space at 

0x40000000 - 0x50000000 using an AHB/AXI bridge and the S_AXI_GP0 interface on the 
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PS. The LEON3 system is clocked at 83.33 MHz, using FCLK_CLK0 from the PS; other 

frequencies can be used by reconfiguring the PS in Vivado or using GRMON. 

 Synthesis 

To begin the synthesis with VDS13, one would need to start Vivado and source the 

leon3mp_vivaldo.tcl file. This is done by running the "vivado-launch" target of the main 

projects Makefile: 

c/grlib-gpl-2018.3-b4226/designs/leon3-digilent-xc7z020 

$ make vivado-launch 

If the VDS13 GUI is not required, then “make vivado” will start VDS13 without a 

GUI.  To ensure that the synthesis will work some files needs to be edited. On the first time 

launch VDS13 will yield an error about specified parts that could not be found; this is fixed 

by editing the following lines in C:\grlib-gpl-2018.3-b4226\designs\leon3-digilent-

xc7z020\vivado\leon3mp_vivado.tcl. Red lines represent deleted lines, and green lines 

represent added lines on the corresponding line number on the right. 

381 
 
- add_files -fileset  prom.srec ram.srec 

 
371 + read_vhdl -library work config.vhd 

 
372 + read_vhdl -library work ahbrom.vhd 

 
373 + read_vhdl -library work leon3mp.vhd 

 
734 + read_vhdl -library work leon3_zedboard_stub_sim.vhd 

 
375 + set_property used_in_synthesis false [get_files 

leon3_zedboard_stub_sim.vhd] 

 
376 + read_vhdl -library work testbench.vhd 

 
377 + set_property used_in_synthesis false [get_files testbench.vhd] 

 
378 + add_files -fileset sim_1 prom.srec ram.srec 

382 379   # Read board specific constraints 

3 
 
- create_project  ./vivado/ -part  -force 

4 
 
- create_fileset -simset  

5 
 
- set_property top  [get_filesets ] 

 
3 + create_project leon3-zedboard-xc7z020 ./vivado/leon3-zedboard-xc7z020 -part 
XC7Z020CLG484-1 -force 

 
4 + set_property top testbench [get_filesets sim_1] 

6 5   set_property target_language verilog [current_project] 
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380 + read_xdc leon3mp.xdc 

 
381 + set_property used_in_synthesis true [get_files leon3mp.xdc] 

 
382 + set_property used_in_implementation true [get_files leon3mp.xdc] 

 
383 + source stub.tcl 

383 384   # Board, part and design properties 

384 
 
- set_property target_simulator  [current_project] 

 
385 + set_property target_simulator ModelSim [current_project] 

385 386   set_property top_lib work [current_fileset] 

386 387   set_property top_arch rtl [current_fileset] 

387 388   set_property top leon3mp [current_fileset] 

 
389 + set_property board em.avnet.com:zynq:zed:c [current_project] 

 
390 + import_files ../../netlists/xilinx/Zynq 

 

The C:\grlib-gpl-2018.3-b4226\designs\leon3-digilent-

xc7z020\vivado\leon3mp_vivado_run.tcl file needs to be edited in the following way: 

1 1   synth_design -directive runtimeoptimized -resource_sharing off -
keep_equivalent_registers -no_lc -rtl -name rtl_1 

2 
 
- set_property flow {} [get_runs synth_1] 

3 
 
- set_property strategy {} [get_runs synth_1] 

 
2 + set_property flow {Vivado Synthesis 2012} [get_runs synth_1] 

 
3 + set_property strategy {Vivado Synthesis Defaults} [get_runs synth_1] 

4 4   launch_runs synth_1 

5 5   wait_on_run -timeout 360 synth_1 

6 6   get_ips 

7 7   # Launch place and route 

8 
 
- set_property strategy {} [get_runs impl_1] 

 
8 + set_property strategy {Vivado Implementation Defaults} [get_runs impl_1] 

9 9   set_property steps.write_bitstream.args.mask_file true [get_runs impl_1] 

10 10   set_msg_config -suppress -id {Drc 23-20} 

11 11   launch_runs impl_1 -to_step write_bitstream 

12 12   wait_on_run -timeout 360 impl_1 

 

The rest of synthesis, implementation and bitstream generating should run normally 

after this.  
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 Zedboard Programming 

During the programming of a ZedBoard it is recommended to perform make target 

‘program-zedboard’ so that XMD is used to program the Bitstream.  

 Debugging with GRMON 

Connecting to the implemented LEON3 on a ZedBoard is done by using the “grmon -

digilent -u” command. If a different system frequency is desired for debugging, then it can be 

selected with the “-freq” flag in MHz. Furthermore, system information and implemented IP 

cores can be shown with the “sys info” command, and a program compiled with BCC can be 

uploaded to LEON3 memory with the “load” command.  Finally, the execution of the 

uploaded program is performed with the “run” command.  
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 LEON3 Testing 
This chapter covers necessary the background for the chosen use case test for LEON3. 

In this case, the chosen test was to determine whether LEON3 can run a science routine from 

the 4DSpace project. The test’s setup and processes are explained in depth. Moreover, 

different LEON3 configurations are implemented, and their performance is tested with the 

chosen use case tests. The resource utilization for each configuration is then displayed and 

explained. Finally, power consumption and future predictions for each configuration are 

described.  

6.1 The 4D Module 
Students at the UiO are participating in the G-Chaser project as part of the 4DSpace 

project, where a 4D module is installed on an ICI rocket called G-Chaser. The 4D module can 

be divided into the main-module and the sub-payloads. The main module contains sub-

payloads and electronics used to communicate with those sub-payloads. The sub-payloads are 

divided into radio electronics and measurement electronics. The sub-payloads are divided into 

the radio electronics and the measurement electronics. The m-NLP hardware and software 

design are designed by ”Elektronikklabben” (ELAB) at the Physics department, University of 

Oslo, while the radio electronics is designed by Andøya Space Center. The measurement 

electronics and software are the focus of this chapter, as they are most relevant to the testing 

of LEON3.  

