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Abstract 

In the contemporary scene, many environmental and water resources related decisions rely 
upon wide range of modelling results. However, estimates of the model parameters and model 
predictions are generally imperfect due to the inherent uncertainties emanating from different 
sources. Our incomplete perception of the natural system, accompanied by the simplifications 
of important process representations during the development of a conceptual model as well as 
limitations in measurements are some of the factors that contribute to the various sources of 
uncertainty. This challenge is further aggravated by the lack of efficient methods to extract the 
available information from the noisy dataset during model calibration. Thus, uncertainty 
analysis should be integrated as part of the modelling process from the very beginning; and 
any rational decision is expected to take into account the prediction uncertainty emanating 
from the various sources. A comprehensive approach for addressing uncertainty in 
environmental modelling requires the understanding of potential sources as well as the 
quantification and reduction of uncertainty at various stages of the modelling process.  

 This work was focused on ensemble-based uncertainty quantification and reduction in 
hydrological modelling and predictions, while accompanied by the proper understanding of 
the different sources and types of uncertainty. The assessment of modelling and prediction 
uncertainty for a distributed conceptual hydrological model was realized using two variants of 
the GLUE methodology and with due consideration to the model’s main application as an 
operational hydrological model. Model realizations were evaluated using single and multi-
criteria objective functions. Uncertainty of the model parameters was assessed and the value 
of remote sensing snow cover data in constraining the rainfall runoff model parameters was 
evaluated. The main outcome of this study was the novel approach introduced to adapt the 
rejectionist framework for use in the identification of behavioural model realizations in 
continuous rainfall-runoff modelling. 

 In order to alleviate the heavy computational burden associated with use of the GLUE 
methodology in computationally expensive hydrological models, three machine learning 
models (MLMs) were coupled with the limits of acceptability approach. The coupled MLMs 
and time-relaxed limits of acceptability approach were able to effectively identify behavioural 
parameter sets for the hydrological model while significantly minimizing the computational 
time of the Monte Carlo (MC) simulation. In this study, persistency of the model realizations 
in reproducing the observations within the error bounds (pLoA) was introduced as a 
standalone objective-function and was able to effectively identify the behavioural simulations. 
Although two of the MLMs were not commonly used as emulators of the MC simulation in 
previous studies, they have yielded comparable results to the standard MLM based emulator. 

 Parameter sensitivity analysis was conducted using the in-built algorithms of the three 
MLMs, the residual-based GLUE methodology, and the regional sensitivity analysis approach. 
Consistent results were obtained from the different methods. The sensitivity analyses results 
have complemented the process of behavioural model identification by providing better 
insight on how the variability in the uncertain model parameters affects the variability in the 
likelihood values.  



ii 
 

 Reducing the prediction uncertainty of snow water equivalent (SWE), and thereby to get an 
improved estimate of SWE during the maximum accumulation period was among the main 
goals of this study. This was accomplished by introducing new fuzzy logic based efficient 
snow data assimilation schemes that have improved capability to extract the information 
content of the assimilated remote sensing snow cover data (fSCA). Two ensemble-based data 
assimilation (DA) schemes, i.e. particle batch smoother and another based on the limits of 
acceptability concept were employed. Newly introduced versions of these schemes that 
account for the variability in informational value of the assimilated fSCA observation were 
also used to reanalyze the model results. Introducing the limits of acceptability approach as a 
DA scheme yielded an encouraging result. Incorporating the concept of variable informational 
value of the remote sensing data in both DA schemes was a viable option for an improved 
estimates of the perturbation parameters, and thereby the reanalyzed SWE values. Results 
from the analyses under the premise of variable informational value of fSCA with time 
revealed that the observations do not carry equal information amount in constraining the 
perturbation parameters. Some observations were more important than others depending on 
their timing with respect to certain critical points in the melt season, i.e., the points where the 
mean snow cover changes and the start of a melt-out period. The parametric (likelihood-based) 
and non-parametric change point detection schemes employed in this study were able to 
effectively locate the critical points in each grid-cell for multiple analysis years. Although this 
study was focused on fSCA assimilation, the fuzzy logic based ensemble frameworks 
introduced in this study can be applied to assimilate other observations that display variable 
informational value with time. 
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Chapter 1 
Introduction 
 
1.1 Motivation 

Hydrologic predictions are needed for a wide range of applications including for planning, 
design, and management of environmental and water resources. Streamflow estimates for 
water supply designs by water systems builders have been needed since the days of the 
ancient hydraulic societies of China and the Middle East (Schulze, 1995). The increased 
demand for such estimates, on the one hand, and the limited availability of sufficient 
streamflow measurements, on the other hand, has initiated the development of indirect 
methods for estimating the required streamflow characteristics. The development of 
hydrological models for use in synthetic streamflow simulation, including the generally 
recognized first hydrological model, i.e. the Rational Method proposed by Mulvany (1850) 
and the unit hydrograph introduced by Sherman (1932), has been mainly motivated by such 
practical engineering problems (Todini, 2011). A further demand for modelling the complex 
interaction between the soil-surface and runoff generating mechanisms has led to the 
development of conceptual models following the advent of digital computers. In the 
contemporary scene, the role of hydrological models has extended into a multi-purpose and 
multi-faceted tool reflecting the environmental awareness with regard to man’s impact on 
water related issues (e.g. Schulze, 1995). 

Hydrological modelling concepts range from simple conceptual models to complex 
physically based ones. These models differ on their level of process description as well as 
their computational resource, and data requirements. The process based models tend to 
resolve the mass flux between the different components of the hydrological system. Therefore, 
they are computationally expensive and often restricted to analyzing spatially and temporally 
limited domains (Liston et al., 2007; Mott and Lehning, 2010). On the other hand, the 
oversimplified representation of important components and processes of the hydrologic 
system by certain lumped and semi-distributed conceptual models in order to allow multiple 
years and catchment scale simulation are subjected to additional sources of uncertainty and 
may not be applicable in other domains due to lack of transferability in space (Clark et al., 
2011).  

Conceptual hydrological models typically have one or more calibration parameters and 
commonly require some form of inverse modelling to estimate model parameters from 
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observations (Crawford and Linsley, 1966). During calibration, equifinality arises when 
different parameter sets give equally good results in terms of predefined efficiency criteria 
(Beven, 1993; Savenije, 2001; Wagener et al., 2003). Since all models of hydrological 
systems are highly simplified representations of reality (e.g., Reichert and Omlin, 1997), it is 
expected to have several different model structures and parameter sets that describe the 
system in an adequate way (Blazkova and Beven, 2002). Previous studies have also reported 
that the classic hydrological approach of using a single set of model parameters may lead to 
large predictive biases when dealing with nonlinear systems, (e.g., Mantovan and Todini, 
2006). It is thus more realistic to use multiple plausible realizations from one or more models 
to get an ensemble of predictions rather than trying to find an optimal parameter set (Peel and 
Bloschl, 2011). 

 The estimates of model parameters through inverse modelling and the resulting predictions 
are generally imperfect due to the inherent uncertainties, for example in forcing data, model 
parameters, and model structure. Uncertainty is a situation of inadequate information 
(Funtowicz and Ravetz, 1990). An increased awareness of these modeling uncertainties and 
the need for quality control of such models requires the integration of uncertainty analysis 
into the modeling process from the very beginning (Beven, 1989; Saltelli et al., 2006; 
Refsgaard et al., 2007). The understanding (e.g. the different sources), quantification, and 
reduction of uncertainty are the three important aspects in hydrological modelling and 
prediction (Liu and Gupta, 2007). In the past, various uncertainty analysis techniques have 
been proposed to infer model parameter values from observations. Of these techniques, the 
generalized likelihood uncertainty estimation (GLUE) methodology (Beven and Binley, 1992) 
is the most widely used uncertainty analysis framework in hydrology (Stedinger et al., 2008; 
Xiong et al., 2008; Shen et al., 2012). This methodology relies on ensemble modelling to 
assess modelling and prediction uncertainty. Ensemble based techniques allow for the 
incorporation of a multi-objective evaluation within the calibration procedure to provide a 
number of alternative parameter sets while reducing parameter uncertainty through 
incorporating new knowledge from available observations (Efstratiadis and Koutsoyiannis, 
2010). 

 The main challenge with use of ensemble-based uncertainty analysis techniques in general, 
and the GLUE methodology in particular, is the heavy computational burden (Yu et al., 2015). 
The computational cost becomes even higher and poses strong limitations in terms of practical 
implementation and computational requirements when such methods are applied to 
computationally intensive simulation models (e.g. Castelletti et al., 2012). Monte Carlo (MC) 
simulation is an ensemble method which is commonly used to quantify the uncertainty 
propagated from model parameters to predictions in most of the uncertainty analysis 
frameworks including the GLUE methodology. In the past, surrogate modelling methods have 
been coupled with the MC simulation in order to make better use of the available, but usually 
limited, computational budget (Razavi et al., 2012). A surrogate model is a low-order and 
computationally efficient model identified from the original large model and then used to 
replace it for computationally intensive applications (Castelletti et al., 2012). Machine 
learning and other surrogate models have been reported to efficiently emulate the MC 
simulations after trained with a small sample size (e.g. Yu et al., 2015). 
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 Improved estimates of snow depth and its spatiotemporal distribution are important for 
various applications including for flood and avalanche warning as well as energy production 
planning (Farinotti et al., 2010; Udnæs et al., 2007; Melvold and Skaugen, 2013). Snow has 
important relevance for society spanning from environmental and economical to recreational 
and aesthetic values. Snow distribution studies are especially important in countries like 
Norway where approximately 30% of the annual precipitation falls as snow with strong 
spatial variability (Saloranta, 2012; Dyrrdal et al., 2013). In snow dominated catchments, a 
significant part of the streamflow in late spring and summer is derived from meltwater of 
snow storage. As a result, the accuracy of streamflow forecasts during this period depends 
mainly on the accuracy of snow storage estimate at the onset of the forecast period. Water 
managers in hydropower and water supply sectors consider snow storage in mountain areas as 
a natural reservoir and they recognize the need for accurate prediction of this important 
resource and the subsequent impact on downstream flows (Maurer et al., 2007). However, the 
spatial distribution of snow, especially in alpine settings, is characterized by high 
heterogeneity (e.g. Winstral and Marks, 2014); and this phenomenon is expected to be more 
pronounced in the coming decades at the verge of increased climate change impact. 
According to Dyrrdal et al. (2013), while more regions in Norway are expected to experience 
declining maximum annual snow depth, some inland and higher mountain regions may 
accumulate more snow in the coming decades. It is at this juncture of increased snow 
distribution variability as a result of climate change and anthropogenic effects, and the need 
for accurate prediction of this important resource, where the necessity for hydrologic models 
and snow re-analysis schemes capable of capturing the evolving phenomena becomes more 
significant. As part of the effort to address that necessity, Statkraft (2018) has recently 
released a hydrological modelling framework with multiple hypotheses for estimating snow 
storage. 

 The continual retrieval of different kinds of snow observations both from remote sensing 
and in situ measurements serves as a driving factor to continue from quantification to the 
reduction of uncertainty by assimilating the new observations into hydrological models (e.g. 
Liu and Gupta, 2007). Remote sensing data in general and optical fractional snow cover area 
(fSCA) in particular have been increasingly used in hydrologic modeling for constraining 
model parameters and states through inverse modeling and various data assimilation schemes 
(e.g. Clark et al., 2006). This can be attributed to the readily available observations of this 
data for large areas and at a relatively high temporal resolution (Parajka and Bloschl, 2006). 
Data assimilation (DA) is the means to obtain an estimate of the true state through use of 
independent observations and the prior knowledge (model state) with appropriate uncertainty 
modelling (Liu et al., 2012; Griessinger et al., 2016). There is a well-established 
understanding that the information content of the data and the efficiency with which that 
information is extracted are more important than the amount of the data (e.g. Gupta and 
Sorooshian, 1985; Vrugt et al., 2002). However, there still exists a limitation in the 
availability of data assimilation schemes that accommodate this concept. According to Liu 
and Gupta (2007), while the hydrologic science has made significant advances in the 
availability of data and improved hydrological models, there exists an urgent need for 
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schemes that can efficiently assimilate important information from the data into the models to 
produce improved hydrological predictions. 

1.2 Goals and objectives 

In an effort to address the main research problems presented in the preceding section, this 
work was undertaken with three main goals. The first goal was to conduct modelling and 
prediction uncertainty analysis for the PT_GS_K conceptual hydrological model (method 
stack) within the recently developed Statkraft Hydrological Forecasting Toolbox (Shyft, 
https://github.com/statkraft/shyft). This study was conducted as part and parcel of the 
modelling process and with due consideration to the model’s main application as an 
operational hydrological model. The specific objectives were: 

- to assess parameter uncertainty for the PT_GS_K model using the GLUE 
methodology and evaluate its performances in light of its intended use 

- to implement and validate a new time-relaxed GLUE LoA approach for constraining 
model parameters  

- to investigate the potential value of MODIS snow cover data as additional observation 
in multi-criteria model conditioning for reducing parameter uncertainty 

 Like other MC simulation based uncertainty analysis techniques, use of the GLUE 
methodology in computationally expensive hydrological models might be restricted due to 
heavy computational burden. Thus, the second goal of this work was to emulate the time 
consuming MC simulation for parameter identification through coupling of machine learning 
models (MLMs) with the time-relaxed limits of acceptability approach. The specific 
objectives were: 

- to assess the possibility of using the percentage of model predictions falling within the 
observation error bounds, i.e. pLoA as a likelihood measure for identification of 
behavioural models using the coupled MLMs and the limits of acceptability approach, 
instead of the previously used residual-based likelihood measures.  

- to assess the application of two MLMs as emulators of the MC simulation and 
compare their relative performances in relation to a standard machine learning based 
emulator and a direct estimate of the response surface from the MC simulation. 

- to compare the performance of the MLMs trained using pLoA against those trained 
using the absolute bias based criterion, as target variables, in assessing the relative 
influence of the model parameters on the simulation result. 

 As a continuation to the uncertainty quantification and as an important aspect of 
uncertainty in hydrological modelling and predictions, the reduction of uncertainty by 
assimilating new observations was also part of this work. The third goal of this work was thus 
to reduce the uncertainty in selected model forcing and parameters, and thereby to get an 
improved estimate of snow water equivalent (SWE) during the maximum accumulation 
period. This goal was accomplished by introducing fuzzy logic based efficient snow data 
assimilation schemes for improved extraction of the information content of the assimilated 
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remote sensing snow cover data (fSCA). The study was conducted with the following specific 
objectives:  

- to assess whether the assumption of variable informational value of fSCA observations 
depending on their location in different timing windows during the ablation period can 
reduce the uncertainty in SWE estimates. A novel approach was introduced that 
accommodates this concept by incorporating the fuzzy logic concept in two ensemble-
based SWE reanalysis schemes.  

- to evaluate the viability of statistical change point detection methods to locate the 
critical points that constitute the timing windows.  

- to adopt the limits of acceptability concept as an ensemble smoother data assimilation 
scheme and compare effect of the assumed variability in informational value of fSCA 
observations on relative performance of this scheme and the particle batch smoother.  

1.3 Organization of the thesis 

This thesis is organized as follows: following the introductory part presented in this chapter, 
Chapter-2 presents a scientific review on relevant subjects including sensitivity and 
uncertainty analysis in hydrological modelling, the concept and application of surrogate 
models in hydrology as well as snow distribution modelling and snow data assimilation into 
hydrological models. Chapter-3 introduces the hydrological model, the study domain as well 
as the data used to validate the different hypotheses underlying the specific objectives 
outlined in the preceding section. Chapter-4 provides an overview of the methodologies and 
results presented in the papers published during the study period. Chapter-5 discusses the 
general implication of the results obtained in this work in relation to the methods and dataset 
as well as in relation to relevant previous studies. Chapter-6 provides the general conclusions 
drawn based on the work presented in the thesis and gives some insights about future work. 
The bibliography is provided following the general conclusion; and presentation of the entire 
research work is completed with the attached papers and appendices at end of this thesis. 
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Chapter 2 
Scientific background 
 
2.1 Brief overview of the modelling process in hydrology 

Hydrological models can be described as collections of physical laws and empirical 
observations that are written in mathematical terms and combined in such a way that they can 
produce a set of results based on a set of known and/or assumed conditions (Haan, 1994). As 
such, hydrological models provide a quantitative expression of the observation, analysis, and 
prediction of the time-variant interactions of various hydrological processes (Fig. 2.1) for use 
in various applications (Schulze, 1995). The application of these models is highly dependent 
on the purpose for which they are developed (Singh and Woolhiser, 2002; Moradkhani and 
Sorooshian, 2009; Pechlivanidis et al., 2011). Many hydrological models are developed for 
research purposes aimed at improving the fundamental understanding of the processes 
governing the real world hydrological system and assessing the impact of change (e.g. climate 
and land cover change) on water resources. Other types are developed as tools for the 
extrapolation of hydrological variables both in space and time in order to help decision 
makers in taking the most effective decision with due consideration to the interaction with the 
other components of the real world system such as the socio-economic aspects.  

 Hydrological models are classified in various ways based on the modeller’s perception of a 
hydrological system which is gained through the interaction with the system, observation and 
experiments (Beven, 2011). According to their description of the physical processes, 
hydrological models can be classified as physically-based (white-box), conceptual (grey-box) 
and stochastic (black-box) models; and based on their spatial description of catchment 
processes they can be classified as lumped or distributed (Refsgaard, 1996). In lumped models, 
the entire catchment is considered as a single homogenous unit, while a distributed model 
takes into account for the spatial variability of model forcings and parameters with explicit 
characterization of the processes and patterns (e.g. Moradkhani and Sorooshian, 2009). 



8 
 

 
Figure 2.1: Basic components of the hydrological system (source: The COMET Program 
(2005)) 

 Although, the modelling process has been formulated to varying degree of detail by 
different researchers, the main steps can be summarized as shown in Figure 2.2 (e.g. 
Refsgaard, 1997; Beven, 2011; Gupta et al., 2012). After defining the modelling purpose, the 
perceptual model of the hydrological processes of interest in the study domain is developed 
and that reflects the modeller’s perception on how the catchment responds to inputs to the 
system, such as precipitation. As such, a perceptual model depends on the modeller’s prior 
knowledge about the observations, components and processes in the system and it is expected 
to differ from that of another.  

 The next step in the modelling process deals with the establishment of a conceptual model 
and this comprises the modeller’s perception of the main hydrological processes in the study 
domain and the corresponding simplifications which are assumed to be acceptable for the 
intended use of the mathematical model. A conceptual model attempts to quantitatively define 
the states, fluxes, and parameters of the system and the linkage between them. Similar to the 
perceptual model, the conceptual model depends upon the modeller’s process understanding 
about the system (Gupta et al., 2012).  

 The complexity of the conceptual model may vary from a model involving simple mass 
balance equations for components representing storage in the system to coupled-nonlinear 
partial differential equations. In the latter case, an additional stage in the modelling process is 
required to define a procedural model in the form of a computer code (e.g. Beven, 2011). 
Details of the procedural model include: the selection of a numerical formulation for 
representing the spatial relationships (e.g. finite difference or finite element), definition of the 
spatial resolution for computations within the model domain, and the selection of a procedure 
for time integration of the governing equations (Gupta et al., 2012). It should, however, be 
taken into consideration that a significant interaction may exist between the choice of model 
equations and the choice of the spatial and temporal scales since the decision to explicitly 
resolve a given process will dictate the threshold spatial and temporal resolution of 
computation  (Clark et al., 2011).  
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 Although usually considered as part of the procedural model development phase, code 
verification, i.e. debugging the computer program is also an important component of the 
modelling process. This process is used to substantiate the correctness of the computer 
algorithm and its implementation (Sargent, 1991). The procedural model also needs to pass 
through the stage of model calibration before it is applied to make quantitative predictions 
(Beven, 2011). The formulations of the hydrological model involve different inputs, model 
parameters and state variables. Some of the model inputs such as those that define the 
geometric characteristics of the study domain are static that remain constant throughout the 
simulation period, while others such as the meteorological variables are dynamic during the 
simulation period. The state variables such as soil water and snow storage also tend to vary 
with time. The model parameters are usually assumed transferrable in time and thus remain 
constant during the simulation period. Since it is difficult to set the parameter value a priori 
for a given study domain, parameter values are conditioned through use of observational 
dataset (e.g. streamflow) during the calibration process. However, it may be challenging to 
identify an optimal parameter set from different feasible parameter sets due to the various 
factors discussed in the next section. 

 Once the model parameter values are identified, the next step is the validation of model 
predictions through calculation of efficiency metrics in relation to independent observations. 
The validation phase can be considered as the process of establishing the soundness and 
completeness of the model structure, i.e. a model structure based on valid reasoning that 
includes all the components relevant for the intended purpose (Nguyen and Kok, 2007). 
Furthermore, the model behaviour should not contradict the general physical laws while 
yielding a computed behaviour with an acceptable agreement to the observations (e.g. Parker 
et al., 2002; Jakeman et al., 2006). Although this section presents the modelling process in 
successive steps, it is more iterative rather than procedural, where the modeller can go back to 
a preceding step and make changes based on updated information. 

 
Figure 2.2: A schematic outline of the modelling process (after Beven, 2011) 
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2.2 Sensitivity and uncertainty analysis in hydrological  modelling 

Sensitivity and uncertainty analysis are important steps in the modelling process (e.g. 
Campolongo et al., 2007). As mentioned in the previous section, a possible use of models is to 
map a set of known or assumed conditions into inferences. A good modelling practice 
considers alternative conditions with subsequent identification of their corresponding interval 
of inferences, rather than mapping a single set of conditions into a single inference (Saltelli et 
al., 2006). This helps to present a model-based inference in the form of an empirical 
distribution of the predicted variable and the production of this distribution is commonly 
known as uncertainty analysis. The process of linking the uncertainty in the inference to the 
uncertainty in the conditions is known as sensitivity analysis. As such, uncertainty and 
sensitivity analyses are commonly run together. This section presents topics related to 
sensitivity and uncertainty analysis with main focus given to uncertainty quantification in 
hydrological modelling. 

2.2.1 Parameter sampling techniques 

The application of most sensitivity and uncertainty analysis techniques requires parameter 
sampling from a prior distribution. There are various sampling techniques that have been 
applied in the literature. In sensitivity analysis a distinction is usually made between One-At-
a-Time (OAT) and All-At-a-Time (AAT) sampling methods based on the approach followed 
in selecting the parameter values from their respective dimensions (e.g. Pianosi et al, 2016). 
In OAT methods, only one parameter is allowed to vary, while keeping the value of all other 
parameters fixed, while in the AAT method the output variations are induced by 
simultaneously varying all parameter values. Following are some of the AAT-based sampling 
techniques that are commonly used to define the shape of a response surface (e.g. Beven, 
2009; Beven, 2011; Yang et al, 2018). 

(a) Simple Monte Carlo sampling  

This method involves an independent sampling of random values of each parameter across 
their specified ranges. The main problem with this sampling strategy is that of taking enough 
samples since areas of higher likelihood on the surface might be missed. When using this 
method, usually very large numbers of samples are required to define the shape of local areas 
of high likelihood. A parameter sample as represented by the matrix,  (Eq. 2.1) is used to 
produce an output vector for the target variable of interest through running the model using 
each row of the matrix  (e.g. Saltelli et al, 2008).  For example,  is the value obtained by 
running the hydrological model with the parameter values given by the row vector, 

. 
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(2.1) 

(b) Monte Carlo Markov Chain sampling 

The Monte Carlo Markov Chain (MCMC) sampling technique is a form of importance 
sampling which is commonly used in hydrological modelling. This method involves running a 
model using parameter sets that are randomly sampled in accordance to the prior distribution 
with subsequent estimation of the posterior likelihood. A new set is chosen following the prior 
distribution but whether the model is run with that parameter set depends on the likelihood of 
the previous sample and a random number. Even if the likelihood of the previous point was 
low, there is a probability of making a new run around it in order to avoid missing regions of 
the space where a new high likelihood area might be found. As such, the process involves a 
chain of random walks across the likelihood surface where the probability of choosing a new 
sample depends on the knowledge of the local likelihood values; and with the possibility of 
starting a new chain in areas that have not been sampled before. The Metropolis-Hastings 
algorithm (Metropolis et al., 1953; Hastings, 1970) and the Gibbs sampler (Geman and 
Geman, 1987) are the common forms of the MCMC method. Although, such methods may 
considerably save the time for finding the likelihood surface in the presence of a well-defined 
surface, they may not work well for surfaces with complex shapes (Beven, 2011). 

2.2.2 Likelihood measures used in evaluation of hydrological models 

Different likelihood measures can be used to evaluate the results of a hydrological model 
simulation depending on various factors. Some of these factors include: type of the 
observational data used for model evaluation (e.g. streamflow or fractional snow cover area), 
nature of the prediction problem (e.g. high-flow and low-flow) and a prior belief on shape of 
the residual distribution (e.g. Beven, 2011). The commonly used likelihood measures in 
hydrological modelling can be categorized as statistical and informal likelihoods. 

(a) Statistical likelihood measures 

Statistical likelihood measures are based on the nature of the model residuals under the 
assumption that all residual errors vary statistically. The most commonly used formal 
likelihood measure assumes the Gaussian distribution with the contribution of a single 
residual to the likelihood as being proportional to the square of its value. This likelihood 
function is based on the assumption that the model residuals ( ) are normal and 
independently distributed (Stedinger et al., 2008). The likelihood function of a Gaussian error 
with  residuals takes the form (Eq. 2.2): 
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 (2.2) 

where,  is the likelihood ( ) of the model residuals ( ) given predictions of the 
model with parameter set  and inputs .  and  respectively denote variance of the 
residuals and a simulation time step. 

(b) Informal likelihood measures  

Informal likelihood measures do not assume a statistical model for model residuals and are 
commonly used in the GLUE methodology. The most commonly used informal likelihood 
measure in hydrology is the Nash-Sutcliffe efficiency (NSE) (e.g. Croke et al., 2008). For 
example, if the variable of interest is streamflow (  with  observations, NSE can be 
expressed as in Equation 2.3. 

 (2.3) 

Where  and  respectively represent the total number of simulation time steps and the 
simulated value for the variable of interest (here streamflow).  is observed streamflow 
and  represents mean value of the observed streamflow series. 

 In hydrological modelling, fuzzy measures have been used as informal likelihood measures 
especially in situations where observational data are too scarce to use statistical measures 
(Pappenberger et al., 2007; Jacquin and Shamseldin, 2007; Beven, 2012). Fuzzy logic is a 
method to formalize the human capacity of imprecise reasoning, i.e. an ability to reason 
approximately and to decide under uncertainty (Ross, 2009). Since in fuzzy logic all truths are 
partial or approximate, this reasoning has also been called  interpolative reasoning with the 
process of interpolating betweeen the binary extremes of true or false being represented by the 
ability of a fuzzy logic to encapsulate partial truths (Ross, 2009). The emergence of new 
theories of uncertainty in the 1960’s, including fuzzy logic, have challenged the seemingly 
unique connection between uncertainty and probability theory by showig that probability 
theory is capable of representing only one of several distinct types of uncertainty (Klir and 
Yuan, 1995). Zadeh (1965) introduced sets with boundarie that are not precise (fuzzy sets) 
where the membership in a fuzzy set is represented in terms of degree rather than as a matter 
of affirmation or denial. 

 A fuzzy measure can be defined as a membership function of the error between the 
observed and predicted variable of interest. The individual fuzzy measures for different time 
steps or variables may be combined using different methods, including: linear addition, 
weighted addition, multiplication, fuzzy union or fuzzy intersection. Such likelihood measures 
are commonly used in the limits of acceptability approach to model evaluation (e.g. Beven, 
2006). Example of triangular (a) and trapezoidal (b) membership functions for standardized 
scores between the limits; as well as two special cases of the trapezoidal membership function, 
i.e. R-function (c) and L-function (d) are shown in the following figure. 
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Figure 2.3: Graphical representation of a triangular (a) and trapezoidal (b) membership 
functions commonly used for the conversion from error scores to likelihood weights as well 
as the R-function (c) and L-function (d) which are special cases of the trapezoidal 
membership function. 

2.2.3 Information content of data and its implication in formulating a likelihood   
 measure 

The amount and information content of a data series used in model evaluation require due 
consideration since they have a strong influence on model performance (Ritter and Munoz-
Carpena, 2013). Previous studies suggest that the information content of the data and the 
efficiency with which that information is extracted during model identification are more 
important than the length of records (e.g. Gupta and Sorooshian, 1985). For example, Vrugt et 
al. (2002) have observed highest information content when conditioning parameters of the 
HYMOD model with a limitted amount but less correlated streamflow measurements. 
Similarly, Wang et al. (2017) used isotope data from streamflow samples to assess the effect 
of sample size and period of sampling on the model calibration result. They observed that the 
performance of models calibrated with isotope data from two selected samples was 
comparable to simulations based on isotope data from 100 time steps. Further, the samples 
taken on the falling limb were more informative than samples taken from other parts of the 
hydrograph.  

 Information content of data can be assessed using different techniques. Most of the  well 
established  methods are based on the infromation theory which in turn rely upon the 
probabilistic models of communication developed by Shannon (1948). These models are 
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based on the basic principle that an observation with a high probability of random occurrences 
convey little information, while an obsrvation that is least likely to spontaneously occur carry 
most information (Perone and Ham, 1985). This principle is quantitatively described by the 
concept of entropy which equates information and uncertainty. Shannon’s formula (Eq. 2.4) 
defines the information content of data, i.e. entropy ( ) as weighted average information 
content of the individual observations in the data series (Shannon and Weaver, 1964). Specific 
information is a function of the occurrence of a particular event and it is quantified by –  
of the probability of the event ( ). 

 (2.4) 

where  and  respectively represent the number of discrete intervals of the variate and the 
probability of the variate occuring within that interval. Maximum entropy occurs when all 
events are equally probable (Papoulis, 2002; Vieux and Farajalla,1994).   

 Some researchers have been sceptical on the application of the information theory and 
other similar methods in hydrology to assess the information content of data (e.g. using 
entropy measures and Akaike information criteria). For example, Beven and Smith (2015) 
argue that the information about the error sequences is largely lost when using entropy 
measures since such measures are based only on the shapes of distributions. Rather, an 
approach for assessing the information content of data from a hydrological perspective should 
be event based. Croke et al. (2008) proposed a methodology that can be used to assess the 
information content of new data in data assimilation. It is based on the relative uncertainty 
before and after assimilation of the new data into the model. The uncertainty could be in the 
model parameters or model predictions and it can be expressed as a ratio of the standard 
deviation of parameter distributions before and after the data assimilation. However, they 
have pointed out that value of the new data for reducing the uncertainty depends on how 
viable a given approach is in extracting this information (for e.g. depending on type of the 
likelihood measure).  

 The main considerations when calibrating hydrological models are the amount of usable 
information content in the data series used to calibrate a simulation model and the 
identification of appropriate likelihood measure for assessing the performance of multiple 
models in light of the different sources of uncertainty in the modelling process (Beven and 
Smith, 2015). According to Mantovan and Todini (2006), the notion of coherence in learning 
refers to the condition of increasing amount of information extracted with increase in the 
number of observations. As such, the Bayesian parameter inference process with a formal 
likelihood function can be considered as coherent in learning. However, coherence in the 
Bayesian approach with formal likelihood can only be achieved if the residuals are aleatory 
and stationary since non-stationarity due to epistemic errors (e.g. errors in observations) might 
lead to disinformation (Beven and Westerberg, 2011). An ideal likelihood measure would 
then be one that is not biased by small amount of disinformation in the data to avoid biased 
inferences. In the past, different measures have been proposed to maximize information 
extraction from a calibration dataset. For example, Croke (2007) modified the Nash-Sutcliffe 
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efficiency using an optimal weighted average approach to take into account for the influence 
of uncertainties in the modelled and measured quantities. The modified NSE yielded a better 
estimate of the extreme values as compared to the original formulation. 

2.2.4 Change point detection methods 

As mentioned in the previous section, the amount of information in calibration data with 
observations that show different characteristics is higher than that of same length but with 
similar characteristics. Thus, methods for the identification of critical time periods in the 
observations (for e.g., periods which contain most of the information for parameter 
identification) can provide useful guidance in characterizing the evaluation data series (e.g. 
Bárdossy and Singh, 2008). A change point analysis helps to detect if a change has occurred, 
the number of change points, and the time when the changes occurred (Taylor, 2000). In 
hydrology, change point detection methods have been used in different areas of application 
that range from assessing the non-stationarity in hydrological time series data to detection of 
land use and land cover changes (Bayazit, 2015). The identification of temporal changes in 
hydrological data has particularly been gaining interest due to the potential impacts of climate 
change on river flow regimes (Khaliq et al., 2009). A number of change point detection 
schemes have been proposed for applications in hydrological and environmental problems 
(Sonali and Kumar, 2013). These range from the traditional approaches based on maximum 
likelihood estimation and Bayesian methods to newer approaches based on smoothing 
techniques (e.g. locally weighted regression) (Kundzewicz and Robson, 2004). The 
commonly used change point detection approaches can be roughly classified as parameteric 
and non-parameteric approaches. Table 2.1 presents summary of the commonly used change 
point detection methods in hydrology. 

Table 2.1. Summary of the commonly used change point detection methods in hydrology 
(Kundzewicz and Robson, 2004; Khaliq et al., 2009; Sonali and Kumar, 2013) 

Method 

Assumptions 

Description Parametric 
(normal 
distribution) 

Independent 
observations 

Median change 
point test 

No Yes rank-based test for a change in median 

Mann-Kendall 
test 

No Yes rank-based test 

CUSUM test No Yes rank-based test 
Sen’s test No Yes slope based test 
Spearman rank 
correlation test 

Yes Yes rank-based test for correlation between 
two variables 

Linear regression 
test 

Yes Yes slope based test 

Student’s t test Yes Yes parametric test on sample means 
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 Change point problems can be continuous or discrete and in the case of continuous change 
point problem it is generally assumed that a continuous random variable representing a 
survival or failure time can be expressed by the hazard function (Ebrahimi and Ghosh, 2001). 
In the case of discrete change point problem, we assume  independent random sequence of 
data,  with an abrupt change expected to occur within this set when there 
exists a time, , such that the statistical properties,  (e.g. mean or variance), 
of  and  are different in some way (Fig. 2.4). As such, a change point 
detection approach can be treated as hypothesis testing with the null ( ) and alternative ( ) 
hypotheses for a change defined as: 

No change point expected, i.e.  

A change point is expected to occur at time , i.e.  

 
Figure 2.4: An illustration of time-instants in discrete change point problem. The required 
variable, , is the time instant when the time series data shows an abrup change. The data 
during the intervals [ ] and [ ] are respectively generated from  and  which are both 
stationary and unknown (after Alippi et al., 2013). 

 This hypothesis can be tested using a likelihood-ratio based approach which requires the 
estimation of the maximum log-likelihood value under both the null and alternative 
hypotheses (e.g. Eckley et al., 2011; Killick and Eckley, 2014). For the null hypothesis, the 
likelihood value (  is expressed as: 

 (2.5)

Under the alternative hypothesis, we consider a model with a change point at ; and the 
log likelihood for a given , i.e. the likelihood given the alternative hypothesis ( is 
expressed based on the joint probability density function as: 

 

 (2.6)

The log likelihood ratio (  is calculated as:  

 (2.7)

The generalized log likelihood ratio , is estimated as: 
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 (2.8)

 The null hypothesis is rejected if , where  is a predefined critical value. If the 
null hypothesis is rejected, the change point position is the value of  that maximizes . The 
penalty factor ( ) can be defined using various criteria such as the Bayesian Information 
Criterion (BIC) and Akaika Information criterion (AIC). 

 This likelihood based change point detection approach as well as another scheme based on 
a nonparametric approach were applied in this work (Paper II) to identify a critical point in 
the time axis, i.e. where the mean fractional snow cover area (fSCA) changes. The study was 
conducted using fSCA data for nine sites in the study domain. The result obtained from this 
analysis was employed to assess the variability of this critical point spatially from one grid-
cell to another and temporally from year to year in response to various physiographic and 
climatic factors. The identified critical time index (change point) together with start of the 
melt-out period were employed to define a dynamic information content of remote sensing 
fSCA observations for use during the assimilation of the fSCA into a hydrological model 
through an appropriate likelihood function. Figure 2.5 shows temporal variability of the fSCA 
dynamics and location of the identified change points for a grid-cell situated in site 9. This 
site is characterized by relatively highest average annual snow water equivalent (SWE) as 
compared to other sites in the catchment. The four sample years used in assessing the 
temporal variability of the change point location include the years with the lowest  (year 2014) 
and highest (year 2012) annual peak snow water equivalent records in the analysis years, i.e. 
from year 2008 to 2016. Figure 2.6 also shows the result for similar analysis but for a grid-cell 
located in site 2, which is characterized by a relatively lowest average SWE value in the 
catchment. Some potential factors for the spatial variability of SWE in the study catchment, in 
particular the significances of of terrain parameters, are presented in Section 2.4.1. 

 The result shows that both the likelihood-based parametric approach and the nonparametric 
approach yielded close and reasonable results. From these sub-plots it can also be noticed that, 
the detected change points varied spatially between the grid-cells and temporally from year to 
year. The year to year variability of the change points was somehow consistent with the 
observed amount of maximum SWE in respective years. The detected change point occurred 
at a latter point in the time axis for the year with highest maximum SWE, i.e. year 2012 (b) as 
compared to the other years. The comparison between the grid-cells with lowest (Fig. 2.5) and 
highest (Fig. 2.6) average SWE shows that the change points detected for the grid-cell with 
lowest SWE occurred at earlier point in the time axis as compared to  the grid-cell with 
highest SWE for the corresponding years. 



