
Nidra: An Extensible Android
Application for Recording,

Sharing and Analyzing
Breathing Data

An Engineering Approach

Jagat Deep Singh

Thesis submitted for the degree of
Master in Programming and Networks

60 credits

Department of Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Autumn 2019

Nidra: An Extensible Android
Application for Recording,

Sharing and Analyzing
Breathing Data

An Engineering Approach

Jagat Deep Singh

© 2019 Jagat Deep Singh

Nidra: An Extensible Android Application for Recording, Sharing and
Analyzing Breathing Data

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

A vast majority of medical examinations requires the patient to be present
at the hospital or laboratory. Statistics Norway [39] presents that between
2017-2018 the cost of diagnosis, treatment, and rehabilitation in Norway
increased with 7.3 percent for municipal health service. Likewise, the man-
years for physicians in the municipal health service increased with 2.4
percent. As such, the growth of medical attendance results in more work
and stress induced on the physicians and a higher demand for medical
attention from the patients.

Mobile applications that focus on improving healthcare are known as
mHealth applications [31]. An excellent example of a mHealth application
is the CESAR project, which aims to use low-cost sensor kits to monitor
physiological signals during sleep in order to provide early detection of
obstructive sleep apnea (OSA) from home [4]. The project facilitates tools
that provide a common interface for sensor sources with different Link
Layer technology (e.g., BlueTooth, USB, and ANT+) and sensor-specific
protocols designed by the manufacturer.

In this thesis, we extend the project by designing and implementing
an Android application for users to record, share, and analyze breathing
data collected over an extended period. Also, extending one of the tools
to support the Flow sensor, which is a respiratory belt for measuring
breathing. The motivation is to collect breathing data that can aid in the
analysis and early detection of sleep apnea; albeit, the application can be
used in other fields of study (e.g., physical activities). Additionally, we
facilitate an extensible application, that allows for future developers to
create modules that extend the functionality in the application or enrich
the data from the user’s records. The name of the application is Nidra—
named after the Hindu goddess of sleep.

Experiments and observations have shown that the application is
capable of collecting data over an extended period using the Flow sensor.
More specifically, 9-hours of recording use approximately 1395 mAh of
the battery capacity, which is well sufficient based on the average battery
capacity of mobile devices. Also, the application is able to reconnect with
the sensor upon disconnects—with the results from the experiment; worst-
case shows no more than 40% data loss. Finally, other developers are
successfully able to create modules that integrate with Nidra.

i

ii

Acknowledgements

First of all, I would like to thank my supervisor, Professor Dr. Thomas
Peter Plagemann, for his guidance throughout the work in this thesis. The
discussions between us have given me invaluable insights that have been
helpful during the development and writing of this thesis. For that, I am
genuinely grateful for the effort and dedication he put into helping me.

Next, I’d like to thank my friends that I’ve gained during the study, as
well as my childhood friends. Their encouragement and motivation have
kept me going, through thick and thin.

Above all, I’m truly grateful for my parents’ unconditional love and
care. Without the support and affection from my Mom, I would not be
where I am today. To her, this degree means much more than it does to me.

A man is but the product of his
thoughts; what he thinks,
he becomes.

Mahatma Gandhi

iii

iv

Contents

List of Tables vii

List of Figures ix

I Introduction and Background 1

1 Introduction 3
1.1 Background and Motivation 3
1.2 Problem Statement . 5
1.3 Limitations . 6
1.4 Research Method . 6

1.4.1 Informational Phase 7
1.4.2 Propositional Phase 7
1.4.3 Analytical Phase . 8
1.4.4 Evaluation Phase . 8

1.5 Thesis Outline . 8

2 Background 11
2.1 The CESAR Project . 11

2.1.1 Extensible Data Acquisition Tool 12
2.1.2 Extensible Data Streams Dispatching Tool 14
2.1.3 Flow Sensor . 17

2.2 Android OS . 17
2.2.1 Android Architecture 17
2.2.2 Application Components 18
2.2.3 Process and Threads 22
2.2.4 Inter-Process Communication (IPC) 23
2.2.5 Data and File Storage 23
2.2.6 Architecture Patterns 24
2.2.7 Power Management 25
2.2.8 Bluetooth Low Energy 26

3 Related Work 29
3.1 Summary & Conclusion . 30

v

II Design and Implementation 31

4 Analysis and High-Level Design 33
4.1 Requirement Analysis . 34

4.1.1 Stakeholders . 34
4.1.2 Resource Efficiency . 34
4.1.3 Security and Privacy 34

4.2 High-Level Design . 35
4.2.1 Task Analysis . 35

4.3 Seperation of Concerns . 37
4.3.1 Recording . 37
4.3.2 Sharing . 40
4.3.3 Modules . 42
4.3.4 Analytics . 43
4.3.5 Storage . 45
4.3.6 Presentation . 47

4.4 Data Structure . 48
4.4.1 Data Formats . 48
4.4.2 Data Entities . 50
4.4.3 Data Packets . 53

5 Implementation 57
5.1 Application Components . 57

5.1.1 Flow Sensor Wrapper 57
5.1.2 Data Streams Dispatching Module 61
5.1.3 Nidra . 62
5.1.4 Inter-Process Communication 63

5.2 Implementation of Concerns 65
5.2.1 Recording . 65
5.2.2 Sharing . 70
5.2.3 Modules . 73
5.2.4 Analytics . 75
5.2.5 Storage . 77
5.2.6 Presentation . 78

5.3 Miscellaneous . 82
5.3.1 Collecting Data Over a Longer Period 82
5.3.2 Android Manifest . 84

III Evaluation and Conclusion 87

6 Evaluation 89
6.1 Experiment A: Orchestral Concert to Analyze Musical Ab-

sorption using Nidra to Collect Breathing Data 90
6.1.1 Preperations . 91
6.1.2 Results . 92
6.1.3 Analysis . 93
6.1.4 Discussion . 95

vi

6.1.5 Conclusion . 95
6.2 Experiment B: 9-Hours Recording 96

6.2.1 Description . 96
6.2.2 Results . 97
6.2.3 Discussion . 98
6.2.4 Conclusion . 98

6.3 Experiment C: Performing User-Tests 98
6.3.1 Testing . 99
6.3.2 Observations . 100
6.3.3 Survey . 100
6.3.4 Discussion . 102
6.3.5 Conlusion . 103

6.4 Experiment D: Creating a Simple Module 103
6.4.1 Observations . 104
6.4.2 Results . 104
6.4.3 Discussion . 104
6.4.4 Conclusion . 105

6.5 Summary of Results . 105
6.6 Concluding Remarks . 106

7 Conclusion 109
7.1 Summary . 109
7.2 Contributions . 110
7.3 Future Work . 111

Appendices 119

A Source Code 121
A.1 File and Folder Structure . 121

B Experiment A: Remaining Graphs 123
B.1 Concert Day 1 and Day 2: Time-Series Graph 123
B.2 Python Code for Plotting . 130

C Module Template 133
C.1 Application Setup . 133

C.1.1 Download the Application 133
C.1.2 Change the Name of the Application 133
C.1.3 Rename the Package of the Application 134
C.1.4 Change the Application ID 134

C.2 Application Execution . 134
C.2.1 Add the Module to Nidra 134
C.2.2 Retrieve the Data . 134

D Flow Sensor Wrapper 137
D.1 Implementation & Presentation 137

D.1.1 Action A: Start the Data Acquistion 138
D.1.2 Action B: Handle the Samples from the Sensor 139
D.1.3 Action C: Stop the Data Acquestion 139

vii

viii

List of Tables

4.1 Example entry in the record table. 51
4.2 Example entry in the sample table. 52
4.3 Example entry in the module table. 52

6.1 Device models used during the concert. 91
6.2 Day 1—Duration: 1 hour & Expected Sample Count: 5145. . 93
6.3 Day 2—Duration: 50 mins. & Expected Sample Count: 4288. 94

ix

x

List of Figures

1.1 Nidra with the possibility of adding multiple modules that
extends the functionality or provide data enrichiment, and
integrating support for multiple sensor sources (with the use
of the data streams dispatching tool). 7

2.1 Structure of the CESAR project, separating functionality into
three independent parts [12]. 12

2.2 Sharing the collected data between multiple applications [25]. 14
2.3 Sharing the collected data between multiple applications [12]. 16
2.4 Android architecture stack, containing six major components. 17
2.5 Android activity lifecycle [2]. 20
2.6 Structure of the Model-View-ViewModel architectural pattern. 24
2.7 The structure of BlueTooth Low Energy; illustrating the

GATT Server with a service containing many characteristics
and its value, and the GATT client connecting with the GATT
server. 26

4.1 The individual tasks that outline the application: (1) record-
ing, (2) sharing, (3) modules, (4) analytics, (5) storage, and
(6) presentation. 35

4.2 A design proposal for the structure of the recording concern. 38
4.3 A design proposal for the structure of the sharing concern. . 41
4.4 A design proposal for the structure of the modules concern. 43
4.5 A design proposal for the structure of the analytics concern. 44
4.6 A design proposal for the structure of the storage concern. . 45
4.7 A design proposal for the structure of the presentation concern. 47
4.8 The data model and relationship for the entities in the

application: a record has zero to many samples, while a
sample only can have one record. A record can have one
user, while a user can have many records. A module has no
relationship with the other entities. 50

5.1 Applications components for the three individual Android
applications in the project and IPC connection between them. 58

xi

5.2 Legend for the figures in implementation of concerns:
(A) application components with integration of our logic;
(B) objects that contains specifics of our logic; (C) an
interface for callbacks or listeners; (D) Android-specific
objects and components; (E) other installed applications; (F)
step direction; and (G) reference or data flow direction. . . . 65

5.3 Implementation of the recording action (A): start recording. 66
5.4 Implementation of the recording action (B): stop recording. . 68
5.5 Implementation of the recording action (C): display record-

ing statistics. 69
5.6 Implementation of the sharing action (A): exporting one or

all records. 70
5.7 Implementation of the sharing action (B): import a record

from the device. 72
5.8 Implementation of the module action (A): add a module. . . 73
5.9 Implementation of the module action (B): launch a module. . 74
5.10 Implementation of the analytics action (A): display a graph

for a single record. 76
5.11 Implementation of the storage concern. 77
5.12 The recording screen displayed to the user: (A) during

a recording, (B) statistics interface, and (C) stopping the
recording. 79

5.13 The sharing screen displayed to the user: (A) option to
import or export, (B) the media selection for exporting, and
(C) the file selection for importing. 80

5.14 The module screen displayed to the user: (A) module screen
without any modules, (B) list of installed applications on the
device, and (C) module screen with modules. 81

5.15 The analytics screen displayed to the user: (A) the feed
screen; (B) the analytics screen. 82

6.1 Record obtained from the device model B on day 1 of the
concert. 92

6.2 Record obtained from the device model B on day 2 of the
concert. 92

B.1 Concert Day 1: Device Model A. 124
B.2 Concert Day 1: Device Model B. 124
B.3 Concert Day 1: Device Model C. 125
B.4 Concert Day 1: Device Model D. 125
B.5 Concert Day 1: Device Model E. 126
B.6 Concert Day 1: Device Model F. 126
B.7 Concert Day 2: Device Model A. 127
B.8 Concert Day 2: Device Model B. 127
B.9 Concert Day 2: Device Model C. 128
B.10 Concert Day 2: Device Model D. 128
B.11 Concert Day 2: Device Model E. 129
B.12 Concert Day 2: Device Model F. 129

xii

D.1 The Flow sensor wrapper application presented to the user
with following screens: (A) main screen, and (B) selecting a
sensor source. 137

D.2 Implementation of Flow sensor wrapper with the actions of:
(A) start the data acacquisition, (B) handle the samples from
the sensor; (C) stop the data acquisition. 138

xiii

xiv

Part I

Introduction and Background

1

Chapter 1

Introduction

1.1 Background and Motivation

The medical focus in this thesis is in the field of sleep-related breathing
disorders, which is characterized by abnormal respiration during sleep.
Obstructive sleep apnea (OSA) is a disorder, which in layman’s terms
is when the natural breathing cycle is partially or completely obstructed
in repetitive episodes during sleep. As a consequence, OSA decreases
the quality of life, and untreated OSA can lead to severe illnesses like
cardiovascular diseases, including diabetes, strokes, and atrial fibrillation
[48]. The diagnosing of OSA is performed with polysomnography in
sleep laboratories. However, this method is both an expensive and time-
consuming procedure that takes a toll on the patient and the laboratories.
The patient is strapped in a contraption of sensors and ordered to sleep
overnight, while the laboratories have limited capacity and resources to
perform sufficient tests with the patients.

In recent years, mobile phones have become significantly advanced
and powerful devices. What would require an entire room of processing
power, has been compressed into a handheld and portable device. As of
now, mobile phones come with powerful processors, a sufficient amount of
RAM, and an adequate amount of battery capacity. Mobile phones operate
with an operating system at its core; the operating system facilitates a
platform that enables developers to create and develop applications that
can be used by end-users. Moreover, mobile devices come with sensors
(e.g., microphones and accelerometers), with the capability of connecting to
external sensors through wired or wireless communication channels (e.g.,
BlueTooth). As such, third-party vendors can create sensors that aid in the
detection of events or changes in an environment, and send the information
to mobile devices. With respect to monitoring sleep-related breathing
disorders, there are various sensor vendors which translate physiological
signals (from the human body) into digital signals which can be processed
by the mobile device. An example of such a sensor vendor is SweetZpot
Inc. [50], which provides an affordable respiratory effort belt that captures

3

the respiratory effort using strain-gauges, called Flow. The Flow sensor is
initially designed to be used during physical activities (e.g., cycling, lifting,
and rowing); however, it can be used for collecting breathing data over an
extended period, as it is battery-powered and has BlueTooth support.

Creative use of mobile devices and sensor technologies (mHealth)
has the potential to improve health research and reduce the cost of
healthcare. Mobile technologies1 can overcome the hurdle of a patients
presence, encourage behaviors to prevent or reduce health problems, and
provide personalized/on-demand interventions [31]. A potential mHealth
application is the CESAR project, which aims to use low-cost sensor kits to
monitor physiological signals (e.g., related to heart rate, brain activity, the
oxygen level in the blood) during sleep in order to provide early detection
and analysis of obstructive sleep apnea (OSA). The CESAR project [4]
focuses on the development of new software solutions using state-of-the-
art consumer electronic devices with appropriate sensors sources to enable
anyone to monitor physiological parameters that are relevant for OSA
monitoring at home. This unfolds the potential to provide early detection
of OSA from home with the aid of various sensors sources.

As of now, the CESAR project facilities for tools that manage the
connectivity with sensor source, and forwarding of data packets from
these sensor sources to subscribing applications. More specifically, the
data streams dispatching tool [12] manage applications (subscribers) that
listen for data packets from sensor sources (publishers). Moreover, the
data acquisition tool [25] facilitates for a sensor wrapper that provides a
common interface for sensor sources with different Link Layer technology
(e.g., USB, BlueTooth, and ANT+) and sensor-specific protocols (e.g.,
provider defined SDKs), and acts as a publisher that is connected with the
data streams dispatching tool.

The motivation for this thesis is to expand on the CESAR project by
creating an application, called Nidra, for the patients to record, share, and
analyze breathing data. Nidra should be able to collect breathing data over
an extended period, share the recording data across applications using a
media (e.g., e-mail), and to analyze the data. Additionally, Nidra should
support the integration of other standalone applications (i.e., modules)
which leverages the data from Nidra in order to enrich the data or extend
the functionality of Nidra. For example, a module can be using the data
from Nidra to feed a machine-learning algorithm that predicts sleep apnea.
In the end, the data from the patients should aid the researchers/doctors
in the detection of obstructive sleep apnea. Although, Nidra could also be
applied in other fields of study (e.g., physical activities).

1mobile device and sensors that are intended to be worn, carried or accessed by
individuals

4

1.2 Problem Statement

The market has new and affordable sensors that can aid with the data
acquisition, which we seamlessly can integrate with the extensible data
streams dispatching tool. The Flow sensor is an interesting sensor source
due to its versatility and adaptability of collecting breathing data and
connecting to devices with the BlueTooth protocol.

As for the state of this thesis: (i) applications which supports the Flow
sensor has not been designed for end-users, in essence, they provide no
user-friendly interface that allows for sharing of the data. In order to extract
the data from these applications, the mobile device has to be connected
with a PC over USB for data transfer; (ii) there is no sensor wrappers
that support the Flow sensor with the data streams dispatching tool in the
CESAR project; and (iii) the data streams dispatching tool is not ready to
be used by the end-users, because the project facilitates no user-friendly
interface for users to record the data from the supported sensor sources.

As such, we look into designing and implementing an Android
application (Nidra) that record, share, and analyze breathing data over an
extended period (e.g., during sleep) by using the Flow sensor. Additionally,
we want to facilitate an extensible application such that future developers
can extend functionality or enrich the data in Nidra. In the end, we
can hopefully strengthen the analysis of abnormal sleeping patterns to
decreasing the risk of the symptoms they may come as a consequence.
Also, as a bi-product, the application can be used in other fields of studies
(e.g., physical activities). As the scope of this thesis, we focus on the
completion of three main goals:

Goal 1 Integrate the support for Flow sensor by creating a sensor wrapper
that connects with the extensible data streams dispatching tool.

Goal 2 Research and develop a user-friendly application which facilitates
collection of breathing data with the Flow sensor, sharing of the data,
and analysis of the data with the use of the extensible data streams
dispatching tool.

Goal 3 Create an extensible solution such that the developers can create
standalone applications that integrate with Nidra.

As part of the goals of this thesis, we also define three system
requirements to keep in mind while designing and implementing the
application. The three system requirements are the following:

Requirement 1 The application must provide an interface for the patient
to (i) record physiological signals (e.g., breathing data); (ii) present
the results; and (iii) share the results.

Requirement 2 The application must ensure that upon sensor disconnec-
tions, the connectivity is reinstated to minimize the data loss and its
effects on the data analysis.

5

Requirement 3 The application must provide an interface for the de-
velopers to create modules that integrate with the application.

1.3 Limitations

Based on the goals and requirements stated in the previous section, the
scope of this thesis is to design and implement an application capable of
recording breathing data obtained by the Flow sensor over an extended
period.

We limit the scope to integrating the support for the Flow sensor in
Nidra, and excluded to test for already integrated sensor sources (e.g.,
BITalino). Further, with the Flow sensor provided under development, we
restricted the design to collect respiration (breathing) data (as opposed to
hearth-rate or other physiological data).

The application is designed to collect breathing data; we do not
perform any analysis to predict or detect sleeping disorders based on the
data. However, provide an interface for patients to record their breathing
data and share the data with their researchers/doctors for detection or
analysis. Although, we facilitate an interface for future developers to utilize
the data provided by Nidra to perform advanced analysis, examination, or
prediction of the disorder.

Finally, the implementation is Android-specific as the previous work
performed on the project is designed solely for Android applications.

1.4 Research Method

The work in this thesis is classified as computing research with a principle
approach of an engineering method as described in [26]. The engineering
method (evolutionary paradigm) is to: (i) observe existing methods, (ii)
propose a better solution, (iii) build or develop artifacts2, and (iv) measure
and analyze until no further improvements are possible. The report
identifies patterns amongst various principle approaches and categorizes
the patterns into phases: (i) informational phase, (ii) propositional phase, (iii)
analytical phase, and (iv) evaluation phase. Below, we give a brief description
of each phase and discuss how our work fits into each of them.

2human-manufactured objects produced during the development

6

Nidra

Figure 1.1: Nidra with the possibility of adding multiple modules that
extends the functionality or provide data enrichiment, and integrating
support for multiple sensor sources (with the use of the data streams
dispatching tool).

1.4.1 Informational Phase

The informational phase according to the report is to "gather or aggregate
information via reflection, literature survey, people/organization survey, or poll"

In this thesis, we survey previous related work in the field of detecting,
analyzing, and diagnosing sleep related-breathing disorders on a mobile
device. Based on this, we derive that the application created in this thesis
has the same motivation; however, the related work operates with different
of kind measure and instrument for solutions (e.g., using microphone and
accelerometers to provide early-detection of sleep apnea). As such, we
focused on creating an extensible application that allows future developers
to create modules on top of our solution (as illustrated in Figure 1.1). By
allowing this, future developers can expedite the innovation in the research
and study of sleep-related breathing disorders, as well as allowing the
patients to operate with one application.

1.4.2 Propositional Phase

The propositional phase according to the report is to "propose and/or
formulate a hypothesis, method or algorithm, model, theory, or solution"

The solution proposition in this thesis is to create an application used
to record, share, and analyze breathing data collected over an extended
period. We want to extend the CESAR project by providing an user-
interface to the patient to perform these tasks while using the tools that
the project facilitates. Mainly, we want to use the data streams dispatching
tool in order to manage current and future sensor sources. In which, we
proceed to add support for the Flow sensor. In the end, we wish to facilitate
an application that is used by the patients to record their breathing data

7

during sleep and to share the data between researchers/doctors. As such,
we aid in collecting breathing data used for early detection of sleep-related
breathing disorders (e.g., obstructive sleep apnea) from home.

1.4.3 Analytical Phase

The analytical phase according to the report is to "analyze and explore
a proposition, leading to a demonstration and/or formulation of a principle or
theory"

With the proposition phase of this thesis, we analyze the tasks of
the application. We separate the tasks into concerns (i.e., recording,
sharing, analyzing, modules, storage, and presentation) where we propose
a structure that contains components, where each component has various
functionalities and design choices. With each concern combined, we fulfill
the goals of this thesis. As a demonstration, we realize the design choices
by implementing them as an Android application, called Nidra.

1.4.4 Evaluation Phase

The evaluation phase according to the report is to "evaluate a proposition
or analytic finding by means of experimentation (controlled) or observation
(uncontrolled, such as a case study or protocol analysis), perhaps leading to a
substantiated model, principle, or theory"

Based on the requirements and goal of this thesis, we evaluate
the application by conducting experiments. Some of the experiments
include participants that perform various tasks, such that we can observe
the outcome of the tasks on participants without prior knowledge or
experience of the application. In the end, we evaluate and conclude
whether the goals and requirements of this thesis are satisfied.

1.5 Thesis Outline

The thesis is divided into three parts, which the following list presents a
general overview of:

• Part 1: Introduction & Background

Chapter 2: Background presents the background material necessary
for understanding the fundamentals of this thesis. It starts by
introducing the CESAR project and the tools provided for data
acquisition, as well as a description of the Flow sensor. Finally,
an overview of the Android operating with the information
required to understand the structure of the application (Nidra).

8

Chapter 3: Related Work presents the related work focusing on creat-
ing a mobile application to collect physiological data in order
to diagnose sleep apnea, and with a brief discussion on how
we contribute with novelty and improvements from the related
work.

• Part 2: Design & Implementation

Chapter 4: Analysis and High-Level Design presents the functional re-
quirements of the application, the tasks derived based on the
requirements and goals of the thesis, and the tasks separated
into concerns, where we propose a structure of implementa-
tion which contains component with various functionalities and
design choices. In the end, we discuss the data structure, namely
the data entities (i.e., record, sample, module, and user), the data
format (JSON versus XML), and the structure of the data packets
sent from the sensor sources as well as the data packets sent on
sharing.

Chapter 5: Implementation presents the application components of the
project (i.e., Nidra, data streams dispatching module, and the
Flow sensor wrapper) with the interface of IPC connectivity.
Moreover, it presents the steps and flows taken in order to
implement the concerns (i.e., recording, sharing, analyzing,
modules, storage, and presentation) by separating the actions
and showing how the components in the application interact.

• Part 3: Evaluation & Conclusion

Chapter 6: Evaluation presents four experiments conducted in order
to evaluate the system requirements of the application. Each ex-
periment has a short description followed up by results, a dis-
cussion on improvements and findings, and a conclusion of the
experiment. Finally, a conclusion on the system requirements of
the thesis.

Chapter 7: Conclusion presents the summary of the thesis, followed
up with contributions that answer the goals defined in the
problem statement. Finally, a list of improvements and furture
work that can be made to the application.

9

10

Chapter 2

Background

2.1 The CESAR Project

The goal of the CESAR project is to reduce the threshold to perform
a clinical diagnosis of obstructive sleep apnea (OSA) and to reduce the
time to diagnose the disorder [13]. Obstructive sleep apnea is a common
sleeping disorder which affects the natural breathing cycle by reducing
respiration or all airflow. As a consequence, OSA can lead to serious health
implications, and in some cases, death through suffocation. Moreover,
the project aims to use low-cost sensor kit to prototype applications using
physiological signals related to heart rate, brain activity, the oxygen level
in the blood to monitor sleep and breathing-related illnesses [4].

As of now, the development in the project facilities for data acquisition
from various sensor sources and forwarding of the data packets to
subscribed applications. Section 2.1.1 and Section 2.1.2 is a summary
and results of the development on the project. The previous work has
incorporated support for a few sensor sources (e.g., BITalino) in order to
collect physiological signals. With the support for more sensor sources
allows for more precise detection and analysis of the disorder. In Section
2.1.3, a new affordable sensor source is introduced.

As an overview, Figure 2.1 is an illustration of the structure for the
CESAR project. The system is divided into three parts: data acquisition
part, data streams dispatching part, application part. The first part enables
developers to create sensor wrappers that connect with sensor sources
through different Link Layer technology (e.g., Ethernet, USB, Bluetooth,
WiFi, ANT+, and ZigBee). The second part manages the discovery and
collection of these sensor wrappers and package distribution to subscribing
applications. The third part uses the interface that the second part provides
in order to collect data from the desired sensor sources.

11

Figure 2.1: Structure of the CESAR project, separating functionality into
three independent parts [12].

2.1.1 Extensible Data Acquisition Tool

In the thesis "Extensible data acquisition tool for Android" by Gjøby [25]
a proposition of a data acquisition system for Android is presented. The
thesis proposes a system that hides the low-level sensor-specific details into
two components, providers and sensor wrappers. The provider is responsible
for the functionality that is common for all data sources (e.g., starting and
stopping the data acquisition), while the sensor wrapper is responsible for
the data source specific functionality (e.g., communicating with the data
source).

The thesis solves the difficulties around creating an extensible data
acquisition tool, connecting new and existing sensors, and finding a
common interface. The problem statement of the thesis addresses the
following concerns regarding sensors:

• Common abstraction/interface for the interchanged data
Sensor platform manufacturers have their low-level protocol to sup-
port the functionality of their product. Typically, the manufactur-
ers provide software development kits (SDKs) to hide the low-level
protocols so third-party developers can be easier; however, both the
low-level protocol and the SDKs are not standardized. Thus, for each
sensor, there might be different commands and methods.