6.2 The m-NLP System 
The in-situ measurements in the sub-payloads are done by the m-NLP system. This 

system can be divided into two main parts: the processing unit and the four antennae or 

Langmuir probes. The processing unit is described in more detail below, as the aim of this 

chapter is to analyze and compare the performance between the present utilized hard 

processor and LEON3.  
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 The Microcontroller Unit 

The MCU used for the m-NLP system is a Texas Instruments microcontroller. It uses 

an ARM Cortex-R4F CPU. The MCU also utilizes multiple communication protocols (SPI, 

SCI/UART, and I2C) and has DMA modules.  

 The ARM Cortex-R4F 

The CPU[54] used in the MCU implements an ARMv7-R architecture profile, which 

includes SIMD architecture for integer and floating-point vector operations, as well as Vector 

Floating-Point version3 (VFPv3) for floating-point computation that is fully compliant with 

the IEEE 754 standard. This Cortex-R4F processor complies with the AMBA3 protocol and 

has an AXI interface. In addition the CPU uses a Harvard L1 memory system with memory 

protection unit (MPU) and error checking and correction (EEC) on all RAM blocks. It can run 

at 160 MHz.  

 The Science Routine 

The science routine code was produced by the physics department to calculate electron 

density, platform potential and the correlation coefficient. The science code takes five 

parameters: The first one is the masking integer, where a three-bit binary number defines 

which plasma parameters to calculate and the last four parameters are the 16-bit raw values 

collected from probes by analog-to-digital converter (ADC).  

The science code calculates electron density by using collected current and potential 

from two probes, and it is expressed by: 

𝑛𝑛𝑒𝑒 = �𝐾𝐾
∆𝐼𝐼𝑐𝑐2

∆𝑉𝑉
 

where K is the constant:  

𝐾𝐾 =
𝑚𝑚𝑒𝑒

2𝑞𝑞(𝑞𝑞2𝑟𝑟𝑟𝑟)2
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where me is the mass of the electron, q is elementary charge, r is radius of the probe, and l is 

length of the probe.  When  ∆𝐼𝐼𝑐𝑐
2

∆𝑉𝑉
 is known, the second function in the science code can 

calculate plasma potential can as follows: 

𝑉𝑉𝑝𝑝 =
𝑎𝑎
𝑏𝑏

+ 𝑉𝑉𝑒𝑒 

where a and b are the coefficients for   ∆𝐼𝐼𝑐𝑐
2

∆𝑉𝑉
 in the form of 𝑎𝑎𝑎𝑎 + 𝑏𝑏, and 𝑉𝑉𝑒𝑒 is a correction factor 

that is dependent on the electron density [55]. 

The relation  ∆𝐼𝐼𝑐𝑐
2

∆𝑉𝑉
  unfortunately does not provide an error margin; for that, three or 

more probes are used to provide a goodness of fit of the fitted line. The last function in the 

science code uses the linear regression least square method to find the coefficient of 

determination. A coefficient of determination is a percentage for goodness of fit, where it 

describes how well the fitted line describes the observed results [56, 57]. 

In his master thesis, Eirik Nobuki Kosaka [55], calculated the average time of the 

science routine on the 4D module, and his results are listed in  

Table 7. The measurements were based on the average time of 100,000 electron 

density calculations, and the input values were fixed to keep the code as isolated as possible, 

to be able to measure the routine itself. These measured times are used as a basis for LEON3 

testing in the remaining sections.   

It should be noted that Kosaka found that no FPU at a 100 MHz result time was more 

than 20 times over the minimum required time for calculations in the m-NLP system to 

achieve in-flight calculations. He also mentioned that measurements taken by Bjørn Lybekk, 

demonstrated that it was not possible to execute the science routine in the required time 

without an FPU and that numbers shown in his thesis cannot be blindly used for any system. 

Considering these two factors, the implementation of LEON3 is tailored to meet the time 

results presented in  

Table 7, even if there is sufficient leeway for slower plasma parameter calculation 

times.  
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100 MHz 160 MHz 

FPU No FPU FPU No FPU 

0.5690 s 4.0300 s 0.4225 s 3.1369 s 

   

Table 7: Average measured time of the science routine on the 4D module. 

6.3 Test Setup 
Since LEON3 is a rather capable processor, there was no doubt it would perform as 

well as or better than Cortex RF4 at the cost of resource utilization. Therefore, the main goal 

of this test was to find a minimum LEON3 configuration to match the science routine time 

measured on Cortex RF4. This was done in stages, starting with the bear minimum LEON3 

configuration.   

 Science Code 

The science routine code provided by the physics department required some changes 

for it to be able to run on LEON3. These changes primarily consisted of necessary library 

adaptation for the BCC compiler. All the code compilations are done with the highest 

optimization flag “-O3”, to keep it in line with real-world applications. The code utilizes 

double-precision floating-point variables for most of the calculations. This affects the 

performance of the code if the CPU has no FPU enabled, since the compiler emulates the 

floating-point by translating it to integer arithmetic.  

To perform an average time of electron density calculation on LEON3, a for-loop was 

used to call the science routine function with a 0x1 masking integer 100,000 times to calculate 

electron density. The clock(); function from the “time.h” library was used before and after the 

loop to obtain the system time from LEON3 timers and to calculate the time used by the for-

loop. This setup was tested both with the TSIM and on a ZedBoard, and the results were 

consistent. All of the tests explained below were uploaded to LEON3 on the ZedBoard 

through GRMON, and they were run 10 times on a 100 MHz and 160 MHz system frequency 

to obtain the average time.  
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 Xconfig Configurations 

As concluded at the beginning of section 6.3, the science code was tested on different 

LEON3 configurations starting with the bare minimum until it meets the time of Cortex RF4. 