18 
 

 
Figure 2.5: Temporal variability of the fSCA dynamics and location of the change points 
_param and _nonparam respectively detected using the parametric and non-parametric 

approaches for a sample grid-cell located in the site with lowest average SWE (site 9) and 
in four sample years, i.e. year 2011 (a) , 2012 (b), 2013 (c) and year 2014 (d).  
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Figure 2.6: Same as the previous figure but for a sample grid-cell in the site with highest 
annual average SWE (site 2).  
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2.2.5 Parameter sensitivity analysis 

Sensitivity analysis may provide guidance as to which of the parameters is a better candidate 
for further analysis in order to reduce the uncertainty in the simulation result (Saltelli et al., 
2006). Making more focus on parameters to which the model simulation results are most 
sensitive gives improved efficiency of model calibration and this requires an approach to 
assessing parameter sensitivity with respect to predicted variables or with respect to some 
performance measure (Beven, 2011). Some of the possible purposes of conducting sensitivity 
analysis are (Saltelli et al., 2008):  

 model corroboration, i.e. to test if the inference is robust or if the model is highly 
dependent on fragile assumptions 

 research prioritization, i.e. to identify the parameter that needs further analysis or 
measurement 

 model simplification, i.e. to assess if some parameters or model components can be 
fixed or simplified 

 identification of critical regions in the parameter space, and  
 to identify parameter interactions that may yield extreme values.  

 The purposes of sensitivity analysis guide the choice of the appropriate sensitivity analysis 
method since different methods are better suited to address different purposes (Pianosi et al., 
2016). Depending on how these purposes are formulated and addressed, different types of 
sensitivity analysis have been distinguished in the literature (e.g. Saltelli et al., 2008; Pianosi 
et al., 2016) including: 

 local versus global sensitivity analysis: local sensitivity analysis considers the output 
variability in response to the variations of a model parameter around a baseline point, 
while global sensitivity analysis considers the variations within the entire space of 
variability of the model parameters. 

 quantitative versus qualitative sensitivity analysis: in quantitative sensitivity analysis 
each parameter is associated with a quantitative and reproducible evaluation of its 
relative influence, usually through use of sensitivity indices or importance measures. 
Whereas in qualitative sensitivity analysis, sensitivity is assessed qualitatively by 
visual inspection of model predictions such as scatter plots and graphical 
representations of the posterior distributions of the model parameters.  

(a) Local sensitivity analysis 

This method involves variation of the model parameters from their nominal values one at a 
time (OAT) with subsequent assessment of their impacts on the simulation results through 
visual inspection with the help of graphical representations of the simulated variables under 
the nominal and perturbed parameter values (Pianosi et al., 2016). A quantitative measure of 
the sensitivity of the model simulation to the ith parameter can be obtained by the partial 
derivative of the change in model output with respect to the change in model parameter value 
( ) as evaluated at the nominal value of the parameters ( ) or by finite-difference 
gradient. The sensitivity measures of each parameter are rescaled using a scaling factor ( ) 
for the ease of comparison of the sensitivities across the model parameters with different units 
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of measurement. The partial derivatives for quantifying the sensitivity index of the ith 
parameter ( ) are usually approximated by finite differences (Eq. 2.9). These methods are 
computationally less demanding as they require only +1 number of model runs. However, 
the information they provide is limited to local sensitivity. 

 (2.9) 

where,  represents the relationship between the model’s inputs and outputs assessed by the 
model’s response.  and  respectively denote the number of model parameters subjected to 
sensitivity analysis and width of the finite variation. 

(b) Global sensitivity analysis 

The local sensitivity type discussed above can be extended to global sensitivity analysis by 
using a multi-start perturbation instead of the simple perturbation method. This can be 
realized by computing the output perturbations from multiple points within the feasible range 
of the model parameters followed by the measurement of the global sensitivity by aggregating 
the individual sensitivities. The methods falling under this category differ depending on 
whether they use finite differences directly or they involve some transformations such as their 
absolute or squared values; how the fixed points in the parameter space and the width of the 
finite variation are selected; and on the way they aggregate the individual sensitivities 
(Pianosi et al., 2016). Two of the most commonly used sensitivity analysis methods that fall 
under this category, namely, the Elementary Effect method (EE) and Regional Sensitivity 
analysis (RSA) are briefly discussed below. While, the EE method uses an OAT sampling 
approach RSA uses an AAT sampling approach. 

 The Elementary Effect Method (EE) (Morris, 1991) is an effective way of screening a few 
important parameters from several model parameters. The main aim behind this method is to 
determine which model parameter has an effect that is (a) negligible (b) linear and additive, or 
(c) nonlinear or characterized by interaction with other parameters. Different sampling 
strategies have been proposed to select the values in the parameter dimension and to 
determine width of the input variation (Saltelli et al., 2008). The original procedure by Morris 
(1991) involves sampling  points for  independent parameters  =1 …,  across user 
defined even number of levels . The width of the input variation (  is determined based 
on , i.e.  . The elementary effect of the th model parameter is defined as 
(e.g. Campolongo et al., 2007; Saltelli et al., 2008; Pianosi et al., 2016): 

 (2.10) 

 For each input, two sensitivity measures are calculated. The mean and standard deviation 
of EE computed based on the individual EE, i.e.  respectively assess the overall influence 
of the parameter on the model output and due to non-linear or interactions with other 
parameters. A high value of mean EE for a given parameter shows higher effect on model 
outputs and high standard deviation shows high degree of interaction with other parameters. 
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Results from the EE method are usually accompanied by graphical representations; and the 
mean EE vs standard deviation of EE graph allows for a better interpretation of the two 
sensitivity measures simultaneously. Figure 2.7 shows a sample graphical representation of a 
sensitivity analysis output using the EE method. From this figure it can be noticed that X3 is 
the most influential model parameter as compared to the remaining parameters. Similarly, the 
comparison between two less influential sample parameters, X1 and X2 shows that X2 is 
relatively more influential in terms of the mean effect than X1. On the other hand, the degree 
of interaction with other parameters is higher for X1 than for X2.  

 
Figure 2.7: A sample graphical representation of an EE based sensitivity analysis output 
(Standard deviation of EE against the mean value of EE) for 13 model parameters.  

 The Regional sensitivity analysis (RSA) (Hornberger and Spears, 1981) was a precursor of 
the GLUE methodology and it is based on the Monte Carlo simulation, which makes several 
different model runs with each run using a randomly chosen parameter set (Beven, 2011). The 
simulations are classified into behavioural and non-behavioural samples with respect to the 
system under study. For example, behavioural (acceptable) simulations might be those with a 
high value of the variable of interest or a certain performance measure and non-behavioural 
with a low value. These two samples are compared, for example using visual inspection of the 
empirical cumulative distribution function (CDF) of the two samples plotted in the same 
graph. Figure 2.8 shows graphical representation of RSA result for selected parameters of the 
PT_GS_K model based on implementation of the methodology in the SAFE toolbox (Pianosi 
et al., 2015). The CDFs of the model parameters are associated with an efficiency metrics of 
streamflow simulations (NSE) above or below 0.67. From this graph it can be noticed that the 
catchment response parameters, i.e. c1, c2 and c3 are relatively more influential as compared 
to the remaining parameters. The maximum deviation between the CDF of behavioural and 
non-behavioural simulations is much wider for the more influential as compared to the less 
influential parameters. The model parameters sa and cv are particularly insensitive parameters 
that yielded very close behavioural and non-behavioural CDF curves.  
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Figure 2.8: Regional sensitivity analysis result for selected parameters of the PT_GS_K model. 
Each plot shows cumulative distribution function (CDF) of behavioural and non-behavioural 
simulations against parameter values. 

 A quantitative measure of the divergence between the two distributions, i.e. the sensitivity 
index ( , can be calculated using the Kolmogorov-Smirnov statistic (Eq. 2.11) (Pianosi et al. 
2016). Figure 2.9 shows the median and the confidence interval of the sensitivity index over 
bootstrap resamples of the PT_GS_K model parameters. The result from the sensitivity index 
was similar to the qualitative outputs displayed in the preceding figure where the catchment 
response parameters, i.e. c1, c2 and c3 have shown higher sensitivity index as compared to 
most of the snow and water balance related parameters, i.e. tx, fa, sa, and cv. The later 
parameters have also yielded slightly wider confidence interval as compared to c1 and c2. On 
the other hand, ws has shown higher sensitivity index with narrow confidence interval as 
compared to the other parameters with the exception of c1. 
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 (2.11) 

where  and represent the empirical cumulative distribution functions of the model 
parameter  for the behavioural ( ) and non-behavioural ( ) samples, respectively. 

 
Figure 2.9: The median and 5-95 % confidence intervals of the sensitivity index ( ) over 
bootstrap resamples of the PT_GS_K model parameters. 

2.2.6 Sources and nature of uncertainty 

As a consequence of aggregating the processes in the simplified representation of reality, 
conceptual hydrological models often contain one or more model parameters whose values 
cannot be directly obtained from physical measurements. The parameters can be inferred by 
using historical observations in the calibration process. During calibration, model parameters 
are fine tuned in such a way that the hydrological model reproduces the observed response of 
the system as close and consistently as possible over some defined period of time (Vrugt et al., 
2005). A rapid growth in computational power coupled with increased availability of higher 
resolution data both in space and time as well as improved understanding of the underlying 
processes of the hydrological system have benefited hydrological modelling (Liu and Gupta, 
2007). This has led to the development of complex semi-distributed and distributed physics-
based and conceptual hydrological models with more number of calibration parameters. 
However, this has resulted in further difficulties in the model calibration process leading to a 
considerable level of uncertainty in model predictions. Efficient methods are required to deal 
with the increasing level of uncertainty associated with the models, forcing data, and 
observations. The necessity for a proper consideration of uncertainty analysis in hydrological 
modelling right from the beginning of the modelling process has been receiving a growing 
interest among the modelling community when such models are applied both for research and 
operational purposes (e.g. Beven, 1989 ; Wagener and Gupta, 2005; Saltelli et al., 2006).  
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 The understanding, quantification, and reduction of uncertainty are important aspects in 
hydrological modelling and prediction (Liu and Gupta, 2007). Uncertainty is a situation of 
inadequate information that can be of three types: inexactness, unreliability, and border with 
ignorance (Funtowicz and Ravetz, 1990). The effort for maximizing the usefulness of a model 
is closely connected with the relationship among three key characteristics of all systems 
models, i.e. complexity, credibility, and uncertainty (Klir and Yuan, 1995). In general, 
allowing more uncertainty tends to reduce complexity and increase credibility of the resulting 
model. As such, uncertainty becomes very valuable when considered in connection to the 
other characteristics of a model, albeit usually undesirable when considered alone (Klir and 
Yuan, 1995). There are different dimensions of uncertainty related to model based decision 
support exercises; and Walker et al. (2003) distinguish three dimensions of uncertainty, i.e. 
the location (sources) of uncertainty, the nature (type) of uncertainty and the level of 
uncertainty (Figure 2.10). The level of uncertainty refers to the degree of knowledge about the 
subject matter that falls within the spectrum ranging from the ideal complete deterministic 
understanding at one end of the scale to total ignorance at the other end. The main dimensions, 
namely, the sources and nature of uncertainty are discussed in more detail in this section. 

 
Figure 2.10: Three-dimensional conceptualization of uncertainty, i.e. the level, location (Loc) 
and nature of uncertainty (after Walker et al., 2003) 

(a) Main sources of uncertainty 

The calibration process and hydrologic predictions are highly influenced by different sources 
of uncertainty; and the identified behavioural parameter sets might be effective values 
differing from the prior estimations based on direct observations or other sources 
(Moradkhani and Sorooshian, 2009; Beven and Smith, 2015). Knowledge of the main sources 
of uncertainty (outlined below) is thus important in different aspects of the modelling process 
in general and model calibration in particular (e.g. Walker et al. 2003; Beven, 2016). 

 Input and validation data uncertainty:  this stems from measurement errors and 
scaling issues, for example, due to forcing data downscaling. Similarly errors of the 
rating curve may affect the streamflow estimates and thereby lead to validation data 
uncertainty. These errors arise independently of the hydrological model and hence 
their statistical properties such as mean and variance can be estimated prior to 
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calibration with due consideration to the data collection instruments and the 
procedures (Renard et al., 2010).  

 Model structure uncertainty: As mentioned in Section 2.1, the perceptual model 
depends on the analyst’s process understanding which in turn depends on previous 
experience. Alternative perceptual models can represent computing hypotheses about 
the structure and functioning of an observed system (Gupta et al., 2012). Further, since 
conceptual models are simplified representations of a perceptual model, they may 
introduce additional uncertainty in the model structure due to oversimplification. In 
general, the structural uncertainty of a hydrological model is poorly understood and it 
mainly depends on model formulation (e.g. number and connectivity of stores), on the 
specific catchment, and on the spatial and temporal scales of the analysis (Renard et 
al., 2010).  

 Parameter uncertainty: this is related to the inability to specify the exact values of 
model parameters and it has important interaction with the input data and observations 
used for model conditioning as well as with the errors emanating from the analyst’s 
process understanding (Renard et al., 2010). The most feasible scientific way of 
assessing parameter uncertainty is through inverse modelling (Duan et al., 1994; Hill, 
2000). Section 2.2.7 presents commonly used methodologies in parameter uncertainty 
analysis. 

(b) Nature of uncertainty 

Understanding the nature of uncertainty helps to adequately address the specific uncertainty. 
This section presents the main types of uncertainty reported in previous studies (e.g. Walker 
et al, 2003; Beven, 2015).  

 Aleatory uncertainty: this is also referred in the literature as statistical, stochastic and 
variability uncertainty. Generally, this type of uncertainty is characterized by 
stationary random distribution induced by the input data, parameters and certain model 
structures. 

 Epistemic uncertainty: this type of uncertainty may stem from a lack of knowledge 
about how to represent the real world hydrological system in terms of model structure 
and parameters. This may also include processes that have not yet been included in the 
perceptual model, where the absence of these processes might result in reduced model 
performance when unexpected events occur. It also stems from the lack of knowledge 
about the forcing data or the validation data due to such factors as commensurability 
or interpolation issues, lack of knowledge on interpretation of measurement data, or 
non-stationarity and extrapolation in rating curves.  

 Other less familiar types of uncertainty include (Beven, 2015): semantic uncertainty that 
emanates from the ambiguity on what statements or quantities mean in the relevant domain 
(e.g. storm runoff vs. quick flow); and ontological uncertainty which is associated with 
different belief systems, for example, beliefs about whether a formal probability based 
framework is appropriate for the representation of model residuals. The next section discusses 
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some of the methodologies commonly used for parameter uncertainty analysis in hydrological 
modelling and their underlying philosophies. 

2.2.7 Uncertainty analysis methodologies 

Various calibration and uncertainty analysis methods have been proposed and applied to meet 
the increasing demand for such tools in hydrological modelling, including the generalized 
likelihood uncertainty estimation (GLUE) methodology (Beven and Binley, 1992), the 
Shuffled Complex Evolution algorithms (SCE-UA, SCEM) (Duan et al., 1992; Vrugt et al., 
2003) and the dynamic identifiability analysis framework (DYNIA) (Wagener et al., 2003). 
The formal Bayesian statistical approach and the GLUE methodology are the most commonly 
used frameworks. A detailed description of these methodologies can be found from hydrology 
and statistical literatures (e.g. Beven and Binley, 1992; Mantovan and Todini, 2006) and a 
brief description of these approaches is presented here.  

 The formal statistical Bayesian approach assumes a certain probability distribution (prior) 
of the model parameters and a likelihood function (usually a Gaussian). For each additional 
data, the posterior parameter values are estimated as the product of the prior and the new 
likelihood. When using this method, only one set of model parameters (model realization) that 
optimizes the model performance is commonly selected as representative of the catchment 
behaviour. In a Bayesian inference, the solution to an inverse problem is given by a posterior 
probability distribution, , over the model space (Eq. 2.12). The posterior probability 
distribution is a function of the available information on the model obtained from the data ( ) 
through the likelihood function, i.e. ; and the data-independent prior information 
expressed by a prior probability density function, i.e.  (Moradkhani, 2008; Moradkhani 
and Sorooshian, 2009). 

 (2.12) 

where, the denominator,  represents a normalization factor. 

 The GLUE methodology employs a non-statistical formulation of uncertainty which is 
based on the concept of equifinality, where different model structures and parameter sets can 
give similarly good simulation results when compared to calibration data based on certain 
efficiency criteria (Beven, 2011). This methodology recognizes that most environmental 
models are characterized by non-identifiability mainly due to the over-parameterized structure 
of these models (Yang et al., 2018). The GLUE methodology has introduced a different 
philosophy to the venue of model calibration where the main goal had historically been the 
identification of an optimal single model (Liu and Gupta, 2007).  

 When applying the GLUE methodology the modeller defines the likelihood measure and a 
given threshold value which is used to assess whether a particular model realization with a 
randomly selected parameter set is behavioural or non-behavioural. All model realizations 
whose likelihood values that satisfy this threshold value are considered behavioural, i.e. 
representing the catchment behaviour. As such, in the case of the GLUE methodology we 
may have several model realizations instead of a single optimal model realization; and 
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prediction of future values such as streamflow is conducted using all behavioural model 
realizations. A cumulative distribution function (CDF) is calculated based on the predicted 
values and likelihood weight of each model realization ( , Eq. 2.13) from which the required 
quantiles might be extracted to estimate a crisp value (e.g. the median) or the predictive 
uncertainty based on width of the prediction band. 

 (2.13) 

where,  is the likelihood value of the model realization ( ) with a parameter set ,  and 
 is the total number of behavioural samples. 

2.2.8 Ensemble modelling and multi-objective evaluation 

Regardless of the effectiveness and consistency of the optimization methods in finding a 
global solution, previous studies have shown that different combinations of parameter sets 
may result in similar values of a likelihood measure, and thus several optimum solutions may 
exist due to equifinality (e.g. Moradkhani and Sorooshian, 2009). The inherent uncertainties 
in parameter identification due to the various sources that are both aleatory and epistemic in 
nature cannot be fully addressed by an automatic calibration procedure. It is, thus, more 
realistic to use multiple plausible realizations from one or more models to get an ensemble of 
predictions rather than trying to find an optimal parameter set (Peel and Blöschl, 2011). 
Ensemble modelling also provides a way to assess predictive uncertainty using ensemble-
based frameworks such as the GLUE methodology. Previous ensemble-based hydrological 
studies have reported that single or multi-model ensembles provided better calibration and 
validation results than single realizations (e.g. Viney et al., 2009). 

 The use of ensemble-based techniques to optimize model parameters has allowed for the 
incorporation of multiple criteria within the calibration procedure resulting to a number of 
alternative parameter sets that are optimal on the basis of the Pareto-dominance concept 
(Efstratiadis and Koutsoyiannis, 2010). A multi-objective optimization involves the 
simultaneous optimization of several numerical measures representing multiple objective 
functions and such approaches have been used in different hydrological studies (e.g. Ritzel et 
al., 1994; Yapo et al., 1998). The fundamental concept of Pareto optimality is commonly 
employed to look for acceptable trade-offs in simultaneously optimizing all the objective 
functions (Fig. 2.11). A vector of control variables is Pareto optimal if there is no feasible 
vector that would improve some criterion without causing a simultaneous deterioration of at 
least one other criterion (Marler and Arora, 2004). A multi-objective evaluation might be 
formulated based on the following types of information (Madsen, 2003; Peel and Bloschl, 
2011): 

 Multi-variable data: this includes different observable variables such as streamflow 
and fractional snow cover area. 

 Multi-site data: historical data of the same variable obtained from several gauges 
within a catchment and are reproduced through distributed mode of simulation. 
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 Multi-response models: independent criteria representing for various aspects of a 
single variable (e.g. streamflow) reproduced by a hydrologic model. This approach 
strives for a satisfactory agreement of the specific components of the time-series data 
(e.g. the rising and falling limbs of a hydrograph) rather than for an average good 
match. 

 
Figure 2.11: Graphical illustration of Pareto-optimal and behavioural solutions in the 
objective space for simultaneous minimization of two objective functions (f1 and f2). The 
axis limits (e1 and e2) denote the threshold for behavioural and non-behavioural solutions 
(after Efstratiadis and Koutsoyiannis, 2010). 

2.2.9 Philosophical aspects in testing hydrological models as hypotheses 

The different uncertainty analysis methods are based on some school of scientific 
philosophical thoughts that generally can be classified as inductive or deductive methods. The 
inductive method relies on the idea of the inference from singular statements (e.g. the results 
from observations or experiments) to universal statements, such as hypothesis or theories; 
whereas, in deductive reasoning predictions are derived from theories (e.g. Refsgaard and 
Henriksen, 2003; Wilkinson, 2013). According to the inductive school of thought, theories are 
proposed through inductive logic, and the proposed theories are confirmed or refuted on the 
basis of critical experiments designed to verify the consequences of the theories (Matalas et 
al., 1982). Proponents of the deductive method (e.g. Popper, 1959; Kuhn, 1962) argue that 
theories cannot be verified, they can only be falsified. Regardless of the number of 
confirmatory observations of a theory or prediction, there will always be the possibility that 
more than one theory can explain the observations with the false theories likely to be 
confronted with future observations that falsify them (Hume, 2016). 

 A hydrologic model can be considered as a hypothesis of catchment behaviour that 
encompasses a description of dominant hydrological processes and predicts how these 
processes interact to produce the catchment’s response to external forcing such as climatic 
inputs (e.g. rainfall and temperature) and catchment characteristics (e.g. land cover and soil 
properties) (e.g. Clark et al., 2011). As such, all environmental models are representations of 
simplified hypotheses of the real world. These hypotheses require rigorous construction and 
testing before their application in solving real world hydrological problems. When the 
calibration and uncertainty analysis frameworks such as the formal Bayesian approach and the 
GLUE methodology are applied in calibration and validation of hydrological models they 
serve as hypothesis testing frameworks. However, since hydrology is an inexact science, 
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subjected to both aleatory and epistemic uncertainties, there are important issues about how to 
test models as hypotheses of catchment behaviour in all aspects of hydrology (Beven, 2018). 

 In the last years, there has been an ongoing debate in the literature between the advocates 
of the formal Bayesian approach and the GLUE methodology with regard to testing 
hydrological models as hypotheses. While proponents of the formal Bayesian approach focus 
on model confirmation, the latter group suggests that falsification of models is a better idea 
(Beven, 2018). The GLUE falsification approach is based on the Popperian philosophy that 
“every genuine test of a theory is an attempt to falsify it, or to refute it” (Popper, 1963). There 
has been an increased appreciation of the concept of rejection as positive result of modelling 
studies in the literature (e.g. Vache and McDonnel., 2006). In the GLUE methodology, if the 
hydrologic model fails to produce any behavioural model realization, the model is rejected as 
not fit for the intended purpose. In subsequent step of the modelling process, the model 
developers are expected to identify the weak points of the model and accordingly add, remove, 
or simply replace some of the process and/or component representations of the hydrologic 
system in the model. This way, the rejected model can benefit from the hypothesis test. 
Proponents of this approach criticise the formal Bayesian method for never rejecting the entire 
model as hypothesis (e.g. Beven et al., 2012). 

 The GLUE methodology has been criticised for using a subjectively chosen threshold 
value to identify behavioural models (e.g. Clark et al., 2011). Further, GLUE was criticised 
for losing the properties of coherence and consistency in learning due to its use of informal 
likelihoods that do not satisfy the Baye’s theorem. According to Mantovan and Todini (2006), 
a non-decreasing amount of extracted information content with the increasing number of 
sampling observations is one of the basic requirements that guarantee the success of a 
Bayesian inference process; and the GLUE likelihoods fail to guarantee these properties. The 
main assumption behind this argument is that each observed data is informative and leads to 
better estimate of parameter values. However, due to different sources of errors in the 
observational data, such as errors in gauging stations, as well as data reading and processing 
errors, not all observations carry valid information. In fact some observations might be 
physically inconsistent and dis-informative; and the Bayesian approach is prone to such 
erroneous observations (Beven et al., 2012). The Bayesian statistical method tries to represent 
all sources of uncertainty within a coherent statistical framework assuming epistemic 
uncertainties can be represented as if they were aleatory in nature (Beven, 2011).  

 These methodologies attempt to address the problem of parameter non-uniqueness in 
different ways on the basis of their underlying philosophies (e.g. Wagener and Gupta, 2005). 
The Bayesian approach attempts to minimize the non-identifiability problem using its Gausian 
likelihood function that results to stretched likelihood surface where two models with similar 
root mean of squares error may have likelihoods that differ by orders of magnitude. This 
results to forceful differentiation of model hypotheses that might be rather similar in 
performance (Beven et al., 2012). On the other hand, the GLUE methodology accepts 
equifinality as a working paradigm for the identification of behavioural models (Choi and 
Beven, 2007). This is based on the philosophy that natural systems are so complex to be 
represented by a single model structure. Instead it is more likely to have several competing 
model structures (hypotheses) that can represent this complex system, i.e. an acceptable 
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model prediction might be achieved through use of different model structures or parameter 
sets (Beven, 1993; Beven, 2002). This school of thought is in line with Oreskes et al. (1994) 
that, since natural systems are open and model results are always non-unique, the verification 
and validation of environmental models is impossible and there will always be the possibility 
of equifinality (Refsgaard and Henriksen, 2004).  In the GLUE methodology, non-uniqueness 
and non-identifiability are viewed as internal characteristics of the modelling process (Beven, 
2006). This methodology accepts all hypotheses that satisfy a certain threshold level (based 
on the modeller’s belief) for prediction of the future catchment behaviour. As such, the higher 
number of behavioural model realizations we have, the more likely are our model predictions 
to bracket future observations and thereby minimizing the prediction uncertainty from future 
surprises. Thus, for many advocates of the GLUE methodology, as Savenije (2001) has put it, 
equifinality is a blessing in disguise. 

 The implications of these different schools of thought when testing models as hypotheses 
coupled with the various sources of uncertainty is that, there is a possibility of accepting a 
poor model while it should be rejected and thereby committing Type I error (false positive) or 
rejecting a good model while it should be accepted, i.e. making Type II error (false negative). 
In statistical hypothesis testing a certain probability of rejecting the hypothesis while it is true 
is commonly set (e.g. at 5% level). However, it is difficult to follow such assumptions in 
simulation models that are commonly forced with data characterized by high spatiotemporal 
variability (e.g. Beven, 2011). Type I errors should be avoided since the use of falsely 
retained models in prediction may lead to false inferences and poor decision making. It is also 
important to avoid Type II errors since we do not want to reject a good model due to the 
errors in input or observational data which otherwise can well represent the catchment 
behaviour. Although, it is difficult to avoid Type I and Type II errors, these errors can be 
minimized if the testing is done with due consideration to some of the common causes leading 
to such errors. For example, a Type I error primarily occurs when there is uncertainty in the 
inputs to the model and the evaluation data to the extent that the performance measure cannot 
differentiate between good and poor performing models. Thus, only periods of good quality 
data should be used in model calibration and the commensurability between observed and 
model variables should be taken into account (Liu et al., 2009). 

2.3 Surrogate modelling in hydrology  

The modern simulation models tend to be computationally intensive due to their strive for 
increased process representations and improved capability of producing simulation results at 
higher spatiotemporal resolution as part of the endeavour to represent a detailed perceptual 
model of the real-world hydrological system (e.g. Keating et al., 2010; Zhang et al., 2009).  
The computational cost becomes even higher and poses strong limitations in terms of practical 
implementation and computational requirements when these models are coupled with other 
computationally intensive analyses routines involving MC simulations (e.g. Castelletti et al., 
2012). In the past, surrogate modelling methods have been developed in order to make better 
use of the available, typically limited, computational resources (Razavi et al., 2012). A 
surrogate model is a low-order and computationally efficient model identified from the 
original large model and then used to replace it for computationally intensive applications 
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(Castelletti et al., 2012). Razavi et al. (2012) classify surrogate models as response surface 
and lower-fidelity models. Response surface surrogates attempt to empirically estimate the 
model response. On the other hand, lower-fidelity surrogates are simplified physically based 
simulation models as compared to the original simulation model while preserving the main 
processes. In the literature, response surface surrogates are also referred as metamodels (e.g. 
Blanning, 1975; Kleijnen, 2009), emulators (e.g. O’Hagan, 2006) and proxy models (e.g. 
Bieker et al., 2007).  

2.3.1 Response surface surrogate models 

Main applications of emulators in hydrological modelling have been for optimization and 
global sensitivity analysis (Yang et al., 2018). In optimization, the surrogate model of a 
computationally intensive simulation model is used to approximate the objective function 
and/or the constraints. Surrogate modelling has been mainly used for optimization purposes, 
especially in water resources modelling (Razavi et al., 2012). In the area of sensitivity 
analysis, emulators can be used to obtain faster evaluations of the model’s response and 
thereby allow for applying computationally demanding sensitivity analysis methods to 
complex and computationally expensive simulation models (Pianosi et al., 2016). Since 
sensitivity analysis can be efficiently done with the means of emulators, it is often performed 
in tandem with emulation (Ratto et al., 2012). The use of uncertainty analysis frameworks 
involving the MC simulation such as the GLUE methodology might be limited due to a 
substantial computational burden especially when dealing with a distributed hydrological 
model having high number of parameter dimensions. Previous studies have reported a 
substantial decrease in computational cost when this framework was coupled with emulators 
(e.g. Shrestha et al., 2014). 

 Different emulators have been used in hydrological applications, including: polynomial 
regression (e.g. Jones, 2001); Gaussian Processes (e.g. Kennedy and O’Hagan, 2001; Yang et 
al., 2018) and machine learning methods (e.g. Yu et al., 2015). Polynomial emulators have 
been used for several years mainly due to the availability of well-established techniques for 
experimental designs, for estimating the coefficients as well as for the interpretation and 
assessment of the results (Hussain et al., 2002). However, these emulators are poor in 
providing global fit to smooth response functions of arbitrary shapes, which is particularly 
important in multi-criteria optimization; and an emulator based on neural networks is one of 
the promising alternatives for solving such problems (Hussain et al., 2002). In general, some 
of the criteria that may be considered when selecting a proper emulator include (Hussain et al., 
2002; Ratto et al., 2012): 

 The functional form of the emulator and its computational complexity 

 The set of points used in constructing the emulator. These points are commonly 
generated from experimental designs such as random sampling and Latin hypercube 
designs. 

 Assessment on the adequacy of the fitted model evaluated through different model 
diagnostics measures such as confidence intervals, hypothesis tests, degree of fit and 
cross validation especially for predictions away from observed pairs. 
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 Ability to gain insights on the behaviour of the simulation model using the fitted 
emulator. 

2.3.2 Machine learning based emulators 

Machine learning is a branch of computational algorithms that are intended to emulate human 
intelligence by learning from the available data (Naqa and Murphy, 2015). Machine learning 
lies at the intersection of computer science and statistics and at the core of artificial 
intelligence and data science. It is one of the most rapidly growing technical fields due to the 
development of new learning algorithms and the increased availability of data and low-cost 
computation (Jordan and Mitchell, 2015). Conceptually, machine learning algorithms can be 
viewed as searching through a large space of candidate programs, guided by training 
experience, to find a program that optimizes the performance metric (Jordan and Mitchell, 
2015). Machine learning methods have proven particularly effective for big-data as compared 
to traditional multivariate statistical techniques (e.g. Li et al., 2011; Bair et al., 2018).  In 
hydrology, machine learning techniques have been used for a number of applications 
including the prediction of streamflow, peak discharge, snow water equivalent, different water 
quality variables as well as in emulating the MC simulation in order to overcome the 
computational burden during uncertainty analysis. Table 2.2 presents a summary overview on 
some of the previous studies focused on the applications of machine learning methods in 
hydrology. 

Table 2.2. Summary on some applications of machine learning methods in hydrology 
(updated after Araghinejad (2014)) 

Field of application Researchers 

Spatial interpolation of forcing variables Appelhans et al. (2015), Li and Heap (2008), 
Gilardi and Bengio (2000) 

Evapotranspiration modeling Trajkovic et al. (2003), Kisi and Yildirim (2007) 
Flood forecasting Toth et al. (2000) 
Impacts of climate change on water 
supply 

Elgaali and Garcia (2007) 

Rainfall–runoff modeling Garbrecht (2006), Modaresi et al. (2018) 
Surface reservoir modeling Chandramouli and Raman (2001), Neelakantan 

and Pundarikanthan (2000) 
Water quality modeling Schmid and Koskiaho (2006), Suen and Eheart 

(2003) 
Snow modelling  Tabari et al. (2010), Marofi et al. (2011), Bair et 

al. (2018) 
Uncertainty analysis Shrestha et al. (2009); Yu et al. (2015) 

 This section presents a brief description of three machine learning methods, namely, 
Artificial Neural Network (NNET), Random Forest (RF) and K-Nearest Neighbourhood 
(KNN). Neural networks have been effectively constructed and applied as emulators in some 
hydrological studies. For example, Shrestha et al. (2009) implemented a methodology to 
emulate the time consuming Monte Carlo simulation by using NNET for the assessment of 
model parameter uncertainty based on the GLUE methodology. Similarly, Yu et al. (2015) 
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coupled the GLUE framework with NNET models in order to improve the efficiency of 
uncertainty assessment in flood inundation modelling. Although, RF and KNN were not 
previously applied as emulators of the MC simulation in hydrological modelling, they can be 
considered as potential methods given their suitability in mapping non-linear relationships and 
other merits of these methods. 

 (a) Artificial Neural Network 

An artificial neural network (NNET) constitutes an interconnected and weighted network of 
several simple processing units called neurons that are analogous to the biological neurons of 
the human brain (Hsieh, 1993; Tabari et al., 2010). The neurons provide the link between the 
predictors and the predicted variable and in the case of supervised learning the weights of the 
neurons, i.e. the unidirectional connection strengths, are iteratively adjusted to minimize the 
error (Sajikumar and Thandavesware, 1999; Bair et al. 2018). NNET has the capability to 
detect and self-learn complex and nonlinear relationships between variables (Yu et al., 2015). 

 A multilayer perceptron is the most common type of neural network used in supervised 
learning (Zhao et al., 2005; Marofi et al., 2011) and it consists of an input layer in which input 
data are fed, one or more hidden layers of neurons in which data are processed and an output 
layer that produces output data for the given input (e.g. Kingston et al., 2008; Senent-Aparicio 
et al., 2018). Information is received at the input layer in the form of vector of observed data 
values. The input layer contains a node (neuron) corresponding to each input variable or 
attribute. The information is then transmitted to each node in the next layer through weighted 
connections, where the weight determines the strength of the incoming signal. At each node, 
the weighted information is summed with a bias value and transferred using predefined 
activation function. The result from the activation function is transmitted to the nodes of a 
subsequent layer. For example, consider a NNET model with n input neurons ( ), h 
hidden neurons ( ) and m output neurons ( ). Let i,j, and k be the indices 
representing the input, hidden and output layers, respectively. Let  and  respectively be 
the bias for neurons  and . Let  be the weight of the connection from neuron  to 
neuron  and let  be the weight of the connection from neuron  to . The functions in 
sample hidden and output neurons can be expressed as (Sudheer and Jain, 2004): 

 (2.14) 

            (2.15) 

where  and  are activation functions, which are usually continuous and bounded functions 
such as the sigmoid function (Eq. 2.16). 

 (2.16) 

where s in this case represents the expression within the bracket of equation 2.14 or 2.15. 
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 An artificial neural network model can be trained to learn the general relationship between 
input-output pairs using a set of training samples from a given problem. Appropriate values of 
the connection weights and bias terms need to be used in order for the NNET model to 
perform the desired function (e.g. Kingston et al., 2008). Both weight and bias are hyper-
parameters of NNET that need to be estimated through calibration. During the calibration 
(training) phase, the model outputs are compared against the target values and the weights and 
biases are iteratively adjusted to minimize the error. This is done through backpropagation of 
the errors computed at the output layer to each neuron in the hidden layers until optimal 
values are obtained (e.g. Senent-Aparicio et al., 2018). The knowledge acquired about the 
problem domain during the training process is encoded within the NNET in the form of the 
network architecture (e.g. number of hidden layers and neurons) and a set of model hyper-
parameters (e.g. weights) (Sudheer and Jain, 2004). As such, each NNET output results from 
a distributed information processing structure instead of a direct evaluation as opposed to the 
standard equation-based models. 

 Figure 2.12 shows a standard illustration of a neural network model applied on sample 
parameter sets (inputs) and the corresponding response surface, i.e. pLoA values, as outputs 
based on an MC simulation using the PT_GS_K model. The first layer represents an input 
layer with model parameters as independent variables (I1 to I8). Generally, the number of 
neurons comprising the input layer is equal to the number of the independent variables. In this 
example, NNET is applied for regression purpose and hence the output layer has only a single 
response variable (O1) which is shown in the far right layer (labelled as pLoA). The NNET 
model has a single hidden layer with ten neurons labelled as H1 through H10. The lines 
(usually accompanied by weights) link the neurons in the hidden layer with the input and 
output layers. B1 and B2 are the bias terms applicable to each neuron in the hidden and output 
layers, respectively. 
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Figure 2.12: An illustration of a neural network model with an input layer containing neurons 
I1 to I8 and an output layer containing a single neuron (O1) as well as a hidden layer with 
neurons H1 to H10 applied on sample pairs of parameter sets and pLoA values. 

(b) K-Nearest Neighbours 

K-Nearest Neighbours (KNN) approach is one of the oldest machine learning algorithms that 
originated from pattern recognition work (Cover and Hart, 1967). KNN has been widely used 
in the field of nonlinear dynamics as a standard method in time series data estimation due to 
its good ability to estimate under nonlinear conditions (Hu et al, 2013).  KNN regression is a 
nonparametric method where the information extracted from the observed datasets is used to 
predict the variable of interest without defining a predetermined parametric relationship 
between the predictors and predicted variables (Modaresi et al., 2018).  