• Various Link Layer technologies
Each sensor might use different Link Layer technology (i.e., Ethernet,
USB, BlueTooth, WiFi, ANT+, and ZigBee), which means establishing
a connection between a device and a sensor might differ. For instance,
BlueTooth devices need to be paired, while devices on the WiFi can
address each other without any pairing.

12

• Reusability of sensor code
Applications that implement support for the low-level protocol of a
sensor type can not be shared between different applications. Thus,
introducing duplicate work and code if multiple application wish to
use the same sensor type. A framework that isolates the sensor that
applications can use, might make it easier for application to utilize
the collected data. In addition, isolating the sensors into modules
improves the robustness and quality of the implementation.

In the thesis, the goal is to develop an extensible system, which
enables applications to collect data from various external and built-in
sensors through one common interface. The solution around an extensible
system is to have the core of the application unchangeable when adding
support for a new data source, regardless of the Link Layer technology
and communication protocol used by the data source. Making all the
data sources behave as the same, is a naive solution to the problem.
However, separating the software into two different components, a
provider component and a sensor wrapper component, enables the reuse of
functionality that is common amongst the data sources.

The sensor wrapper application is tailored to suit the Link Layer
technology and data exchange protocol of one particular data source.
Additionally, responsible for connectivity and communication with the
data source. The provider application is responsible for managing
the sensor wrappers—starting and stopping the data acquisition—and
processing the data received from the sensor wrapper application. Thus,
everything that is independents of the data source should be a part of
the provider application. With this type of solution, the possibility to
reuse the sensor wrapper application for different provider applications
is made possible. However, there are some overheads with this solution.
Mostly, the inter-process communication that might be costly and increase
the complexity of the code. Nonetheless, the flexibility and extensibility
gained by separating the functionalists out weights the cost.

When a connection is established with the provider application, a
package of metrics and data type (all the data does not change during the
acquisition as metadata) is sent describing the context of the data collected.
The metadata is necessary because different sensors might sample data
in different environments, and some applications are depending on
recognizing the environment of the data acquisition. Therefore, it is
critical to know what data values are measured. Consequently, exposing
sensors and data channels through one common interface requires a field
of metadata which can be used to: (1) distinguish sensor wrapper and
data channel the data originated from; (2) determine the capabilities of the
sensors (i.e., EEG, ECG, LUX); (3) determine the unit the data is represented
in (i.e., for temperature, Celsius or Fahrenheit); (4) describing the data
channel (i.e., placement of the sensor); and (5) a timestamp of when the
data was sampled.

To summarize, the task of a sensor wrapper is to establish a connection

13

Figure 2.2: Sharing the collected data between multiple applications [25].

to and collect data from precisely one specified data source, and to send
the collected data to the provider application that is listening for it. A data
source (e.g., BiTalion) can have support for multiple sensor attachments
(defined as data channel in the thesis), although, only on sensor wrapper
is necessary for each data source and their data channels. Each sensor
wrapper is tailored to adapt to the data source’s Link Layer technology and
the communication protocol of a respective data source. Upon activation
by a provider application, the data is collected by the sensor wrapper, and
pushed to the provider application in a JSON-format. An illustration of the
structure is found in Figure 2.2.

2.1.2 Extensible Data Streams Dispatching Tool

The extensible data acquisition tool developed by Gjøby [25] leaves some
space for improvements. Such improvements are discussed in the thesis
"Extensible data streams dispatching tool for Android" by Bugajski [12].
The thesis analyses the potential improvements of the data acquisition
tools, which can be extracted into:

• Lack of reusability
Only the components that have started the collection can receive the
data, and no other components can access the collected data.

• Lack of sharing
Components that perform specific analysis on the collected data in
real-time have no way of share the results of the analysis such that
other components can use them.

• Lack of tuning
It is not allowed to change the frequency of collection after the start.

14

Thus, the user has to stop the collection and manually change the
frequency of the sensor and then restart the collection.

• Lack of customization
The set of channels cannot be changed during a collection, and the
collector receives data from all channels even if it needs only one of
them. Thus, the data packet size and resource usage become larger
than necessary.

In the thesis, the modularity of the architecture is improved by finding
a common model for all available data channels, developing a mechanism
for cloning a data packet to allow reusing of data across modules, and
allowing the modules to have support for choosing channels they want to
receive data from and publish their data to. In the model, these components
are distinguished as:

1. sensor-capability model: is a representation of all distinct data types and
contains all information about the channel. A sensor board usually
reads and sends different type of data to a mobile device. Thus, this
module is used to control every available data type, such that they
can be accessed from the application part at any time.

2. demultiplexer (DMUX): is a data cloner, that receives data packets from
one input (e.g., from one channel), and duplicates the data several
times based on the number of subscribers.

3. publish-subscribe mechanism: is an interface responsible for managing
requests from subscribers or publishers, also, to be able to terminate
these statuses. Additionally, every module from the application will
be able to see all capabilities represented by this component, enabling
the option to choose a frequency the data collection.

The combination of how these modules cooperate and communicate
with each other affects the modularity and performance of the architecture.
In the thesis, there are various proposed solutions. The naive solution
was to fit all of the elements into each respective sensor wrapper, thus,
prioritizing the performance and low resource usage, but making it
impossible to distinguish data type from two sensor wrapper with the same
data type. This is optimal for the cases where collection only occurs on one
sensor board. An improved solution includes to place the demux between
the application part and the wrapper layer and to insert the remaining
elements in the respective application part. This solution resolves the
overload of sensor wrappers performing other tasks besides collecting
data; thus, the wrappers are untouched, and they send the data to the
demux. However, there are several issues with this solution, e.g., due to
various obstacles such as (1) every application module has to configure
its sensor-capability model; (2) filter requested data packets from all the
channels; (3) and deal with the collection speed on its own.

Addressing these issues leads to the final architecture, which is presen-
ted in Figure 2.3, and meets the demands identified in the requirements.

15

Figure 2.3: Sharing the collected data between multiple applications [12].

In this solution, all elements are placed between the application part and
the wrapper layer, forming the data streams dispatching module. The
sensor wrapper connects directly to the data streams dispatching mod-
ule; the module discovers all installed wrappers and populates the sensor-
capability model with the data types from all installed sensors. By this,
all applications can access a shared sensor-capability mode. A publish-
subscribe mechanism enables application modules to subscribe to any cap-
abilities with a preferred sampling rate. Correspondingly, an application
module can publish data to other applications through the same interface.
The demultiplexing element creates for each subscriber a copy of the data
packet.

To summarize, these three elements together establish the data streams
dispatching module. The final architecture has a couple of advantages, such
as it is exceedingly extensible due to its maintainability. For instance, all
communication with other layers occurs through one interface; this way,
new instances can be added at any time, without the need for modifying
large parts of the system. The system is also efficient due to packets
are immediately sent to the application on request (without any buffers),
and packets are only sent to the application requesting them, resulting
in less resource and power usage, and more battery life. This tool is an
improvement to Gjøby’s solutions due to these facts.

16

2.1.3 Flow Sensor

Flow is an activity sensor created by SweetZpot Inc., initially designed for
measuring breathing and heart rate during activities. The sensor measures
breathing per minute, in correlation to the heart rate, for optimal activity
measurement. As stated on their page: "usually, at rest, your breathing varies
between 6 and 8 liters per minute. During sleep, breathing can be as low as 3 liters
per minute and can reach 160 liters per minute and above during high-intensity
athletic activity" [50]. Thus, this sensor could be suiting for measuring
sleeping problems in the project.

The sensor is a strap-on placed beneath the chest. It weighs 27 grams
and dimensions of 77x43x17mm. Additionally, it is equipped with a 3V
Lithium battery, with an estimated battery life of one year (with 7 hours a
weekly usage). The sensor can be connected with BlueTooth technology,
making it possible to connect with mobile devices.

2.2 Android OS

Android is an open-source operating system (OS) developed by Google
Inc., based on the Linux kernel and primarily designed for mobile touch-
screen devices (e.g., smartphones, tablets, and watches). This chapter
encompasses the structure of Android, such as the OS architecture and the
BlueTooth LE protocol.

2.2.1 Android Architecture

The Android platform is an open-source and Linux-based software stack,
containing six major components [42] (as illustrated in 2.4):

Applications

Android Framework

Android Runtime (ART)

Hardware Abstract Layer (HAL)

Linux Kernel

Native Libraries

Application (1st and 3rd party)

Content Providers, View System, Mangers

Core Libs, ART, Dalvik VM

Storage, Bluetooth, I/O

Drivers, Power Management

Figure 2.4: Android architecture stack, containing six major components.

17

Applications: Android provides a core set of applications (e.g., SMS,
Mail, and browser) pre-installed on the device. There is support
for installing third-party applications, which allows users to install
applications developed by external vendors. A user is not bound
to use the pre-installed applications for a service (e.g., SMS), and
can choose the desired applications for service. Also, third-party
applications can invoke the functionality of the core applications (e.g.,
SMS), instead of developing the functionality from scratch.

Android Framework: Is the building blocks to create Android applications
by utilizing the core, all exposed through an API. The API enables
reuse of core, modular system components, and services; briefly
characterized as View System: to build the user interface pre-
defined components (e.g., lists, grids, and buttons); Resource Manager:
provides access to resources (e.g., strings, graphics and layout
files); Notification Managers: allows applications to show custom
notifications in the status bar; Activity Manager: manages lifecycle of
the application; and Content Providers: enables applications to access
data from other applications.

Android Runtime: Applications run in a seperate process and has its
separate instance of the Android Runtime (ART). ART is designed
to run on multiple virtual machines by executing DEX (Dalvik
Executable format) files, which is a bytecode specifically for Android
to optimize memory footprint. Some of the features that ART
provides are ahead-of-time (AOT) and just-in-time (JIT) compilation,
garbage collection (GC), and debugging support (e.g., sampling
profiler, diagnostic exceptions, and crash reporting).

Native Libraries: Most of the core Android components and services
native code, that requires native libraries, is written in C or C++. The
Android platform exposes Java APIs to some of the functionality of
the native libraries (with Android NDK).

Hardware Abstract Layer: Provides an interface to expose hardware cap-
abilities to the Java API framework. Hardware Abstract Layer (HAL)
consists of multiple library modules that implement an interface for
specific hardware components (e.g., camera, or BlueTooth module).

Linux Kernel: is the foundation of the Android platform. The ART relies
on the functionality from the Linux kernel, such as threading and
low-level memory management. The Linux kernel provides drivers
to services (e.g., BlueTooth, WiFi, and IPC), and incorporates a
component for power management.

2.2.2 Application Components

Application components consist of four core components that are the
building blocks of an Android application [7]. This section intro-

18

duces these components; Activites, Services, BroadcastReceivers, and
Content Providers. The activity is responsible for interactions with the
user, services is a component that performs (long-running) tasks in the
background, broadcast receivers handle broadcast messages from applic-
ation components, and content providers manage shared set of applic-
ation data. The Android system must be aware of the existence of
the components, which can be accomplished by defining a manifest file
(AndroidManifest.xml) that describes the component and the interactions
between them, as well as describe the permission of the application.

2.2.2.1 Activity

An application can consist of multiple activities, and activity represents a
single screen with a user interface [2]. Applications with multiple activities
have to mark one of the activities as the main activity, which will be
presented to the user on launch. The user interface of an activity is
constructed in layout files which define the interaction logic of the user
interface, and the layout file is inflated into the activity on launch.

Activites are placed on a stack, and the activity on top of the stack
becomes the running activity. Previous activities remain in the stack (unless
disregarded), and are brought back if desired. An activity can exist in three
states:

• Resumed (Running): The activity is in the foreground of the screen
and has user focus.

• Paused: Another activity is running, but the paused activity is still
visible. For instance, the other activity does not cover the whole
screen. A paused activity maintains its state but can be killed by the
system if the memory situation is critical.

• Stopped: Another activity obscures the activity. A stopped activity
maintains its state; however, it is not visible to the user and can be
killed if the memory situation is critical.

Paused and stopped activities can be terminated due to insufficient
memory by asking the activity to finish. When the paused or stopped
activity is re-opened, it must be created all over.

Activities are part of an activity lifecycle, in Figure 2.5, the state of the
activity can be vaguely categorized into:

• Entire Lifetime: of an activity occurs between the calls to OnCreate()
and the call to OnDestroy(). The activity sets the states (e.g.,
defining the layout) in OnCreate(), and release remaining resources
in OnDestroy().

• Visible Lifetime: of an activity happens between the calls to
onStart() and the call to onStop(). Within this lifecycle, the user
can see and interact with the application. Any resources that impact

19

Figure 2.5: Android activity lifecycle [2].

or affect the application occurs between these methods. As activities
can alternative between state, the system might call these methods
multiple times during the lifecycle of the activity.

• Foreground Lifetime: of an activity occurs between the calls to
onResume() and onPause(). The activity is on top of the stack and has
user input focus. An activity can frequently transition in this state;
therefore, ensuring that the code in these methods is lightweight in
order to prevent the user from waiting.

Fragment

A fragment represents a behavior or is a part of a user interface that can
be placed in an activity [22]. Fragment allows for reuse of user interface
or behavior across applications and can be combined to build a multi-
pane user interface inside an activity. The fragment allows for more

20

flexibility around the user interface, by allowing activities to comprise
of multiple fragments which will have their own layout, events, and
lifecycles. The lifecycle of a fragment is quite similar to the activity lifecycle;
with extended states for fragment attachment/detachment, fragment view
creation/destruction, and host activity creation/destruction. A fragment is
coherent with its host activity, and the state of the fragment is affected by
the state of the host activity.

2.2.2.2 Service

Service is a component that runs in the background to perform long-
running tasks [47]. The application or other applications can start a service
which remains in the background even if the user switches applications. In
contrast, activities are not able to continue if the user switches to another
application. Also, a service can bind with a component to interact or
perform inter-process communication (IPC). To summarize, a service has
two forms:

• Started: A component can call the startService() method on a
service, such that the service can run in the background.

• Bound: A component can call the bindService() method on
a service, which in return will offer a client-server interface to
perform operations (e.g., sending requests, or retrieving results)
across processes with inter-process communication (IPC). Multiple
components can bind to a service, and the last component to unbind
will destroy the service.

2.2.2.3 Broadcast Receiver

A broadcast receiver is a component that receives broadcast announce-
ments mostly originating from the system (e.g., the screen turned off, the
battery is low, or a picture was captured). Applications can subscribe to
messages, and the BroadcastReceiver can address and process the mes-
sages accordingly. Applications can also initiate broadcasts, and the data is
delivered as an Intent object. A BroadcastReceiver can be registered in
the activity of the application (with IntentFilter), or inside of the mani-
fest file.

2.2.2.4 Content Providers

Content providers manage access to a set of structured data and provide
a mechanism to encapsulate and secure the data [15]. Content providers
is an interface which enables one process to connect its data with another
process. Also, in order to copy and paste complex data or files between
applications, a content provider is required. For instance, to share a file

21

across a media (e.g., mail), a FileProvider (subclass of ContentProvider)
is needed to facilitate a secure sharing of files [21].

2.2.3 Process and Threads

The Android system creates a Linux process with a single thread of
execution for an application on launch [44]. All components (i.e., activity,
service, broadcast receiver, and providers) run in the same process
and thread (called the main thread) unless the developer arranges for
components to run in a separate process. A process can also have
additional threads for processing.

When the memory on the device runs low and demanded by processes
which are serving the user, Android might kill low priority processes.
Android decides to kill the process based on priority; the process hierarchy
consists of five levels (the lowest priority number is the most important and
is killed last):

1. Foreground Process: is a process that is required by the user to
interact and function with the application. A foreground process
is categorized as: activity that the user interacts with, service that
is bound to an interacting activity, service that is running in the
foreground (with startForeground()), service that is executing
on of the lifecycle callbacks, and broadcast receivers executing
onReceive() method.

2. Visible Process: is a process without foreground components, but
affect the user interactions. A visible process is when a foreground
process takes control (however, the visible process can be seen behind
it), and a service that is bound to a visible (or foreground) activity.

3. Service Process: is a process that executes work which is not
displayed to the user (e.g., playing music or downloading data), and
are started with the startService() method.

4. Background Process: is a process that holds information of paused
activities. This process state has no impact on the user experience,
and these processes are kept in an LRU (least recently used) in order
to refrain killing the activity that the user used last. The state of
the process can be saved if the lifecycle method in an activity is
implemented correctly, to ensure seamless user experience.

5. Empty Process: is a process that does not hold any active application
components; however, are kept alive for caching and faster startup
time for components that need to be executed.

Threads

The main thread is responsible for dispatching events to the user interface
widget and drawing events. Also, the thread interacts with the application
components from the Android UI toolkit; the main thread is also called

22

UI thread. System calls to other components are dispatched from the
main thread, and components that run in the same process are instantiated
from the main thread. Intensive work (such as long-running operations
as network access or database queries) in response to user interaction,
can lead to blocking of the user interface. As a consequence, the user
can find the application to hang and might decide to quit or uninstall the
application.

Additionally, the tool kit to update the user interface in Android is
not thread-safe; therefore, enforcing the rules of (1) not to block the UI
thread; and (2) not to access the Android UI toolkit outside the UI thread.
In order to run long-running or blocking operations, one can spawn a new
thread or Android provides several options: runOnUiThread, postDelay,
and AsyncTask (perform an asynchronous task in a worker thread, and
publishes the results on the UI thread).

2.2.4 Inter-Process Communication (IPC)

Inter-process communication is a mechanism to perform remote procedure
calls (RPC) to application components that are executed remotely (in
another process), with results returned to the caller. To perform IPC,
the caller has to bind to a remote service (using bindService()). Upon
binding to a remote service, a proxy used for communication with the
remote service is returned. The proxy decomposes the method calls, and
the Binder framework takes the methods and transfers them to the remote
process [10]. Android offers a language to enable IPC; called Android
Interface Definition Language (AIDL) [6].

Besides AIDL, one can use Intent to pass messages across pro-
cesses. The intent is a messaging object used to request action from
other application components [28]. There are two types of intents: (1)
explicit intents: used to start a component in the application, by
supplying the application package name or component class; and (2)
implicit intents: declare a general action to perform, which enables
other applications to handle it. The main uses cases of intent are to starting
an activity, starting a service, and delivering a broadcast.

2.2.5 Data and File Storage

Android provides options to store application data on the device, depend-
ing on space requirement, data type, and whether the data should be ac-
cessible to other application or private to the application [18]. There are
four distinctive data storage options, depending on the requirement of data
that is being stored:

• Interal File Storage: The system provides a directory on the file
system for the application to store and access files. By default, the

23

Bind
View

Update

Notify
ViewModel

Notify
Model

Figure 2.6: Structure of the Model-View-ViewModel architectural pattern.

files saved in this directory is private to the application. Also, files
stored in the internal storage are removed on uninstallation of the
application; therefore, storing persistent data that are expected to be
on the device regardless of the application removal, should not be
using internal file storage. In addition, internal file storage allows for
caching, which enables temporarily data storage (that do not require
to be persistent).

• External File Storage: External file storage enables storing of files
in a space where users can mount to a computer as an external
storage device (or to physical removable storage, such as SD card).
Files stored into external storage makes it possible to transfer files
on a computer over USB. Files stored in external file storage enables
other applications to access the data, and the data remain available
after application uninstallation (unless specified that the storage is
application-specific).

• Shared Preferences: For storing small and unstructured data,
SharedPreference enables API to read and write persistent key-value
pairs of primitive data types (e.g., booleans, floats, ints, longs, and
strings). The storage location is specified by uniquely identifying the
name, and the data is stored into an XML file. Also, the data stored
remain persistent (even after application termination).

• Databases: Android provides support for SQLite databases, which is
a relational database management system embedded in the system.
The access to the database is private to the application, and accessing
the database can be done with the Room persistence library. The
Room library provides an abstract layer over SQLite APIs.

2.2.6 Architecture Patterns

The architectural pattern principle enhances the separation of graphical
user interface logic from the oparting system interactions [27]. The Model-
View-ViewModel (hereafter: MVVM) is an architectural pattern which is
well-integrated in Android. It has three components that constitute the
principle:

• Model: represents the data and the business logic of the application.

• ViewModel: interacts with the model, and manages the state of the
view.

• View: handles and manages the user interface of the application.

24

In Figure 2.6, the interactions amongst the components are illustrated.
The connection between the View and ViewModel occurs over a data binding
connection, which enables the view to change automatically based on
changes to the binding of the subscribed data [36]. In Android, the
LiveData is an observable data holder that enables data binding, which
allows components to observe for data changes. LiveData respects the
lifecycle of the application components (e.g., activities, fragments, or
services), ensuring the LiveData only updates the components that are in
an active lifecycle state [34]. Moreover, Android Room provides a set of
components to facilitate the structure of the model component [45]. More
specifically, it models a database and the entities (which are the tables in
the database).

2.2.7 Power Management

Battery life is a concern to the user, as the battery capacity is significantly
limited on devices [43]. Android has features to extend battery life by
optimizing the behavior of the application and the device, and provides
several techniques to improve battery life:

• App Restrictions: Users can choose to restrict applications (e.g., ap-
plications cannot use the network in the background, and foreground
services). The application that is restricted, functions as expected
when the user launches the application; however, are restricted to
do background tasks.

• App Standby: An application can be put into standby mode if a
user is not actively using it, resulting in the application background
activity and jobs are postponed. An application is in standby mode
if there is no process in the foreground, a notification is being viewed
by the user, and not explicitly being used by the user.

• Doze: When a device is unused for a long period, applications
are delayed to do background activities and tasks. The doze-mode
enters maintenance window to complete pending work, and then
resume sleep for a longer period of time. This cycles through until a
maximum of sleep time are reached. Some applications want to keep
the device running to perform long-running tasks (e.g., collecting
data), and WakeLocks enables this. WakeLocks allows the application
to perform activities and tasks, even while the screen is turned off
[30].

• Exemptions: Another way of keeping an application awake, is to
exempting applications from being forced to Doze or in App Standby.
The exempted applications are listed in the settings of the device, and
users can manually choose the application to exempt. Consequently,
exempted applications might overconsume the battery of the device.

25

GATT Client

GATT Server

Service

Descriptor Descriptor

Value

Characteristic

Descriptor Descriptor

Value

Characteristic

Figure 2.7: The structure of BlueTooth Low Energy; illustrating the GATT
Server with a service containing many characteristics and its value, and the
GATT client connecting with the GATT server.

2.2.8 Bluetooth Low Energy

Android supports for Bluetooth Low Energy (BLE), which is designed to
provide lower power consumption on data transmission (in contrast to
classic Bluetooth) [11]. BLE allows Android applications to communicate
with sensors or devices (e.g., heart rate sensor, and fitness devices), that
has stricter power requirements. Sensors that utilize BLE are designed to
last for a longer period (e.g., weeks or months before needing to charge or
replace battery). The protocol of BLE is optimized for a small burst of data
exchange, and terms and concepts that form a BLE can be characterized as:

• Generic Attribute Profile (GATT): As of now, all Low Energy
applications are based on GATT. GATT is a general specification for
sending and receiving a burst of data (known as attributes) over a BLE
link.

• Attribute Protocol (ATT): GATT utilizes the Attribut Protocol, which
uses a few bytes as possible to be uniquely identified by a Universal
Unique Identifier (UUID). A UUID is a standardized format to
identify information.

• Characteristic: Contains a single value and descriptors that describe
the value of the characteristics (i.e., can be seen as a type).

• Descriptor: Are defined attributes that describe a characteristic value
(e.g., specify a human-readable description, a range of acceptable
values, or a unit of measure).

• Service: Is a collection of characteristics (e.g., a service is Heart Rate
Monitor which includes a characteristic of heart rate measurement).

26

In order to enable BLE, facilitating for a GATT server and GATT client is
required. Either the sensor or the device takes the role of being a server or
a client. However, the GATT server offers a set of services (i.e., features),
where each service has a set of characteristics. Moreover, the GATT client
can subscribe and read from the services the GATT server provides.

27

28

Chapter 3

Related Work

The detection and analysis of sleep-related breathing disorders on a
mobile device has been a research topic and concert for some time.
Various techniques and methods have been applied to detect sleep-related
breathing disorders on mobile phone with the use of built-in or external
sensors. In this chapter, we survey some of the research conducted in this
field.

Nandakumar, Gollakota, and Watson [40] present a contactless solu-
tion for detecting sleep apnea events on smartphones. The goal behind the
research is to detect sleep apnea events without any sensor on the human
body. They achieved this by transforming the phone into an active sonar
system that emits frequency-modulated sound signals and observes for the
reflections. Based on the experiments, the system operates efficiently at
distances of up to a meter, also while the subject is under a blanket. They
performed a clinical study with 37 patients and concluded that the sys-
tem managed to accurately compute the central, obstructive, and hypopnea
events (with a correlation coefficient of 0.99, 0.98, and 0.95).

Alqassim et al. [3] designed and implemented a mobile application (for
Windows and Android) to monitor and detect symptoms of sleep apnea
using built-in sensors in the smartphone. The purpose of the application is
to make users aware of whether they have sleep apnea before they continue
with a more expensive and advanced sleep test. They achieved this by
measuring the breathing patterns and movements patterns based on the
built-in microphone and accelerometer in the smartphone. The system
instructs the user to place the smartphone on its arm, abdomen, or near
the bed during recording. The data is collected on the smartphone and
sent to a central server in the cloud, where authorized doctors can review
the samples. To summarize, the system tries to monitor sleep apnea in the
aspect of motion and voice recorder, in order to detect sleep apnea on a
smartphone.

Penzel et al. [41] investigates the challenges and develop a system
associated with insufficient conventional sleep laboratories and their

29

expensive and time-consuming polysomnographic diagnostics as early as
in 1989. The purpose of the system is to make the diagnosis of sleep-related
breathing disorders available at any hospital; the system was placed in a
wooden case with wheels to be moved between bedside locations. They
developed a circuit board that has support for various sensor to evaluate
breathing, ECG, blood gases, and the state of sleep. During record, the
samples from the sensors were compressed to a resolution of one value per
second per parameter (e.g., mean value of respiratory frequency, ventilated
volume, actigraph activity, and EOG activity) and stored on a personal
computer. After the recording, manual evaluation can be carried out using
print-outs, as well as reviewing the data on a screen. Thus, the software
of the system facilitates recording and reviewing of the data, also basic
evaluation and analysis.

3.1 Summary & Conclusion

To summarize, Nandakumar, Gollakota, and Watson created an applica-
tion to collect samples through a contactless solution, which quite accur-
ately measures central, obstructive, and hypopnea events. Alqassim et al.
developed a mobile application to sample breathing patterns and move-
ment patterns with the use of the built-in microphone and accelerometer in
smartphones. Finally, Penzel et al. built a mobile system to record and ana-
lyze sleep-related breathing disorders with technology that was advanced
at the time.

