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Abstract

Interferometric synthetic aperture sonar (InSAS) produce bathymetric maps with
large amounts of data. This introduces challenges in how the data should be stored
and represented.

The bathymetric maps are in raster format that can be converted to triangular
irregular networks (TINs). A TIN representation of the map can reduce the amount
of storage needed. However, it is not straight forward how the conversion should be
performed while preserving the main characteristics of the mapped surfaces.

We consider two decimation algorithms and one refinement algorithm that performs
a raster to TIN conversion. They are point selection algorithms and based on De-
launay triangulations. We have implemented the algorithms and adapted them such
that they also base their point selection on the coherence from an InSAS.

The algorithms were applied on three classes of data: synthetic data without co-
herence, synthetic data with coherence, and real bathymetric data from an InSAS.
The algorithms returned reduced data sets that contained less than ten percent of
the input data and at the same time preserved essential features of their inputs. We
found that the refinement algorithm performed the best to convert a raster to TIN
in overall.
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List of abbreviations

AUV Autonomous underwater vehicle

CGAL Computational Geometry Algorithms Library

DEM Digital elevation model

GIS Geographical information systems

InSAR Interferometric synthetic aperture radar

InSAS Interferometric synthetic aperture sonar

SAS Synthetic aperture sonar

SNR Signal-to-noise ratio

TIN Triangular irregular network

(w)RMSE (weighted) Root mean squared error

(w)AT1 (weighted) Adaptive thinning 1

(w)AT3 (weighted) Adaptive thinning 3



Contents

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Own contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Synthetic aperture sonar . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Digital elevation modeling . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Error assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Surface simplification 29
3.1 Methods based on Delaunay triangulations . . . . . . . . . . . . . . . 29
3.2 Point extraction based on quadtree splitting . . . . . . . . . . . . . . 37

4 Results 41
4.1 Validity of the local updates of significances . . . . . . . . . . . . . . 41
4.2 Measured efficiency of the implementations . . . . . . . . . . . . . . . 42
4.3 Simplification of surfaces without coherence . . . . . . . . . . . . . . 43
4.4 Simplification of surfaces with coherence . . . . . . . . . . . . . . . . 71
4.5 Acquired data from an InSAS . . . . . . . . . . . . . . . . . . . . . . 80

5 Discussion 99
5.1 Data without coherence . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Data with coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 Data acquired from an InSAS . . . . . . . . . . . . . . . . . . . . . . 101

6 Conclusion 103
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 107

A Implementation details 115

IV



1

Introduction

Today, underwater technology is capable to produce maps of seabeds at an impres-
sive level of detail and at the same time cover large areas. However, there are still
many areas that are not completely mapped (Mayer et al., 2018, p. 2). Since the
surface of the Earth consist of more than 70 percent of water (Lurton, 2010, p.
1) and only a fraction of it has been mapped, there is still a lot of research and
surveillance that remains to get a better insight of the nature to our planet.

An interferometric synthetic aperture sonar (InSAS) can produce maps, or digital
elevation models (DEMs), that covers large areas and at the same time represent
finer details of the imaged seabed (Hansen, 2011, p. 3). The maps can be used
for applications such as analysis of the seabed and assist autonomous underwater
robots that performs surveillance of the seabeds to navigate through its surroundings
(Leonard and Bahr, 2016, p. 349). The amount of data in the maps of the seabeds
can be massive due to their high level of detail and large area coverage. This imposes
challenges to how the maps should be stored. Depending on which application the
data are used for, the high level of detail in the data can be redundant. For instance,
if an underwater robot needs the data to navigate through its environment, it is
sufficient for it to keep a simplified map that captures the essential characteristics
of its surroundings.

Surface simplification algorithms can be used to reduce the amount of data that
contains measurements over a surface such as a seabed. Triangular irregular net-
works (TINs) are commonly encountered in geographical information systems (GIS)
as the preferred approach to efficiently represent terrain surfaces (Heywood et al.,
2011, p. 94). Many algorithms that performs surface simplification based TINs has
been proposed throughout the years such as (Fowler and Little, 1979), (Garland and
Heckbert, 1995), (Soommart and Paitoonwattanakij, 1999), (Demaret et al., 2005),
(Zhou and Chen, 2011), (Sun et al., 2018). Such algorithms has also been applied to
seabed data (Canepa et al., 2003), (Dokken et al., 2015), (Maleika et al., 2018). Sur-
face simplification is still an ongoing research, where for instance the popular and
well-established C++ library The Computational Geometry Algorithms Library,
also known as CGAL, recently got extended by a surface simplification algorithm,
see (Alliez et al., 2019). Similar ideas that follows the general ideas of surface simpli-
fication, is also considered in other research fields such as solving partial differential
equations, see e.g (Quarteroni, 2009, Sec. 4.6), (Nochetto and Veeser, 2011).

1
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1.1 Problem statement

We consider a map of a seabed, a bathymetric map, obtained from an InSAS. An
InSAS can return detailed bathymetric maps that spans over hundreds of meters.
In addition, the data in the bathymetric maps could also be of various quality. A
possible quality assessment of the measurements is the coherence produced by the
InSAS. Data associated with low coherence can reduce the overall quality of the
bathymetric map and should ideally be removed and compensated for.

Our main focus has been to apply a selection of TIN-based simplification algorithms
on a bathymetric map produced by an InSAS. In addition, we have adapted the
algorithms such that they take into account the associated coherence to its input
map. To our knowledge, this has not been done before. The desired end product
is a simplified map that is significantly reduced in amount of data but still preserve
the main features of the input map.

First, we describe how bathymetric maps are produced, how the chosen simplifi-
cation algorithms and how we evaluated the simplified models. We applied the
simplification algorithms at three classes of data; synthetic data not associated with
coherence, synthetic data associated with coherence, and a bathymetry with an as-
sociated coherence map from an InSAS. The algorithms managed to return point
sets that contained on less than ten percent of the input data and at the same time
resembled the given surface when triangulated. One of the algorithms managed
to simplify a real bathymetric map such that the simplified surface was formed by
approximately one percent of data from the map. Approximately 73 percent of
the surface deviated from the input map by less than or equal to 0.1 meters, which
showed that most of the important characteristics to the input surface was preserved
after the simplification.

1.2 Outline

We have organized the thesis as follows:

Chapter 2 - Background
In this chapter, we present and describe the main concepts of sonar imaging
and digital terrain modeling. Thereafter, we present the basic theory of tri-
angulations and Delaunay triangulations. We end this chapter by describing
which error assessments we have chosen to evaluate our simplified surfaces.

Chapter 3 - Surface simplification
The surface simplification algorithms that we consider are described in this
chapter. We present how we have adapted the algorithms to consider an
associated quality measure of the input data.

Chapter 4 - Results
This chapter contains the results that we have obtained from our studies. We
describe how we tested our implementations and examined how the algorithms
performs applied to synthetic data without associated coherence, synthetic
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data with associated coherence, and a bathymetry and its associated coherence
acquired from a synthetic aperture sonar.

Chapter 5 - Discussion
We discuss our main results in this chapter.

Chapter 6 - Conclusion
We summarize our main results and conclude our research. Several proposals
for future work are presented in this chapter.

1.3 Own contributions

During the writing of these thesis, we have developed new methods and algorithms.
These are:

• Implementations in MATLAB
To our knowledge, no program of the algorithms that we considered were
written in MATLAB. We have implemented the algorithms, without the usage
of any pre-developed code except for the functions available in MATLAB. Our
implementations constitutes 1127 lines of codes together, not considering the
scripts that were made for testing and generating the results.

• Weighted adaption of the selected algorithms The algorithms that we
consider, are based on Delaunay triangulations. There exists methods for
constructing triangulations with respect to the weighting of the data, which
are called data-dependent triangulations. However, we could not find any
algorithms that simultaneously considered the weighting to the data and its
corresponding Delaunay triangulation. Our weighted adaption of the presented
algorithms in this thesis are thus novel, as far as we can see.

• Using coherence in the simplification algorithms
We could not find any research where coherence has been incorporated into a
simplification process.

• Feature extraction based on variance and quadtree split
We could not find any literature that presented the feature extraction method
as described in Section 3.2 that we considered in this thesis.

• Scatter plot over the longest edges and smallest angles to the trian-
gles in a triangulation
To our knowledge, there is no research where the longest edges and the small-
est angles to the triangles in a triangulation has been found and considered in
an analysis of the occurrence of long and thin triangles in a triangulation.
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Background

Interferometric synthetic aperture sonar can produce bathymetric maps in centime-
ters resolution. Delaunay triangulations are commonly encountered in geographical
information systems as a preferred way of constructing digital elevation models.
They have properties that tend to avoid badly shaped triangles and can be efficient
to use since vertex insertion and deletion requires local updates of the triangula-
tions. In this chapter, we present what an interferometric synthetic aperture sonar
is and how it produces a bathymetric map. We also present what properties makes
Delaunay triangulation popular in geographical information systems and how we
calculate the error between the approximated surface and the given surface.

2.1 Synthetic aperture sonar

Sonar is a device that uses sound to gather information of its environment (Rossing,
2014, p. 6). In this context, sound conveys important information and therefore
often referred to as a signal or an acoustic signal. Sonar is widely used in the ocean,
as sound propagates far better than electromagnetic waves in seawater (Lurton,
2010, pp. 1 - 3).

There are two different kinds of sonar systems; passive and active (Lurton, 2010, p.
9). Passive sonars only measures the sound emitted from its environment. Active
sonars emits and measures the echoed sound from its environment. The objects
that reflects the transmitted sounds, are usually referred to as targets or scatterers.
Active sonars use the reflected signals to retrieve information from the scatterers.

Synthetic aperture sonar (SAS) is an active imaging sonar. An aperture is a group
of sensors that measures any incoming signal (Johnson and Dudgeon, 1993, p. 59).
Its physical construction, along with the waveform of the transmitted signal, is
crucial in an imaging system. How the imaging system is affected is described in
e.g (Johnson and Dudgeon, 1993, Chap. 3). A SAS can use the received signals to
produce a sonar image over a desired region. The sonar image contains estimated
reflectivity of the seabed. An interferometric SAS (InSAS) is a mapping sonar that
can use its sonar images to produce seabed depth maps, bathymetric maps, of the
imaged scene. This will be discussed further in Section 2.1.3.

5
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There are other types of seabed mapping sonars, including multibeam echosounders
and interferometric side-scan sonars (Kuperman and Roux, 2014, p. 197). We refer
to (Lurton, 2010, pp. 351 - 363) for a description of multibeam echosounders.

Side-scan sonars and SAS are closely related (Hansen, 2011, p. 7). The main
difference is how the images are constructed. An interferometric side-scan sonar
constructs thin strips of an imaged seabed and thereafter stacks the strips on top of
each other to construct a sonar image of the seabed (Blondel, 2009, pp. 37 - 38). A
SAS constructs the sonar images by combining all of the received signals into one
image. We will discuss the image formation of a SAS in more detail in Section 2.1.2
and refer to (Blondel, 2009) for a comprehensive description of side-scan sonars.

SAS can produce images with spatial resolution independent of the distance between
the seabed and the sonar, whereas side-scan sonars cannot. The spatial resolution
of an image is defined as the lower bound on how close two scatters can be to each
other without being imaged as a single scatterer (Franceschetti and Lanari, 1999b,
p. 14). SAS can produce sonar images with resolution in centimeters. This is
possible because of its synthetic aperture. The physical aperture of the SAS that
has produced the map over a seabed that we have considered (see Section 2.1.1)
consists of three arrays; two receiver arrays and one transmitter array. The receiver
arrays are separated by a vertical distance. The transmitter array can be placed
between the receiver arrays. The transmitter array repeatedly transmits acoustic
signals that are often referred to as pings during a survey. The transmitted signals
are reflected from the seabed and recorded by the receiver arrays.

In SAS, it is possible to construct sonar images as if the data was gathered from a
physical aperture having similar imaging capabilities as its synthetic aperture. The
synthetic aperture is constructed on how the pings are processed, see Section 2.1.2
and the references therein.

2.1.1 The imaging system

An InSAS can be mounted on an autonomous underwater vehicle (AUV). An AUV
is a robot that can gather data underwater and navigate by itself based on the
information it has gathered during a survey. In (Leonard and Bahr, 2016, p. 341)
it described in more detail what an AUV is and how it manages to navigate under
water. We consider data that has been collected by a HUGIN AUV developed by
Kongsberg Maritime and Norwegian Defence Research Establishment (FFI). The
InSAS that was mounted on the HUGIN AUV is a HISAS 1032. The data that we
consider are from the same survey that is described in (Hansen et al., 2018, p. 344,
p. 346). Figure 2.1 shows a HUGIN with an InSAS.
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Figure 2.1: Image of a HUGIN AUV equipped with HISAS 1032 interferometric SAS
from the FFI research vessel H. U. Sverdrup II during the Marex17 scientific
trials outside Bergen, Norway, in March 2017. The HISAS is the brown
rectangular objects forming a ”H”-looking shape mounted on HUGIN. Photo
courtesy of FFI and used with permission.

The theoretical resolution of the sonar images acquired from HISAS 1032 is approx-
imately 3 × 3 centimeters and the bathymetric maps 18 × 18 centimeters (Hansen
et al., 2018, p. 346). The bathymetric map has poorer resolution than the sonar
images as a consequence of how the bathymetric map is generated, see Section 2.1.3
and the references therein. For the technical specifications of the HUGIN AUV, we
refer to (Hansen et al., 2019, p. 10).

2.1.2 Image construction

The samples of the received signals are processed and stored as complex values. More
details about the processing of the acquired signals can be found in (Richards, 2005,
pp. 115 - 158). The amplitude represents the amount of the reflected signal. The
phase contains information that one can use to retrieve information of the geometry
to the object that scattered the transmitted signal (Massonnet and Souyris, 2008,
p. 60). It is deterministic in the sense that it will remain the same if the target is
located at the same position, the properties of the medium does not change, and it
is observed from the exact same location (Hanssen, 2001, p. 35).

We describe how the sonar constructs an image with pixels γ[i, j] that represents
the signals from a small area at the imaged seabed. A generated map over a seabed
is based on sonar images from the seabed. To understand how an InSAS forms maps
over seabeds, we first need to consider how sonar images are constructed.

A signal s
(p)
k (t) hits the k-th sensor element at ping p. The sensor samples the signal

over a time. The signal is then pulse compressed. Pulse compression is a processing
step that takes the waveform of the transmitted signal and correlates it with the
received signal, see (Richards, 2005, Chap. 4). This is done to increase the signal-
to-noise ratio (SNR) (Massonnet and Souyris, 2008, pp. 125 - 126). Noise can be
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present due to other signals in the environment, disturbances by the sensors and the
vehicle or interference between the signals (Lurton, 2010, p. 123).

After the pulse compression, each sensor element k has a discrete time series

s
(p)
k [:] =

{
s
(p)
k [i], s

(p)
k [1], . . . , s

(p)
k [n− 1]

}
of n samples. Every i-th sample is such that

s
(p)
k [i] ∈ C and s

(p)
k [i] = s

(p)
k (i ·∆t) for i = 0, . . . n− 1, where ∆t = T

n−1 and T is the
duration of the received signal. An image can be formed by backprojection1 (Hansen,
2011, p. 4). The image is formed on a rectangular grid that represents the true region
being imaged. Consider a grid I that is IM × IN large where IM and IN are positive
integers and I =

{
(i, j) : i ∈ {0, 1, . . . , IM − 1} and j ∈ {0, 1, . . . , IN − 1}

}
. A set

of signals that covers the region of interest are then chosen. Let P = {p1, p2, . . . , pS}
be the set of S integers, each representing a ping. The pings are such that all sensor
elements has a time series sampled from the imaged region. These signals can be
used to estimate the reflected signal at each coordinate (i, j) ∈ I. Each coordinate
(i, j) from I represents the average reflection of a small area centered at coordinate
(xi, yj), a resolution cell (Richards, 2005, p. 21), in the measured region of interest.
Figure 2.2 illustrates how the grid I represents the imaged region.

Figure 2.2: The value at position (i, j) in the grid I represents the average of the reflected
acoustic waves from a resolution cell centered at position (xi, yj) at the
seabed.

For all pm ∈ P the sensor elements has sampled information of the region of interest.
The signal s

(pm)
k [:] can be used to obtain an estimate on how much the true signal

has been scattered from each resolution cell. Each resolution cell is centered at
(xi, yj) within the desired region to image. To obtain the estimated reflectivity of

the imaged scene, first the time t
(pm)
k (xi, yj) the transmitted wave spent from the

k-th sensor mounted on the platform to (xi, yj) and back has to be found. This is
possible using the relation

t
(pm)
k (xi, yj) = s/c, (2.1)

where s is the distance the wave traveled and c the speed of the wave. The value
s
(pm)
k (t

(pm)
k (xi, yj)) contains thus information about the amount of the reflected wave.

1Also referred to as Delay-And-Sum beamforming (Hansen, 2011, p. 5).
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Since each k-th sensor only has a discrete representation s
(pm)
k [:] of the signal s

(pm)
k (t),

it is not certain that the element has a sample recorded at t
(pm)
k (xi, yj) exactly. It is

possible to get an exact representation of s
(pm)
k

(
t
(pm)
k (xi, yj)

)
, given that the samples

are well-sampled (Manolakis and Ingle, 2011, pp. 298 - 299). Due to practical
limitations such as computational time, a simpler interpolation method such as

linear interpolation can used be to approximate s
(pm)
k

(
t
(pm)
k (xi, yj)

)
.

After having obtained a representation ŝk
(pm)[i, j] of s

(pm)
k

(
t
(pm)
k (xi, yj)

)
, a summa-

tion over the elements is performed. This gives an estimate of the reflected acoustic
wave γ(pm) at (i, j):

γ(pm)[i, j] =
∑
k

wkŝk
(pm)[i, j],

where wk is some weight chosen accordingly on how much the recorded signal at
the k-th element should contribute to the final estimate. The summation ensures to
amplify the dominant trends in the measured signals, thus yielding a more probable
estimate of the reflected acoustic wave at (xi, yj) at ping pm (Johnson and Dudgeon,
1993, p. 112).

The final image γ that represents the reflected signals over a region of interest, is
constructed by summing over all pings from P ,

γ[i, j] =
S∑

m=1

γ(pm)[i, j]. (2.2)

The synthetic aperture is constructed when the pings are combined as in Equa-
tion (2.2) (Hayes and Gough, 2009, p. 207). The synthetic aperture is therefore
dependent on how the pings were sampled. The platform has to move such that
it manages to sample enough pings to fulfill a spatial sampling criterion (Hansen,
2011, pp. 8 - 10). This implies several restrictions to the platform, see (Bruce,
1992), (Lurton, 2010, pp. 347 - 351), (Hansen, 2011, pp. 12 - 14 ).