 KNN uses the K-closest samples from the training dataset to predict a new sample and it is 
a non-linear method whose prediction solely depends on the distance of the predictor 
variables to the closest training dataset known to the model (Appelhans et al., 2015). 
Similarity measures such as the Euclidean and Manhattan distance are commonly used to 
compute the distance between the new dataset and each training dataset. As illustrated in the 
following examples, another advantage of using the KNN regression is that it follows a simple 
algorithm (e.g. Hu et al, 2013; Araghinejad, 2014; Modaresi et al., 2018). Suppose we have m 
predictors for the current condition, r, with unknown value of the target variable, i.e. 

 and an n x m matrix of predictors with their corresponding already 
observed target variable values for the condition, t, i.e. , with t = 1, 
2, …, n. A Euclidean distance function (Eq. 2.17) can be used to calculate n distances ( ) 
between the current predictor and the observed predictors.  
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 (2.17) 

The K-nearest neighbours, i.e. K sets of predictors and target variables ( , ) with the 
lowest value of  are selected and used to estimate the unknown target variable value ( ) 
using Equation 2.18 based on  and a kernel function ( associated with the K-nearest 
neighbour (Eq. 2.19). The number of neighbours (K) is estimated through model training. 

 (2.18) 

            (2.19) 

where  represents the Kernel function (weighted inverse distance) of the K nearest 
neighbours which is estimated based on the magnitude of the distances ( ). 

 As an alternative to direct use of , the kernel function can also be estimated from the 
order of the neighbours after sorting them in an ascending order (Lall and Sharma, 1996).  As 
such, the neighbours with higher distance would get higher orders and thereby lower 
contribution to the final output. The following figure illustrates schematic overview of the 
KNN algorithm for a condition with K=3. 

 
Figure 2.13: Schematic overview of the KNN algorithm for the condition K=3 (after 
Araghinejad (2014)). 

(c) Random forest 

Random forest (RF) is a version of the Bagged (bootstrap-aggregated) trees algorithm 
(Breiman, 2001). It is an ensemble method whereby a large number of individual trees are 
grown from random subsets of predictors and samples, providing a weighted ensemble of 
trees (Bair et al., 2018). Bagging is a successful approach for combining unstable learners; 
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and since RF combines bagging with a randomization of the predictor variables used at each 
node, it yields an ensemble of low correlation trees (Li et al., 2011, Appelhans et al., 2015). 
RF is also less sensitive to non-important variables since it implicitly performs variable 
selection (Okun and Priisalu, 2007).  

 The decision tree forms the basis for all regression trees which in turn are the building 
blocks of more complex tree-based models such as random forests and gradient boosting 
machines (e.g. Quinlan, 2006). A basic regression tree divides a dataset into smaller groups 
and fits a simple model (constant) for each subgroup. The partitioning is achieved by 
successive binary partitions based on the different predictors. The predicted constant value is 
based on the average response values for all observations that fall in that subgroup. Figure 
2.14 shows a simple regression tree constructed using the regression part of the classification 
and regression tree (CART) method (Breiman et a., 1984). The regression tree was fitted to a 
sample dataset of the model parameters and response surface (pLoA) pairs generated from the 
MC simulations using the PT_GS_K model. This regression tree predicts a response variable 
(pLoA) based on the model parameters. All the observations that pass through this tree are 
assessed at a particular node and proceed to the left if the answer is “yes” or to the right if the 
answer is “no”. First all observations with c2 value less than 0.52 go to the right branch and 
all other observations proceed to the left branch. The boxes contain information about the 
average value of the response variable and the number of observations (n) and percentage out 
of total number of observations that fall under this category. The first information box (1), for 
example, shows the average pLoA for all observations (0.081) and the number of observations 
(801) which is 100% of the total number of observations used for training the model. Those 
with c2 value of less than 0.52 and with c3 value of less than -0.12 proceed to the left, while 
those with greater than or equal to -0.12 proceed to the right. The partitioning continues until 
the final branches lead to the terminal nodes or leafs which contain the predicted response 
values.  

 The partitioning of the variables is done in a top-down fashion, i.e. a partition performed at 
earlier node in the tree will not change based on partitions at later nodes. The partitions are 
made by searching every value of each input variable to find a value of the predictor and the 
split value that partitions the data into two regions in such a way that the sum of squares error 
are minimized. For further details on the methodology of growing a regression tree, including 
deciding on splits and on finding the balance between the depth and complexity of the tree 
(cost complexity criterion) the reader is referred to materials focused on algorithms of the 
CART approach (e.g. Breiman et al., 1984). 
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Figure 2.14: Sample regression tree for predicting a response surface (pLoA) based on the 
model parameters (c1, c2, c3, and tx). 

 When building the machine learning models, the dataset is commonly divided into two sets, 
i.e. into training and test dataset. The training dataset is used to identify the model structure 
and value of its hyper-parameters, while the test dataset is used to evaluate performance of the 
developed model through comparison of the predicted responses against new observations. 
Figure 2.15 shows sample cross-validation and bootstrap analyses results when estimating the 
hyper-parameters of the final machine learning models as used in Paper II. For the RF model 
(a), the optimal number of randomly selected predictors when forming each split (mtry) was 7; 
and for KNN (b), the optimal value of nearest neighbours (k) used for the final model was 
k=10. For NNET (c) two hyper-parameters were optimized using the training dataset, i.e. the 
weight decay and number of neurons in the hidden layer (hidden units or size). The final 
values used for this model were a weight decay of 0.001 and hidden units of 10.   
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Figure 2.15: Sample bootstrap and cross-validation based estimates for hyper-parameters of 
the three machine learning models used as emulator of the MC simulation (Paper II), i.e. for 
RF (a), KNN (b), and NNET (c). 
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2.4 Snow distribution modelling and snow data assimilation into          
 hydrological models 

Snow plays a significant role especially in snow dominated catchments including in summer 
water supplies and flood event generation as well as in changing the interface between the 
atmosphere and the land surface through its high albedo characteristics and through thermal 
insulation of the soil from the atmosphere (Houser et al., 2012).  Thus, improved estimate of 
snow state and its spatiotemporal distribution can greatly increase the accuracy in 
hydrological predictions (Houser and Walker, 2005). This section presents an overview on the 
main processes and controlling factors in snow distribution as well as some modelling and 
ensemble-based snow data assimilation techniques.  

2.4.1 Main processes and controlling factors in snow distribution 

Spatial heterogeneity of snow cover and snow depth is the result of complex interactions 
between topographic, climatic and land cover parameters and processes prevalent at different 
spatiotemporal domains. Preferential deposition, saltation, suspension as well as melting and 
sublimation constitute major processes contributing to heterogeneous snow distribution. The 
prevalence of these processes, however, varies both in space and time scales. For instance, 
saltation was observed to be more important transport process at higher spatial resolution 
(Mott and Lehning, 2010). The role of melting in snow distribution variability is evinced by 
the increasing standard deviations and decreasing means during the melt season (e.g. Winstral 
and Marks, 2014). The spatial variability of snow depth at local scale is mainly controlled by 
wind-induced snow redistribution and sublimation of the wind-borne snow particles. Whereas 
large scale snow depth variability is a function of the general climate as well as topographic 
influences on precipitation (Liston, 2004). 

 Although, the variability of meteorological input plays a significant role, it cannot always 
explain the variability of snow cover patterns (Frey and Holzmann, 2015). Local precipitation 
amounts are strongly affected by the interaction of the terrain with the local weather and 
climate (Beniston et al., 2003). Snow transport and sublimation rates increase with increasing 
wind speed and are highly sensitive to wind speed variations caused by the variability in 
topography and roughness (Essery et al., 1999). Generally, wind plays a dominant role in 
temporal and spatial distribution of snow cover during winter (Mott and Lehning, 2010). 
However, it is worthy to note that in regions with greater variability in wind directions, 
deposition and scour regions might vary and thereby cancelling out wind effect (Winstral and 
Marks, 2014).  

 Snow distribution heterogeneity is further amplified by the variable melt rate in response to 
the local radiation and energy balance (Mott et al., 2011; Winstral and Marks, 2014). Solar 
radiation has dual effect on snow distribution properties. It can increase snow loss via 
sublimation; and it can produce snowpack surface crusts and thereby increasing the surface 
density which ultimately reduces the amount of surface snow available for wind transport (e.g. 
Hiemstra et al., 2006). Air temperature is highly related to snow depth via its effect on the 
fraction of precipitation that falls as snow; snowmelt as well as on snow density. The effect of 
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total precipitation on snow distribution is thus conditional on temperature and temperature 
dependencies (Dyrrdal et al., 2013).  

 Topography and land cover are also important controls of snow distribution. Terrain 
parameters such as slope, elevation and curvature are reported to play decisive role in spatial 
snow distribution. On steep terrain, snow tends to slide off and accumulate on more gentle 
terrain. Elevation is often related to snow water equivalent (SWE), in that higher elevations 
have increased SWE (Kerr et al., 2013). Concave features generally show lower wind speed 
than convex features. As a result, they experience less erosion and higher accumulation 
(Dadic et al., 2010). The type and density of vegetation control snow distribution through 
their effects on surface roughness, wind speed, surface energy exchange, and snow 
interception (Erxleben et al., 2002). For instance, Rice and Bales (2010) have observed lowest 
snow depths being associated with canopy densities greater than 60% closure in forested areas.  

 Figure 2.16 presents a sample spatiotemporal variability of observed SWE (m w.e.) in 
response to the interaction between various physiographic and climatic factors prevalent in 
the Nea catchment (Norway). From this figure it can be noticed that, the amount of SWE 
varies from one place to another in a given observation date. The SWE distribution in some 
part of the catchment tends to follow the topographic pattern which signifies the prevalence of 
topography-induced preferential deposition. Comparison of the snow distribution between the 
observation dates shows a general increase in the amount of SWE with time during the 
accumulation period. However, the rate of accumulation varies from one place to another. 

 
Figure 2.16: Spatiotemporal variability of SWE (m w.e.) in the Nea catchment in response to 
the interaction between the dominant processes and various physiographic and climatic 
factors. The observed satellite SWE scenes from Globesar (2018) were retrieved on January 
25 (left), March 10 (middle), and May 04 (right) of year 2015. White colour denotes no data. 

 Studies conducted based on regression-tree models have shown that the relative 
importance of terrain parameters as explanatory variables of SWE varies both in space and 
time (e.g. Webster et al., 2015; Kerr et al., 2013). A similar result was also obtained in this 
work when analyzing the relative importance of different physiographic variables in 
explaining the observed SWE. The analysis was conducted using over 10, 000 observations 
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(aggregated at a spatial scale of 100m) from the Nea catchment at four observation dates 
distributed in different months.  The physiographic variables considered include: easting, 
northing, elevation, slope, aspect and curvature as well as the average degree of sheltering 
index (SX) calculated at three potentially dominant wind directions in the study domain i.e. 
1350 (sx135), 1800 (sx180) and 2550 (sx225).  Simulated SWE (simSWE) generated from the 
PT_GS_K model was also included as covariate in an attempt to indirectly take into account 
for impact of the dynamic meteorological variables.  

 The relative importance of these covariates at four different periods of the snow 
accumulation season was analyzed using a machine learning method, i.e. Random Forest (Fig. 
2.17). The result shows that, although the relative importance of curvature was consistently 
low in all observation dates, the other variables have shown considerable variability in their 
relative importance between the observation dates. For example, in January 25 (a), aspect was 
relatively the most important variable, while in March 10 of same year (2015) this variable 
was downgraded to the fourth level of importance preceded by easting, elevation and northing 
(b). In another analysis, clear sky radiation (rad) was initially considered as a potential 
explanatory variable, but it was excluded from the preceding analysis based on the result 
obtained from a preliminary assessment using a correlation matrix (Fig. 2.18). It shows that 
this parameter is highly correlated to the sheltering indices (SX variables) with a Pearson 
correlation value of -0.7 to -0.98. A considerable degree of interaction between some of the 
other terrain parameters can also be noticed from this figure. 
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Figure 2.17: Temporal variability in relative importance of terrain parameters to explain the 
spatial variability in snow water equivalent (SWE) based on the analysis using the Random 
Forest machine learning method. The sub-plots show analysis results for January 25 (a), 
March 10 (b), April 12 (c), and May 04 (d) of year 2015. 
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Figure 2.18: Pearson correlation matrix of potential explanatory variables for the spatial 
distribution of snow water equivalent. 

2.4.2 Snow distribution modelling approaches  

Over the past years, snow-transport models capable of simulating snow distribution processes 
and the resulting snow-depth patterns have been developed with wide range of complexity 
(Liston et al., 2007). Models for simulating snow distribution range from simple conceptual to 
complex, physically based ones. Physically based models attempt to consider all energy 
fluxes and therefore have huge meteorological data demand; and usually high spatial 
resolution requirement (Frey and Holzmann, 2015). As a result, they are computationally 
expensive. Complex snow-physics models are reported to take much longer computation time 
than temperature index models (e.g. Magnusson et al., 2015). Conceptual snow models, on the 
other hand, involve partial description of the processes, where the snow distribution effect of 
topography, wind, land cover, and/or other important parameters are parameterized. 
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 SnowModel and SNOWPCK have been widely used as physically based energy balance 
snow models. SnowModel (Liston and Elder, 2006) is a physically based distributed snow-
evolution modelling system; and it includes sub-models dealing with meteorological forcing 
conditions, surface energy exchanges, snow depth calculations as well as snow redistribution 
by wind. SnowModel is designed to run on grid increments of 1 to 200 m and temporal 
increments of 10 min to 1 day. SnowTran-3D is the sub-model responsible for snow 
redistribution by wind. Its primary components include: wind flow forcing field, wind-shear 
stress on the surface, transport of snow by saltation and turbulent suspension, sublimation of 
salting and suspended snow as well as the accumulation and erosion of snow at the snow 
surface. However, for spatial increments greater than 100m the redistribution components of 
the model become negligible and only the simulated sublimation is significant (Liston et al., 
2007). SNOWPACK (Bartelt and Lehning, 2002) is a one-dimensional physical snowpack 
model which numerically solves the partial differential equations governing the mass, energy, 
and momentum conservation within the snowpack using the finite-element method. The 
model has process algorithms dealing with snowfall, rain, short wave and long wave radiation, 
sensible and latent heat exchange, wind pumping as well as snow drift (Lehning et al., 2002). 
Although SNOWPACK was primarily designed to handle problems related to avalanche 
warning, it has been applied to study ecological and hydrological problems involving snow 
cover. Certain processes such as those describing new snow density and albedo are 
statistically derived based on local data. According to Liston et al. (2007), SNOWPACK uses 
a mesoscale meteorological model to simulate the wind field. This approach, however, 
requires considerable computational energy for simulating the wind fields. The snow 
evolution simulation capability of the model is thus limited to not more than few days.  

 Although physically based energy balance models more properly account for the processes 
determining melt, the degree-day method has been in use in many variants for more than a 
century (Hock, 2003). According to Frey and Holzmann (2015), many of the conceptual 
models use a temperature index approach to model snow melt and snow accumulation. 
However, when using this modelling approach snow accumulates as long as the air 
temperature does not rise above a certain threshold regardless of any other processes that may 
lead to snow melt like radiation or turbulent fluxes of latent energy. This may lead to an 
intensive computational accumulation of snow in certain areas; though they barely exist in 
nature.  In the past, various methods have been introduced to cope with this drawback. The 
HBV (Bergström, 1976) and COSERO (Nachtnebel et al., 1993) models are typical examples 
of conceptual hydrological models where a temperature index approach is used to estimate 
snow accumulation and snow melt. The PT_GS_K model (Section 3.2) also belongs to this 
family of conceptual models. In these models, snow distribution within elevation band or a 
sub-grid, in the case of distributed system, is described using simple two parameter statistical 
distributions such as the log-normal and gamma distributions. This method is reported as 
having the potential to indirectly consider the influence of curvature, shelter, vegetation and 
elevation on snow distribution (Frey and Holzmann, 2015). Temperature-index methods are 
most common in snow and glacier melt modeling due to their good performance, low data 
requirements, and simplicity (Hock, 2003). 
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 Statistical and machine learning based snow distribution models attempt to relate snow 
distribution with physiographic parameters (e.g. slope, elevation, curvature and land cover), 
weather data (e.g. precipitation, wind speed and direction) and/or their surrogate variables. 
For example, Winstral et al. (2002) derived terrain-based degree of shelter/exposure 
parameter (SX) and assessed its effect on statistical snow distribution model. A significant 
improvement over the original model was observed after adding SX as a predictor. Revuelto 
et al. (2014) studied the relationship between eight topographic parameters and snow depth. 
Introducing SX into their statistical model improved the result; and this parameter was 
identified as one of the key variables explaining snow distribution.  Similarly, Gisnås et al. 
(2015) used such variables as the coefficient of variation of SX, grid-cell elevation, and mean 
maximum snow depth to characterize small scale snow distribution for application in a 
regional permafrost model. Machine learning methods are also increasingly used for snow 
distribution modelling with improved computation power and availability of spatial snow data 
(e.g. Tabari et al., 2010; Marofi et al., 2011). 

 Some hybrid snow distribution modelling approaches involve combined use of physically 
based model decisions and observed snow distribution or surrogate variables. Sturm and 
Wagner (2010) used a hybrid approach of snow distribution modelling based on a physical 
model, SnowModel, and annual snow depth surveys. Their study was based on the 
observation that snow distribution patterns and thereby relative snow depth are similar from 
year to year since they are largely controlled by the interaction of topography, vegetation, and 
consistent synoptic weather patterns. The assimilation of observed snow pattern into the 
physical model was realized by calibrating wind related model parameters and subsequent 
comparison of the simulated SWE distribution against the average observed SWE patterns for 
the catchment. An improvement in model output accuracy by 60% was attained through use 
of the hybrid approach as compared to outputs from SnowModel alone. In another similar 
study, Liston and Hiemstra (2008) used observed SWE data to periodically constrain 
SnowModel simulations to match observed SWE both in time and space. To obtain the 
required model constraint, they modified precipitation and melt parameters based on 
correction factors derived from the deviation between observed and simulated SWE values. 
Farinotti et al. (2010) used a simple snow accumulation model and a temperature index melt 
model to match the modelled melt-out pattern evolution to the pattern monitored during an 
ablation season through terrestrial oblique photography. A snow multiplier matrix in the 
accumulation model was tuned to optimize the spatial agreement between simulated and 
observed melt out pattern. The simulated SWE was observed to have accuracy comparable 
with that obtained with an inverse distance interpolation of the point measurements. Snow 
data assimilation techniques using different schemes such as the Kalman Filter and its variants 
can also be labeled under the hybrid approach. 

2.4.3 Ensemble-based snow data assimilation techniques 

Model predictions are generally imperfect due to the inherent uncertainties for example in 
model forcing data, model parameters, and model structure. The use of techniques with 
efficient capability to extract and assimilate the information contained in the observed data 
through the model identification and prediction processes is one of the main areas where 
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actions can be taken to reduce the uncertainty in hydrological predictions (Liu and Gupta, 
2007). Hydrologic data assimilation techniques aim to improve model predictions by 
combining the imperfect hydrologic process knowledge embodied in a hydrologic model and 
the uncertain information gained from observations (e.g. Han et al., 2012). As such, data 
assimilation is used to not only update the hydrological model states that optimally combine 
model outputs with observations, but also to assess observational and model errors 
(Moradkhani, 2008).  

 Ensemble-based filtering and smoothing techniques have been widely used in solving data 
assimilation problems (e.g. Liu et al., 2012). The formulation of a data assimilation problem 
as filtering or smoothing mainly depends on the time period when the state estimation is 
needed (Carrasi et al., 2018). The Monte Carlo approach forms the basis for the data 
assimilation schemes referred to as ensemble-based methods (e.g. Evensen, 2009). This 
section briefly presents two commonly used ensemble-based data assimilation frameworks, 
one based on the filtering and another based on the smoothing techniques. 

(a)    The Ensemble Kalman Filter 

Ensemble based filtering techniques are widely used for real-time applications (e.g. Piazzi et 
al., 2018). The filtering technique involves sequential processing, in which the observational 
data are sequentially used to update the model state as they become available (Bengtsson et al., 
1981). Figure 2.19 shows a simplified graphical illustration of an ensemble filtering technique 
(e.g. McLaughlin, 2002; Carrassi et al., 2018). At the initial time step ( ) an ensemble of n 
random replicates is generated for a given uncertain input variable that appears in the state 
equation. The ensemble generated based on the initial condition is used to generate a 
corresponding ensemble of state vector replicates ( ) at the first measurement time ( ). The 
sample statistics such as marginal probability density, mean, and covariance are calculated 
from the propagated state vector ensemble for use in computation of the updated state 
conditioned on the observation at the present time step. The sequence of propagation and 
update is repeated for each measurement time, yielding a propagated state  and an 
updated state  at the time . 

 Evensen (1994) introduced a Monte Carlo based Kalman filter, the Ensemble Kalman 
Filter (EnKF), which was extensively used in different hydrological data assimilation studies. 
The Kalman filter is a data assimilation algorithm that produces optimal weighting between a 
modeled and observed state with due consideration to errors in the model and observations 
(e.g. Maybeck, 1990). Variants of this data assimilation technique including the EnKF have 
been used for snow updating in hydrologic models resulting to considerable improvement in 
the efficiency of streamflow forecasts (e.g. Slater and Clark, 2006). The EnKF is especially 
useful for high dimensional data and it represents distribution of the system state using a 
random sample (an ensemble), from which the sample covariance is computed (Evensen, 
1994). Unlike the Kalman filter, the EnKF does not require that the state equation be 
linearized during the propagation step and the model input errors generated during this step 
need not be additive. However, it relies on an implicit Gaussian assumption to derive the 
measurement update and it can be computationally demanding if the number of states is large 
(McLaughlin, 2002). 
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Figure 2.19: Graphical illustration of ensemble filtering. The ensembles are propagated 
forward to the next measurement time ( ) and the variable of interest ( ) is subsequently 
updated with due consideration to the new measurement ( ) (after McLaughlin, 2002; 
Carrassi et al., 2018). 

 The EnKF is based on a Monte Carlo approximation of the Kalman filter and its basic 
formulation can be described as follows (e.g. Clark et al., 2008; Mandel, 2009). The ensemble 
matrix (prior ensemble) at a given time step can be represented as: 

 (2.20) 

where  is an n x N matrix of n model states whose N columns are a sample from the prior 
distribution. Given the ensemble matrix , the ensemble mean ( ) and an estimate of the 
model error covariance ( ) are computed as: 

 (2.21) 

 (2.22) 

where,  and the superscript T respectively denote the ensemble of anomalies and a matrix 
transpose. The ensemble anomaly for the ith ensemble member is  , and the 
ensemble of anomalies is represented as: 

 (2.23) 

The model states in each ensemble member are updated ( ) with due consideration to the 
Kalman gain ( ) and  which is an m x 1 vector of observations (where m is the number of 
observations) (Eq. 2.24).  
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 (2.24) 

with,       

where,  denotes to the m x n operator that is used to map the model states to observation 
space and  is the m x m observation error covariance matrix. 

(b) Ensemble smoothing using the particle batch smoother 

Unlike to the filtering technique, in smoothing, all observations are assimilated in a single 
step (Li et al., 2017). This technique is commonly used in retrospective analysis after the 
observations have been collected. It is very useful in generating reanalysis and in estimating 
model parameters (Carrasi et al., 2018). The ensemble smoothing techniques have the 
advantage of low computational cost coupled with the flexibility in running independent of 
the forward model (Li et al., 2017; Bailey and Baù, 2010; Emerick and Reynolds, 2013). The 
particle batch smoother (Pbs) is one of the commonly used ensemble smoothers. Similar to 
the ensemble filtering technique described above, Pbs also uses an ensemble of independent 
randomly drawn Monte Carlo samples (particles). The procedure involves generating 
ensemble of model realizations by running the model over the full seasonal cycle followed by 
the assimilation of all observations at once. The Bayes theorem forms the basis for estimating 
the updated relative importance or weight (wj) of each ensemble member (Eq. 2.25). 

 (2.25) 

where  refers to the likelihood of the observations ( ) given the state value of the jth 
ensemble member ( ).   and  respectively denote prior values and the number of 
ensemble members.  

 In Pbs, all ensemble members are implicitly assigned equal prior weights of 1/Ne 
(Margulis et al., 2015). When using the Gausian likelihood, this yields (Margulis et al., 2015; 
Aalstad et al., 2018): 

 (2.26) 

where  and  respectively refer to  vector of perturbed observations and predicted 
values for the jth particle in the  matrix ( ).  denotes  diagonal observation 
error covariance matrix.  refers to the number of observations. 

 Pbs assumes that both the prior and posterior states of the particles remain the same 
(Margulis et al., 2015). It updates the particle weights in such a way that particles with their 
predictions closer to the observations get higher weight than those with farther from the 
observations. The median and prediction quantiles are estimated from the cumulative 
distribution of the sorted values of the target variable and their associated weights. 
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Chapter 3 
The hydrological model and data 
 
In this PhD work different software packages and applications were used in conducting the 
various analyses as well as in pre- and post-processing of the relevant hydrologic, climatic, 
and physiographic datasets. Shyft was used as the main hydrological modelling toolbox and 
the R statistical software in general and its CART package in particular were used for general 
statistical analysis and in building the machine learning models (Appendix B).  The SAFE 
toolbox was used as a basis for conducting sensitivity and uncertainty analysis. ArcGIS and 
the GDAL library in Python were mainly used for spatial data analysis and presentation. For 
example, ArcGIS was used to setup the grid-cells (when Shyft was run in distributed setting) 
and to extract the relevant physiographic and hydrological data of each grid-cell through 
overlay analysis. A number of Matlab and Python based algorithms were also written in this 
work in order to implement the different theoretical formulations including the newly 
introduced fuzzy logic based and the existing data assimilation schemes (Appendices A and 
C). Various algorithms were also implemented to carry out auxiliary tasks such as in input 
data preparation and post processing. Similarly, different climatic, physiographic, and 
hydrologic datasets were used as forcing and validation datasets. The hydrological model and 
the main datasets used in this study are briefly described in this section. 

3.1  The Shyft hydrological modelling toolbox 

The Statkraft Hydrological Forecasting Toolbox, Shyft, (https://github.com/statkraft/shyft) is 
an open-source distributed hydrological modelling framework developed by Statkraft with 
contributions from the University of Oslo and other institutions (e.g. Burkhart, 2016; Nyhus, 
2017; Matt et al., 2018). The modelling framework has three main models (method stacks), 
namely PT_GS_K, PT_HS_K and PT_SS_K. These models use different methods in 
conducting snow mass balance calculations, although the same process representations are 
used for evapotranspiration and catchment response calculations. As such, these three models 
can be considered as alternative snow and water balance process representations within the 
domain of a conceptual modelling framework. The framework establishes a sequence of 
spatially distributed cells of arbitrary size and shape. Hence, it can provide lumped (single cell) 
or discretized (spatially distributed) calculations. When the framework is run in distributed 
setting, the selected model is applied to each of the grid-cells. Figure 3.1 shows simplified 
schematic representation of the Shyft models when run in distributed mode of simulation. 
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Information related to the model setup such as specifications of the selected Shyft model, 
parameter ranges, interpolation techniques, and paths to different input files are provided in 
‘yaml’ files.  

 
Figure 3.1: Simplified structural representation for a sample Shyft model in distributed setting 

 The Shyft models require both climatic and physiographic inputs. The climatic forcings 
include: precipitation, temperature, relative humidity, wind speed, and radiation. These 
forcings are dynamic in time and they can be input to the framework either as point 
measurements or as gridded data. In the case of point measurements, the data is distributed to 
the grid-cells using a suitable interpolation technique. Point temperature data is interpolated 
over the study domain using a Bayesian Kriging approach, while the remaining forcing 
variables are interpolated using the inverse distance weighting approach. Several auxiliary 
scripts within the framework are used to prepare the data in a format readily usable by a Shyft 
model and for post processing of outputs from the model. The physiographic input variables 
are static and they include: average elevation, total area, as well as the areal fractions of forest 
cover, glaciers, lakes, and reservoirs.  

 The Shyft models are composed of methods that are intended to carry out calculations 
related to the dominant processes taking place in the hydrological system of the study domain. 
These methods involve the conceptualization and parameterization of important processes and 
they can have several adjustable parameters depending on the climatic and physiographic 
characteristics of the study area where the model is applied. For example, the main model 
parameters for the PT_GS_K model are shown in Table 3.1. The optimal value for many of 
these parameters is determined through calibration using observed data. The major model 
states are snow water equivalent (SWE) and fractional snow cover area (fSCA). These 
variables are also generated as output (in addition to streamflow) for each grid-cell and time 
step in the simulation period.  
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3.2 An overview of the PT_GS_K model 

The PT_GS_K was the most frequently used model both in this work and other studies as 
compared to the other models in Shyft. This model provides a relatively more physical (quasi-
physical) description of the hydrological system as compared to the remaining two models. 
The discussion in this section is, therefore, mainly focused on the constituent methods of this 
model. PT_GS_K uses the Priestley-Taylor (PT) method (Priestley and Taylor, 1972) for 
estimating potential evaporation; a quasi-physical based method for snow melt, sub-grid snow 
distribution, and mass balance calculations (GS method); and a simple storage-discharge 
function (Lambert, 1972; Kirchner, 2009) for catchment response calculation (K). Overall, 
these three methods constitute the PT_GS_K model in Shyft.  

 The energy balance calculation in GS method follows a similar approach as used by 
DeWalle and Rango (2008) (Eq. 3.1). The precipitation falling in each grid-cell is classified as 
solid or liquid precipitation depending on a threshold temperature (tx) and on the local 
temperature values. The available net snow melt energy ( ) is the sum effect of different 
energy sources and sinks in the system. These include: incoming short wave radiation ( ), 
incoming ( ) and outgoing ( ) long wave radiation, the subsurface energy flux ( ) as 
well as the turbulent sensible ( ) and latent ( ) energy fluxes emanating from rainfall, 
solar radiation, wind turbulence, and other sources.  

 (3.1) 

 Among other factors, the energy contribution from short wave radiation depends on snow 
albedo. For a given time step (t), the snow albedo of each grid-cell depends on the minimum 
( ) and maximum ( ) albedo values as well as on air temperature (  (Eq. 3.2). In 
this method the decay rates of albedo due to snow ageing as a function of temperature, i.e. the 
fast ( ) and slow ( ) albedo decay rates corresponding to temperature conditions above 
and below 0oC respectively, are parameterized. Turbulent heat contribution is the sum of 
latent and sensible heat. Wind turbulence is linearly related to wind speed using two 
parameters, i.e. wind_const and wind_scale from the intercept and slope of the linear function, 
respectively (Hegdahl et al., 2016). 

 (3.2) 

 Sub-grid snow distribution is described by a three parameter Gamma probability 
distribution snow depletion curve (SDC) (Liston, 1999; Kolberg and Gottschalk, 2006). The 
traditional Gamma distribution is parameterized with two values, i.e. the average amount of 
snow at the onset of the melt season  (mm) and the shape value ( ); based on the 
assumption that the ground is completely snow covered before the onset of melt. Since this 
assumption may not hold true for a number of grid-cells especially in alpine areas, a third 
parameter representing the bare ground fraction at the onset of snow melt season has been 



54 
 

introduced (Kolberg and Gottschalk, 2006). This SDC with three parameters is based on the 
assumption that certain proportion of a grid-cell area ( ) remains snow-free throughout the 
winter season such as in steep slopes and ridges due to wind erosion or avalanches (Kolberg 
and Gottschalk, 2010). The two parameter Gamma distribution (Eq. 3.3) is thus applied only 
to the remaining portion of a grid-cell to estimate the fraction of the initially snow covered 
area where snow has disappeared ( ). Following this formulation, the bare ground fraction at 
each time step (  is estimated using Equation 3.4. The initial bare ground fraction parameter 
is constant for all hydrological years. At each time step, the state parameters such as SWE and 
fSCA are updated using the SDC function (Fig. 3.2). In the GS method, the shape value is a 
direct transformation of the sub-grid snow coefficient of variation (CVs). 

 
(3.3) 

 (3.4) 

where denotes the Gamma probability density function and  is the incomplete Gamma 
function.  and  respectively refer to point snow storage and the accumulated melt depth 
(mm) at time t since the onset of the melt season. represents the scale parameter with 

 and . 

 
Figure 3.2: Illustration of the three-parameter snow depletion curve (SDC) parameterized by 
average snow storage ( ), the snow coefficient of variation (CVs), and the initial bare ground 
fraction ( ) (after Kolberg et al., 2006). During the snow melt season these parameters 
remain constant while value of the total bare ground fraction (y) and snow covered area 
evolve through time following shape of the SDC and as a function of the accumulated melt 
depth ( ) over the grid-cell. 

 The catchment response function is based on the storage-discharge relationship concept 
described in Kirchner (2009) and represents the sensitivity of discharge to changes in storage 
(Eq. 3.5).  This method is based on the idea that catchment sensitivity to changes in storage i.e. 
g(Q) can be estimated from the time series of discharge alone through fitting empirical 
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functions to the data such as the quadratic equation. Since discharge is generally non-linear 
and typically varies by many orders of magnitude, the recommended approach is to use log 
transformed discharge values in order to avoid the risk of numerical instability. In this method, 
the three parameters of the catchment response function, i.e. c1, c2, and c3 are parameterized. 

 (3.5) 

with,     

In which E and Q respectively represent actual evapotranspiration and discharge. In the 
original formulation P refers to precipitation, whereas in this method it refers to the liquid 
water supply from rainfall and snow melt.  

 The potential evaporation calculation in the PT method requires net radiation and the slope 
of saturated vapor pressure as well as the Priestley-Taylor parameter, the psychometric 
constant, and the latent heat of vaporization (e.g. Matt et al., 2018). The latter three variables 
are kept constant in the PT method. Actual evapotranspiration is assumed to take place only 
from snow free areas and it is estimated as a function of potential evapotranspiration and a 
scaling factor. 

Table 3.1: Main parameters in the three methods (i.e. K, GS and PT) of the PT_GS_K model 

Sr.  
No. 

Name Method Description 

1 c1 K constant in Catchment Response Function, CRF 

2 c2 K linear coefficient in CRF 

3 c3 K quadratic coefficient in CRF 

4 tx GS solid/liquid threshold temperature (oC) 

5 ws GS wind scale (slope in turbulent wind function)  

6 fa GS fast albedo decay rate (days) 

7 sa GS slow albedo decay rate (days) 

8 cv GS spatial coefficient of variation of snowfall 

9 wind_const GS intercept in turbulent wind function 

10 max_water GS max water holding capacity of the snow pack 

11 max_albedo GS maximum albedo for snow covered area 

12 min_albedo GS minimum albedo for snow covered area 

13 land_albedo PT albedo for snow free area 

14 alpha PT dimensionless multiplier 
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3.3 Study area and data 

Most of the case studies presented in this thesis are based on analyses conducted using 
climatic and physiographic data from the Nea-catchment (11.67390 o - 12.46273 o E, 62.77916 

o - 63.20405 o N).  The Nea-catchment constitutes the headwaters of the Nea-Nidelva water 
resources management area which is situated in Sør-Trøndelag County, Norway (Fig. 3.3). 
The hydropower generated from this area is the main source of electric supply to several 
places in mid-Norway including to one of the biggest cities in the country, Trondheim. As a 
result, this area has significance for various stakeholders responsible for the development and 
management of water resources in the region; and has been selected for research focused on 
better prediction and understanding of the snow processes and their impact on hydrology of 
the downstream area. The following sub-sections briefly present the climatic, physiographic, 
and hydrologic data for the Nea-catchment retrieved from different sources. 

(a) Climatic data 

As mentioned in the previous section, the PT_GS_K model requires temperature, precipitation, 
radiation, relative humidity, and wind speed as climatic forcing data. In this work, daily time 
series data of these variables for the study area that fully or partly cover the hydrological 
years 2008-2016 were obtained from Statkraft (2018) as point measurement, with the 
exception of relative humidity. Daily gridded relative humidity data was retrieved from ERA-
interim (Dee et al., 2011). Mean annual precipitation in the Nea-catchment based on the nine 
hydrological years was 1279 mm. The highest and lowest average daily temperature values 
for this period were 20 and −23 °C, respectively.  

(b) Physiographic data 

The Nea-catchment covers a total area of 703 km2 and it is characterized by a wide range of 
topographic and land cover characteristics. Altitude of the catchment ranges from 1783 masl 
on the eastern part around the mountains of Storsylen to 649 masl at its outlet on the western 
part of the catchment. In the case studies presented in this thesis, the PT_GS_K model was 
setup over each grid-cell of 1 km2; requiring average elevation, grid-cell total area, as well as 
the areal fraction of forest cover, glaciers, lakes, and reservoirs. Data for these physiographic 
variables were retrieved from two sources: the land cover data from Copernicus land 
monitoring service (2016) and the 10m digital elevation model (10m DEM) from the 
Norwegian mapping authority (Kartverket.no). The land cover data show that, the catchment 
is mainly dominated by moors, bogs, and some sparse vegetation; and limited part of the 
catchment is forest covered (3%).  
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Figure 3.3: Physiography and location map of the Nea-catchment as well as the snow 
measurement sites.  

(c) Hydrologic data 

Streamflow and fractional snow cover area (fSCA) were used as validation datasets in the 
studies presented in Paper I and Paper II. Similarly, in Paper III snow water equivalent (SWE) 
observations were used as validation datasets, while fSCA observations were assimilated into 
the hydrological model. The streamflow and SWE datasets were provided by Statkraft (2018). 
The availability of long term SWE data, i.e., for nine years and in nine different sites was one 
of the reasons for choosing the Nea-catchment as a potential study area for validating the 
snow data assimilation schemes. Similar to the climatic variables, the observed SWE data 
covers the hydrological years 2008–2016. The SWE data were collected once a year in the 
month of April, where accumulated snow storage approximately attains its peak magnitude. 
The radar measurements roughly followed the same course each year in the nine 
representative sites of the catchment (Fig. 3.3). Table 3.2 presents, statistical summary of site-
averaged annual peak observed SWE value of each grid-cell. While the highest average SWE 
value was observed in Site-2, the lowest value was recorded in Site-9. Annual mean and 
median catchment scale peak SWE values are also shown in Figure 3.4. From this Figure it 
can be noticed that the highest and lowest average catchment peak SWE values estimated 
from the nine sites during these hydrological years were 717 mm (in year 2012) and 331 mm 
(in year 2014), respectively. 