To conclude this chapter, the developing of a system that records,
analyzes, and detects sleep-related breathing disorders (e.g., obstructive
sleep apnea) proposes a solution to aid researchers/doctors in analyzing
and detecting sleep apnea in patients. Based on the related work in this
chapter, we observe that there are distinguishable techniques and methods
for the detection and analyzing of sleep-related breathing disorders
through the use of mobile systems. Considering this, the future might
introduce more techniques and methods that improve the analysis and
detection of sleep apnea. Thus, developing a system that is extensible and
modular to new techniques and methods should be considered. Therefore,
we look into the opportunities of creating an application that enables the
support for third-party modules, these modules extend the functionality
of the application or provide more enrichment to the collected data on the
patients’ device.

30

Part II

Design and Implementation

31

Chapter 4

Analysis and High-Level
Design

It is the motivation of this thesis to aid in the detection of sleep-related
breathing disorders with the use of an Android device and low-cost
sensors, and to provide further analysis and evaluation in sleep- and
breath-related patterns. We developed an application, called Nidra, which
attempts to record, share, and analyze data collected from external sensors,
all on a mobile device. Also, Nidra acts as a platform for modules to enrich
the data, thus extending the functionality of the application.

The motive behind this application is to provide an interface for
patients to record breathing data from home and to aid researchers and
doctors with analysis of sleep-related breathing disorders (e.g., obstructive
sleep apnea) in a patient. An overview of the CESAR project is found in
Figure 2.1, separating the project into three parts, in which the application
part is what we intend to extend the project with, by introducing Nidra.
As for now, Nidra consists of three main functionalities, each related to the
requirements defined in the problem statement:

1. The application must provide an interface for the patient to (i) record
physiological signals (e.g., breathing data); (ii) present the results;
and (iii) share the results.

2. The application must ensure that upon sensor disconnections, the
connectivity is reinstated to minimize the data loss and its effects on
the data analysis.

3. The application must provide an interface for the developers to create
modules that integrate with the application.

This chapter gives a detailed look at the design of Nidra, including
the tasks which are separated into concerns that combined constitute the
structure of the application—followed up the structure of the data in the
application.

33

4.1 Requirement Analysis

4.1.1 Stakeholders

McGrath and Whitty [38] describe the term stakeholders as those persons
or organizations that have, or claim an interest in the project. They
distinguish stakeholders into four categories: (1) contributing (primary)
stakeholders participate in developing and sustaining the project; (2) observer
(secondary) stakeholders affect or influence the project; (3) end-users (tertiary
stakeholder) interact and uses the output of the application; and (4) invested
stakeholders have control of the project. In Nidra, three stakeholders affect
the application, and each is categorized respectively:

• Patients are identified as an end-user—they interact with the output
of the application.

• Researchers/Doctors are identified as an observer stakeholder—
they might not use the application itself; however, they might use
the data obtained from the patients’ recordings for further analysis.
Also, request more functionality in the application.

• Developers are identified as a contributor stakeholder—they main-
tain the application from bugs. Additionally, they can contribute to
developing modules that extend the functionality of the application.

4.1.2 Resource Efficiency

The application is designed for the use on a mobile device; modern mobile
devices are empowered with multi-core processors, a sufficient amount of
RAM, and a variety of sensors. However, the battery capacity is restrictive
and based on usage. The device may only last for one day before a charge,
due to the size of the battery capacity [33]. The average battery capacity
of a mobile device is approximately 2000 mAh on budget devices and
approximately 3000 mAh on high-end devices [20]. The application should
be able to run at least 7 hours without any power supply. Also, the device
should be capable of handling various sensor connections simultaneously.
Therefore, the application should be designed to be resource-efficient
by utilizing the least amount of battery resources during a recording.
Also, ensure a sufficient amount of power on the device before starting
a recording session.

4.1.3 Security and Privacy

The proposed use of the application is to monitor the sleeping patterns of
a patient. The application manages and stores personal- and health-related
data about the patient. As a precaution, the application should incorporate
the CIA triad, which stresses data confidentiality, integrity, and availability

34

Figure 4.1: The individual tasks that outline the application: (1) recording,
(2) sharing, (3) modules, (4) analytics, (5) storage, and (6) presentation.

[52]. Any unauthorized access to the data, data leaks and confidentiality
should be appropriately managed on the device. Sharing the data across
application or with researchers/doctors should be granted with the consent
from the patient. Besides, a mobile device can be connected to the Internet,
which makes it vulnerable to attacks. Also, other installed application on
the device can manipulate the access to the data. Therefore, revising the
security policy defined by Android [46] should be incentivized.

4.2 High-Level Design

4.2.1 Task Analysis

Task analysis is a methodology to facilitate the design of complex systems.
Hierarchical task analysis (HTA) is an underlying technique that analyzes
and decomposes complex tasks such as planning, diagnosis, and decision
making into specific subtasks [16]. In Figure 4.1, an illustration of the tasks
of the application is presented. This section introduces these tasks, which
are an integral part of the development of the application.

Recording

A recording is a process of collecting and storing physiological signals (e.g.,
breathing data) from sensors over an extended period (e.g., overnight). To
enable a recording, we need to establish connections to available sensors,
collect samples from the sensors, and store the samples on the device.
A sensor is a device that transforms analog signals from the real world
into digital signals. The digital signals are transmittable over Link Layer
technologies (e.g., BlueTooth), and the communication between a sensor
and device occurs based on the protocols the sensor supports. A sample is
a single sensor reading containing data and metadata, such as time and
the physiological data. During the recording session, ensuring that the
sensors and the devices maintain connectivity is important, such that the
record contains more meaningful data upon analysis. Once a recording
session has terminated, a record with metadata about the recording session
is stored, alongside the samples.

35

Sharing

Sharing is a mechanism to export and import records across applications.
Exporting consists of bundling one or more records with correlated samples
into a transmittable format and transferring the bundled records over a
media (e.g., mail). Importing, on the other hand, consists of locating the
bundled records on the device, parsing the content and storing it on the
device. The sharing mechanism allows the patients to send their records to
researchers/doctors.

Module

A module is an independent application that is installed and launched in
Nidra (hereafter: application), to provide extended functionality and data
enrichment. A module does not necessarily interact with the application.
However, it utilizes the data (e.g., records). For example, a module
could be using the records to feed a machine-learning algorithm to predict
obstructive sleep apnea. Installing a module is achieved by locating
the module-application on the device, and storing the reference in the
application. Due to limitations in Android, the module-application cannot
be executed within the application. Therefore, the module-application is
a standalone Android application. Furthermore, the development of the
module-application is independent from the application.

Analytics

Analytics is the visualization and interpretation of patterns in the records.
The application facilitates the recording of breathing data, which aids in
the detection and analysis of sleep-related breathing disorder. There are
various analytical methods, ranging from graphs to advanced machine
learning algorithms, and incorporating a simple time series plot can
indirectly aid in the analysis. For example, plotting a time series graph
where the breathing data are on the Y-axis and the time on X-axis, provides
a graphical representation of the data that can be further analyzed within
the application.

Storage

Storage is the objective of achieving persistent data; data remain available
after application termination. To enable storage, we use a database for a
collection of related data that is easily accessed, managed, and updated.
The database should be able to store records, samples, modules, and
biometrical data related to the user (i.e., gender, age, height, and weight).
Structuring a database that is reliable, efficient, and secure is a crucial part
of achieving persistent storage. Android provides several options to enable
storage on the device (e.g., internal storage and database).

Presentation

Presentation is the concept of exhibiting the functionality of the application
to the user. A user interface (UI) is the part of the system that facilitates
interaction between the user and the system. In Nidra, determining the

36

screen layout, color palette, interactions, and feedback on actions is part of
the development of a user interface.

4.3 Seperation of Concerns

Separation of concern is a paradigm that classifies an application into
concerns at a conceptual and implementational level. It is beneficial
for reducing complexity, improving understandability, and increasing
reusability [32]. The concerns in this thesis are the individual tasks
defined in the task analysis. Each concern is conceptualized with a
graph of components, the functionality of each component when combined
constitutes a structure, that is derived based on iterative work and
research. This section proposes a solution for the structure of each concern,
by analyzing and decomposing the tasks defined in task analysis into
components.

4.3.1 Recording

The structure of a recording is restrictive in terms of arranging the
components due to the design of the CESAR project. That is, the recording
structure is based on the interface (e.g., establishment and receiving data)
facilitated for the sensor sources by the project. Besides this, the structure
can be extended with components that monitor the data acquisition and
the connectivity with the sensor and the device. In Figure 4.2, a proposition
of the structure for recording with components and their dependencies is
illustrated, and the components are described as:

1.1 Sensor Discover: Find all eligible sensors that can enable a record-
ing.

1.1.1 Select Sensors: Select a preferable sensor source for data acquisi-
tion.

1.1.2 All Sensors: Select all available sensors source for data acquisition.

1.2 Sensor Initialization: Establish and initialize a connection with
the selected sensor source. Occasionally a sensor might use some time
to connect, or unforeseen occurrence is hindering the initialization
of the sensor. Therefore, halting the sensor initalization or actively
checking for sensor initalization is important.

1.3 Sensor Connectivity Setup: Establish a connection between the
application and the sensor source using the protocols the sensor
sources provides (e.g., BlueTooth). All data exchange will occur over
the established interface.

1.4 Connection State: Is the state that determines whether the record-
ing has started (ongoing) or stopped (finalized).

37

Recording

Sensor Discovery

Select Sensor All Sensors

Sensor Initialization

Connection State

Start Stop

Monitor

Sample Management Connectivity State

Sensor Finalization

Close Sensor
Connectivity

1

1.1

1.1.1 1.1.2

1.2

1.4

1.4.1 1.4.2

1.4.2.11.4.1.1

1.4.1.1.1 1.4.1.1.2

Sensor Connectivity
Setup

1.3

Stop Recording

1.4.2.2

1.4.2.3

Figure 4.2: A design proposal for the structure of the recording concern.

38

1.4.1 Start: Notify the sensors to begin collecting data, and the applic-
ation should display that a recording has started to the user. Also,
start a timer to display time elapsed on the current recording.

1.4.1.1 Monitor: Is a mechanism to handle the connectivty state and the
incoming samples. It is actively listening to the interface for new data
from the sensors, and forwarding the data to the sample management
component.

1.4.1.1.1 Sample Management: Handles a single sample from a sensor by
parsing the content according to the payload of the data tuple from
the sensor.

1.4.1.1.2 Connectivity State: Makes sure that the connectivity between the
sensor and the device is maintained. Further described in Section
4.3.1.1.

1.4.2 Stop: Stop the recording timer and proceed to display results.

1.4.2.1 Sensor Finalization: Notify the sensor to stop sampling data, and
close establishment.

1.4.2.2 Close Sensor Connectivity:Close the interface connections between
the application and the connected sensors.

1.4.2.3 Stop Recording: Once all connections are closed, add additional
information to the recording (e.g., title, description, rating). In the
end, the recording has concluded and it is stored on the mobile
device.

4.3.1.1 Connectivity State Component

Connectivity state is a component that monitors for unexpected sensor
disconnections or disruptions. Unexpected behavior can occur due to
anomalies in the sensor, or the sensor being out of reach from the device
for a brief moment. A naive solution would be to ignore the connectivity
state component, and assuming the sensors are connected to the device
indefinitely. However, upon disconnections or disruptions, the recording
would be missing samples, resulting the record has less meaningful data.
This component enables the application to reconnect with the sensor based
on a time interval, resulting in more accurate and meaningful record.
The following design questions for this component are (1) should the
connectivity state component, which implements a time interval that tries
to reconnect with the sensor, be implemented in the sensor wrapper, or
should it be in the proposed recording structure?; and (2) should the
interval between sample arrival be a fixed time or a dynamical time?

1. To achieve a mechanism of reconnecting with the sensor on unexpec-
ted disconnects or disruptions, establishing a time interval that mon-
itors for sample arrivals within a time frame (e.g., every 10 seconds)
is required. Incorporating the time interval in the sensor wrapper

39

reduces the complexity of Nidra. However, it introduces extra com-
plexity to the sensor wrappers. A sensor wrapper has to distinguish
actual disconnects from unexpected disconnects. Although, by ex-
tending the functionality of sensor wrapper by implementing a state
that indicates whether a recording is undergoing or stopped solves
the problem. All future sensor wrappers would then have to im-
plement the proposed solution, resulting in a complicated and time-
consuming sensor wrappers development. While implementing the
proposed solution in the sensor wrappers is possible, extending the
recording structure with the logic in Nidra would be more meaning-
ful and time-saving. In our design, we implement the connectivity
state in the structure for recording.

2. A time interval triggers an event every specified time frame. A time
frame can be in a fixed size (e.g., every 10 seconds) or a dynamical
size (e.g., start with 10 seconds, then incrementally increase the frame
by X seconds). Implementing a fixed time frame increases the stress
on put on the sensor, whereas a dynamical time might miss samples if
the time frame is significant. Depending on how critical the recording
is, a suitable solution for the time frame should be configurable.
Also, limiting the number of attempts made to reconnect should be
considered, due to actively reconnecting to a sensor that presumably
is dead or completely out of reach is unnecessary. Thus, stopping the
recording once a limited number of attempts has been reached. In our
design, we implemented a dynamical time and limited the number of
attempts to 10.

4.3.2 Sharing

Sharing is separated into two concerns: export and import. The scope
of exporting in Nidra is to select desired records, format and bundle the
records into a transmittable file, and sendting the bundle over a media
(e.g., mail). The scope of importing is to locate the file on the device,
parse the content based on the format, and store it on the device. In Figure
4.3, a proposition of the structure for sharing with components and their
dependencies is illustrated, and the components are described as:

2.1 Import: Is a mechanism that locates a file, parses the data, and stores
it on the device.

2.1.1 Locate File: To enable this, the user has to download the file on the
device. Then, locate the file on the device by using an interface to
browse downloaded files. An interface can be developed; however,
using the interface Android provides to locate downloaded files is a
more straightforward solution.

2.1.2 Parse Formated Content: Parse the content of the file accordingly to
the data format discussed in Section 4.4.1.

40

Sharing

Import Export

Locate File

Parse Formated
Content

Insert Storage

Select RecordAll Records

Format File

Distribute

2

2.1 2.2

2.1.1

2.1.2

2.1.3

2.2.1.1 2.2.1.2

2.2.2

2.2.3

Figure 4.3: A design proposal for the structure of the sharing concern.

2.1.3 Insert Storage: Retrieve the necessary data from the parsed file, to
store on the device without overriding existing data.

2.2 Export: Is a mechanism that selects all or a specific record, transforms
the record into a formatted file (see Section 4.4.1), and transmits
the file across application (e.g., sending records from the patient’s
installed application to the researcher/doctor’s installed application
with the use of an e-mail application).

2.2.1.1 All Records: Export all of the records on the device.

2.2.1.2 Select Record: Pick one specific record to export.

2.2.2 Format File: When a preferred format for the records is selected,
bundling the data into a formatted (see Section 4.4.1) file for
transmission. It is essential to identify the name of the file uniquely
to prevent duplicates and overrides of data. For instance, identifying
the name of the file with the device identification appended with the
time of exporting.

2.2.3 Distribute: Send the file over a media, e.g., e-mail (see Section
4.3.2.1).

41

4.3.2.1 Distribute Component

The distribute component uses the formatted file and transfer it to other
instances of Nidra using a media (e.g., e-mail). There are two distinctive
methods to perform this task which is efficient and practical: (1) establish a
web-server with logic to handle users and sharing data with the desired
recipient, and implementing an interface to retrieve the file within the
application; and (2) using the interface provided by Android to share files
across applications (e.g., e-mail).

While the first option might be favorable in terms of practicality, this
solution introduces additional concerns (e.g., the privacy matters of storing
user data on a server) which is out of the scope for this project. For this
reason, using the interface provided by Android is a reasonable solution.
The user of the application can utilize the Android interface for sharing files
over installed applications (e.g., the e-mail is a flexible media to transfer the
file, and the user can specify the recipients accordingly).

4.3.3 Modules

Modules are independent applications that provide extended functionality
or data enrichment to Nidra. The components for locating and launching a
module is given by the Android design; however, the component for data
exchange between a module and Nidra can be independently designed. In
Figure 4.4, a proposition of the structure for modules with components and
their dependencies is illustrated, and the components are described as:

3.1.1 Install Modules: Is the process of locating the application on the
device, and storing the reference of the application package name in
the storage.

3.1.2 Locate Module: Retrieve the list of stored modules, and display the
installed modules to the user.

3.2 Launch Module: Get the application location stored in the module,
and launch the application with the use of Android Intent.

3.3 Data Exchange: Enrich the module with data from the application
(see Section 4.3.3.1).

4.3.3.1 Data Exchange Component

The data exchange component facilitates the transportation of data
between Nidra and a module. As of now, the data is records and corres-
ponding samples, which is formatted (see Section 4.4.1) accordingly. The
two distinct methods to exchange data between a module and Nidra are
(1) formatting all of the data and bundling it into the launch of the mod-

42

Modules

Install Module

Launch Module

Data Exchange

Locate Module

3

3.1.1 3.1.2

3.2

3.3

Figure 4.4: A design proposal for the structure of the modules concern.

ule, and (2) establishing a communication link for bi-directional requests
between Nidra and the module.

Android provides an interface to attach extra data on activity launch.
The first solution is, therefore, convenient and efficient; all of the data
is formatted and bundled into the launch. However, once Nidra has
launched the module, there are no ways of transmitting new data besides
relaunching the module. For this reason, the second option allows for
continuous data flow by establishing a communication link with IPC
between the applications. The data exchange between Nidra and modules
can then be bidirectional; the module can request desired data any time,
and Nidra can collect reports and results generated by the module.

One could argue that new records are not obtained while managing
and using a module. However, there might be future modules that
do a real-time analysis of a recording; as such, require an interface for
continuous data flow. For the simplicity of our design, we use the first
option of bundling all of the data and sending it on launch.

4.3.4 Analytics

Analytics uses techniques and methods to gain valuable knowledge from
data. Nidra provides a simple time-series plot for illustration of the
data. However, other techniques can be in incorporated. In essence,
the facilitation of modules in the application enables the development
opportunities for advanced analytics of the data. In Figure 4.5, the structure
of analytics is presented with components and their dependencies:

4.1.1 Select Record: Select one of the records on the device.

43

Analytics

Select Record All Records

Analytic Method

4

4.1.1 4.1.2

4.2

Figure 4.5: A design proposal for the structure of the analytics concern.

4.1.2 All Records: Select all of the records on the device.

4.2 Analytic Method: Apply an analytical method on the data provided
in Nidra (see Section 4.3.4.1).

4.3.4.1 Analytic Method Component

The analytic method component uses the records on the device for
representation or analysis. Graphical and non-graphical are two techniques
for representing data. Graphical techniques visualize the data in a graph
that enables analysis in various ways. A few graphical techniques are
diagrams, charts, and time series. Non-graphical techniques, better known
as statistical data tables, represent the data in tabular format. This provides
a measurement of two or more values at a time [24]. More advanced
techniques to analyze the data are to use machine learning. Machine
learning is concerned with developing data-driven algorithms, which can
learn from observations without explicit instructions. For example, using
recurrent neural networks (e.g., RNN, LSTM) or regression models (e.g.,
ARIMA), can be used to predict the sleeping patterns [23].

In Nidra, a time series graph is used to represent the data of a
record. The time series graph represents the respiration data on the Y-
axis and the time on the X-axis. Essentially, the facilitation of modules
in the application is designed to enable advanced techniques to predict,
analyze, and interpret the data acquisition. Therefore, in Nidra, the analytic
methods are limited; however, the modules enable developers to construct
any method they desire.

44

Storage

Data Access Layer

Database

5

5.1

5.2

Record Sample Module User
5.2.1 5.2.2 5.2.3 5.2.4

Figure 4.6: A design proposal for the structure of the storage concern.

4.3.5 Storage

Storage is the objective of achieving persistent data; data remain available
after application termination. The data is characterized into four data
entities (i.e., record, sample, module, and user) that contain individual
properties. The components in the storage structure are constructed to
be extensible and scalable in terms of future data, restructure of data,
and removal of data. In Figure 4.6, a proposition of the structure for
storage with components and their dependencies is illustrated, and the
components are described as:

5.1 Data Access Layer: It exposes specific operations (such as insertion
of a record) without revealing the database logic. This component is
also known as a data access object (DAO), that provides an abstract
interface to a database. The advantage of this interface is to have
a single entry point for each database operation and to extend and
modify the operation for future data easily.

5.2 Database: Is the storage of all the data (see Section 4.3.5.1).

5.2.1 Record: Is a table in the database, which contains fields appropriately
to the record structure. A record contains meta-data about a recording
(e.g., name, recording time, user). The design decision and an
example of a recording record are illustrated in Section 4.4.2.1.

5.2.2 Sample: Is a table in the database, which contains fields appropriately
to a single sample from a sensor. A sample contains data received
from a sensor during a recording. The design decision and an
example of a sample record are illustrated in Section 4.4.2.2.

5.2.3 Module: Is a table in the database, which contains fields appropriately
to the module structure. A module contains the name of the

45

module-application and a reference to the application package. The
design decision and an example of a module record are illustrated in
Section 4.4.2.3.

5.2.4 User: Is an object stored on the device, which contains fields
appropriately to the user structure. A user contains the patient’s
biometrical information (e.g., name, weight, height). The design
decision and an example of a user are illustrated in Section 4.4.2.4.

4.3.5.1 Database Component

Android provides several options to store data on the device; depending
on space requirement, type of data that needs to be stored, and whether
the data should be private or accessible to other applications. Two suitable
options for storage are (1) internal file storage: storing files to the internal
storage private to the application; and (2) database: Android provides
full support for SQLite databases, and the database access is private to
the application [19]. Based on the options, the design question for this
component is should the data be stored in a flat file database on the internal
file storage, or should it be stored in an SQLite database?

Flat files database encode a database model (e.g., table) as a collection
of records with no structured relationship, into a plain text or binary file.
For instance, each line of text holds on a record of data, and the fields
are separable by delimiters (e.g., comma or tabs). Another possibility is
to encode the data in a preferable data format, such as JSON or CSV files
(see Section 4.4.1). Flat file databases are easy to use and suited for small
scale use; however, they provide no type of security, there is redundancy
in the data, and integrity problems [37]. Locating a record is made possible
by loading the file, and systematically iterating until the desired record is
found. Similarly, updating a record and deleting a record. Consequently,
the design of flat file databases is for simple and limited storage.

SQLite is a relational database management system, which is embed-
ded and supported in Android. A relational database management sys-
tem (RDBMS) provides data storage in fields and record, represented as
columns (fields) and rows (records), in a table. The advantage is the abil-
ity to index records, relations between data stored in tables, and support
querying of complex data with a query language (e.g., SQL). Also, RD-
BMS provides data integrity between transactions, improved security, and
backup and recovery controls [37].

While a flat-file database is applicable to store small and unchangeable
data, it is not suitable for scalable and invasive data change. The
samples acquisition during recording makes it unreasonable to use a flat-
file database. In the design of Nidra, SQLite is a preferable solution for
storing sample entities. As a result, the record entity is be stored in an
SQLite database, in order to associate it with the sample entity (with a
foreign key). As for the module entity, it is more convenient to store and

46

Presentation

Color PaletteLayoutNavigation

ModulesRecording Onboarding

FeedSettings Analytics

Feedback &
Interactions

UI

6

6.1

6.1.36.1.26.1.1

6.1.2.1 6.1.2.2 6.1.2.3

6.1.2.4 6.1.2.5 6.1.2.6

6.1.4

Figure 4.7: A design proposal for the structure of the presentation concern.

update a list of records inside a database; therefore, we use the SQLite
database for the module entity. Finally, the user entity is stored in the
flat file, that is because there only is one user in the application a time;
hence, it is more convenient to use a flat-file (e.g., JSON) to store this type
of information.

4.3.6 Presentation

Presentation facilitates the user interface of the application, in terms of
visualizing the functionality of the application to the user. The user
interface design is guided by the functionality (concerns discussed) in the
application and iterative work on the topic. In Figure 4.7, a proposition of
the structure for presentation with components and their dependencies is
illustrated, and the components are described as:

6.1 UI: The user interface where interaction between users and the
application occurs.

6.1.1 Navigation: The navigation is a menu with options to change the
screen (e.g., feed, recording, and module).

6.1.2 Layout: Is based on the functionality that is exposed to the user. The
layout consists of incorporating the color palette and the screens in
the application (the subsequent components).

47

6.1.3 Color Palette: A color palette is a set of colors that persist
throughout the application (see Section 4.3.6.1).

6.1.1.1 Settings: Is s screen with user details, permissions, and credits, with
options to modify permission and user details.

6.1.1.2 Feed: Is a list of all records for the user, displayed with details specific
to the record to make it distinguishable and easily recognizable.

6.1.1.3 Analytics: A interactive time-series graph for a single record.

6.1.1.4 Recording: The process of establishing a recording session, in
addition to showing the results after a recording session has ended.

6.1.1.5 Onboarding: The initial screen displayed to the user, where the user
can supply the application with their biometrical data.

6.1.1.6 Modules: A list of all installed modules, also an option to add more
modules.

6.1.4 Feedback & Interactions: Each screen has different feedback and
interaction, which should be handled appropriately.

4.3.6.1 Color Palette Component

The color palette is a component that decides the color scheme in the
application. In the proposal of a color system in the design guidelines
by Google [51], it is essential to pick colors that reflect the style of
the application accordingly to: (1) primary colors: the most frequently
displayed color in the application; (2) secondary colors: provides an accent
and distinguish color in the application; and (3) surface, background, error,
typography and iconography colors: colors that reflect the primary and
secondary color choices.

Moreover, choosing colors that meet the purpose of the application
is critical. Nidra is most likely to be used during the evening and
the morning. According to Google [17], a dark color theme reduces
luminance emitted by the device screen, which reduces eye strain, while
still meeting the minimum color contrast ratios, and conserving battery
power. Therefore, in our design, we chose a dark color theme (more
specifically, a nuance of dark-blue).

4.4 Data Structure

4.4.1 Data Formats

The data format is a part of the process of serialization, which enables
data storage in a file, transmission over the Internet, and reconstruction
in a different environment. Serialization is the process of converting the

48

state of an object into a stream of bytes, which later can be deserialized by
rebuilding the stream of bytes to the original object [49]. There are several
data serialization formats; however, JavaScript Object Notation (JSON)
and eXtensible Markup Language (XML) are the two most common data
serialization formats. This section discuss these formats, and in the end,
we compare them and choose the format that meets the criteria of being
compact, human-readable, and universal.