2.1.3 Estimation of height using synthetic aperture
interferometry

SAS interferometry uses the phase difference between two images formed as de-
scribed in Section 2.1.2. The images are of the same scene, but observed from two
or more slightly different positions (Franceschetti and Lanari, 1999a, p. 167). The
phase difference between such images can convey important information of the ge-
ometry to the area that otherwise could be difficult to measure (Hanssen, 2001, p.
35).

Consider the case where only one receiver is mounted on a platform and only one
image is constructed of a scene. Assume also there are two targets in the scene that
are located at the same range, separated by a horizontal distance and have different
elevations. Then the receiver would perceive the targets as equal (Hanssen, 2001, p.
35), since the reflected acoustic waves will spend the same amount of time from the
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target to the sensor arrays. This will cause an ambiguity of the measurement, as
we do not have information that reveals exactly where the wave was reflected from
(Franceschetti and Lanari, 1999a, pp. 167 - 170).

To overcome the ambiguity of where the acoustic wave was reflected from, we need
at least two images of the same scene observed from slightly different positions
vertically (Jakowatz et al., 1999, p. 285). In addition, one has to ensure that the
imaging conditions are the same. For simplicity, we discuss the case where only two
images γ1 and γ2 are available. The images are first co-registered. This is done
by taking either γ1 or γ2 as a reference image and move the pixel positions in the
other image such that each pixel represents the same resolution cell relative to the
reference image (Franceschetti and Lanari, 1999a, pp. 177 - 185). Without the loss
of generality, we let γ1 be the reference image and γ̂2 the transformed image. We can
now compute the phase difference between them to obtain an interferogram of the
scene. The phase differences in the interferogram can thereafter be used to estimate
the elevations to the imaged surface.

Let
γ1,2 = (γ1 � γ̂2∗) ? h, (2.3)

where � is the Hadamard product2, γ̂2
∗ be the complex conjugate of γ̂2, ? the convo-

lution operator, and h some chosen two-dimensional lowpass filter. An interferogram
ϕ of γ1 and γ̂2 is defined as (Hanssen, 2001, p. 92):

ϕ = Arg{γ1,2},

where Arg{·} takes the principal phase of its argument.

The lowpass filter h of a given size is applied to the product γ1�γ̂2∗ in Equation (2.3)
to dampen the variability of SNR in γ1 and γ̂2. The variability of SNR is damped
within a local neighborhood defined by h to every pixel in γ1 � γ̂2

∗. Hence the
estimated becomes more probable, but at the cost of poorer spatial resolution related
to the size of the filter, see (Sæbø, 2010, pp. 121 - 127). This is why InSAS systems,
like the one described in Section 2.1.1, provides sonar images having better resolution
than the bathymetric maps.

The interferogram can provide us insight in the imaging geometry between the plat-
form and the scene during the data acquisition. As phase is a deterministic quantity,
the phase difference is related to at which position the two images were observed
from (Massonnet and Souyris, 2008, p. 179). There will be a difference in path
length the reflected acoustic waves has traveled as a consequence of the different
locations of observation. By knowing how far apart each platform has been during
the two different acquisitions, one can derive geometrically how the height affects
the difference in path length, see (Sæbø et al., 2013, p. 4451).

Since phase is 2π-periodic, there is no guarantee that it truly represents the changed
phase reflected from a target. A phase φ̂ sampled from the incoming signal and

2The Hadamard product between two matrices A and B having same dimensions is a matrix
A � B = C with the same dimension as A and B where each element Cij in C is such that
Cij = AijBij (Horn and Johnson, 2013, p. 477).
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represented in the interval (−π, π] (Franceschetti and Lanari, 1999a, p. 172) could

actually be equal to φ̂ + 2πn for a non-zero integer n. The interferogram might
therefore not represent the differences between the sampled signals. Thus it has to
be further processed to find an estimate of the true difference between the phases.
This is called phase-unwrapping and is thoroughly covered in e.g (Ghiglia and Pritt,
1998).

2.1.4 Coherence as a quality assessment

The interferogram ϕ is found from the coregistered images γ1 and γ̂2. Each pixel in γ1
and γ̂2 are supposed to represent the same resolution cell. Under ideal circumstances,
the only difference between the pixels is in their phase. The difference in phase
should only convey information of the angle difference between the receiver arrays.
However, the pixels might differ in both phase and amplitude due to several reasons.
There could for instance be unwanted disturbances in the acquired signals, wrong
assumptions of the traveled paths to the signals, and faulty sensor elements. We
want to know at which pixel locations (i, j) in γ1 and γ̂2 those signals contributed to,
as they will contribute to erroneous estimates in elevation at ϕ[i, j]. One common
way to quantify the quality of ϕ is through the coherence of γ1 and γ̂2 (Franceschetti
and Lanari, 1999a, p. 173), (Massonnet and Souyris, 2008, p. 186).

The coherence can be derived from the complex coherence by taking the absolute
value of it. The complex coherence has to be estimated, as the definition of coherence
requires the expectation over all possible realizations of γ1 and γ̂2 (Hanssen, 2001,
p. 96). Let γ1,2 be defined as in Equation (2.3). The estimated complex coherence
χ̂ at position (i, j) can be found by (Ghiglia and Pritt, 1998, p. 66):

χ̂[i, j] =

∑n
s=−n

∑m
t=−m γ1,2[i+ s, j + t]√∑n

s=−n
∑m

t=−m |γ1[i+ s, j + t]|2
√∑n

s=−n
∑m

t=−m |γ̂2[i+ s, j + t]|2
,

(2.4)
where the summations are performed over a neighborhood of size (2n+ 1)×(2m+ 1)
and |γ1|2 = γ1γ1

∗ with γ1
∗ being γ1 complex conjugated (similar definition holds for

|γ̂2|2 also).

From the estimated complex coherence χ̂, the estimated coherence for every (i, j) ∈
I can be found by Ĉ[i, j] = |χ̂[i, j]|. By using Ĉ[i, j], an approximation of the
SNR[i, j] to each pixel at every (i, j) ∈ I can be found by using the relation (Zebker
and Villasenor, 1992, p. 951):

Ĉ[i, j] =
SNR[i, j]

SNR[i, j] + 1
,

which gives that

SNR[i, j] =
Ĉ[i, j]

1− Ĉ[i, j]
. (2.5)

The SNR[i, j] can provide us information on how certain the measurement at (i, j)
is. The SNR[i, j] is related to the variance σ2

τ [i, j] of the estimated time from Equa-
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tion (2.1) (Sæbø, 2010, p. 65) by

σ2
τ [i, j] ∝

2 SNR[i, j] + 1

2 (SNR[i, j])2
.

The σ2
τ is proportional to the variance σ2

z in estimated depth (Sæbø, 2010, p. 37),
as depth estimation is dependent on correct time measurement. In weighted least
squares approximation, the optimal weighting of the data that are being approxi-
mated are one divided by their variance (Kay, 1993, pp. 225 - 226). Inspired by
this, we have decided to use the weights

w[i, j] =

(
2 SNR[i, j] + 1

2 (SNR[i, j])2

)−1
=

2 (SNR[i, j])2

2 SNR[i, j] + 1

(2.6)

in our chosen error assessment and algorithms described in Section 2.4 and Chapter 3
respectively.

2.1.5 Characteristics of the sonar images

The principles and ideas in InSAS are similar to its radar counterpart, interfer-
ometric synthetic aperture radar (InSAR) (Gough and Hawkins, 1997, p. 344),
(Lurton, 2010, p. 347). However, there are some differences that separates the im-
ages they produce (Hayes and Gough, 2009, p. 213), (Hansen et al., 2011, p. 3677).
We present a short description of what characterizes InSAS and refer to (Griffiths,
1997), (Sæbø and Hansen, 2010), (Hansen et al., 2011, pp. 3680 - 3685) for a more
detailed description of the differences between InSAS and InSAR.

Navigation and the speed of sound

Navigation under water is difficult since geographical position system is unavailable
(Gough and Hawkins, 1998, p. 212), (Hansen et al., 2011, p. 3680). InSAS is also
more prone to errors in estimated position of the platform compared to InSAR. This
is because the speed of the platform with an InSAS relative to the speed of sound,
is much higher that the speed of platform with an InSAR relative to the speed of
light (Lurton, 2010, p. 351). Wrong estimations of the whereabouts to an InSAS
leads to images, and thereby bathymetric maps, where the imaged region can suffer
of geometric distortions (Hansen et al., 2011, pp. 3682 - 3683).

Acoustic shadows

The side-scan sonars and SAS transmits pings that forms a low grazing angle be-
tween the emitted wave and the surface. There is therefore no guarantee that the
transmitted signals will be reflected back to the sensor. In the resolution cells where
this happens, the sensors collects little to no data that are representative of the
seabed and therefore form acoustic shadows, see Figure 2.3. The shadows can be
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used for instance to search for man-made objects such as mines at the seabed (Lur-
ton, 2010, p. 341).

Figure 2.3: There could be some areas that the emitted signal from the platform is not
reflected from. Here, the dotted horizontal lines is the area where the emitted
signal is not reflected from the seabed.

Multipath

An acoustic wave might change its direction multiple times before arriving at the
receivers (Lurton, 2010, p. 30). If not compensated for, it could be difficult to
find at where the acoustic wave was reflected from the seabed. This phenomena,
called multipath, occurs especially in shallow waters, as the interface between water
and air can reflect acoustic signals from the seabed (Gough and Hawkins, 1998, pp.
214 - 215), (Hansen et al., 2011, pp. 3684 - 3685). The emitted signals may also
be reflected multiple times by objects at the seabed. In Figure 2.4 we show how
multipath can affect the acoustic waves.

Figure 2.4: Possible scenarios where the acoustic wave does not travel directly back to
the platform. Left: Multiple path to the signal due to the shallow water.
Right: Multiple paths to the signal due to complex objects at the seabed
such as ship wrecks.

Layover and foreshortening

Layover and foreshortening are geometric distortions related to the topography of the
imaged surface. Layover occurs when the grazing angle α to the platform is greater
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than the angle β to the normal vector to the surface normal (Richards, 2006, pp. 10
- 11). This is the case for the platform at elevation A in Figure 2.5. The scatterers
are imaged in reverse order spatially, as some are closer to the platform than others.
Foreshortening occurs when α is less than β (Richards, 2006, pp. 10 ), which is the
case for the platform at elevation B in Figure 2.5. The spatial distribution of the
scatterers gets compressed in the image.

Figure 2.5: Layover and foreshortening. Three targets located at an inclination, shown
as the dotted line through the targets 1, 2, and 3. Layover occur in the
imaged region from position A since αA > β. Foreshortening occur in the
imaged region from position B since αB < β This figure is inspired by Fig.
6 in (Richards, 2006, p. 10).

Variation in speed of sound and refraction

The speed of sound under water can change as a function of depth, as the physical
properties could be different (Lurton, 2010, p. 13). By Snell-Descartes law (Lurton,
2010, pp. 47 - 49), this will make the acoustic waves “bend” an therefore refracted,
see Figure 2.6. The acoustic waves will spend more or less time traveling compared
to if it traveled in a straight path.
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Figure 2.6: How the path of the signal, illustrated as black arrows, can change in water
with different physical properties. The colored boxes illustrates water with
different properties.

2.2 Digital elevation modeling

A digital elevation model (DEM) represents a set of measured elevations of a surface
(Hengl and Evans, 2009, p. 40). The measurements can be acquired from remote
sensing devices such as sonars and radars. The elevation data consists of points in
R3 where each point p is a triplet (x, y, z) that represents a measured elevation z
at the planar coordinates x and y. The representation of the measured surface is
dependent on which applications the data are supposed to be used for. It is possible
to convert the represented data from one representation to an another representation.
The most common representations of elevation data are grid-based or based on a
collection of triangles (Li et al., 2004, p. 68), (Haverkort and Toma, 2014, p. 3).

A set of measurements that are represented on a grid is a raster DEM (Heywood
et al., 2011, p. 92). A raster DEM is constructed by a collection of regularly spaced
quadrilaterals of equal shape and size. Each of the quadrilaterals contains one value
that represents a measured elevation. Typically, squares are used (Wilson, 2018, p.
25) as they can simply be stored as matrices (Li et al., 2004, p. 70). Any data set of
points that are regularly spaced in the plane is a raster DEM. If a data set contains
points that are irregularly spaced in the plane, interpolation of the elevations to
the data points has to be performed to yield a gridded representation of the point
set (Li et al., 2004, pp. 82 - 83). A raster DEM is therefore strict in the sense
that it requires to represent the elevations to each point in a regular manner. This
requirement can also make a raster DEM store more points than necessary.

A triangular irregular network (TIN) can represent a surface that consists of regions
that varies in complexity without storing more points than necessary (Heywood
et al., 2011, p. 94). A TIN forms a collection of triangles based on the data set
such that it produces a triangulation of it. The triangles in a triangulation has
to satisfy some criteria, see Section 2.3. It is common that TINs are constructed
using Delaunay triangulations (Van Kreveld, 2017, p. 1566). We consider TINs
constructed by Delaunay triangulations in this thesis and describe what a Delaunay
triangulation is in Section 2.3.1. The data points that forms a TIN can be irregularly
spaced without further processing, as opposed to grids where interpolation between
the data points has to be performed. This is why the network is irregular. A TIN
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is also a vector based representation of the data set. A vector based representation
consist only of information on how the points are spatially related (Li et al., 2004,
p. 66). In the case of TINs, only the triangles that are formed by the data points
are stored. Because of this, a TIN could be more convenient to use for storage and
further analysis of a point set (Van Kreveld, 1997, p. 46). We obtain a raster TIN
when we interpolate the elevations associated with the vertices to each triangle in
the network. We present in Section 2.3 how we chose to compute the interpolated
elevations.

Figure 2.7: A raster representation and TIN representation of a point set where the
points are drawn as black dots. Left: A raster representation of the point
set. The raster is based on a square grid. Each point in the grid is assigned
a value that is visualized as a gray level intensity. In the squares without
points, values are assigned based on e.g an interpolation scheme. Right: A
vector TIN representation of the point set.

We have already encountered a raster DEM in Section 2.1.3. The bathymetric map
from an InSAS is a raster DEM since the two sonar images γ1 and γ2 the map is
constructed of are defined on a grid I. The bathymetric map from the InSAS that
we consider is stored as a matrix, hence the grid consist of squares. The process
of acquiring data and construct the bathymetric map constitutes Step 1, Step 2,
and Step 3 in Figure 2.8. The bathymetric maps produced by the imaging system
described in Section 2.1.1 can have centimeters in resolution and at the same time
cover areas that spans tenths or hundreds of meters. Hence, a the maps can easily
contain millions of data points. We chose to look at a selection of methods that
converts the raster bathymetric map into a TIN representation. This is Step 4 in
Figure 2.8. In general, it is not given how the construction from a raster DEM to
TIN should be performed and is still an ongoing research. We therefore consider
Step 4 throughout this thesis.
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Model of the physical properties
of under water sound propagation
and geometry to the seabed

Data acquisition using an InSAS
mounted on a HUGIN

Raster bathymetric map

No data simplification Data simplification

Simplification
based on TIN

Digital Elevation Model

Step 1

Step 2

Step 3

Step 4

Figure 2.8: The processing chain that we consider to represent a sampled seabed. Our
emphasis is on Step 4.

2.3 Triangulations

In GIS it is common to have a set of discrete samples that represents a surface. In
most cases, it is desirable to use the samples to get a representation of the sampled
surfaces for applications such as visualization, analysis of the sampled terrain, and
efficient representation of the data. Triangulations based on the acquired samples
are often encountered in GIS. They are flexible in representing point sets that varies
in density and at the same time preserve important features of the terrain (Wilson,
2018, p. 26).

Consider a set P of n points. Each point pi ∈ P has a location in the plane given by
the coordinates (xi, yi) where xi, yi ∈ R. Each coordinate pair (xi, yi) is associated
with an elevation zi as illustrated in Figure 2.9. Each point pi in P can be represented
as a triplet, pi = (xi, yi, zi). We assume that there is only one point in P that is
located at (xi, yi) such that zi is unique.



Section 2.3 - Triangulations 18

p = (xi, yi, zi)

x

y

z

xi

yi

(xi, yi)

zi

Figure 2.9: A point pi = (xi, yi, zi) and its position (xi, yi) in the plane. The point
represents a measured elevation zi at the coordinates (xi, yi).

A triangulation is composed of triangles. A triangle T is formed by connecting
three points. These points are called vertices. In this thesis, however, we will
interchangeably use points and vertices. If the points are collinear3, then T is
degenerate (Cheng et al., 2012, p. 26). The points are connected by straight lines
that are called edges. A triangulation can therefore be regarded as a collection of
vertices and edges. Figure 2.10 shows a triangulation of a point set.

Figure 2.10: A triangulation of a point set. Each point in the point set is illustrated as
the black markers.

Let P ′ = {(xi, yi) : ∀pi ∈ P , p = (xi, yi, zi)} be the set P projected in the xy-plane
as illustrated in Figure 2.9. A triangulation of P ′ is the set of non-degenerate
triangles formed connecting the points in P ′ with non-overlapping edges (Preparata
and Shamos, 1985, p. 19). The union of the triangles forms the convex hull conv(P ′)
to P ′. The set conv(P ′) is the smallest set in R2 that contains P ′ ⊂ R2 and the
line segment between every possible pair of points in conv(P ′) (De Berg et al., 2008,

3A set of three or more points are collinear if they lie on the same straight line (Farin, 1997,
p. 19).
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p. 2). Furthermore, the triangulations that we consider are generated based on
the planar coordinates to each point in P . The triangulation is therefore generated
based on P ′ only. It is also possible to obtain a data dependent triangulation where
the elevation associated to each point is also considered during the construction of a
triangulation. Data dependent triangulations are described in e.g (Dyn et al., 1990),
(Brown, 1991), (Hjelle and Dæhlen, 2006, pp. 95 - 112).

After finding a triangulation T (P ′) of P ′, each vertex in the triangulation can then
be “lifted up” such that the elevation to each vertex at (xi, yi) corresponds to the
elevation zi as shown in Figure 2.11. This is possible since there is only one value
zi at each position (xi, yi).

Figure 2.11: A lifted triangulation. The gray points belong to P ′. Each point in P ′ are
a projection of the point set P . In P , each point is associated with a height
zi. Each vertex in the triangulation T (P ′) can be lifted to its corresponding
height in P .

When we discuss triangulations of a point set P ⊂ R3 in this thesis, we actually refer
to the triangulation of the projected point set P ′ ⊂ R2 of P . We have decided to let
a triangulation of P be understood as the planar triangulation of P since we do not
consider triangulations in other dimensions. We say that a surface is triangulated
when the planar triangulation of a point set is lifted up.