 Daily fSCA data was retrieved from NASA MODIS snow cover products (Hall et al., 
2006). Frequent cloud cover is one of the major challenges when using MODIS and other 
optical remote sensing data in Norway. A composite dataset was thus formed using data 
retrieved from the Aqua and Terra satellites, MYD10A1 and MOD10A1 products 
respectively in order to minimize the effect of obstructions and misclassification errors 
emanating from clouds and other sources. The fSCA observations extend from the peak 
accumulation period until end of the ablation period, i.e. including the months April to August 
of each year (2008-2016) for the dates with valid satellite scenes. 
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Table 3.2: Summary of site-averaged annual peak observed snow water equivalent (SWE) (m 
w.e.) as well as average elevation of each site (masl). 

Site 
SWE (m w.e.) Avg. Elev. 

Min. Max. Average (masl) 
1 0.269 0.558 0.4 746 
2 0.411 0.931 0.606 907 
3 0.159 0.764 0.487 873 
4 0.299 0.659 0.454 958 
5 0.398 0.818 0.603 1064 
6 0.34 0.668 0.43 988 
7 0.256 0.391 0.34 1251 
8 0.258 0.383 0.316 976 
9 0.152 0.549 0.274 993 

 

 
Figure 3.4: Annual statistics (mean and median) of catchment scale observed SWE values 
during the peak accumulation period based on radar measurements in nine sites within the 
Nea-catchment. 
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Chapter 4 
Summary of publications 
 
4.1 Paper I: Parameter uncertainty analysis for an operational  hydrological 

 model using residual-based and limits of acceptability approaches 

Conceptual hydrological models are characterized by having one or more calibration 
parameters and parameter uncertainty estimation is one of the major challenges in using these 
types of models. In this study, a recently released distributed conceptual hydrological model, 
i.e. the PT_GS_K model of Shyft, was subjected to parameter uncertainty analysis using 
relevant data from the Nea catchment in Norway.  Two variants of the generalized likelihood 
uncertainty estimation (GLUE) methodologies, one based on the residuals and the other on 
the limits of acceptability, were employed. Both single and multi-objective evaluation criteria 
were used in conditioning model parameters and in model validation. Two variables, i.e. 
streamflow and remote sensing snow cover data (fSCA) were used as validation datasets and 
model performances were evaluated using relevant objective functions. The objective 
functions include two forms of the Nash-Sutcliffe efficiency metrics that were used with the 
streamflow data, i.e. one applied on the raw data (NSE) and another on log-transformed data 
(LnNSE). Similarly, the root mean of squares error (RMSE) and the critical success index 
(CSI) were used during validation of the simulated fSCA against the remote sensing snow 
cover (MODIS) data. 

 When using the GLUE limits of acceptability (GLUE LoA) approach, a streamflow 
observation error of 25% was assumed. Neither the original limits nor relaxing the limits up to 
a physically meaningful value yielded a behavioral model capable of predicting streamflow 
within the limits in 100% of the observations based on the original formulations of this 
methodology. As an alternative to relaxing the limits, the requirement for the percentage of 
model predictions falling within the original limits (pLoA) was relaxed. A novel empirical 
approach was introduced to define the degree of relaxation in pLoA constrained by the 5% -
95% streamflow modelling uncertainty, reported as the containing ratio (CR) (Fig. 4.1). In 
this study, the CR value estimated for the calibration period using the residual-based approach 
was adopted as an acceptable CR value. Model realizations that fulfill this relaxed LoA 
criteria both in streamflow and fSCA observations were considered behavioral. A triangular 
membership function was used to define the weights of each criterion, where a maximum 
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weight of 1.0 was assigned to predictions with a perfect match to the observation and a 
minimum weight of 0.0 to predictions outside the acceptability limits. 

 
Figure 4.1: Schematic overview of the algorithm for the identification of behavioural models 
using the time-relaxed limits of acceptability approach. 

The analysis result from the residual-based GLUE methodology shows that the catchment 
response parameters, i.e. c1, c2, and c3 as well as ws are the most sensitive model parameters. 
More caution is thus required when defining the value range of these parameters. On the other 
hand, the fast and slow albedo decay rates, i.e. fa and sa as well as the snow CV (cv) are 
relatively more uncertain model parameters. A multi-objective based model conditioning 
using combined streamflow and MODIS fSCA did not improve the median prediction of 
streamflow as compared to the result when model parameters are conditioned using 
streamflow only. The additional information from the MODIS fSCA data was thus less 
significant in constraining the rainfall-runoff model parameters. On the other hand, the multi-
objective model conditioning using the combined objective function of NSE and LnNSE has 
yielded a significant improvement in model performance, especially during the low-flow 
condition as compared to using NSE alone.  

Similar results were obtained using the residual-based GLUE and the time-relaxed GLUE 
LoA approaches. The median streamflow prediction of behavioral models identified using the 
time-relaxed GLUE LoA was able to mimic the observed values very well both under the 
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low- and high-flow conditions for the validation period. A slightly better capability of the 5%-
95% prediction bounds in bracketing the observations was also observed as compared to 
predictions using the residual-based GLUE methodology when both streamflow and fSCA are 
used in model conditioning. The behavioral models identified using the time-relaxed GLUE 
LoA approach were also able to adequately reproduce the observed fSCA, although with a 
relatively higher prediction uncertainty during the onset of snowmelt as compared to the latter 
months of the ablation period. Generally, relaxing the percentage of observations required to 
be bracketed per simulation period by a particular model realization was found to be more 
effective and a viable option than relaxing the observational error bounds for balancing 
between type I and type II errors during behavioural model identification. 

4.2 Paper II: Coupled machine learning and the limits of  acceptability approach 
 applied in parameter identification for a distributed hydrological model 

Monte Carlo (MC) methods have been widely used in uncertainty analysis and parameter 
identification for hydrological models. The main challenge with these approaches is, however, 
the prohibitive number of model runs required to get an adequate sample size which may take 
from days to months especially when the simulations are run in distributed setting. In the past, 
emulators have been used to minimize the computational burden of the MC simulation by 
estimating the response surface associated with the residual-based GLUE methodology. In 
this study, emulators of the MC simulation were applied in parameter identification for the 
PT_GS_K distributed conceptual hydrological model using two likelihood measures, the 
absolute bias of model predictions (Score) and another based on the time-relaxed limits of 
acceptability concept (pLoA). Three machine learning models (MLMs), namely random 
forest (RF), K-nearest neighbours (KNN) and artificial neural network (NNET) were built 
using model parameter sets and response surfaces generated from limited number of model 
realizations (4000). The developed MLMs were applied to predict pLoA and Score for a large 
set of model parameters (95000). The behavioural parameter sets were identified using a time-
relaxed limits of acceptability approach (GLUE pLoA) based on the predicted pLoA values 
and applied to estimate the quantile streamflow values using the behavioural model 
predictions weighted by their respective predicted Score values (Fig. 4.2).  
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Figure 4.2: Schematic overview of the MLM training and testing as well as response surface 
prediction using the trained MLM with subsequent identification of behavioural models using 
the time-relaxed limits of acceptability approach (GLUE pLoA).  

The coupled MLMs and time-relaxed limits of acceptability approach employed in this 
study were able to effectively identify behavioural parameter sets for the hydrological model. 
The MLMs were able to adequately reproduce the response surfaces for the test and validation 
samples. The evaluation metrics have shown variability both between the MLMs and the 
analysis years for the same MLM. RF and NNET yielded comparable results (especially for 
pLoA), while KNN has shown relatively lower result. Capability of the MLMs as emulators 
of the MC simulation was further evaluated through comparison of streamflow predictions 
using the identified behavioural model realizations against the observed streamflow values. 
The cross-validation result shows that the high-flow conditions as measured by average NSE 
were slightly better estimated both under the calibration and validation periods when KNN 
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was used as emulator as compared to RF and NNET. While under low-flow conditions (based 
on LnNSE), NNET has yielded a slightly better prediction as compared to the other two 
MLMS. Generally, the behavioural models identified based on KNN have yielded comparable 
performance to RF and NNET in terms of the efficiency measures, although characterized by 
a relatively higher inter-annual variability.  

The sensitivity analysis conducted using the in-built algorithms of the three MLMs have 
yielded similar order of precedence in relative importance of the model parameters when 
trained using pLoA and Score as target variables. The result obtained from this analysis was 
also consistent with the results from previous study conducted using the residual-based GLUE 
methodology (Paper I) and the regional sensitivity analysis presented in Section 2.2.5. The 
catchment response parameters of the hydrological model, i.e. c1, c2 and c3 have shown 
higher relative importance as compared to most of the snow and water balance parameters. 
The highest degree of interaction was observed between the model parameters ws and tx 
which is also consistent with the result reported in Paper I. Thus, this study has also proven 
the efficiency of MLM based emulators in conducting sensitivity analysis for computationally 
expensive models.  

4.3 Paper III: Improving the informational value of MODIS fractional snow 
 cover area using fuzzy logic based ensemble smoother data assimilation 
 frameworks 

Remote sensing data have been increasingly used to get improved estimates of spatially 
distributed hydrological variables. The relative informational value of time-series 
observations in general and remote sensing data in particular varies in response to multiple 
factors. However, the commonly used ensemble-based smoothing schemes assume crisp and 
equal informational value for all observations of the assimilated data. The particle batch 
smoother (Pbs) is one of these schemes that has been gaining interest as a data assimilation 
(DA) scheme in hydrological models due to its distribution free likelihood and its capability 
to estimate the state vector directly at a relatively low computational cost. However, one of 
the main challenges in using Pbs and other Bayesian-based DA schemes is, that most of the 
weights are assigned to one or very few ensemble members and this may lead to degeneration 
of the statistical information in the ensembles. In this study, an alternative approach was 
considered that ensures fair distribution of weights among ensemble members based on the 
limits of acceptability concept (LoA) and certain hydrologic signatures. LoA was adopted as a 
DA scheme by introducing a methodology for relaxing the strict requirement of its original 
formulation as a rejectionist framework. New variants of these ensemble-based DA schemes 
(Pbs_F and LoA_F) were also introduced by incorporating the fuzzy logic concept into their 
likelihood measures in order to take into account for the variability in informational value of 
the assimilated observations. 

The DA schemes were applied to a case study focused on the assimilation of the MODIS 
fractional snow cover area (fSCA) into the PT_GS_K model to get an improved estimate of 
snow water equivalent (SWE) during the maximum accumulation period. In the fuzzy logic 
based DA schemes, timing of the more informative period was assumed to vary both spatially 
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and temporally in response to various climatic and physiographic factors. Accordingly, the 
assimilation period was partitioned into three timing windows based on two critical points in 
the ablation period, i.e. the points where the mean fSCA changes ( ) and where the melt-out 
period starts (c). Parametric (likelihood-based) and non-parametric change point detection 
schemes were employed to locate  in each grid-cell and year. The informational value of 
fSCA observations with time was assumed to follow an exponential-trapezoidal membership 
function that extends over the three timing windows (Fig. 4.3). In the first window (W-1), the 
fSCA measurements close to the onset of snowmelt are generally characterized by low signal 
to noise ratio. Similarly, during the complete melt-out period (W-3) the measurements are 
homogenous; and the informational value decreases with correlated data. The phenomena in 
W-1 and W-3 generally lead to less power in constraining model states and parameters. In 
contrast, the fSCA measurements in the second window (W-2) are characterized by high 
signal-to-noise ratio with a strong decreasing trend with time. 

 

Figure 4.3: Location of the timing windows (W-1, W-2, and W-3) and value of the fuzzy 
coefficient in relation to a sample observed grid-cell fSCA dynamics over the ablation period 
as conceptualized in this study.  and c respectively denote the point where mean snow cover 
area changes and start of the complete melt-out period. 

The DA schemes have resulted in a posterior snow water equivalent (SWE) estimate that is 
better than the prior estimate in terms of accuracy as measured using one or more of the 
efficiency criteria used in this study. Introducing the LoA approach as a DA scheme yielded 
an encouraging result. An improved estimate of SWE was also obtained in most of the 
analysis years as a result of introducing the fuzzy coefficients in both DA schemes, although 
the degree of improvement in the evaluation metrics varied from year to year.  Similarly, an 
improved estimate of fSCA was obtained for all years when using LoA_F as compared to 
LoA. The results were spatially analyzed both at grid-cell and site levels; and in many of the 
analysis years, the relative performance of the DA schemes was variable from one site to 
another. The most significant improvement was obtained in the correlation coefficient 
between the predicted and observed SWE values (site-averaged); with an increase by 8% and 
16% after introducing the fuzzy coefficient in Pbs and LoA, respectively. This result reveals 
that, although all fSCA observations in the ablation period are important in constraining the 



65 
 

perturbation parameters, some observations are more important than others depending on their 
location in the time axis with respect to the critical points. This premise was further confirmed 
by the results obtained from sensitivity analysis of the DA evaluation metrics to change in 
location of the critical points. The detected critical points varied from year to year and 
spatially between the grid-cells. The parametric and non-parametric change point detection 
schemes employed to locate  in each grid-cell and year have yielded close and reasonable 
results.  
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Chapter 5 
General discussion 
 
The PhD work presented in this thesis and the underlying analyses were geared towards the 
three important aspects for addressing uncertainty in hydrological modelling and predictions, 
i.e. the understanding, quantification, and reduction of uncertainty. Although distinct, these 
aspects of uncertainty are quite related to each other; and especially the understanding of 
uncertainty can be considered as an integral part of any application of uncertainty 
quantification or reduction (Liu and Gupta, 2007). This section will provide a general 
discussion on selected points from the research work presented in this thesis in relation to 
previous studies and organized in light of the three aspects of uncertainty. 

5.1 Understanding uncertainty 

Knowledge about the main sources and nature of uncertainty is the prerequisite for a 
successful uncertainty quantification and reduction. Although, no explicit account of the 
individual sources of uncertainty was done in this work, the modelling and prediction 
uncertainties were assumed to emanate from the different sources, i.e. from model structure, 
model parameters as well as from model forcings and observational datasets. Parameter 
uncertainty is one of the main sources of uncertainty in conceptual hydrological models and in 
the GLUE methodology, the likelihood weights propagated from the parameter uncertainty 
attempt to reflect all sources of uncertainty in the modelling process (Vrugt et al., 2009).   

 Understanding the philosophical background of a given uncertainty analysis framework is 
also very important since it may entail a considerable amount of uncertainty in the analysis 
results.  For example, the initial attempt to find behavioural model realizations for an 
operational rainfall-runoff model, i.e. the PT_GS_K model, using the GLUE LoA rejectionist 
framework in its original formulation has yielded to the rejection of all model realizations. 
This result was obtained despite the presence of several behavioural model realizations that 
are useful for the intended purpose as identified using the residual-based GLUE methodology. 
The contrasting result from the two versions of the same framework suggests that there exists 
much uncertainty about the uncertainty quantification in hydrology, although considerable 
advances have been made in understanding the uncertainty quantification methodologies 
(Beven, 2011). Some proponents of the Proprian falsification theory argue that the validation 
of numerical models of the hydrological system is impossible since natural systems are not 
closed (e.g. Oreskes et al., 1994). However, most of the practicing environmental scientists 
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follow the pragmatic realism as a working philosophy (Beven, 2001) based on the argument 
that models can be validated for pragmatic purposes in the sense of performance testing of 
whether a model is acceptable for its intended use (e.g. Rykie and Edward, 1996). Here model 
validity reflects the user’s confidence in the model’s usefulness (e.g. Nguyen and Kok, 2007). 
Furthermore, useful models may be discarded if the inherently imperfect models are judged 
by a standard they cannot achieve (e.g. Smith, 2001). A similar pragmatic realism based 
working philosophy was followed in Paper I when implementing the time-relaxed GLUE LoA 
and the subsequent application of the framework for evaluating the PT_GS_K model. This 
was done with due consideration to the model’s inherent imperfection and its main application 
as a tool in operational hydrological studies.  

 In the presence of multiple contrasting schools of thought, it is challenging to get a 
universally acceptable uncertainty quantification technique. This creates difficulty in 
communicating the uncertainty results in hydrology. It is thus important to understand the 
concepts associated with model evaluation when testing hydrological models as hypotheses of 
catchment behaviour as viewed from different perspectives (Gupta et al., 2012). For example, 
from the engineering point of view model structural adequacy is mainly linked to its 
functional adequacy with due consideration to a decision-making perspective, while from the 
physical science point of view, model adequacy is purely defined in terms of the model’s 
consistency with the physical system (e.g. Pianosi et al., 2016). The systems science, as a 
compromise between the two viewpoints, stresses on physical consistency to the extent that it 
is observable in data and it appreciates the simplicity of the engineering approach stressing on 
the principle of parsimony. In this work, mainly the systems science approach was followed 
during model evaluation (Paper I). For example, model realizations were evaluated in terms of 
their capability to simultaneously reproduce the low- and high-streamflow conditions in order 
to ensure physical consistency throughout the simulation period. On the other hand, the 
evaluation criteria were set with due consideration to the model’s main application as an 
operational hydrological model.  

5.2 Uncertainty quantification 

In the past, several uncertainty estimation techniques have been proposed and applied to test 
hydrological models. These techniques can be classified as frequentist or Bayesian 
approaches, probabilistic or non-probabilistic approaches (e.g., Montanari et al., 2009), or as 
formal or informal approaches (e.g., Vrugt et al., 2009). However, these approaches are not 
mutually exclusive. For example, both frequentist and Bayesian are probabilistic and formal. 
We can also have probabilistic methods with informal (subjectively chosen) likelihoods. 
Though according to Nearing et al. (2016), any non-negative likelihood function with a finite 
total integral (including the informal ones) becomes a coherent probability distribution, and 
thus formal, after appropriate scaling. Non-probabilistic methods (e.g. based on fuzzy sets) 
can be formal (in the sense of following strictly defined rules) but will involve some 
subjectively chosen constraints (e.g. support for fuzzy measure). Of the different uncertainty 
estimation techniques in hydrology, the GLUE methodology is the most widely used. While 
this methodology is primarily focused on the quantification of parameter uncertainty, other 
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approaches have attempted to treat individual error sources with subsequent assessment of 
predictive uncertainty (Sadegh and Vrugt, 2013). 

 The parameter uncertainty analysis using the residual-based GLUE methodology (Paper I) 
have revealed that parameter inference based on fSCA as a conditioning observation yielded 
some parameter estimates that deviate significantly from those obtained when conditioned 
with streamflow only. However, the displacement in value of certain snow related model 
parameters towards the higher part of their parameter dimension, in relation to those identified 
using streamflow, was counteracted by an opposite effect. Other snow related parameters 
were shifted towards the lower part of their respective parameter dimension thereby resulting 
in a partial or full cancelling out of the effects of changes in the former parameters. This 
phenomenon may thus lead to equifinality, where different sets of model parameters give 
comparable fSCA responses. 

 Results from the analysis using the time-relaxed GLUE LoA (Paper I) provided a further 
insight on model performance with respect to the individual observations at different parts of 
the hydrograph. The number of behavioral models with their predictions falling within the 
observational error bounds varies from one time step to another in response to multiple factors 
including epistemic errors in the model structure as well as errors in the input and 
observational datasets. This study reveals that modelling and prediction uncertainties are 
relatively higher during low-streamflow than high-streamflow conditions. Figure 5.1 presents 
the average daily percentage of behavioral models whose predictions fall within the 
streamflow observational error bounds at four quantile intervals of the observed streamflow, 
i.e. <0.25 (q_1), 0.25-0.50 (q_2), 0.50-0.75 (q_3) and >0.75 (q_4). For most of the analysis 
years, the lowest percentages are observed at the first quantile, i.e. for the streamflow values 
below the 25th percentile, while highest daily percentage of behavioral models satisfying the 
criteria were observed for the higher percentiles. This result is consistent with the general 
observation that hydrologic models perform relatively well in wet conditions but break down 
during low-streamflow conditions (e.g. Kirchner, 2009). The uncertainty for the low-
streamflow condition increases if only NSE is used as a likelihood measure during the 
identification of behavioural models. This highlights the challenge with transferability of 
catchment hydrologic models in time and space (e.g. Clark et al., 2011).  

 The relatively higher mismatch between simulated and observed values during the low-
streamflow condition cannot always be explained by uncertainties in the hydrological model 
structure. It can also be partly explained by the relatively higher measurement uncertainty 
during low-streamflow condition as compared to high-streamflow conditions. For example, 
Petersen-Øverleir et al. (2009) have observed a relatively higher measurement uncertainty 
during low-streamflow condition as compared to high-streamflow conditions in several 
Norwegian streamflow gauging stations. This phenomenon was attributed to the inaccuracy of 
some instruments under low-streamflow condition as well as to increased cross-sectional 
irregularities in shallow depths leading to less precise flow area calculations. 
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Figure 5.1: Average daily percentage of behavioral model simulations with their predictions 
falling within the streamflow observational error bounds at each of the streamflow quantiles, 
i.e. at the first quantile (q_1), second quantile (q_2), third quantile (q_3) and fourth quantile 
(q_4). The analysis covers four hydrological years, i.e. years 2011 to 2014. 

 One of the main goals of this work was to optimize the computational efficiency of the 
ensemble-based uncertainty quantification for use in computationally expensive hydrological 
applications.  In the past, different approaches have been introduced in order to minimize the 
high computational cost associated with uncertainty analysis when using Monte Carlo (MC) 
simulation based frameworks. For example, the DREAM framework attempts to improve the 
efficiency in finding behavioural models through use of adaptive proposal updating (Vrugt et 
al., 2009). In Paper II, the improvement in computational efficiency was realized through 
coupling of three machine learning based models (MLMs), i.e. random forest (RF), K-nearest 
neighbours (KNN) and artificial neural networks (NNET) with the time-relaxed GLUE LoA 
approach. In the contemporary era of big-data, machine learning methods are playing crucial 
roles in many applications involving data-driven analyses (e.g. El Naqal and Murphy, 2015). 
In this study, the MLMs trained using a limited number of parameter sets were able to 
efficiently predict the response surfaces of much bigger sample size. Similar studies based on 
the coupling of NNET and the residual-based GLUE methodology have reported comparable 
performances of the emulators to GLUE in terms of the posterior parameter and prediction 
interval estimations at much lower computational cost (e.g. Yu et al., 2015).  

 The three MLMs employed in this study are non-parametric. Thus, they have an advantage 
over parametric models as they can be implemented to find a relationship between the 
predictor and target variables regardless of the error structure. However, since both the model 
structure and model estimates of non-parametric models are derived from the data, larger 
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sample sizes are required in nonparametric than parametric models (Araghinejad, 2014). 
Furthermore, MLMs like all data-driven models operate as black-box models, i.e. without any 
understanding of the modelled processes; hence, they may not behave as intended under 
changing conditions (Olden and Jackson, 2002). As noticed in this study, this problem can 
partly be solved using adequate and representative model training samples. 

 As demonstrated in this work and previous studies, sensitivity analysis is closely related to 
parameter uncertainty. It can be used to complement the process of model calibration by 
providing better insights on how the variability in the uncertain model parameters map onto 
variations of likelihood values (e.g. Pianosi et al., 2016). Since most conceptual hydrological 
models have several free parameters, screening is usually required before conducting 
parameter uncertainty analysis in order to effectively sample from the parameter dimensions 
and to minimize the computational cost of Monte Carlo simulations. In this work, both expert 
elicitation and the screening method using the Elementary Effect (EE) (Morris, 1991) were 
employed to identify the parameters to which the model results are more sensitive before 
propagation of parameter uncertainty to modelling and prediction uncertainty. The EE 
analysis has yielded similar result to the model parameters selected for uncertainty analysis 
based on the expert elicitation technique. Sensitivity analyses were also conducted following 
the modelling uncertainty analysis in order to identify the most influential out of the selected 
model parameters. The regional sensitivity analysis technique, machine learning methods as 
well as the GLUE methodology were employed in conducting the sensitivity analyses and 
have yielded similar results. As such, a relatively detailed parameter uncertainty analysis was 
conducted in this work as compared to previous studies that were commonly done using a 
single approach. 

5.3 Uncertainty reduction 

An adequate model structure and appropriate likelihood measures play an important role in 
reducing the modelling and prediction uncertainty by optimizing the amount of information 
extracted from the conditioning dataset. For example, as mentioned in the preceding section, a 
higher modelling and prediction uncertainty was observed during the low-streamflow 
condition than the high-streamflow condition. In the case of residual-based approach, a 
significant improvement was observed when using the combined streamflow likelihood of 
NSE and LnNSE instead of NSE alone (Paper I). However, a likelihood measure based on the 
combined use of remote sensing snow cover area (fSCA) and streamflow datasets for 
conditioning model parameters did not yield significant improvement in model performance 
as compared to using streamflow alone. Similar result in previous studies have led to the 
understanding that streamflow data contain sufficient information to ensure the identification 
of a suitable model structure that can closely and consistently mimic the catchment behaviour 
at temporal and spatial scale of measurement (e.g. Sadegh and Vrugt, 2013). In another 
similar study using the HBV model, Udnæs et al. (2007) have obtained an improved 
performance of the model in fSCA simulation without a major reduction in the accuracy of 
simulated runoff.   
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 The indifference in model performance after including fSCA as additional criteria can be 
attributed to the limited informational value of fSCA in constraining parameters of the 
rainfall-runoff model. It can also be partly attributed to the lack of flexibility of the 
parsimonious model structure to accommodate different perceptual models based on a multi-
source dataset. As reported in previous studies, such challenges are common due to the lack of 
process-based conceptual models that can operate on a wider scale (e.g. McMillan et al., 
2011). One of the reasons for the lack of simultaneous improvement in both fSCA and 
streamflow in this work might be the difference in spatial scales at which the hydrological 
model was setup, which was 1km2, in comparison to the finer spatial scale at which most 
snow processes operate. For example, wind-driven snow redistribution processes become 
more important in simulations with high grid-resolution as compared to coarser resolution (e.g. 
Mott and Lehning, 2010). In an effort to partly overcome these challenges, previous research 
works focused on model structural adequacy have resulted in data assimilation and other 
stochastic techniques for iterative refinement of the mathematical structure of conceptual 
hydrological models (Sadegh and Vrugt, 2013).  

The development of efficient techniques with better capability to extract and assimilate 
information from the available data is one of the important areas where actions can be taken 
towards reducing uncertainty in hydrologic prediction (Liu and Gupta, 2007). Although the 
GLUE methodology is a widely used uncertainty assessment framework in hydrology, the 
standard version of this framework has been criticized for using subjectively set likelihood 
measure and threshold values. The followed version of this framework which was based on 
the limits of acceptability concept (GLUE LoA) partly overcomes this challenge through use 
of observation error bounds. However, when it comes to operational hydrological models with 
continuous rainfall-runoff simulation, the original formulation of the GLUE LoA approach as 
a rejectionist framework has limited applicability since it can lead to the rejection of useful 
models that might adequately represent the catchment behaviour and thereby to making a type 
II error (false negative). For example, although useful behavioural model realizations were 
identified when using the residual-based GLUE, the current model structure of the PT_GS_K 
model was rejected when using the GLUE LoA since none of its model realizations were able 
to meet the strict requirement of this framework (Paper I). In the past, different methodologies 
have been followed to minimize the risk of making type-II errors when using this framework 
including relaxing the limits and use of different parameter sets for different parts of the 
hydrograph. In this work, the latter alternative was not considered as a potential option based 
on the premise that both wet and dry periods are required in order to activate all components 
of a hydrological model and thereby ensure its transferability in time (e.g. Sadegh and Vrugt, 
2013). The first option, i.e. relaxing the limits has resulted in the inclusion of non-behavioral 
model realizations and thereby to making type-I errors. Thus, the time-relaxed GLUE LoA 
was introduced as an alternative to relaxing the limits (Paper I). 

 In the Nea-catchment case study involving the time-relaxed GLUE LoA approach and the 
PT_GS_K model, this approach was able to effectively identify behavioural model 
realizations based on only 30-40 % of the observations in a hydrologic year. The identified 
behavioural models were able to predict streamflow during the evaluation period with an 
acceptable degree of accuracy for the intended use based on commonly used efficiency 



73 
 

criteria. As discussed in the previous section, many of the relaxed time steps corresponding to 
the predictions that fall outside the error bounds are located during the low-streamflow 
condition. Visual inspection on the resulting hydrograph shows that the observations during 
the low-streamflow condition, especially during the winter period, are highly correlated and 
hence they carry low information content as compared to the observations from the remaining 
part of the hydrograph. Thus, the results from this analysis is consistent with the general 
notion that the information content of the data and the efficiency with which that information 
is extracted are more important than the amount of the data (e.g. Gupta and Sorooshian, 1985; 
Liu and Han, 2010; Sun et al., 2017). 

Little attention has also been given in previous studies to reducing the prediction 
uncertainty through explicit account for the relative informational value of the assimilated 
observations. For example, the widely used schemes for reducing the uncertainty in SWE 
prediction through the assimilation of remote sensing or in situ measurements, such as the 
particle batch smoother (Pbs), have likelihood measures that assume equal informational 
value for all observations. The need for the development of data assimilation schemes that can 
extract the primary information content from observations with noisy information is thus still 
one of the main open areas of research in hydrological data assimilation (e.g. Houser et al., 
2012). In this PhD work snow data assimilation schemes based on the fuzzy logic concept are 
introduced in order to take into account the variability in information content of the 
assimilated remote sensing snow cover data with time. The fSCA observations from the time 
windows characterized by low signal-to-noise ratio and high correlation were assumed to 
have less informational value and hence assigned less weight in conditioning the model states 
and parameters. The informational value of the assimilated data was assumed to be fuzzy that 
carry considerable amount of uncertainty (with its value ranging from 0 to 1) instead of a 
crisp quantity (0 or 1) which is the case in the existing ensemble smoothing schemes. An 
improved estimate of SWE during the peak accumulation period was obtained after 
introducing the fuzzy logic concept as compared to the original formulation of Pbs. This result 
is consistent with the general notion that many of the variables that we usually consider to be 
crisp quantity and deterministic are actually fuzzy that carry considerable amount of 
uncertainty (Ross, 2009). Further, in Pbs, most of the weights are assigned to one or very few 
ensemble members and this may lead to degeneration of the statistical information in the 
ensembles (Van Leeuwen, 2009). In an attempt to overcome this limitation, an alternative 
data assimilation scheme based on the limits of acceptability concept and certain hydrological 
signatures was thus introduced and has yielded a promising result in reducing the prediction 
uncertainty (Paper III). 

 The absence of alternative process representations during the model identification process 
may yield a biased result (e.g. Clark et al., 2011). In light of the different sources of 
uncertainty discussed herein and other hydrologic literatures, hydrological models may be 
non-unique in reproducing the catchment behaviour; and hence there will always be the 
possibility of equifinality (e.g. Beven, 2002). Thus, instead of searching for a single optimal 
model as in the case of traditional statistical approach, it would be more realistic to consider 
alternative ensemble of behavioural model representations that yield acceptable results. 
Embracing the limitations of a single optimal model, some studies suggest more research on 
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new methods for combining rather than selecting the best of imperfect models (e.g. Smith, 
2001). An example of such methods is the GLUE framework that employs equifinality as part 
of its working paradigm. In contrast, the traditional approach attempts to find a single optimal 
model based on two extreme alternatives, i.e. useful or not useful. With the increasing 
appreciation for the ensemble-based modelling approach, the old aphorism by George Box 
might be further expanded and updated in the contemporary scene to: “All models are wrong, 
but some are useful”, albeit at varying degrees of usefulness. This expanded aphorism can be 
explained from a hydrological modelling viewpoint as follows: 

- All models are wrong due to the omissions of certain processes from the perceptual 
model as well as the simplifications of important processes representations in the 
resulting conceptual and procedural models, but 

- some are useful for the intended purpose. Models are tools designed for specified 
purposes, rather than as truth generators. Hence, validity of the model can be viewed 
in accordance to the user’s confidence in the model’s usefulness (e.g. Senge and 
Forrester, 1980; Nguyen and Kok, 2007). 

- The relative usefulness of the ensemble members can assume any score between 0 to 
1.0 instead of the binary extremes, i.e. 0 (not useful) or 1(useful). This reflects the 
need for an importance weighted ensemble prediction of an environmental variable. 
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Chapter 6 
Conclusions and recommendations 
 
6.1 Conclusions 

The research work presented in this thesis was focused on ensemble-based uncertainty 
quantification and reduction in hydrological modelling and predictions accompanied by the 
proper understanding of the different sources and types of uncertainty. This section presents 
the conclusions drawn in light of the three main goals and specific objectives of the work.  

 The first goal was focused on the assessment of modelling and prediction uncertainty for a 
distributed conceptual hydrological model using two variants of the GLUE methodology and 
with due consideration to the model’s main application as an operational hydrological model 
(Paper I). The analysis results from the residual-based GLUE methodology show that the 
catchment response parameters of the PT_GS_K model are the most sensitive model 
parameters. On the other hand, the snow and water balance related parameters induced a 
relatively higher streamflow uncertainty than the catchment response parameters. Results 
from the multi-criteria model conditioning using streamflow and MODIS fractional snow 
cover area (fSCA) revealed that the additional information from the fSCA data was generally 
less significant in constraining the rainfall-runoff model parameters, yielding no substantial 
improvement on the median prediction of streamflow and fSCA. The median streamflow 
prediction using the behavioural model realizations of the PT_GS_K model was able to mimic 
the validation dataset remarkably well in most of the analysis years, although the model 
performance was relatively low during the low-streamflow conditions.  

 The main outcome of the first goal was the novel approach introduced to adapt the 
rejectionist framework (GLUE LoA) for use in identification of behavioural model 
realizations for an operational hydrological model. In contrast to the result obtained from the 
residual-based GLUE, using the original formulation of the GLUE LoA methodology for the 
identification of behavioural models did not yield any behavioural simulation. A relaxation of 
the strict requirements of the original formulation was thus needed in order to adapt the 
rejectionist framework to find acceptable model realizations for an operational hydrological 
model. The relaxation considers the limitations of using constant observational error 
proportionality and that of not taking an explicit account of the other sources of uncertainty 
such as from input data and observational errors as well as due to the incomplete nature of 
model structure. This way, the risk of making type II errors, i.e. the rejection of useful models 
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was minimized. A time-relaxed GLUE LoA approach was introduced that allows a relaxation 
on the number of time steps required to achieve the LoA criteria. Similar results were 
obtained using both the residual-based GLUE and the time-relaxed GLUE LoA approaches. 
Relaxing the percentage of time steps in the simulation period where predictions by a 
particular model realization required to fall within the observation error bounds (pLoA) was 
found to be more effective than relaxing the observational error bounds. The latter approach 
was used in previous studies to minimize the risk of making type II errors when using GLUE 
LoA. 

 The second goal was aimed at alleviating the heavy computational burden associated with 
use of the time-relaxed GLUE LoA (GLUE pLoA) in computationally expensive hydrological 
models (Paper II).  Three machine learning models (MLMs), i.e. random forest (RF), K-
nearest neighbours (KNN), and an artificial neural-network (NNET) were individually 
coupled with the GLUE pLoA approach. The coupled MLMs and GLUE pLoA approach 
employed in this study were able to effectively identify behavioural parameter sets for the 
hydrological model, while significantly reducing the computational time. The MLMs were 
able to adequately reproduce the response surfaces for the test and validation samples, 
although the evaluation metrics have shown variability both between the MLMs and the 
analysis years. The cross-validation results of the simulated against observed median 
streamflow values have further revealed the efficiency of pLoA as a likelihood measure for 
the identification of behavioural models. The assessment on relative performances of the 
MLMs shows that, although RF and KNN were not among the favourite emulators of the 
Monte Carlo (MC) simulation in previous studies, they have yielded comparable results to the 
standard MLM based emulator, i.e. NNET. Furthermore, the cross-validation result shows 
that the high-streamflow conditions were slightly better estimated both under the calibration 
and validation periods when KNN was used as emulator as compared to RF and NNET, while 
NNET yielded a slightly better prediction under low-streamflow conditions.  

 The sensitivity analysis conducted using the in-built algorithms of the three MLMs have 
yielded similar order of precedence in relative variable importance when trained using pLoA 
and a normalized absolute bias (Score) as target variables. The result was also generally 
consistent with the sensitivity analysis result obtained from the previous study conducted 
using the residual-based GLUE methodology (Paper I) and the regional sensitivity analysis 
approach (Section 2.2.5). 

 The third goal was focused on reducing the prediction uncertainty of snow water 
equivalent (SWE) and thereby to get an improved estimate of SWE during the maximum 
accumulation period. This goal was accomplished by introducing fuzzy logic based efficient 
snow data assimilation (DA) schemes that have improved capability of extracting the 
information content of the assimilated remote sensing snow cover data. To reanalyze the 
model results, two ensemble-based data assimilation schemes, i.e. particle batch smoother 
(Pbs) and another based on the limits of acceptability concept (LoA) were used. New variants 
of these schemes that account for the variability in informational value of the assimilated 
fSCA observation, i.e., Pbs_F and LoA_F were also introduced in this work. Using the LoA 
approach as a DA scheme yielded an encouraging result and all DA schemes resulted in a 
posterior SWE estimate that is better than the prior estimate in terms of accuracy as measured 
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using one or more of the efficiency criteria used in this study. Incorporating the concept of 
variable informational value of the remote sensing data in both DA schemes was a viable 
option for improved estimates of the perturbation parameters, and thereby the reanalyzed 
SWE values.  

 Results from the analyses under the premise of variable informational value of fSCA with 
time revealed that all observations do not carry equal information amount in constraining the 
perturbation parameters. Although most fSCA observations in the ablation period were 
important in constraining the perturbation parameters, some observations were more 
important than others depending on their location in the time axis with respect to certain 
critical points in the melt season, i.e., the points where the mean snow cover changes ( ) and 
the start of a melt-out period. The parametric (likelihood-based) and non-parametric change 
point detection schemes employed to locate  in each grid-cell and year yielded similar and 
reasonable results. Results from the sensitivity test conducted by moving the critical points 
forward and backward have also confirmed the variability in information content of the fSCA 
observations with time. Although the DA results were somewhat insensitive to locations of 
the critical points up to certain distances, moving the critical points farther from their original 
locations lead to deterioration of the DA results.  