4.4.1.1 JSON

JSON or JavaScript Object Notation is a light-weight and human-readable
format that is commonly used for interchanging data on the web. The
format is a text-based solution where the data structure is built on two
structures: a collection of name-value pairs (known as objects) and ordered
list of values (known as arrays). The JSON format is language-independent
and the data structure universally recognized [1, 53]. However, it is limited
to a few predefined data types (i.e., string, number, boolean, object, array,
and null), and extending the data type has to be done with the preliminary
types.

1 {
2 "user": {
3 "firstname": "Ola"
4 "lastname": "Nordmann"
5 }
6 }

4.4.1.2 XML

XML or eXtensible Markup Language is a simple and flexible format
derived from Standard Generalized Markup Language (SGML), developed
by the XML Working Group under the World Wide Web Consortium
(W3C). An XML document consists of markups called tags, which are
containers that describe and organize the enclosed data. The tag starts
with < and ends with >; the content is placed between an opening tag and
a closing tag. [14, 53] XML provides mechanisms to define custom data
types, using existing data types as a starting point, making it extensible for
future data.

1 <user>
2 <firstname>Ola</firstname>
3 <lastname>Nordmann</lastname>
4 </user>

49

Record Sample

User Module

1 0..*

0..*

1

Figure 4.8: The data model and relationship for the entities in the
application: a record has zero to many samples, while a sample only can
have one record. A record can have one user, while a user can have many
records. A module has no relationship with the other entities.

4.4.1.3 Comparing

With the study conducted by Saurabh and D’Souza [53], we compare
JSON and XML features and performance. There are apparent differences
in the two data formats which affect the overall readability, extensibility,
bandwidth performance, and ease of mapping. XML documents are easy
to read, while JSON is obscure due to the parenthesis delimiters. XML
allows for extended data types, while JSON is limited to a few data types.
XML takes more bandwidth due to the metadata overhead, while JSON
data is compact and use less amount of bandwidth.

Moreover, a few benchmarks were conducted to measure memory
footprint and parsing runtime when serializing and deserializing JSON and
XML data. From the conclusion, in terms of memory footprint and parsing
runtime, JSON performances better than XML, but at the cost of readability
and flexibility. While these format structures are applicable for transmitting
data, choosing a format that is compact, human-readable, and a standard
format that is extensible and scalable for future data is essential. In our
design, we use the JSON format for transmission of the data.

4.4.2 Data Entities

Data entities are objects (e.g., things, persons, or places) that the system
models and stores information about. In Section 4.3.5, we introduced four
data entities in the application (i.e., record, sample, module, and user). In
Figure 4.8, the relations between the data entities are shown. The record
entity and sample entity store information about the recording session1

and are separated into two individual entities in order to reduce data
redundancy and improve data integrity. The sample entity has a reference
to its record entity so they can be associated with each other. The user

1the ongoing process of collecting data from the sensor sources and storing the samples
(data packets) in the database.

50

entity store biometrical information related to the user (i.e., patients). Also,
a record entity contains the state of the user’s biometrical information at the
time of the recording. In other words, the user’s biometrical information
can change over time (e.g., weight changes); therefore, capturing the exact
biometrical information at the time of the recording is essential in the
context of detecting sleeping disorders with relation to the biometrical
information. A module entity is independent of the other data entities and
stores information about the name and the package name of the module-
application. The package name is used to locate and launch the module-
application.

In the following sections, we present the properties of each data entity
in Nidra, and an example of the data structure for each entity.

4.4.2.1 Record Entity

The table for the record entity in the database stores metadata (e.g., elapsed
time of recording, number of samples, user’s biometrical data) related to
a recording session. In Table 4.1, we present the information (fields) the
record entity contains, which can be described as:

• ID: Unique identification of a record, also a primary key for the entry.

• Name: A name of the record to easily recognize the recording.

• Description: A summary of the recording session provided by the
user. It can be used to briefly describe how the recording session felt
(e.g., any abnormalities during the sleep).

• MonitorTime: The recording session duration in milliseconds.

• Rating: User defined rating on how the sleeping session felt, in a
range between 0–5.

• User: User’s biometrical information encoded into a JSON string
format, in order to capture the state of the user at the time of
recording.

• CreatedAt: Date of creation of the recording in milliseconds (since
January 1, 1970, 00:00:00 GMT).

• UpdatedAt: Date of update of the recording in milliseconds (since
January 1, 1970, 00:00:00 GMT).

id name description monitorTime rating user createdAt updatedAt
1 Record #1 - 5963088 2.5 {...} 1554406256000 1554406256000

Table 4.1: Example entry in the record table.

51

4.4.2.2 Sample Entity

The table for the sample entity contains a single sensor reading (data
packet) sent from the sensor source. Sample entity are stored separated
from a record entity; however, they are linked (foreign key) with their
corresponding record entity. In Table 4.2, we present the information
(fields) the sample entity contains, which can be described as:

• ID: Unique identification of a sample, also a primary key for the entry.

• RecordID: An identification to its corresponding record, also a foreign
key.

• ExplicitTS: Timestamp of sample arrival based on the time in the
sensor.

• ImplicitTS: Timestamp of sample arrival based on the time on the
device.

• Sample: Sensor reading contains metadata and data according to
Flow sensor.

id recordId explicitTS implicitTS sample
1 1 1554393086000 1554400286000 Time=0ms, deltaT=100, data=1906,1891,1884,1881,1876,1718,1690

Table 4.2: Example entry in the sample table.

4.4.2.3 Module Entity

The table for the module entity contains metadata of the module added by
the user in the application. In Table 4.3, we present the information (fields)
the module entity contains, which can be described as:

• ID: Unique identification of a module, also a primary key for the
entry.

• Name: The name of the module-application.

• PackageName: The package name of the module-application, such that
it can be launched from Nidra.

id name packageName
1 OSA Predicter com.package.osa_predicter

Table 4.3: Example entry in the module table.

4.4.2.4 User Entity

The user of the application is the patient, which provides biometrical
data (e.g., weight, height, and age). The biometrical data is part of the
application to enrich the record. The record captures the biometrical state

52

of the user at the time of the recording. In Nidra, the user entity is not
a part of the database, but stored as an object on the mobile device. The
design decision of this choice is because the application is limited to one
user at the time, and it makes it convenient to capture the state of the object
of the given time of recording. It is possible to create a table in the database
for the user entity, and for each time the user changes the biometrical data
insert it is a separate entry in the database. The record could then have a
reference to the latest user entry. However, that increases the complexity
of the system, and as of now, the design of the application is to store the
user’s biometrical data into an object on the device.

In the listing below, we present the structure of the user entity. In
Nidra, the user entity is stored as an object and structured as a JSON format
containing biometrical data related to the user:

• Name: A string that contains the name of of the patient.

• Age: An integer with the age of the patient.

• Gender: A string that contains the gender of the patient.

• Weight: An integer with the weight of the patient in kilograms.

• Height: An integer with the height of the patient in centimeters.

1 {
2 "user": {
3 "name": "Ola Nordmann",
4 "age": 50,
5 "gender": "Male",
6 "height": 180,
7 "weight: 60
8 }
9 }

4.4.3 Data Packets

Data packets are parcels of data that Nidra receives from external
applications (e.g., data streams dispatching module) or send to other
application (e.g., by sharing the records on the device). This section
presents the format of the records and corresponding samples that are sent
across applications (e.g., the data is encoded into a file, and the user can
select preferred media, such as e-mail). Also, this section presents the
data packets forwarded by the data streams dispatching module upon data
acquisition from the Flow sensor.

53

4.4.3.1 Sharing

In Section 4.3.2, a proposal for the structure of exporting and importing
data is discussed. Two of the components (Parse Formatted Content and
Format File) use JSON to either encode or decode the data. Listing 4.1
illustrates the content of the encoded data from the application to gain a
broader understanding of how the data format looks. To summarize, the
JSON string contains an object of record that encompasses the metadata of
the recording session, as well as the state of biometrical data of the user.
Besides the record object, there is an array of sample objects, where each
sample object contains a single sensor reading from the Flow sensor.

1 {
2 "record":{
3 "id": 1,
4 "name": "Record 1",
5 "rating": 2.5,
6 "description": "",
7 "nrSamples": 6107,
8 "monitorTime": 5963088,
9 "createdAt": "Apr 4, 2019 9:30:56 PM",

10 "updatedAt": "Apr 4, 2019 9:30:56 PM",
11 "user": {
12 "age": 50,
13 "createdAt": "---",
14 "gender": "Male",
15 "height": 180,
16 "name": "Ola Nordmann",
17 "weight": 60
18 }
19 },
20 "samples": [
21 {
22 "explicitTS":"Apr 4, 2019 5:51:26 PM",
23 "implicitTS":"Apr 4, 2019 7:51:26 PM",
24 "recordId":1,
25 "sample":"Time=0ms, deltaT=100, data

=1906,1891,1884,1881,1876,1718,1690"
26 },
27 ...
28]
29 }

Listing 4.1: A JSON string object that contains the record which has
metadata from the recording session (including the biometrical data of the
user), and a list of samples (where each samples contains a single sensor
reading).

54

4.4.3.2 Single Sensor Reading

Listing 4.2 presents a single sensor reading from the Flow sensor sent from
the data streams dispatching module. The id is assigned by the data
streams dispatching module to identify the subscriber application with
the corresponding sensor source. Moreover, the time is assigned by the
internal timer of the Flow sensor. Finally, the value is the data sent from
the Flow sensor, which contains time, delta, and data. However, we are
most interested in extracting the data values from the reading.

1 {
2 "id":"1-0",
3 "value":"Time=2100ms, deltaT=100, data

=1869,1873,1883,1864,1871,1870,1870",
4 "time":"2019-07-29T18:20:58.997+0000"
5 }

Listing 4.2: Contains a single sample received from the Flow sensor.

55

56

Chapter 5

Implementation

This chapter starts with a brief overview of application components for the
three individual applications (i.e., Nidra, data streams dispatching module,
and Flow sensor wrapper), alongside a description of the applications.
Moreover, the implementation of the separate concerns identified in the
previous chapter as an Android application called Nidra.

5.1 Application Components

In this thesis, we operate with three individual applications: Nidra,
data streams dispatching module, and the sensor wrapper for the Flow
sensor. Figure 5.1 illustrates the Android components (i.e., activity, service,
provider, and broadcast receiver) for each application, which run in a
separate process on the user’s mobile device. The subsequent sections
present a brief overview of the applications structure and components.

5.1.1 Flow Sensor Wrapper

As part of the thesis, the goal is to integrate the support for the Flow
sensor. We developed a sensor wrapper that connects with the sensor
source by using the BlueTooth LE protocol. To create a sensor wrapper, we
followed the instructions provided by Gjøby [25] in order to create a new
driver application that connects with the data streams dispatching module
(DSDM). Below, a brief overview of the main components of the driver is
discussed.

WrapperService: Is instantiated by the DSDM during the sensor discovery
phase (described in Section 5.1.2). This component is responsible for
handling starting and stopping of the data acquisition (event sent as
broadcasts from DSDM), as well as establish an IPC connection using
a binder with the DSDM application.

57

Activity

MainActivity

RecordingActivity

LandingActivity

Nidra -
Components

Service

DSDService

IPC

DataStreamsDispatchingModule -
Components

Service

DataStreams-
DispatchingService

Broadcast Receiver

SensorDiscovery

IPC

Activity

MainActivity

DeviceListActivity

Flow (Sensor Wrapper) -
Components

Service

BluetoothHandler

WrapperService

Broadcast Receiver

StartReceiver

StopReceiver

RespondReceiver

Provider

FileProvider

Figure 5.1: Applications components for the three individual Android
applications in the project and IPC connection between them.

58

CommunicationHandler: Upon IPC connection with the DSDM and a re-
quest to start data collection, a separate thread of this component
is created for interacting with the component that is responsible for
integration of BlueTooth LE API’s that communicate with the Flow
sensor (described in Section 5.1.1.1). However, this component is
mainly responsible for forwarding the data acquired from the sensor
to the DataHandler component.

DataHandler: Preprocesses the collected data from the Flow source into a
data packet before forwarding the packet to the DSDM application.
Part of this process is to construct the data packet correctly. The data
packet is formatted as JSON string and contains the id (Flow) of the
sensor wrapper, the current date and time, and the data points from
the sensor source. The data packet is then sent, using the established
binder connection, to the DSDM application.

Besides the components which manage the connectivity, collection,
and disconnection of the Flow sensor with the DSDM, two activities are
responsible for providing an interface to select the Flow sensor and display
the state of the Flow sensor on the user’s screen:

MainActivity: Presents the state and information of the selected Flow
sensor on the user’s screen. Currently, it presents the connectivity
state (connected or disconnected), the battery level of the sensor, the
MAC address and the firmware level, as well as the option to remove
or connect to another sensor source.

DeviceListActivity: Available devices or sensors that are in range for
BlueTooth connectivity with the mobile device is presented to the
user. The user has to select the correct Flow sensor that will be
used for data acquisition. As a feature, the Flow sensor has a
distinguishable icon to make it easier to select the correct sensor
source amongst other devices or sensors that is in range of the user’s
mobile device.

The Flow sensor wrapper stores the name and the MAC address of the
selected Flow sensor in a SharedPreference. As such, the user has to
configure the sensor wrapper once, and the information remains persistent
in the application.

The preceding components are a part of the driver to connect with
the data streams dispatching module. However, the communication with
the sensor source is not a part of these components. The communication
with the Flow sensor occurs over BlueTooth LE (BLE) protocol which
is designed to provide lower power consumption on data transmission,
and sensors that utilize BLE is designed to last for a more extended
period. In order to connect with BLE sensors, we can use the API’s
provided by Android. The implementation of the API’s is introduced
as a new component (BluetoothHandler), which solely communicates with
the Flow sensor over BLE. Below, a brief overview of how to establish a
connection and interpret the collected data from the Flow sensor through

59

BLE in Android is described. However, a more detailed description of
implementation can be found in Appendix D.

5.1.1.1 Communicating with the Flow Sensor

In order to communicate with the Flow sensor, we have to use the
BlueTooth Low Energy (BLE) protocol. To begin with, the user has to select
the desired Flow sensor to use for collecting the data. As such, when
the command of starting the collection is passed to the StartReceiver
broadcast receiver which is handled by WrapperService, a separate thread
of CommunicationHandler is created. This thread, start the service of
BluetoothHandler and initializes the connection to the selected Flow
sensor based on the MAC address of the sensor.

The BluetoothHandler is the component we introduce, which man-
ages the connection to the Flow sensor, discovers services provided by
the sensor, and manages the decoding of the data received from the
sensor. This component acts as a GATT client which connects with a GATT
server. The GATT server in our case is the Flow sensor, which provides a
service that encompasses several characterstics that contains values and
descriptors. In BlueTooth, the objects (e.g., services and characteristics)
are identified by a universally unique identifier (UUID)1, and there is a
collection of assigned numbers to standard objects [8]. The UUID for
GATT attributes for BLE accordingly to BlueTooth is structured as follow-
ing PREFIX-0000-1000-8000-00805f9b34fb, where the prefix is the assigned
number that categorizes an individual object. The most interesting char-
acteristics to us, are the manufacturer name (prefix: 0x2A29), firmware re-
vision (prefix: 0x2A26), battery level (prefix:0x2A19) and flow (breathing)
measures (prefix: 0xFFB3). The latter characteristic prefix is not a part of
the standard; however, the manufacturer defined prefix. Also, it is of most
interest to us as it contains the values for the breathing data.

To receive flow (breathing) data and the battery level from the sensor
source, we have to enable it by notifying the GATT server. This is
performed by specifying the service and the underlying characteristics we
want the values from. For example, to enable flow (breathing) data, we
specify the service (prefix: OxFFB0) and characteristic (prefix: 0xFFB3),
and send it with the API provided by Android. As such, we enable the
Flow sensor to collect breathing data.

The Flow sensor gatherers data at a frequency of 10 Hz; however, the
data from the sensor is sent to the connected devices on approximately 1.5
Hz. Which means each data received from the sensor contains 5-7 data
points with a timestamp of acquisition. We proceed to smooth out the data
points by averaging the values, which statistically is to filter out misfits of
values and to find an estimate of value on a given time. The data is sent to
the CommunicationHandler which further sends it to the DataHandler. The

1A standardized 128-bit format for string ID to uniquely identify information

60

DataHandler creates a data packet with the data as a JSON string, and sends
the data packet on the binder (created in the WrapperService) between the
sensor wrapper and DSDM on the method PutJson() (described in Section
5.1.4).

When the command of stopping the collection is passed to StopReceiving
broadcast receiver, the CommunicationHandler thread is interrupted. The
interruption closes and unbinds the connection with the BluetoothHandler.
Within the BluetoothHandler the connectivity with the GATT server
(sensor) is disconnected and closed. Finally, the screen presented to the
user shows that the sensor has disconnected.

To summarize, the BluetoothHandler connects with the selected Flow
sensor with the BlueTooth LE protocol by using the API’s provided by
Android. By specifying the appropriate service and characteristic we
can obtain breathing data from the sensor. The sensor collects data at a
frequency of 10 Hz; however, sends a small burst of data with 5-7 data
points for a timestamp at a frequency of 1.5 Hz. Moreover, we procced
to smooth out the data points by calculating the average value. The data
is then sent to the CommunicationHandler which further sends it to the
DataHandler. The DataHandler creates a data packet of value including
metadata, and forwards the data packet to the data streams dispatching
module.

5.1.2 Data Streams Dispatching Module

The data streams dispatching module developed by Bugajski [12] provides
an interface for application (subscribing application) instances to subscribe
to data packets from supported and available sensor sources (publishers).
The modularity this application provides towards managing and support-
ing various sensor source allows for faster development time. Also, it
provides a common interface for communication with sensor sources2 that
have different Link Layer technology (e.g., BlueTooth) and low-level com-
muncation protocols (e.g., vensors that provides sensor spesific SDK).

This application discovers available sensor wrappers installed on the
user’s mobile device, establishes connection with the sensor source on re-
quests, and forwards data packets from the sensors to the subscribed ap-
plications (all in the DataStreamDispatchingService component). Below,
we briefly introduce the components and their mechanism in the applica-
tion.

Sensor Discovery The initial design of discovery for installed sensor wrap-
pers was performed by sending a broadcast with an action of HELLO
as an intent. All sensor wrappers are designed to respond to this ac-
tion with their package name as id and the name of the sensor wrap-

2sensor sources must have a sensor wrapper (e.g., Flow sensor wrapper) in order to
work with the data streams dispatching module.

61

per as name. This application is then aware of which sensor wrappers
that are available on the mobile device.

However, during the development of this thesis, Android had
limited the use of implicit broadcasts on newer Android versions
[9]. Implicit broadcasts are those broadcast that does not target a
specific application; however, sends out an action with a message
and those application that filters and listens for the actions can handle
this message accordingly. To overcome this, a re-design of the sensor
discovery was made. Instead of DSDM ever so often sends out a
HELLO broadcast, the sensor wrapper sends out an explicit broadcast
directed to the DSDM to make it aware of its existence. The broadcast
is sent to the SensorDiscovery directed explicitly to DSDM broadcast
receivers, encapsulated with the name and the package name of the
sensor wrapper. The DSDM stores the sensor wrapper information
in a SharedPreference, which will be used locate the sensor wrapper
based on the request from the subscribing applications.

DataStreamDispatchingService Encompasses most of the functionality of the
application. This component acts as a data distributor between
applications that desire to connect with sensor sources, and sensor
sources forward their data packets to this service. Also, this
component ensures to duplicate and make identical data packets
to all subscribed applications. The actions that are exposed to the
sensor wrapper and the subscribed applications are managed within
this component by providing an interface with a binder for IPC
communication (see Section 5.1.4).

To summarize, this application acts as a data distributor for supported
sensor sources. Subscribing applications can select a desired sensor source
(e.g., Flow) for data acquisition. The data received from the sensor source
are obtained in the sensor wrapper and sent to this application as data
packets. This application duplicate the data packets to those applications
that subscribe to the sensor source and send it to the them accordingly.

5.1.3 Nidra

In this thesis, we focus on creating an interface that can record, share, and
analyze breathing data of a patient over an extended period using the
Flow sensor. In order to provide an interface, we developed an Android
application called Nidra. This section describes the components that Nidra
constitute of, while in Section 5.2 we discuss the implementation of Nidra.
Below, we describe the main components of the application:

MainActivity: Encompasses most of the functionality (expect recording)
in the application, by using fragments as a modular approach to
seperate functionality. The fragments lie on top of this host activity,
and a transition amongst the fragments is triggered based on user
interactions.

62

RecordingActivity: This activity manages the recording part of the applic-
ation by invoking the RecordingFragment. However, the fragment
handles the connectivity with the data streams dispatching module,
handles the data packets from the sensor sources, and assuring for
reconnecting with the sensor on human disruptions and sensor dis-
connections. Also, it manages the interactions that can be performed
on the recording screen (e.g., real-time graph).

LandingActivity: When launching the application for the first time, a screen
with an introduction to the application is shown to the user. Further,
the user is prompted to type in biometrical data (i.e., name, gender,
age, height, weight), which will be used to enrich the recording of the
patient.

Moreover, Nidra leverages the functionality that the data streams
dispatching module provides. To use the functionality, the recording
activity connects with the data streams dispatching module, and the
reference that will be used to receive data packets are sent to the service
of DSDService. This service implements the interface provided by the data
streams dispatching module, and the data obtained within this service are
directly sent to the RecordingActivity for processing.

Also, it uses the FileProvider to securily share files with other
applications. That part is used during exporting of records, and the content
of the component is found Section 5.3.2.

To summarize, the components discussed in this section constitute an
application that enables recording, sharing, and analysis of breathing data
obtained from the Flow sensor. Further, we elaborate on the actions and
functionality of Nidra in Section 5.2.

5.1.4 Inter-Process Communication

In order to communicate with between the applications, such as remote
procedure calls (RPC) to application components that run remotely, we can
use the IPC mechanisms. In Android there are two viable mechanisms to
enable IPC: (1) Binder enables a process to invoke functions in another
process remotely; and (2) Intent a message passing interface allowing
applications to send messages to each other. In this section we describe
how these mechanisms are used in Nidra.

The Intent mechanism is mainly used for sharing bundles of primitive
data types (e.g., strings or floats) across activities and applications, as long
as the reference (e.g., package name) is valid. Another possibility of using
intent is during broadcasts within the application or to other application. In
Nidra, Intent’s are used to start activites, share data between components
with local broadcasts, as well as when launching a module (discussed in
Section 5.2).

63

To implement the binder mechanism, we can use design of the
data streams dispatching modules which use Android Interface Definition
Language (AIDL). In order to communicate with processes, the data objects
have to be decomposed into primitives that the operating system can
understand. AIDL provides this mechanism by providing a programming
interface that both the client and the service agree upon. The AIDL
interface is defined in an .AIDL file, and located in the src/ directory of the
hosting service application (DSDM), likewise, for other applications that
bind to the hosting service (Nidra and sensor wrappers). It is essential to
have identical .AIDL files across the applications, otherwise the system will
not recognize it as the same interface. In Listing 5.1, the interface is based
on the functionality of the hosting service application provides (DSDM).

1 // MainServiceConnection.aidl
2 package com.sensordroid;
3

4 interface MainServiceConnection {
5 void putJson(in String json);
6 int Subscribe(String capabilityId, int frequency, String

componentPackageName, String componentClassName);
7 int Unsubscribe(String capabilityId, String

componentClassName);
8 String Publish(String capabilityId, String type, String

metric, String description);
9 void Unpublish(String capabilityId, String key);

10 List<String> getPublishers();
11 }

Listing 5.1: An interface provided by the host service (i.e., DSDM) that
provides functionality other applications can use (e.g., Nidra and sensor
wrappers)

In Nidra, some of the functionality is utilized to enable recording.
More specifically, getPubishers() method is used to get all of the sensors
publishers (e.g., Flow sensor), the Subscribe() and Unsubscribe() is used
in order to subscribe and unsubscribe to a specific sensor publisher, and the
data that is forwarded from by the sensor publisher sent to the putJson()
method.

As for the Flow sensor wrapper, uses the same interface to communic-
ate with the data streams dispatching module. However, the only method
call is towards putJson() when forwarding its data packets. The data
streams dispatching module is aware of which type of connectivity (e.g.,
publisher or subscriber) that forwards the data, therefore, the call by the
sensor wrapper is processed as data packets that will be sent to the sub-
scribing applications.

64

5.2 Implementation of Concerns

In the design chapter of this thesis, we conceptualized the tasks by
decomposing them into separate concerns and discussing design choices
for implementation. This section realizes the discussion by implementing
the concerns in Android and developing the application Nidra. For each
concern, we illustrate the components and objects that interact with each
other, step-by-step; the legend for the figures are shown in Figure 5.2.

A C

D E

B

F

G

Figure 5.2: Legend for the figures in implementation of concerns: (A)
application components with integration of our logic; (B) objects that
contains specifics of our logic; (C) an interface for callbacks or listeners; (D)
Android-specific objects and components; (E) other installed applications;
(F) step direction; and (G) reference or data flow direction.

5.2.1 Recording

The design choices for this concern is described in Section 4.3.1. To
summarize, recording is the process of collecting and storing data received
from sensors over an extended period. To enable a recording, we need
to establish a connection with the available sensors and store the samples
retrieved by the sensors on the device. In this thesis, we focus on
collecting breathing data from the Flow sensor. Moreover, we use the data
streams dispatching module (hereafter: DSDM), which manages sensor
discovery and sensor establishment to supported sensor sources. The
DSDM facilitates an interface for data acquisition, and the communication
between the DSDM and Nidra occurs over IPC using binder’s. During
recording, we check for connectivity with the sensors to ensure the sensors
are collecting data at an appropriate rate. At the end of the recording, we
store metadata related to the recording and finalize the recording process.

The functionality of recording are separated into three actions: (A)
start recording; (B) stop recording; and (C) display recording statistics. The
following sections review the steps that enable these actions.

5.2.1.1 Action A: Start Recording

In Figure 5.3, an illustration of the component interactions are shown.
Action A is to start a recording by connecting and starting data aqusition

65

A.2
Storage

A.1 / A.11

A.3 / B.1

A.9 / A.12

B.5
C.2

Recording
Fragment

A.8

Connection
Callback

A.4 / B.3

A.8

A.6 / B.2

Connection
Handler

A.5

A.5Context
(Android)

A.10

A.4

A.7 A.10

DataStreams
DispatchingModule

(Bugajski's App)

A.12

Connectivity
Handler

A.9 / B.4 / C.1

B.6

Store
Fragment

Sensor
Adapter

C.3

DSD
Service

Figure 5.3: Implementation of the recording action (A): start recording.

with the use of DSDM, and to ensure that the sensor source is gathering
data at an appropriate rate. The steps and interactions for this action are:

A.1 The recording process starts by creating a new record entity that is
inserted into the storage (see Section 5.2.5). An empty record has to
be inserted into the database in order to associate new samples with
the record (based on the record’s id).