All the configurations were edited with the Xconfig tool, which tools has finished three 

templates for LEON3, minimum, GP and HP. These templates can be used as a starting point 

for LEON3 customization, where it is possible to add or remove different IPs from the 

existing templates. To make a custom template, one should select one of the three preexisting 

templates, save and exit, open the Xconfig tool again and select “custom template”, save it 

and exit again, reopen Xconfig tool, and then configure the desired LEON3 configuration.  

Otherwise Xconfig might not allow the selection of new values.  

 

Figure 11: LEON3 custom configuration setup with Xconfig 

6.4 LEON3 Configurations 
In this section, five different LEON3 configurations that were tested with the science 

code on the ZedBoard are presented and explained. All the configurations utilize the same 

setup for DDR memory, attached to a Cortex A9 processor as explained in section 5.3. The 

first two test times are compared to the Cortex-R4 processor without the FPU times, while the 



42 

last three tests are compared to the Cortex R4F processor with an FPU.  LEON3 system 

configurations will contain some of the IP cores displayed in Table 8 [42]. 

Core Description 

CLKGEN Clock generator 

RSTGEN Reset generator generating a glitch-free on-chip system reset signal. 

AHBCTRL AHB arbiter/controller 

APBCTRL 
AHB/APB bridge/controller, which must be included in order to 
interface peripheral cores such as an interrupt controller and a timer 
unit. 

LEON3/4 LEON3/4 processor 

IRQMP Interrupt controller 

GPTIMER General-purpose timer unit 

MEMCTR
L 

Memory controller providing access to (P)ROM and RAM the 
GRLIB IP Library contains several memory controllers; it is also 
possible to include on-chip ROM and RAM by using the AHBROM 
and AHBRAM IP cores. 

DSU3/4 LEON debug support Unit 

AHBJTAG/ 
AHBUART
/ USBDCL/ 
GRETH 

Debug communication link. AHBJTAG provides an external JTAG 
link; other examples include AHBUART (serial UART), USBDCL 
(USB), and GRETH (the Ethernet debug communication link is 
available as part of the Ethernet MAC core). 

APBUART 8-bit UART 

GRGPIO General-purpose I/O port 

GRFPU High-performance IEEE-754 floating-point unit 

GRFPU 
Lite IEEE-754 floating-point unit 

Table 8: LEON3 system IP cores 

 Minimum Configuration (MC) 

The minimum configuration (MC) provided by Gaisler includes the following: eight 

SPARC register windows in the integer unit; one-cycle load delay; instruction cache 1 * 2 kB, 
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16 B/line; and data cache 1 * 2 kB, 16 B/line. All the IP cores from Table 8, except for 

GRFPU and GRFPU-Lite, are included in this configuration. Since no FPU core is included, 

the science code was compiled with soft-float emulation where the soft-float libraries break 

up floating-operations into operations that can be used in the integer unit.  

Clock Frequency LEON3 Cortex R4F Ratio 
100 MHz 33.1314 s 4.0300 s 0.12 
160 MHz 21.5645 s 3.1369 s 0.14 

Table 9: LEON3 minimal configuration times 

 Minimum Configuration with V8 SPARC Instructions (MCV8) 

Since the MC was demonstrated to be too slow, the next step was to attempt to 

enhance the integer unit with SPARC V8 multiply and divide instructions. These instructions, 

in a code containing frequent integer multiplications and divisions, can increase performance 

significantly. An emulated floating-point would also benefit from these instructions. The 

other way in which to enhance an integer unit is to increase or decrease the pipelined 

multiplier. Three possible configurations for that are listed in Table 10: 

  Type         Implementation               issue-rate/latency 
  2-clocks     32x32 pipelined multiplier      1/2 
  4-clocks          16x16 standard multiplier 4/4 
  5-clocks          16x16 pipelined multiplier 4/5 

Table 10: Configurations for multiplier 

These options include one 32x32 pipelined multiplier, a standard 16x16 multiplier, 

and a 16x16 pipelined multiplier. Latency in Table 10 represents the time required to finish 

the instruction, while issue-rate represents the maximum number of instructions that can be 

issued in each cycle. The 2-clocks and 5-clocks multipliers were tested. The code was 

compiled with a -V8 flag to enable SPARC V8 multiply and divide instructions. The overall 

performance increase was approximately 21.15%; however it was not enough to meet the 

Cortex-R4 performance. 

Clock Frequency LEON3 Cortex-R4F Ratio 
100 MHz 26.1225 s 4.0300 s 0.15 
160 MHz 16.3265 s 3.1369 s 0.19 

Table 11: LEON3 minimum configuration with V8 instructions 2-clock multiplier times 
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Clock Frequency LEON3 Cortex-R4F Ratio 
100 MHz 26.0252 s 4.0300 s 0.15 
160 MHz 16.3937 s 3.1369 s 0.19 

Table 12: LEON3 minimum configuration with V8 instructions 5-clock multiplier times 

 Minimum Configuration with GRFPU-Lite (MCGL) 

Since the enhanced integer unit was not sufficient, the next step was to try minimal 

configuration with the lite version of the GLRIB FPU. For this configuration, the integer unit 

settings were reset to the normal MC settings. For the GRFPU-Lite the non-blocking 

controller was chosen to increase its performance by 20% by allowing controllers’ floating-

point load and store instructions to be executed in parallel with floating-point instructions. 

While, this naturally increases the resource required, it is said to be the best option for ASIC 

implementations. The times presented below are compared to Cortex-R4F with an FPU 

enabled.  