 Generally, the new methods introduced in this work are expected to make contributions to 
the society at different levels. Water managers in hydropower industries and water supply 
sectors can benefit from the reduced level of uncertainty in model predictions. The improved 
estimates of hydrological variables such as snow storage and streamflow will enable them to 
make better water resources related decisions. The methods that mimic the human reasoning 
capability such as the fuzzy logic based data assimilation schemes and the machine learning 
based emulators will also contribute to the scientific community. The results from these 
methods provide further insights on significances of artificial intelligence and big-data science 
in hydrological modelling.   

6.2 Recommendations for further work 

In order to improve the relatively low performance of the PT_GS_K model during the low-
flow condition, the processes affecting this part of the hydrograph need a due consideration in 
future studies focused on improvements in model structure. For example, a scrutiny on the 
underlying algorithms of the model reveal that, the precipitation falling on water bodies such 
as lakes and reservoirs was assumed to have a direct contribution to streamflow.  However, 
this assumption may not hold true especially during the winter season for two main reasons. 
In snow dominated catchments, most of the precipitation falls as snow during the winter 
season and accumulates on surface of the frozen water bodies. The accumulated snow 
requires a sufficient amount of melt energy before it starts to contribute to downstream flows. 
Further, even the precipitation falling as rain may not reach the catchment outlet on the same 
hour or day of observation, depending on such factors as size and surface roughness of the 
water body. As such, this conceptualization may have substantial negative effect on simulated 
flows if size of the lakes and/or reservoirs constitute significant fraction of the total catchment 
area. The additional parameterizations for improving the model structure should be 
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implemented with due consideration to the value of parsimonious structure in operational 
models. 

 The time-relaxed GLUE LoA methodology requires specifying the magnitude of 
acceptable modelling uncertainty (CR0) in order to determine the degree of relaxation. In this 
work, this value was set based on a previous assessment using the residual-based GLUE. For 
a wider use of the methodology, further studies need to be done for estimating CR0 using 
alternative approaches. In this work, the behavioural model realizations were identified only 
from a single model, i.e. the PT_GS_K model. However, as an ensemble-based approach, the 
GLUE methodology allows the use of model realizations from a single or multiple models. 
Similarly, the Shyft modelling framework provides models with different process 
representations. Therefore, further studies can also be done to identify behavioural 
realizations from two or more models available in Shyft or other modelling frameworks using 
the time-relaxed GLUE LoA. Further studies focused on application of this methodology in 
other catchments with different hydrologic characteristic need also be conducted in order to 
get a better insight in viability of the newly introduced methodology under different 
conditions.  

 This work has demonstrated the role of individual machine learning models as emulators 
of the time consuming Monte Carlo simulation during parameter identification for an 
operational hydrological model. Further studies may assess the possibility of using the MLMs 
used in this work and other MLMs as ensemble emulators to get an improvement in the 
identification of behavioural parameter sets. Further efforts should be done to integrate 
machine learning methods in uncertainty analysis and parameter identification frameworks.  
The latter frameworks can also benefit by adopting relevant new concepts from machine 
learning models that are advancing at a faster rate. 

 Although the work presented in Paper III was focused on fractional snow cover area (fSCA) 
assimilation into a hydrological model, the new data assimilation (DA) schemes based on the 
fuzzy logic concept can be applied to assimilate other measurements that display variable 
informational value with time. More case studies should be conducted to assess the scope of 
the DA schemes under different physiographic and climatic conditions as well as different 
assimilated variables. Further studies can also be conducted to assimilate fSCA or other 
similar variables into land surface models, and thereby assess the viability of these DA 
schemes in different types of models. 

 
 

 

 

 

 

 

 



79 
 

 

 

 

 

References 
 
Aalstad, K., Westermann, S., Schuler, T. V., Boike, J., and Bertino, L.: Ensemble-based 

assimilation of fractional snow covered area satellite retrievals to estimate snow distribution at 
a high Arctic site, 2018. 

Alippi, C., Boracchi, G., and Roveri, M.: Ensembles of change-point methods to estimate the 
change point in residual sequences, Soft Computing, 17, 1971-1981, 2013. 

Appelhans, T., Mwangomo, E., Hardy, D. R., Hemp, A., and Nauss, T.: Evaluating machine 
learning approaches for the interpolation of monthly air temperature at Mt. Kilimanjaro, 
Tanzania, Spatial Statistics, 14, 91-113, 2015. 

Araghinejad, S.: Data-driven modeling: using MATLAB© in water resources and environmental 
engineering, Water Science and Technology Library, 2014. 

Bailey, R., and Baù, D.: Ensemble smoother assimilation of hydraulic head and return flow data to 
estimate hydraulic conductivity distribution, Water Resources Research, 46, 2010. 

Bair, E. H., Abreu Calfa, A., Rittger, K., and Dozier, J.: Using machine learning for real-time 
estimates of snow water equivalent in the watersheds of Afghanistan, The Cryosphere, 12, 
1579-1594, 2018. 

Bárdossy, A., and Singh, S.: Robust estimation of hydrological model parameters, Hydrology and 
Earth System Sciences, 12, 1273-1283, 2008. 

Bartelt, P., and Lehning, M.: A physical SNOWPACK model for the Swiss avalanche warning: 
Part I: numerical model, Cold Regions Science and Technology, 35, 123-145, 2002. 

Bayazit, M.: Nonstationarity of hydrological records and recent trends in trend analysis: a state-
of-the-art review, Environmental Processes, 2, 527-542, 2015. 

Bengtsson, L., Ghil, M., and Källén, E.: Dynamic meteorology: data assimilation methods, 
Springer, 1981. 

Beniston, M., Keller, F., and Goyette, S.: Snow pack in the Swiss Alps under changing climatic 
conditions: an empirical approach for climate impacts studies, Theoretical and Applied 
Climatology, 74, 19-31, 2003. 

Bergstrom, S.: Development and application of a conceptual runoff model for Scandinavian 
catchments, 1976. 

Beven, K.: Changing ideas in hydrology—the case of physically-based models, Journal of 
Hydrology, 105, 157-172, 1989. 



80 
 

Beven, K., and Binley, A.: The future of distributed models: model calibration and uncertainty 
prediction, Hydrological processes, 6, 279-298, 1992. 

Beven, K.: Prophecy, reality and uncertainty in distributed hydrological modelling, Advances in 
Water Resources, 16, 41-51, 1993. 

Beven, K.: How far can we go in distributed hydrological modelling?, Hydrology and Earth 
System Sciences Discussions, 5, 1-12, 2001. 

Beven, K.: Towards an alternative blueprint for a physically based digitally simulated hydrologic 
response modelling system, Hydrological processes, 16, 189-206, 2002. 

Beven, K.: A manifesto for the equifinality thesis, Journal of hydrology, 320, 18-36, 2006. 

Beven, K.: Environmental modelling: An uncertain future?, CRC Press, 2009. 

Beven, K., and Westerberg, I.: On red herrings and real herrings: disinformation and information 
in hydrological inference, Hydrological Processes, 25, 1676-1680, 2011. 

Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley & Sons, 2011. 

Beven, K., Smith, P., Westerberg, I., and Freer, J.: Comment on “Pursuing the method of multiple 
working hypotheses for hydrological modeling” by P. Clark et al, Water Resources Research, 
48, 2012. 

Beven, K., and Smith, P.: Concepts of Information Content and Likelihood in Parameter 
Calibration for Hydrological Simulation Models, Journal Of Hydrologic Engineering, 20, 2015. 

Beven, K.: Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis 
testing, and communication, Hydrological Sciences Journal, 61, 1652-1665, 2016. 

Beven, K. J.: On hypothesis testing in hydrology: Why falsification of models is still a really good 
idea, Wiley Interdisciplinary Reviews: Water, 5, e1278, 2018. 

Bieker, H. P., Slupphaug, O., and Johansen, T. A.: Real-time production optimization of oil and 
gas production systems: A technology survey, SPE Production & Operations, 22, 382-391, 
2007. 

Blanning, R. W.: The construction and implementation of metamodels, simulation, 24, 177-184, 
1975. 

Blazkova, S., and Beven, K.: Flood frequency estimation by continuous simulation for a 
catchment treated as ungauged (with uncertainty), Water Resources Research, 38, 2002. 

Breiman, L.: Random forests, Machine learning, 45, 5-32, 2001.  

Burkhart, J. F., Helset, S., Abdella, Y. S., and Lappegard, G.: Operational Research: Evaluating 
Multimodel Implementations for 24/7 Runtime Environments, Abstract H51F-1541 presented 
at the Fall Meeting, AGU, San Francisco, California, 11–15 December 2016. 

Campolongo, F., Cariboni, J., and Saltelli, A.: An effective screening design for sensitivity 
analysis of large models, Environmental modelling & software, 22, 1509-1518, 2007. 

Carrassi, A., Bocquet, M., Bertino, L., and Evensen, G.: Data assimilation in the geosciences: An 
overview of methods, issues, and perspectives, Wiley Interdisciplinary Reviews: Climate 
Change, 9, e535, 2018. 



81 
 

Castelletti, A., Galelli, S., Ratto, M., Soncini-Sessa, R., and Young, P. C.: A general framework 
for dynamic emulation modelling in environmental problems, Environmental Modelling & 
Software, 34, 5-18, 2012. 

Chandramouli, V., and Raman, H.: Multireservoir modeling with dynamic programming and 
neural networks, Journal of Water Resources Planning and Management, 127, 89-98, 2001. 

Choi, H. T., and Beven, K.: Multi-period and multi-criteria model conditioning to reduce 
prediction uncertainty in an application of TOPMODEL within the GLUE framework, Journal 
of Hydrology, 332, 316-336, 2007. 

Clark, M. P., Slater, A. G., Barrett, A. P., Hay, L. E., McCabe, G. J., Rajagopalan, B., and 
Leavesley, G. H.: Assimilation of snow covered area information into hydrologic and land-
surface models, Advances in water resources, 29, 1209-1221, 2006. 

Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and 
Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: Use of 
streamflow observations to update states in a distributed hydrological model, Advances in 
water resources, 31, 1309-1324, 2008. 

Clark, M. P., Kavetski, D., and Fenicia, F.: Pursuing the method of multiple working hypotheses 
for hydrological modeling, Water Resources Research, 47, 2011.  

Copernicus land monitoring service-CORINE land cover, available at: 
https://land.copernicus.eu/pan-european/corine-land-cover, last access: 29 August 2016. 

Cover, T. M., and Hart, P. E.: Nearest neighbor pattern classification, IEEE transactions on 
information theory, 13, 21-27, 1967. 

Crawford, N. H., and Linsley, R. K.: Digital simulation in hydrology, Stanford Watershed Model 
IV, Department of Civil Engineering, Stanford University, 1966. 

Croke, B.: The role of uncertainty in design of objective functions, Proceedings of MODSIM 
2007, Christchurch, New Zealand, 2007.  

Croke, B., Wagener, T., Post, D., Freer, J., and Littlewood, I.: Evaluating the information content 
of data for uncertainty reduction in hydrological modelling, in proceedings of the 4th 
international Congress on Environmental Modelling and Software, Barcelona, Spain, 6-10 July 
2008. 

Dadic, R., Mott, R., Lehning, M., and Burlando, P.: Wind influence on snow depth distribution 
and accumulation over glaciers, Journal of Geophysical Research: Earth Surface, 115, 2010. 

Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., 
Balmaseda, M., Balsamo, G., and Bauer, P.: The ERA Interim reanalysis: Configuration and 
performance of the data assimilation system, Quarterly Journal of the royal meteorological 
society, 137, 553-597, 2011. 

DeWalle, D. R., and Rango, A.: Principles of snow hydrology, Cambridge University Press, 2008. 

Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global optimization for 
conceptual rainfall runoff models, Water resources research, 28, 1015-1031, 1992. 

Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA global optimization 
method for calibrating watershed models, Journal of hydrology, 158, 265-284, 1994. 



82 
 

Dyrrdal, A. V., Saloranta, T., Skaugen, T., and Stranden, H. B.: Changes in snow depth in 
Norway during the period 1961–2010, Hydrology Research, 44, 169-179, 2013. 

Ebrahimi, N., and Ghosh, S. K.: Bayesian and frequentist methods in change-point problems, 
Handbook of statistics, 20, 777-787, 2001. 

Eckley, I. A., Fearnhead, P., and Killick, R.: Analysis of changepoint models, Bayesian Time 
Series Models, 205-224, 2011. 

Efstratiadis, A., and Koutsoyiannis, D.: One decade of multi-objective calibration approaches in 
hydrological modelling: a review, Hydrological Sciences Journal–Journal Des Sciences 
Hydrologiques, 55, 58-78, 2010. 

El Naqa, I., and Murphy, M. J.: What is machine learning?, in: Machine Learning in Radiation 
Oncology, Springer, 3-11, 2015. 

El Naqa, I., and Murphy, M. J.: What is machine learning?, in: Machine Learning in Radiation 
Oncology, Springer, 3-11, 2015. 

Elgaali, E., and Garcia, L.: Using neural networks to model the impacts of climate change on 
water supplies, Journal of Water Resources Planning and Management, 133, 230-243, 2007. 

Emerick, A. A., and Reynolds, A. C.: Ensemble smoother with multiple data assimilation, 
Computers & Geosciences, 55, 3-15, 2013. 

Erxleben, J., Elder, K., and Davis, R.: Comparison of spatial interpolation methods for estimating 
snow distribution in the Colorado Rocky Mountains, Hydrological Processes, 16, 3627-3649, 
2002. 

Essery, R., Li, L., and Pomeroy, J.: A distributed model of blowing snow over complex terrain, 
Hydrological processes, 13, 2423-2438, 1999. 

Evensen, G.: Sequential data assimilation with a nonlinear quasi geostrophic model using Monte 
Carlo methods to forecast error statistics, Journal of Geophysical Research: Oceans, 99, 10143-
10162, 1994. 

Evensen, G.: Data assimilation: the ensemble Kalman filter, Springer Science & Business Media, 
2009. 

Farinotti, D., Magnusson, J., Huss, M., and Bauder, A.: Snow accumulation distribution inferred 
from time lapse photography and simple modelling, Hydrological processes, 24, 2087-2097, 
2010. 

Frey, S., and Holzmann, H.: A conceptual, distributed snow redistribution model, Hydrology and 
Earth System Sciences, 19, 4517-4530, 2015. 

Funtowicz, S. O., and Ravetz, J. R.: Uncertainty and quality in science for policy, Springer 
Science & Business Media, 1990. 

Garbrecht, J. D.: Comparison of three alternative ANN designs for monthly rainfall-runoff 
simulation, Journal of Hydrologic Engineering, 11, 502-505, 2006. 

Geman, S., and Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian 
restoration of images, in: Readings in computer vision, Elsevier, 564-584, 1987. 



83 
 

Gilardi, N., and Bengio, S.: Local machine learning models for spatial data analysis, Journal of 
Geographic Information and Decision Analysis, 4, 11-28, 2000. 

Gisnås, K., Westermann, S., Schuler, T. V., Melvold, K., and Etzelmüller, B.: Small-scale 
variation of snow in a regional permafrost model, The Cryosphere, 10, 1201-1215, 2016. 

Globesar information page, available at: https://startupmatcher.com/s/globesaras, last access: 09 
May 2018. 

Griessinger, N., Seibert, J., Magnusson, J., and Jonas, T.: Assessing the benefit of snow data 
assimilation for runoff modeling in Alpine catchments, Hydrology and Earth System Sciences, 
20, 3895-3905, 2016. 

Gupta, V. K., and Sorooshian, S.: The relationship between data and the precision of parameter 
estimates of hydrologic models, Journal of Hydrology, 81, 57-77, 1985. 

Gupta, H. V., Clark, M. P., Vrugt, J. A., Abramowitz, G., and Ye, M.: Towards a comprehensive 
assessment of model structural adequacy, Water Resources Research, 48, 2012. 

Haan, C. T., Barfield, B. J., and Hayes, J. C.: Design hydrology and sedimentology for small 
catchments, Elsevier, 1994. 

Hall, K., George, R., Vincent, S., and Grid, V.: Updated daily MODIS/Terra Snow Cover Daily 
L3 Global 500m Grid V005, [April 2011 to August 2014], in: National Snow and Ice Data 
Center, Digital media, Boulder, Colorado USA, 2006. 

Han, E., Merwade, V., and Heathman, G. C.: Implementation of surface soil moisture data 
assimilation with watershed scale distributed hydrological model, Journal of hydrology, 416, 
98-117, 2012. 

Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their applications, 
1970. 

Hegdahl, T. J., Tallaksen, L. M., Engeland, K., Burkhart, J. F., and Xu, C. Y.: Discharge 
sensitivity to snowmelt parameterization: a case study for Upper Beas basin in Himachal 
Pradesh, India. , Hydrology Research, 47, 683-700, 2016. 

Hiemstra, C. A., Liston, G. E., and Reiners, W. A.: Observing, modelling, and validating snow 
redistribution by wind in a Wyoming upper treeline landscape, Ecological Modelling, 197, 35-
51, 2006. 

Hill, M. C.: Methods and guidelines for effective model calibration, in: Building Partnerships, 1-
10, 2000. 

Hock, R.: Temperature index melt modelling in mountain areas, Journal of hydrology, 282, 104-
115, 2003. 

Hornberger, G. M., and Spear, R. C.: Approach to the preliminary analysis of environmental 
systems, J. Environ. Mgmt., 12, 7-18, 1981. 

Houser, P. R., and WALKER, J. P.: Hydrologic data assimilation, in: Advances in water science 
methodologies, CRC Press, 45-68, 2005. 

Houser, P. R., De Lannoy, G. J., and Walker, J. P.: Hydrologic Data Assimilation, in: Approaches 
to Managing Disaster-Assessing Hazards, Emergencies and Disaster Impacts, InTech, 2012. 



84 
 

Hsieh, C.-t.: Some potential applications of artificial neural systems in, Journal of Systems 
Management, 44, 12, 1993. 

Hu, J., Liu, J., Liu, Y., and Gao, C.: EMD-KNN model for annual average rainfall forecasting, 
Journal of Hydrologic Engineering, 18, 1450-1457, 2011. 

Hume, D.: An enquiry concerning human understanding, in: Seven Masterpieces of Philosophy, 
Routledge, 191-284, 2016. 

Hussain, M. F., Barton, R. R., and Joshi, S. B.: Metamodeling: radial basis functions, versus 
polynomials, European Journal of Operational Research, 138, 142-154, 2002. 

Jacquin, A. P., and Shamseldin, A. Y.: Development of a possibilistic method for the evaluation 
of predictive uncertainty in rainfall runoff modeling, Water Resources Research, 43, 2007. 

Jakeman, A. J., Letcher, R. A., and Norton, J. P.: Ten iterative steps in development and 
evaluation of environmental models, Environmental Modelling & Software, 21, 602-614, 2006. 

Jones, D. R.: A taxonomy of global optimization methods based on response surfaces, Journal of 
global optimization, 21, 345-383, 2001. 

Jordan, M. I., and Mitchell, T. M.: Machine learning: Trends, perspectives, and prospects, Science, 
349, 255-260, 2015. 

Keating, E. H., Doherty, J., Vrugt, J. A., and Kang, Q.: Optimization and uncertainty assessment 
of strongly nonlinear groundwater models with high parameter dimensionality, Water 
Resources Research, 46, 2010. 

Kennedy, M. C., and O'Hagan, A.: Bayesian calibration of computer models, Journal of the Royal 
Statistical Society: Series B, 63, 425-464, 2001. 

Kerr, T., Clark, M., Hendrikx, J., and Anderson, B.: Snow distribution in a steep mid-latitude 
alpine catchment, Advances in water resources, 55, 17-24, 2013. 

Khaliq, M., Ouarda, T. B., Gachon, P., Sushama, L., and St-Hilaire, A.: Identification of 
hydrological trends in the presence of serial and cross correlations: A review of selected 
methods and their application to annual flow regimes of Canadian rivers, Journal of Hydrology, 
368, 117-130, 2009. 

Killick, R., and Eckley, I.: changepoint: An R package for changepoint analysis, Journal of 
statistical software, 58, 1-19, 2014. 

Kingston, G.B., Maier, H.R. and Dandy, G.C. 2018, Review of Artificial Intelligence Techniques 
and their Applications to Hydrological Modeling and Water Resources Management. Part 1 – 
Simulation, available at:   

 https://www.researchgate.net/publication/277005048_Review_of_Artificial_Intelligence_Tech
niques_and_their_Applications_to_Hydrological_Modeling_and_Water_Resources_Managem
ent_Part_1_-_Simulation, last access: 15 December 2018. 

Kirchner, J. W.: Catchments as simple dynamical systems: Catchment characterization, rainfall
runoff modeling, and doing hydrology backward, Water Resources Research, 45, 2009. 

Kişi, Ö., and Öztürk, Ö.: Adaptive neurofuzzy computing technique for evapotranspiration 
estimation, Journal of Irrigation and Drainage Engineering, 133, 368-379, 2007. 



85 
 

Kleijnen, J. P.: Kriging metamodeling in simulation: A review, European journal of operational 
research, 192, 707-716, 2009. 

Klir, G. J., and Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications, Prentice Hall PTR 
New Jersey, 1995. 

Kolberg, S. A., and Gottschalk, L.: Updating of snow depletion curve with remote sensing data, 
Hydrological Processes, 20, 2363-2380, 2006. 

Kolberg, S., and Gottschalk, L.: Interannual stability of grid cell snow depletion curves as 
estimated from MODIS images, Water Resources Research, 46, 2010. 

Kundzewicz, Z. W., and Robson, A. J.: Change detection in hydrological records—a review of the 
methodology/revue méthodologique de la détection de changements dans les chroniques 
hydrologiques, Hydrological sciences journal, 49, 7-19, 2004. 

Lall, U., and Sharma, A.: A nearest neighbor bootstrap for resampling hydrologic time series, 
Water Resources Research, 32, 679-693, 1996. 

Lambert, A.: Catchment models based on ISO-functions, J. Instn. Water Engrs, 26, 413-422, 1972. 

Lehning, M., Bartelt, P., Brown, B., and Fierz, C.: A physical SNOWPACK model for the Swiss 
avalanche warning: Part III: Meteorological forcing, thin layer formation and evaluation, Cold 
Regions Science and Technology, 35, 169-184, 2002. 

Li, J., and Heap, A. D.: A review of spatial interpolation methods for environmental scientists, 
2008. 

Li, J., Heap, A. D., Potter, A., and Daniell, J. J.: Application of machine learning methods to 
spatial interpolation of environmental variables, Environmental Modelling & Software, 26, 
1647-1659, 2011. 

Li, D., Durand, M., and Margulis, S. A.: Estimating snow water equivalent in a Sierra Nevada 
watershed via spaceborne radiance data assimilation, Water Resources Research, 53, 647-671, 
2017. 

Liston, G. E.: Interrelationships among snow distribution, snowmelt, and snow cover depletion: 
Implications for atmospheric, hydrologic, and ecologic modeling, Journal of applied 
meteorology, 38, 1474-1487, 1999. 

Liston, G. E.: Representing subgrid snow cover heterogeneities in regional and global models, 
Journal of climate, 17, 1381-1397, 2004. 

Liston, G. E., and Elder, K.: A distributed snow-evolution modeling system (SnowModel), 
Journal of Hydrometeorology, 7, 1259-1276, 2006. 

Liston, G. E., Haehnel, R. B., Sturm, M., Hiemstra, C. A., Berezovskaya, S., and Tabler, R. D.: 
Simulating complex snow distributions in windy environments using SnowTran-3D, Journal of 
Glaciology, 53, 241-256, 2007. 

Liston, G. E., and Hiemstra, C. A.: A simple data assimilation system for complex snow 
distributions (SnowAssim), Journal of Hydrometeorology, 9, 989-1004, 2008. 

Liu, Y., and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an integrated data 
assimilation framework, Water Resources Research, 43, 2007. 



86 
 

Liu, Y., Freer, J., Beven, K., and Matgen, P.: Towards a limits of acceptability approach to the 
calibration of hydrological models: Extending observation error, Journal of Hydrology, 367, 
93-103, 2009. 

Liu, J., and Han, D.: Indices for calibration data selection of the rainfall runoff model, Water 
resources research, 46, 2010. 

Liu, Y., Weerts, A., Clark, M., Hendricks Franssen, H.-J., Kumar, S., Moradkhani, H., Seo, D.-J., 
Schwanenberg, D., Smith, P., and Van Dijk, A.: Advancing data assimilation in operational 
hydrologic forecasting: progresses, challenges, and emerging opportunities, 2012. 

Madsen, H.: Parameter estimation in distributed hydrological catchment modelling using 
automatic calibration with multiple objectives, Advances in water resources, 26, 205-216, 2003. 

Magnusson, J., Wever, N., Essery, R., Helbig, N., Winstral, A., and Jonas, T.: Evaluating snow 
models with varying process representations for hydrological applications, Water Resources 
Research, 51, 2707-2723, 2015. 

Mandel, J.: A brief tutorial on the ensemble Kalman filter, arXiv preprint arXiv:0901.3725, 2009. 

Mantovan, P., and Todini, E.: Hydrological forecasting uncertainty assessment: Incoherence of 
the GLUE methodology, Journal of hydrology, 330, 368-381, 2006. 

Margulis, S. A., Girotto, M., Cortés, G., and Durand, M.: A particle batch smoother approach to 
snow water equivalent estimation, Journal of Hydrometeorology, 16, 1752-1772, 2015. 

Marler, R. T., and Arora, J. S.: Survey of multi-objective optimization methods for engineering, 
Structural and multidisciplinary optimization, 26, 369-395, 2004. 

Marofi, S., Tabari, H., and Abyaneh, H. Z.: Predicting spatial distribution of snow water 
equivalent using multivariate non-linear regression and computational intelligence methods, 
Water resources management, 25, 1417-1435, 2011. 

Matalas NC, L. J., Wolman MG: Prediction in water management, in: Scientific basis of water 
resource management, National Research Council, National Academy Press, Washington, DC, 
27, 1982. 

Matt, F. N., Burkhart, J. F., and Pietikäinen, J.-P.: Modelling hydrologic impacts of light 
absorbing aerosol deposition on snow at the catchment scale, Hydrology & Earth System 
Sciences, 22, 2018. 

Maurer, E. P., Stewart, I., Bonfils, C., Duffy, P. B., and Cayan, D.: Detection, attribution, and 
sensitivity of trends toward earlier streamflow in the Sierra Nevada, Journal of Geophysical 
Research: Atmospheres, 112, 2007. 

Maybeck, P. S.: The Kalman filter: An introduction to concepts, in: Autonomous robot vehicles, 
Springer, 194-204, 1990. 

McLaughlin, D.: An integrated approach to hydrologic data assimilation: interpolation, smoothing, 
and filtering, Advances in Water Resources, 25, 1275-1286, 2002. 

McMillan, H. K., Clark, M. P., Bowden, W. B., Duncan, M., and Woods, R. A.: Hydrological 
field data from a modeller's perspective: Part 1. Diagnostic tests for model structure, 
Hydrological Processes, 25, 511-522, 2011. 



87 
 

Melvold, K., and Skaugen, T.: Multiscale spatial variability of lidar-derived and modeled snow 
depth on Hardangervidda, Norway, Annals of Glaciology, 54, 273-281, 2013. 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.: Equation of 
state calculations by fast computing machines, The journal of chemical physics, 21, 1087-1092, 
1953. 

Modaresi, F., Araghinejad, S., and Ebrahimi, K.: A comparative assessment of artificial neural 
network, generalized regression neural network, least-square support vector regression, and K-
nearest neighbor regression for monthly streamflow forecasting in linear and nonlinear 
conditions, Water Resources Management, 32, 243-258, 2018. 

Montanari, A., Shoemaker, C. A., and van de Giesen, N.: Introduction to special section on 
Uncertainty Assessment in Surface and Subsurface Hydrology: An overview of issues and 
challenges, Water Resources Research, 45, 2009. 

Moradkhani, H.: Hydrologic remote sensing and land surface data assimilation, Sensors, 8, 2986-
3004, 2008. 

Moradkhani, H., and Sorooshian, S.: General review of rainfall-runoff modeling: model 
calibration, data assimilation, and uncertainty analysis, in: Hydrological modelling and the 
water cycle, Springer, 1-24, 2009. 

Morris, M. D.: Factorial sampling plans for preliminary computational experiments, 
Technometrics, 33, 161-174, 1991. 

Mott, R., and Lehning, M.: Meteorological modeling of very high-resolution wind fields and snow 
deposition for mountains, Journal of Hydrometeorology, 11, 934-949, 2010. 

Mott, R., Egli, L., Grünewald, T., Dawes, N., Manes, C., Bavay, M., and Lehning, M.: 
Micrometeorological processes driving snow ablation in an Alpine catchment, The Cryosphere, 
5, 1083-1098, 2011. 

Mulvany, T.: On the use of self-registering rain and flood gauges, Making Observations of the 
Relations of Rain Fall and Flood Discharges in a Given Catchment. Transactions and Minutes 
of the Proceedings of the Institute of Civil Engineers of Ireland, Dublin, Ireland, Session, 1, 
1850. 

Nachtnebel, H., Baumung, S., and Lettl, W.: Abflussprognosemodell für das Einzugsgebiet der 
Enns und Steyr, Report, Institute of Water Management, Hydology and Hydraulic Engineering, 
University of Natural Resources and Applied Life Sciences Vienna, Austria, 1993. 

Nearing, G. S., Tian, Y., Gupta, H. V., Clark, M. P., Harrison, K. W., and Weijs, S. V.: A 
philosophical basis for hydrological uncertainty, Hydrological Sciences Journal, 61, 1666-1678, 
2016. 

Neelakantan, T., and Pundarikanthan, N.: Neural network-based simulation-optimization model 
for reservoir operation, Journal of water resources planning and management, 126, 57-64, 2000. 

Nguyen, T., and de Kok, J.-L.: Systematic testing of an integrated systems model for coastal zone 
management using sensitivity and uncertainty analyses, Environmental Modelling & Software, 
22, 1572-1587, 2007. 



88 
 

Nyhus, E.: Implementation of GARTO as an infiltration routine in a full hydrological model 
(Master’s Thesis), NTNU, 2017. 

O’Hagan, A.: Bayesian analysis of computer code outputs: A tutorial, Reliability Engineering & 
System Safety, 91, 1290-1300, 2006. 

Okun, O., and Priisalu, H.: Random forest for gene expression based cancer classification: 
overlooked issues, Iberian Conference on Pattern Recognition and Image Analysis, Girona, 
Spain, June 6-8, 2007.  

Olden, J. D., and Jackson, D. A.: Illuminating the “black box”: a randomization approach for 
understanding variable contributions in artificial neural networks, Ecological modelling, 154, 
135-150, 2002. 

Oreskes, N., Shrader-Frechette, K., and Belitz, K.: Verification, validation, and confirmation of 
numerical models in the earth sciences, Science, 263, 641-646, 1994. 

Papoulis, A., and Pillai, S. U.: Probability, random variables, and stochastic processes, Tata 
McGraw-Hill Education, 2002. 

Pappenberger, F., Frodsham, K., Beven, K., Romanowicz, R., and Matgen, P.: Fuzzy set approach 
to calibrating distributed flood inundation models using remote sensing observations, 
Hydrology and Earth System Sciences Discussions, 11, 739-752, 2007. 

Parajka, J., and Blöschl, G.: Validation of MODIS snow cover images over Austria, Hydrology 
and Earth System Sciences Discussions, 3, 1569-1601, 2006. 

Parker, P., Letcher, R., Jakeman, A., Beck, M., Harris, G., Argent, R. M., Hare, M., Pahl-Wostl, 
C., Voinov, A., and Janssen, M.: Progress in integrated assessment and modelling, 
Environmental modelling & software, 17, 209-217, 2002. 

Pechlivanidis, I., Jackson, B., McIntyre, N., and Wheater, H.: Catchment scale hydrological 
modelling: a review of model types, calibration approaches and uncertainty analysis methods 
in the context of recent developments in technology and applications, Global NEST journal, 13, 
193-214, 2011. 

Peel, M. C., and Blöschl, G.: Hydrological modelling in a changing world, Progress in Physical 
Geography, 35, 249-261, 2011. 

Perone, S. P., and Ham, C. L.: of Information Content in Electrochemical Experiments, Journal of 
Research of the National Bureau of Standards, 90, 1985. 

Petersen-Øverleir, A., Soot, A., and Reitan, T.: Bayesian rating curve inference as a streamflow 
data quality assessment tool, Water resources management, 23, 1835-1842, 2009. 

Pianosi, F., Sarrazin, F., and Wagener, T.: A Matlab toolbox for global sensitivity analysis, 
Environmental Modelling & Software, 70, 80-85, 2015. 

Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and Wagener, T.: 
Sensitivity analysis of environmental models: A systematic review with practical workflow, 
Environmental Modelling & Software, 79, 214-232, 2016. 

Piazzi, G., Thirel, G., Campo, L., and Gabellani, S.: A particle filter scheme for multivariate data 
assimilation into a point-scale snowpack model in an Alpine environment, The Cryosphere, 12, 
2287-2306, 2018. 



89 
 

Popper, K.: The Logic of Scientific Discovery, Hutchingson & Co, London, 1959. 

Popper, K. R.: Science as falsification, Conjectures and refutations, 1, 33-39, 1963.  

Priestley, C., and Taylor, R.: On the assessment of surface heat flux and evaporation using large-
scale parameters, Monthly weather review, 100, 81-92, 1972. 

Quinlan, J. R.: Decision trees and decision-making, IEEE Transactions on Systems, Man, and 
Cybernetics, 20, 339-346, 2006. 

Ratto, M., Castelletti, A., and Pagano, A.: Emulation techniques for the reduction and sensitivity 
analysis of complex environmental models, in, Elsevier, 2012. 

Razavi, S., Tolson, B. A., and Burn, D. H.: Review of surrogate modeling in water resources, 
Water Resources Research, 48, 2012. 

Refsgaard, J.: Terminology, modelling protocol and classification of hydrological model codes, 
Distributed Hydrological Modelling, 22, 17, 1996. 

Refsgaard, J. C.: Parameterisation, calibration and validation of distributed hydrological models, 
Journal of hydrology, 198, 69-97, 1997. 

Refsgaard, J. C., and Henriksen, H. J.: Modelling guidelines––terminology and guiding principles, 
Advances in Water Resources, 27, 71-82, 2004. 

Reichert, P., and Omlin, M.: On the usefulness of overparameterized ecological models, 
Ecological Modelling, 95, 289-299, 1997. 

Renard, B., Kavetski, D., Kuczera, G., Thyer, M., and Franks, S. W.: Understanding predictive 
uncertainty in hydrologic modeling: The challenge of identifying input and structural errors, 
Water Resources Research, 46, 2010. 

Revuelto, J., López-Moreno, J. I., Azorin-Molina, C., and Vicente-Serrano, S. M.: Topographic 
control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra-
and inter-annual persistence, The Cryosphere, 8, 1989-2006, 2014. 

Rice, R., and Bales, R. C.: Embedded sensor network design for snow cover measurements 
around snow pillow and snow course sites in the Sierra Nevada of California, Water resources 
research, 46, 2010. 

Ritter, A., and Muñoz-Carpena, R.: Performance evaluation of hydrological models: Statistical 
significance for reducing subjectivity in goodness-of-fit assessments, Journal of Hydrology, 
480, 33-45, 2013. 

Ritzel, B. J., Eheart, J. W., and Ranjithan, S.: Using genetic algorithms to solve a multiple 
objective groundwater pollution containment problem, Water Resources Research, 30, 1589-
1603, 1994. 

Ross, T. J.: Fuzzy logic with engineering applications, John Wiley & Sons, 2009. 

Sadegh, M., and Vrugt, J. A.: Bridging the gap between GLUE and formal statistical approaches: 
approximate Bayesian computation, Hydrology and Earth System Sciences, 17, 2013. 

Sajikumar, N., and Thandaveswara, B.: A non-linear rainfall–runoff model using an artificial 
neural network, Journal of hydrology, 216, 32-55, 1999. 



90 
 

Saloranta, T.: Simulating snow maps for Norway: description and statistical evaluation of the 
seNorge snow model, The Cryosphere, 6, 1323-1337, 2012. 

Saltelli, A., Ratto, M., Tarantola, S., Campolongo, F., and Commission, E.: Sensitivity analysis 
practices: Strategies for model-based inference, Reliability Engineering & System Safety, 91, 
1109-1125, 2006. 

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and 
Tarantola, S.: Global sensitivity analysis: the primer, John Wiley & Sons, 2008. 

Sargent, R. G.: Simulation model verification and validation, Proceedings of the 1991 Winter 
Simulation Conference, 1991. 

Savenije, H. H.: Equifinality, a blessing in disguise?. , Hydrological processes, 15, 2835-2838, 
2001. 

Schmid, B. H., and Koskiaho, J.: Artificial neural network modeling of dissolved oxygen in a 
wetland pond: the case of Hovi, Finland, Journal of Hydrologic Engineering, 11, 188-192, 
2006. 

Schulze, R. E.: Hydrology and agrohydrology: A text to accompany the ACRU 3.00 
agrohydrological modelling system, Water Research Commission, 1995. 

Senent-Aparicio, J., Jimeno-Sáez, P., Bueno-Crespo, A., Pérez-Sánchez, J., and Pulido-Velázquez, 
D.: Coupling machine-learning techniques with SWAT model for instantaneous peak flow 
prediction, Biosystems Engineering, 177, 67-77, 2018. 

Senge, P. M., and Forrester, J. W.: Tests for building confidence in system dynamics models, 
System dynamics, TIMS studies in management sciences, 14, 209-228, 1980. 

Copernicus land monitoring service-CORINE land cover: https://land.copernicus.eu/pan-
european/corine-land-cover, access: 29 August 2016. 