One can then find the height to each point from conv(P ′) in the lifted triangulation.
For applications in GIS, using a linear interpolant over every triangle is usually
sufficient, as it does not introduce oscillating effects in the interpolation (Li et al.,
2004, p. 74). It is possible to obtain curved surfaces over triangulations by using
for instance Bernstein polynomials, see e.g (Lai and Schumaker, 2007, pp. 20 - 85),
(Akenine-Möller et al., 2018, pp. 740 - 743), but at the cost of more computations.
Suppose p1, p2, and p3 are the vertices of a triangle T ∈ T (P ′) and associated with
the elevations z1, z2, and z3, respectively. If we perform a linear interpolation over
the triangle, the interpolated height zT (x, y) at every position (x, y) inside T can be



Section 2.3.1 - Delaunay triangulation 20

found by (Hjelle and Dæhlen, 2006, p. 4):

zT (x, y) = b1(x, y)z1 + b2(x, y)z2 + b3(x, y)z3, (2.7)

where the values of bi : R2 → R for i = 1, 2, 3 are determined by how (x, y) is
located relative to p1, p2, and p3 and

∑3
i=1 bi(x, y) = 1. The values bi(x, y) for

i = 1, 2, 3 are called the barycentric coordinates of (x, y) relative to the triangle T .
The computation of bi(x, y) for i = 1, 2, 3 is described in (Lai and Schumaker, 2007,
pp. 18 - 19). Figure 2.12 shows how a point is mapped onto a triangle.

Figure 2.12: Left: The interpolated elevation, draw as the cross, to the point p with
respect to the triangle formed by the vertices p1, p2, p3. Right: The triangle
and the point viewed from another angle. The figures are inspired by Figure
5 in (Soommart and Paitoonwattanakij, 1999, p. 70).

There always exists a triangulation of a point set (Cheng et al., 2012, pp. 31 - 32).
There could also exist several triangulations for the same point set (De Berg et al.,
2008, p. 192). These triangulations could be considered as equally appropriate for
an application. Choosing the most appropriate or best triangulation is therefore not
always straight forward. Generally, numerical errors in Equation (2.7) can occur if
the triangles are long and thin (Shewchuk, 2002). There are some special cases long
and thin triangles can be advantageous, see e.g (Rippa, 1992). In general, we would
like to avoid long and thin triangles for our application. A type of triangulations that
tend to avoid using such triangles in their construction, are Delaunay triangulations
(Hjelle and Dæhlen, 2006, pp. 47 - 50). They are often encountered in surface
modeling since there are well established theory about their properties and efficient
algorithms for constructing the triangulations.

2.3.1 Delaunay triangulation

Delaunay triangulations are often encountered in GIS since they are commonly used
to construct TINs. What separates a Delaunay triangulation from other triangula-
tions, is that a Delaunay triangulation constructs triangles that are as close to being
equiangular as possible. A Delaunay triangulation satisfies the circle criterion. The
circle criterion states that the circumscribed circle to every triangle T in a triangu-
lation cannot include any vertices from the triangulation in its interior (Hjelle and
Dæhlen, 2006, p. 57). Finding the triangulation of a point set P that satisfies the
circle criterion is equivalent to find the triangulation that maximizes the smallest
angle of a triangle over all possible triangulations of P . A proof of this property can
be found in e.g (Lawson, 1977, Sec. 3 pp. 1 - 8).
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A Delaunay triangulation D(P ) of a point set P has the property that removing
and inserting a point p requires only a local update of D(P ) to satisfy the circle
criterion. In (Lawson, 1977, Sec. 3.4) it is proved that an insertion of a point
requires a local retriangulation for the triangulation to satisfy the circle criterion.
Since a point insertion requires a local retriangulation, then a point deletion will
also require a local retriangulation. This is because a point deletion can be regarded
as the reverse operation to a point insertion. This is discussed further in (Midtbø,
1994). We discuss these properties further in Section 2.3.2.1 and Section 2.3.2.2.

The retriangulation after a point deletion is performed within the cell C(p) of a vertex
p, see Figure 2.13. A cell C(p) is the set of triangles in a Delaunay triangulation
that has p as vertex (Lai and Schumaker, 2007, p. 234).

Figure 2.13: Left: The gray area is the cell C(p) to the point p. Right: After p is
removed, only the triangles in C(p) are retriangulated.

A point set containing more than three points where the entire set is not collinear
can be triangulated. A point set that can be triangulated, will have at least one
Delaunay triangulation (Cheng et al., 2012, p. 39). The Delaunay triangulation is
unique if no four or more points in a point set P lies on the same circle that does
not contain any points from P in its interior.

As a consequence of the circle criterion, a Delaunay triangulation of a point set P
has the property of being dual to the Voronoi diagram of P . They are dual in the
sense that the Delaunay triangulation can be derived from the Voronoi diagram and
vice versa. This duality is discussed in (Okabe et al., 2000, pp. 52 - 54).

2.3.2 Voronoi Diagrams

The Voronoi diagram of a point set P ⊂ R2 can give information about which points
in P are spatially closest to each other. The Voronoi polygon4 V(pi) of a point pi ∈ P
is the set of points from R2 that are closer to pi than any other point from P (Okabe
et al., 2000, p. 45),

V(pi) = {x : d(x, pi) ≤ d(x, pj) ∀pj ∈ P, j 6= i},
4Also called Dirichlet regions, Thiessen polygons or Wigner-Setiz cells (Preparata and Shamos,

1985, p. 204).
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where d(p, q) =
√

(x1 − x2)2 + (y1 − y2)2 is the Euclidean distance5 between the

points p = (x1, y1) and q = (x2, y2).

The Voronoi polygon V(pi) of a point pi ∈ P can be regarded as the intersection of
all half-planes between pi and the other points pj from P . The half-plane H(pi, pj)
is the set of points that are closer to pi than pj in Euclidean distance, including the
perpendicular bisector6 of the line segment that has pi and pj as endpoints (Cheng
et al., 2012, p. 155). The half-plane can be expressed as (Preparata and Shamos,
1985, p. 204):

H(pi, pj) =
{
x ∈ R2 : d(x, pi) ≤ d(x, pj)

}
.

Since V(pi) consists of all points that are closer to pi than any other point from P ,
we get that

V(pi) =
⋂
pj∈P
j 6=i

H(pi, pj).

Figure 2.14 shows a half-plane and how the intersection of all of the other half-planes
forms V(pi).

Figure 2.14: The half-plane H(pi, pj), illustrated as the gray region. The smaller, gray
dotted lines shows the bisector between the half-planes to the other points
illustrated as black circles. The Voronoi polygon V(pi) is obtained by taking
the intersections of the half-planes between pi and all of the other points.
Note that we have defined V(pi) to include its boundary, shown as the thick
lines.

Two points pi and pj are Voronoi neighbors if the intersection between their Voronoi
polygons is non-empty, i.e V(pi)∩V(pj) 6= ∅ (Figure 2.15). Every point x in the non-
empty set V(pi) ∩ V(pj) has the property d(x, pi) = d(x, pj). They form a Voronoi
edge.

5More generally, the Voronoi diagram could also be defined using another metric d(u, v) than
the Euclidean, see (Fortune, 2017, pp. 712 - 713).

6The bisector of a line l is the line that intersects l at its midpoint. (Cheng et al., 2012, p.
155)
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Figure 2.15: The Voronoi polygon V (pi) of the point pi is shown as the gray area. The
points pi and pj are Voronoi neighbours since they share a Voronoi edge.
The Voronoi edge is illustrated as the thick line and consists of all the
points that located equally far apart from pi and pj .

A Voronoi vertex is a point y where the intersection between three or more Voronoi
polygons is non-empty. This means that d(y, pi) = d(y, pj) = d(y, pk) for at least
one triplet of distinct points pi, pj, pk ∈ P . A Voronoi vertex is thus the loci to the
center of the circumscribed circle to the triangles formed by the points pi, pj, and
pk, see Figure 2.16. As described in Section 2.3.1, the circle does not contain any
other point from P .

Figure 2.16: The plus is located at a Voronoi vertex that is the center to the dotted
circle. The circle circumscribes the triangle in a Delaunay triangulation
that has pi, pj , and pk as vertices.

We get the Voronoi diagram Vor(P ) of a point set P by collecting the Voronoi
polygon to each point in P (Okabe et al., 2000, p. 45),

Vor(P ) = {V(p) : p ∈ P}.
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The Delaunay triangulation of a point set P can be derived from Vor(P ) if we connect
all points in P that are Voronoi neighbors in Vor(P ), as shown in Figure 2.17.

Figure 2.17: The Delaunay triangulation of a point set can be obtained by connecting
the Voronoi neighbors to each point in the point set.

The duality makes it possible to consider the Delaunay triangulation and Voronoi
diagram interchangeably. The duality also shows that the Delaunay triangulation
connects the points that are closest to each other. Through a Delaunay triangulation
of a point set, it is possible to extract and analyze points closest to each other.

2.3.2.1 Insertion of a point into the Voronoi diagram

As (Lawson, 1977) proved, an insertion into a Delaunay triangulation D(P ) for a
point set P requires only a local retriangulation. This is an important property
of D(P ) that we used in our implementations. We are only interested in the case
where the inserted point belongs to the convex hull conv(P ) of P . We use the
duality between the Voronoi diagram and Delaunay triangulation to provide a short
argument on why an insertion is local and how it is bounded.

Consider a point p 6∈ P and p ∈ conv(P ) that is inserted into Vor(P ). The inserted
point will be located in a Voronoi polygon V(q) to a point q where q 6= p. Let qi be
the N Voronoi neighbors to q and Vq the set containing qi for i = 1, . . . , N . Assume
that p is contained in M < N circles Cij that are centered at the Voronoi vertices
shared by V(q), V

(
qij
)
, and at least one V(qik) where qij , qik ∈ Vq and j 6= k for

j = 1, . . . ,M as shown in Figure 2.18.
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Figure 2.18: The inserted point p will be contained in some circles centered at Voronoi
vertices. Each colored circle is centered at the Voronoi vertex having similar
color.

The inserted point p will have the property d(p, qij) ≤ d(q, qij) for every j, otherwise
it would not have been in Cj. This means that H(p, qij)∩V

(
qij
)
6= ∅ for every j, as

illustrated in Figure 2.19.

Figure 2.19: The gray area is the newly constructed Voronoi polygon to p. It is enclosed
by the perpendicular bisectors at the dotted lines between p and every qij .
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The Voronoi polygon of p can thus be found by (Sibson, 1981, pp. 26 - 27):

V(p) =
⋃

j=1,...,M

H(p, qij) ∩ V
(
qij
)
. (2.8)

The Delaunay trianulation of P∪{p} is found by connecting p to qij for j = 1, . . . ,M ,
as they now share a Voronoi edge.

It is impossible that p is located in some other circle C centered at a Voronoi vertex
v not shared by V(p) and passing through the Voronoi neighbors that shares v.
Since p is located in V(q), it is closest to q than any other point from P . If p ∈ C ,
then p would be closer to some of the Voronoi neighbors C passes through, which
is a contradiction.

Hence, an insertion of a point only requires a local retriangulation which is bounded
by the triangles that has qij as vertices.

2.3.2.2 Deletion of a point from the Voronoi diagram

A deletion can be seen as a reverse operation to insertion. In (Midtbø, 1994) it is
discussed that a deletion requires a retriangulation of the cell to the deleted point.
Based on the previous paragraph regarding the insertion of a point into a Voronoi
Diagram, we would like to provide a short argument on why deletion of a point
requires a local retriangulation of the dual Delaunay triangulation.

Suppose p is the point to be deleted from a point set P . Based on Figure 2.19,
we can see that V(p) can be regarded as an union of smaller parts to the Voronoi
polygons of the Voronoi neighbors to p. Let Vp be the set of Voronoi neighbor to
p. A removal of a point p would make the Voronoi polygons to “grow in”, as V(p)
contains regions of points closer to all points in Vp than any other point in P \ {p}.
Hence, only the Voronoi polygons to the points in Vp are changed. The Voronoi
edges to the changed Voronoi polygons becomes different, but only shared between
the points in Vp since they are closest to each other than any other point in P . Since
the changed Voronoi edges are shared by the points in Vp, only a retriangulation of
the triangles formed by the points in Vp in D(P ) is necessary to obtain D(P \ {p}).

2.4 Error assessment

In order to evaluate the algorithms, we have chosen a set of error assessments that
describes how much the simplified surfaces based deviates from the input surfaces.
Assume that PT is a raster TIN of a given raster DEM P . The sets PT and P
contains the same amount of points. Each point pi from P is assigned an eleva-
tion zi. From the TIN to raster conversation, the point pi gets associated with an
approximated elevation zTpi from PT . How much each approximated elevation zTpi
deviates from the original elevation zi, can be quantified differently based on which
error assessment one decides to use.

We have decided to consider two error assessments in our studies when the given
data are not associated with a set of weights. The first assessment, is the root mean
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square error (RMSE) that is commonly found in GIS literature (Reuter et al., 2009,
pp. 94 - 95 ). The RMSE is often encountered as it describes how much the model
and the input data deviates in general, has the same units as the input data, and is
not too sensitive to noise in the data. The RMSE eRMSE(P, PT ) between P and PT
is

eRMSE(P, PT ) =

√√√√ 1

N

N∑
i=1

(
zi − zTpi

)2
, (2.9)

where N is the number of points in the sets P and PT and zi is the sampled elevation
assigned to a point in P and zTpi the corresponding approximated elevation assigned
to a point in PT . The RMSE can be intuitively thought as a measurement on how
the approximated elevation in PT deviates from the elevations in P in general. We
consider also the max deviation eMAX(P, PT ) between P and PT that is given by

eMAX(P, PT ) = max
i=1,...,N

∣∣zi − zTpi ∣∣.
We have chosen to only consider one error assessment, however, when the input
data are associated with a set of weights. Each residual (zi − zTpi )

2 is multiplied
by the corresponding weight wi from Equation (2.6) that represents the quality to
the measurement zi. We obtain a weighted RMSE (wRMSE) that is inspired by the
weighted least squares (Strutz, 2011, pp. 26 - 27):

ewRMSE(P, PT ) =

√√√√∑N
i=1wi ·

(
zi − zTpi

)2∑N
j=1wj

. (2.10)

The weights are divided by their sum to let the wRMSE be close to the RMSE if the
weights are approximately equal. As for the max deviation, we have decided to omit
it when evaluating how the triangulated surfaces deviates from the input surfaces.
We think that if there is some elevations associated with high amount of noise, the
weighting should be able to dampen to contribution to it in Equation (2.10).





3

Surface simplification

The bathymetric maps obtained from an InSAS contains large amount of data.
This introduces computational overhead in applications where for instance efficient
data storage is important. In this chapter, we present two classes of simplification
algorithms that later is applied on bathymetric maps obtained from an InSAS. The
algorithms are defined to take into account both the spatial relationship between
the points described by a Delaunay triangulation and the weights obtained from the
associated coherence to each data point. Furthermore, a feature selection method
is presented that is used together with one of the described algorithms.

3.1 Methods based on Delaunay triangulations

The points that are spatially closer to each other and associated with similar ele-
vations might be redundant to keep. These points can represent almost the same
information about the surface they were sampled from. This idea of points being
close to each other and are more likely to be related in terms of elevation follows
Tobler’s first law of geography (Tobler, 1970). A Delaunay triangulation D(P ) con-
nects points that are spatially closest to each other in a point set P . From D(P ),
we can extract and compare the associated elevations to the nearby points to every
point in P .

There exists different classes of surface simplification algorithms, see (Wilson, 2018,
pp. 26 - 27), (Heckbert and Garland, 1997, p. 6 - 16). Two of the classes that
we consider are point decimation and point refinement. Decimation algorithms
iteratively removes points from their input point set (Heckbert and Garland, 1997,
p. 14). Refinement algorithms begins with a subset of the input point set and
iteratively adds points to the subset (De Floriani and Magillo, 2002, p. 382), which
is the opposite of how decimation algorithms performs the simplifications. Both of
the algorithms usually base their point selection on the computed significances (Li
et al., 2004, p. 77). The iterative algorithms are greedy since they only consider
what is best to do one iteration at a time. We describe decimation and refinement
in Section 3.1.1 and Section 3.1.2, respectively. As a design criterion, we chose to
only use the points from the input point set. Introducing a new point based on the
input data could be challenging to model its weighting of and could require more
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computations. Point selection algorithms are therefore more appropriate for our
application.

3.1.1 Decimation

In decimation, or thinning, points are iteratively removed from the input point
set. The removal of points is based on a significance measure to each point. The
significance measurement is supposed to describe how much the point contributes
to represent important features of the point set, which in our case is elevation to
each point. A decimation algorithm selects the point that has the least significance
for every iteration.

Several methods exists for decimation based on Delaunay triangulations such as
(Lee, 1991, pp. 272 - 274), (Demaret et al., 2005), (Li et al., 2014). What separates
the algorithms generally, is how the significance to each point is computed. We have
chosen to follow two of the presented methods for computing the significances from
(Demaret et al., 2005). They also presented the general formulation of a decimation
algorithm, the ”Thinning” algorithm, which we based most of our implementations
on. We chose to follow their article as we thought they provided a comprehensive
description on how decimation can be done in general. Furthermore, we found their
proposed significances easy to adapt for our application where we are interested to
incorporate the weights from Equation (2.6) in our simplification algorithms.

The Delaunay triangulation D(P ) of an input point set P is computed first. The
point set P is assumes to be a raster DEM. The algorithm computes then the
significance ξ(p;D(P )) to each point p ∈ P based on D(P ), except for the corner
points to P . The corner points are always included to ensure that the simplified
point set has the same convex hull as P . The function ξ(p;D(P )) aims to capture
how important p is to describe the sampled surface in P . The computed significance
ξ(p;D(P )) should be low if p contains redundant data compared to the other points
in P , and high if p contains important data compared to the other points in P .
The significance should also take into account that each data point is associated
with a weight w that described the quality of its assigned elevation. The point p′

that has the least significance ξ(p′;D(P )) of all points from P , is removed from
the simplified point set. Points are iteratively removed until some criteria is met.
Our implementation allows the decimation algorithm to terminate if either a given
number of deletions are performed or until the triangulated point set reaches a
given error threshold for a specified error assessment. Algorithm 1 summarizes
the described procedure for a weighted decimation algorithm based on Delaunay
triangulations.
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Algorithm 1 Decimation algorithm with a given number of k deletions.

INPUT: The point set P ⊂ R3 to simplify.

A set of weights W that describes the quality of the
sampled elevation to each point in P .

A given number of k deletions.

OUTPUT: A point set that contains less points than P .

1: procedure Decimation(P , W , k)

2: Let P (0) = P .

3: Compute and store ξ
(
p;D

(
P (0)

)
, W

)
for all p ∈ P .

4: for i = 0, . . . , k − 1 do

5: Find p(i) that has the least significance, i.e p(i) = min
p∈P (i)

ξ
(
p;D

(
P (i)

)
, W

)
.

6: Let P (i+1) = P (i) \
{
p(i)
}

.

7: Update the stored significances with ξ
(
p;D

(
P (i+1)

)
, W

)
for all points p ∈ P (i+1) that were affected by the removal in D

(
P (i)

)
.