Clock Frequency LEON3 Cortex-R4F Ratio 
100 MHz 0.8738 s 0.5690 s 0.65 
160 MHz 0.4106 s 0.4225 s 1.02 

Table 13: Minimum configuration with GRFPU-Lite times 

The increase in performance was 97% at 100 MHz, while at 160 MHz, the increase in 

performance was even higher at 98%. This increase in performance almost meets the Cortex- 

R4F’s times at 100 MHz and surpasses it at a 160 MHz frequency.  

 Minimum Configuration with GRFPU-Lite and SPARC V8 
(MCV8GL) 

The next step was to try to increase the GRPFPU-Lite performance with the enhanced 

integer unit, as explained in subsection 6.4.2. The 5-clock multiplier was utilized in this 

configuration.  

Clock Frequency LEON3 Cortex-R4F Ratio 
100 MHz 0.7622 s 0.5690 s 0.76 
160 MHz 0.4083 s 0.4225 s 1.03 

Table 14: Minimum configuration with GRFPU-Lite and SPARC V8 times 
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The enhanced integer unit did not seem to increase performance much, only by a 

fraction. Furthermore, the 100MHz configuration still did not meet the Cortex R4F time but 

was within acceptable range.  

 Minimum Configuration with GRFPU (MCG) 

As the GFRPU-Lite with V8 instructions did not meet the 100MHz requirements, an 

HP FPU, namely GRFPU, was added to the minimal configuration.  

Clock Frequency LEON3 Cortex-R4F Ratio 
100 MHz 0.4233 s 0.5690 s 1.34 
160 MHz 0.2645 s 0.4225 s 1.59 

Table 15: Minimum configuration with GRFPU times 

The full GRFPU increased the performance by 99% for the 100-MHz frequency and 

by 98% for the 160-MHz frequency. This configuration surpassed the time of Cortex R4F, 

demonstrating that the LEON3 GRFPU is more than capable of executing floating-point 

tasks. 

 LEON3 Performance Summary 

This user case test for LEON3 presented interesting challenges and produced alluring 

results. As mentioned in subsection 3.7.2, LEON3 does not have the best integer performance 

compared to the other softcore processors; however, it outperforms them in floating-point 

performance. This is also seen in the result produced by this test. The MC LEON3 was more 

than eight-times slower than the Cortex-R4, but it outperformed the Cortex R4F 1.4-times 

with the GRFPU enabled. Since Cortex-R4(F) is a hard processor, the fact that LEON3 on an 

FPGA managed to meet half of the time requirements is quite impressive.  

6.5 Resource Utilization  
In this section, all the configurations described in section 6.4 will be compared and 

explained in terms of resource utilization on the ZedBoard. To conduct a more realistic 

resource analysis, the configurations were reconfigured to exclude APBUART and DSU3/4, 

as the main purpose of those two IP cores is debugging support. Two main graphs for each 

configuration are displayed. The first one is for the total resource utilization of slice LUTs, 
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register LUTs, and memory and clock components in the ZedBoard. This graph is mainly for 

displaying different size of LEON3 for the different configurations.  

The second graph is of the FPGA primitives in LEON3 implementations. This 

information can provide an insight into size of a potential ASIC implementation of LEON3. 

The 7-series Xilinx FPGAs use a configurable logic block (CLB) as the main logic 

resource that consists of two slices. Each slice is composed of four six-input function 

generators or look-up tables (LUT6) and eight storage elements. The function generators are 

implemented as LUTs with six independent inputs and two independent outputs. Each LUT6 

can optionally be divided into two five-input LUT5s. Any function that uses less than five 

input is implemented with the LUT5s and unused inputs. This is necessary to understand 

when studying the primitives’ graph. The primitives, such as LUT4, LUT3, LUT2, and LUT1, 

are implemented with LUT6 and LUT5 primitives in the ZedBoard. On other technologies, 

such as ASICs, these LUTs can be achieved with fewer resources and a smaller die size. 

Some of the other types of primitives included in the graph are explained in the paragraph 

below.  

First, the FDRE primitive is a D flip-flop with clock enable and a synchronous reset. 

Second, the BIBUF primitive is a simple bi-directional buffer with a high impedance 

capability. Third, the MUXF7 primitive is a two-to-one LUT multiplexer with general output; 

MUXF7 are mostly used in combination with double LUT6s to make a seven-input function 

generator.  

 Minimum Configuration Resource Utilization 

The MC of LEON3 is the same as that explained in subsection 6.4.1 without the 

UART and DSU3/4 IP cores. The resource utilization of this implementation seems to be in 

accordance with the expected result from previous research of LEON3 implementations on 

different FPGA boards. The LEON3 processor IP core utilizes 7% of the total SLICE LUTs 

on the Zedboard; the rest of the 2% slice LUTs are all of the APB/AHB bridges and 

peripherals, timers, interrupt controller and GPIOs.  
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Figure 12: MC resource utilization 

 

Figure 13: Primitive resource utilization in MC 

 Resource Utilization for MCV8 

This configuration corresponds to the configuration tested in subsection 6.4.3. A slight 

increase in the resource utilization is noticeable. The LEON3 core utilized 10% of the total 

slice LUTs, 8% of which was utilized by the LEON3 IP core. The utilization increased by 1% 

from the previous configuration, where the MUL/DIV IP cores added approximately 0.5% of 

the slice LUTs.  