A.2 Once the record is inserted into the storage, a unique identification
(id) is returned.

A.3 ConnectionHandler is invoked in order to manage the establishment,
connection, and disconnection of the IPC between Nidra and DSDM
service. The code for establishing the connection is described in
the following listing (MainServiceConnection is the AIDL file as
discussed in Section 5.1.4):

1 Intent intent = new Intent(MainServiceConnection.class.
getName());

2 intent.setAction("com.sensordroid.ADD_DRIVER");
3 intent.setPackage("com.sensordroid");
4 context.bindService(intent, serviceCon, Service.

BIND_AUTO_CREATE);

A.4 If the service is offline when binding, the flag Service.BIND_AUTO_CREATE
will ensure for starting the service. BindService allows components
to send requests, receive responses, and perform inter-process com-
munication (IPC) based on the interface provided by the host service

66

(DSDM).

A.5 Once the service is bound, we can proceed to communicate with the
DSDM service.

A.6 The ConnectionHandler proceeds to initialize the connection with
the sensor through the DSDM. A request to the DSDM for available
publishers with getPublishers() is made, to retrieve all available
sensor publishers connected to the DSDM. Occasionally, the DSDM
uses extended time to discover all of the active sensors connected to
the device; therefore, we have an interval that checks whether DSDM
has any available sensors connected.

A.7 Moving on, a request to the DSDM to Subscribe to a sensor is made.
We specify that we want the Flow sensor in the Subscribe method, in
addition, a reference to the package name (Nidra) and a service object
(DSDService). The service object is where all of the data packets from
the subscribed Flow sensor is received (on the putJson() method).

A.8 Also, a callback to RecordingFragment with information of the sensor
source (i.e., Flow) that we subscribe to is made, in order to display the
information on the user’s screen.

A.9 The recording has now started, and a timer to measure the time
spent on the recording is started. The ConnectivityHandler is also
initialized, which actively checks that the samples arrive within a
specified time frame (as discussed in the design, a frame of 10 seconds
that increases throughout the recording). The ConnectivityHandler
is implemented with a Handler with a PostDelay that counts down
to zero. Upon a sample arrival, the timer is reset.

A.10 Periodically, the DSDM receives samples from the Flow sensor.
DSDM forwards the sample from the sensor to the service ob-
ject (DSDService) on the putJson() method. The DSDService
uses a LocalBroadcastManger to send the data packet to the
RecordingFragment. This process goes on infinitely unless the record-
ing or the sensor has been stopped.

A.11 RecordingFragment listens for the events on the local broadcast
receiver. Upon an event, the data that is received from the sensor
is processed. In other words, we extract the samples from the data
packet, and insert it as a new a new sample entity with the current
record’s id as an association.

A.12 Recalling the functionality from step A.9; if the event for the
PostDelay is triggered, it is equivalent to a sample not being acquired
from the sensor. Therefore, we try to reconnect with the subscribed
sensor by disconnecting with the DSDM (which will close the
connection with the sensor source), followed up by a reconnection
with the DSDM and subscribing to the same sensor source. Most
of the times, the process of reconnecting with the sensor one time

67

A.2
Storage

A.1 / A.11

A.3 / B.1

A.9 / A.12

B.5
C.2

Recording
Fragment

A.8

Connection
Callback

A.4 / B.3

A.8

A.6 / B.2

Connection
Handler

A.5

A.5Context
(Android)

A.10

A.4

A.7 A.10

DataStreams
DispatchingModule

(Bugajski's App)

A.12

Connectivity
Handler

A.9 / B.4 / C.1

B.6

Store
Fragment

Sensor
Adapter

C.3

DSD
Service

Figure 5.4: Implementation of the recording action (B): stop recording.

solves the issue; however, some times the sensor might require to be
reconnected with several times in order to work.

5.2.1.2 Action B: Stop Recording

In Figure 5.4, an illustration of the component interactions are shown.
Action B is based on user input to stop the recording process. To the user,
the recording has terminated, and the user is presented with a screen to
provide extra information regarding the recording (e.g., title, description,
and rating). For the application, it has to unsubscribe from the connected
sensor sources (i.e., Flow), and disconnect the connectivity with the DSDM.
The steps and interactions for this action are:

B.1 The user decides when to stop a recording with a press of a button.
The event to stop the recording is sent to the ConnectionHandler.

B.2 A call to the Unsubscribe() method that contains the service object
(i.e., DSDService) and the identification of the sensor source (e.g.,
Flow) is sent to DSDM. The DSDM has to ensure unsubscribing the
sensor from a specific application and disconnect the IPC between
the application. If there are no subscribing applications to the specific
sensor source, the DSDM will signal the sensor to stop sampling and
disconnect with the sensor.

B.3 The IPC connection between Nidra and DSDM is discontinued by
unbinding the service.

B.4 The estimated time of recording is calculated, and a transition
from RecordingFragment to StoreFragment is made to finalize the

68

recording with extra information (e.g., title, description, and rating).

B.5 The StoreFragment uses the record identification retrieved on record-
ing (A.1) in order to update the record with statistics and user-defined
metadata. The statistics are the monitoring time, number of samples
during recording, and retrieving the current state user biometrical
data. The user-defined metadata are the title of the recording, a de-
scription enabling the user to add a note to the recording, and a rating
between 1–5 (to give a rating on how the recording felt).

B.6 The modified record is updated in the database, and the user is
transitioned to the MainActivity.

A.2
Storage

A.1 / A.11

A.3 / B.1

A.9 / A.12

B.5
C.2

Recording
Fragment

A.8

Connection
Callback

A.4 / B.3

A.8

A.6 / B.2

Connection
Handler

A.5

A.5Context
(Android)

A.10

A.4

A.7 A.10

DataStreams
DispatchingModule

(Bugajski's App)

A.12

Connectivity
Handler

A.9 / B.4 / C.1

B.6

Store
Fragment

Sensor
Adapter

C.3

DSD
Service

Figure 5.5: Implementation of the recording action (C): display recording
statistics.

5.2.1.3 Action C: Display Recording Statistics

Action C is to display statistics during a recording as a separat interface
overlay. More specifically, the user can see the available connected sensors
and a graph of the breathing data in real-time. In Figure 5.5, an illustration
of the component interactions are shown, and the steps and interaction for
this action are:

C.1 The data is graphically represented as an intractable time-series
graph. By using the GraphView library [5], we can in similarities
to the implementation of the analytics concern (see Section 5.2.4),
implement a graph to illustrate the breathing data to the user in real-
time. As such, the user is presented with an interactable graph that
continously updates with the samples acquired from the sensor.

69

2

A.4

Storage
3

1

A.2 B.1

B.4

Feed
Fragment

4

A.1

Feed
Adapter

A.1

FeedViewClick
Listener

A.3

A.6

Uti

A.5

Export

B.2

Intent
(Android)

B.3

Figure 5.6: Implementation of the sharing action (A): exporting one or all
records.

C.2 In addition to the time-series graph, we have a list of publishers (e.g.,
Flow) that we acquired in the beginning of the recording. As such, a
list of publishers is sent to SensorAdapter.

C.3 The SensorAdapter populates a view with the connected sensor to
the user, in our case the Flow sensor.

5.2.2 Sharing

The design choices for this concern is described in Section 4.3.2. To
summarize, sharing enables users to transmit records across application
over a media (e.g., e-mail). The functionality of sharing is separated into
two concerns, namely exporting and importing. The exporting consists of
packing the records the user has selected for transmittal to another mobile
device, while importing consists of locating the file on the user’s device
and parsing the data and storing in the database.

Before a user can proceed with these actions, the records from the
database have to be presented. The FeedFragment contains a RecyclerView
which populates the records into inside the FeedAdapter (steps: 1-4). The
adapter contains all the interactions and the event handling (e.g., button
event listener for exporting) for a single record.

The functionality of sharing are separated into two actions: (A)
exporting one or all records; and (B) import a record from the device. The
following sections review the steps that enable these actions:

70

5.2.2.1 Action A: Exporting one or all Records

In Figure 5.6, an illustration of the steps to export one single recording is
shown. However, the Feed Fragment has an option to export all record;
therefore, by disregarding the first step (A.1), the same structure applies to
export all records. In essence, exporting consists of bundling the records
and corresponding samples into a formatted file, and prompting the user
with options to select a media (e.g., mail) for transmission. The steps are
narrowed down to:

A.1 Upon an event for exporting a selected record in FeedAdapter, the
record information is sent to the FeedFragment through the callback
reference (onRecordAnalyticsClick) between these components.
The record information will be used to determine the corresponding
samples for the record.

A.2 The FeedFragment sends the record information to the export
method inside of the Export object, which is responsible for enabling
the export.

A.3 An operation to retrieve all samples related to the record (see Section
5.2.5) is done.

A.4 The export method retrieves all of the samples related to the record.
Next, the record and the samples are encoded into an exportable
JSON format (see Section 4.4.3). In order to share files between
applications, the content has to be stored on the device. Thus, the
encoded data is written into a file on the device, with a filename of
record_(current_date).json, and the next step uses the reference
to the file location.

A.5 The encoded file URI is retrieved with the use of FileProvider
(facilitates secure sharing of files across applications). The code
snippet for this step is shown in the following listing:

1 static void shareFileIntent(Activity a, File file) {
2 Uri fileUri = FileProvider.getUriForFile(a.

getApplicationContext(), a.getApplicationContext().
getPackageName() + ".provider", file);

3

4 Intent iShareFile = new Intent(Intent.ACTION_SEND);
5 iShareFile.setType("text/*");
6 iShareFile.putExtra(
7 Intent.EXTRA_SUBJECT, "Share Records");
8 iShareFile.putExtra(Intent.EXTRA_STREAM, fileUri);
9 ...

10 a.startActivity(
11 Intent.createChooser(iShareFile, "Share Via"));
12 }

71

2

A.4

Storage
3

1

A.2 B.1

B.4

Feed
Fragment

4

A.1

Feed
Adapter

A.1

FeedViewClick
Listener

A.3

A.6

Uti

A.5

Export

B.2

Intent
(Android)

B.3

Figure 5.7: Implementation of the sharing action (B): import a record from
the device.

A.6 The user is displayed with a popup interface with several options to
share the file over a media (e.g., e-mail). An illustration of the layout
is found in Section 5.2.6.

5.2.2.2 Action B: Import a Record from the Device

In Figure 5.7, an illustration of importing a record from the device is shown.
Importing consists of locating the formated file (the user has to obtain the
file and store it on the device on beforehand), parsing the content in the
file, and storing the data respective to the user’s database. The steps are
narrowed down to:

B.1 The user requests to view the import interface. The interface is
provided by Android and allows the user to select files on the device.
The code snippet for this step is shown in the following listing:

1 private void importRecords() {
2 Intent intent = new Intent(Intent.ACTION_GET_CONTENT);
3 intent.setType("*/*");
4 startActivityForResult(intent, 1);
5 }

B.2 Once the user has selected the desired file, the method onActivityResult
inside of FeedFragment is called, and location of the selected file can
be obtained.

B.3 The file location is an obscured path to the file on the device; thus,
parsing the path with the use of Cursor method (Android library)

72

2
Storage

3
1

A.6

A.2
B.3

Modules
Fragment

4
A.1

B.1

Modules
Adapter

B.1
A.1

ModuleClick
Listener

A.5

AppClick
Listener

A.5

Apps
Adapter

A.3

Apps
Dialog

A.4

B.4

Activity
(Android)

ModuleApplication
(Other App)

B.2

Figure 5.8: Implementation of the module action (A): add a module.

has to be done. After the absolute path is found, the data is decoded
accordingly to the data format.

B.4 The record information and the samples are extracted from the
decoded data. The information is then put into a new record entity
alongside new samples entities, and are inserted into the user’s
database.

5.2.3 Modules

The design choices for this concern is described in Section 4.3.3. To sum-
marize, modules are standalone application that provides data enrichment
or extended functionality to Nidra. For example, a module can use the re-
cords with samples provided by Nidra in order to feed a machine learning
algorithm that predicts sleep apnea. Moreover, to add and launch a mod-
ule from Nidra we need the modules package name. The package name
and the name of the module-application is easily obtained within Android.

The functionality of modules are separated into two actions: (A) add a
module; and (B) launch a module. The following sections review the steps
that enable these actions.

5.2.3.1 Action A: Add a Module

In order to add a new module, the user has to install the module-
application on the device beforehand. By listing through the installed
application on the device, the user can select the desired module to be

73

added in Nidra. In Figure 5.8, an illustration of adding a module is shown,
and the steps are narrowed down to:

A.1 Upon an event for adding a new module in ModulesAdapter,
the ModulesFragment is notified through the callback reference
(onNewModuleClick()) between these components.

A.2 The ModulesFragment launches a custom Android dialog, which will
list all of the installed application on the device.

A.3 The AppsAdapter will fetch all of the application that is not a system
package, already an installed module, or the current application
(Nidra). Next, the adapter for the dialog will be populated with the
eligible applications.

A.4 Once the user has selected the desired module-application, an
event to the ModulesFragment through the callback reference
onAppItemClick() between these components are made. The call-
back contains an Android object of PackageInfo (contains the name
and package name of the application) for the selected module-
application.

A.5 The dialog is dismissed, and the application name and package
name are extracted from the PackageInfo for the selected module-
application.

A.6 Furthermore, the acquired information (i.e., name and package name)
is stored in our database as a module entity.

2
Storage

3
1

A.6

A.2
B.3

Modules
Fragment

4
A.1

B.1

Modules
Adapter

B.1
A.1

ModuleClick
Listener

A.5

AppClick
Listener

A.5

Apps
Adapter

A.3

Apps
Dialog

A.4

B.4

Activity
(Android)

ModuleApplication
(Other App)

B.2

Figure 5.9: Implementation of the module action (B): launch a module.

74

5.2.3.2 Action B: Launch a Module

A module is launched as a separate application with a separate process,
due to Android prohibits launching for other applications inside of an
application. All added modules are listed and presented to the user on
a separate screen. On the launch of a module, all records (including
corresponding samples) in Nidra are encoded into a JSON format and
bundled with the launch of the module. In Figure 5.9, an illustration of
launching a module, and the steps are narrowed down to:

B.1 Upon an event for launching a module in ModuleAdapter, the pack-
age name of the module is sent to the ModulesFragment through
the callback reference (onLaunchModuleClick()) between these com-
ponents. The package name will be used to launch the module-
application.

B.2 All records (including their samples) on the device for the user, are
formated into a JSON string and bundled into the launch. The code
snippet for this step is shown in the following listing:

1 public void onLaunchModuleClick(String packageName) {
2 Intent moduleApplication = context.getPackageManager().

getLaunchIntentForPackage(packageName);
3

4 if (moduleApplication == null) return;
5

6 String data = formatAllRecordsToJSON();
7

8 Bundle bundle = new Bundle();
9 bundle.putString("data", data);

10

11 moduleApplication.putExtras(bundle);
12

13 startActivity(moduleApplication);
14 }

B.3 The activity uses the data provided in the Intent, which includes the
package name (the name of the module-application to determine the
correct application) to launch the application with startActivity().

B.4 The selected module is then launched and presented to the user. The
user can at any time press the back button to return to Nidra.

5.2.4 Analytics

The design choices for this concern is described in Section 4.3.4. To
summarize, analytics is the part of illustrating and analyzing the records. In

75

2

A.4

Storage
3

1

A.2

Feed
Fragment

4

A.1

Feed
Adapter

A.1

FeedViewClick
Listener

A.5

A.3

Analytics
Fragment

A.6

Uti

A.7

Figure 5.10: Implementation of the analytics action (A): display a graph for
a single record.

Nidra, the analytics part of the implementation is limited to a time-series
graph for a single record. While there are possibilities of extending the
AnalyticsFragment with other graphs based on the current structure, the
facilitation of modules allows for easier integration of various analytical
techniques and methods.

Similar to sharing, the records from the database have to be presented.
The FeedFragment contains a RecyclerView which populates the records
into inside the FeedAdapter (steps: 1-4). The adapter contains all the
interactions and the event handling (i.e., button event listener for analytics)
for a single record.

The functionality of analytics is identified by one action: (A) display
a graph for a single record to the user. The following sections review the
steps that enable this action.

5.2.4.1 Action A: Display a Graph for a Single Record

Nidra provides a simple time-series graph of breathing data obtained
during the recording. The graph data is plotted into a GraphView library
[5], which enables interactions (e.g., zoom and scrolling) on the data
samples. The X-axis is the breathing value based on the Y-axis of time of
sampling. In Figure 5.10, an illustration of displaying a graph shown, and
the steps are narrowed down to:

A.1 Upon an event for analytics on a selected record in FeedAdapter, the
record information is sent to the FeedFragment through the callback
reference (onRecordAnalyticsClick()) between these components.

76

The record information will be used to determine the corresponding
samples for the record.

A.2 A new instance of the AnalyticsFragment is created, and a transition
from the FeedFragment to the AnalyticsFragment is made. Along-
side, the record information is transmitted as a bundle.

A.3 An operation to retrieve all samples related to the record with the use
of the SampleViewModel is done.

A.4 The AnalyticsFragment retrieves all of the samples related to the
record. The samples have to be structured according to the graph
library to display an interactive time-series graph.

A.5 Each sample has to be extracted from the sample-data according to
the sensor data structure (see Section 4.4.3).

A.6 The sample value is returned and inserted into an array over data
points used in the graph.

A.7 The user is presented with a graph which is intractable. The Y-axis
has the sample value on the given time (in HH:MM:SS) on the X-axis.
The graph library enables interactions (e.g., zooming and scrolling)
to gain a better understanding of the recording.

ret SQLite
Database

1 2a

2b

ret

Data Entity
ViewModel

3

ret
Repository

ret

4*Data Entity*
DAO

Module

Record

Sample

User
ret

Shared
Preference

Figure 5.11: Implementation of the storage concern.

5.2.5 Storage

Storage facilities persistent data which remain on the device after applica-
tion termination. In Nidra, there are four individual data entities (i.e., re-
cord, sample, module, and user). In Section 4.3.5, we discussed the design
choices of storage possibilities for the individual data entity. To summarize,
the entities of record, sample, and module are stored in a SQLite database,
while the user entity is stored in a SharedPreference on the device.

The data entities has support for the standard CRUD operations (i.e.,
create, read, update, and delete); however, some of the entities has extra
operations: record entity has an operation to retrieve all of the records
on the user’s device, sample entity has an operation to retrieve all of the

77

samples for a given record (based on record’s id); the module entity has an
operation to retrieve all of the samples on the user’s device.

Android Room provides an abstract layer over SQLite to enable easy
database access [45]. In Figure 5.11, the flow for accessing and retrieving
the data from the database based on the Android Room architecture is
shown and are described as:

1 Each data entity has a ViewModel where all of the CRUD operation
goes through. A view model is designed to store and manage UI-
related data in a conscious way, that allows data to be persistent
through configuration changes (e.g., screen rotations).

2a The predefined operations point to the repository. Repository
modules handle data operations and provide an API which makes
data access easy. A repository is a mediator between different data
sources (e.g., database, web services, and cache). In Nidra, the
only data source is the database, but repository facilities future data
sources.

2b The storage of the user is not in the database; however, in
a SharedPreference on the device. Shared preference points
to a file containing key-value pairs and provides the standard
CRUD operations. The location of the user’s shared preference is
no.uio.cesar.user_storage.

3 Each data entity (disregarding user) has a data access object (DAO),
where the SQL operations to the database are defined.

4 Based on the operation, the data is either insterted, updated, deleted
or retrieved from the SQLite database located on the user’s mobile
device.

Conclusively, all of the preceding concerns (i.e., recording, sharing,
modules, and analytics) access the storage as described in this section. As
such, future operations can easily be integrated into described components,
which enforce modularity and extensibility to the application.

5.2.6 Presentation

The interface is developed based on the design descisions made in Section
4.3.6, as well as creating a user-interface that is simple and efficent for a user
to interact with. We try to limit the actions the user can take on a screen,
to make the application simpler to understand and comprehend. The
following sections present the user-interface (UI) based on the functionality
of recording, sharing, modules and analytics.

78

CBA

Figure 5.12: The recording screen displayed to the user: (A) during a
recording, (B) statistics interface, and (C) stopping the recording.

5.2.6.1 UI: Recording

Figure 5.12 presents the screen for (A) the screen displayed during
recording, (B) the interface for statistics, and (C) the screen displayed at
the end of the recording.

A The screen displays the elapsed time of recording right below the
center of the screen. The button color has a different nuance from
the background color to make more distinguishable to the user. On
button click, an alert specifying whether the recording should be
stopped or not is presented to the user in order to prevent undesired
stopping of recording due to misclicks.

Moreover, the screen has a ripple-effect to indicate the state of the
recording to the user. There are two types of ripple-effect colors:
a blue ripple-effect indicates for samples acquisition, while a grey
ripple-effect indicates that the sensor has disconnected or trying to
reconnect. The ripple effect is only active if the screen is turned on in
order to preserve battery life.

As a side note, during disconnects between the sensor and the device,
the user provides no extra input to resolve the issue. The attempts to
reconnect occurs in the background, and the only state of change is
the ripple-effect color.

B The user can expand the interface for viewing statistics with informa-
tion about the recording. Currently, the interface lists all of the avail-
able sensor sources, also a real-time interactable graph of breathing
data.

79

C The finalizing screen allows users to specify the title and description
of recording, as well as giving a rating between the values of 1–5
(where one is bad, and five is good). Upon saving the recording, the
user is transitioned to the MainActivity.

5.2.6.2 UI: Sharing

CBA

Figure 5.13: The sharing screen displayed to the user: (A) option to import
or export, (B) the media selection for exporting, and (C) the file selection
for importing.

Figure 5.13 presents the screen for: (A) option to import or export, (B)
the media selection for exporting, and (C) the file selection for importing.

A The feed screen is where all of the records are presented to the user as
a list. The items in the list are expandable and collapsible to prevent
fluttering on the screen, as well as displaying the most important
information to the user. The user can press the share icon on a given
record, or press on the options menu at the top of the screen to export
all or import records.

B By pressing export all (or export on a single record), an overlay with
an Android provided sharing screen is presented. The interface lists
of all applications that provide a method of sharing data, and to
us, the e-mail application is the most interesting method to use for
sending records.

C By pressing import, an interface that presents all of the downloaded
files on the user’s device is shown to the user. The user can press on
the desired file, and the file will be parsed and added to the user’s
collection of records.

80

5.2.6.3 UI: Modules

Module #1

Module #2

Module #3

BA C

Figure 5.14: The module screen displayed to the user: (A) module screen
without any modules, (B) list of installed applications on the device, and
(C) module screen with modules.

Figure 5.14 shows the screen for (A) module screen without any
modules, (B) list of installed applications on the device, and (C) module
screen with modules.

A The modules screen without any installed modules; however, a
button for adding new modules.

B The user can press the add new module button, in order to be presented
with a list of all installed applications.

C Once the user has selected a module-application to be added in
Nidra, the list of modules are updated and presented to the user.
The modules are hereafter added in Nidra and can be launched by
clicking on the module. The module can also be removed by long-
pressing (holding down for at least 2 seconds) the module-button.

5.2.6.4 UI: Analytics

Figure 5.15 shows the screen for (A) feed screen with a record expanded
and (B) the analytics for the record.

A The user can expand the records to view more information and
actions. One of the actions is to view the analytics for the record.

B A new screen with an interactable graph, that is populated with
the samples associated with the selected record, is presented to the
users. The graph shows the respiration (breathing) value (Y-axis) on

81

given time (X-axis) of sampling. Also, information on the number of
samples and elapsed time of recording.

BA

Figure 5.15: The analytics screen displayed to the user: (A) the feed screen;
(B) the analytics screen.

5.3 Miscellaneous

5.3.1 Collecting Data Over a Longer Period

In Android, applications which are idle in the background or not visible to
the user can be killed in order to reclaim resources for other applications or
preserve battery time. However, this mechanism is not viable for collecting
data over an extended time, because it can kill our applications during
recording. To overcome this, there are several methods to prevent the
Android system from killing our applications, which is presented in the
subsequent sections.

5.3.1.1 Keep the CPU Alive

The Android system provides a wake lock mechanism to keep the CPU
running in order to complete work. As long as we keep the CPU alive,
we can collect the data over an extended period. Any applications can
utilize wake-locks in their application; albeit, the documentation states that
holding onto a wake lock for a longer period, shortens the device’s battery
time. Therefore, it is crucial to release the lock when the recording has
terminated. Also, to use wake-locks the permission has to be added in the
application’s manifest file (see Section 5.3.2). Nidra utilizes the wake lock

82

when the recording has started (inside of the RecordingFragment) and are
seen in following listing:

1 powerManager = (PowerManager) mContext.getSystemService(Context
.POWER_SERVICE);

2 wakeLock = powerManager.newWakeLock(PowerManager.
PARTIAL_WAKE_LOCK,

3 "CESAR::collection");
4

5 wakeLock.acquire();

The lock is released when the activity is destroyed by terminating the
recording process.

5.3.1.2 Priority

Process’s lifecycle is not directly related with the host application; however,
determined by the system which detects parts of applications that are
running, how important they are to the user, and how much memory is
available in the system. A process can be killed by the system to reclaim
memory for other processes to take its place. However, there are specific
measures to prolong the services run time. That is, to increase the process
importance in the "process-hierarchy". By assigning a process to be a
foreground process, we can, for most cases, prevent the system from killing a
process. In our case, the DSDService which receives data packets from the
data streams dispatching module. In the following listing, the code snippet
for creating a foreground process is presented.

1 public void toForeground() {
2 NotificationManager notificationManager =
3 (NotificationManager) this.getSystemService(Context.

NOTIFICATION_SERVICE);
4 NotificationCompat.Builder builder = null;
5 if (android.os.Build.VERSION.SDK_INT >= android.os.Build.

VERSION_CODES.O) {
6 int importance = NotificationManager.IMPORTANCE_DEFAULT;
7 NotificationChannel notificationChannel = new

NotificationChannel("ID", "Name", importance);
8 notificationManager.createNotificationChannel(

notificationChannel);
9 builder = new NotificationCompat.Builder(this,

notificationChannel.getId());
10 } else {
11 builder = new NotificationCompat.Builder(this);
12 }
13

83

14 builder.setSmallIcon(R.drawable.ic_info_black_24dp);
15 builder.setContentTitle("Nidra");
16 builder.setTicker("Recording");
17 builder.setContentText("Recording data");
18

19 Intent i = new Intent(this, DSDService.class);
20 i.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP | Intent.

FLAG_ACTIVITY_SINGLE_TOP);
21 PendingIntent pi = PendingIntent.getActivity(this, 0, i, 0);
22 builder.setContentIntent(pi);
23

24 final Notification note = builder.build();
25

26 startForeground(android.os.Process.myPid(), note);
27 }

5.3.2 Android Manifest

The Android Manifest describes the essential information about an applic-
ation, such as the application components, permissions, and the package
name. The application is constituted by application components, and each
component contains metadata describing the application component. Be-
low, we describe the some of permissions and a few application compon-
ents of Nidra and the Flow sensor wrapper.