8: end for

9: return The simplified data set P (k).

10: end procedure

The Algorithm 1 shows how the decimation is performed for given number of k
deletions. The general idea is similar when an error threshold for a given error
assessment is given. The for loop in Algorithm 1, line 4, is replaced by a while loop.
For every iteration i in the while loop, the error between the triangulated simplified
point set P (i+1) and the given input point set P is computed. The error is computed
by a user-specified error assessment, which in our case can be one of the assessments
as described in Section 2.4. The while loop terminates after m iterations where
model error of P (m+1) is greater than a given error threshold and returns P (m).

The two proposed computations of significance from (Demaret et al., 2005) are called
“Adaptive thinning 1 ” (AT1) and “Adaptive thinning 3 ” (AT3). The former method
was the slowest among their three proposed significances, but gave the least max
deviation between D

(
P (k)

)
and P when applied to a terrain. The latter was shown

to be the fastest among their proposed significances. It returned simplified point
sets P (k) where the max deviation between D

(
P (k)

)
and P was between the max

deviation of the two other proposed significances when applied to a terrain. The
results referred to here can be found in (Demaret et al., 2005, p. 330).
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3.1.1.1 Adaptive Thinning 1: Significance using retriangulated cells

This computation of significance AT1 was found to be the slowest, yet gave the
least max deviation in the triangulated simplified point sets among the proposed
significances in (Demaret et al., 2005). This significance seems promising to use if
the model error should be low and computational time is not crucial.

As described in (Demaret et al., 2005, p. 325), AT1 considers the cell C(p) to every
point p it is supposed to find the significance of. The idea is to see how a possible
removal of a point p affects the triangulation and the interpolated elevations to the
points close to p. Let p ∈ P be a point that AT1 is supposed to find its significance of.
Assume that Algorithm 1 is at iteration j where the significances ξ

(
p;D

(
P (j+1)

))
are

computed for a selection of points p from P (j+1). Consider the set Vp that contains
all of the Delaunay neighbors to p in D

(
P (j+1)

)
. If p is removed from D

(
P (j+1)

)
, only

the triangles in C(p) needs to be changed such that the triangulation of P (j+1) \ {p}
is a Delaunay triangulation (Section 2.3.1). Hence, it is enough to find how the
triangles are formed in D(Vp), see Figure 3.1. The calculation of the M interpolated
elevations to every point ci ∈ C(p) ∩ P (j+1) for i = 1, . . . ,M is therefore based on
D(Vp) only.

Figure 3.1: How a point removal affects a Delaunay triangulation. Left: The point p′

is interpolated to one of the triangles in C(p). Its interpolated elevation
becomes the elevation at the cross. Right: The retriangulation of C(p) after
p is removed. The old interpolated value of p′ has to be updated by the new
interpolated value at the gray cross.

Since ci ∈ C(p)∩P (j+1), we have that ci ∈ P (j+1). The associated sampled elevation zi
from the true surface at point ci = (xi, yi, zi) is therefore known and associated with
a weight wi from W . The AT1 computes the interpolation error ei = |zTi(xi, yi)− zi|
to ci, where zTi(xi, yi) is the interpolated height to ci in D(Vp), which is found by
using Equation (2.7), for i = 1, . . . ,M . We have adapted AT1 such that it weights
each interpolation error ei with the associated weight wi to ci. Our weighted AT1
(wAT1) find the significance ξwAT1

(
p;D

(
P (j+1)

)
, W

)
to p by

ξwAT1

(
p;D

(
P (j+1)

)
, W

)
= max

i=1,...,M
ei · wi.
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If all the weights are equal, we obtain AT1 from (Demaret et al., 2005). Otherwise,
we refer to wAT1 when the weights are different for each point in P .

3.1.1.2 Adaptive thinning 3: Significance using directional triangles

The proposed significance that we have chosen to consider from (Demaret et al.,
2005), is the AT3 that uses directional triangles (Demaret et al., 2005, p. 326)
that we define in the next paragraph. Finding directional triangles does not require
any retriangulation of a Delaunay triangulation. This made AT3 faster than the
proposed significances in (Demaret et al., 2005). The algorithm to find a directional
triangle is highly inspired by a discussion with Prof. Michael S. Floater, who co-
authored in (Demaret et al., 2005).

Assume that Algorithm 1 is at an iteration j where the significances to a selection
of points from P (j+1) has to be computed. Let p ∈ P (j+1) be the point we want
to compute its significance of. Let Vp = {pi}Ni=1 contain all of the N Delaunay
neighbors to p in D

(
P (j+1)

)
. A directional triangle Tpi is found with respect to a

vertex pi ∈ Vp. If one draws a line through pi and p, the line will intersect with
either an edge at the boundary ∂C(p) to the cell C(p) or another vertex from Vp. If
the line intersects with an edge at ∂C(p), there will be two distinct points pim and
pim−1 from Vp \ {pi} that are the endpoints to the edge at ∂C(p), see Figure 3.2.

p

pi

pim−1 pim

Tpi

Figure 3.2: The dashed line from pi through p intersects with an edge at the bound-
ary ∂C(p) of C(p). There are two points pim and pim−1 connected by that
edge. The directional triangle Tpi , enclosed by the black solid lines in the
illustration, is formed by using pi, pim−1 , and pim as vertices. The gray
lines represents the Delaunay triangulation of p and its neighbors Vp are
illustrated as the small gray dots.

If the line intersects at a point pim ∈ Vp, then the directional triangle Tpi is formed
by connecting pi, pim , and pim−1 . The point pim−1 is next to pim in clockwise direction
along ∂C(p).
Let im ∈ {k : k 6= i, k = 1, . . . , N} be the N − 1 indices such that the sequence
pi, pi1 , pi2 , . . . , piN−1

is a traversal through all of the points along ∂C(p) in counter-
clockwise direction, starting from pi. The point pi1 lies next to pi2 along ∂C(p) in
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counterclockwise direction, the point pi2 lies next to pi3 along ∂C(p) in counterclock-
wise direction, and so on. We let the indices be such that pi0 = piN−1

. To find a
directional triangle Tpi , a possible way is to consider the angles θim ∈ [0, 2π) be-
tween the edge ei connecting p and pi and the edge eim connecting p and piim for
all im, m = 1, . . . , N − 1. We are only interested in finding k where θik is greater
than or equal to π for the first time when traversing along ∂C(p) in counterclockwise
direction. When the k is found, a line through p and pi will cross an edge connecting
pik and pik−1

at ∂C(p), see Figure 3.3.

pi1

pi2 pi3

pi

p

θi1

θi2

θi3

Figure 3.3: Using angles between the edges to find a directional triangle. In this illus-
tration, θi3 > π. Thus the vertices pi, pi3 , and pi2 will form a directional
triangle to p with respect to pi.

A directional triangle Tpi is then formed by connecting the vertices pi, pim−1 and
pim .

The angle θim between the edges ēi and ēiim can be found by considering the cross
product between them. The edges can be represented as vectors in R3 by setting
their last component equal to zero. This is equal to setting their value along the z-
axis equal to zero. Let ei and eim be the vectors in R3 representing the edges ēi and
ēim , respectively 1. If we let the vertices p = (x, y), pi = (xi, yi), and pm = (xim , yim),
the vectors ei and eim can be found by

ei =

xi − xyi − y
0

 and eim =

xim − xyim − y
0

 . (3.1)

The cross product ei×eim is related to the angle θim between ei and eim (Matthews,
1998, p. 9) by

ei × eim = ‖ei‖‖eim‖ sin θimn , (3.2)

1We want to make a distinction between the edge ēi and the vector ei in R3 to avoid ambiguity.
An edge ēi can be represented quite differently than a vector. For instance, one could let ēi be
represented by its endpoints p and pi by letting ēi = (p, pi) as done in e.g (Hjelle and Dæhlen,
2006, p. 24). However, a vector in R3 is always represented by three components from R.



Section 3.1.2 - Refinement 35

where ‖·‖ is the Euclidean norm2 of its argument and n ∈ R3 the normal vector to
ei and eim . Since the components of ei and eim are known from Equation (3.1), it
is possible to compute ei × eim directly. We choose our coordinate system to be a
right-handed Cartesian coordinate system and refer to (Kreyszig, 2011, pp. 368 -
370) for a description of the coordinate system and how it affects the definition of
the cross product. The cross product between ei and eim is

ei × eim = ((xi − x)(yim − y)− (xim − x)(yi − y))k̂, (3.3)

with k̂ being the unit basis vector along the axis considered as the z-axis in this
thesis, see Figure 2.9.

Equating Equation (3.2) and Equation (3.3), and letting k̂ = n, gives that

(xi − x)(yim − y)− (xim − x)(yi − y) = ‖ei‖‖eim‖ sin θim . (3.4)

In Equation (3.4), sin θim is the only quantity that determines the sign of the left
side of the equality. The sign of sin θim changes from positive to negative when
θim ≥ π. From how ei and eim are defined in Equation (3.1), sin θim begins by being
positive. When traversing in counter clockwise direction, sin θim is positive until
some k where θk ≥ π. Thus, it is sufficient to find a k where

(xi − x)(yik − y)− (xik − x)(yi − y) ≤ 0

for the first time when traversing through the sequence pi1 , pi2 , . . . , piN−1
along

∂C(p).
After having found Tpi , the elevation zTpi (x, y) at point p = (x, y) in Tpi is found by

using the barycentric coordinates as shown in Equation (2.7). Since p ∈ P (j+1) where
P (j+1) ⊂ P , the sampled elevation z along with its associated weight w is known.
The interpolation error ei of p at the directional triangle Tpi is then found by ei =∣∣zTpi (x, y)− z(x, y)

∣∣ for i = 1, . . . , N . Each ei is multiplied by wTpi ,1 +wTpi ,2 +wTpi ,3,
where wTpi ,1, wTpi ,2, and wTpi ,3 are the weights from W associated to the vertices
of Tpi for i = 1, . . . , N . The significance ξwAT3(p;D(P ),W ) to the point p from the
weighted AT3 (wAT3) is obtained by

ξwAT3(p;D(P ),W ) = max
i=1,...,N

ei ·
(
wTpi ,1 + wTpi ,2 + wTpi ,3

)
,

where we obtain AT3 from (Demaret et al., 2005) if all of the associated weights in
W are equal.

3.1.2 Refinement

In contrast to decimation that iteratively removes points from the input point set, a
refinement method begins with a subset of the input point set and iteratively inserts
points into the subset. A refinement algorithm can be faster than a decimation
algorithm if the simplified point set should contain far less points than the input

2If a vector a ∈ Rn has components ai for i = 1, . . . , n, then the Euclidean norm is defined by
‖a‖ =

√∑n
i=1 a

2
i (Kreyszig, 2011, p. 313).
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point set (Pfeifer and Mandlburger, 2018, p. 369). This is because refinement
initializes with a coarse model of the input point set, which might be closer to the
desired output than the whole input point set.

As for decimation, an iterative refinement algorithm follows a general algorithm
and is defined accordingly to how the significancy to each point is computed. A
refinement algorithm inserts points that has the largest significancy compared to
the other considered points one iteration at a time. The significancy should describe
how important the point is to include in a simplified point set in order to represent
important features of the sampled surface.

The algorithm initializes by forming a set P (0) that contains the points that forms
conv(P ) from the input point set P , and possibly combines it with some other given
points from P . The refinement algorithm extends P (0) by inserting one point for ev-
ery iteration. The algorithm terminates when a number of k insertions into P (0) has
been performed or if the triangulated extended point set satisfies an error threshold
for a specified error assessment. Algorithm 2 summarizes the general definition of
an iterative refinement algorithm for a given number of k point insertions.

Algorithm 2 Refinement algorithm for a given number of k point insertions.

INPUT: The point set P ⊂ R3 to simplify.

A set of weights W that describes the quality to each
point in P .

A given number of k insertions.

OUTPUT: A point set containing less points than P .

1: procedure Refinement(P , W , k)

2: Let P (0) ⊂ P be the subset of points where conv
(
P (0)

)
= conv(P ).

3: Compute and store ξ
(
p;D

(
P (0)

)
, W

)
for all p ∈ P \ P (0).

4: for i = 0, . . . , k − 1 do

5: Find p(i) that has the most significance, i.e p(i) = max
p∈P\P (i)

ξ
(
p;D

(
P (i)

)
,W
)
.

6: Let P (i+1) = P (i) ∪
{
p(i)
}

.

7: Update the stored significances with ξ
(
p;D

(
P (i+1)

)
, W

)
for all points p ∈ P \ P (i+1) that were affected by the insertion in D

(
P (i)

)
.

8: end for

9: return The reduced data set P (k).

10: end procedure

The Algorithm 2 shows how the refinement is performed for a given number of k
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insertions. The general idea is similar when an error threshold for a given error
assessment is given. The for loop in Algorithm 2, line 4, is replaced by a while loop.
For every iteration i in the while loop, the error between the triangulated simplified
point set P (i+1) and the given input point set P is computed. The error is computed
by a user-specified error assessment, which in our case can be one of the assessments
as described in Section 2.4. The while loop terminates after m iterations where
model error of P (m+1) is greater than a given error threshold and returns P (m).

We consider only one definition of significance for refinement, even though several
algorithms exists such as those described in (Heckbert and Garland, 1997, pp. 10
- 14) and (Soommart and Paitoonwattanakij, 1999). The definition follows closely
the “local error measure” from (Garland and Heckbert, 1995), as they found this
significance to be the fastest and returned the most accurate triangulated point sets
among the other significances they tested for.

Let P be the input point set Algorithm 2 is supposed to simplify and contains N
points. Assume that Algorithm 2 is at iteration j and must compute the significance
ξwRef

(
p;D

(
P (i+1)

)
, W

)
to M points pi from P \ P (j+1), where 0 ≤ M ≤ N . Each

point pi is located in some triangle in D
(
P (j+1)

)
. Assume that pi is located in the

triangle Tpi and its interpolated height within Tpi is zTpi . Since pi ∈ P \ P (j+1), its
associated elevation zi sampled from some surface and its weight wi ∈ W computed
from Equation (2.6) is also known for all i = 1, . . . ,M . The weighted significance
ξwRef

(
p;D

(
P (i+1)

)
, W

)
is found by weighting the interpolation error ei =

∣∣zTpi − zi∣∣
for each pi;

ξwRef

(
p;D

(
P (i+1)

)
, W

)
= max

i=1,...,M
ei · wi.

The significance as proposed in (Garland and Heckbert, 1995) is obtained when the
weights in W are equal.

3.2 Point extraction based on quadtree splitting

We consider how a point feature extraction can be used together with refinement.
The refinement algorithm begins with a coarse model of the input point set. The
triangles in the initial triangulation consists of few triangles that covers the convex
hull to the input point set. The triangles can cover large areas and have many points
located within them. There are therefore many points to compute the significances
of and updated in the first iterations in the simplification process.

The input data are assumed to be in raster format. This format is convenient
to use for analysis of the represented surface as we can for instance compute any
feature within a neighborhood centered at each pixel. It is thus possible to obtain a
feature image where each pixel describes how each point from the input raster data
contributes to represent the selected feature. Thereafter, a resampling of the feature
image can be performed to extract the points that describes most of the feature.

A surface can be characterized by abrupt changes in its topography (Zhou and Chen,
2011, p. 39). We consider the variance of the elevations within a local neighborhood
to each pixel of a given raster DEM data. The variance of the DEM can describe
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the variation of the elevations to each point in the given DEM and is simple in its
definition. We therefore think this could be useful for our application.

Suppose P is a raster DEM formed by a grid I of size N ×M . The value z[i, j]
where (i, j) ∈ I is the assigned elevation to a point p located at (xi, yj) in the plane.
Suppose a rectangular neighborhood of size (2n+ 1) × (2m+ 1) is given for some
chosen non-zero positive integers n andm. The neighborhood is centered at (i, j) ∈ I
when it computes the estimated variation for every point associated with the indices
(i, j) ∈ I. Before the estimated variation σ[i, j] of pij = (xi, yj, z[i, j]) is computed,
a second order polynomial fit is applied to the points within the neighborhood. The
second order polynomial fit is applied to reduce the presence of noise in the elevations
assigned to the points within the neighborhood. Let S = (2n+ 1) · (2m+ 1) and
pk = (xik , yik , z[ik, jk]) the points that are located within the neighborhood centered
at (i, j) for k = 1, . . . , S. The second order bivariate polynomial fit is performed by
finding the polynomial coefficients stored in a vector β = [β1, β2, . . . , β6]

T by the
method of least squares (Hastie et al., 2009, pp. 44 - 45). This approach of fitting
a second order bivariate polynomial to a surface is described in (Li et al., 2004, pp.
124 - 126), but note that Equation (6.27) in (Li et al., 2004, p. 126) should not
include the rightmost n× 6 matrix X. Our vector β can be found by

β =
(
MTM

)−1
MTz,

where

M =


1 xi1 yj1 x2i1 xi1yj1 y2j1
1 xi2 yj2 x2i2 xi2yj2 y2j2
...

...
1 xiS yjS x2iS xiSyjS y2jS

 and z =


z[i1, j1]
z[i2, j2]

...
z[iS, jS]

 .

The raster data P is padded with its nearest neighbor when the polynomial fit is
applied to the pixels along the borders of P . We chose to pad with the nearest
neighbors as they do not introduce discontinuities in the polynomial fits along the
borders.

The fitted values z′[ik, jk] of z[ik, jk] for all k can be found by

z′[ik, jk] = β1 + β2xik + β3yjk + β4x
2
ik

+ β5xikyjk + β6y
2
jk
, k = 1, . . . , S.

The estimated σ′[i, j] centered at (i, j) ∈ I in a neighborhood of size (2n+ 1) ×
(2m+ 1) is then computed by

σ′[i, j] =

∑S
k=1 (z′[ik, jk]− µij)2

S
, k = 1, . . . , S,

where

µij =

∑S
k=1 z

′[ik, jk]

S

is the average of z′ located in the neighborhood centered at (i, j).
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The final image σ is thereafter found by scaling σ′[i, j] such that it has values between
one and zero inclusive for all (i, j) ∈ I (Gonzalez and Woods, 2010, pp. 101 - 102),

σ[i, j] =
σ′[i, j]− σ′MIN

σ′MAX − σ′MIN

where σ′MAX = max
(i,j)∈I

σ′[i, j] and σ′MIN = min
(i,j)∈I

σ′[i, j].

The variance image σ is thereafter non-uniformly resampled. The resampling is
supposed to take the points associated with high variance. At the same time, the
resampling must not take too many points that are close to each other and have
high variance. This is because refinement cannot reduce the number of points in
the initial set of points. We want this feature selection to help refinement converge
without making the resulting simplified point set contain more points than necessary.
Therefore, we have decided to use an adaptive resampling scheme based on quadtrees.