4762
2043 6 1

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Slice LUTs Slice Registers Memory Clocking

Re
so

ur
ce

 u
tli

za
tio

n 
in

 %

Resource Utilization

Utilization% Available%

2784

1985

1009

698

597

386

130

105

64

45

LUT6

FDRE

LUT5

LUT4

LUT3

LUT2

BIBUF

MUXF7

CARRY4

LUT1

Pr
im

iti
ve

s

LUT6 FDRE LUT5 LUT4 LUT3 LUT2 BIBUF MUXF7 CARRY4 LUT1
2784 1985 1009 698 597 386 130 105 64 45



48 

 

Figure 14: Resource utilization for MCV8 

 

Figure 15: Primitives’ resource utilization for MCV8 

 Resource Utilization for MCGL 

The GRPFU-Lite configuration has the same setup as the one mentioned in subsection 

6.4.3. The increase in resource utilization in this configuration is more noticeable than in the 

previous one. The total increase in slice LUTs was about 6%, where the LEON3 core 

contributed 4% of that increase. This 4% stemmed predominantly from the GRFPU-Lite IP 

core. A significant increase was also observed in other types of primitives such as RAMD32, 

where distributed memory was utilized in the GRFPU-Lite.  
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Figure 16: Resource utilization for MCGL 

 

Figure 17: Primitives’ utilization for MCGL 

 Resource Utilization for MCGLV8 

This configuration corresponds to the configuration in subsection 6.4.4. In subsection 

6.5.2, the integer unit was enhanced with SPARC V8 instructions, and the resource utilization 

increased by 1%. In this configuration, it was reasonable to expect the 1% increase in resource 

utilization, and as seen in Figure 18 below, this was precisely what occurred.  This illustrates 

that IP cores have a consistent resource utilization with different configurations.  
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Figure 18: resource utilization for MCGLV8 

 

Figure 19: Primitives’ utilization for MCGLV8 

 Resource Utilization for MCG 

This configuration corresponds to the one described in subsection 6.4.5. The resource 

utilization doubled compared to the GRFPU-Lite configuration. The whole implementation 

used approximately 33% of the total LUTS, 31% of which whole is accounted by the LEON3 

IP core. The actual GRPFU IP core used 24% of the total LUTs resources; this is almost six 

times more than the GRFPU-Lite IP core. There was a drastic increase in the lower input 
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LUT’s primitives and CARRY4 primitives. This would be ideal for ASIC implementations, 

where lower input LUTs can be achieved with smaller die size.  

 

Figure 20: Resource utilization for MCG 

 

Figure 21: Primitives' utilization for MCG 
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 Resource Utilization Summary 

The different resource utilization for configurations seem to be consistent with 

research conducted by others. Figure 8 illustrated that the number of slice LUTs for LEON3 

with an enabled FPU and cache on the FX70T is about 41% or 18,000 LUTs. Furthermore, 

LEON3 with a GRPFU enabled consumes 33% or 17,500 slice LUTs on the ZedBoard;this 

seems to correspond well to the FX70T utilization. The 500 LUT’ difference stems mainly 

from the different CLB technologies, where the ZedBoard is a newer technology that allows 

for less LUT’ utilization. The fact that the resource utilization seems to be consistent on 

different FGPA technologies demonstrates that a LEON3 implementation will be roughly the 

same when deployed on different FPGAs.  

The MC utilized 3.6 times less LUTs than the configuration with GRFPU, while the 

configuration with the GRFPU-Lite consumed only 1.7 times more LUTs than the MC. 

Figure 22 displays a resource utilization summary, and Figure 23 illustrates the primitives’ 

utilization summary for LEON3 configurations. 

 

Figure 22: Resource utilization for LEON3 configurations 
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Figure 23: Primitives’ resource utilization for LEON3 configurations 

6.6 Power Consumption Analysis 
In this section, the power consumption of LEON3 implementations with different 

configurations is analyzed. The purpose of this analysis is primarily to draw an abstract 

perspective of relative changes in LEON3 power consumption with corresponding 

configurations. Since the VDS13 analyzes simulated power consumption with ideal 

parameters on the actual ZedBoard, only the relative changes between the different 

configurations can be considered for future LEON3 ASIC implementations. 

Hussain , Hoffmann , Ahonen,  and Nurmi [58, p. 23] compared the same design on a 

28-nm FPGA and on a 90-nm ASIC, and the dynamic power consumption for the ASIC 

implementation was about one-fourteenth that of an FPGA. In their research, Kuon and Rose 

[59, p. 9] found similar results during a comparison of a 90-nm FPGA and a 90-nm ASIC 

implementation. The dynamic power consumption was 13 to 15 times less on the latter 

implementation than on the former. These results can offer an approximate idea of the amount 

of power LEON3 would consume on a future ASIC implementation.  

Most of the simulated power reported by the VDS13 comes from the Zynq processing 

system (PS7) in the ZedBoard. The logic, signal, and clock power are consumed mostly by 
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the LEON3 core. In this power analysis, commercial grade temperature and typical process 

settings were used. Two cases were measured for each LEON3 configuration: the first one at 

a 100-MHz system frequency and the second at a 160-MHz system frequency. The system 

frequency was changed by adjusting the FCLK_CLK0 in the “grlib\designs\leon3-digilent-

xc7z020\leon3_zedboard_stub.tcl” file and re-implementing LEON3 for each frequency. Two 

graphs for each LEON3 configuration are presented, one representing power consumption for 

the 100-MHz LEON3 and the second for the 160-MHz LEON3.  

 Minimum Configuration Power Consumption 

This configuration corresponds to the same one used in subsection 6.5.1. The power 

on the chip was mainly dynamic, and most of the dynamic power was consumed by the PS7. 

The small remaining percentage was consumed by the logic, clocks, and signals. The total 

LEON3 IP core dynamic power consumption was approximately 0.033 W, and the other 

interfaces, timer, and I/O used less than 0.01 W. With an increase in the frequency, a higher 

power consumption in signals and clocks was expected. The power consumption for LEON3 

at 160 MHz increased by approximately 0.029 W, and most of the increase was in the clocks 

and signal, as expected.  