5.3.2.1 Nidra

The Nidra manifest file constitutes of three activities, one service, and
one provider. The latter is used to share a record between applications.
Providers enable other applications to access a file or data from Nidra.
With the provider, a direct URI link obtained by the provider grants a
more secure sharing of data between application. In the listing below, the
attribute authorities is the name that identifies the data offered by the
provider (often distinguished by package name and postfix of "provider").
Also, the meta-data with the resource contains information with the path
to the file in the respective application directory.

1 <provider
2 android:name="androidx.core.content.FileProvider"
3 android:authorities="${applicationId}.provider"
4 android:grantUriPermissions="true">
5 <meta-data
6 android:name="android.support.FILE_PROVIDER_PATHS"
7 android:resource="@xml/provider_paths" />
8 </provider>

84

The permissions for Nidra are presented in the listing below, which
includes the wake lock permissions, and the permissions to store data in
external storage and the internal storage. The storage permissions are
required in order to use the SharedPreference method for storing, as well
as the storage of files that will be accessed by other applications (during
sharing of records).

1 <uses-permission android:name="android.permission.
WRITE_EXTERNAL_STORAGE" />

2 <uses-permission android:name="android.permission.
READ_EXTERNAL_STORAGE" />

3 <uses-permission android:name="android.permission.WAKE_LOCK" />
4 <uses-permission android:name="android.permission.

READ_INTERNAL_STORAGE" />

5.3.2.2 Flow Sensor Wrapper

As for the Flow sensor wrapper, the application components structure are
based on the driver created by Gjøby [25]. With an expectation of the activ-
ities and the BlueTooth service. In the listing below, the permissions of
the application are shown. In order to leverage the Bluetooth LE pro-
tocol, we need the permissions of BLUETOOTH, BLUETOOTH_ADMIN,
ACCESS_FINE_LOCATION. The latter permission is obligatory because it
is used to list the available sensor source in the area. Without permission,
Android does not present any list of available sensor sources.

1 <uses-permission android:name="android.permission.BLUETOOTH"/>
2 <uses-permission android:name="android.permission.

BLUETOOTH_ADMIN"/>
3 <uses-permission android:name="android.permission.WAKE_LOCK"/>
4 <uses-permission android:name="android.permission.

ACCESS_FINE_LOCATION"/>
5 [...]

85

86

Part III

Evaluation and Conclusion

87

Chapter 6

Evaluation

In this chapter, experiments are conducted in order to evaluate the
application based on the system requirements defined in the problem
statement:

1. The application must provide an interface for the patient to (i) record
physiological signals (e.g., breathing data); (ii) present the results;
and (iii) share the results.

2. The application must ensure that upon sensor disconnections, the
connectivity is reinstated to minimize the data loss and its effects on
the data analysis.

3. The application must provide an interface for the developers to create
modules that integrate with the application.

The experiments are designed to test the application in (A) a crowded
environment with multiple Flow sensors and with different Android OS
versions running the application; (B) recording over an extended period
to measure battery consumption; (C) user-friendliness on participants;
and (D) creating a simple module. When evaluating the experiments,
the observations and the results are the most interesting metric as it
provides a better perception of whether the design choices (Chapter
4) and implementation (Chapter 5) suffice towards the goal of this
thesis. Moreover, the observations and results allow for discussion on
improvements which can be made in future work.

89

6.1 Experiment A: Orchestral Concert to Analyze Mu-
sical Absorption using Nidra to Collect Breathing
Data

This experiment was conducted in collaboration with master student
Joachim Dalgard at the University of Oslo at RITMO: Centre for Interdis-
ciplinary Studies in Rhythm, Time and Motion.

The goal of the experiment for Dalgard was to analyze musical
absorption, which is a state when individuals allow music to draw
them into an emotional experience and becomes unaware of time and
space. In order to analyze the effect of musical absorption on individuals,
Dalgard gathered 20 participants who were experienced listeners with
musical education. The participants attended an orchestral concert by
Richard Strauss’ Alpine Symphony—a symphonic poem that portrays the
experience of eleven hours spent climbing an Alpine mountain—that lasted
approximately 50 minutes at Oslo Concert Hall on April 3rd and April 4th,
2019.

With respect to Nidra, the motivation for this experiment can be
summarized into: (1) to test the application in a real-life and crowded
environment, and analyze whether other mobile devices interfere or
obstruct with the signals between the collecting sensors and mobile
devices; (2) to test whether the samples gathered are meaningful, in
the sense that the application is collecting the samples from the sensors
correctly and handling unexpected disconnections; and (3) to test the
application on different Android OS versions, and to put the application
in the hands of participants.

The participants were divided into two groups to attend the concert
on the two dates. Each participant was equipped with a wireless
electromyographic sensor from DELSYS in order to measure heart rate,
and a Flow sensor to measure respiration during the concert. RITMO had
multiple Flow sensors for disposal; however, they had no suitable mobile
application that could record data from these sensors. Also, with the
equipment they indented to us, they experienced that Flow sensor tended
to disconnect every 10-15 minutes resulting in fragmented recordings for a
single session. Therefore, they reached out to the Insitute for Informatics
in hopes of a solution. Our application was a suiting match for both
parties, and we could combine the analysis of musical absorbation with the
evaluation of Nidra. We arranged for six Android devices and reached out
to the participants to bring their Android devices if they had one. Thus,
there were ten participants in each group and six assessed devices. As
a precaution, we decided to give out the devices to the participants who
scored highest on a test performed on beforehand.

During the concert, there were approximately 800 attendees on the first
day and approximately 1500 attendees on the second day. We assume that

90

Model Samsung Galaxy S9 OnePlus 3T Google Pixel XL
Operating System Android 8.0 Android 8.1 Android 9.0 & Android 7.1.2

Chipset Exynos 9810 Qualcomm MSM8996 Snapdragon 821 Qualcomm MSM8996 Snapdragon 821
CPU Octa-core Quad-core Quad-core
GPU Mali-G72 MP18 Adreno 530 Adreno 530
RAM 4 GB 6 GB 4 GB

Battery Li-Ion 3000 mAh Li-Ion 3400 mAh Li-Ion 3450 mAh
Bluetooth 5.0, A2DP, LE, aptX 4.2, A2DP, aptX HD, LE 4.2, A2DP, LE, aptX

Table 6.1: Device models used during the concert.

most of the attendees had a mobile device, and probably many of them had
BlueTooth activated on the device. As such, we were able to replicate an
environment (on a larger scale) where other devices might interfere with
the signals between the collecting sensor and the mobile device during
recording. Also, we were able to install the application on multiple mobile
devices with different Android OS versions and put the application in the
hands of the participants.

6.1.1 Preperations

To prepare for the experiments, we configured the applications on the
assessed mobile devices and stress-tested the application to prevent any
unforeseen events or bugs that could occur during the recording. Also,
before the concert, we had to ensure that each participant had the sensors
placed correctly on their body and given the correct mobile device and
Flow sensor. Below, we describe the preparation in more detail.

Device Configuration The device models in our disposal had to be
configured with the applications to enable recording on Nidra. First,
the data streams dispatching module was installed on the devices.
Second, the sensor wrapper for the Flow sensor was installed on the
devices and configured with one Flow sensor—in order to reduce the
time to set up the mobile device with a Flow sensor on the participant
before the concert. Lastly, the Nidra application was initiated with
the id (A–F) of the sensor that the participant should use to keep
track of each participant’s sensor and device model. In Table 6.1,
the device models are listed with their specifications and Android
version. In the following list the id is mapped with the device
model; the experiment will describe the device model based on the
id, respectively: (A, B, C) Samsung Galaxy S9; (D) Google Pixel XL
(version: 9.0); (E) Google Pixel XL (version: 7.1.2); and (F) OnePlus
3T.

Body Placement The respiration (breathing) value is based on the parti-
cipant body circumference, and changes are associated with breath-
ing. The participant was instructed to place the sensor around their
thorax (just below the armpits), in order to measure the expansion
and contraction of the rib cage.

91

6.1.2 Results

The records from the various mobile devices were gathered by using the
sharing functionality in the application and sent to our application (over e-
mail). There were thirteen mobile devices combined for both dates—one of
the participants had an Android device—however, the application crashed
on one of the mobile devices during the recording. Therefore, we have
access to twelve recordings from the concerts.

19
:00

:00

19
:10

:00

19
:20

:00

19
:30

:00

19
:40

:00

19
:50

:00

20
:00

:00

Time

1800

1900

2000

2100

2200

R
es

pi
ra

tio
n

va
lu

e

record_1_B.json

Figure 6.1: Record obtained from the device model B on day 1 of the
concert.

20
:10

:00

20
:20

:00

20
:30

:00

20
:40

:00

20
:50

:00

21
:00

:00

Time

1400

1600

1800

2000

2200

2400

R
es

pi
ra

tio
n

va
lu

e

record_2_B.json

Figure 6.2: Record obtained from the device model B on day 2 of the
concert.

Figure 6.1 and Figure 6.2 present two of these twelve recordings (rest
can is found in Appendix B) that are of most interest to us in a time-series

92

graph. The Y-axis represents the respiration value, and the X-axis the time
of respiration value acquisition—day one of the concert started at the time
of 19:00 and ended at 20:00, while day two started at the time of 20:10 and
ended 21:00.

Moreover, from the thesis by Løberg [35], we can group the signals
strengths based on four types of breathing patterns: (1) normal breathing—
normal exhaling and inhaling (12-18 breaths per minute); (2) no breathing—
close to flat rates over a long period; (3) shallow breathing—rapid inhaling
and exhaling; and (4) deep breathing—prolonged inhaling or exhaling (also
denoted as fluctuations). From the figures, we can see that the respiration
value is stable with some fluctuations and disconnections. Disconnections
are defined as when the line is sloping or benching in an extended period
(e.g., 20 seconds or more), while fluctuations are samples that spikes (deep
breathing) in the graph. We should keep in mind that the margin for
the normal breathing respiration value can vary throughout the recording
based on body or sensor position and movements (e.g., sitting relax or tense
on a chair).

Figure 6.1 has many disconnections (further analyzed later) with
unstable breathing. There are multiple occurrences of deep breathing
throughout the recording, with some shallow breathing at the start and
end of the recording. Hypothetically, deep breathing might be a sign of
musical absorption; however, we have no concrete analysis of this matter,
and it is out of the scope for this experiment motivation. Moving on,
Figure 6.2 shows fewer disconnects compared to Figure 6.1, and with much
more concise breathing patterns and resemblance to normal breathing.
Although, there are noticeably deep breathing throughout the recording,
with a few shallow breathings at the beginning. Conclusively, both Figures
shows no signs for no breathing during the recording. However, there
are signs of normal breathing, with few instances of shallow and deep
breathing.

6.1.3 Analysis

In this section, we discuss all twelve records by analyzing the data. It
is of special interest to find occurrences of disconnections—when the
samples are stagnant in more extended period—and the time the sensor
is disconnected during the recording.

Model Samples Count Loss Count Loss Percentage Disconnection Count Disconnection Time
A 5145 0 0 % 0 00:00
B 3363 1782 34 % 13 19m:14s
C 4189 956 19 % 7 8m:20s
D 3501 1644 32 % 5 18m:30s
E 5144 1 0.02 % 0 00:00
F 5145 0 0 % 0 00:00

Table 6.2: Day 1—Duration: 1 hour & Expected Sample Count: 5145.

93

Model Samples Count Loss Count Loss Percentage Disconnection Count Disconnection Time
A 4286 2 0.05 % 0 00:00
B 4161 127 3 % 4 1m:25s
C 4286 2 0.05 % 0 00:00
D 2576 1712 40 % 7 24m:35s
E 4285 3 0.06 % 0 00:00
F 4288 0 0 % 0 00:00

Table 6.3: Day 2—Duration: 50 mins. & Expected Sample Count: 4288.

After analyzing the data from the record, Table 6.2 and Table 6.3
presents the six devices for the two dates. Each table exhibits data that
is extracted from each record from the mobile device and are characterized
as:

Expected Sample Count The expected number of samples that can be
acquired in the period of the recording (based on the frequency of
sample output by Flow sensor, which is approximately 1.5 Hz).

Sample Count The number of samples that were gathered in the duration
of the recording.

Loss Count The number of missing samples based on "expected sample
count". This can be calculated as:

Loss Count = Expected Sample Count − Samples Count (6.1)

Loss Percentage The percentage of missing samples based on the expected
samples. This can be calculated as:

Loss Percentage = (1 − Samples Count
Expected Sample Count

) ∗ 100 (6.2)

Disconnection Count Is the number of disconnections that occurred
within the duration of the recording.

Disconnection Time Is the accumulated time of disconnections.

The device models A, E, and F are noticeably accurate (with some
noises which presumably occurred during parsing); there are no apparent
disconnects during the recording for these models both of the days.
However, model B and C show a high loss count on the first day—with
a disconnection count of 13 of which the disconnection time is 19 minutes
and 14 seconds (34% loss percentage) for model B, and a disconnection
count of 7 of which the disconnection time is 8 minutes and 20 seconds (19%
loss percentage) for model C—while on the second day, the loss percentage
decreased with 31% for model B and 18.95% for model C, resulting in a
close to 0% loss percentage for both devices; noticeably, model B shows
four disconnects during the recording, however, they only last for 1 minute
and 25 seconds in total. Moreover, device model D shows an alarmingly
high loss percentage, which is reflected in the disconnection time, both of
the days. The mobile device has a loss percentage of 32% on the first day
and 40% the second day, that is an increase of 8% of the day before.

94

6.1.4 Discussion

Based on the analysis, we can see a variety of behavior of disconnections
on the mobile devices for the two dates. An assumption is that the
mobile device or Flow sensor is malfunctioned; however, we have no
data that indicates whether a sensor was connected with the same mobile
device for the both dates—we had the data for the first date, however, the
sensors and mobile devices were switched at the second date because of
unforeseen events—therefore, this assumption is debunked. Moreover, we
see that model D (Google Pixel XL, version 9.0) is unstable for both of the
days, in contrast to the other device models which ran a lower Android
version. However, yet again, we have no accurate data that can prove
that the Android version, mobile device, or the Flow sensor is causing the
disconnects—albeit, this can be further tested in the lab.

Moreover, the ability of reconnecting with the sensor source on dis-
connects, shows that data obtained from the recording is more meaningful
(worst-case 40% of the data was lossed) on analysis.

6.1.5 Conclusion

To summarize the experiment, we were able to test the application in a real-
life and crowded environment. The application managed to record samples
that lasted up to 1 hour with the Flow sensor and various device models
with different Android OS versions. However, one of the application
crashed, and we were unable to find the source of the problem. Based on
the samples from the records, it is identified that the Flow sensor has a
tendency of disconnecting, but the application managed to reconnect with
the sensor during the recording. In the end, the records were successfully
shared across applications, which enabled us to analyze the recordings.

To conclude, we evaluate whether the tests sufficed the motivation of
the experiment:

1. test the application in a real-life and crowded environment, and analyze
whether other mobile devices interfere or obstruct with the signals between
the collecting sensors and mobile devices.

While we are able to conduct an experiment which had approxim-
ately 800 attendees on the first day and approximately 1500 attendees
on the second day of which probably most had their BlueTooth activ-
ated, the experiments lack data to support whether interference did
affect the sampling from the Flow sensor to a mobile device. How-
ever, all of the recordings show at least 60% of the concert was recor-
ded (and some recordings are 100%). To conclude this test, there is
insufficient data to show for inference affected the recording; how-
ever, were are able to test the application in a real-life and crowded
environment.

95

2. test whether the samples gathered are meaningful, in the sense that the
application is collecting the samples from the sensors correctly and handling
unexpected disconnections.

As discussed in the analytics section, model device A, E, and F were
able to collect data throughout the concert, without any disconnects,
for both days. Model B, C, D had disconnects during the recording;
however, all managed to reconnect during the recording. As a result,
no more than 40% of the recording was lost for both of the days. To
conclude this test, the application can successfully reconnect with the
connected Flow sensor during the recording, which results in the data
is more meaningful for further analysis.

3. test the application on different Android OS versions, and to put the
application in the hands of participants.

We had a wide variety of device models with different Android
OS versions running the application (Nidra). To conclude this
test, the application was able to run all of the Android version,
regardless of the device model, successfully. Also, we were able
to put the application in the hands of other participants that used
the application in order to measure their breathing data during the
concert.

As a side note, a questionnaire was sent to the participants in order
to get feedback on the user-friendliness of the application; however,
none of them took the time to answer the questions.

6.2 Experiment B: 9-Hours Recording

As part of this thesis is to collect breathing data over en extended period
(e.g., during sleep), it is essential to test for battery usage during this
period. In most cases, a user connects their device to a power source
to charge the device battery. However, in the cases where that is not
viable, the battery consumption of the applications might affect the user’s
perception of Nidra. Therefore, in this experiment, we are checking for the
battery consumption on the mobile device, as well as the Flow sensor, to
demonstrate that the application is suited for collecting data overnight.

6.2.1 Description

The experiment was conducted on the OnePlus 3T device (specifications
in Table 6.1), and we started of by configuring the Flow sensor wrapper
to connect with the Flow sensor and pressing the "record" button in Nidra.
Both the device and sensor started with 100% battery level. Also, the device
was disconnected from WiFi and left stationary and unattended during the
period of recording.

96

A technical description of collecting, the data from the Flow sensor
collects data on 10Hz; however, it sends a packet of data at approximately
1.5 Hz. The data packet is processed by the Flow sensor wrapper and
sent to the data streams dispatching module (DSDM). The DSDM has a
list of subscribing applications, and distribute the data packet to all of the
subscribing application. In our case, the Nidra application has subscribed
for the Flow sensor packets. In Nidra, the packet is received, unpacked
and immediately stored in a database as a sample entity, with an identifier
of the recording session. This process continues until the recording has
terminated based on the user’s actions.

6.2.2 Results

We calculate the energy consumption—which is measured in milliampere-
hour (mAh)—and estimate the average energy consumption during the
experiment.

Battery Consumption =
(start% − end%) ∗ device capacity (mAh)

recording duration (hours)
(6.3)

Based on the difference of start mAh and end mAh, multiplied by the
device battery capacity and divided by the duration of recording, the
energy consumption per hour is calculated.

The application collected 45468 samples from the Flow sensor over the
course of 9 hours. That means, the sensor sent data packets on a frequency
of approximately 1.5 Hz, which is accurate with previous tests. The mobile
device had a battery level of 59% and the Flow sensor had a battery level of
94% at the end of the recording. Using Equation 6.3, we can calculate the
average mAh consumed during 9 hours of recording.

0.41 ∗ 3400
9

= 154.89 mAh (6.4)

As a result, the device uses approximately 155 mAh. This means that
the total battery consumption over the course of the recording was 1395
mAh. Moreover, the device could have been continuing recording for
approximately 13 hours more, before running out of battery. Keeping in
consideration that the mobile device has an average battery capacity, with a
degraded battery capacity due to age, the results seem adequate. However,
to compare the results with another application with the same criteria (the
same device that is stationary with WiFi turned off), we tested the Spotify
application—an application for streaming music—by downloading a song
and allowing it to play in the background.

0.025 ∗ 3400
1

= 85 mAh (6.5)

Using Equation 6.3, we have a rough estimate of the battery usage for the
Spotify application. The application drained close to 3% of the battery
percentage during 1 hour of streaming; resulting in an approximately 85
mAh consumption.

97

6.2.3 Discussion

The results show that the process of recording consumes close to two times
more battery in comparison with listing to music in the background. While
the Spotify application plays a downloaded song in the background, the
Nidra application operates with two other applications that forward data
collected over BlueTooth in the background. As such, the amount of battery
consumption is reflected in the process of recording.

A proposition to reduce the amount of background processing in order
to preserve the battery capacity of the mobile device, is to extend the
sensor wrapper with a temporary cache or data storage. As such, the data
packets are stored in the sensor wrapper during the recording and sent to
the subscribing application when the recording is stopped. However, this
complicates the structure of a sensor wrapper and might not be feasible in
all cases (e.g., the real-time graph becomes obsolete). Although, it can be
part of a power-saving configuration in the future.

6.2.4 Conclusion

To summarize, in this experiment, we used the recording functionality in
Nidra. To enable this functionality, Nidra notifies the Flow sensor wrapper
through the data streams dispatching module to start the data acquisition.
The Flow sensor samples data on a frequency of approximately 1.5Hz
and the data are forwarded from the sensor wrapper to the data streams
dispatching module, which further distributes the data packets to the
subscribed applications. Nidra processes the data packets by unpacking
and storing them respectively in the database. At the end of the 9-hours
recording, the application collected 45468 samples. As a result, the mobile
device used 41% of the battery (1395 mAh) and the Flow sensor used 6%.
Moreover, the device had the possibility of recording for an extra 13 hours.

To conclude, the results of the experiments show that the requirements
for recording over an extended period are satisfied. The application
can collect data from the Flow sensor, and it is sufficient enough to do
it for an extended period. The energy consumption might seem high;
however, that is reflected by three applications running simultaneously in
the background and data being collected over BlueTooth. Nonetheless,
the experiment was successfully conducted, with no apparent form for
disconnects or abruptions during the recording.

6.3 Experiment C: Performing User-Tests

One goal of this thesis is that it should be user-friendly for patients to use
and understand the functionality of Nidra. To evaluate whether this goal
has been achieved, we found two participants that agreed to partake in

98

the experiment. One of these participants was not proficient in the use
of modern technology, while the other participant was tech-savvy1. For
simplicity, we refer to the participant as participant A and B, respectively.

The process of this experiment consisted of three parts: a presentation
of the application; testing the function of recording, sharing, analyzing; and
a survey to evaluate the experience.

Presentation We described the functionality of the application to the par-
ticipants simply and intuitively—without showing the application.
That included the explanation of the recording functionality, possib-
ilities of viewing the data in a graph, and the methods of sharing the
recording across applications. The presentation took approximately
10 minutes, including questions and clarifications.

Tests The tests were mainly designed to evaluate comprehensibility and us-
ability in the application. Comprehensibility is to evaluate the par-
ticipants’ ability to understand the functionality of the application,
while usability to measure ease of use of the application.

Survey The participants were instructed to fill out a questionnaire after
these tests were conducted—such that the participant had their
feedback fresh in memory. We structured the questions in the
questionnaire accordingly to the PACMAD model [29].

6.3.1 Testing

To evaluate whether the application presents the functionality adequately
and suffice the goal of the tests, we tested the participants with certain
tasks:

T1 Proceed to navigate in the application and start a recording.

T2 Find the interface to view statistics in order to check for connected
sensor sources and the graph for the sampling.

T3 Stop the recording and give the record a name, description, and
rating.

T4 Find the record in the feed of recordings.

T5 Share the record over e-email.

T6 View the analytics for the record and interacting with the graph (e.g.,
zooming and scrolling).

For this test to be successful, the participants must for all of the tasks be
able to identify the actions correctly. These tests were designed to observe
the process of recording, sharing, and analyzing. Thus, the functionality of
modules were left behind.

1well proficient in the use of modern technology.

99

6.3.2 Observations

Participants A—less technical—had to familiarize with the setting of the
application, thus had a difficult start. It took the participant longer than
expected to perform T1, however, managed to proceed on the recording.
The participant was a bit uncertain whether the recording had started or
not. However, the participant was flabbergasted by the rippling effect
the recording screen presented. The T2 was somewhat tedious to perform
because the participant tried to click on the interface where it says it should
be expanded (by swiping). Also, the graph was a bit hard to interact
with because the interface above the graph kept moving while performing
interactions with the graph. T3 and T4 went fine, the participant filled out
the title, description, and a rating and saved the recording, and found the
recording on the feed screen. However, T5 and T6 were a bit unclear to
the participant, because the records in the list are collaped, and in order to
find the actions you have to press the record to expand the information.
However, after figuring out how to expand the records, the participant
managed to perform both tasks sufficiently.

Participants B outperformed participant A, due to the participant was
more familiar with technical systems. The participant managed to start
the recording quickly, however, was unsure whether the recording had
started (clicking around on the interface for feedback) until the ripple
effects appeared on the screen. Similar to participant A, participant B
clicked on the interface for statistics, rather than swiping, and had a hard
time to interact with the graph due to the interface moving. The participant
B managed to perform T3–T6 with ease and without any interrupts or
objections.

6.3.3 Survey

A questionnaire was filled out by the patients after the tests. The
questions followed the PACMAD model [29], which is a model to
identify the usability attributes and are structured into: effectiveness,
efficiency, satisfaction, learnability, memorability, errors, and cognitive
load. We created a survey based on some of the structure, as we were
unable to perform any cognitive load or memorability tasks during the
testing. Below, the questions from the patients are listed—where 1 is
very-hard/very-bad/not-satisfied, and 5 is very-good/very-easy/very-
satisfied:

Effectiveness & Efficency

• What were your initial thoughts on the application

Participent A: It looked nice and simple.

Participent B: The application seemed very modern and elegant.

• How difficult was it to start a recording

100

Participent A: 3

Participent B: 4

• How would you rate the feedback you got during a recording

Participent A: 2

Participent B: 3

• How difficult was it to stop a recording?

Participent A: 5

Participent B: 5

• How difficult was it to browse/find previous recordings?

Participent A: 4

Participent B: 5

• Did you have any encounters were the application did not supply
you with enough information?

Participent A: On the recording screen.

Participent B: The recording screen could have been more informing,
with more text or an introduction of how the process of
recording works. Besides this, everything worked fine.

Satisfaction

• How satisfied were you with the "journey"?

Participent A: 4

Participent B: 4

• How satisfied were you with this application overall?

Participent A: 4

Participent B: 4

Errors

• If you encountered any crashes or errors during the time you used
the application, please answer the question below.

Participent A: None.

Participent B: None.

Feedback and Improvements

• How user friendly did you find the application to be?

Participent A: 4

Participent B: 4

101

• How would you rate the color palette of the application?

Participent A: 5

Participent B: 5

• How would you rate the general layout of the application (buttons,
text, navigation, etc...)?

Participent A: 5

Participent B: 5

• Do you have any feedback/improvements to the application itself?

Participent A: No.

Participent B: Nothing more than I described earlier.