A quadtree is a tree where each node is associated to a rectangle that partitions a
rectangular domain recursively (Burrough et al., 2015, p. 63), see Figure 3.4. It is
constructed by subdividing a domain into rectangles until a given threshold is met
or the rectangles cannot be subdivided further. This data structure is commonly
encountered in GIS since it serves as an effective way of storing data at various levels
of details (Li et al., 2004, p. 198).

Figure 3.4: Illustration of how a rectangular domain, bounded by the thick lines, is
subdivided into rectangles by quadtree splitting.

The algorithm does not store the tree obtained from the quadtree split. It is only
the rectangles from the rectangular subdivision of the domain that are considered
to extract points from the variance image. We decided to let the base cases of the
splitting be determined by two thresholds tc and tv. The threshold tc is the number
of allowed number of points within each rectangle. The threshold tv is the desired
maximum variation σ within each rectangle. The algorithm terminates if either tc
is met or the maximum value of σ within a rectangle is not higher than tv. We refer
to the whole process of constructing a variation image and perform the quadtree
based resampling of it as variation sampling. When needed, we explicitly state the
parameters involved in a variation sampling.





4

Results

The simplification algorithms were applied on three types of different data sets that
are synthetic data not associated with coherence, synthetic data associated with
coherence, and a real data set acquired from an InSAS. In this chapter, we present
the results from the algorithms applied on the different data sets.

4.1 Validity of the local updates of significances

Our implementations are not based on any pre-developed code, except for the func-
tions that comes with MATLAB. We have interchangeably used MATLAB 2017a
and MATLAB 2019a throughout the development. The computations of the signif-
icances were applied on a toy example that we could compute the significances of
without the aid of any programs and compare with the results from the implemen-
tations. At the end, we ran our implementations though a test that we consider as
the most important. In this test, we verified whether our implementation correctly
performed the local updates of the significances after either a point insertion or a
point deletion.

The test was performed by applying our implemented decimation algorithms and
refinement algorithm in two different ways on an input point set P ⊂ R3. The tests
for both decimation and refinement followed similar structure. Hence, we provide a
general formulation of our tests. We let an Algorithm refer to either a decimation
algorithm or the refinement algorithm. We let an operation either be a point
deletion or point insertion. If the Algorithm refers to a decimation algorithm,
an operation is a point deletion. If the Algorithm refers to the refinement
algorithm, an operation is a point insertion. The tests were performed as follows:

1 The Algorithm was called within a for loop k times. The Algorithm
performed one operation on the given point set for every call within the for
loop. For each call, the Algorithm constructed a new Delaunay triangulation
and calculated the significance to every point in the given point set. The given
point set was either increased or reduced by one point for every iteration. After
k iterations, the Algorithm returned a point set P1.

41
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2 The Algorithm was called only once where it had to perform k operations,
where k was the same number as applied in 1. This call made the Algo-
rithm try to update the significances only to the points that were affected
by an operation within a loop, thus exploiting the property of Delaunay
triangulations where a local retriangulation is necessary after an operation.
The Algorithm returned a point set P2.

The point sets P1 and P2 were thereafter compared. If all of the points in P1 and
P2 were equal, the test was successful. We regarded two points p1 = (x1, y1, z1) and
p2 = (x2, y2, z2) as equal if x1 = x2, y1 = y2, and z1 = z2. We found from our
tests with different point sets P and number of k operations that one function
in MATLAB sometimes gave erroneous results that we had to circumvent. The
function pointLocation from Mathworks sometimes found the wrong triangles to
the points at the boundary ∂conv(P ) of conv(P ) they were supposed to be located
in. We decided to move the points at ∂conv(P ) except for the corner points by
10−13 into conv(P ) and use the translated points only for finding which triangles
the points were located in. After this circumvention, our tests were successful for
our selection of different P and k.

We concluded that the local updates of the significances performed as expected
based on our tests. This was important for us to verify, as the implementations
using local updates performed significantly better than constructing a new Delaunay
triangulation and recomputing the significances to all of the points of the given point
set in terms of computational time.

4.2 Measured efficiency of the implementations

Refinement can be faster than decimation if the simplified point set should contain
far less points than the original point set (Section 3.1.2). We measured the wall-
clock time for each of the implemented algorithms to see if our implementations
followed the expected trends in time. We use the term wall-clock time to refer to
the execution time of a algorithm throughout this thesis. The measured wall-clock
times served as an indicator to see if we have implemented the algorithms such that
excessive computations were avoided.

We chose an input point set of 40000 points. The point set was simplified to a selec-
tion of number of points. For each amount of points, we repeated the simplification
five times. The wall-clock time was measured for every repeated simplification and
averaged. The measured wall-clock times are shown in Figure 4.1.
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Figure 4.1: The measured wall-clock times for to the simplification algorithms. The mea-
surements were performed on a computer having an Intel i7-8700 processor
(3.2 GHz base frequency).

The AT3 was faster than AT1. The results in (Demaret et al., 2005, p. 330) showed
that AT3 is supposed to be faster than AT1. The refinement algorithm was faster
than the decimation algorithms until a certain number of points in the simplified
point sets was reached. The refinement algorithm was faster than AT1 as long as
the simplified point set contained approximately less than 75 percent of the points
from the input point set. The refinement algorithm was faster than AT3 as long as
the simplified point set was less than approximately 40 percent of the points from
the input point set.

4.3 Simplification of surfaces without coherence

The three simplification algorithms were applied on sets of synthetic surfaces that
were generated by two different functions. The tests where the wall-clock time was
measured, was performed on a computer having an Intel i7-8700 processor with 3.2
GHz base frequency and six cores.

4.3.1 The generated surfaces

Two bivariate functions that describes different surfaces were chosen. The generated
surfaces have different characteristics compared to each other. This makes it possible
to examine how well the algorithms handles different cases of seabeds.
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Franke’s test function

The first test function was the Franke’s test function as presented in (Franke, 1979,
p. 13). It is defined as

z[i, j] = 0.75 exp

(
−(9xi − 2)2

4
− (9yj − 2)2

4

)
+

0.75 exp

(
−(9xi + 1)2

49
− 9yj + 1

10

)
+

0.5 exp

(
−(9xi − 7)2

4
− (9yj − 3)2

4

)
−

0.2 exp
(
− (9xi − 4)2 − (9yj − 7)2

)
,

(4.1)

where the coordinate samples xi and yj were both uniformly spaced in [0, 1] and
formed a grid I where (i, j) ∈ I. Together with z[i, j], they form a raster DEM
∀ (i, j) ∈ I.

The surface is smooth and has two peaks and one pit which are slowly varying
(Figure 4.2). This test function was chosen to test how well the algorithms handles
a smooth and slowly varying surface.
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Figure 4.2: Franke’s test function as presented in (Franke, 1979, p. 13) and the values
for x and y mapped to integer coordinates. The number of points is 64× 64
in this plot.

It is also of interest to the evaluate how the algorithms can handle edges and rapid
variations. Therefore, we defined our own test function where the surface have
regions with abruptly changing topography.

Ripples test function

The Ripples test function is inspired by the data set acquired from an InSAS that
is considered in Section 4.5. The function represents an extreme case of a seabed
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surface. The Ripples test function is defined as

z[i, j] =



0.5 cos
(
2π(5xi + yj)

)
+ 0.5, 0 ≤ i < 1

2
N and 0 ≤ j < 1

2
M

2

N

(
i− 1

2
N

)
, 1

2
N ≤ i < N and 0 ≤ j < 1

2
M

1.2, 11
20
M ≤ i < 19

20
M and 13

20
N ≤ j < 17

20
N

1.3, 13
20
M ≤ i < 17

20
M and 7

10
N ≤ j < 4

5
N

1, otherwise

. (4.2)

The samples xi and yj formed a grid I where (i, j) ∈ I and is uniformly sampled
from the interval [−1, 1]. As for Franke’s test function, z[i, j] form a raster DEM
together with xi and yj ∀ (i, j) ∈ I.

The test function is divided into four regions with different characteristics (Fig-
ure 4.3). We have named the regions as R1, R2, R3, and R4. Each region has its
own dominating feature. The region R1 is flat and has a constant elevation. The
region R2 has two rectangles placed on top of each other. The region R3 is rapidly
varying, described by the discrete sampled cosine in Equation (4.2). The region R4

is flat, but gradually increases its elevation from zero at the left hand side of the
region to one at the right hand side of the region. Region R1 and R2 is separated
from R3 and R4 by a cliff that has a depression angle of 90◦.
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Figure 4.3: The ripples test function. In this plot, the Ripples test function is generated
by 64 × 64 points. Left: The Ripples test function viewed from an angle.
Right: The regions R1, R2, R3, and R4 the Ripples test function consist of.

The regions need different densities of points to be represented by. The region R3

is the most rapidly varying region compared to the other regions. The edges to
the rectangles in R2 and the cliff between the regions R1 and R2 and the regions
R3 and R4 introduces discontinuity to the surface. It is of interest to examine how
the algorithms manages to represent the various regions and how the simplification
algorithms distributes their points for each region.



Section 4.3.2 - Franke’s test function 46

4.3.2 Franke’s test function

The algorithms were applied on a point set generated by Franke’s test function. All
of the studies that are described in this section were performed on a point set that
contained 40000 points, except for the studies described in Section 4.3.2.3.

4.3.2.1 Number of points after reaching an error threshold

It is of interest to examine how many points the simplified point sets contains after
reaching a given error threshold. We say that a point set satisfies an error threshold
if it is the smallest point set from an algorithm that have an error equal to or
smaller than the threshold. We have considered the RMSE and max deviation as
error assessments (Section 2.4). We chose a set of error thresholds that was used for
both assessments. The thresholds were 10−k for k = 1, . . . , 7. All of the algorithms
returned point sets with less than ten percent of the input point set for the error
thresholds of 10−2 and 10−1, see Table 4.1, Table 4.2, and Table 4.3. The point sets
from AT1 and refinement contained less than ten percent of points from the input
point set and satisfied an error threshold of 10−3 for both RMSE and max deviation.
The AT3 returned a point set that contained less than ten percent of points from
the input point set for RMSE threshold of 10−3, but not for the max deviation. The
AT3 returned point sets that had the largest amount of points compared to AT1
and refinement.

Table 4.1: The number of points in the simplified sets obtained from AT1 and the per-
centage of points from the input point set.

Error
threshold

Number of points
in simplified set,

RMSE

Percentage in size
of original point set,

RMSE

Number of points
in simplified set,
max deviation

Percentage in size
of original point set,

max deviation

1×10−7 39465 98.662 39966 99.915
1×10−6 36588 91.47 39580 98.95
1×10−5 26861 67.152 34400 86.0
1×10−4 8271 20.678 16763 41.908
1×10−3 842 2.105 2256 5.64
1×10−2 83 0.208 233 0.582
1×10−1 9 0.022 24 0.06

Table 4.2: The number of points in the simplified sets obtained from AT3 and the per-
centage of points from the input point set.

Error
threshold

Number of points
in simplified set,

RMSE

Percentage in size
of original point set,

RMSE

Number of points
in simplified set,
max deviation

Percentage in size
of original point set,

max deviation

1×10−7 39865 99.662 39998 99.995
1×10−6 38359 95.898 39978 99.945
1×10−5 33383 83.458 38389 95.973
1×10−4 13153 32.882 31436 78.59
1×10−3 1374 3.435 8422 21.055
1×10−2 150 0.375 497 1.242
1×10−1 17 0.042 62 0.155
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Table 4.3: The number of points in the simplified sets obtained from refinement and and
the percentage of points from the input point set.

Error
threshold

Number of points
in simplified set,

RMSE

Percentage in size
of original point set,

RMSE

Number of points
in simplified set,
max deviation

Percentage in size
of original point set,

max deviation

1×10−7 39480 98.7 39986 99.965
1×10−6 36795 91.988 39666 99.165
1×10−5 28034 70.085 34849 87.122
1×10−4 8778 21.945 17675 44.188
1×10−3 862 2.155 2209 5.522
1×10−2 88 0.22 263 0.658
1×10−1 10 0.025 29 0.072

For an easier comparison between RMSE and max deviation, we plotted the number
of points against the selected error thresholds for RMSE and max deviation in
Figure 4.4 and Figure 4.5, respectively.
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Figure 4.4: The number of points in the simplified point sets that satisfied the RMSE
thresholds.
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Figure 4.5: The number of points in the simplified point sets that satisfied the max
deviation thresholds.

The RMSE and max deviation made the simplified point sets follow similar trend in
terms of amount of points (Figure 4.4 and Figure 4.5). We chose therefore to consider
only one of the error assessments in the subsequent analyses of the algorithms applied
on the data set generated by Franke’s test function, namely the RMSE.

It is of interest to examine how the distribution of points differed in the point sets
that satisfied the same RMSE thresholds from the algorithms. The distribution of
points in a point set determines how the triangles are formed in the simplified surface.
This affects how the approximated surfaces becomes compared to the input surface.
The RMSE thresholds 10−3 and 10−2 were the largest thresholds we tested for that
made the algorithms return point sets with less than ten percent of point from the
input point set. The point sets that satisfied these thresholds differed by a factor
of ten in percentage of the amount of points from the input point set (Table 4.1,
Table 4.2, and Table 4.3). The triangulations that satisfied RMSE threshold of 10−3

are shown in Figure 4.6 and the triangulations that satisfied RMSE threshold of
10−2 are shown in Figure 4.7.



Section 4.3.2 - Franke’s test function 49

50100150200100 200

0

0.2

0.4

0.6

0.8

1

1.2

xy

z

AT1 with 842 points

0.2

0.4

0.6

0.8

1

1.2

E
le
va
ti
on

20 40 60 80 100 120 140 160 180 200

50

100

150

200

x

y

AT1 with 842 points

0.2

0.4

0.6

0.8

1

1.2

E
le
va
ti
on

50100150200100 200

0

0.2

0.4

0.6

0.8

1

1.2

xy

z

AT3 with 1374 points

0.2

0.4

0.6

0.8

1

1.2

E
le
va
ti
on

20 40 60 80 100 120 140 160 180 200

50

100

150

200

x

y
AT3 with 1374 points

0.2

0.4

0.6

0.8

1

1.2

E
le
va
ti
on

50100150200100 200

0

0.2

0.4

0.6

0.8

1

1.2

xy

z

Refinement with 862 points

0.2

0.4

0.6

0.8

1

1.2

E
le
va
ti
on

20 40 60 80 100 120 140 160 180 200

50

100

150

200

x

y

Refinement with 862 points

0.2

0.4

0.6

0.8

1

1.2
E
le
va
ti
on

Figure 4.6: The triangulated point sets that satisfied RMSE threshold of 10−3.
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Figure 4.7: The triangulated point sets that satisfied RMSE threshold of 10−2.

There is no clear distinctions between the triangulations. All of the algorithms
managed to preserve the peaks and the pit in their triangulated point sets. The
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only difference we observe is that AT3 used more triangles, but this was expected
from Table 4.2. The AT3 returned point sets that contained more points compared
to AT1 and the refinement algorithm (Figure 4.4). It is therefore of interest to
quantify better the triangulated structures to examine whether the triangulations
differed.

4.3.2.2 Distribution of the longest edges and smallest angles to the
triangles in a triangulation

We chose to look at the longest edge and smallest triangle to each triangle in a
triangulation. Long and thin triangles are generally not preferred in a triangulation
(Section 2.3). We computed the angles as described in (Press et al., 2007, pp. 1120
- 1121) to avoid numerical inaccuracies. The edge lengths were computed by using
the Euclidean norm between the vertices to the triangles. The longest edge length
and smallest angle to each triangle in a triangulation is presented in a scatter plot.
We normalized the longest edge lengths by the maximum possible edge length. The
maximum edge length is the diagonal to the input raster data. The raster data
are assumed to be defined over a rectangle or a square since this is the case for
the bathymetries from the InSAS we consider (Section 2.2). The input point set
we considered was formed by a 200 × 200 large grid. Since the input grid had 200
points along each axis, the diagonal was 200 ·

√
2 long from Pythagoras’ theorem.

The longest edge lengths to each triangle was therefore normalized by 200 ·
√

2. We
regard a long and thin triangle as a triangle where its smallest angle α is such that
α ≤ 5◦ and its longest normalized edge length l is such that l ≥ 0.4.

The simplified point sets contained equal amount of points such that the triangulated
structures could be compared. The number of triangles can vary even though the
amount of points are equal. The triangulated point sets will, however, share the
same lower and upper bounds for the number of triangles, see Lemma 1.2 in (Hjelle
and Dæhlen, 2006, p. 9). We made the algorithms simplify the given point set that
contained 40000 points down to 2000 points and 200 points. The triangulations and
their corresponding scatter plots of the simplified point sets with 2000 and 200 points
are shown in Figure 4.8 and Figure 4.9, respectively. The colors to the markers in
the scatterplots are used only to show better the distribution of the markers. The
red boxes in the scatter plots shows the area of when a triangle is considered as long
and thin.
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Figure 4.8: Triangulated point sets that contained 2000 points. Left column: The tri-
angulated point sets viewed from above. Right column: The scatter plots of
each triangulation.
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Figure 4.9: Triangulated point sets that contained 200 points. Left column: The trian-
gulated point sets viewed from above. Right column: The scatter plots of
each triangulation.
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The AT3 was the only algorithm that returned a point set that had one long and
triangle present in its triangulation (Figure 4.8 and Figure 4.9). We also see from
the scatter plots, that the refinement algorithm returned point sets that formed
triangles where many of them had α ≤ 10◦. The AT1 and refinement returned point
sets that formed triangulations where the triangles were spread for 10◦ ≤ α ≤ 60◦.

We counted the number nT of long and thin triangles in the triangulations formed by
NT triangles to be sure how many long and thin triangles were present in the trian-
gulations, see Table 4.4. The table confirms our observation that only AT3 returned
a point set that contained only one long and thin triangle when triangulated.

Table 4.4: Table over long and thin triangles, which are triangles with α ≤ 5◦ and l ≥ 0.4.

Algorithm

nT
NT

,

200 points

Percentage of long
and thin triangles,

200 points

nT
NT

,

2000 points

Percentage of long
and thin triangles,

2000 points

AT1
0

369
0

0

3912
0

AT3
1

381
0.26

0

3938
0

Refinement
0

375
0

0

3922
0

4.3.2.3 Variation sampling to construct an initial subset of points for
refinement

The refinement algorithm returned point sets that contained almost the same num-
ber of points as the point sets from AT1 for a selection of RMSE thresholds (Fig-
ure 4.4). The refinement algorithm converged faster than AT1 as long as the sim-
plified point contained less than 75 percent of the points from a point set that
contained 40000 points. A question of interest is to see if it is possible to make the
refinement algorithm converge even faster. If nothing is given to the algorithm, it
initializes by using the four corner points of the input point set. If the point set
is large, the distance between the corners along at least one axis will also be large.
This will make the initial triangulation cover a large area and thereby many points
to calculate and update the significances to. If the refinement algorithm is given a
number of initial points that contains more than only the corner points, the initial
triangulation will consist of more triangles where each triangle covers smaller areas.
This could make the refinement algorithm converge faster since there might be fewer
points to calculate and update the significances to in the beginning of the refinement
process.