 

Figure 24: Minimum configuration power consumption at 100 MHz 



55 

 

Figure 25: Minimum configuration power consumption at 160 MHz  

 Power Consumption for MCV8 

The configuration used for this analysis corresponds to the one used in subsection 

6.5.2. The enhanced integer unit increased power consumption slightly, by 0.01 W, where 

30% of the power was consumed by DSP units on the ZedBoard. Furthermore, the LEON3 IP 

core consumed 0.038 W, and the rest of the interfaces consumed the same amount as in the 

previous configuration. At 160 MHz, the LEON3 implementation increased dynamic power 

consumption by 0.035 W; most of the increase was within the signal, clocks, and DSP units.  
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Figure 26: Power consumption for MCV8 at 100 MHz 

 

Figure 27: Power consumption for MCV8 at 160 MHz  

 Power Consumption for MCGL 

This configuration corresponds to the one used in subsection 6.5.3. The added 

GRFPU-Lite core increased dynamic power consumption by 0.04 W. The LEON3 IP core 

used a total of 0.085 W, where the GRFPU-Lite consumed 50% of its power. As expected, the 

largest increase was in the signals and logic. At 160 MHz, this dynamic power further 

increased by 0.07 W, and most of the increase came from signals, logic, and clocks. 
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Figure 28: Power consumption for MCGL at 100 MHz 

 

Figure 29: Power consumption for MCGL at 160 MHz 

 Power Consumption MCGLV8  

The configuration used in this analysis corresponds to the one used in subsection 6.5.4. 

The enhanced integer unit added a mere 0.007 W increase in dynamic power and a small 

increase in power consumption by DSP units. This result is similar to the one analyzed in 

subsection 6.6.2. The LEON3 implementation at 160 MHz consumed an added 0.063 W in 

dynamic power.  
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Figure 30: Power consumption for MCGLV8 at 100 MHz 

 

Figure 31: Power consumption for MCGLV8 at 160 MHz 

 Power Consumption for MCG 

The final configuration that was analyzed corresponds to the one used in subsection 

6.5.5. The GRFPU IP core increased the dynamic power consumption by 0.081 W, and the 

clock, logic, and signal power consumptions almost doubled compared to the MCGLV8 

configuration. With the FPU, LEON3 consumed 0.173 W, of which 0.136 W was used for the 

GRFPU. At 160 MHz, the LEON3 IP core consumed 0.291 W of dynamic power.  
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Figure 32: Power consumption for MCG at 100 MHz 

 

Figure 33: Power consumption for MCG at 160 MHz 

 Power Consumption Summary 

This power consumption analysis for LEON3 should be considered only as an insight 

into LEON3s power consumption and not as an exact value representation. More extensive 

testing and simulating must be done to obtain exact values of LEON3 power consumption. 

Nevertheless, rough estimates can be made from the results in this analysis. Figure 34 

displays a summary of the power consumption of LEON3 configurations. 
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Figure 34: Power consumption for LEON3 configurations 

In the MC, the LEON3 IP core together with the rest of its interfaces and bridges 

consumed 0.042 W at 100 MHz and 0.074 W at 160 MHz. The MC with GRFPU-Lite 

increased power consumption by 2.3 times for both frequencies, while the final configuration 

consumed 4.4 times more power than the MC for both frequencies. The increase rate in power 

consumption from 100 MHz to 160 MHz for all of the configurations are approximately 1.7. 

Finally, the linear relationship between frequency and power consumption demonstratets that 

dynamic power dominates the total effect.  

6.7 LEON3 Test Summary 
In this user case test of LEON3, most the of results coincided with those from research 

the mentioned in previous chapters. The integer performance of LEON3 is far worse than the 

Cortex-R4 processor; however, it outperforms the latter processor in floating-point 

performance. The resource utilization of LEON3 seems to be consistent with the numbers 

from other research.  

 For this user case specifically, the LEON3 configuration with a GRFPU is a clear 

winner. The MCGLV8 should also be considered as an option. The latter configuration has 

the best trade-off in performance increase versus resource utilization and power consumption. 

Although the MCGLV8 at 100 MHz did not quite meet the performance requirements with a 
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small modification in the science code and during further testing of configuration 

optimization, the MCGLV8 should be more than capable of meeting the performance 

requirements. Moreover, if the science code were to be rewritten to use an integer instead of a 

floating-point, then the MCV8 could be a promising option for LEON3 configuration.  

In Table 16, a LEON3 test summary of this chapter is displayed. In this table, the 

performance ratio is a ratio of the science routine execution time on Cortex-R4F and to that 

on LEON3. The power consumption column displays the dynamic power consumption of the 

LEON3 core with all of the interfaces and bridges, excluding the PS7 power. Finally, resource 

utilization column summarizes the LUTs used in each of the configurations in this chapter.  

Configuration 
Performance ratio Power consumption in W Resource Utilization 

in LUTs 100 MHz 160 MHz 100 MHz 160 MHz 
MC 0.12 0.14 0.043 0.073 4,762 

MCV8 0.15 0.19 0.054 0.089 5,380 
MCGL 0.63 1.02 0.098 0.165 8,295 

MCGLV8 0.76 1.03 0.104 0.171 8,810 
MCG 1.34 1.59 0.186 0.31 17,500 

Table 16: LEON3 test result summary 
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 LEON3 ASIC Implementation 
In this chapter, challenges for LEON3 ASIC implementation are presented and 

discussed. Predictions and estimates for LEON3 ASIC implementations are also debated. In  

section 8.2, different ASIC technologies and their values are presented, and in the section 

thereafter, area and power estimates for possible LEON3 ASIC implementation will be 

devised. Finally, the probable cost of ASIC LEON3 is discussed.    