Shannon, C. E.: A mathematical theory of communication, Bell system technical journal, 27, 379-
423, 1948. 

Shen, Z. Y., Chen, L., and Chen, T.: Analysis of parameter uncertainty in hydrological and 
sediment modeling using GLUE method: a case study of SWAT model applied to Three 
Gorges Reservoir Region, China., Hydrology and Earth System Sciences, 16, 2012. 

Sherman, L. K.: Streamflow from rainfall by the unit-graph method, Eng. News Record, 108, 501-
505, 1932. 

Shrestha, D., Kayastha, N., and Solomatine, D.: A novel approach to parameter uncertainty 
analysis of hydrological models using neural networks, Hydrology Earth System Sciences, 13, 
1235-1248, 2009. 

Singh, V. P., and Woolhiser, D. A.: Mathematical modeling of watershed hydrology, Journal of 
hydrologic engineering, 7, 270-292, 2002. 

Slater, A. G., and Clark, M. P.: Snow data assimilation via an ensemble Kalman filter, Journal of 
Hydrometeorology, 7, 478-493, 2006. 

Smith, L. A.: Disentangling uncertainty and error: On the predictability of nonlinear systems, in: 
Nonlinear dynamics and statistics, Springer, 31-64, 2001. 



91 
 

Sonali, P., and Kumar, D. N.: Review of trend detection methods and their application to detect 
temperature changes in India, Journal of Hydrology, 476, 212-227, 2013. 

Statkraft information page, available at: https://www.statkraft.com/, last access: 20 June 2018. 

Stedinger, J. R., Vogel, R. M., Lee, S. U., and Batchelder, R.: Appraisal of the generalized 
likelihood uncertainty estimation (GLUE) method, Water resources research, 44, 2008. 

Sturm, M., and Wagner, A. M.: Using repeated patterns in snow distribution modeling: An Arctic 
example, Water Resources Research, 46, 2010. 

Sudheer, K., and Jain, A.: Explaining the internal behaviour of artificial neural network river flow 
models, Hydrological Processes, 18, 833-844, 2004. 

Suen, J.-P., and Eheart, J. W.: Evaluation of neural networks for modeling nitrate concentrations 
in rivers, Journal of water resources planning and management, 129, 505-510, 2003. 

Sun, W., Wang, Y., Wang, G., Cui, X., Yu, J., Zuo, D., and Xu, Z.: Physically based distributed 
hydrological model calibration based on a short period of streamflow data: case studies in four 
Chinese basins, Hydrology and Earth System Sciences, 21, 251, 2017. 

Tabari, H., Marofi, S., Abyaneh, H. Z., and Sharifi, M.: Comparison of artificial neural network 
and combined models in estimating spatial distribution of snow depth and snow water 
equivalent in Samsami basin of Iran, Neural Computing Applications, 19, 625-635, 2010.  

Taylor, W. A.: Change-point analysis: a powerful new tool for detecting changes, 2000. Available 
online: http://www.claudiobellei.com/2016/11/15/changepoint-frequentist/ (accessed on 1 June 
2018) 

Todini, E.: History and perspectives of hydrological catchment modelling, Hydrology Research, 
42, 73-85, 2011. 

Toth, E., Brath, A., and Montanari, A.: Comparison of short-term rainfall prediction models for 
real-time flood forecasting, Journal of hydrology, 239, 132-147, 2000. 

Trajkovic, S., Todorovic, B., and Stankovic, M.: Forecasting of reference evapotranspiration by 
artificial neural networks, Journal of Irrigation and Drainage Engineering, 129, 454-457, 2003. 

Udnæs, H. C., Alfnes, E., and Andreassen, L. M.: Improving runoff modelling using satellite-
derived snow covered area, Hydrology Research, 38, 21-32, 2007. 

Vaché, K. B., and McDonnell, J. J.: A process based rejectionist framework for evaluating 
catchment runoff model structure, Water Resources Research, 42, 2006. 

Van Leeuwen, P. J.: Particle filtering in geophysical systems, Monthly Weather Review, 137, 
4089-4114, 2009. 

Vieux, B. E., and Farajalla, N. S.: Capturing the essential spatial variability in distributed 
hydrological modelling: Hydraulic roughness, Hydrological processes, 8, 221-236, 1994. 

Viney, N. R., Bormann, H., Breuer, L., Bronstert, A., Croke, B. F., Frede, H., Gräff, T., Hubrechts, 
L., Huisman, J. A., and Jakeman, A. J.: Assessing the impact of land use change on hydrology 
by ensemble modelling (LUCHEM) II: Ensemble combinations and predictions, Advances in 
water resources, 32, 147-158, 2009. 



92 
 

Vrugt, J. A., Bouten, W., Gupta, H. V., and Sorooshian, S.: Toward improved identifiability of 
hydrologic model parameters: The information content of experimental data, Water Resources 
Research, 38, 48-41-48-13, 2002. 

Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A Shuffled Complex Evolution 
Metropolis algorithm for optimization and uncertainty assessment of hydrologic model 
parameters, Water resources research, 39, 2003. 

Vrugt, J. A., Diks, C. G., Gupta, H. V., Bouten, W., and Verstraten, J. M.: Improved treatment of 
uncertainty in hydrologic modeling: Combining the strengths of global optimization and data 
assimilation, Water resources research, 41, 2005. 

Vrugt, J. A., Ter Braak, C. J., Gupta, H. V., and Robinson, B. A.: Equifinality of formal (DREAM) 
and informal (GLUE) Bayesian approaches in hydrologic modeling, Stochastic Environmental 
Research and Risk Assessment, 23, 1011-1026, 2009. 

Wagener, T., McIntyre, N., Lees, M., Wheater, H., and Gupta, H.: Towards reduced uncertainty in 
conceptual rainfall runoff modelling: Dynamic identifiability analysis, Hydrological Processes, 
17, 455-476, 2003. 

Wagener, T., and Gupta, H. V.: Model identification for hydrological forecasting under 
uncertainty, Stochastic Environmental Research and Risk Assessment, 19, 378-387, 2005. 

Walker, W. E., Harremoës, P., Rotmans, J., Van Der Sluijs, J. P., Van Asselt, M. B., Janssen, P., 
and Krayer von Krauss, M. P.: Defining uncertainty: a conceptual basis for uncertainty 
management in model-based decision support, Integrated assessment, 4, 5-17, 2003. 

Wang, L., van Meerveld, H., and Seibert, J.: When should stream water be sampled to be most 
informative for event-based, multi-criteria model calibration?, Hydrology Research, 48, 1566-
1584, 2017. 

Weaver, W., and Shannon, C.: The mathematical theory of information, Urbana, Illinois Press, 
1964. 

Webster, C. S., Kingston, D. G., and Kerr, T.: Inter annual variation in the topographic controls 
on catchment scale snow distribution in a maritime alpine catchment, New Zealand, 
Hydrological processes, 29, 1096-1109, 2015. 

Wilkinson, M.: Testing the null hypothesis: The forgotten legacy of Karl Popper?, Journal of 
sports sciences, 31, 919-920, 2013. 

Winstral, A., Elder, K., and Davis, R. E.: Spatial snow modeling of wind-redistributed snow using 
terrain-based parameters, Journal of hydrometeorology, 3, 524-538, 2002. 

Winstral, A., and Marks, D.: Long term snow distribution observations in a mountain catchment: 
Assessing variability, time stability, and the representativeness of an index site, Water 
Resources Research, 50, 293-305, 2014. 

Xiong, L., and O’Connor, K. M.: An empirical method to improve the prediction limits of the 
GLUE methodology in rainfall-runoff modeling, Journal of Hydrology, 349, 115-124, 2008. 

Yang, J., Jakeman, A., Fang, G., and Chen, X.: Uncertainty analysis of a semi-distributed 
hydrologic model based on a Gaussian Process emulator, Environmental Modelling Software, 
101, 289-300, 2018. 



93 
 

Yapo, P. O., Gupta, H. V., and Sorooshian, S.: Multi-objective global optimization for hydrologic 
models, Journal of hydrology, 204, 83-97, 1998. 

Yu, J., Qin, X., and Larsen, O.: Applying ANN emulators in uncertainty assessment of flood 
inundation modelling: a comparison of two surrogate schemes, Hydrological Sciences Journal, 
60, 2117-2131, 2015. 

Zadeh, L. A.: Fuzzy sets, Information and control, 8, 338-353, 1965. 

Zhang, X., Srinivasan, R., and Van Liew, M.: Approximating SWAT model using artificial neural 
network and support vector machine 1, JAWRA Journal of the American Water Resources 
Association, 45, 460-474, 2009. 

Zhao, Y., Taylor, J. S., and Chellam, S. J.: Predicting RO/NF water quality by modified solution 
diffusion model and artificial neural networks, Journal of membrane science, 263, 38-46, 2005. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 

Journal publications 

Paper I 
Teweldebrhan, A. T., Burkhart, J. F., and Schuler, T. V.: Parameter uncertainty analysis for an 
operational hydrological model using residual-based and limits of acceptability approaches, 
Hydrology and Earth System Sciences, 22, 5021-5039, 2018. 

I



 
 

 



Hydrol. Earth Syst. Sci., 22, 5021–5039, 2018

https://doi.org/10.5194/hess-22-5021-2018

© Author(s) 2018. This work is distributed under

the Creative Commons Attribution 4.0 License.

Parameter uncertainty analysis for an operational hydrological
model using residual-based and limits of acceptability approaches
Aynom T. Teweldebrhan1, John F. Burkhart1,2, and Thomas V. Schuler1

1Department of Geosciences, University of Oslo, Oslo, Norway
2Statkraft, Oslo, Norway

Correspondence: Aynom T. Teweldebrhan (aynomtt@geo.uio.no)

Received: 28 March 2018 – Discussion started: 16 April 2018

Revised: 19 July 2018 – Accepted: 10 September 2018 – Published: 28 September 2018

Abstract. Parameter uncertainty estimation is one of the ma-

jor challenges in hydrological modeling. Here we present

parameter uncertainty analysis of a recently released dis-

tributed conceptual hydrological model applied in the Nea

catchment, Norway. Two variants of the generalized like-

lihood uncertainty estimation (GLUE) methodologies, one

based on the residuals and the other on the limits of ac-

ceptability, were employed. Streamflow and remote sensing

snow cover data were used in conditioning model parame-

ters and in model validation. When using the GLUE limit of

acceptability (GLUE LOA) approach, a streamflow observa-

tion error of 25 % was assumed. Neither the original limits

nor relaxing the limits up to a physically meaningful value

yielded a behavioral model capable of predicting streamflow

within the limits in 100 % of the observations. As an alterna-

tive to relaxing the limits, the requirement for the percentage

of model predictions falling within the original limits was re-

laxed. An empirical approach was introduced to define the

degree of relaxation. The result shows that snow- and water-

balance-related parameters induce relatively higher stream-

flow uncertainty than catchment response parameters. Com-

parable results were obtained from behavioral models se-

lected using the two GLUE methodologies.

1 Introduction

Hydrological models have numerous applications of central

importance to society including for planning, design, and

management of environmental and water resources. The op-

eration of hydropower systems is mainly constrained by the

availability of water resources. Hydrological models play an

important role in forecasting the local inflows to the system

on scales ranging from hours to years. With due recognition

of the need for accurate prediction of streamflow and snow

storage, Statkraft (2018) has recently released a new model-

ing framework mainly tailored for an operational purpose. In

this study, one of the conceptual models of this framework

was subjected to uncertainty analysis. Conceptual hydrologi-

cal models typically have one or more calibration parameters

and commonly require some form of inverse modeling to es-

timate model parameters from observations (Crawford and

Linsley, 1966). During calibration, equifinality arises when

different parameter sets give equally good results in terms of

predefined efficiency criteria (Beven, 1993; Savenije, 2001;

Wagener et al., 2003). The generalized likelihood uncertainty

estimation (GLUE) methodology (Beven and Binley, 1992)

is an extension of the generalized sensitivity analysis concept

of Hornberger and Spear (1981), and it accepts equifinality

as a working paradigm for parameter calibration of hydro-

logical models (Choi and Beven, 2007). It is based on the

concept that all models of hydrological systems are highly

simplified representations of reality (e.g., Reichert and Om-

lin, 1997), and hence it is expected to have several different

model structures and parameter sets that describe the system

in an adequate way (Blazkova and Beven, 2002). When deal-

ing with nonlinear systems, the classic hydrological approach

of using a single set of model parameters may lead to large

predictive biases (e.g., Mantovan and Todini, 2006).

Hydrological modeling is affected by four main sources

of uncertainty related to input data, validation data, model

structure, and model parameters (e.g., Renard et al., 2010).

Input data uncertainties may arise from measurement limi-

tations and scaling issues, for example, due to forcing data
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downscaling. Errors of the rating curve affect streamflow es-

timates and thereby lead to validation data uncertainty. Struc-

tural uncertainty may result from the underlying assump-

tions and simplifications in the model formulation as well as

from application of the model to conditions inconsistent with

the model structure (Tripp and Niemann, 2008). Parametric

uncertainty reflects the inability to specify exact values of

model parameters (Renard et al., 2010) and it may stem from

errors in input data and observations used for model condi-

tioning as well as be due to epistemic errors in model struc-

ture. An increased awareness of these modeling uncertainties

and the need for quality control of such models requires the

integration of uncertainty analysis into the modeling process

from the very beginning (Beven, 1989; Saltelli et al., 2006;

Refsgaard et al., 2007).

Uncertainty analysis techniques can be classified as

frequentist or Bayesian approaches, probabilistic or non-

probabilistic approaches (e.g., Montanari et al., 2009), or

as formal or informal approaches (e.g., Vrugt et al., 2009).

Among the most widely used techniques in hydrological

modeling are the formal Bayesian and the GLUE meth-

ods (Jin et al., 2010). The formal Bayesian approach makes

strong assumptions about the statistics of observed data;

with the likelihood function defined based on assumptions

about the nature of the residuals (Schoups and Vrugt, 2010).

However, the choice of an adequate likelihood function has

been the subject of considerable debate. According to Beven

and Smith (2015), a formal probabilistic likelihood func-

tion will have limited value since non-stationary epistemic

uncertainties cannot be adequately represented by a statis-

tical model. In GLUE, the likelihood measure is associated

with a parameter set and should ideally reflect all the dif-

ferent sources of uncertainty (Beven and Smith, 2015). The

original GLUE methodology has been the subject of debate

for using a subjectively set threshold of behavioral models

(e.g., Mantovan and Todini, 2006; Stedinger et al., 2008;

Clark et al., 2011; Nearing et al., 2016). This problem is

common to most residual-based model selection methods

(Schaefli, 2016). The extended concept of behavioral models

in the GLUE limits of acceptability approach (GLUE LOA)

(Beven, 2006) attempts to overcome this drawback through

use of error bounds of the observational dataset.

The GLUE LOA methodology involves specifying limits

around some observational data within which model predic-

tions are required to lie and thereby considered acceptable

for the intended model application. The acceptability limits

are set prior to running a model and, among other consider-

ations, they are expected to take into account incommensu-

rability and uncertainty in both the input and evaluation data

(Beven, 2009). However, identification of models that repro-

duce the observed system behavior within the limits of mea-

surement error is not easy due to time-varying errors in the

input data and model structure (e.g., Beven, 2016). This diffi-

culty is even more pronounced when input and other sources

of errors are not explicitly accounted for in defining the LOA.

Good quality time series data and associated uncertainties

are not always readily available. For example, in regulated

catchments the inflow hydrograph is often estimated from

changes in storage volume and outflows using the water bal-

ance equation. Thus, as in the case of our study catchment, no

stage–discharge relationship exists for estimating the stream-

flow uncertainty using the usual practice, i.e., by fitting dif-

ferent rating curves. In such instances the alternative is to as-

sume an observation error proportional to the observational

data. However, the identification of behavioral models with-

out due consideration to such less precise observation error

estimates may lead to the rejection of a useful model (i.e.,

making a type II error). Some of the measures taken to min-

imize the risk of making a type II error when identifying be-

havioral models using the GLUE LOA include extending the

limits (e.g., Blazkova and Beven, 2009; Liu et al., 2009) and

using different model realizations for different periods of a

hydrological year (e.g., Choi and Beven, 2007). In this study,

instead of relaxing the limits, the percentage of observations

where model predictions are required to fall within the ac-

ceptability limits was relaxed.

The GLUE methodology has been widely used in vari-

ous disciplines (Beven, 2009; Efstratiadis and Koutsoyian-

nis, 2010) primarily due to its conceptual simplicity and ease

of implementation. Further, its suitability for parallel imple-

mentation on distributed computer systems as well as its gen-

eral strategy in dealing with equifinality in model calibration

make it an appealing framework (Blasone et al., 2008; Shen

et al., 2012; Mirzaei et al., 2015).

In this study model parameters were constrained using

streamflow and the MODIS snow cover product (Hall et al.,

2006). Multi-criteria model conditioning helps to reduce pre-

diction uncertainty through improved parameter identifica-

tion (e.g., Efstratiadis and Koutsoyiannis, 2010; Finger et

al., 2015), and GLUE provides a flexible approach for using

multi-criteria methods through different ways of combining

measures. Besides streamflow, one of the observations com-

monly used in multi-criteria conditioning of rainfall-runoff

models in snow-dominated catchments is snow data. Remote

sensing snow cover data have been used in several hydro-

logical modeling studies for deriving and updating a snow

depletion curve (SDC) (e.g., Lee et al., 2005; Kolberg and

Gottschalk, 2006; Bavera et al., 2012), as well as in multi-

criteria-based model calibration and simulated snow cover

validation (e.g., Udnaes et al., 2007; Parajka and Bloschl,

2008; Berezowski et al., 2015). However, studies involving

combined uncertainty of streamflow and snow cover predic-

tions using the GLUE methodology are still missing in the

literature.

The main objective of this study is to assess parameter

uncertainty for a recently developed distributed conceptual

hydrological model using the GLUE methodology with due

consideration to the model’s main application as an opera-

tional hydrological model. The second objective is to inves-

tigate the potential value of snow cover data as additional
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observation in conditioning model parameters in the study

area. The third objective is to assess the possibility of using

a time-relaxed GLUE LOA approach for constraining model

parameters. In doing so, we employ a novel empirical ap-

proach for implicitly accounting for the effects of input and

observational data errors by relaxing the percentage of time

steps in which predictions of model realizations fall within

the limits.

This paper is organized as follows. First the (i) hydrologi-

cal model and (ii) the study site and relevant data used in this

study are briefly described in Sect. 2.1 and 2.2. The proce-

dures followed to set up the uncertainty analyses are then

outlined in Sect. 2.3. In Sect. 3, the results from parame-

ter uncertainty as well as the uncertainty of streamflow and

snow cover predictions using the residual-based GLUE ap-

proach are presented. The results from the relaxed GLUE

LOA are also presented in this section. Finally, in Sects. 4

and 5, the analysis results and their implication on the hy-

drologic model, the data and the methodologies followed are

discussed and conclusions are drawn.

2 Methods and materials

2.1 The hydrological model

The Statkraft Hydrological Forecasting Toolbox,

Shyft (https://github.com/statkraft/shyft, last access:

1 March 2018), is an open-source distributed hydrological

modeling framework developed by Statkraft (Burkhart et

al., 2016). The modeling framework has three main models

(method stacks) and, in this study, the PT_GS_K model

was used for uncertainty analysis. PT_GS_K is a conceptual

model with several adjustable parameters depending on the

climatic and physiographic characteristics of the study area

where the model is applied. This model requires temperature,

precipitation, radiation, relative humidity, and wind speed

as forcing data. PT_GS_K uses the Priestley–Taylor (PT)

method (Priestley and Taylor, 1972) for estimating potential

evaporation; a quasi-physical-based method for snowmelt,

sub-grid snow distribution and mass balance calculations

(GS method); and a simple storage–discharge function

(Lambert, 1972; Kirchner, 2009) for catchment response

calculation (K). Overall, these three methods constitute

the PT_GS_K model in Shyft. The framework establishes

a sequence of spatially distributed cells of arbitrary size

and shape. As such it can provide lumped (single cell) or

discretized (spatially distributed) calculations, as in this

study. The model was applied to each of the grid cells and

for each time step.

Within the GS method, precipitation falling in each grid

cell is classified as solid or liquid precipitation depending on

a threshold temperature (tx) and on the local temperature val-

ues. The snowmelt energy is the sum effect of different en-

ergy sources in the system such as shortwave and long-wave

radiation as well as the turbulent sensible and latent energy

fluxes. Among other factors, the energy contribution from

shortwave radiation depends on snow albedo. For a given

time step (t), the snow albedo of each grid cell depends on

the minimum (αmin) and maximum (αmax) albedo values as

well as on air temperature (Ta) (Eq. 1). In this method the de-

cay rates of albedo due to snow ageing as a function of tem-

perature, i.e., the fast (fast ADR, αfdr) and slow (slow ADR,

αsdr) albedo decay rates corresponding to temperature condi-

tions above and below 0 ◦C, respectively, are parameterized.

Turbulent heat contribution is the sum of latent and sensible

heat. Wind turbulence is linearly related to wind speed using

a wind constant and wind scale from the intercept and slope

of the linear function, respectively (Hegdahl et al., 2016).

αt =

⎧⎪⎪⎨
⎪⎪⎩

αmin + (αt−1 − αmin) ·
(

1

21/αfdr

)
Ta > 0 ◦C

αt−1 + (αmax − αmin) ·
(

1

2 (αsdr)

)
Ta ≤ 0 ◦C

(1)

The sub-grid snow distribution is described by a three-

parameter gamma probability distribution snow depletion

curve (Liston, 1999; Kolberg and Gottschalk, 2006). The tra-

ditional gamma distribution is parameterized with two val-

ues, i.e., the average amount of snow at the onset of the melt

season m (mm) and the shape value (k), based on the as-

sumption that the ground is completely snow covered before

the onset of melt. Since this assumption may not hold true

for a number of grid cells especially in alpine areas, a third

parameter representing the bare ground fraction at the onset

of the snowmelt season has been introduced (Kolberg and

Gottschalk, 2006). The two-parameter gamma distribution

(Eq. 2) is thus applied only to the remaining portion of a grid

cell to estimate the fraction of the initially snow-covered area

where snow has disappeared (y′). The initial bare ground

fraction parameter is constant for all years. At each time step,

the state parameters such as snow water equivalent (SWE)

and snow cover area (SCA) are updated using the SDC func-

tion. In the GS method, the shape value is a direct transfor-

mation of the sub-grid snow coefficient of variation (CVs).

y′ =
λ(t)∫
0

f (x;k,θ)dx = γ (k,
λ

θ
), (2)

where f denotes the gamma probability density function and

γ is the incomplete gamma function. x and λ(t), respectively,

refer to point snow storage and the accumulated melt depth

(mm) at time t since the onset of the melt season. θ represents

the scale parameter with m = kθ and k = CV−2
s .

The catchment response function (CRF) is based on the

storage–discharge relationship concept described in Kirch-

ner (2009) and represents the sensitivity of discharge to

changes in storage (Eq. 3). This method is based on the idea

that catchment sensitivity to changes in storage, i.e., g(Q),

can be estimated from the time series of discharge alone
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Table 1. Range of model parameters used for the PT_GS_K model stack uncertainty analysis.

Name Min. Max. Description Method

c1 −5.0 1.0 constant in the catchment response function (CRF) K

c2 0.0 1.2 linear coefficient in CRF K

c3 −0.15 −0.05 quadratic coefficient in CRF K

tx −3.0 2.0 Solid or liquid threshold temperature (◦C) GS

Wind scale 1.0 6.0 slope in turbulent wind function GS

Fast ADR 1.0 15.0 fast albedo decay rate (days) GS

Slow ADR 20.0 40.0 slow albedo decay rate (days) GS

Snow CV 0.06 0.85 spatial coefficient of variation of snowfall GS

through fitting empirical functions to the data such as the

quadratic equation. Since discharge is generally nonlinear

and typically varies by many orders of magnitude, the rec-

ommended approach is to use log-transformed discharge val-

ues in order to avoid the risk of numerical instability. In this

method, the three parameters of the catchment response func-

tion, i.e., c1, c2, and c3, are parameterized.

d(ln(Q))

dt
= g (Q)

(
P − E

Q
− 1

)
, (3)

with g (Q) = ec1 + c2(ln(Q))+ c3(ln(Q))2
,

in which E and Q, respectively, represent actual evapo-

transpiration and discharge. In the original formulation P

refers to precipitation, whereas in this method it refers to the

liquid water supply from rainfall and snowmelt.

The potential evaporation calculation in the PT method re-

quires net radiation and the slope of saturated vapor pressure

as well as the Priestley–Taylor parameter, the psychometric

constant, and the latent heat of vaporization (e.g., Matt et al.,

2018). The latter three variables are kept constant in the PT

method. Actual evapotranspiration is assumed to take place

only from snow-free areas and it is estimated as a function of

potential evapotranspiration and a scaling factor.

In the default parameter settings of the PT_GS_K model

seven parameters are considered as influential and thus al-

lowed to vary in conditioning the model. Preliminary model

calibration using the BOBYQA algorithm (Powell, 2009)

and the default setting gave reasonable model performance.

Hence, the same setting was also followed in this study with

the addition that the sub-grid snow coefficient of variation

was also considered an uncertain model parameter. A simi-

lar result was also observed when this setting was later veri-

fied using the method of Morris (Morris, 1991; Saltelli et al.,

2008) for screening the most influential out of the relevant

model parameters. The feasible ranges of parameter values

are set based on relevant literature and previous modeling

studies in the Nea-Nidelva catchment. Table 1 shows a list of

these parameters with their range of possible values.

2.2 Study area and data

This study was conducted using climatic and catchment data

from the Nea catchment (11.67390–12.46273◦ E, 62.77916–

63.20405◦ N). The Nea catchment constitutes the headwaters

of the Nea-Nidelva water resources management area which

is situated in Sør-Trøndelag county, Norway (Fig. 1). The hy-

dropower generated from this area is the main source of elec-

tric supply to several places in mid-Norway including to one

of the biggest cities in the country, Trondheim. As a result

this area has significance for Statkraft AS and other stake-

holders responsible for the development and management of

water resources in the region and has been selected for re-

search focused on better prediction and understanding of the

snow processes and their impact on hydrology of the down-

stream area.

The Nea catchment covers a total area of 703 km2 and it

is characterized by a wide range of physiographic and land

cover characteristics. Altitude of the catchment ranges from

1783 m a.s.l. on the eastern part around the mountains of

Storsylen to 649 m a.s.l. at its outlet on the western part of

the catchment. Mean annual precipitation for the hydrologi-

cal years 2011–2014 was 1120 mm. The highest and lowest

average daily temperature values for this period were 28 and

−30 ◦C, respectively.

As mentioned in Sect. 2.1, the PT_GS_K model requires

temperature, precipitation, radiation, relative humidity, and

wind speed as forcing data. In this study, daily time series

data of these variables for the study area were obtained from

Statkraft (2018) as point measurements, with the exception

of relative humidity. Daily gridded relative humidity data

were retrieved from ERA-Interim (Dee et al., 2011). The

Model uses a Bayesian kriging approach to distribute the

point temperature data over the domain, while for the other

forcing variables it uses an inverse distance weighting ap-

proach.

Two observational datasets, streamflow and snow cover,

were used in this study. Daily observed streamflow measure-

ments covering 4 hydrological years (1 September to 31 Au-

gust) were provided for the study area. The climatic data

show that these hydrological years represented periods both

above and below the long-term average annual precipitation.
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Figure 1. Physiographic and location map of the Nea catchment in Norway.

Years 2011 and 2013, respectively, were the wettest and dri-

est years in over 10 years. Daily snow cover fraction (SCF)

data were retrieved from NASA MODIS snow cover prod-

ucts (MODIS SCF) (Hall et al., 2006). Frequent cloud cover

is one of the major challenges when using MODIS and other

optical remote sensing data in Norway. In order to minimize

the effect of obstructions and misclassification errors ema-

nating from clouds and other sources, a composite dataset

was formed using data retrieved from the Aqua and Terra

satellites, MYD10A1 and MOD10A1 products, respectively.

In this analysis, PT_GS_K was set up in distributed mode

over 812 grid cells, requiring the following physiographic

data of each grid cell: average elevation and grid cell total

area, as well as the areal fractions of forest, reservoir, lake,

and glacier. Data for these physiographic variables were re-

trieved from two sources: the land cover data from Coper-

nicus land monitoring service (2016) and the 10 m digital

elevation model (10 m DEM) from the Norwegian mapping

authority (2016).

2.3 The uncertainty analysis methods

In this study a modeling and parameter uncertainty analysis

was conducted using two GLUE variants. First, the hydro-

logical model and its snow sub-model were subjected to un-

certainty analysis using the residual-based GLUE methodol-

ogy. When using this approach, the relevant model param-

eters were initially conditioned using either streamflow or

MODIS SCF. In the subsequent analysis, they were condi-

tioned using both streamflow and SCF. Following that, the

uncertainty analysis was conducted using the relaxed GLUE

LOA approach.

2.3.1 Sampling the parameter dimensions

The performance of all uncertainty analysis techniques de-

pends on the efficiency of the sample in representing the

entire response surface (Pappenberger et al., 2008). In this

study, prior distributions of the uncertain model parameters

were not known and hence a uniform distribution was as-

sumed. The challenge in using uniform distribution is, how-

ever, to adequately sample the entire parameter dimensions.

To overcome this challenge and to better identify regions of

behavioral simulations, a sample size of 100 000 runs was

used. Each model run is a realization of a parameter set ran-

domly drawn from the domains of the model parameters.

An all-at-a-time (AAT) sampling method (e.g., Pianosi et al.,

2016) was employed. This method involves random selection

of all parameter values simultaneously. The residual-based

GLUE (Sect. 2.3.2) and the relaxed GLUE LOA (Sect. 2.3.3)

approaches are used to identify the behavioral model runs.

Matlab scripts from the SAFE toolbox (Pianosi et al., 2015)

were used as a basis to characterize behavioral and non-

behavioral models.
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2.3.2 The residual-based GLUE approach

In this study, the performance of each model realization was

evaluated by using relevant likelihood measures. Residual-

based informal likelihood measures are considered suitable

measures of fit when large datasets such as rainfall-runoff

time series exist for model conditioning (Hassan et al., 2008).

The Nash–Sutcliffe efficiency (NSE, Eq. 4) belongs to these

groups of likelihood measures, and it is the most widely used

likelihood measure for assessing the fitness of model param-

eters in hydrological modeling (Xiong and O’Connor, 2008).

Further, the main end users of the model commonly use NSE

both in calibration and evaluation of hydrological models.

Thus, use of this performance measure as a streamflow like-

lihood measure makes it easier both in setting the threshold

value for behavioral models (i.e., based on previous expe-

rience) and in communicating model performance outputs.

However, the NSE calculated using raw values tends to over-

estimate model performance during peak streamflow and un-

derestimate during low-streamflow conditions (e.g., Krause

et al., 2005). To partly overcome this problem, NSE is often

calculated with log-transformed observed and simulated val-

ues. In this study, both NSE and NSE with log-transformed

streamflow values (LnNSE) were thus employed as likeli-

hood measures in evaluating each model run.

NSE = 1 −

n∑
i=1

(Qsim, i − Qobs, i )
2

n∑
i=1

(Qobs, i − Q̄obs)2

, (4)

in which Qsim represents simulated streamflow, Qobs is ob-

served streamflow, and Q̄obs represents the mean value of

observed streamflow series.

Within the residual-based GLUE procedure, the defini-

tion of threshold likelihood value at which the model per-

formance is judged reasonable is a subjective choice by the

modeler. In this study, NSE and LnNSE of 0.7 and 0.6, re-

spectively, were considered as the threshold values for be-

havioral models. These values were chosen with due consid-

eration to the input and observational data quality as well

as the relative importance given to high streamflow in re-

lation to low-streamflow conditions in the hydropower in-

dustries. In the case of the combined likelihood measure, a

weighted average threshold value (e.g., Hassan et al., 2008)

was calculated assuming each likelihood measure to have a

weight proportional to its threshold value. Accordingly, the

NSE and LnNSE likelihood measures were respectively as-

signed weights of 0.54 and 0.46 (Eq. 5).

LNS (O | M (θi)) = 0.46(LLnNSE) + 0.54(LNSE), (5)

where LNS (O | M (θi)) represents the combined likelihood

measure for the ith model realization with model prediction

of M (θi), which is a function of the set of model param-

eters θi , and corresponding to the observations (O). LNSE

Table 2. Setup of the two-by-two contingency table for binary snow

cover data comparison. O and S, respectively, represent observed

and simulated binary snow cover and the subscripts refer to a snow-

free (0) and snow-covered (1) grid cell.

S1 S0 Sum

O1 n11 n01 nx1

O0 n10 n00 nx0

Sum n1x n0x nxx

CSI = n11
nxx−n00

and LLnNSE, respectively, represent the likelihood measures

based on NSE and LnNSE. Models producing likelihood

measure values greater than or equal to the threshold value

were labeled as behavioral models and were retained for use

in further analysis.

The root mean squared error (RMSE) of simulated and

MODIS fractional snow cover was used as a likelihood mea-

sure of SCF. A threshold value of 0.17 was set when using the

RMSE in model conditioning. This value was fixed based on

the average performance of similar conceptual hydrological

models as a reference (e.g., Skaugen and Weltzien, 2016) and

with due consideration to the inherent error in the MODIS

SCF data. The estimated annual average error of MODIS

SCF maps for the Northern Hemisphere is approximately

8 % in the absence of cloud (Pu et al., 2007), and in forest-

dominated areas it may reach up to 15 % (Hall et al., 2001).

Preliminary assessment of model performance indicates

that the snow yes/no-based model performance (critical suc-

cess index, CSI; Table 2) is very high both before the onset of

snowmelt and during the complete melt-out period. The low-

est match between simulated and MODIS SCF was observed

during early summer. It was thus decided to use a weighted

mean likelihood measure of SCF, with maximum weight as-

signed to likelihoods from the middle part of the observation

period. The likelihood of each SCF observation was assigned

a specific weight based on the location of the observation

date in a trapezoidal membership function (TMF). The start

and end of the MODIS SCF observation period locate the

feet of the trapezoid and the start and end of the month of

June locate the shoulders (Fig. 2). For each model realization,

the weighted average RMSE (wRMSE) of all SCF observa-

tions and their corresponding simulated values for the cali-

bration period were calculated and model realizations with

wRMSE below the threshold value were considered behav-

ioral. The weight of each behavioral model was calculated

as the inverse of wRMSE and was used in constructing the

cumulative distribution function (CDF), based on which the

predicted SCF values for different quantiles can be extracted.

When selecting behavioral models using the combined

likelihoods of streamflow and SCF, the merging of these like-

lihoods was carried out in two steps. First the likelihoods

representing low- and high-flow conditions, viz. LnNSE and
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Figure 2. A trapezoidal membership function for SCF likelihoods

in the observational period.

NSE, were combined following a similar procedure as de-

scribed above. The likelihoods of streamflow and SCF were

separately rescaled such that their respective weights would

sum to unity following a similar procedure to that used in

Brazier et al. (2000). The combined streamflow likelihood

and the SCF likelihood were subsequently multiplied to get

a combined likelihood measure of streamflow and SCF.

2.3.3 The relaxed GLUE LOA approach

Unlike the residual-based model selection approaches, in-

cluding the residual-based GLUE methodology, the GLUE

LOA approach relies on an assessment of uncertainty in the

observational data. The uncertainty analysis was also thus

conducted in this study using the GLUE LOA approach and

its results compared against those from the residual-based

GLUE methodology.

In this study when using the GLUE LOA approach, both

the streamflow and MODIS SCF data were considered as un-

certain observations. Since no uncertainty data were avail-

able for streamflow observations in the study site, mean

streamflow uncertainty of 25 % was assumed and the stream-

flow limits were defined using this value. Although, the max-

imum expected error of MODIS snow cover products under

clear-sky conditions is reported to be 15 % for forest areas

(Hall et al., 2001), cloud coverage coupled with a lack of

contrast between clouds and snow cover may severely affect

the accuracy. And in some cases this leads to misclassifica-

tion of snow as land (e.g., Parajka et al., 2012). Thus, a SCF

uncertainty of 25 %–50 % was assumed to represent the er-

rors associated with the SCF observations and the input data.

An alternative approach was employed to minimize the

risk of rejecting useful model realizations due to using as-

sumed average observational error bounds and due to a lack

of a viable means for explicitly accounting for the time-

varying level of observational and input data uncertainties.

The procedure involves relaxing the percentage of obser-

vations where model predictions fall within the acceptabil-

ity limits. Model realizations whose predictions fall within

the acceptable bounds in a defined percentage of the ob-

servations were considered behavioral. The minimum ac-

ceptable percentage of observations where model predictions

fall within the limits (hereafter referred as threshold pLOA)

in turn was set such that the 5 %–95 % prediction limit of

streamflow, reported as the containing ratio (CR, see Eq. 6),

is close to the value obtained using the residual-based GLUE

methodology. The procedure for relaxing the original GLUE

LOA requirement during the calibration period involves the

following steps.

– Step 1: define an acceptable prediction limit (CR) at a

chosen certainty level (e.g., 5 %–95 %). In this study the

CR value obtained for the calibration period using the

residual-based GLUE methodology was adopted as an

acceptable CR value.

– Step 2: relax the acceptable percentage of observations

where model predictions fall within the limits. This is

done by gradually lowering the requirement for brack-

eting the observations in 100 % of the time steps up to

the acceptable pLOA.

– Step 3: run a calibration and test whether each model re-

alization prediction falls within the limits at least for the

specified percentage of the total observations. If model

realizations that satisfy the relaxed acceptability criteria

are found, proceed to step 4, otherwise lower the thresh-

old pLOA further and repeat this step.

– Step 4: calculate the new CR and check if it is close

to the predefined acceptable CR value. If the calculated

CR is less than the predefined CR, repeat steps 2 to 4,

whereas if the two CR values are close (e.g., within 5 %)

then accept all model realizations that satisfy this pLOA

as behavioral and store their indices for use in further

analysis.