As a reference, we measured the wall-clock time to the refinement algorithm without
passing an initial set of points to it. We constructed point sets of size n × n for
n = 250, 500, 750, 1000. The refinement algorithm returned point sets that satisfied
RMSE threshold of 10−3. The refinement algorithm was called three times for each
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value of n. The wall-clock time was measured for each repeated call and thereafter
averaged. Our results are shown in Table 4.5.

Table 4.5: The measured wall-clock time in seconds of how long it took the refinement
algorithm to reach a RMSE error threshold of 10−3 without an initial subset
of points.

n× n
Number of
points

Average
wall-clock time [s]

250×250 1067 28.38
500×500 2185 142.47
750×750 3180 354.72
1000×1000 4242 677.1

Thereafter, the refinement algorithm was given ten different initial sets of 1000
randomly and uniformly drawn points from the input point set. The input point
set contained n × n points where n was the same values as in Table 4.5. The
refinement algorithm inserted points into the initial point set until a RMSE threshold
of 10−3 was met. Ten different sets of initial points were passed to the refinement
algorithm. This was done to examine whether the distribution of the initial points
affected how long it took the algorithm to converge and how many points it returned.
We computed the standard deviation to examine how each unique set of initial
points affected the number of insertions and the wall-clock time for the algorithm
to converge. For each n, the simplification was repeated three times. The wall-clock
time was measured for every repeated simplification and thereafter averaged. The
results from our experiments are presented in Table 4.6.

Table 4.6: The measured wall-clock time in seconds of how much it took the refinement
algorithm to reach a RMSE error threshold of 10−3.

n× n
Average number

of points
Standard deviation,
number of points

Average
wall-clock time [s]

Standard deviation,
wall-clock time [s]

250×250 1452.6 14.99 4.57 0.33
500×500 2346.1 22.62 36.98 2.66
750×750 3333.8 13.81 122.89 5.75
1000×1000 4347.7 27.41 285.03 31.55

The measured wall-clock times were less for refinement with randomly sampled
initial points than for refinement without an initial set of points (Table 4.5 and Ta-
ble 4.6). However, the simplified point sets obtained from refinement with randomly
sampled initial points contained larger amount of points compared to refinement
without a set of initial points. The least difference in amount of points between
the simplified points sets occurred when the input point set contained 1000× 1000
points. The simplified point sets from refinement with initial subsets of points had
approximately 2.47 percent more points than the simplified point set from refinement
without an initial set of points.
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We examined how variation sampling (Section 3.2) performed compared to random
sampling of the initial points. It is of interest to examine whether variation sampling
can make the refinement algorithm converge faster and return point sets with fewer
points than refinement with randomly and uniformly sampled initial points. We
chose the point set with 1000× 1000 points, as it was our largest point set that we
tested for in Table 4.6.

The variation images requires a given neighborhood size to estimate the variation
to each pixel. We computed a set of variation images based on a selection of neigh-
borhood sizes. The images are presented in Figure 4.10.
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Figure 4.10: The computed variation images.

The variation image that was computed with neighborhood size of 151× 151 differs
from the other images (Figure 4.10). It is not clear which neighborhood size captured
the best the variation to the input point set. The variation image computed with a
151×151 neighborhood seems to capture the peaks and pit of the surface. However,
the other images seems to capture the areas that have a greater change in inclination
to the peaks and the pit. We chose to compare how variation sampling based on
the images computed with a 51× 51 and 151× 151 large neighborhood.

The extraction of initial points was performed for different values of tv. Each rect-
angle in the quadtree based split is divided into four new rectangles as long as the
largest variation in the variation image σ within the rectangle is less than tv. We
have set the threshold tc of number of pixels within each rectangle as tc = 1000 to
avoid too many points in the simplified point set.
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Figure 4.11: The measured wall-clock time of how long the refinement based on variation
sampling spent to converge. The variation sampling was based on the
variation images computed with neighborhood sizes of 51×51 and 151×151.

The variation sampling based on the variation image computed by a 151×151 large
neighborhood made the refinement algorithm converge poorly in terms of wall-clock
time compared to refinement without a set of initial points (Figure 4.11). Hence, we
decided to perform the variation sampling based on the 51×51 image only. Table 4.7
shows our obtained results for some selected values of tv.

Table 4.7: How the different tv affected the point simplification of a set containing
1000 × 1000 points. The RMSE threshold was 10−3. The wall-clock time
was averaged over three runs of the same experiment. We emphasize that our
implementation of computing a variation image is parallel and utilized the six
cores of our processor, see Appendix A.

tv
Number of
initial points

Number of
insertions

Measured
wall-clock time [s]

0.005 1196 4421 252.94
0.01 1118 4514 279.88
0.025 1025 4480 298.74
0.05 965 4409 359.13
0.1 881 4395 352.49
0.25 620 4371 379.85
0.5 242 4275 574.17

The refinement converged slower in terms of wall-clock time for tv = 0.01, 0.025
than for refinement with initial set of points, if we take into account that refinement
with uniformly and randomly sampled initial points had a standard deviation of 31
seconds in wall-clock time. This is interesting, as for these values of tv the number
of points in the initial sets from variation sampling were greater than the uniformly
and randomly sampled points.
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It is difficult to find the optimal tv for our data set based on Table 4.7. The number
of points in the simplified point sets from variation sampling were larger than the
point sets obtained from the random sampling except for when tv = 0.5. For tv = 0.5
the refinement algorithm was only 15 percent faster than refinement without any
initial set of points. However, the refinement with randomly sampled initial points
was on average approximately 57.9 percent faster than refinement without an initial
set of points. For tv = 0.25, the measured time was lower than for refinement
without any set of initial points, but the returned point set contained more points
than refinement with randomly sampled initial points. We regard tv = 0.25 as
the threshold that made the best set of initial points from variation sampling. For
tv = 0.25, the refinement algorithm converged faster in terms of wall-clock time and
did not introduce as many points as for the lower values of tv.

4.3.3 The Ripples test function

The Ripples test function have more abrupt changes in its topography than Franke’s
test function. It consists of four regions; a flat region R1 with constant elevation, a
region R2 where two rectangles on top of each other are located, a rapidly varying
region R3, and a region R4 with an inclination of a flat surface. This test function
made it possible to examine how the algorithms handles surfaces with regions that
have different features. It is of interest to see how the edges with 90◦ depression
angle are handled by the algorithms, as they are the most extreme cases of cliffs. In
our studies, we used the Ripples test function to generate point sets that contained
40000 points. The only exception is the study in Section 4.3.3.3, where we applied
the refinement algorithm to point sets that contained different amount of points.

4.3.3.1 The number of points after reaching an error threshold

The algorithms returned point sets that satisfied a set of error thresholds for RMSE
and max deviation. The selected thresholds were the same for both of the error
assessments. The error thresholds were 10−k for k = 1, . . . , 7. The results for
AT1, AT3, and the refinement algorithm are presented in Table 4.8, Table 4.9, and
Table 4.10, respectively.

Table 4.8: The number of points in the simplified sets obtained from AT1 and the per-
centage of points from the input point set.

Error
threshold

Number of points
in simplified set,

RMSE

Percentage in size
of original point set,

RMSE

Number of points
in simplified set,
max deviation

Percentage in size
of original point set,

max deviation

1×10−7 10179 25.448 10185 25.462
1×10−6 10036 25.09 10185 25.462
1×10−5 9702 24.255 10098 25.245
1×10−4 7825 19.562 9982 24.955
1×10−3 4064 10.16 5298 13.245
1×10−2 1072 2.68 4036 10.09
1×10−1 113 0.282 559 1.398
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Table 4.9: The number of points in the simplified sets obtained from AT3 and the per-
centage of points from the input point set.

Error
threshold

Number of points
in simplified set,

RMSE

Percentage in size
of original point set,

RMSE

Number of points
in simplified set,
max deviation

Percentage in size
of original point set,

max deviation

1×10−7 11131 27.828 11132 27.83
1×10−6 11126 27.815 11132 27.83
1×10−5 11024 27.56 11131 27.828
1×10−4 10665 26.662 11127 27.818
1×10−3 8436 21.09 10776 26.94
1×10−2 2785 6.962 8292 20.73
1×10−1 496 1.24 2137 5.342

Table 4.10: The number of points in the simplified sets obtained from the refinement
algorithm and the percentage of points from the input point set.

Error
threshold

Number of points
in simplified set,

RMSE

Percentage in size
of original point set,

RMSE

Number of points
in simplified set,
max deviation

Percentage in size
of original point set,

max deviation

1×10−7 10269 25.672 10241 25.602
1×10−6 10125 25.312 10241 25.602
1×10−5 9883 24.708 10154 25.385
1×10−4 8166 20.415 10025 25.062
1×10−3 4208 10.52 6093 15.232
1×10−2 1152 2.88 3898 9.745
1×10−1 169 0.422 776 1.94

The algorithms returned point sets that had at most approximately 27.8 percent of
the points from the input point set (Table 4.8, Table 4.9, and Table 4.10). The AT3
returned point sets that contained more points than AT1 and refinement to satisfy
the thresholds for RMSE and max deviation (Table 4.9).

To get a better overview of the results from Table 4.8, Table 4.9, and Table 4.10, the
results from the tables are plotted together. The plots Figure 4.12 and Figure 4.13
shows the amount of points in the point sets that satisfied the error thresholds for
RMSE and max deviation, respectively.
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Figure 4.12: The amount of points in the point sets that satisfied a selection of RMSE
thresholds.
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Figure 4.13: The amount of points in the point sets that satisfied a selection of max
deviation thresholds.

The amount of points in the point sets that satisfied the RMSE thresholds and max
deviation thresholds for each algorithm differed (Figure 4.12 and Figure 4.13). The
AT3 returned larger point sets than AT1 and refinement. The largest difference in
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amount of points between the point sets from AT3 and the point sets from AT1
and refinement was at the error threshold 10−3 for RMSE and max deviation. We
considered the RMSE in our experiments. We chose the RMSE such that our results
can be compared with the results from Section 4.3.2.

It is of interest to consider how the triangulated points sets from AT1, AT3, and
refinement looks like for RMSE threshold of 10−3 and 10−2. The point set from AT3
contained approximately the double number of points than the point sets from AT1
and refinement (Figure 4.12). The point sets that satisfied RMSE threshold of 10−2

are of interest since they contained less than ten percent of points from the input
point set. The triangulated point sets that satisfied the RMSE thresholds of 10−3

and 10−2 are shown in Figure 4.14 and Figure 4.15, respectively.
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Figure 4.14: The point sets that satisfied the RMSE threshold 10−3.
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Figure 4.15: The point sets that satisfied the RMSE threshold 10−2.

All of the algorithms preserved the rectangles in region R2. The edges to the boxes
have a high density of points even though it is sufficient to represent each edge with
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four points, see Figure 4.16 for an example of a dense representation of an edge.
This applies also to the cliff between the regions R1 and R2 and the regions R3 and
R4. The rapidly varying region R3 is well represented in the triangulated point sets.
The flat surfaces in the regions R1 and R4 contains fewer points than R2 and R3.
There is a small arc-shaped artifact of points in the point sets from refinement in
region R4, see Figure 4.16. This is an artifact because there is nothing on the flat
surface that needs to be represented by these points.
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Figure 4.16: Top: An edge and the arc in located in the white boxes. Lower left: An
example of a dense representation of an edge. Lower right: The arc that
was present in the point sets from refinement.

The triangles in the triangulated point sets from AT3 are longer and thinner, where
most of them are so thin that they appears as black areas in the plots. It is not clear
from the plots alone whether this is a consequence on how AT3 is defined or because
AT3 returned point sets that had approximately the double amount of points than
the point sets obtained from AT1 and refinement.
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4.3.3.2 Distribution of the longest edges and smallest angles to the
triangles in a triangulation

Similarly as done in Section 4.3.2.2, we chose to compute the smallest angles α
and the normalized longest edges l to each triangle in a selection of triangulated
point sets from the simplification algorithms. The edge lengths were normalized
by the largest possible edge length to the given raster data. We regard a long and
thin triangle as a triangle with α ≤ 5◦ and l ≥ 0.4. We chose to let the algorithms
simplify a point set of 40000 points down to point sets of 4000 points and 400 points.
The scatter plots of l and α to the triangulated point sets with 4000 points and 400
points are shown in Figure 4.17 and Figure 4.18, respectively. The markers in the
scatter plots are colored only to show better the distribution of the markers. The
red boxes in the scatter plots shows the area of when a triangle is considered as long
and thin.
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Figure 4.17: The simplified point sets with 4000 points. Left column: The triangulated
point sets viewed from above. Right column: The scatter plots of the
triangulations.
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Figure 4.18: The simplified point sets with 400 points. Left column: The triangulated
point sets viewed from above. Right column: The scatter plots to each
triangulation.
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The AT3 seems to return point sets that forms more long and thin triangles when
triangulated than the triangulated point sets from AT1 and refinement (Figure 4.17
and Figure 4.18). We counted the number nT of long and thin triangles and found
percentage of long and thin triangles in the triangulations of NT triangles in each
point set, see Table 4.11.

Table 4.11: Table over long and thin triangles.

Algorithm

nT
NT

,

400 points

Percentage of long
and thin triangles,

400 points

nT
NT

,

4000 points

Percentage of long
and thin triangles,

4000 points

AT1
2

773
0.26

2

7896
0.03

AT3
37

781
4.74

28

7948
0.35

Refinement
8

777
1.03

10

7898
0.13

The AT3 returned points sets that contained the most long and thin triangles when
triangulated (Table 4.11). The percentage of long and thin triangles are smaller in
the triangulated point set from AT3 with 4000 points than the triangulated point
set from AT3 with 400 points. However, the scatter plot to the triangulated point
set from AT3 with 4000 points shows that there is a denser collection of triangles
with α ≤ 5◦ compared to the triangulated point sets that contains 4000 points from
AT1 and refinement (Figure 4.17).

4.3.3.3 Variation sampling to construct an initial subset of points for
refinement

The AT1 and refinement returned point sets that contained almost the same number
of points (Figure 4.12). Similar results were obtained for Franke’s test function
(Figure 4.4). Variation sampling constructed initial point sets that made refinement
inferior to refinement with sets of uniformly and randomly sampled initial points
when applied to the point sets generated by Franke’s test function (Section 4.3.2.3).
It was not clear from the experiments on Franke’s test function whether it was
the definition of variation sampling that constructed initial point sets inferior to
randomly sampled initial points. It could happen that it was the smooth surface of
the Franke’s test function that made the variation sampling excessive to use or we
did not test for the correct parameters. We performed the same tests on the point
sets generated by the Ripples test function to see how the variation sampling made
the refinement perform. We used the same parameters as we tested for with Franke’s
test function to see if it was the slowly varying surface of Franke’s test function that
made variation sampling inferior to the uniformly and randomly sampled initial
points.
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The refinement algorithm returned simplified point sets that satisfied RMSE error
threshold of 10−3. The input point sets contained different amount of points. The
input point sets contained n×n points for n = 250, 500, 750, 1000. For each n, the
simplification was repeated three times. The wall-clock time was measured for each
repeated simplification and thereafter averaged. The results are shown in Table 4.12.

Table 4.12: The measured wall-clock time in seconds of how long it took the refinement
algorithm to reach a RMSE error threshold of 10−3 without an initial subset
of points.

n× n
Number of
points

Average
wall-clock time [s]

250×250 6176 63.12
500×500 20080 388.6
750×750 37052 1,635.07
1000×1000 54223 3,473.02

The refinement algorithm was given an initial set of 1000 uniformly and randomly
sampled points and simplified the input point set such that it satisfied a RMSE
threshold 10−3. We measured the wall-clock time and counted the number of points
in the simplified point sets for ten unique sets of initial points. We used ten different
initial point sets to examine whether the distribution of the input points had an effect
of the convergence to the refinement algorithm in terms of wall-clock time or the
number of points in the returned point sets. Our results are presented in Table 4.13.

Table 4.13: The measured wall-clock time in seconds of how much it took the refinement
algorithm to reach a RMSE error threshold of 10−3.

n× n
Average number

of points
Standard deviation,
number of points

Average
wall-clock time [s]

Standard deviation,
wall-clock time [s]

250×250 7118.2 40.87 16.97 0.49
500×500 21243.4 71.06 234.43 2.29
750×750 38375.5 107.16 927.8 4.73
1000×1000 55800.2 143.94 2,369.75 6.28

There is an improvement in terms of the average wall-clock time when the sets of
randomly sampled initial points are passed to the refinement algorithm (Table 4.13).
The refinement algorithm was approximately 31 percent faster on average than re-
finement without a set of initial points for the point set that with 1000×1000 points.
The simplified point set from refinement with initial subset of points contained on
average approximately 2.9 percent more points than the set obtained from refine-
ment without an initial point. The measured wall-clock times had a relatively small
standard deviations for all n. The amount of points in the simplified point sets
varied more, but not more than 0.014 percent of points from the input point set.

Based on this, we examined whether variation sampling managed to improve the
wall-clock time to refinement and at the same time made the refinement return a
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point set with less points. We chose the point set with 1000× 1000 points as it was
this the largest point set we tested for.

We chose to calculate the variation images based on four different neighborhood
sizes. This was done to see how much effect each neighborhood size had to the
estimated variation image. The calculated variation images that we obtained are
shown in Figure 4.19.
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Figure 4.19: The computed variation images.

All of the variation images differs (Figure 4.19). We chose to base the variation
sampling on the variation image calculated from a neighborhood size of 51×51. We
think this variation image captured best the rapidly varying region R3 and the edges
of the rectangles in R2 and the cliff separating the regions R1 and R2 and the regions
R3 and R4. The variation sampling was performed by letting the maximum allowed
number tc of pixels within a rectangle to be tc = 1000. We tested how the threshold
tv of maximum variation within each rectangle affected the number of points in the
simplified point sets from refinement. We let the refinement algorithm construct
point sets with RMSE just below 10−3. The results are presented in Table 4.14.
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Table 4.14: The RMSE threshold was 10−3. The computation for each variation image
was parallel and utilized the six cores of our processor, see Appendix A.

tv
Number of
initial points

Number of
points

Measured
wall-clock time [s]

0.005 848 55092 2,318.6
0.01 635 54686 2,325.82
0.025 602 54743 2,338.78
0.05 509 54695 2,397.83
0.1 491 54760 2,517.62
0.25 473 54928 2,518.08
0.5 434 54799 2,813.71

The refinement algorithm performed better with variation sampling for a selection
of tv than for an uniformly and randomly sampled set of initial points. The refine-
ment algorithm returned point sets with less points than refinement with randomly
sampled initial points and was faster in terms of wall-clock time for tv = 0.01 and
tv = 0.025. For tv = 0.01, refinement with variation sampling returned point sets
that contained approximately two percent of points less than from the refinement
with random sampling. We concluded that tv = 0.01 constructed the best set of
initial points to the refinement algorithm. For tv = 0.01 the refinement algorithm
with variation sampling converged faster than refinement without a set of initial
points in wall-clock time. Refinement with random sampled initial points contained
on average approximately 2.9 percent more points than refinement without initial
points whereas refinement with variation sampled initial points contained 0.85 per-
cent more points than refinement without initial points. The number of initial points
from variation sampling was less than for the set of randomly chosen initial points.