6.3.4 Discussion

As for the observations, the participant managed to perform most of the
tasks, albeit the task T1 and T2 were hard to comprehend. Both participants
had difficulties in understanding whether the sensor was collecting data,
despite the ripple-effects on the screen. The source of this problem is
that the sensor some times takes up to 30-60 seconds to start collecting
data, making the user wait on the ripple-effect that indicates that the
recording has started. Arguably, the user can familiarise with the state
of the recording and the ripple-effects; however, to a new user that is not
feasible. Also, the interface for statistics was a bit tedious to work with,
mainly due to the swiping effect to show the interface and the interactions
with the graph making the interface move. Besides this, there were no
noticeable complains by the participant.

As for the survey, the observations reflect the answers in the question-
naire. Most of the poor feedback was directed towards the recording screen
being less informative than expected. They found the color scheme of the
application to be smooth and fitting, and the application to be modern.
Also, they found the general layout to be well organized and overall the
application to be user-friendly.

A proposition to the complains of the recording screen is to enlargen
the recording button and provide more informative text on the recording
screen. As briefly discussed, a possibility is to create an introduction screen,
that showcases the functionality of Nidra, the first time the user starts the
application. Moreover, the statistics interface can be moved into a separate
screen, to preventing the interface from moving while interacting with the
graph.

102

6.3.5 Conlusion

To summarize, we conducted an experiment on two participants with a
predefined set of tasks in order to measure the user-friendliness of the
application (Nidra). Most of the tasks were regarding the functionality of
recording, sharing, and analyzing. The participants were presented with
a brief overview of the functionality of the application before starting the
testing. The tests were mainly designed to evaluate the comprehensibility
and usability of the application. During the testing, we observed the
interactions the participants made for each task and followed up with
a survey for them to answer. Based on this, we gained a broader
understanding of the user-friendliness of the application.

To conclude, the tests were created to measure the comprehensibility
and the useability. Overall, the application suffices these measurements;
however, the recording screen can be improved in the future. In our
perspective, the amount of action that can be performed in that particular
screen is limited to three actions (e.g., starting the screen, viewing the
statistics, and stopping the recording). However, the participants were not
familiarized with the setting of the recording functionality, in which we
could have introduced the functionality of the recording even further (e.g.,
with more text or an introduction before the recording screen). Besides this
functionality, the participants found the rest of the application to be user-
friendly and easy to use.

6.4 Experiment D: Creating a Simple Module

One of the requirements in this thesis is to provide an interface for the
developers to create modules, which allows for data enrichment and
extended functionality in Nidra. In order to test for this, we found one
participant that had experience in software development, and with some
experience in Android development.

The tests consisted of creating a new module that utilizes the records
from Nidra, and of finding the record with the highest number of
samples—it was sufficient to display the correct answer on the screen (the
development of a user-interface was not evaluated). Based on these tests,
we evaluate the procedure and the difficulties of creating a new module.

Before the participant started on creating a new module, we intro-
duced the concepts and data structure of Nidra. Mainly, that Nidra formats
the all of the data (e.g., records and corresponding samples) into a JSON
string, and the JSON string is put into a bundle with the key data, and sent
upon launch of the module-application.

103

6.4.1 Observations

Although the first task seems intuitive, the participant had a rough start.
The participant was aware that module-application received data in a
bundle, and the data extraction could be performed by specifying the key.
However, for each time the participant compiled the module-application
crashed—that is because the bundle is empty if the module-application is
launched directly, and not through the Nidra application (which supplies
the module with the data). However, that was corrected quite quickly.

The next challenge for the participant was to understand how to
decode the JSON string into valid objects in Java. The participant studied
the structure of the string received on the launch and managed to come up
with a solution. First, the participant created an object which encapsulates
the record and a list of samples. Then, creating three separate objects (i.e.,
record, sample, and user) that were identical to the data structure. In the
end, the participant could decode the JSON string into a list and retrieve
the necessary data.

Once the participant had all of the data, the final task was easily
accomplished. The participant iterated through the list of records, and
found the one with the highest sample count, and displayed it on the
screen.

6.4.2 Results

At the time of the experiment, there were five records on the mobile device,
and the highest was the record named Record 17 with 163 samples. The
participant’s module displays the same information. Thus, the experiment
was successful conducted. It took the participant approximately 20 minutes
to develop this module-application, where most of the time went on
parsing the data.

6.4.3 Discussion

The participant managed to create a module with some hurdles in the
way. The first noticeable occurrence was after compiling the application,
the participant had to open its module through Nidra in order to get the
data. To overcome this, there are two ways to improve the relationship
between Nidra and a module. One way is to establish an IPC connection
(discussed in the design chapter) with the use of a binder, and send the data
from Nidra to the application through the IPC connection. The second way
is to cache the data in the module-application for the temporary storage
of the data. However, both methods increase the complexity of module-
application and Nidra.

104

The second noticeable occurrence was the parsing of the JSON data, as
JSON is a bit tedious to work with in Java. As of now, there is no direct
support for parsing JSON in Java; hence, third-party libraries have to be
used in order to do so.

6.4.4 Conclusion

To conclude this experiment, the participant was able to create a new
module that used the data from Nidra to display the record with the highest
sample count. As such, the facilitation of modules allows future developers
to create modules, without having to understand how Nidra operates—
besides the data structure and how to receive the data—to create modules
that can extend the functionality of Nidra.

Moreover, as a result of the observation of the time spent initializing a
module-application, we included a template code (found in Appendix C)
to make module implementation easier for future developers.

6.5 Summary of Results

In this chapter, we conducted various experiments with the application
(Nidra). The experiments consisted of testing the application in a (A)
real-life and crowded environment, installing the application on various
device models running different Android OS versions, and checking
whether the application managed to reconnect upon disconnections; (B)
recording over an extended period to measure the battery consumption;
(C) user-testing of the application; and (D) creating a simple module.
Moreover, the experiments were constructed in order to evaluate the
system requirements, which we discuss in Section 6.6; however, in this
section, we reinstate the main findings from the results of the experiments.

As for experiment A, we were able to test the application in a real-life
and crowded environment with the opportunity of attending a concert that
had approximately 800 attendees the first day 1500 attendees the second
day. As for the result of the experiment, we were able to test the application
on various mobile devices running different Android version. Some of the
mobile devices were able to collect all of the breathing data throughout
the concert, while others disconnected during recording. However, Nidra
was able to reconnect with the disconnected sensor sources, resulting in
that the worst-case of sample loss was no more than 40%. As such, the
functionality of reconnection with the sensor source on disconnects allows
for more meaningful analysis of the data.

As for experiment B, the application was tested for battery consump-
tion over the period of 9-hours of recording. To enable the recording
functionality, the application (Nidra) operates with two other applications
(DSDM and Flow Sensor Wrapper) that run in the background, in which

105

the Flow sensor transmits data over BlueTooth. As for the results of the
experiment, the recording process consumes approximately 155 mAh; thus,
after 9-hours of recording the mobile device has consumed 1395 mAh of its
battery capacity. The average battery capacity of low-end mobile devices is
approximately 2000 mAh. As such, the user has enough battery to operate
the mobile device after 9-hours of recording.

As for experiment C, we evaluated the user-friendliness of the
application based on comprehensibility and usability. In the experiment,
we had two participants with different knowledge and perspective of
technology, that tested the application while we observed the interactions.
As for the results of the experiment, the participants managed to complete
all of the tasks that were defined, sufficiently; however, some minuscule
complications made some of the tasks harder to comprehend. Overall, the
participants found the application to be user-friendly and easy to use.

As for experiment D, we allowed a participant to create a module
application that used the records from Nidra in order to find the record
with the highest sample count. As for the results of the experiment, the
participant managed to create a module that fulfilled the goals; however,
the time that took parsing the data, lead us to create a template (found in
Appendix C), which expedite the creation of future modules.

6.6 Concluding Remarks

In this chapter, we conducted experiments to evaluate the system require-
ments, which contributes towards fulfilling the goals of this thesis. Below,
we describe the requirements and discuss the experiments which have con-
tributed to fulfilling them.

1. The application must provide an interface for the patient to (i) record
physiological signals (e.g., breathing data); (ii) present the results; and (iii)
share the results.

This requirement is supported by experiments A, B, and C that proves
that the application is capable of (i) recording breathing data over an
extended period of time using the Flow sensor; (ii) present the results
in a time-series graph that allows analysis of the records; (iii) sharing
the records from various mobile devices over a media (i.e., e-mail).

2. The application must ensure that upon sensor disconnections, the connectiv-
ity is reinstated to minimize the data loss and its effects on the data analysis.

This requirement is supported by experiment A that proves that
the application managed to reconnect with the sensor source upon
disconnections. As a result, the analysis performed on the records
allowed for a deeper understanding of the breathing patterns of a
user.

106

3. The application must provide an interface for the developers to create
modules that integrate with the application.

This requirement is supported by the experiment D that proves that
other developers can make modules and add them in Nidra. This
allows future developers to create modules that can perform more
advanced analysis on the data (e.g., machine learning techniques) or
extend the functionality of Nidra.

Besides few subtle improvements that can be made to Nidra, the
system requirements suffice towards the goal of making an application that
can record, share, and analyze breathing data with the Flow sensor over
an extended period. Also, the possibilities for future developers to create
independent applications which extend the functionality of Nidra.

107

108

Chapter 7

Conclusion

7.1 Summary

The motivation for this thesis was to extend the CESAR project by
creating an application for patients to be able to record, share, and
analyze breathing data from home. The purpose of the data is to
aid researchers/doctors in analysis, diagnosis, and examination of the
patient for sleep-related breathing disorders (e.g., obstructive sleep apnea).
However, the application can be applied to other fields of study, such
as recording breathing during physical activity. Moreover, facilitate an
interface in the application for developers to create modules which extend
the functionality or enrich the data of the application.

To achieve this, we designed an application by separating the tasks1

into concerns, for each of which a structure consisting of components with
several functionalities and design choices were proposed. Based on the
design, we implemented an application in Android, called Nidra. We
created a user-friendly interface for the users to record breathing data
over an extended period (e.g., overnight) by creating a sensor wrapper
that supports the collecting of breathing data from the Flow sensor over
the BlueTooth LE protocol and connects with the data streams dispatching
tool. The Flow sensor was prone to disconnecting; thus, we incorporated a
mechanism which reconnects with the Flow sensor upon disconnects. As
a result, the data is richer and more meaningful upon analysis. Further,
we added the support for sharing the records—containing the samples
gathered over the period of recording—across applications, allowing the
patients to share their records with the researchers/doctors over a media
(e.g., e-mail). Finally, we integrated a simple form for analysis of the
data within the application; in other words, a time-series graph with the
breathing value and time of acquisition. Additionally, we also created
an interface for developers to create modules which allow for extended
functionality and data enrichment in Nidra. For example, a module can

1recording, sharing, analyzing, modules, storage, and presentation

109

use the data from patient records in order to predict sleep apnea with the
use of machine-learning techniques.

To evaluate Nidra, we performed various experiments including (A)
recording in a crowded environment with several mobile devices running
Nidra on different Android OS versions, (B) over an extended period while
measuring the battery consumption, (C) evaluating the user-friendliness of
the application, and (D) the process of creating a new module. Based on the
results, we see that the application is capable of collecting breathing data
from various mobile devices—running different Android OS version—
using the Flow sensor. Also, Nidra is capable of reconnecting with
the Flow sensor upon disconnects; from the experiment, the worst-case
of data loss was no more than 40%. Moreover, we tested the battery
consumption of the application. Keeping in consideration that there are
three other applications, including Nidra, running in the background while
collecting data over BlueTooth LE protocol, the results show that the
process of recording for 9-hours uses 1395 mAh of the battery capacity.
That is reasonable in regards to the average battery capacity of mobile
devices. Next, we evaluated the user-friendliness of the application on
the functionality of recording, sharing, and analyzing. While overall,
Nidra is user-friendly and easy-to-use, the recording screen seems to lack
information to guide new users in the process; however, that can easily be
adjusted. Finally, we allowed a developer to create a module that uses the
data from Nidra in order to find the record with the highest sample count.
As a result, the module worked as intended, and it successfully extended
the functionality of Nidra.

7.2 Contributions

As defined in our problem statement, we set three research goals. The
following section reinstates and describes how this thesis contributes to
them.

Goal 1 Integrate the support for Flow sensor by creating a sensor wrapper that
connects with the extensible data streams dispatching tool.

This goal is supported by the development of the Flow sensor wrap-
per, which integrates with the data streams dispatching tool. The
Flow sensor uses BlueTooth LE as a communication protocol. As
such, we used the APIs provided by Android to connect with the
sensor, and focused on extracting the flow (breathing) data and bat-
tery level, as well as the MAC address and firmware level. By cre-
ating a sensor wrapper for the Flow sensor and integrating with the
data streams dispatching tool, we extend the tool for integration of
the Flow sensor. That allows future developers to operate with the
Flow sensor in their analysis.

110

Goal 2 Research and develop a user-friendly application which facilitates collec-
tion of breathing data with the Flow sensor, sharing of the data, and analysis
of the data with the use of the extensible data streams dispatching tool.

This goal is supported by the development of the application
Nidra, which provides an interface for recording, sharing, analyzing
breathing data collected from the Flow sensor using the data streams
dispatching tool on a mobile device. With this application, we allow
patients to record their breathing data over an extended period, and
to analyze the data within the application. Also, we allow the patients
to send their record—e.g., over e-mail—to their researchers/doctors
for further analysis. As such, we provide an interface to the patients
to monitor their breathing patterns from home. However, this
application can also be used in other fields of study, as shown in one
of the experiments where Nidra was used to collect breathing data in
order to analyze the effects of music absorption on individuals.

Goal 3 Create an extensible solution such that the developers can create stan-
dalone applications that integrate with Nidra.

This goal is supported by the integration of modules in the Nidra
application. We allow future developers to create and integrate
the functionality of their applications into Nidra, without having
to understand how Nidra operates, and leverage the data Nidra
provides. This enables future developers to enrich the data or extend
the functionality in Nidra and allowing patients in only having one
underlying application for the detection, analysis, examination of
sleep apnea.

7.3 Future Work

Throughout this thesis, we were able to observe enhancements and
improvements that can be made to Nidra. While the application fulfills
the goals defined in the problem statement, there are possibilities to make
the experience of the application even richer. Below, we present a short
description of future work alongside with our proposition.

Improve the user-friendliness of Nidra: In retrospect, we could see that
the participants had trouble with finding the record button, as well
as the indication of whether a recording had started. A proposition
is to enlargen til record button, to make it more visible to the users.
For the recording, perhaps have a more informative description of the
various states (e.g., connecting, recording, or disconnected).

Add support for other physiological data The main focus in this thesis,
was to gather breathing data during sleep. However, the possibility
of extending Nidra to support other physiological data is possible
(e.g., heart rate). The extensible approach to application, allows

111

future developers to integrate the support for these data types, by
simply extending the database and recording logic.

Create an interface for sharing A proposition in the design for sharing,
was to create an interface solely for sharing data between users,
without accessing other applications (e.g., mail). The idea was to
create a server that maintains a user-base of patients and research-
ers/doctors, and a repository for shared records. By providing an
interface for the patient to select the desired recipient, would allow
for a simpler and convenient sharing for both the patient and the re-
search/doctor.

Bi-directional channel between Nidra and modules As of now, the data
is packed into a JSON string and bundled into an Intent on launch.
As discussed in the design, this would mean that for the module
to obtain the data the user has to launch the module through the
application. For simplicity, this is sufficient; however, for future
modules that depends on analyzing the data in real-time, that is
not a suitable solution. Therefore, by establishing a bi-directional
channel with Nidra and the modules is a solution to this problem.
By utilizing binder’s (with AIDL) for IPC, the data flow can occur
both ways. Nidra can obtain reports or results from the modules, and
the modules can obtain samples in real-time and/or selective desired
records, respectively.

Filter modules based on package-name Currently, all of the installed ap-
plications are listed when selecting a new module to add in Nidra. To
improve the user experience, we can have that modules prerequisite
is that the package name should start with com.cesar.X—or something
similar. With this, we can filter out unwanted applications, and dis-
play the module-applications that are eligible to the user.

112

Bibliography

[1] Ecma International 2017. The JSON Data Interchange Syntax. URL: http:
//www.ecma- international.org/publications/files/ECMA-ST/ECMA-
404.pdf (visited on 01/06/2019).

[2] Activities. Android Developer. URL: https://stuff.mit.edu/afs/sipb/
project / android / docs / guide / components / activities . html (visited on
23/06/2019).

[3] S. Alqassim et al. ‘Sleep Apnea Monitoring using mobile phones’.
In: 2012 IEEE 14th International Conference on e-Health Networking,
Applications and Services (Healthcom). Oct. 2012, pp. 443–446. DOI: 10.
1109/HealthCom.2012.6379457. (Visited on 26/06/2019).

[4] Android based eHealth applications with BiTalino sensors. University of
Oslo: Institute for Informatics. URL: http : / / www .mn . uio . no / ifi /
studier/masteroppgaver/dmms/android-based-ehealth-applications-with-
bitalino-s.html (visited on 05/05/2018).

[5] Android Graph Library. Github Inc. URL: https://github.com/jjoe64/
GraphView (visited on 20/03/2019).

[6] Android Interface Definition Language (AIDL). Android Developer.
URL: https://developer .android.com/guide/components/aidl (visited
on 24/06/2019).

[7] Application Fundamentals. Android Developer. URL: https://stuff.mit.
edu/afs/sipb/project/android/docs/guide/components/fundamentals.
html (visited on 23/06/2019).

[8] Assigned Numbers. Bluetooth Technology. URL: https://www.bluetooth.
com/specifications/assigned-numbers/ (visited on 25/06/2019).

[9] Background Execution Limits. Android Developers. URL: https : / /
developer .android . com/about/versions/oreo/background#broadcasts
(visited on 10/07/2019).

[10] Binder. Android Developer. URL: https : / / developer . android . com /
reference/android/os/Binder (visited on 24/06/2019).

[11] Bluetooth low energy overview. Android Developer. URL: https : / /
developer.android.com/guide/topics/connectivity/bluetooth- le (visited
on 25/06/2019).

113

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/components/activities.html
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/components/activities.html
https://doi.org/10.1109/HealthCom.2012.6379457
https://doi.org/10.1109/HealthCom.2012.6379457
http://www.mn.uio.no/ifi/studier/masteroppgaver/dmms/android-based-ehealth-applications-with-bitalino-s.html
http://www.mn.uio.no/ifi/studier/masteroppgaver/dmms/android-based-ehealth-applications-with-bitalino-s.html
http://www.mn.uio.no/ifi/studier/masteroppgaver/dmms/android-based-ehealth-applications-with-bitalino-s.html
https://github.com/jjoe64/GraphView
https://github.com/jjoe64/GraphView
https://developer.android.com/guide/components/aidl
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/components/fundamentals.html
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/components/fundamentals.html
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/components/fundamentals.html
https://www.bluetooth.com/specifications/assigned-numbers/
https://www.bluetooth.com/specifications/assigned-numbers/
https://developer.android.com/about/versions/oreo/background#broadcasts
https://developer.android.com/about/versions/oreo/background#broadcasts
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/guide/topics/connectivity/bluetooth-le

[12] Daniel Bugajski. ‘Extensible data streams dispatching tool for An-
droid’. MA thesis. University of Oslo, 2017. URL: https://www.duo.
uio.no/handle/10852/60350.

[13] CESAR: Using Complex Event Processing for Low-threshold and Non-
intrusive Sleep Apnea Monitoring at Home. UiO: Department of Inform-
atics. URL: https://www.mn.uio.no/ifi/english/research/projects/cesar
(visited on 21/06/2019).

[14] World Wide Web Consortium. Extensible Markup Language (XML) 1.0
(Fifth Edition). URL: https://www.w3.org/TR/REC-xml/ (visited on
01/06/2019).

[15] Content Providers. Android Developer. URL: https://stuff.mit.edu/afs/
sipb/project/android/docs/guide/topics/providers/content- providers.
html (visited on 23/06/2019).

[16] Abe Crystal and Beth Ellington. ‘Task analysis and human-computer
interaction: approaches, techniques, and levels of analysis’. In:
AMCIS. 2004, pp. 2–3. URL: https : / / pdfs . semanticscholar .
org / fbd2 / b61c998cb3ad8427759a45370a02d9338c31 . pdf (visited on
02/05/2019).

[17] Dark theme. Material Design. URL: https://material. io/design/color/
dark-theme.html#usage (visited on 04/06/2019).

[18] Data and file storage overview. Android Developer. URL: https : / /
developer . android . com/guide / topics / data / data - storage (visited on
25/06/2019).

[19] Data and file storage overview. Android Developers. URL: https : / /
developer . android . com/guide / topics / data / data - storage (visited on
05/06/2019).

[20] Fact check: Is smartphone battery capacity growing or staying the same?
Android Authority. URL: https : / / www . androidauthority . com /
smartphone-battery-capacity-887305/ (visited on 30/05/2019).

[21] FileProvider. Android Developer. URL: https : / / developer . android .
com/reference/android/support/v4/content/FileProvider (visited on
23/06/2019).

[22] Fragments. Android Developer. URL: https://developer.android.com/
guide/components/fragments (visited on 23/06/2019).

[23] R. Fu, Z. Zhang and L. Li. ‘Using LSTM and GRU neural network
methods for traffic flow prediction’. In: 2016 31st Youth Academic
Annual Conference of Chinese Association of Automation (YAC). Nov.
2016, pp. 324–328. DOI: 10 . 1109 / YAC . 2016 . 7804912. (Visited on
07/06/2019).

[24] H Gray Funkhouser. ‘Historical development of the graphical repres-
entation of statistical data’. In: Osiris 3 (1937), pp. 269–404. URL: https:
//www.journals.uchicago.edu/doi/pdfplus/10.1086/368480 (visited on
07/06/2019).

114

https://www.duo.uio.no/handle/10852/60350
https://www.duo.uio.no/handle/10852/60350
https://www.mn.uio.no/ifi/english/research/projects/cesar
https://www.w3.org/TR/REC-xml/
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/providers/content-providers.html
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/providers/content-providers.html
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/providers/content-providers.html
https://pdfs.semanticscholar.org/fbd2/b61c998cb3ad8427759a45370a02d9338c31.pdf
https://pdfs.semanticscholar.org/fbd2/b61c998cb3ad8427759a45370a02d9338c31.pdf
https://material.io/design/color/dark-theme.html#usage
https://material.io/design/color/dark-theme.html#usage
https://developer.android.com/guide/topics/data/data-storage
https://developer.android.com/guide/topics/data/data-storage
https://developer.android.com/guide/topics/data/data-storage
https://developer.android.com/guide/topics/data/data-storage
https://www.androidauthority.com/smartphone-battery-capacity-887305/
https://www.androidauthority.com/smartphone-battery-capacity-887305/
https://developer.android.com/reference/android/support/v4/content/FileProvider
https://developer.android.com/reference/android/support/v4/content/FileProvider
https://developer.android.com/guide/components/fragments
https://developer.android.com/guide/components/fragments
https://doi.org/10.1109/YAC.2016.7804912
https://www.journals.uchicago.edu/doi/pdfplus/10.1086/368480
https://www.journals.uchicago.edu/doi/pdfplus/10.1086/368480

[25] Svein Petter Gjøby. ‘Extensible data acquisition tool for Android’.
MA thesis. University of Oslo, 2016. URL: https://www.duo.uio.no/
handle/10852/53004.

[26] Robert L. Glass. ‘A structure-based critique of contemporary comput-
ing research’. In: Journal of Systems and Software 28.1 (Jan. 1995), pp. 3–
7. ISSN: 0164-1212. DOI: 10.1016/0164- 1212(94)00077- z. URL: http:
//dx.doi.org/10.1016/0164-1212(94)00077-z (visited on 15/07/2019).

[27] Guide to app architecture. Android Developer. URL: https://developer.
android.com/jetpack/docs/guide (visited on 20/06/2019).

[28] Intents and Intent Filters. Android Developer. URL: https://developer.
android.com/guide/components/intents-filters (visited on 24/06/2019).

[29] Roesnita Ismail, Norasikin Fabil and Ashraf Saleh. ‘Extension of
pacmad model for usability evaluation metrics using goal question
metrics (Gqm) approach’. In: Journal of Theoretical and Applied Inform-
ation Technology 79 (Sept. 2015). URL: https://www.researchgate.net/
publication/325484529_Extension_of_pacmad_model_for_usability_
evaluation_metrics_using_goal_question_metrics_Gqm_approach
(visited on 05/07/2019).

[30] Keep the device awake. Android Developer. URL: https : / / developer .
android.com/training/scheduling/wakelock (visited on 25/06/2019).

[31] Santosh Kumar et al. ‘Mobile health technology evaluation: the
mHealth evidence workshop’. In: American journal of preventive
medicine 45.2 (2013), pp. 228–236. DOI: 10 . 1016 / j . amepre . 2013 .
03 . 017. URL: https : / / www . sciencedirect . com / science / article / pii /
S0749379713002778 (visited on 09/07/2019).

[32] Walter L. Hursch and Cristina Videira Lopes. ‘Separation of Con-
cerns’. In: (Mar. 1995), pp. 3, 16. URL: http ://citeseerx . ist .psu .edu/
viewdoc/download;jsessionid=031E83D200FD8770C255B48EA0C2E1C2?
doi=10.1.1.29.5223&rep=rep1&type=pdf (visited on 24/05/2019).

[33] Huoran Li, Xuanzhe Liu and Qiaozhu Mei. ‘Predicting Smartphone
Battery Life based on Comprehensive and Real-time Usage Data’.
In: (Jan. 2018), p. 2. URL: https://www.researchgate.net/publication/
322498404 _ Predicting _ Smartphone _ Battery _ Life _ based _ on _
Comprehensive_and_Real-time_Usage_Data (visited on 30/05/2019).

[34] LiveData Overview. Android Developer. URL: https : / / developer .
android . com / topic / libraries / architecture / livedata (visited on
20/06/2019).

[35] Fredrik Løbberg. ‘Measuring the Signal Quality of Respiratory Effort
Sensors for Sleep Apnea Monitoring: A Metric Based Approach’. MA
thesis. University of Oslo, 2018. URL: https://www.duo.uio.no/handle/
10852/62777.

[36] Tian Lou. ‘A Comparison of Android Native App Architecture –
MVC, MVP and MVVM’. In: (), p. 57. URL: https://pure.tue.nl/ws/
portalfiles/portal/48628529/Lou_2016.pdf (visited on 20/06/2019).