Model realizations that fulfill this relaxed LOA criteria

both in streamflow and SCF observations were considered

behavioral. A triangular membership function was used to

define the weights of each criterion, where a maximum

weight of 1.0 was assigned to predictions with a perfect

match to the observation and a minimum weight of 0.0 to

predictions outside the acceptability limits. For each model

realization, the weights of individual time steps were added

to give a generalized weight. Following the procedure by

Blazkova and Beven (2009), the weights associated with

streamflow and MODIS SCF were combined by taking the

sum of these two criteria and rescaling them such that the

sum of the weights for behavioral models is unity. The behav-

ioral model realizations were used for prediction weighted by

their overall degree of performance.

2.3.4 GLUE output analysis

A split-sample-based cross-validation of streamflow predic-

tions was used to alternately evaluate how well the behav-

ioral models identified at a given calibration period are able

to reproduce the observed values from another period. The
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hydrologic model was run for 4 years at a daily time step.

The first month of each hydrological year was considered

as a spin-up period and hence excluded from all uncertainty

analyses. Each of the 4 years was alternately used to identify

behavioral models and the remaining 3 years were individu-

ally used to assess the modeling uncertainty.

In this study the modeling uncertainty was evaluated us-

ing both qualitative and quantitative evaluation techniques.

The upper and lower streamflow prediction limits as well as

observed values were plotted on the same graph to visually

assess the capability of the identified behavioral models in

bracketing the observations. The containing ratio (CR) index

was also used to analyze the prediction uncertainty follow-

ing a similar procedure to that used in some studies involving

the GLUE methodology (e.g., Xiong et al., 2009; He et al.,

2011). CR is expressed as the ratio of the number of observa-

tions falling within respective prediction bounds to the total

number of observations (Eq. 6).

CR =

n∑
i=1

I (Qobs, i )

n
,

where

I (Qobs, i ) =
{

1, Llim, i < Qobs, i < Ulim, i

0, Otherwise
. (6)

Qobs, i represents observed streamflow at the ith time step,

and Llim, i and Ulim, i are the lower and upper prediction

bounds, respectively.

As an alternative to a crisp prediction for an observa-

tion (e.g., Xiong and O’Connor, 2008), the median (50 %)

streamflow prediction was also estimated from the behavioral

model simulations and compared against observations using

both NSE and LnNSE as goodness-of-fit measures. Simi-

larly, the critical success index (Table 2) and RMSE were

used as goodness-of-fit measures for median SCF prediction.

When using RMSE, the fractional snow cover data of each

grid cell were directly employed in validating median pre-

dictions. CSI represents the number of grid cells where the

snow events are correctly predicted out of the total number of

grid cells where snow is predicted in the model. It was calcu-

lated based on binary snow cover data using the two-by-two

contingency table analysis (Table 2) following a similar pro-

cedure to that used in Hanzer et al. (2016). When converting

the snow cover fraction to a binary measure, a grid cell was

classified as snow covered if at least 50 % of its area is snow

covered.

3 Results

3.1 Uncertainty analysis using the residual-based
GLUE approach

3.1.1 Uncertainty of model parameters

The uncertainty of model parameters was analyzed using all

years of record together as single time series data. The dotty

plots (Fig. 3) depict the goodness-of-fit response surface pro-

jected onto individual parameter dimensions. The parallel co-

ordinate plots (Fig. 4) also show the distribution of model pa-

rameters within their respective parameter dimensions. The

distribution of behavioral simulations across a parameter di-

mension varies from one parameter to another. The behav-

ioral models are scattered nearly across the entire range of

parameter dimension for fast ADR, slow ADR, and snow CV,

indicating low model sensitivity to these parameters. On the

other hand, the relatively localized distribution of behavioral

models towards lower values when projected onto the param-

eter ranges of c1, c2, tx, and wind scale as well as towards

higher values of c3 reflects higher sensitivity of simulated

streamflow to these calibration parameters. Furthermore, the

parallel coordinate plots show an increase in likelihood mea-

sure value towards the lower (for c1, c2, tx, and wind scale)

and higher (for c3) parts of their respective parameter dimen-

sions.

The aforementioned less sensitive model parameters can,

however, have a high effect on model outputs through in-

teraction with other parameters. Some degree of interaction

between model parameters can be seen from the correlation

shown in Fig. 5. For example, a general decreasing trend in

model performance can be noticed with a joint increase in c1

and c2. The strong influence of tx in constraining the output

is also evident in these plots. A considerable level of inter-

action can also be observed from the correlation coefficient

scores between c1 and c2 (0.56), c2 and c3, (0.53) and be-

tween tx and wind scale (0.66).

The posterior distribution histograms (Fig. 6) and the sta-

tistical summary table of posterior distribution (Table 3) il-

lustrate variability in distribution characteristics of the model

parameters. The catchment response parameters, viz. c1, c2,

and c3, showed relatively well-defined peaks, whereas fast

ADR, slow ADR, and snow CV appear less identifiable with

a relatively flat distribution across their respective parameter

dimensions. It should, however, be noted that, in the GLUE

methodology, it is the set of parameter values that gives a

behavioral model.

3.1.2 Uncertainty of streamflow predictions

Figure 7 shows a sample cross-validation of daily stream-

flow prediction limits against observed values. The upper and

lower prediction bounds as well as the median values are

generated with behavioral models identified in year 2011 us-
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Table 3. Statistical summary of the posterior distribution for model parameters.

Statistics c1 c2 c3 tx Wind Fast ADR Slow ADR Snow

(◦C) scale (days) (days) CV

Minimum −5.00 0.00 −0.12 −3.00 1.01 1.00 20.07 0.06

Maximum −2.32 0.70 −0.05 1.98 3.74 14.96 39.98 0.85

Mean −3.90 0.22 −0.07 −1.39 2.40 7.38 30.21 0.46

Median −3.92 0.20 −0.07 −1.57 2.48 7.01 30.71 0.47

Variance 0.33 0.02 0.00 1.15 0.48 15.46 33.15 0.05

Skewness 0.18 0.53 −0.58 0.81 −0.22 0.19 −0.05 −0.06

Figure 3. Dotty plots of the likelihood measure for behavioral and non-behavioral models identified using the residual-based GLUE method-

ology.

ing the combined NSE and LnNSE likelihood measure. The

calculated uncertainty in streamflow prediction indicated by

the 5–95 percentile range (shaded band) varied over time

and relatively higher uncertainty was noticed during high-

streamflow than low-streamflow periods.

As can be seen from the summary table of cross-validation

results (Table 4), the CR values range from 0.62 to 0.91 with

an overall mean value of 0.77. The mean CR values for the

calibration and validation periods are 0.78 and 0.76, respec-

tively. The evaluation result generally shows that the me-

dian prediction of behavioral models selected using the com-

bined likelihood was able to reproduce the observed values

remarkably well with average NSE and LnNSE of 0.86 and

0.72, respectively, for the validation period. However, per-

formance of the behavioral models identified using NSE was

very low when evaluated using LnNSE in year 2014. This
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Figure 4. Distribution of model parameters within their variability

ranges.

phenomenon can be attributed to the relatively low quality of

streamflow observations during the low-streamflow period of

this year. The validation result was also highly affected by

the nature of the likelihood measure used during the identi-

fication of behavioral models. For example, a persistent low

performance was observed during the early months of the hy-

drologic year when validating behavioral models identified

using NSE alone (Fig. 7c) as compared to those identified

using the combined likelihood (Fig. 7d). Similarly, excluding

the first 30 observations from the validation dataset resulted

in an improvement of LnNSE from −0.53 to 0.44.

3.1.3 Uncertainty of snow cover predictions

Snow cover fractions and snow water equivalent are two

main outputs of the snow sub-model (GS) of the PT_GS_K

model. In this study an initial single-likelihood-based condi-

tioning of the GS specific parameters was carried out using

MODIS SCF only and RMSE as a measure of model perfor-

mance.

The cross-validation result of predicted median values

against MODIS SCF observations is shown in Table 5. The

highest and lowest RMSE values during the calibration pe-

riod were 0.15 and 0.06, respectively, with an average RMSE

value of 0.11. Minimum and maximum RMSE values of 0.06

and 0.22, respectively, were observed during the validation

period with an average RMSE value of 0.13. Similarly the

lowest CSI values during the calibration and validation pe-

riods were 0.99 and 0.88, respectively. Comparable maxi-

mum CSI results were observed between the two periods.

The 5 %–95 % SCF prediction interval was able to reason-

ably bracket the observations in most of the calibration and

validation periods with mean CR values of 0.60 and 0.71, re-

spectively, without any explicit accounting for model resid-

uals for each parameter set. The inter-annual comparison of

model performance shows that relatively lower performance

was observed in years 2011 and 2012 as compared to the

other periods.

3.1.4 Uncertainty of streamflow and snow cover
predictions using both observations

The cross-validation result of simulated streamflow and SCF

against observations is shown in Table 6. A similar model

performance was observed when model parameters are con-

ditioned using both streamflow and MODIS SCF as com-

pared to when only streamflow was used for model con-

ditioning. The mean NSE and LnNSE values of the me-

dian streamflow prediction in the validation periods were

0.85 and 0.71, respectively. The average streamflow predic-

tion uncertainty (CR) in the validation period was 0.70. For

SCF, average RMSE and CSI values of 0.11 and 0.99, re-

spectively, were obtained when using the combined likeli-

hood. The streamflow and SCF median predictions obtained

in this analysis are similar to the results when model pa-

rameters are respectively conditioned with streamflow only

or MODIS SCF only. This result shows that contribution

from the MODIS SCF was less significant in constraining

the model parameters. The relatively low quality of MODIS

SCF data as compared to the streamflow data for the study

site may also partly explain this phenomenon.

3.2 Uncertainty analysis using the relaxed GLUE LOA
approach

The median streamflow prediction of behavioral models

identified using the relaxed GLUE LOA was able to mimic

the observed values very well with a mean NSE and LnNSE

of 0.85 and 0.7, respectively, for the validation period (Ta-

ble 7). A comparable performance was observed between

models selected using the residual-based GLUE and the

relaxed GLUE LOA. The similarity in median predicted

streamflow by these two GLUE methodologies can also be

noticed from visual comparison of the resulting hydrographs

(Figs. 7 and 8). A mean streamflow CR value of 0.75 was

obtained for the validation period when using the relaxed

GLUE LOA. This shows slightly better capability of the

5 %–95 % prediction bounds in bracketing the observations

as compared to predictions using the residual-based GLUE

methodology when both streamflow and SCF are used in

model conditioning.

The behavioral models selected using the relaxed GLUE

LOA approach were also able to adequately reproduce ob-

served SCF with a mean RMSE and CSI of 0.11 and 0.98,

respectively, for the validation period. Generally, high pre-

diction uncertainty of SCF was observed during the onset

of snowmelt and low uncertainty during the summer with

an average CR of 0.63. Thus, hydrological year 2011, hav-

ing most of its observations coming from April, showed the

lowest CR as compared to the other periods. Figure 9 shows

observed and simulated average catchment SCF for the sam-

ple calibration period (2011) and validation period (2012).

From this figure it can be noticed that the median prediction

tends to overestimate the observed SCF values, and many
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Figure 5. Model performance in response to the interaction between model parameters (upper diagonal cells) and correlation coefficient

scores between the parameters (lower diagonal cells)

of the observed values from the month of April fall outside

the 5 %–95 % prediction bounds. The overall result, however,

indicates an improved capability of the 5 %–95 % prediction

bounds in bracketing the SCF observations as compared to

predictions using the residual-based GLUE methodology.

4 Discussion

The streamflow prediction uncertainty analyses results show

that model performance was relatively lower during low-

streamflow than high-streamflow conditions throughout most

validation periods (e.g., Table 4). A similar result was re-

ported by Choi and Beven (2007) in their multiperiod cluster-

based uncertainty analysis in the Bukmoon catchment, South

Korea, where a high percentage of simulation bias was ob-

served during the drier seasons due to relatively poor model

performance during these periods. The result of this study

is thus consistent with the general observation that catch-

ment hydrologic models perform relatively well in wet con-

ditions but break down during low-streamflow conditions

(e.g., Kirchner, 2009). In the case of results from the residual-

based GLUE methodology, this can also be partly attributed

to the nature of the likelihood measure used to identify the

behavioral models. The result reveals this observation, where

model performance during low-streamflow periods (LnNSE)

was improved when using the combined likelihood measures

as compared to using NSE alone. This is because models

identified using NSE alone strongly reflect the hydrologic

characteristics of the high-streamflow periods and are ex-

pected to perform more poorly during low-streamflow con-

ditions.

In order to assess the potential value of MODIS SCF in

constraining model parameters, the snow sub-model param-

eters were constrained using this observation and the pos-

terior distribution of the individual parameters were com-
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Figure 6. Posterior distribution of calibration parameters after conditioning on flow observations.

Table 4. Cross-validation of streamflow predictions against observed values. Bold numbers show the result for the calibration period.

Validation Likelihood Calibration year

year (LH) 2011 2012 2013 2014

measure Comb. Comb. Comb. Comb.

NSE LH NSE LH NSE LH NSE LH

2011 NSE 0.893 0.890 0.770 0.806 0.809 0.790 0.697 0.840

LnNSE 0.712 0.855 0.366 0.812 0.693 0.719 0.521 0.771

CR 0.759 0.721 0.756 0.677 0.805 0.764 0.729 0.710

2012 NSE 0.842 0.869 0.920 0.930 0.818 0.787 0.910 0.874

LnNSE 0.753 0.878 0.694 0.890 0.640 0.616 0.685 0.792

CR 0.885 0.844 0.866 0.844 0.907 0.882 0.852 0.803

2013 NSE 0.922 0.925 0.878 0.877 0.934 0.942 0.862 0.916

LnNSE 0.780 0.914 0.391 0.799 0.887 0.936 0.531 0.792

CR 0.778 0.759 0.759 0.666 0.830 0.830 0.756 0.622

2014 NSE 0.828 0.884 0.860 0.892 0.826 0.810 0.901 0.924
LnNSE −0.346 0.566 −0.529 0.531 0.138 0.488 0.268 0.716
CR 0.737 0.658 0.721 0.666 0.773 0.721 0.718 0.647

No. of behavioral models 1573 749 3737 1031 4725 2245 4648 604
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Figure 7. Median, 5–95 percentile range, and observed values of streamflow for the sample calibration period (a) and validation periods (b,
c and d). The calibration result (a) and the validation results presented in (b) and (d) are based on behavioral models identified using the

combined likelihood, while the result shown in (c) is based on behavioral models identified using NSE alone.

Table 5. Cross-validation of SCF predictions against MODIS SCF.

Calib. Validation year No. of

year 2011 2012 2013 2014 behav.

RMSE CSI CR RMSE CSI CR RMSE CSI CR RMSE CSI CR models

2011 0.147 0.987 0.417 0.152 0.999 0.330 0.067 0.985 0.839 0.089 0.991 0.656 83922

2012 0.150 0.987 0.347 0.154 0.998 0.236 0.076 0.978 0.824 0.095 0.989 0.629 84945

2013 0.200 0.878 0.924 0.217 0.875 0.795 0.057 0.985 0.919 0.100 0.948 0.931 98400

2014 0.146 0.982 0.738 0.151 0.983 0.632 0.057 0.988 0.903 0.083 0.992 0.799 95039

pared against corresponding distributions that resulted from

model conditioning using streamflow only. Parameter in-

ference based on SCF only as a conditioning observation

gave some parameter estimates that deviate significantly

from those obtained when conditioned with streamflow only

(Fig. 10). The box plots depict the posterior distribution

of the snow-related parameters separately conditioned using

streamflow and SCF. For the ease of comparison, parame-

ter values were scaled between 0 and 1. From these plots it

can be seen that tx and wind scale are the model parameters

most sensitive to the conditioning data type with a significant

shift in their quartiles towards the upper part of the parame-

ter dimensions when conditioned using SCF, whereas the fast

ADR, slow ADR, and snow CV did not show significant dis-

placement in their posterior distribution. These parameters

were also identified as the least sensitive model parameters

when the model was constrained using streamflow only.

Generally, in snow models with the sub-grid snow distri-

bution component parameterized using the statistical proba-

bility distribution function, low snow CV results in a faster

depletion rate of the snow-covered fraction (e.g., Liston,

2004). Thus, the slight displacement of snow CV posterior

values towards the lower part of its parameter dimensions

coupled with the increased posterior values of wind scale

would give rise to lower snow cover fraction during the melt-

ing period when model parameters are constrained using SCF

only. On the other hand, the increased posterior values of the

rain–snow threshold (tx) would result in an increase in snow
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Figure 8. Prediction and acceptable flow bounds for the sample calibration period (a) and validation period (b).

Table 6. Cross-validation of streamflow and SCF predictions.

Validation Obs. Likelihood Calibration year

year measure 2011 2012 2013 2014

2011 flow NSE 0.888 0.773 0.790 0.841

LnNSE 0.856 0.780 0.711 0.769

CR 0.660 0.611 0.753 0.693

SCF RMSE 0.142 0.146 0.155 0.143

CSI 0.987 0.987 0.954 0.987

CR 0.461 0.341 0.610 0.430

2012 flow NSE 0.855 0.939 0.738 0.886

LnNSE 0.886 0.869 0.602 0.791

CR 0.811 0.803 0.852 0.811

SCF RMSE 0.158 0.150 0.165 0.150

CSI 0.985 0.999 0.960 0.992

CR 0.363 0.232 0.504 0.334

2013 flow NSE 0.914 0.874 0.946 0.917

LnNSE 0.913 0.749 0.941 0.785

CR 0.679 0.605 0.827 0.619

SCF RMSE 0.053 0.063 0.049 0.055

CSI 0.992 0.987 0.994 0.990

CR 0.846 0.824 0.869 0.841

2014 flow NSE 0.878 0.895 0.789 0.928
LnNSE 0.513 0.481 0.485 0.717
CR 0.627 0.627 0.712 0.647

SCF RMSE 0.079 0.087 0.078 0.078
CSI 0.996 0.993 0.990 0.996
CR 0.681 0.625 0.743 0.658

No. of acceptable models 726 988 2245 604

deposition and thereby in a partial or full canceling out of

the effects of changes in snow CV and wind scale. This phe-

nomenon may thus lead to equifinality, where different sets

of model parameters give comparable SCF responses.

In the GLUE LOA approach a particular model realization

is classified as acceptable if its prediction falls within the lim-

Table 7. Cross-validation of streamflow and SCF predictions after

relaxing the LOA criteria.

Validation Obs. Likelihood Calibration year

year measure 2011 2012 2013 2014

2011 flow NSE 0.881 0.861 0.769 0.854

LnNSE 0.839 0.838 0.711 0.796

CR 0.712 0.726 0.759 0.748

SCF RMSE 0.140 0.145 0.152 0.142

CSI 0.983 0.987 0.959 0.985

CR 0.551 0.450 0.615 0.552

2012 flow NSE 0.808 0.914 0.758 0.837

LnNSE 0.822 0.918 0.595 0.791

CR 0.797 0.833 0.866 0.852

SCF RMSE 0.162 0.150 0.161 0.153

CSI 0.970 0.995 0.963 0.986

CR 0.417 0.342 0.516 0.439

2013 flow NSE 0.947 0.896 0.940 0.941

LnNSE 0.940 0.880 0.934 0.914

CR 0.767 0.707 0.825 0.800

SCF RMSE 0.049 0.057 0.051 0.052

CSI 0.994 0.989 0.992 0.991

CR 0.857 0.843 0.871 0.862

2014 flow NSE 0.872 0.859 0.787 0.898
LnNSE 0.540 0.307 0.310 0.674
CR 0.641 0.627 0.704 0.671

SCF RMSE 0.077 0.082 0.079 0.078
CSI 0.994 0.994 0.989 0.995
CR 0.706 0.661 0.748 0.713

No. of acceptable models 419 813 2213 1029

its for all observed values. In continuous rainfall-runoff mod-

eling it is difficult for all predictions of a given model real-

ization to lie within the observation limits in a time series.

In some cases this phenomenon can be attributed to different

specific processes dominating the hydrologic behavior of a

catchment at different sub-periods, while in other instances
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Figure 9. Prediction and acceptable bounds of average SCF for the

sample calibration period (a) and validation period (b).

it may be due to a lack of a viable means for explicitly ac-

counting for the effect of variable sources and level of uncer-

tainties from the input data errors, which are difficult to set a

priori. Thus, the time-varying likely effects of other sources

of errors such as input errors on prediction uncertainty need

also be implicitly taken into account when defining the limits

of acceptability.

The use of GLUE LOA for testing hydrologic models as

hypotheses without a due consideration of errors in input

data may lead to a rejection of useful models that might

adequately represent the catchment behavior and thereby to

making a type II error (false negative). In the past, various at-

tempts have been made to minimize the risk of making type

II errors in model calibration studies using the GLUE and

other frameworks. In some studies an improved calibration

of hydrologic models was obtained through independent cal-

ibration of sub-periods of a time series (e.g., Boyle et al.,

2000; Samanta and Mackay, 2003). When it comes to the

GLUE LOA approach, extending the limits (e.g., Blazkova

and Beven, 2009; Liu et al., 2009) and using different model

realizations for different periods of a hydrological year (e.g.,

Choi and Beven, 2007) are some of the measures taken to

minimize the risk of making type II errors. Common to all

these measures is that they attempt to relax the selection cri-

teria for behavioral models.

In this study when using the GLUE LOA approach, the

streamflow bounds were set to ±25 % and the result shows

that none of the model realizations were able to satisfy the

LOA criteria without one or more of their predictions falling

outside the acceptable streamflow bounds. The failure rate

was higher during low-flow conditions as compared to high-

flow conditions. An initial attempt was made to relax the

limit of acceptability by extending the streamflow bounds.

Regardless, no model realization with its predictions falling

within the error bounds for all observations was found until

the limits were extended to over ±85 %. This relaxed accept-

ability limit seems less reasonable in terms of its physical

meaning as an error bound. Therefore, rather than relaxing

the limits, an alternative empirical approach was followed by

relaxing the number of simulation time steps which fulfilled

the original LOA criterion. The procedure involves defining

the acceptable percentage of observations that are required

to be bracketed by model predictions (during the calibration

period) based on a predefined acceptable CR value.

This empirical approach is based on the observed rela-

tionship between prediction uncertainty and number of be-

havioral models, which in turn is a function of the selec-

tion criterion. As the threshold value of a likelihood measure

increases (in the case of residual-based GLUE) or absolute

value of the limits decreases (in the case of GLUE LOA),

the simulated runoff series gradually converges, though not

necessarily to the observations. A similar observation was

also reported in other GLUE-based uncertainty studies (e.g.,

Xiong et al., 2008). A further analysis in this study reveals

that, as the percentage of observations required to be brack-

eted by each model realization (pLOA) increases, the num-

ber of behavioral models decreases and thereby the simu-

lated runoff series converges, resulting in a low CR (Fig. 11).

In this study, the threshold pLOA for each calibration pe-

riod was defined in such a way that the 5 %–95 % prediction

uncertainties of streamflow using the residual and the LOA-

based GLUE methodologies are similar. Defining the thresh-

old pLOA this way helps to set a reasonable value that min-

imizes the risk of making type II errors while maintaining

the overall model accuracy by rejecting the inclusion of non-

behavioral models. Furthermore, it helps to roughly compare

the performance of behavioral models selected using the re-

laxed GLUE LOA against the residual-based GLUE in terms

of their ability to reproduce the median streamflow and SCF

predictions at a similar level of uncertainty (i.e., the CR used

to set pLOA).

Although it is difficult to single out the effects of input

data error from model structural error on model performance

using the GLUE methodology, the error patterns may aid

in assessing model performance in different periods of the

hydrologic year. Generally, a good model structure coupled

with good data is not expected to give a consistent bias (e.g.,

Liu et al., 2009). Figure 12 shows a sample daily percentage

of acceptable simulations satisfying the LOA criteria during

the hydrologic year 2012. The percentage of the acceptable

number of model realizations in each time step was generally

low during the calibration period (<65 %). However, for each

time step, predictions from some behavioral models are able

to mimic the corresponding observation within the assumed

error bound. The percentage of acceptable models was rel-

atively higher during high than low-streamflow conditions.

And this result is consistent with the general observation

that most hydrological models perform relatively well during

high-streamflow compared to low-streamflow periods. The
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Figure 10. Box plot showing posterior distribution of model parameters when separately conditioned using streamflow and SCF. Parameter

values are scaled between 0 and 1.

Figure 11. The effect of the percentage of observations required

to be bracketed by each model realization (pLOA) on prediction

uncertainty (CR) and efficiency of the median prediction (NSE) for

the sample calibration periods (years 2011 and 2012).

spike in the percentage of acceptable models in the month of

February 2012 when time steps around are so low, however,

reveals how model performances can unexpectedly vary be-

tween time steps in response to input data errors and/or the

observational error bounds. The observed spike could thus be

attributed to relatively low input data errors and/or lower ac-

tual observational error bounds as compared to the assumed

average values for the particular time step. The distribution

of the behavioral model weights over the calibration period

shows that the mean weight during the period where the spike

occurred is very low. Similarly the median weight of behav-

ioral models during this period is close to zero, implying

that most of the model realizations have their predictions that

barely fall within the limits.

This result reveals that the GLUE LOA with relaxation

in percentage of observations where model predictions fall

within observational error bounds can be used as an alter-

native approach for conditioning model parameters and con-

ducting an uncertainty analysis when there is a lack of meta-

Figure 12. Daily percentage of acceptable model realizations with

their predictions falling within the observation error bounds (a) and

the daily weight associated with each acceptable model realization

as well as daily mean and median value of the weights (b) in a

sample calibration period.

data on input and observational data uncertainty coupled with

a highly time-varying level of uncertainty from such sources.

After relaxation, a limited sample of the total observations,

i.e., 30 %–40 % of a hydrologic year, was able to effectively

identify behavioral models, and this result is consistent with

findings of other studies dealing with the effect of observa-

tion size on constraining model parameters (e.g., Seibert and

Beven, 2009; Liu and Han, 2010; Sun et al., 2017). The rela-

tive accuracy of an event and other factors that affect the in-

formation content of the input and observation datasets (e.g.,

Beven and Smith, 2015) are more important than the length

of the datasets, especially in continuous rainfall-runoff mod-

eling.
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5 Conclusions

Two GLUE methodology variants were applied for param-

eter uncertainty analysis of a distributed conceptual hydro-

logical model. The analysis result from the residual-based

GLUE methodology shows that the catchment response pa-

rameters, viz. c1, c2, and c3 as well as the wind scale, are

the most sensitive model parameters. More caution is thus

required when defining the value range of these parameters.

On the other hand, the fast and slow albedo decay rates as

well as the snow CV are relatively more uncertain model pa-

rameters.

Model conditioning using combined streamflow and

MODIS SCF did not improve the median prediction of

streamflow as compared to the result when model parame-

ters are conditioned using streamflow only. A similar result

was also observed for SCF predictions. The additional infor-

mation from the MODIS SCF data was generally less signif-

icant in constraining the rainfall-runoff model parameters.

When using the GLUE LOA approach, the model did

not provide any behavioral simulation that yields predictions

within the assumed observational error bound in over 90%

of the time steps. A relaxation was needed in order to partly

overcome the limitations of using constant observational er-

ror proportionality and not taking an explicit account of the

other sources of uncertainty such as from input data errors.

A relaxed GLUE LOA approach was introduced that allows

a relaxation on the number of time steps required to achieve

the LOA. Similar results are obtained using both the residual-

based GLUE and the relaxed GLUE LOA approaches. Re-

laxing the percentage of observations required to be brack-

eted per simulation period by a particular model realization

(pLOA) was found to be more effective than relaxing the

observational error bounds. In this study the 5 %–95 % pre-

diction uncertainty of the residual-based GLUE methodol-

ogy was used as a reference to define the pLOA in the re-

laxed GLUE LOA analysis using forcing and observational

datasets from a single catchment. More similar case studies

should be conducted on catchments with different hydrologic

characteristics to assess the scope of this approach under dif-

ferent condition.
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Abstract: Remote sensing fractional snow cover area (fSCA) has been increasingly used to get an
improved estimate of the spatiotemporal distribution of snow water equivalent (SWE) through
reanalysis using different data assimilation (DA) schemes. Although the effective assimilation period
of fSCA is well recognized in previous studies, little attention has been given to explicitly account
for the relative significance of measurements in constraining model parameters and states. Timing
of the more informative period varies both spatially and temporally in response to various climatic
and physiographic factors. Here we use an automatic detection approach to locate the critical
points in the time axis where the mean snow cover changes and where the melt-out period starts.
The assimilation period was partitioned into three timing windows based on these critical points.
A fuzzy coefficient was introduced in two ensemble-based DA schemes to take into account for the
variability in informational value of fSCA observations with time. One of the DA schemes used in this
study was the particle batch smoother (Pbs). The main challenge in Pbs and other Bayesian-based DA
schemes is, that most of the weights are carried by few ensemble members. Thus, we also considered
an alternative DA scheme based on the limits of acceptability concept (LoA) and certain hydrologic
signatures and it has yielded an encouraging result. An improved estimate of SWE was also obtained
in most of the analysis years as a result of introducing the fuzzy coefficients in both DA schemes.
The most significant improvement was obtained in the correlation coefficient between the predicted
and observed SWE values (site-averaged); with an increase by 8% and 16% after introducing the
fuzzy coefficient in Pbs and LoA, respectively.

Keywords: informational value; MODIS snow cover; fuzzy logic; data assimilation (DA)

1. Introduction

Snow has important relevance for society spanning from environmental and economical to
recreational and aesthetic values. Environmentally snow influences the climate and ecology of an
area through its effect on solar energy absorption and by constraining land cover characteristics [1,2].
Snowmelt results in significant decrease of surface albedo and releases the water stored in seasonal
snowpack, providing water for humans and the environment [3,4]. Water managers in hydropower
and water supply sectors consider snow storage in mountain areas as a natural reservoir [5]. During
the past decades, hydrological models have been used to assess the amount and spatiotemporal
distribution of this important resource [6,7]. However, the modeling process in general and model
calibration in particular is prone to various sources of uncertainty [8]. Further, the objective functions
commonly used for parameter inference using inverse modeling are based on aggregate measures
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of model performance and usually yield to poorly constrained model parameters [9]. A combined
approach of model calibration followed by data assimilation is one of the strategies commonly followed
to deal with model uncertainty [10,11]. Data assimilation (DA) is the means to obtain an estimate of
the true state through use of independent observations and the prior knowledge (model state) with
appropriate uncertainty modeling [9,12].

Ensemble-based filtering and smoothing techniques are commonly used in solving DA
problems [9]. The filtering techniques involve updating of state variables and/or parameter values
at each observation time with subsequent production of error statistics that can be cycled to future
analysis times; while in smoothing all observations are assimilated in a single step [4,13]. Some of the
filtering- (sequential) based DA schemes commonly used in hydrological data assimilation include the
Ensemble Kalman Filter [14] and the Particle filter [15], while some examples from the smoother-based
DA schemes include the ensemble batch smoother [16] as well as the particle batch smoother (Pbs) [17].
The smoother-based DA schemes have the advantage of low computational cost coupled with the
flexibility in running independent of the forward model [4,18,19].

In recent years, remote sensing data in general and optical fractional snow cover area (fSCA)
in particular has been increasingly used in hydrologic modeling for constraining model parameters
through inverse modeling and various DA schemes [20]. This can be attributed to the readily available
observations of this data for large areas and at a relatively high temporal resolution [21,22]. In DA,
fSCA has been used from a simple rule-based (direct-insertion) approach [23] to advanced filtering
and smoothing techniques [24,25]. The collection of fSCA measurements and their temporal evolution
during the ablation period reflect the peak snow water equivalent (SWE) better than a single fSCA
measurement does. Hence, the batch assimilation techniques are preferable over filtering techniques
when the assimilated observation is fSCA in a snow depletion curve model [17]. The Pbs and particle
filter DA schemes have been gaining interest as fSCA assimilation schemes in snow models due to their
distribution free likelihood and their capability to estimate the SWE state vector directly at a relatively
low computational cost [17,26]. However, these schemes assume crisp and equal informational value
for all observations of the assimilated data. Further, in these schemes, most of the weights are assigned
to one or very few ensemble members and this may lead to degeneration of the statistical information
in the ensembles [27,28]. An alternative approach that ensures fair distribution of weights among
ensemble members is the limits of acceptability (LoA) [29]. This approach provides flexibility in
choosing different shapes for representing the error within specified error bounds. It further allows
the incorporation of different hydrological signatures in the evaluation criteria. As such, it is more
process-based as compared to the simple residual-based objective functions since it transforms the
observed and simulated data into hydrologically relevant signatures [30].

In this study, the informational value of fSCA measurements is considered to be fuzzy, carrying
a considerable amount of uncertainty. In previous studies different approaches have been used to
increase the amount of information that can be extracted from time series data during parameter
inference using inverse modeling [30]. Some of these measures include: breaking up the time series
data into different periods, for example, the different components of a hydrograph [31] as well as
transforming the time series data to emphasise on some aspects of the system response [32]. In several
snow related DA studies all measurements are assumed to carry the same amount of information
in constraining the model states and parameters. However, the amount of information that can be
extracted from remote sensing data varies depending on several factors including the presence of
certain physical limitations such as clouds and lack of sufficient light [33]. For example, high latitudes
are characterized by polar darkness and frequent cloud cover and errors emanating from such sources
can reduce the informational value of MODIS fSCA product for snow assimilation [34,35].

The informational value of MODIS fSCA was divided into three timing windows; and an
automatic change point (CP) detection scheme was employed to identify the spatially and temporally
variable location of the CP in the time-axis. CP detection deals with the estimation of the point at
which the statistical properties of a sequence of observations changes [36]. In hydrology, CP detection
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methods have been applied in various studies including the assessment of non-stationarity in time
series data [37,38] as well as in the assessment of flow-solute relationship in water quality studies [39].
Nevertheless, their application has been limited when it comes to the analysis of remote sensing snow
cover data. Although, snowmelt at high latitudes is a rapid process, the start date of an ablation period
may vary by several weeks from year to year in response to such factors as the amount of accumulated
SWE before the onset of snowmelt and the availability of melt energy [40]. Spatially, the onset of snow
melt varies from one grid-cell to another depending on variability in physiographic characteristics of
the area in addition to the above mentioned climatic factors. During the accumulation period, spatial
variability of snow results from snow-canopy interaction in forested areas, snow redistribution by
wind, and orographic effects [41]. During the ablation period, snow melts from preferential locations,
yielding heterogeneous patterns [42].

The main goal of this study is to get an improved estimate of SWE during the maximum accumulation
period using fuzzy logic-based ensemble fSCA assimilation schemes and by incorporating uncertainties in
selected model forcing and parameters. The first objective is to assess whether the assumption of variable
informational value of fSCA observations depending on their location in different timing windows can
reduce the uncertainty in SWE reanalysis. We introduce a novel approach that accommodates this concept
by incorporating a fuzzy coefficient in the ensemble-based SWE reanalysis schemes. The second objective
is to evaluate the viability of statistical change point detection methods to locate the critical points that
constitute the timing windows. The third objective is to compare effect of the assumed variability in
informational value of fSCA observations on relative performance of the Pbs and the LoA-based DA
schemes. As of our best knowledge, the LoA approach was not used before for DA purposes; and this
study will assess the feasibility of this approach as an ensemble smoother DA scheme.

This paper is organized as follows. Section 2 presents the snow model followed by description of
the study area as well as the static and time-series data used in this study. This section also presents
setup of the different DA schemes and methodologies followed to detect the critical dates in the ablation
period. Results from the DA schemes in comparison to the observed values as well as sensitivity of the
evaluation metrics to location of the change points in the ablation period are presented in Section 3.
Finally, certain points from the methodology and results sections are discussed in Section 4 in light of
previous studies; and relevant conclusions are drawn in Section 5.

2. Methods and Materials

2.1. The Hydrological Model

The forward model used in this study, PT_GS_K, is a conceptual hydrological model (method
stack) within the Statkraft Hydrological Forecasting Toolbox (Shyft, https://github.com/statkraft/
shyft). This model and the modeling framework were described in previous studies [43,44] and this
section presents main features of the model with focus on its snow method. PT_GS_K encompasses
the Priestley–Taylor (PT) method [45] for estimating potential evaporation; a quasi-physical-based
snow method (GS) for snow melt, sub-grid snow distribution and mass balance calculations; and a
simple storage-discharge function (K) [46,47] for catchment response calculation.

PT_GS_K operates on a single snow layer and it can be forced by hourly or daily meteorological
inputs of precipitation, temperature, radiation, relative humidity, and wind speed. The Model uses a
Bayesian Kriging approach to distribute the point temperature data over the domain, while for the other
forcing variables it uses an inverse distance weighting approach. The model generates streamflow, fSCA,
and SWE as output variables.

The potential evaporation calculation in the PT method requires net radiation, the slope of
saturated vapor pressure, the Priestley–Taylor parameter, the psychometric constant, and the latent
heat of vaporization [48]. Actual evapotranspiration is assumed to take place only from snow free
areas and it is estimated as a function of potential evapotranspiration and a scaling factor.
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The energy balance calculation in GS method follows a similar approach as used by DeWalle
and Rango [49] (Equation (1)). The precipitation falling in each grid-cell is classified as solid or
liquid precipitation depending on a threshold temperature (tx) and on the local temperature values.
The available net snow melt energy (NE) is the sum effect of different energy sources and sinks in the
system. These include: incoming short wave radiation (SW), incoming (ILR) and outgoing (OLR) long
wave radiation, the subsurface energy flux (G) as well as the turbulent sensible (SH) and latent (LH)
energy fluxes emanating from rainfall, solar radiation, wind turbulence and other sources.