In Section 4.3.2.3, the variation sampling was inferior to uniformly and randomly
sampling of the initial points. We decided to omit considering the sampling of
initial points in the forthcoming experiments. Since variation sampling is highly
dependent on which parameters are being used, it was difficult to generalize the
results we obtained from the the generated point sets.

4.4 Simplification of surfaces with coherence

Our simplification algorithms managed to simplify the point sets such that their
triangulations resembled the input surface without considering any weighting. The
estimated elevations in the bathymetric data from the InSAS we consider is asso-
ciated with an estimated coherence. It is of interest to examine how the selection
of points gets affected when coherence is considered in the algorithms. All of the
studies in this section were performed on a point set that contained 40000 points.

4.4.1 Generated coherence

The generated coherence map C is based on Franke’s function from Equation (4.1).
The coherence map is constructed by a method described in (Burrough et al., 2015,
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pp. 244 - 245) and introduced in (Horn, 1981, p. 31). The method computes a
reflectance map over a given surface. The reflectance map describes the shadows
that will be present if a light source from a given location and depression angle shines
on the surface. The surface that we computed the reflectance map of was generated
by Franke’s test function. We let the computed reflectance map be the coherence
C associated to the data sets generated by Franke’s test function and the Ripples
test function. The values in the reflectance map is normalized such that each value
was between zero and one inclusive, which also is the case for the coherence maps
obtained from the InSAS we consider. The generated coherence map is shown in
Figure 4.20.
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Figure 4.20: The reflectance map that we considered as the coherence to the generated
point sets.

The coherence map is based on one surface such that it is possible to compare how
much the topography matters in how the points are selected by the algorithms. The
different topologies associated with the same weights makes it possible to examine
how the interpolation errors and the weights are balanced by the simplification
algorithms. The weights that were passed to the algorithms were computed based
on Equation (2.6). All of the values that were above 0.99 in the coherence map
were set to 0.99 to avoid dividing by zero in the computations of the weights. We
emphasize that our implementations always includes the corner points of the input
point set regardless of their weights (Section 3.1.1 and Section 3.1.2).

4.4.2 Franke’s test function with coherence

The coherence map was based on Franke’s test function and thereby followed the
topography of the function. A question of interest, is how the algorithms selects the
points from the input point set with respect to the coherence map.
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The point sets that satisfied wRMSE of 10−3 and 10−2 differed by a factor ten in
percentage of points from the input point set (Table 4.15). It is therefore of interest
to examine how the distributions of these point sets were.

Table 4.15: The percentage of points from the input point set in the simplified point sets
satisfying wRMSE threshold of 10−3 and 10−2 from the algorithms.

wRMSE
threshold

Percentage of points,
wAT1

Percentage of points,
wAT3

Percentage of points,
weighted refinement

1× 10−3 4.86 7.15 6.69

1× 10−2 0.2 0.35 0.44

We plotted how the points were distributed at the coherence map for point sets
that satisfied wRMSE threshold of 10−3 and 10−2 in Figure 4.21 and Figure 4.22,
respectively. The markers at the coherence maps are the included points in the
simplified point sets. The markers are colored by the associated coherence to the
points they represent.
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Figure 4.21: The simplified point sets that has a wRMSE error just below 10−3. Left
column: The obtained triangulations of the simplified point sets. Right
column: The coherence to each point at the coherence map.
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Figure 4.22: The simplified point sets that has a wRMSE error just below 10−2. Left
column: The obtained triangulations of the simplified point sets. Right
column: The coherence to each point at the coherence map.
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The wAT1 returned point sets that contained the least amount of points for both of
the wRMSE thresholds. The weighted refinement returned more points than wAT3
for wRMSE threshold of 10−2. The amount of points that weighted refinement
returned for wRMSE of 10−3 was closer to wAT3 than wAT1.

The refinement seemed to choose more points that were associated with C closer to
one than AT1 and AT3 ( Figure 4.21 and Figure 4.22). We computed the percentage
of points associated with equal to or more than 0.9 in coherence for a selection of
number of desired points in the simplified points. We counted the number of points
where C ≥ 0.9 in the simplified point sets that contained between 100 and 10000
points inclusive, see Table 4.16.

Table 4.16: The percentage of points in the simplified point sets associated with C ≥ 0.9.

Number of points in
simplified point set

Percentage of points
where C ≥ 0.9,

wAT1

Percentage of points
where C ≥ 0.9,

wAT3

Percentage of points
where C ≥ 0.9,

weighted refinement

100 35.08 35.08 97.12
500 35.43 35.43 97.82
1500 36.35 36.35 96.54
2500 37.32 37.32 96.84
5000 39.99 39.99 97.14
7500 43.06 43.06 96.86
10000 46.63 46.64 96.17

The weighted refinement favored points associated with C ≥ 0.9 (Table 4.16). The
weighted refinement returned points sets where between 96 to 97 percent of the
points had C ≥ 0.9 whereas wAT1 and wAT3 returned point sets where between 35
to 46 percent of the points had C ≥ 0.9.

4.4.3 Ripples test function with coherence

The coherence map was associated to the Ripples test function to examine how the
algorithms managed to balance between interpolation error and weighting of the
points. A set of 40000 points generated by the Ripples test function was considered
in this study. Similarly as we did in Section 4.4.2, we considered a selection of
wRMSE thresholds. The simplified point sets that satisfied wRMSE thresholds of
10−3 and 10−2 did not differ that much in terms of size as they did for Franke’s test
function (Table 4.17).

Table 4.17: The percentage of points from the input point set in the simplified point sets
satisfying wRMSE threshold of 10−3 and 10−2 from the algorithms.

wRMSE
threshold

Percentage of points,
wAT1

Percentage of points,
wAT3

Percentage of points,
weighted refinement

1× 10−3 11.22 14.56 12.57

1× 10−2 3.39 9.93 4.63
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We plotted the triangulated point sets that satisfied the wRMSE thresholds of 10−3

and 10−2 in Figure 4.23 and Figure 4.24, respectively. The markers at the coherence
maps are the included points in the simplified point sets. The markers are colored
by the associated coherence to the points they represent.
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Figure 4.23: The simplified point sets that has a wRMSE error just below 10−3. Left
column: The obtained triangulations of the simplified point sets. Right
column: The coherence to each point at the coherence map.
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Figure 4.24: The simplified point sets that has a wRMSE error just below 10−2. Left
column: The obtained triangulations of the simplified point sets. Right
column: The coherence to each point at the coherence map.
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The weighted refinement returned point sets with amount of points closer to the
number of points from wAT1 than it did for the Franke’s test function (Section 4.4.2).
However, it seems that weighted refinement chose points at the coherence map that
is closer to one than wAT1. The coherence maps shows that the decimation algo-
rithms keeps points along the edges even though the points are associated with low
coherence. The weighted refinement, however, seemed to favor points that had high
coherence.

The algorithms selected points that mainly were associated with C ≥ 0.8, which can
be seen as the red markers in the coherence maps from Figure 4.23 and Figure 4.24.
Some points along the cliff between the regions R1 and R2 and the regions R3

and R4 were chosen, even though they had coherence below 0.5 (Figure 4.23 and
Figure 4.24).

From Figure 4.23 and Figure 4.24 it is not clear whether refinement selected more
points associated with C ≥ 0.9 than wAT1 and wAT3. The algorithms returned
point sets with high point density in R3 and some areas of the rectangles in R2

with coherence close to one. The wAT1 and wAT3 chose to distribute some of the
points at areas with low coherence where the interpolation error dominated. This is
especially apparent for wAT3 in Figure 4.24 where it chose to keep the points along
the cliff even though many of the points had coherence below 0.5. The percentage
of points in a selection of simplified point sets associated with C ≥ 0.9 is shown in
Table 4.18. The weighted refinement returned point sets with more than 90 percent
of points associated with C ≥ 0.9 for all but two of the selected sizes. However,
the two point set sizes that did not contain over 90 percent points associated with
C ≥ 0.9 contained more points with C ≥ 0.9 than the points from wAT1 and wAT3.

Table 4.18: The percentage of points in the simplified point sets where C ≥ 0.9.

Number of points in
simplified point set

Percentage of points
where C ≥ 0.9,

wAT1

Percentage of points
where C ≥ 0.9,

wAT3

Percentage of points
where C ≥ 0.9,

weighted refinement

100 13.35 13.35 97.12
500 13.49 13.49 99.4
1500 13.84 13.84 99.53
2500 14.21 14.21 98.28
5000 15.22 15.22 92.67
7500 16.36 16.39 66.15
10000 17.73 17.76 49.62

4.5 Acquired data from an InSAS

In this section, we consider a raster DEM acquired by an InSAS, where the DEM
was associated with a coherence map. The weighted algorithms were applied to the
data set. We examined how much the algorithms reduced the input bathymetry and
how well they preserved the characteristics of the seabed.
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4.5.1 The data set

We consider a data set referred to as the “Sand Dunes” data set due to the wave
pattern in the region at approximately 80 meters depth, which is shown as the yellow
region in Figure 4.25. A sonar image of the seabed is shown in Figure 4.27 and
provides an idea of how the considered seabed looked like. The data was acquired
by the system described in Section 2.1.1. The y-axis represents the along-track to
the vehicle the InSAS was mounted on and the x-axis represents the cross-track to
the vehicle. The cross-track distance to the center of the scene is 65 meters. The
vehicle depth was approximately 47 meters during the data collection.

The data set contained originally 4001× 3001 points. The coherence was estimated
using a 9 × 9 large window in Equation (2.4). Hence, we chose to resample the
input data with the corresponding factor. There are some sharp peaks in the Sand
Dunes data set that we refer to as needles. They are likely present due to erroneous
estimation of the true phase in a phase-unwrapping algorithm.

Figure 4.25: The Sand Dunes bathymetry resampled with a factor nine along each axis.
The total number of points in the resampled set is 148630. The depth is
measured relative to vehicle.

The Sand Dunes data set can be divided into two regions. The data with approx-
imately 76 meters depth and shown as orange and red at the left hand side in
Figure 4.25 seems to be dominated by rocks. To the right hand side in Figure 4.25,
most of the region contains wave-looking variation that can be interpreted as sand
dunes. This region has more finer details because of the sand dunes than the left
region that contains relatively large rocks.
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To reduce the amount of needles in our data set, we applied a median filter of size
3× 3 after the resampling was performed. We chose this filter size to keep some of
the needles since it is of interest to examine how the weighted algorithms handles
the needles. We padded the bathymetry symmetrically along the borders such that
the filtered bathymetry had the same size as the resampled bathymetry. The result
is shown in Figure 4.26. We used the median filtered Sand Dunes throughout this
study.

Figure 4.26: The median filtered Sand Dunes.

The associated coherence map was resampled by taking out every ninth sample and
remained unfiltered. The coherence map is shown in Figure 4.28.

In practice, points that are associated with a coherence lower than a given threshold
can be disregarded, which has been done in several studies by e.g (Sæbø, 2010).
The threshold can depend on the bathymetric data and for which application it is
supposed to be used for. By disregarding the points associated with low coherence,
some of the needles and other data not representative of the seabed could be re-
moved. However, some of the non-representative data of the seabed can also have
coherence close to one. This can happen if for instance a phase-unwrapping algo-
rithm has estimated the wrong phase to its given interferogram. We also set the
coherence greater than 0.99 equal to 0.99 to avoid dividing diving by zero to com-
pute the weights in Equation (2.6). This clipping lets us also avoid the algorithms
to favor too much signals with coherence greater than 0.99; coherence of 0.99 yields
SNR of approximately 100 whereas coherence of 0.999 yields a SNR of 1000. We
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refer to the point sets that contains points associated with a coherence greater than
or equal to a given threshold as thresholded point sets. When necessary, we also say
which threshold the point sets are thresholded with.

Figure 4.27: Sonar image of the Sand Dunes. The image has been filtered with a 9× 9
median filter to reduce the presence of noise.
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Figure 4.28: The considered coherence map.
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4.5.2 Simplification of Sand Dunes with needles

The weighting in the algorithms aims to let the algorithms select points that are
more likely to be representative of the seabed. The weighting that we considered
was based on the associated coherence map to the Sand Dunes bathymetry. If the
algorithms manages to filter out the needles, there would be no need of preprocessing
the bathymetry nor manually choosing the coherence threshold that removes all of
the needles.

We extracted the points from the Sand Dunes data set that were associated with
coherence C equal to or greater than 0.66. We chose to use this threshold at first
since coherence of 0.66 means that the estimated SNR from Equation (2.5) becomes
approximately equal to two. A SNR of two to a point means that there two times
more signal than noise that was used to estimate the elevation assigned to the point.

The thresholded point set contained 135624 points, which is 91.24 percent of the
points from the input point set. Needles were still present in the thresholded data
set (Figure 4.29). We applied our algorithms on the data set for a given wRMSE
threshold to examine if the needles were still present. Based on Table 4.19, we
chose to let the refinement algorithm produce point sets with wRMSE just below
0.1. For this wRMSE threshold, the algorithms returned point sets that contained
approximately seven, eight, and 16 percent of the points from the Sand Dunes data
set. If needles are still present in these sets, the needles will also be present in the
larger point sets that satisfied the lower wRMSE thresholds.

Table 4.19: The percentage of points from the input point set in the simplified point
sets.

wRMSE
threshold

Percentage in size
of original point set,

wAT1

Percentage in size
of original point set,

wAT3

Percentage in size
of original point set,
weighted refinement

1×10−7 90.217 91.216 90.704
1×10−6 90.147 91.214 90.661
1×10−5 89.789 91.177 90.438
1×10−4 88.134 90.919 89.251
1×10−3 79.937 87.938 82.882
1×10−2 41.676 54.333 49.464
1×10−1 1.251 4.266 1.69
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Figure 4.29: The Sand Dunes bathymetry with points associated with 0.66 or more in
coherence. The number of points was 135624.
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Figure 4.30: The simplified Sand Dunes bathymetries thresholded that satisfied the
wRMSE threshold 0.1.

The algorithms preserved the needles in the point sets that satisfied wRMSE thresh-
old of 0.1. However, the point sets were able to also represent the finer details of



Section 4.5.2 - Simplification of Sand Dunes with needles 87

the Sand Dunes bathymetry such as the sand dunes. The point set from wAT3
contained the most amount of points compared wAT1 and weighted refinement.
We experimented with several wRMSE thresholds higher than 0.1, and found that
wRMSE threshold of 0.25 made wAT1 and weighted refinement return point sets
with no needles and at the same time preserved the characteristics of the seabed,
see Figure 4.31.
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Figure 4.31: The simplified Sand Dunes data sets thresholded with 0.66 in coherence
that had wRMSE just below 0.25. The scaling of colors have been limited
in the triangulation of the point set obtained from wAT3 for easier visual
comparison with the triangulated sets from wAT1 and weighted refinement.
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In Figure 4.31 the wAT1 returned a point set of 113 points and the weighted re-
finement a point set of 172 points. The wAT1 managed to return a point set that
contained approximately 0.07 percent of the points from the bathymetry that was
not thresholded. The weighted refinement returned a point set of 172 points that
was approximately 0.11 percent of points from the bathymetry that was not thresh-
olded. The triangulated point set from weighted refinement had an undesirable
triangle between the flat surface and the rock located in the sand dunes region. The
triangle was undesirable because it is not representative of the seabed from visual
inspection. This might be an effect of refinement that includes the corners point no
matter which coherence they are associated with or interpolation error they intro-
duced. The wAT3 did not manage to filter out the needles as much as wAT1 and
weighted refinement did.

To demonstrate the importance of the weighting in the algorithms, we applied the
algorithms to the thresholded Sand Dunes set assuming that each point had the same
non-zero weight. The algorithm will only consider the interpolation errors, as they
did in Section 4.3. The resulting triangulated point sets showed that the weighting
was important to use in the thresholded Sand Dunes data set (Figure 4.32).



Section 4.5.2 - Simplification of Sand Dunes with needles 90

0

20

40

010203040506070

75

80

85

x [m]

y [m]

z
[m

]

AT1 with 113 points

74

76

78

80

82

D
ep
th

[m
]

010203040506070
0

10

20

30

40

50

x [m]

y [m]

AT1 with 113 points

74

76

78

80

82

D
ep
th

[m
]

0

20

40

010203040506070

75

80

85

x [m]
y [m]

z
[m

]

AT3 with 1399 points
74

76

78

80

82

D
ep

th
[m

]

010203040506070
0

10

20

30

40

50

x [m]

y [m]

AT3 with 1399 points
74

76

78

80

82

D
ep

th
[m

]

0

20

40

010203040506070

75

80

85

x [m]

y [m]

z
[m

]

Refinement with 172 points

74

76

78

80

82

D
ep
th

[m
]

010203040506070
0

10

20

30

40

50

x [m]

y [m]

Refinement with 172 points

74

76

78

80

82

D
ep
th

[m
]

Figure 4.32: The triangulated point sets from the unweighted algorithms. The simplified
Sand Dunes data sets thresholded with 0.66 in coherence. The number of
points in the simplified points were the same as in Figure 4.31 for each
corresponding algorithm.

The unweighted algorithms did not manage to distinguish between representative
elevations of the seabed, as they only considered the interpolation error in eleva-
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tion. The needles were kept and made the simplified surface resemble less the Sand
Dunes bathymetry. The triangulated surface from AT3 did resemble the Sand Dunes
data the most. However, the needles were still present. The point set from wAT3
contained also more points than the sets from AT1 and refinement.

4.5.3 Simplification of Sand Dunes without needles

The wAT1 and weighted refinement had to remove many details of the surface
before they produced triangulated surfaces without needles for the Sand Dunes
thresholded with 0.66 (Figure 4.31). We found a threshold of 0.91 in coherence that
removed most of the needles in our data set (Figure 4.33). The thresholded point
set contained 49.75 percent of the points from the input point set. It is of interest to
examine how much further the point sets could be reduced in size given a selection
of wRMSE thresholds. The wRMSE threshold of 10−1 made the simplified point
sets contain approximately one percent the amount of points of the input point set,
see Table 4.20.