7.1 ASIC Implementation 
The implementation of LEON3 on an ASIC will require some work; However, it has 

been done before[60, 61, 62, 63], and it should not be an impossible task. That said, new 

custom technology mapping might need to be written if another ASIC technology such as 

XFAB is chosen to be synthesized and implemented on. The only current technology mapped 

for ASICs in the GRLIB is the Synopsys 32/28nm Generic Library for Teaching (SAED32). 

Some of the standard cell libraries Faraday 180 µm (UMC180) component descriptions can 

be found in the grlib\lib\tech\umc18 folder. In addition, the design template for  SAED32 

ASIC implementation can be found in the GRLIB design subfolder.  

Gaisler has stated [64] that the bare minimum LEON3 processor in a 130-nm ASIC 

implementation will amount to 25,000 Gates, which is equal to 3,000 of Xilinx 7-series LUTs 

[65]. The minimum LEON3 configuration resource utilization in subsection 6.4.1 was 7,000 

slices; this is twice the bare minimum amount, so it is possible to approximate that MC, 

MCGL and MCG configurations will be over 50,000 gates, 70,000 gates and MCG 145,000 

gates respectively in a 130-nm ASIC process.  

7.2 LEON3 ASIC Implementation Estimates 
The estimates of the gate count for the LEON3 configurations were found in the 

previous section. They are used as an indication for all of the ASIC estimates in the sections 

below.  
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 Taiwan Semiconductor Manufacturing Company  

The Taiwan Semiconductor Manufacturing Company (TSMC) is the world’s largest 

dedicated semiconductor foundry [66]. It provides technology processes for everything from 3 

µm to 5 nm. For the use of the LEON3 implementation, 180 nm is considered; however, other 

processes from the TSMC are also discussed. Only a small amount of data on gate density and 

effect for the TSMC’s technology is available online [67]. This data was used as the basis for 

power and area estimates in different TSMC processes. The effect was derived from static 

average leakage and internal dynamic power both per gate and per MHz. The area was 

calculated with the maximum possible gate density for the different processes, so it should be 

considered as a best-case scenario. Neither memory nor I/O was considered in either power or 

area estimates. Unfortunately, no gate density or effect figures for the 180 nm process were 

found; therefor, an educated guess was made that 109 Kgates/mm2 is a probable gate density 

for the 180-nm process. This guess was made based on a thread on Edaboard [68] and is 

purely a speculative number. 

In Figure 35, LEON3 area estimations for all the configurations are displayed in 90-

nm, 130-nm, 150-nm and 180-nm processes from the TSMC. 

 

Figure 35: LEON3 configuration area on TSMC ASIC 
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The Table 17 displays the data used in Figure 36 to present total effect estimates for all 

of the LEON3 configurations in 90-nm, 130-nm, and 150-nm processes from the TSMC. The 

90-nm process had the highest margin in static leakage power and dynamic power 

consumption and was therefore averaged to 30 nW and 9 nW respectively for the sake of 

presentation. The same type of averaging was done for dynamic power and static power 

leakage for the rest of the processes presented in Table 17. The averaging of these values 

causes an unexpected power effect for the 90-nm process; however, it should be noted that the 

best-case power consumption would be lower than that of the other three processes. As 

mentioned previously, the probable effect of the 180-nm process was not found; therefore, 

only the total effect for the three mentioned processes is illustrated.  

 

 

 

 

Table 17: Gate density and effect for TSMC technology 

 

Figure 36: Total Effect for LEON3 configurations on TSMC ASIC 

 

Process Gate Density 
(Kgates/mm2) Leakage (nW)  Internal Power 

(nW/MHz) 
90 nm 448 0.02 - 61.8 1.9 - 16.8 
130 nm 243 0.008 - 12.5 3.3 - 8.5 
150 nm 182 0.058 - 0.51 6.1 - 9.8 
180 nm 109 N/A N/A 
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 United Microelectronics Corporation 

The United Microelectronics Corporation (UMC) [69] is a leading global 

semiconductor foundry that provides advanced IC production for applications spanning every 

major sector of the electronics industry. The UMC has a broad technology process, including 

everything from 450-nm down to 14-nm processes. The gate densities and power effect for 

the UMC’s technology were found online from the 2002 IP Gold catalog [70]. Although the 

catalog is 17 years old, the gate density and power consumption for processes such as 130 nm 

and 180 nm should have remained relatively the same; nevertheless, it should be kept in mind 

that the figures are outdated. Two different Faraday libraries for the 130-nm process were 

compared for effect and area: The first one was High Speed Low-K and the other one was 

Low Leakage (FSG). For the area comparison, the Faraday standard 180-nm process library 

was added.  

Error! Reference source not found. displays the area estimates for the LEON3 ASIC 

implementation in two 130-nm processes and one 180-nm process from the UMC. The UMC 

High Speed Low-K technology has a lower gate density than the FSG and causes a larger 

area. In the case of the 4DSpace module application, High Speed Low-K processes will not be 

necessary; FSG 130-nm and 180-nm processes should thus be considered for the UMC 

foundry.  

 

Figure 37: LEON3 configuration area on a UMC ASIC 
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Figure 38 illustrates the power consumption estimates for the 130-nm UMC processes 

are shown.  The High Speed process has double the effect of the Low-Leakage process, as 

expected.  