115

https://www.duo.uio.no/handle/10852/53004
https://www.duo.uio.no/handle/10852/53004
https://doi.org/10.1016/0164-1212(94)00077-z
http://dx.doi.org/10.1016/0164-1212(94)00077-z
http://dx.doi.org/10.1016/0164-1212(94)00077-z
https://developer.android.com/jetpack/docs/guide
https://developer.android.com/jetpack/docs/guide
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://www.researchgate.net/publication/325484529_Extension_of_pacmad_model_for_usability_evaluation_metrics_using_goal_question_metrics_Gqm_approach
https://www.researchgate.net/publication/325484529_Extension_of_pacmad_model_for_usability_evaluation_metrics_using_goal_question_metrics_Gqm_approach
https://www.researchgate.net/publication/325484529_Extension_of_pacmad_model_for_usability_evaluation_metrics_using_goal_question_metrics_Gqm_approach
https://developer.android.com/training/scheduling/wakelock
https://developer.android.com/training/scheduling/wakelock
https://doi.org/10.1016/j.amepre.2013.03.017
https://doi.org/10.1016/j.amepre.2013.03.017
https://www.sciencedirect.com/science/article/pii/S0749379713002778
https://www.sciencedirect.com/science/article/pii/S0749379713002778
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=031E83D200FD8770C255B48EA0C2E1C2?doi=10.1.1.29.5223&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=031E83D200FD8770C255B48EA0C2E1C2?doi=10.1.1.29.5223&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=031E83D200FD8770C255B48EA0C2E1C2?doi=10.1.1.29.5223&rep=rep1&type=pdf
https://www.researchgate.net/publication/322498404_Predicting_Smartphone_Battery_Life_based_on_Comprehensive_and_Real-time_Usage_Data
https://www.researchgate.net/publication/322498404_Predicting_Smartphone_Battery_Life_based_on_Comprehensive_and_Real-time_Usage_Data
https://www.researchgate.net/publication/322498404_Predicting_Smartphone_Battery_Life_based_on_Comprehensive_and_Real-time_Usage_Data
https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/topic/libraries/architecture/livedata
https://www.duo.uio.no/handle/10852/62777
https://www.duo.uio.no/handle/10852/62777
https://pure.tue.nl/ws/portalfiles/portal/48628529/Lou_2016.pdf
https://pure.tue.nl/ws/portalfiles/portal/48628529/Lou_2016.pdf

[37] Innocent Mapanga and Prudence Kadebu. ‘Database Management
Systems: A NoSQL Analysis’. In: International Journal of Modern
Communication Technologies And Research (IJMCTR) Volume-1 (Sept.
2013), pp. 12–18. URL: https : / /www . researchgate . net / publication /
258328266_Database_Management_Systems_A_NoSQL_Analysis
(visited on 15/05/2019).

[38] Stephen McGrath and Jonathan Whitty. ‘Stakeholder defined’. In:
International Journal of Managing Projects in Business 10 (July 2017),
pp. 4, 13, 14. DOI: 10 . 1108 / IJMPB - 12 - 2016 - 0097. (Visited on
01/05/2019).

[39] Municipal health care service. Statistics Norway. URL: https://www.ssb.
no/en/helse/statistikker/helsetjko (visited on 19/07/2018).

[40] Rajalakshmi Nandakumar, Shyamnath Gollakota and Nathaniel
Watson. ‘Contactless Sleep Apnea Detection on Smartphones’. In:
GetMobile: Mobile Computing and Communications 19 (Dec. 2015),
pp. 22–24. DOI: 10.1145/2867070.2867078. (Visited on 26/06/2019).

[41] T Penzel et al. ‘The use of a mobile sleep laboratory in diagnosing
sleep-related breathing disorders’. In: Journal of medical engineering &
technology 13.1-2 (1989), pp. 100–103. URL: https://www.tandfonline.
com/doi/pdf/10.3109/03091908909030206 (visited on 26/06/2019).

[42] Platform Architecture. Android Developer. URL: https : / / developer .
android.com/guide/platform (visited on 21/06/2019).

[43] Power Management. Android Developer. URL: https://source.android.
com/devices/tech/power/mgmt (visited on 25/06/2019).

[44] Processes and Threads. Android Developer. URL: https : / / stuff .mit .
edu/afs/sipb/project/android/docs/guide/components/processes-and-
threads.html#IPC (visited on 24/06/2019).

[45] Save data in a local database using Room. Android Developer. URL: https:
//developer.android.com/training/data-storage/room/index (visited on
20/06/2019).

[46] Secure an Android Device. Android. URL: https://source.android.com/
security (visited on 30/05/2019).

[47] Services. Android Developer. URL: https ://stuff .mit . edu/afs/ sipb/
project / android / docs / guide / components / services . html (visited on
23/06/2019).

[48] Sleep Disorders: Sleep-Related Breathing Disorders. PubMed. URL: https:
//www.ncbi.nlm.nih.gov/pubmed/28845957 (visited on 19/07/2019).

[49] Audie Sumaray and S. Kami Makki. ‘A comparison of data serializ-
ation formats for optimal efficiency on a mobile platform’. In: Pro-
ceedings of the 6th International Conference on Ubiquitous Information
Management and Communication - ICUIMC ’12. the 6th International
Conference. Kuala Lumpur, Malaysia: ACM Press, 2012, p. 1. ISBN:
978-1-4503-1172-4. DOI: 10.1145/2184751.2184810. URL: http://dl.acm.
org/citation.cfm?doid=2184751.2184810 (visited on 26/05/2019).

116

https://www.researchgate.net/publication/258328266_Database_Management_Systems_A_NoSQL_Analysis
https://www.researchgate.net/publication/258328266_Database_Management_Systems_A_NoSQL_Analysis
https://doi.org/10.1108/IJMPB-12-2016-0097
https://www.ssb.no/en/helse/statistikker/helsetjko
https://www.ssb.no/en/helse/statistikker/helsetjko
https://doi.org/10.1145/2867070.2867078
https://www.tandfonline.com/doi/pdf/10.3109/03091908909030206
https://www.tandfonline.com/doi/pdf/10.3109/03091908909030206
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://source.android.com/devices/tech/power/mgmt
https://source.android.com/devices/tech/power/mgmt
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/components/processes-and-threads.html#IPC
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/components/processes-and-threads.html#IPC
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/components/processes-and-threads.html#IPC
https://developer.android.com/training/data-storage/room/index
https://developer.android.com/training/data-storage/room/index
https://source.android.com/security
https://source.android.com/security
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/components/services.html
https://stuff.mit.edu/afs/sipb/project/android/docs/guide/components/services.html
https://www.ncbi.nlm.nih.gov/pubmed/28845957
https://www.ncbi.nlm.nih.gov/pubmed/28845957
https://doi.org/10.1145/2184751.2184810
http://dl.acm.org/citation.cfm?doid=2184751.2184810
http://dl.acm.org/citation.cfm?doid=2184751.2184810

[50] SweetZpot FlowTM Sensor. SweetZpot. URL: https://www.sweetzpot.
com/flow (visited on 28/05/2018).

[51] The color system. Material Design. URL: https ://material . io/design/
color/the-color-system.html (visited on 04/06/2019).

[52] M. U.Farooq et al. ‘A Critical Analysis on the Security Concerns
of Internet of Things (IoT)’. In: International Journal of Computer
Applications 111.7 (18th Feb. 2015), pp. 1–6. ISSN: 09758887. DOI: 10.
5120 / 19547 - 1280. URL: http : / / research . ijcaonline . org / volume111 /
number7/pxc3901280.pdf (visited on 30/05/2019).

[53] Saurabh Zunke and Veronica D’Souza. ‘JSON vs XML: A Comparat-
ive Performance Analysis of Data Exchange Formats’. In: 3.4 (2014),
pp. 2–4. URL: http://ijcsn.org/IJCSN-2014/3-4%20JSON-vs-XML-
A-Comparative-Performance-Analysis- of-Data-Exchange-Formats.pdf
(visited on 30/05/2019).

117

https://www.sweetzpot.com/flow
https://www.sweetzpot.com/flow
https://material.io/design/color/the-color-system.html
https://material.io/design/color/the-color-system.html
https://doi.org/10.5120/19547-1280
https://doi.org/10.5120/19547-1280
http://research.ijcaonline.org/volume111/number7/pxc3901280.pdf
http://research.ijcaonline.org/volume111/number7/pxc3901280.pdf
http://ijcsn.org/IJCSN-2014/3-4%20JSON-vs-XML-A-Comparative-Performance-Analysis-of-Data-Exchange-Formats.pdf
http://ijcsn.org/IJCSN-2014/3-4%20JSON-vs-XML-A-Comparative-Performance-Analysis-of-Data-Exchange-Formats.pdf

118

Appendices

119

Appendix A

Source Code

The source code for the various applications in the context of this thesis is
found at following Github repository: https://github.com/riatio/master

A.1 File and Folder Structure

Nidra encompasses the implementation performed in Chapter 5. The
application follows the MVVM architecture pattern; thus, the naming
scheme of the folders advertently follows the separation of the
components in the architecture pattern. The folder structure for the
application code is separated into:

• Dispatcher: contains the code for communication with the
DataStreamsDispatchingModule, including the service for data
acquisition, and the code for re-connectivity with the sensor
sources on sensor disconnect or human disruption.

• Model: contains the model for data entities, structure for
the sensor data and Flow payload data, and the interface for
establishing a connection with SQLite (with Android Room).

• Utils: comprises of miscellaneous code ranging from function-
ality to extract Flow payload to the logic behind the export func-
tionality.

• View: include the activities with separation of various views
(e.g., feed, module, and recording).

• ViewModel: exposes the operations that can be performed on
the data entities.

DataStreamsDispatchingModule encompasses the implementation made
by Bugasjki. However, the application was extended during the
course of this thesis and can be reflected in the following files:

121

• SensorDiscovery listens for broadcasts sent by the sensor
wrappers on start. The data passed alongside the broadcasts
is extracted of name and package name, and stored in a
SharedPreferences if it does not exists.

• Sensor is the sensor object that is stored into the a SharedPrefer-
ences, with the name and the package name of the sensor wrap-
per.

Flow encompasses the driver for creating a sensor wrapper made by
Gjøby [25]. The sensor wrapper adds the support for Flow sensor,
and the extension made to enable the sensor wrapper (besides the
components introduced by Gjøby) are the following:

• Bluetooth include the code for connecting with the Flow
sensor with Bluetooth LE. Most of the logic is in the file
BluetoothHandler, and the code is inspired by the application
RawDataMonitor sent to us from Sagar Sen at SweetZpot Inc.

• View contains the activity for listing the available sensors on the
screen.

TestModule encompasses a boilerplate code for creating a new module
(further discussed in Appendix C).

Thesis encompasses the LaTeX for this thesis, including figures and UiO
master’s thesis format.

Graph encompasses the data acquired from the various mobile devices
during the two concert dates, including a Python script for plotting it
in a time-series graph.

122

Appendix B

Experiment A: Remaining
Graphs

B.1 Concert Day 1 and Day 2: Time-Series Graph

The Figures B.1, B.2, B.3, B.4, B.5, B.6 illustrates the breathing samples
collected during the concert on April 3rd of 2019—with a duration of one
hour (between the time 19:00–20:00).

The Figures B.7, B.8, B.9, B.10, B.11, B.12 illustrates the breathing
samples collected during the concert on April 4th of 2019—with a duration
of 50 minutes (between the time 20:10–21:00).

The device spesification can be found in Table 6.1, and are mapped as:
(A, B, C) Samsung Galaxy S9; (D) Google Pixel XL (version: 9.0); (E) Google
Pixel XL (version: 7.1.2); and (F) OnePlus 3T.

123

19
:00

:00

19
:10

:00

19
:20

:00

19
:30

:00

19
:40

:00

19
:50

:00

20
:00

:00

Time

1600

1650

1700

1750

1800

1850

1900

1950

R
es

pi
ra

tio
n

va
lu

e
record_1_A.json

Figure B.1: Concert Day 1: Device Model A.

19
:00

:00

19
:10

:00

19
:20

:00

19
:30

:00

19
:40

:00

19
:50

:00

20
:00

:00

Time

1800

1900

2000

2100

2200

R
es

pi
ra

tio
n

va
lu

e

record_1_B.json

Figure B.2: Concert Day 1: Device Model B.

124

19
:00

:00

19
:10

:00

19
:20

:00

19
:30

:00

19
:40

:00

19
:50

:00

20
:00

:00

Time

1650

1700

1750

1800

1850

1900

1950

2000

R
es

pi
ra

tio
n

va
lu

e

record_1_C.json

Figure B.3: Concert Day 1: Device Model C.

07
:00

:00

07
:10

:00

07
:20

:00

07
:30

:00

07
:40

:00

07
:50

:00

08
:00

:00

Time

1600

1700

1800

1900

2000

R
es

pi
ra

tio
n

va
lu

e

record_1_D.json

Figure B.4: Concert Day 1: Device Model D.

125

19
:00

:00

19
:10

:00

19
:20

:00

19
:30

:00

19
:40

:00

19
:50

:00

20
:00

:00

Time

1300

1400

1500

1600

1700

R
es

pi
ra

tio
n

va
lu

e
record_1_E.json

Figure B.5: Concert Day 1: Device Model E.

19
:00

:00

19
:10

:00

19
:20

:00

19
:30

:00

19
:40

:00

19
:50

:00

20
:00

:00

Time

1500

1600

1700

1800

1900

2000

2100

R
es

pi
ra

tio
n

va
lu

e

record_1_F.json

Figure B.6: Concert Day 1: Device Model F.

126

20
:10

:00

20
:20

:00

20
:30

:00

20
:40

:00

20
:50

:00

21
:00

:00

Time

1500

1600

1700

1800

1900

R
es

pi
ra

tio
n

va
lu

e

record_2_A.json

Figure B.7: Concert Day 2: Device Model A.

20
:10

:00

20
:20

:00

20
:30

:00

20
:40

:00

20
:50

:00

21
:00

:00

Time

1400

1600

1800

2000

2200

2400

R
es

pi
ra

tio
n

va
lu

e

record_2_B.json

Figure B.8: Concert Day 2: Device Model B.

127

20
:10

:00

20
:20

:00

20
:30

:00

20
:40

:00

20
:50

:00

21
:00

:00

Time

1300

1400

1500

1600

1700

1800

1900

2000
R

es
pi

ra
tio

n
va

lu
e

record_2_C.json

Figure B.9: Concert Day 2: Device Model C.

08
:10

:00

08
:20

:00

08
:30

:00

08
:40

:00

08
:50

:00

09
:00

:00

Time

1700

1750

1800

1850

1900

1950

2000

R
es

pi
ra

tio
n

va
lu

e

record_2_D.json

Figure B.10: Concert Day 2: Device Model D.

128

20
:10

:00

20
:20

:00

20
:30

:00

20
:40

:00

20
:50

:00

21
:00

:00

Time

1600

1700

1800

1900

2000

2100

R
es

pi
ra

tio
n

va
lu

e

record_2_E.json

Figure B.11: Concert Day 2: Device Model E.

20
:10

:00

20
:15

:00

20
:20

:00

20
:25

:00

20
:30

:00

20
:35

:00

20
:40

:00

20
:45

:00

20
:50

:00

20
:55

:00

21
:00

:00

Time

1700

1800

1900

2000

2100

2200

2300

R
es

pi
ra

tio
n

va
lu

e

record_2_anonymA.json

Figure B.12: Concert Day 2: Device Model F.

129

B.2 Python Code for Plotting

The following listing presents the code used for plotting the data from the
concert into a time-series graph.

1 import json
2 import matplotlib.pyplot as plt
3 from matplotlib.dates import DateFormatter
4 from datetime import datetime
5 from statistics import mean
6 import sys
7 import seaborn
8

9 plt.style.use(’seaborn’)
10

11 sample_count = 0
12

13 def get_data(sample):
14 data = sample[2].split("=")[1].split(",")
15 avg = mean([int(i) for i in data])
16 return avg
17

18 def get_date(sample):
19 global sample_count
20

21 if sample > ’20:10:00’ and sample < ’21:00:00’:
22 sample_count += 1
23

24 return datetime.strptime(sample, ’%H:%M:%S’)
25

26 def parse(data, name):
27 global sample_count
28

29 date = [get_date(i[’implicitTS’].split(" ")[-1]) for i in
data[0][’samples’]]

30 data = [get_data(i[’sample’].split(", ")) for i in data[0][’
samples’]]

31

32 fig, ax = plt.subplots()
33 plt.plot(date, data)
34

35 ax.xaxis.set_major_formatter(DateFormatter(’%H:%M:%S’))
36 ax.xaxis_date()
37 ax.xaxis.set_tick_params(rotation=45)
38

39 ax.set_xlabel("Time")
40 ax.set_ylabel("Respiration value")

130

41 ax.set_title(name)
42

43 plt.show()
44

45 print(sample_count)
46

47 def read(filename="record_1_B.json"):
48 with open(filename) as f:
49 json_data = json.load(f)
50

51 parse(json_data, filename)
52

53 if __name__ == "__main__":
54 if len(sys.argv) == 2:
55 read(sys.argv[1])
56 else:
57 read()

131

132

Appendix C

Module Template

To expedite the creation of a new module, a template with pre-code is
provided. The pre-code contains a blank Android project with the Gradle
version 3.4.0 and support for Android 9 (API level 28). In the subsequent
sections, the instructions of duplicating the template are presented.

C.1 Application Setup

C.1.1 Download the Application

Start by locating the ModuleTemplate application in the Github reposit-
ory for this thesis. Download the application folder, rename it with
the desired name, and move it to the Android Studio project folder.
The listing below presents the commands to accommodate for these
actions. Next, import the project in Android Studio by pressing
File --> Open --> (Name of Application)

1 git clone https://github.com/Perelan/Master.git
2 cd Master
3 mv ModuleTemplate <Path to Android Studio Project>/<Desired

Name>

C.1.2 Change the Name of the Application

Change the name of the application such that the user can locate the
application in the app drawer; also, the name is used as the module-
name when listed in Nidra. The name change is performed by locating
the app_name inside of strings.xml which is to be found in res/value, see
Listing below.

133

1 <resources>
2 <string name="app_name">ModuleTemplate</string> <-- Change

this!
3 </resources>

C.1.3 Rename the Package of the Application

Change the package name of the application by following the listing below.
It is incentivized to keep the prefix of com.cesar.X to group Nidra-specific
modules by the package name.

1 Right Click => Refactor => Rename => Rename Package => *new
package name* => Refactor

C.1.4 Change the Application ID

Finally, change the application ID respectivly to the package name defined
above—the ID is used to seperate installed applications from each other.
The application ID is located in the build.gradle file inside of the app
folder of the project. See the listing below.

1 android {
2 defaultConfig {
3 applicationId "com.cesar.moduletemplate"
4 }
5 }

C.2 Application Execution

C.2.1 Add the Module to Nidra

In order to retrieve the records data, the module-application has to be
added to Nidra. Therefore, launch the Nidra application on the device and
navigate to the modules screen. Press the Add new Module button, find the
module by name in the list and click to add.

C.2.2 Retrieve the Data

The data is sent as a JSON string to the module when it is launched within
Nidra. The pre-code is separated into the following files and folder:

134

MainActivity On creation of the module-application, the bundle of data
that is sent as an Intent is passed to the Extract method in
DataExtraction.

DataExtraction The Extract method retrieves the JSON string from the
bundle with the key data, and returns a unmarshalls of the data into
a PayloadFormat object

Payload/PayloadFormat Is the object in which one of the record with
corresponding samples of the data is marshalled. It encompasses a
single record that contains metadata and user information, also a list
of samples.

Payload/Record contains the record metadata (see Section 4.4.2)

Payload/Sample contains a single sample (see Section 4.4.2)

Payload/User contains the state of the user information at the given time
of recording (see Section 4.4.2).

As part of the discussion of the module design, the records are sent to
the module-application only when it is launched within Nidra. This might
become cumbersome in the long run. Therefore, it is highly incentivized to
temporarily cache the data under development.

135

136

Appendix D

Flow Sensor Wrapper

A B

Figure D.1: The Flow sensor wrapper application presented to the user
with following screens: (A) main screen, and (B) selecting a sensor source.

D.1 Implementation & Presentation

The Flow sensor wrapper was introduced in Section 5.1.1. The following
sections describe the functionality of the sensor wrapper by separating
them into following actions: (A) start the data acquisition; (B) handle the
samples from the sensor; and (C) stop the data acquisition. The steps for
the actions is presented in Figure D.2.

Moreover, Figure D.1 presents the Flow sensor wrapper application
(called Flow), and the screens can be described as:

A The main screen that shows the state of the Flow sensor (e.g., battery
level, MAC address, firmware version), including the button actions

137

B.3

Bluetooth
Callback

A.1 / C.1

DataStream
DispatchingModule

(Bugajski's App)

B.5

Data
Handler

A.3 / C.2

Wrapper
Service

B.3

A.7/A.9

A.6

B.2
Bluetooth
Handler

A.8 B.1

Flow Sensor Kit

B.4

A.4 A.5 / C.3

Communcation
Handler

Bluetooth
Service

Gatt-
Attributes

A.2

B.2

Figure D.2: Implementation of Flow sensor wrapper with the actions of:
(A) start the data acacquisition, (B) handle the samples from the sensor; (C)
stop the data acquisition.

to either remove the sensor or change to another Flow sensor.

B In the cases where there is no Flow sensor configured for the mobile
device or the action to change the sensor, the device list screen display
all available sensor or devices within range of BlueTooth connectivity
to the user. The Flow sensors are distinctly from the other BlueTooth
devices in order to make it easier to select.

D.1.1 Action A: Start the Data Acquistion

Action A is to start the data acquisition based on the command sent by
the data streams dispatching module with a broadcast containing the Start
message. The steps for this action can be narrowed down to:

A.1 A broadcast from the DSDM with an Intent of Start is sent to the
WrapperService.

A.2 Within the WrapperService, a binder between the between this
service component and the DSDM is created (which will be used for
sending data by the Flow sensor). Moreover, a new thread for the
CommuncationHandler is created and started.

138

A.3 This component initializes the connectivity with the BluetoothHandler
service and listens for data packets from that component.

A.4 A reference to the BlueToothHandler with a binder is created, in order
to communicate with the service.

A.5 Moreover, the request to connect and start the acquisition is sent to
the BluetoothHandler.

A.6 BluetootHandler creates an object of the BluetoothService, which
contains the state of the Flow sensor (e.g., battery level, breathing
data-enabled, and manufacturer name).

A.7 The BluetootHandler connects with the GATT server (the Flow
sensor), and once the connectivity is established (using the Android
provided API’s for connecting with the Bluetooth LE devices), we can
send a request to the sensor source for available services.

A.8 The sensor source responds with all of the available services and
characteristics, and we can proceed to notify the sensor source to
enable the breathing data and the battery level service.

D.1.2 Action B: Handle the Samples from the Sensor

The Flow sensor sends data with a frequency of approximately 1.5Hz. As
such, Action B is to handle the data and forward it to the data streams
dispatching module. The steps for this action can be narrowed down to:

B.1 Periodically, the Flow sensor sends data to the connected mobile
device, based on the activated service (i.e., breathing data and battery
level). These data are sent to BlueToothHandler.

B.2 The BluetoothHandler handles the data received from the flow
sensor (by filtering them out on GattAttributes) and reads the value
from the characteristics that is encompassed in the service.

B.3 The values are sent as a callback to the CommunicationHandler.

B.4 Which further sends it to the DataHandler.

B.5 The DataHandler creates a JSON string that contains meta-data (e.g.,
the ID of the sensor wrapper) together with the data, and sends the
data to the DSDM for further processing.

D.1.3 Action C: Stop the Data Acquestion

Action C is to stop the data acquisition based on the command sent by
the data streams dispatching module with a broadcast containing the Stop
message. The steps for this action can be narrowed down to:

139

C.1 A broadcast from the DSDM with an Intent of Stop is sent to the
WrapperService. The WrapperService disconnect with the binder
that was created between this component service and DSDM. As a
result, the CommunicationHandler thread is interrupted.

C.2 The CommunicationHandler notifies the BluetootHandler to discon-
nect with the GATT server and terminate.

C.3 The BluetootHandler disconnects the connectivity with the Flow
sensor wrapper, and further notifies the components that the com-
munication is closed (e.g., the main screen changes the state from
connected to disconnected on the main screen).

140

	List of Tables
	List of Figures
	I Introduction and Background
	Introduction
	Background and Motivation
	Problem Statement
	Limitations
	Research Method
	Informational Phase
	Propositional Phase
	Analytical Phase
	Evaluation Phase

	Thesis Outline

	Background
	The CESAR Project
	Extensible Data Acquisition Tool
	Extensible Data Streams Dispatching Tool
	Flow Sensor

	Android OS
	Android Architecture
	Application Components
	Process and Threads
	Inter-Process Communication (IPC)
	Data and File Storage
	Architecture Patterns
	Power Management
	Bluetooth Low Energy

	Related Work
	Summary & Conclusion

	II Design and Implementation
	Analysis and High-Level Design
	Requirement Analysis
	Stakeholders
	Resource Efficiency
	Security and Privacy

	High-Level Design
	Task Analysis

	Seperation of Concerns
	Recording
	Sharing
	Modules
	Analytics
	Storage
	Presentation

	Data Structure
	Data Formats
	Data Entities
	Data Packets

	Implementation
	Application Components
	Flow Sensor Wrapper
	Data Streams Dispatching Module
	Nidra
	Inter-Process Communication

	Implementation of Concerns
	Recording
	Sharing
	Modules
	Analytics
	Storage
	Presentation

	Miscellaneous
	Collecting Data Over a Longer Period
	Android Manifest

	III Evaluation and Conclusion
	Evaluation
	Experiment A: Orchestral Concert to Analyze Musical Absorption using Nidra to Collect Breathing Data
	Preperations
	Results
	Analysis
	Discussion
	Conclusion

	Experiment B: 9-Hours Recording
	Description
	Results
	Discussion
	Conclusion

	Experiment C: Performing User-Tests
	Testing
	Observations
	Survey
	Discussion
	Conlusion

	Experiment D: Creating a Simple Module
	Observations
	Results
	Discussion
	Conclusion

	Summary of Results
	Concluding Remarks

	Conclusion
	Summary
	Contributions
	Future Work

	Appendices
	Source Code
	File and Folder Structure

	Experiment A: Remaining Graphs
	Concert Day 1 and Day 2: Time-Series Graph
	Python Code for Plotting

	Module Template
	Application Setup
	Download the Application
	Change the Name of the Application
	Rename the Package of the Application
	Change the Application ID

	Application Execution
	Add the Module to Nidra
	Retrieve the Data

	Flow Sensor Wrapper
	Implementation & Presentation
	Action A: Start the Data Acquistion
	Action B: Handle the Samples from the Sensor
	Action C: Stop the Data Acquestion