Table 4.20: The percentage of points from the input point set in the simplified point
sets.

wRMSE
threshold

Percentage in size
of original point set,

wAT1

Percentage in size
of original point set,

wAT3

Percentage in size
of original point set,
weighted refinement

1×10−7 49.318 49.738 49.417
1×10−6 49.269 49.734 49.372
1×10−5 49.052 49.713 49.177
1×10−4 47.988 49.479 48.226
1×10−3 42.277 46.922 43.407
1×10−2 19.121 27.311 22.427
1×10−1 0.912 2.098 1.068

A question of interest, is whether the finer details such as the sand dunes were
preserved in the data sets that satisfied wRMSE of 10−1. The point sets from
wAT1 and weighted refinement returned point sets that contained approximately one
percent of the original Sand Dunes data set and the wAT3 returned a point set that
contained approximately three percent of the original data set. The triangulated
point sets that satisfied wRMSE of 10−1 are shown in Figure 4.34.
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Figure 4.33: The Sand Dunes data set that has points associated with 0.91 or more in
coherence.
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Figure 4.34: The simplified Sand Dunes data sets thresholded with 0.91 in coherence
satisfied wRMSE threshold of 0.1.

The wAT1 and weighted refinement were able to represent the sand dunes and at the
same time the characteristics of the rocks shown as orange in Figure 4.34. We did



Section 4.5.3 - Simplification of Sand Dunes without needles 94

not manage to find a wRMSE threshold that also made wAT3 return simplified point
sets without needles and at the same let the point sets from wAT1 and weighted
refinement contain enough points to represent the input data set. By comparing
the thresholded triangulated point set in Figure 4.33 and the point sets from the
algorithms in Figure 4.34, we see that most of the two hills are preserved.

It is of interest to examine how well one of the triangulated surfaces from either
wAT1 or weighted refinement approximated the thresholded bathymetry. Both of
the algorithms returned point sets that contained approximately one percent of
the point from the Sand Dunes bathymetry. We considered the surface from the
weighted refinement from Figure 4.34. The rasterized TIN from the weighted re-
finement is shown in Figure 4.35. We computed the absolute difference between
the rasterized TIN and the input Sand Dunes bathymetry thresholded with 0.91
(Figure 4.36). The black pixels in the difference images are the points that were
excluded after the thresholding. The absolute difference showed that the points
deviated mostly by orders of 10−1 and 10−2 meters. The majority of points that
had absolute differences larger than 0.5 meters were located in areas that contained
many excluded points.
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Figure 4.35: Top: The median filtered Sand Dunes bathymetry. Bottom: The raster of
the TIN formed by 1588 points, which is approximately one percent of the
points from the input point set.



Section 4.5.3 - Simplification of Sand Dunes without needles 96

Figure 4.36: Difference images between the interpolated surface from weighted refine-
ment with 1588 points. Top: The difference image where we limited the
color scale between 0 and 0.5 meters in absolute difference. Bottom: The
difference image where we limited the color scale between 0 and 0.1 meters
in absolute difference.
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Many of the points in the sand dunes region and the regions with the rock hills were
well represented, with absolute error ot mostly approximately 0.02 (Figure 4.36).
Approximately 73 percent of the points in the rasterized TIN deviated by 0.1 me-
ter from the thresholded bathymetry (Table 4.21), even though the rasterized TIN
was constructed by approximately one percent of the points from the Sand Dunes
bathymetry.

Table 4.21: The percentage of points that deviated less than or equal to m meters in the
absolute difference eA.

m
Percentage of points

where eA ≤ m

0.01 12.78

0.1 73.92

0.5 99.91
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Discussion

In this chapter, we summarize and discuss our main results from Chapter 4.

5.1 Data without coherence

The algorithms AT1, AT3, and refinement managed to simplify the data sets gen-
erated by the two different test functions that we considered.

The refinement algorithm was faster than AT1 as long as the number of points in
the simplified point set contained less than approximately 75 percent of an input
point set with 40000 points. We think the reason for this is twofold. The AT1
initializes with the whole input point set and removes points iteratively from it.
This is inconvenient if the desired point set should be much smaller than its original
size. Because of this, AT1 has to perform many more computations than refinement.
The refinement algorithm initializes with a coarse model of the input point set and
therefore does not need to perform many computations to construct the desired
simplified point set. The AT1 performs also a local retriangulation every time its
computes the significance for a point. The AT3 does not perform any retriangulation
when computing the significance to each point, which makes it significantly faster
than AT1.

The AT1 and the refinement algorithm returned point sets with almost the same
number of points that satisfied various RMSE thresholds. This is interesting because
AT1 is a decimation algorithm that base its simplification on point removals, as
opposed to refinement that base its simplification on point insertions. We think both
of the algorithms performed almost equally well because they considers explicitly the
interpolated elevations at the constructed Delaunay triangulation for each iteration
when computing the significances to the points. The AT3 returned more points
than AT1 and refinement. We think that the AT3 returned point sets with more
points because it considers triangles that is not necessarily a part of the Delaunay
triangulation it considers throughout the simplification process. In some sense, AT3
implicitly use a different triangulation structure than Delaunay triangulation by
considering the interpolated elevations with respect to the directional triangles to
each point it computes the significance of. Since the RMSE is based on Delaunay
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triangulations of the point sets, the computation of error in AT3 is not based on the
triangulated structure the AT3 considers.

In the Ripples test function, the algorithms spent many points on representing the
edges to the boxes in R2 and the cliff that separated the regions R1 and R2 and the
regions R3 and R4. The algorithms were not able to predict or follow the edges in
the computation of the significances, which resulted in more points than necessary
to represent the edges. This is an effect of the greedy formulation of the algorithms
and was also observed in (Garland and Heckbert, 1995). The arc-shaped artifact
that is present in the point sets from refinement algorithm is also a consequence of
refinement being a greedy algorithm. The arc is present as a consequence on which
order the points are inserted along the cliff and when the area that covers R3 and
R4 is split into two regions.

The triangles in the triangulated point sets from AT3 contained more long and
thin triangles than AT1 and refinement for the data sets generated by the Ripples
test function. However, the triangulated point sets from AT3 contained long and
thin triangles for the data sets generated by the Franke’s test function. Most of
the triangles had longest normalized edges below 0.4 and smallest angles of all
possible degrees. It may be because the Franke’s function is slowly varying that
made the AT3 avoid long and thin triangles. In addition, it could be of interest to
analyze the triangulations by looking at the radius to the circumscribed circles to
the triangles. Together with the longest edges and smallest angles to the triangles
in a triangulation, one could analyze how the long and thin triangles are formed.

The refinement algorithm with variation sampling converged approximately 31 per-
cent faster than refinement without a set of initial points for the data set containing
one million points generated by the Ripples test function. There was no improvement
for the refinement algorithm with variation sampling applied to the data set gener-
ated by Franke’s test function. However, random sampling of the initial points made
the refinement algorithm applied on the data set generated by Franke’s test function
perform better than refinement with variation sampling in terms of wall-clock time.
Hence, it seems like the complexity of the surfaces matters in how successful vari-
ation sampling is to improve the refinement algorithm. The variation images that
we computed for Franke’s function are almost the same regardless of neighborhood
size whereas the variation images we computed for the Ripples test function are dif-
ferent for every neighborhood size we considered. Indeed, the neighborhoods must
be large enough to capture any local variability in the surface. The neighborhood
sizes are therefore dependent on how large the local variabilities in a surface are.
Since Franke’s test function is a slowly varying surface, only the 151 × 151 large
neighborhood captured different variabilities than the other neighborhood sizes we
tested for. The Ripples test function is composed by four regions that has different
variability and thereby the variation images became different. This could also have
been the effect of the second order polynomial fit that made most of the variation
images capture similar variations of Franke’s function. The polynomial fit might
have smoothed the data too much. The motivation behind the second order poly-
nomial fit was to design a method suitable for use data contaminated with noise,
which may occur in real data. Because of the dependence of parameters, it was
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difficult to apply the variation sampling further.

5.2 Data with coherence

The weighted refinement favored points with coherence close to one compared to
wAT1 and wAT3 in our studies. In most of the cases we tested for, the weighted
refinement algorithm returned point sets where more than 90 percent of the points
were associated with 0.9 in coherence. The decimation algorithms applied to the
data set generated by the Ripples test function chose points where the interpolation
error was high, even though their associated coherence were close to zero. This
includes the points at the cliff between the regions R1 and R2 and the regions R3

and R4 and a small part of the edges to the boxes in R2. The weighted refinement
algorithm avoided including points at the abruptly changing surface, which shows
that the algorithm with the weighting we chose seem to favor points with high
coherence rather than those that introduces high interpolation errors. We think the
refinement chose points with higher coherence because it considers the weighting and
interpolation error to one point only for every point the it computes the significance
of. This is in contrast to wAT1 and wAT3, which considers the interpolation errors
and weights to a set of points for every point they compute to the significance to.
The wAT1 and wAT3 seems therefore more sensitive to how the weighting and
interpolation error is balanced.

The wAT1 returned point sets with least amount of points compared to weighted
refinement and wAT3 in all of our studies. The weighted refinement deviated more
from wAT1 in terms of amount of points it returned to satisfy the given wRMSE
thresholds than it did for the data sets without coherence. We think the weighted
refinement converged slower than wAT1 because it favors points with high coherence
and thereby high weights. We think that it is the definition of wRMSE that penalizes
more interpolation errors than points with low weights because the weights are
divided by their sum in the wRMSE. We could have examined how the weighted
algorithms performed with different weighted error metrics.

5.3 Data acquired from an InSAS

The wAT1 and weighted refinement managed to filter out the needles in Sand Dunes
bathymetry after disregarding all the points that were associated with coherence less
than 0.66. The wAT1 and weighted refinement constructed point sets that satisfied
the wRMSE threshold of 0.25. We could not find a wRMSE threshold that made
the wAT3 return a simplified point set that resembled the seabed without wAT1
and weighted refinement returned too simplified point sets. The needles are most
likely present due to phase-unwrapping errors. Ideally, they should be handled by
a phase-unwrapping algorithm. At the same time, the weighting in the simplifica-
tion algorithms aims to select point that are regarded as more representative of the
seabed. In some sense, the algorithms should also be capable to avoid unrepresenta-
tive data in their selection process. It seems like the coherence alone is not sufficient
to capture the most representative data of the seabed. It was only after thresholding
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the data set with 0.91 the needles were removed, but at the cost of disregarding more
than 50 percent of the input data. It might be so that the algorithms could remove
the needles earlier in their simplification process if the weighting was a function of
coherence and some other features of the seabed.

We observe that undesirable triangles occurs at the boundary of the input set as a
consequence in our implementation to always include the corners points of the input
set. However, it is difficult to tell how the boundaries to the simplified surfaces
should be handled otherwise.

The weighted refinement returned a point set of 1588 points from the Sand Dunes
bathymetery thresholded by 0.91. Approximately 73 percent of the points in the
raster TIN based on the point set deviated by 0.1 or less than 0.1 meters from the
thresholded bathymetry. We conclude from this that the rasterized TIN was well
represented given that the TIN only contained approximately one percent of the
points form the input points set.
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Conclusion

In this thesis we consider three algorithms for raster to TIN conversion. The TINs
are based on Delaunay triangulations. The algorithms performs point selection
based on the weighted interpolation error to each point in their input point set. The
algorithms was applied on three classes of data: synthetic data without coherence,
synthetic data with coherence, and a bathymetry from an InSAS.

The algorithms managed to simplify point sets such that they resembled the input
surfaces when triangulated, both when the input was associated with coherence and
without coherence. The AT1 and refinement returned point sets with almost the
same number of points to satisfy a selection of RMSE thresholds. However, the
weighted refinement algorithm returned point sets that contained more points than
the point sets from wAT1 to satisfy a set of wRMSE thresholds. In all of our test
cases, the AT3 and wAT3 returned the most points to satisfy a selection of RMSE
and wRMSE thresholds. The results from the variation sampling for constructing
sets of initial points to the refinement algorithm was difficult to generalize.The
variation sampling is found to be too dependent on its given parameters. Random
sampling of initial points performed in overall better than variation sampling. A
raster TIN from weighted refinement deviated mostly by 0.1 or less then 0.1 meters
in absolute difference. The TIN was formed by approximately one percent of the
points from the Sand Dunes bathymetry.

In our opinion, the refinement algorithm, both the weighted and unweighted variant,
performed the best of our chosen algorithms. Not only did it converge faster than
the decimation algorithms in most of our studies, but it did also return almost the
same amount of points than its slower counterparts AT1 and wAT1. Indeed, the
AT1 and wAT1 can be faster than refinement, but only for small data reduction.
The main application of TINs is to reduce the amount of storage, which is most
relevant if the desired output from a simplification algorithm is much smaller than
the input point set. The wAT1 and AT1 can therefore be inferior to weighted and
unweighted refinement. The weighted refinement managed to return a point set that
had 73 percent of its triangulated surface deviated by less than 0.1 meters inclusive,
even though the point set contained approximately one percent of the input point
set. This showed that the weighted refinement have the potential to reduce point
sets with relatively short amount of time and at the same time provide simplified
surfaces that represents well the input surface.
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6.1 Future work

Based on the results we obtained from our studies, we have several proposals to
future research that could be of interest. These includes:

• Efficient implementations
We decided to not focus on effective implementations of our algorithms in this
thesis. We note that (Garland and Heckbert, 1995, p. 24) wrote a refinement
algorithm in C++ that managed to yield a point set of 50000 points from a
point set that contained 1024× 1024 points in 46 seconds. Our refinement al-
gorithm written in MATLAB can construct a point set of approximately 35000
points from a point set containing 40000 points in approximately 70 seconds.
In (Garland and Heckbert, 1995), they show that the usage of data structures
can improve the efficiency to the algorithms remarkably. The decimation algo-
rithms, especially AT1 and wAT1, could also be improved in terms of efficiency
by using more efficient data structures. Our implementations could be faster
if they were written in C++.

• Performance with respect to the max deviation
For some applications it might be useful to control the max deviations in the
simplified surfaces such as in terrain-based navigation for AUVs. It could be
of interest to examine how the algorithms performed with respect to the max
deviation also.

• Simplification of large bathymetries
A map that spans over a larger region that we considered in this thesis can
contain millions of points. If the map is supposed to be used for terrain-based
navigation in AUVs, the maps might contain too much data for an AUV to
carry. The bathymetric maps can overlap and might also been acquired from
different mapping systems. To construct a simplified map over a large area
could also be achieved by simplifying the overlapping data and merge them.
A study on how the algorithms performs on large bathymetric maps or many
bathymetric maps that overlaps could therefore be of interest.

• Automated analysis of the triangulated surfaces
In our studies, we mostly performed visual inspections of our simplified surfaces
to see whether they resembled the given surface. This is undesirable if many
terrains are to be simplified. The estimation of terrain features such as slope,
aspect, and curvature could provide more insight into the simplified surfaces
and has the potential to provide a more automated analysis of the simplified
surfaces.

• Refinement for detection of control points in co-registration
Co-registration is the process of mapping a pair of images over the same scene,
but observed from different locations, such that their pixels represents the same
geographical locations in a scene. To perform co-registration of two images,
a set of control points has to be found. The refinement algorithm, both the
unweighted and weighted variant of it, can possibly be used to find the control
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points that are applied in a co-registration method. The refinement algorithm
showed to have the potential to find few and essential points to describe a
surface.

• Distortions of the surface
In practice, the imaged seabed can be distorted in the imaging process. Our
algorithms could be tested on how they perform on surfaces that are slightly
distorted. This could be important to know in applications such as merging
of the surfaces and finding points that represent important features of the
surface.

• Additional weighting in the decimation algorithms
As the weighted decimation algorithms uses a set of values to determine the
significance to each point, they might be sensitive to how the interpolation er-
ror and weights are combined together. An additional weighting could perhaps
provide more control on how the significances are chosen from the weighted
interpolation errors. For instance, one could introduce an additional weight in
wAT1 that weights how much the values within the cell C(p) should contribute
to the computed significance of a point p. The additional weighting could for
example be a function of how far away the points within the cell are from p.

• Feature extraction method with less parameters
Our variation sampling relied heavily on three parameters that defines the
size of the neighborhood to the variation images, the maximum number of
points within a rectangle in the quadtree split, and the maximum variation
allowed within a rectangle in the quadtree split. Our studies showed that
they had a major effect on how the set of initial points made the refinement
algorithm perform. A less parameter controlled feature extraction could make
the refinement algorithm converge better for surfaces in general, as it is possible
to let the refinement perform much better if the optimal set of initial points
was found. From our studies, we were also uncertain whether our chosen
variation estimate did describe the surface well enough. Geomorphologists
have throughout the years suggested may features that could be feasible to
describe a surface, see e.g (Wilson and Gallant, 2000), (Burrough et al., 2015,
Chap. 10), and (Wilson, 2018, Chap. 3), that we think could be considered
to use in a feature-based point extraction.

• Hybrid of weighted refinement and weighted decimation
In (Pedrini, 2000, pp. 44 - 48) they present a hybrid of a decimation and a
refinement algorithm. It could be interesting to see how the weighted variants
of the considered decimation algorithms and the weighted refinement could be
combined together.

• Other definitions of weighting
Our weights were inspired by how the coherence and SNR is related, see Equa-
tion (2.6). The coherence could be used in different ways, and it could be of
interest to see how the different usages of the coherence affects the performance
to the weighted simplification algorithms. The coherence alone might not cap-
ture all of the unrepresentative data of the seabed. It could be of interest to
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examine how the coherence combined with some other quality measurements
affected the point selection to the weighted simplification algorithms.
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A

Implementation details

We used MATLAB to implement our algorithms. The simplification algorithms
developed for this thesis were made without using any pre-developed code ex-
cept for functions available in MATLAB. Functions that were often used includes
delaunayTriangulation, pointLocation, and inpolygon. The implementations
were written on various versions of MATLAB. We used MATLAB R2017a and MAT-
LAB 2019a interchangeably throughout the development.

We found some instabilities in the implementations when Mathworks’ pointLocation
function found wrong triangles to some points. The points were located at the
boundary of the convex hull of the input point set. This was found by checking
whether the computed barycentric coordinates to each point was greater than one
plus some small threshold to compensate for numerical errors. After moving the
points at the boundary by 10−13 inside the convex hull of the input point set and
passing the displaced points to pointLocation, the found triangles were correct.
This circumvention was inspired by (Press et al., 2007, pp. 1135 - 1136), where
adding a small displacement factor can be used in a point location algorithm.

We found that retrieving values from objects took was inefficient compared to ini-
tializing and keeping variables in terms of wall-clock time. This was the bottleneck
for our implementations. The implementations relies heavily on extracting the cor-
rect height values from the delaunayTriangulation object to use for interpolation
when the significances are computed. The only circumvention we saw, was to imple-
ment our own retriangulation algorithm and incorporate it into how we structured
the data in our implementation. This would have been out of scope for this thesis.

The computation of the variation images uses parfor to perform the second or-
der polynomial fit and compute the variation to the fitted elevations. This is only
possible if the Parallel Toolbox from Mathworks is available. The quadtree resam-
pling is implemented as a recursive function, which we found was an effective way
of implementing the splitting.
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