 

Figure 38: Total Effect for LEON3 configurations on UMC ASIC 

 X-FAB 

The X-FAB [71] Silicon Foundries comprise a group of semiconductor foundries that 

specialize in the fabrication of analog and mixed-signal integrated circuits for fabless 

semiconductor companies. They provide CMOS processes from 180 nm up to 1 µm. The 

Nanoelectronics Group at IFI has used the X-FAB’s foundries in recent years for multiple 

projects and is well-accustomed to the technology and processes. The most-used technologies 

are the 180-nm process (XH018) [72] with 125 Kgates/mm2  and the 180-nm process 

(XC018) [73] with 115 kGates/mm2. A technology called DARE180X [74] also exists; it is 

based on XH018 for space applications with 59 kGates/mm2. DARE180X could be an option 

for LEON3 ASIC implementation for long duration space missions, where a space-hardened 

design is desired. There are, unfortunately, no power effect numbers found online, so it is left 

to speculation. Figure 39 illustrates area estimates for LEON3 configuration on XFAB ASIC. 
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Figure 39:LEON3 configuration area on a XFAB ASIC 

 Price Estimates for LEON3 ASIC Implementation 

The Nanoelectronics Group at IFI uses services that EUROPRACTICE provides. 

EUROPRACTICE offers affordable access to Multi Project Wafer (MPW) ASIC solutions 

and is a consortium of five renowned European research organizations that support academic 

institutions and medium-sized companies with IC prototyping services and system integration 

solutions [75].  

The price estimates are based on area estimates from previous sections and technology 

processes available through EUROPRACTICE. These technology processes are mainly 

180nm from the UMC and the TSMC, 130 nm from the UMC, and 180 nm from X-FAB. The 

prices [76] are based on block size designs, since even the largest LEON3 ASIC 

implementation found in the previous section is less than half of the minimum block size. All 

the prices are displayed for one block design for each technology process.  

In Figure 40, the prices are displayed for the different technology processes offered by 

EUROPRACTICE. For the 180-nm process, prices vary by approximately 1,000 euros 

between the TSMC, UMC, and X-FAB technologies. The most expensive technology process 

is the 130-nm UMC, at 4,460 euros.  
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Figure 40: Prices for LEON3 implementation on different technology processes 

 Summary 

In this chapter rough, estimates were made regarding the area, power consumption, 

and prices of LEON3 ASIC implementations. The summary of these estimates are presented 

in Figure 41 and Figure 42. These numbers should only be  used as a probable approximation 

estimate. The price estimates can considered to be more solid figures, because even if a 

LEON3 ASIC implementation consumes twice the number of gates, it will still be well within  

the block design size set by EUROPRACTICE. The power estimates conflict somewhat with 

predictions the made in subsection 6.5.6; however, this is to be expected, since only rough 

predictions were made. 
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Figure 41: Summary of area for LEON3 configurations on ASICs 

 

Figure 42: Summary of total effect of LEON3 configurations on ASICs at 100 MHz 
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180nm XFAB XH018 0,32 0,34 0,55 0,58 1,16
180nm UMC 0,33 0,36 0,58 0,61 1,21
180nm XFAB XC018 0,35 0,37 0,60 0,63 1,26
180nm TSMC 0,37 0,39 0,63 0,67 1,33
180nm DARE180X 0,68 0,73 1,17 1,24 2,46
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 Conclusion 
 In this thesis softcore processors were presented with their advantages, disadvantages, 

strengths, and weaknesses. Several softcore processors were explored, both from the open-

source and the commercial sectors. After reasonable consideration, LEON3 was chosen as the 

preferred softcore processor. Specifications, development, and testing tools were described in 

detail. The process of LEON3 configuration and implementation was presented. A relevant 

user case test was carried out to determine whether LEON3 has the capacity to match a 

hardcore processor, and the result reveal that it did. Resource utilization and power 

consumption were presented for all of the LEON3 configurations. Finally, estimates of power, 

area, and price for LEON3 ASIC implementations were made.  

While LEON3 is an ideal softcore processor, it has its’ limits in integer processing. A 

few other softcore processors exist that are more capable of integer calculation; however, they  

are all commercial ones. Considering the possibility of science code modifications to perform 

integer calculations and MCV8 LEON3 configuration, LEON3 should be more than capable 

of performing scientific calculations even with integers. This statement is also true for our use 

case test for the m-NLP scientific routine. 

The MCGLV8 configuration has the best performance and area tradeoffs for the 

current m-NLP science application. This configuration was determined to be the best option 

for the science routine as it is; however, the MCGL is a close contender in terms of 

performance, and it should be investigated.   

The overall simplicity, customization, development, debugging, and testing 

possibilities of LEON3 were strongly confirmed during the testing phase.  As a result the 

choice of LEON3 as the main softcore processor candidate seems to be validated through 

chapters 5 and 6 of this thesis. During the latter chapter, LEON3 resource utilization 

coincided with numbers from other research mentioned in previous chapters on such 

utilization. Furthermore, the power consumption of LEON3 seems to be in the ballpark of 

numbers found in other research. The LEON3 ASIC implementation estimates demonstrate 

that LEON3 would be a prime contender for future processor use in the Nanoelectronics 

Group.  
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8.1 Future Work 
The future testing of LEON3 for m-NLP application should include optimization of 

the science code and integration of interfaces required for connection with the 4D module. 

Testing LEON3 with the said interface can be done physically on an FPGA board, or it can be 

simulated with software. The integration of these interfaces should not require extensive 

work, as LEON3 AMBA and APB IP blocks are well documented with examples and 

explanations.  

For the current state of the scientific code, where it utilizes floating-point numbers for 

plasma parameter calculations, MCGLV8 is the best-fitted LEON3 configuration. However, 

the GRFPU-Lite is an expensive unit in terms of both power and resources, and options for a 

co-processor for integer calculation, especially for the square root operation, should be 

investigated. A small co-processor dedicated to more optimized integer calculations should be 

smaller in size and consume less power than the GRFPU-Lite.  

For future testing of LEON3 on an FPGA, an option for a newer FPGA board should 

be investigated. The author of this thesis suggests a Xilinx Kintex-7 FPGA KC705 [77] board. 

The templates for this board are newer than that of the ZedBoard and uses a newer Vivado 

version. Support for KC705 is also more updated and better documented than that of the 

ZedBoard.   
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