NE = SW ∗ (1 − albedo) + ILR + OLR + SH + LH + G (1)

Among other factors, the energy contribution from short wave radiation depends on snow albedo.
For a given time step (t), the snow albedo of each grid cell depends on the minimum (αmin) and
maximum (αmax) albedo values as well as on air temperature (Ta) (Equation (2)). In this method the
decay rates of albedo due to snow aging as a function of temperature, i.e., the fast (α f dr) and slow (αsdr)
albedo decay rates corresponding to temperature conditions above and below 0 ◦C respectively, are
parameterized [50].

αt =

⎧⎨
⎩

αmin + (αt−1 − αmin) ∗
(

1
2

1/α f dr

)
, Ta > 0 ◦C

αt−1 + (αmax − αmin) ∗
(

1
2(αsdr)

)
, Ta ≤ 0 ◦C

(2)

The incoming and outgoing longwave radiations are estimated based on the Stephan–Boltzmann
law. Turbulent heat contribution is the sum of latent and sensible heat. Wind turbulence is linearly
related to wind speed using a wind constant and wind scale from the intercept and slope of the linear
function, respectively [50]. The subsurface energy flux is a function of snow surface layer and the snow
surface temperature.

The sub-grid snow distribution in each grid cell is described by a three parameter Gamma
probability distribution snow depletion curve (SDC) [51,52]. This SDC is based on the assumption
that certain proportion of a grid cell area (y0) remains snow-free throughout the winter season such
as in steep slopes and ridges due to wind erosion or avalanches [53]. As such, the two parameter
Gamma distribution function, characterized by the average amount of snow m (mm) and the sub-grid
snow coefficient of variation (CVs) at the onset of the melt season (Equation (3)), is applied only to the
remaining portion of a grid cell area to estimate the fraction of the initially snow covered area where
snow has disappeared (y′t). Following this formulation, the bare ground fraction at each time step (yt)

is estimated using Equation (4).

y′t =
λ(t)∫
0

f (x; m, CVs)dx = γ

(
CV−2

s ,
λ(t)

m·CV2
s

)
(3)

yt = y0 + (1 − y0) ∗ y′t (4)

where, f denotes the Gamma probability density function and γ is the incomplete Gamma function
with shape CV−2

s and scale m·CV2
s . The variables x and λ(t) respectively refer to point snow storage

and the accumulated melt depth (mm) at time t since the onset of the melt season.
Although, the catchment response function (K) was used for estimating the regional model

parameter values through calibration against observed streamflow data, this method was not directly
employed in this study.

2.2. Study Area and Data

The study sites are located in Nea-catchment, Sør-Trøndelag County, Norway (Figure 1).
The Nea-catchment covers a total area of 703 km2 and its geographical location ranges from 11.67390◦

to 12.46273◦ E and from 62.77916◦ to 63.20405◦ N. Altitude of the study sites ranges from around
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700 masl at site-1 to above 1200 masl at site-7. The fact that the model was previously setup for the
study area plus the availability of long term SWE data, i.e., for nine years and in nine different sites,
make the Nea-catchment an appealing study area to apply the DA schemes. The observed SWE data
cover the hydrological years 2008–2016; and the datasets in these years were used in validating the
DA schemes. The highest and lowest average catchment peak SWE values estimated from the nine
sites during these hydrological years were 717 and 331 mm respectively in years 2012 and 2014. Mean
annual precipitation for the nine hydrological years was 1279 mm. The highest and lowest average
daily temperature values for this period were 20 and −23 ◦C, respectively.

 
Figure 1. Physiography and location map of the study area in Norway. The red lines numbered 1–9
represent snow measurement sites.

The SWE reanalysis was conducted on 33 grid cells located at nine sites (Table 1). The location of
these grid-cells was constrained by the availability of snow course measurements in the catchment.
Daily time series data of most meteorological forcing variables, i.e., temperature, precipitation,
radiation, and wind speed were obtained from Statkraft [54] as point measurement, while daily
gridded relative humidity data were retrieved from ERA-interim [55]. Different physiographic and
observational datasets were also used to generate the simulation results and in subsequent reanalysis
using the DA schemes as well as during evaluation of the results. The model was setup over each grid
cells of 1 km2; requiring average elevation, grid cell total area, as well as the areal fraction of forest
cover. Data for these physiographic variables were retrieved from two sources: the land cover data
from Copernicus land monitoring service [56] and the 10m digital elevation model (10m DEM) from the
Norwegian mapping authority (Kartverket.no). The land cover data show that, the catchment is mainly
dominated by moors, heathland and some sparse vegetation; and only limited part of the catchment is
forest covered (3%). The grid cells considered in the DA study are located on the open areas of the
catchment. The median SWE data of each grid cell were derived from radar measurements provided
by Statkraft [54]. The data were collected once a year in the month of April, where accumulated snow
storage approximately attains its peak magnitude. The radar measurements roughly follow the same
course each year in the nine representative sites of the catchment. Daily fraction of snow cover area
(fSCA) was retrieved from NASA MODIS snow cover products [57]. Frequent cloud cover is one of the
major challenges when using MODIS and other optical remote sensing data in Norway. A composite
dataset was thus formed using data retrieved from the Aqua and Terra satellites, MYD10A1 and
MOD10A1 products respectively in order to minimize the effect of obstructions and misclassification
errors emanating from clouds and other sources. The days with available snow cover data were used
without filtering based on further criteria such as the remaining clouds. A direct assessment of the
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bias associated with this product was not done in this study as independent snow cover observations
were not available for the study domain. The estimated annual average bias of these MODIS fSCA
products for Northern Hemisphere is approximately 8 % in the absence of cloud [58] and in forest
dominated areas it may reach up to 15% [59]. This MODIS product was reported to have a relatively
lower accuracy as compared to other more recent products, e.g., the MODSCAG algorithm [1] mainly
due to its limited use of the available information in a given scene [60].

Table 1. Summary of site-averaged annual peak observed snow water equivalent (SWE) (m w.e.) as
well as average site elevation (masl) and number of model grid-cells in each site of the study area.

Site
SWE (m w.e.)

No. Of Grid-Cells Avg. Elev.
(masl)Min. Max. Average

1 0.269 0.558 0.400 4 746
2 0.411 0.931 0.606 9 907
3 0.159 0.764 0.487 2 873
4 0.299 0.659 0.454 5 958
5 0.398 0.818 0.603 3 1064
6 0.34 0.668 0.430 2 988
7 0.256 0.391 0.340 3 1251
8 0.258 0.383 0.316 1 976
9 0.152 0.549 0.274 4 993

2.3. The Data Assimilation Strategy

This section presents the perturbed forcing and model parameters followed by description of the
two main DA schemes employed in this study, i.e., Pbs and LoA as well as other two similar versions of
these schemes that take into account for variability in informational value of fSCA. The ensemble-based
DA schemes involve two steps, namely prediction and updating. The prediction step provides the
prior estimates of SWE using the dynamic (meteorological) and static (physiographic) forcings. In the
updating step, the DA schemes are applied to constrain the prior SWE estimates using the fSCA
observations and thereby yielding a posterior SWE estimates. Each grid cell is updated independently.

2.3.1. Perturbed Forcing and Model Parameters

In this study, one meteorological forcing and two model parameters are randomly perturbed
to produce an ensemble of 100 model realizations. Precipitation was perturbed since meteorological
forcing, in general and precipitation in particular, are the major sources of uncertainty in simulating
snow storage and depletion processes [61,62]. Considering uncertainty in precipitation provides the
means to control the amount of accumulated SWE in the absence of a viable spatial snow redistribution
mechanism [17]. The perturbed model parameters are sub-grid snow coefficient of variation (CVs) and
initial bare ground fraction (y0). Snow coefficient of variation affects the SDC through its impact on the
rate of snow depletion. In snow models with the sub-grid snow distribution component parameterized
using statistical probability distribution function, the rate of snow depletion is inversely related to
CVs [41]. Thus, when the sub-grid snow cover is more variable, the ground gets exposed earlier than
when it is uniformly distributed [20]. The initial bare ground fraction plays an important role in the
SDC especially during the onset of snow melt when the fraction of initial snow covered area where
snow has disappeared (y′t, Equation(3)) is at its lowest [52].

Both log-normal and logit-normal probability distributions are used to perturb the model forcing
and parameters. A log-normal distribution was assumed for precipitation, while for CVs and y0 a
logit-normal distribution was assumed. A similar approach to previous SWE reanalysis studies [17,28]
was followed in perturbing precipitation and the model parameters. Instead of directly perturbing
the precipitation input at each time step (Pt), a perturbation parameter (bj) was randomly generated
from a log-normal distribution and the generated, bj values are used as multiplicative biases for their
respective ensemble member, j (Equation (5)). Since the correction for wind induced precipitation
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under-catch was previously done, it was assumed that the average ensemble, b, value is unbiased
with a value of unity. The snow coefficient of variation (CVs) estimated during calibration of the
model against observed streamflow was adopted as the prior mean value. The mean value of y0 was
set to 0.04 based on previous studies in Norway [52]; and its variability was kept to a narrow range,
since this parameter can easily compensate for differences between the observed and simulated fSCA
values [52].

Pj,t = bjPt (5)

A standard deviation (σf SCA) of 15% was used to represent the measurement error in fSCA.
This value is set based on previous studies focused on MODIS measurement errors [59]. Table 2
presents the perturbation parameters and their assumed prior values.

Table 2. Main input variables used in the SWE reanalysis using the different data assimilation (DA)
schemes. fSCA: fractional snow cover area.

Variable Value Description

bmean 1.0 mean precipitation bias
bCV 1.0 coefficient of variation of precipitation bias

CVs,mean 0.68 mean snow coefficient of variation (calibrated value)
CVs,min 0.0 minimum snow coefficient of variation
CVs,max 1.5 maximum snow coefficient of variation
CVs,std 0.55 standard deviation of the snow coefficient of variation
y0,mean 0.04 mean initial bare ground fraction
y0,min 0.0 minimum initial bare ground fraction
y0,max 0.1 maximum initial bare ground fraction
y0,std 0.05 standard deviation of initial bare ground fraction
σfSCA 15% measurement error standard deviation of fSCA

Ne 100 ensemble size
No - number of fSCA observations

2.3.2. fSCA Assimilation using Particle Batch Smoother

Previous studies indicate that the batch smoother is better suited than the filtering approach
when dealing with SWE reanalysis through assimilation of fSCA observations [17,63]. A particle batch
smoother (Pbs) uses an ensemble of independent randomly drawn Monte Carlo samples (particles)
and estimates the posterior weight of each particle. The procedure involves generating ensemble of
model realizations by running the model over the full seasonal cycle followed by the assimilation of
all fSCA measurements at once. The Bayes theorem forms the basis for estimating the updated relative
importance (weight, wj) of each ensemble member (Equation (6)).

wj =
p
(
y
∣∣X̂j

)
p
(
X̂j

)
∑Ne

j=1 p
(
y
∣∣X̂j

)
p
(
X̂j

) (6)

where p
(
y
∣∣X̂j

)
refers to the likelihood of the observations (y) given the state value of the jth ensemble

member (X̂j); and p
(
X̂j

)
denotes prior values.

In Pbs, all ensemble members are implicitly assigned equal prior weights of 1/Ne [17]. When
using the Gausian likelihood, this yields [17,28]:

wj =
exp

[
−0.5

(
y − Ŷj

)TR−1(y − Ŷj
)]

∑Ne
j=1 exp

[
−0.5

(
y − Ŷj

)TR−1(y − Ŷj
)] (7)

where y and Ŷj respectively refer to No × 1 vector of perturbed fSCA observations and predicted
fSCA for the jth particle in the No × Ne matrix (Ŷ). R denotes No × No diagonal observation error
covariance matrix.
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Pbs assumes that both the prior and posterior states of the particles remain the same [17].
It updates the particle weights in such a way that particles with their predictions closer to the
observations get higher weight than those with farther from the observations. The median and
prediction quantiles are estimated from the cumulative distribution of the sorted SWE values and their
associated weights.

2.3.3. fSCA Assimilation Using the LoA

We use two hydrologic signatures to constrain the perturbation parameters by the LoA scheme
through weighting the relative importance of the particles with a fuzzy rule. In a fuzzy rule,
the information contained in a fuzzy set is described by its membership function [64]. The first
signature is based on the ability of each ensemble member to reproduce the observations within
pre-defined error bounds of fSCA observations. The same value of measurement error as used in
Pbs was also adopted here, i.e., 15% (Table 2). The deviation between the observed and simulated
values was converted into a normalized criterion using a fuzzy rule-based scoring function. A
triangular membership function was assumed with its support representing the uncertainty in MODIS
fSCA observations and the pointed core representing a perfect match between the observed and
predicted fSCA (Equation (8)). The weight of each ensemble member with respect to this signature
(w_ej) is calculated as the membership grade of the prediction error, summed over all observations
(Equation (9)).

μ f SCA(e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, e ≤ l
e−l
m−l , l < e ≤ m
u−e
u−m , m < e < u

0, e ≥ u

(8)

w_ej =
No

∑
i=1

μ f SCA(e) (9)

where μ f SCA(e) is the membership grade of each prediction error (e) corresponding to the observed
fSCA value i; m is the point in the support with perfect match between the observed and predicted
fSCA values. The variables l and u respectively refer to the lower and upper bounds of the fSCA
observation error.

The second hydrologic signature is based on the degree of persistency of an ensemble member
in reproducing the observations. This is estimated by the percentage of observations (p) where the
predicted values fall within the MODIS fSCA error bounds. Ensemble members whose prediction failed
to reproduce at least 50% of the observations within the error bounds are considered as non-persistent
and assigned a membership grade of zero. The degree of membership linearly increases for those that
satisfy the condition from 50% to 95% of the observations; and attains its maximum value after 95%.
Thus, ensemble members that are able to reproduce 95% to 100% of the observations within the error
bounds are considered as the most persistent and accordingly assigned a membership grade of 1.0.
The weight of each ensemble member with respect to its persistence in reproducing the observations
(w_pj) is equal to the degree of membership (μN(p), Equation 10). The combined weight (wj) resulting
from the two membership functions is determined by calculating the product of w_ej and w_pj followed
by normalizing the result in such a way that all particle weights would sum up to 1.

μN(p) =

⎧⎪⎨
⎪⎩

0, p < l
p−l
m−l , l ≤ p ≤ m

1, p ≥ m
(10)

where μN(p) is the membership grade of each ensemble member with respect to its persistency (p) in
reproducing the observations; l represents the minimum bound of the support (p = 50%) and m refers
to the point in the support where the membership grade starts to attain its maximum value (p = 95%).
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2.3.4. DA Schemes with an Account for Fuzzy Informational Value of fSCA

Here, the ablation period is divided into three timing windows with respect to the assumed
relative informational value of fSCA observations (Figure 2). This assumption is based on the concept
that information is gained from an observation only if there is uncertainty about it; and an event
that occurs with a high probability conveys less information and vice versa [65]. The plot shows
temporal distribution of fSCA for a sample grid-cell in the study area. The first timing window (W-1) is
characterized by some snow melt with a subsequent decrease in SWE while the fSCA remains close to
its maximum value. The fSCA observations from this window are characterized by low signal-to-noise
ratio. In the second window (W-2), fSCA starts to drop at a faster rate and this window is characterized
by high signal-to-noise ratio with a strong decreasing trend with time. The third window (W-3)
corresponds to the complete melt-out period; and with the exception of few fSCA observations from
sporadic snow events, fSCA is expected to remain null throughout this period. The fSCA observations
in W-1 and W-3 are thus relatively certain, conveying less information as compared to observations
in W-2.

Figure 2. Location of the timing windows (W-1, W-2, and W-3) and value of the fuzzy coefficient in
relation to a sample observed grid-cell fSCA dynamics over the ablation period as conceptualized in
this study. τ and c respectively denote the change point and start of the complete melt-out period.

The informational value of MODIS fSCA observation is considered to be fuzzy and varying with
location of each observation in the time axis and with respect to the aforementioned conceptualization
of the informational value of fSCA in the three timing windows. A fuzzy coefficient (α) was introduced
in the original formulations of Pbs and the LoA schemes in order to account for the variability in
informational value of fSCA on the DA results. This coefficient was described by a fuzzy degree of
membership function whose value is greater than zero based on the assumption that all observations
contribute certain information in constraining the perturbation parameters. An exponential trapezoidal
membership function was adopted to describe α (Equation (11)). The informational value of the MODIS
fSCA observations is assumed to exponentially increase in W-1 until it reaches end of this timing
window at τ. After start of the complete melt-out period (c), the informational value is assumed to
exponentially decay with time in W-3. The fSCA observation is assumed to be most informative in
the period between these two timing windows, i.e., in W-2. Hence, all observations in this period are
assigned a maximum α value of unity.
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μ f SCA(t) =

⎧⎪⎪⎨
⎪⎪⎩

exp
(
− τ−t

d1

)
, t < τ

1, τ ≤ t ≤ c
exp

(
− t−c

d2

)
, t ≥ c

(11)

where μ f SCA(t) is the membership grade of each fSCA observation date index (t); τ and c respectively
refer to the change point and start of the melt-out period in the time-axis. d1 and d2 respectively denote
the widths of W-1 and W-3 in the time-axis.

The α value of each fSCA observation is equal to the membership grade corresponding to that
observation (μ f SCA(t)); and this fuzzy coefficient is incorporated in the likelihood measure of Pbs
in a way that it rescales the level of uncertainty of the residuals corresponding to each observation
(Equation (12)).

wj =
exp

{
−0.5

[(
y − Ŷj

)
α
]TR−1[(y − Ŷj

)
α
]}

∑Ne
j=1 exp

{
−0.5

[(
y − Ŷj

)
α
]TR−1[(y − Ŷj

)
α
]} (12)

For the LoA-based DA scheme, the membership grades of the fSCA prediction errors (μ f SCA(e),
Equation (8)) were rescaled through multiplication by their respective α value before taking sum of
μ f SCA(e). The remaining steps are similar to the procedure followed in the LoA scheme described
earlier, i.e. to get the product of w_ej and w_pj with subsequent rescaling of the result in such a way
that the weights of all ensemble members would sum up to unity.

2.4. Detection of Critical Periods with Respect to the Informational Values of fSCA

The critical dates that form the timing windows and the fuzzy coefficient curve (Figure 2) were
identified using a change point detection algorithm. The two critical dates, i.e., the point in the time
axis where the change in mean snow cover of a given grid-cell occurs and start of the melt-out period in
that grid cell, vary from year to year; and spatially from one grid-cell to another in response to various
climatic and physiographic characteristics of an area. The use of a flexible change point detection
scheme is a viable option to address the impact of such spatially and temporally variable factors on
critical dates and thereby on spatiotemporal variability of SWE. The timing for start of the melt-out
period in each grid cell was identified as the first incident with null fSCA observation. Detection of the
CP location was realized by performing an offline change point analysis using the likelihood-based
parametric approach. For the sake of comparison, change points were also estimated using the
non-parametric approach. In order to minimize effect of the noisy data, the change point detection
methods were applied over the transformed fSCA data (cumulative sum of fSCA). This section
describes the methodology followed in detecting the change points using these two approaches.

The CP detection schemes are based on the idea that given n ordered sequence of data,
x1 : n = (x1, . . . , xn), a change point is expected to occur within this set when there exists a
time, τ{1, . . . , n − 1}, such that the statistical properties (e.g., mean or variance) of {x1, . . . , xτ} and
{xτ+1, . . . , xn} are different in some way. The parametric change point analysis scheme employed
in this study was adopted from previous studies focused on implementation of the methodology
based on the likelihood ratio [36,66,67]. Change point detection was presented as a hypothesis test
where the null hypothesis corresponds to no change in mean; while under the alternative hypothesis,
a change point is expected to occur at time τ. The parametric method based on the likelihood ratio
requires the calculation of the maximum log-likelihood under both null and alternative hypotheses [36].
Assuming the transformed fSCA data (x) as independent and normally distributed random variable,
the likelihood ratio under the null (LH0) and alternative (LH1) hypotheses as well as the resulting
log-likelihood ratio (Rτ) can be described as follows.

LH0 =
1√

2πσ2n

n

∏
i=1

exp

[
− (xi − μ0)

2

2σ2

]
(13)
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LH1 =
1√

2πσ2n

τ

∏
i=1

exp

[
− (xi − μ1)

2

2σ2

]
n

∏
j=τ+1

exp

[
−
(

xj − μ2
)2

2σ2

]
(14)

Rτ = log
(

LH1

LH0

)
= − 1

2σ2

[
τ

∑
i=1

(xi − μ1)
2 +

n

∑
j=τ+1

(
xj − μ2

)2 −
n

∑
k=1

(xk − μ0)
2

]
(15)

where μ0, μ1 and μ2 respectively denote mean value of the transformed fSCA for the whole observation
period, before the change point and after the change point. σ2 refers to variance of the transformed
fSCA data.

The generalized log-likelihood ratio (G) is estimated as:

G = max
1≤t≤n Rτ (16)

The null hypothesis is rejected if 2G > λ, where λ is a predefined critical value; and the value
of τ that maximizes Rτ is taken as the change point position. In this study the Bayesian Information
Criterion (BIC) was employed to define this critical value, i.e., λ = k·log(n), where k is the number of
extra parameters used to define the change point (here k = 1).

When performing the change point analysis using a nonparametric approach, the method of
Taylor [68] was followed. The procedure involves calculation of the cumulative sums (Si) of the
differences between the observations and their mean value (Equation (17)). The index in the time axis
corresponding to the maximum cumulative sum (Equation (18)) is adopted as location of the change
point τ.

Si = Si−1 + (xi − x) (17)∣∣Sm
∣∣= max

i=0,...,n
∣∣Si

∣∣ (18)

where xi and x respectively refer to the transformed fSCA observations and their mean value. For the
first observation S0= 0 and the cumulative sum ends at Sn= 0.

The confidence level for the change point was determined by performing bootstrap analysis. First,
the magnitude of the change is estimated as the difference between the maximum and minimum Si
(Sdi f f ). Then, N = 1000 bootstraps of n observations are sampled through random reshuffling of the
original data. For each bootstrap sample, the Si values corresponding to each observation as well as
the difference between the maximum and minimum Si values (S0

di f f ) are calculated. Accordingly,
the percentage confidence level (Cl) is estimated using Equation (19).

Cl = 100
∑t

i=1 score
N

(19)

where, score =

{
1, S0

di f f < Sdi f f
0, S0

di f f ≥ Sdi f f

2.5. Evaluation Metrics

The performance of each DA scheme was evaluated through comparison of the median value
of the ensemble predictions (sim) against the observed (obs) values. The following three evaluation
metrics, i.e., mean absolute bias (MAB), root mean of squared errors (RMSE) as well as correlation
coefficient (R) are employed during evaluation of estimated values against fSCA and SWE observations.

MAB =
1
N

N

∑
k=1

|obsk − simk| (20)

RMSE =

√√√√ 1
N

N

∑
k=1

(obsk − simk)
2 (21)
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R =
cov(obs, sim)

σobs·σsim
(22)

where σ, cov and N respectively refer to standard deviation, covariance, and the number
of observations.

3. Results

3.1. Comparison of Change Points Detected Using the Parametric and Non-Parametric Approaches

In this study, location of the change point detected using the parametric approach was also
compared against those identified by the nonparametric approach. The parametric approach was based
on the maximum likelihood estimate assuming that the observations are drawn from independent
normal random distribution. The test for normality using chi-square on the raw and transformed
fSCA data shows that although the percentage of grid cells with data that satisfy this criterion is
generally low for both datasets, the result is higher for the transformed than the raw data. For example,
the highest percentage of grid cells with normally distributed data at a significance level of 1% was
85% when using the transformed data as compared to 21% using the raw data. On the other hand,
the non-parametric approach followed in this study is distribution free, i.e., it can be applied to any
time series data regardless of the underlying probability distribution the data follows.

The change points detected using the parametric and non-parametric approaches yielded close
results. Figure 3 shows the change points detected using both approaches for all grid-cells in two
sample years (2012 and 2014). As mentioned in Section 2.2, these years are characterized by contrasting
mean catchment SWE values during the peak accumulation period. The effect of the relatively high
SWE value observed in year 2012 was reflected in the snow depletion curve of that year with the earliest
grid-cells melt out day occurring after day 75 and in most of the grid-cells around day 100 (a). In year
2014, on the other hand, an early melt out date (around day 60) was observed in most of the grid-cells
(b). The change point detection schemes were able to reveal this phenomenon. For example, in most of
the grid-cells the τ value detected using the parametric approach was around day 25 in year 2014 as
compared to day 50 in year 2012. Within a given year, the fSCA dynamics over time varied spatially
from one grid cell to another. As a result, the critical dates in the ablation period, i.e., τ and start of the
melt-out period for many of the grid-cells occurred at different points in the time axis. This variability
in the critical dates in turn affects width of the timing windows (d1 and d2, Equation (11)) and thereby
the relative informational value of an fSCA observation from a particular date.

Tables 3 and 4 shows statistical summary of τ and melt-out dates of each analysis year based on
spatial domain (i.e., grid-cell values). The statistical summary was computed based on the occurrence
of the critical points in days since April 1 of each year (days) and time indices that show relative
position of the critical points in the time axis (index). It can be noticed that the τ detected using
non-parametric approach occurred at a relatively latter point in the time axis as compared to those
identified using parametric approach with an average difference of about three days (one time-step).
The spatial variability is relatively higher for τ detected using the non-parametric approach with
an overall average value of 30 days as compared to 26 days for τ detected using the parametric
approach. Based on the bootstrap test, the non-parametric approach was able to detect τ with over
99% confidence level for all grid cells and analysis years. From this table it can also be observed that
start of the complete melt-out period varied spatially from one grid-cell to another within a given year
and temporally between the different years. For example, highest negative skew of −0.8 and positive
skew of 0.4 were respectively observed in years 2011 and 2015 (based on the time indices). Similarly,
the average number of fSCA observations per grid cell varied from year to year ranging from 32 to 47.
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Figure 3. Spatiotemporal variability of the fSCA dynamics and location of the change points (τ_param
and τ_nonparam) detected using parametric and non-parametric approaches for 33 grid-cells in two
sample years, year 2012 (a) and year 2014 (b). Many of the change points are overlapping and the color
intensity shows the degree of overlap in τ values of different grid-cells.

3.2. Evaluation of the DA Schemes Against Observed Data

We assess the effect of the different DA schemes through comparison of the median simulated
against observed SWE values. For each hydrologic year, the median values resulting from each of the
100 iterations are averaged and compared against the observed values using the evaluation metrics.
Figure 4 shows the evaluation result of the DA schemes in their original formulation (Pbs and LoA) as
well as with fuzzy coefficients (Pbs_F and LoA_F). The DA schemes yielded an improved estimate
of SWE as compared to the prior simulation in all years with the exception of years 2010 and 2015.
The relative performance of Pbs and LoA as well as Pbs_F and LoA_F varied from year to year. A
similar result was also observed between LoA and LoA_F. On the other hand, the incorporation
of a fuzzy coefficient in Pbs resulted to an improved estimate of SWE in all years as compared to
the original formulation. The fSCA-based evaluation using similar metrics also revealed that the
DA schemes resulted to an improved estimate of fSCA as compared to the prior values. While an
improved performance was observed when using LoA_F as compared to LoA in terms of the three
evaluation metrics, a slight deterioration in MAB and RMSE was observed when using Pbs_F as
compared to Pbs. In most of the analysis years, LoA has shown significant improvement both in
SWE and fSCA estimation after the persistency in reproducing the observations was included as a
hydrologic signature.
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Figure 4. Comparison of simulated against observed SWE using MAB (a), RMSE (b) and R (c) as well
as simulated against observed fSCA using MAB (d), RMSE (e) and R (f) under the scenarios without
DA (prior) as well as with DA using Pbs, Pbs_F, LoA and LoA_F. The evaluation metrics are calculated
using spatial (grid-cell) values.

Figure 5 compares observed and median simulated SWE for all years under the four DA schemes
and at four elevation ranges. It shows that the prior predictions tend to overestimate the low SWE
values especially for grid-cells located at the highest elevation range, i.e., above 1200 masl, and
underestimate the high values (a). This phenomenon was improved in the posterior SWE estimates
using the DA schemes. The line fitted to the observed versus reanalyzed SWE values (red line) yielded
a closer slope to the identity line (broken grey line) as compared to the prior (dark full line) (b, c, d
and e). The reanalyzed values are also closer to the identity line under Pbs with a slope of 0.57 and
R value of 0.59 (b) than the LoA with a slope of 0.34 and R value of 0.56 (c). However, the number
of outliers in the reanalyzed values is generally lower under LoA as compared to Pbs. This is due
to the fairly distributed weight between ensemble members in LoA as compared to Pbs resulting to
less surprises under variable conditions. A better fit was also observed when using the DA schemes
with fuzzy coefficient (Pbs_F and LoA_F) as compared to the schemes with the original formulation
(Pbs and LoA). The improvement was more significant for the DA schemes based on LoA where the
slope of the line fitted to the reanalyzed versus observed values has increased from 0.34 to 0.53 and
the R value has improved from 0.56 to 0.65 (e). It can also be noticed that most of the simulated SWE
values for grid-cells that lie in the two extreme elevation ranges, i.e., <800 m and >1200 m lie above
the identity line implying that they are overestimated. This can be attributed to the errors emanating
from interpolation of the point forcings in these elevation ranges. The observed low SWE values are
overestimated while high values are underestimated both before and after reanalysis using all DA
schemes. This phenomenon is relatively more pronounced when using LoA than Pbs.
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Figure 5. Correlation plot between observed and reanalyzed SWE using the prior estimate (a) and Pbs
(b), LoA (c), Pbs_F (c), and LoA_F (e) depicting the effect of DA on estimated values from grid cells
located at four elevation ranges. The broken grey line represents the 1:1 identity line, while the full
dark line and red line are respectively fitted to the prior and reanalyzed values. The slope and R values
in plots (b), (c), (d), and (e) refer to the reanalyzed versus observed SWE fitted lines.

The DA result and prior values were also analyzed by aggregating the grid cells into their
respective sites (Figure 6). The average SWE value of a given site was estimated from the individual
SWE values of the grid-cells in the site. Generally, a better fit between observed and simulated SWE
values can be noticed at site level as compared to the analysis result at grid-cell level. For example,
when using Pbs_F, the slope and R values of the line fitted to the reanalyzed versus observed SWE
values have respectively increased from 0.59 to 0.80 and from 0.63 to 0.69 (i.e., an 8% increase in R).
This can be attributed to the lower number of outliers at site level due to the smoothing effect of the
aggregation. Similar to the analysis at grid-cell level, a better fit was observed when using Pbs as
compared to LoA; and the effect of accounting for the informational value of fSCA observations was
more significant in LoA_F than in Pbs_F. The value of R has increased by 16% after introducing the
fuzzy coefficient in LoA. No significant spatial pattern in effect of the DA was observed with the
exception that the SWE values of site 6 were less constrained by the DA schemes and the estimated
SWE values of sites 1 and 4 were relatively underestimated when using the LoA approach.
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Figure 6. Correlation graph of site-averaged observed and predicted SWE values based on the prior
estimates (a) and the four DA schemes, i.e. Pbs (b), LoA (c), Pbs_F (d), and LoA_F (e). The nine sites
are represented by different colors and the lines in each sub-plot are as explained in Figure 5.

Figure 7 presents a sample annual inter-comparison of the prior and reanalyzed SWE estimates
against observed values. The comparison was based on site-averaged observed and simulated SWE
values. The relative performance of the DA schemes varied both spatially from one site to another
and temporally from year to year. For example, while the SWE values reanalyzed using Pbs were
closer to the observed values at sites 7 and 9 than those from LoA in year 2008 (a), the latter was
better at reproducing the observed SWE values at sites 4 and 5 for the same year. A similar example
can be mentioned from a temporal perspective; Pbs showed better performance in years 2009 (b)
and 2010 (c) at site 1, while LoA yielded better result in years 2011 (d) and 2012 (e) for the same
site. An improvement was also observed in uncertainty of the SWE estimates after reanalysis using
the DA schemes, although the level of uncertainty for a given DA scheme varied spatially from one
site to another and temporally from year to year. Relatively low level of uncertainty was observed
on SWE values reanalyzed using Pbs and Pbs_F as compared to LoA and LoA_F. The inclusion of
fuzzy coefficient in LoA yielded to an improved level of uncertainty. On the other hand, the prior
and LoA resulted in SWE values with high level of uncertainty. In Figure 7, the upper quantile (95%)
values from the prior and LoA are scaled down to 10% of their respective values in order to maintain
proportional look with results from the other DA schemes displayed in the same plot.
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Figure 7. Comparison of site-averaged observed against the prior and reanalyzed SWE values using
the original DA schemes (Pbs and LoA) and the DA schemes with fuzzy coefficient (Pbs_F and LoA_F)
for years 2008 (a)–2012 (e). Error bars denote the 90% prediction interval. For the prior and LoA
schemes the upper quantile (95%) values are scaled down to 10% of their respective values.
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The difference in the allocation of weight between the ensemble members under the four DA
schemes and the prior partly explains the difference in the width of the resulting uncertainty bound
of their SWE predictions. Some ensemble members may yield very high or low SWE prediction
depending on the combination of the perturbed parameter values. The effect of these predictions on
the resulting quantile values, however, depends on the weight assigned to such ensemble members.
In prior estimate, all ensemble members are assigned equal weight of 1/Ne. LoA also tends to
maintain fair distribution of the total weight among the ensemble members as compared to Pbs,
while most of the weight is carried by few ensemble members when using the latter. For example,
the maximum weight carried by a single ensemble member when using Pbs was 54.6% as compared to
only 1.6% in LoA-based on analysis carried out in year 2008 and a sample grid-cell (result not shown).
As such, when using LoA the quantile values fairly represent the SWE predictions of several ensemble
members; and this yields to wide uncertainty bound. Whereas, Pbs yields to narrow uncertainty
bounds of predicted SWE, although not necessarily bracketing the observed SWE values. For example,
the uncertainty bounds fail to bracket the observed SWE values in sites 4, 5, and 8 when using Pbs
in year 2008 (Figure 7a). However, this phenomenon was not consistent throughout all years since
this DA scheme was able to bracket the observed SWE of the same sites in other years, for example in
years 2011 and 2012 (Figure 7d,e).

Performance of the different DA schemes was also analyzed in terms of their capability in
reproducing the snow depletion curve (Figure 8). The fSCA values of all grid-cells are aggregated
to estimate a catchment scale daily mean value. The result shows that, the complete melt-out period
occurred at a later time step when using the prior estimates as compared to the reanalyzed values using
the DA schemes. As such, the median prior values tend to overestimate the fSCA observations during
this period. This phenomenon was observed in all years with the exception of year 2011; where the
prior yielded relatively better estimate than Pbs. Neither the prior nor the posterior median estimates
were able to adequately reproduce the fSCA observations in the month of April. Visual inspection of
these plots also shows that the uncertainty associated with fSCA estimates was highest under LoA as
compared to the other DA schemes. On the other hand, the proportion of fSCA observations bracketed
by the 90% uncertainty bound was highest under this scheme. This implies that fSCA observations
during anomaly years might be better reproduced by the LoA as compared to the other DA schemes.
The uncertainty bound of each DA scheme also varied from year to year.

3.3. Sensitivity of the DA Evaluation Metrics to Change in Location of the Critical Points

In this study the fSCA observations that fall in different timing windows are assumed to have
varying degree of informational value in constraining model states and parameters; with observations
between the critical points, i.e., the detected τ and the first incidence of null fSCA, carrying the highest
informational value. The validity of this assumption was examined by moving the window with
highest value of fuzzy coefficient (W-2) forward and backward in the time axis, followed by subsequent
evaluation of its effect on the DA result using Pbs and LoA schemes (Figure 9). The percentage change
in τ was calculated using the total number of observation time indices between April 1 and the
detected τ as a reference. Since, the number of observations is generally low during this period,
different percentage changes in τ might point to the same nearest time index; yielding similar value
in the evaluation metrics. The result shows that the evaluation metrics started to deteriorate when
the location of τ was shifted forward by about 20% (i.e., −20%) and backward by about 50% in the
time axis. The sensitivity was also higher when the location of τ was moved forward as compared
to backward in the time axis. This can be attributed to the relatively low signal to noise ratio of the
observations in W-1 as compared to those in W-3. Further, the sensitivity to the change in location of
τ was higher under Pbs than the LoA. The sensitivity curves of the three DA performance metrics
have shown similar trend when applied on SWE (a, c and e) and fSCA (b, d and f) in response to the
displacement of τ in the time axis.
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Figure 8. Median and prediction uncertainty of fSCA for the prior and posterior estimates reanalyzed
using the different DA schemes (Pbs, LoA, Pbs_F, and LoA_F).
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Figure 9. Sensitivity of DA performance metrics of SWE (a,c,e) and fSCA (b,d,f) to change in location
of the critical points (τ and complete melt-out) in relation to the points detected using the automatic
detection scheme. Broken lines represent sensitivity result of the evaluation metrics in each year and
bold lines represent average value of all years.

4. Discussion

In this study four ensemble-based batch smoother schemes were used to retrospectively estimate
SWE during the peak accumulation period through assimilation of fSCA into a snow hydrological
model. Effect of the DA schemes was analyzed for nine years and with due consideration to different
elevation zones as well as two spatial scales, i.e., at grid-cell and site levels. One of these schemes
was based on a Bayesian approach (Pbs), while the other was based on the limits of acceptability
concept (LoA). In both approaches, model predictions were scaled proportional to weight of each
ensemble member. Due to nature of the likelihood function used, most of the weights in Pbs were
carried by few ensemble members, while in the LoA framework, the weights were fairly shared by all
ensemble members.
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Although reanalysis using these DA schemes has yielded a significant improvement of the
correlation coefficient in all analysis years, only a slight improvement was observed in most of these
years when accuracy of the reanalyzed SWE was compared against the prior values based on the MAB
and RMSE statistical criteria. The result was generally encouraging given the high level of uncertainty
associated with remote sensing data in high latitude areas due to frequent clouds and polar darkness.
Other similar studies focused on assimilation of MODIS fSCA into hydrological models have also
reported only a modest improvement in SWE and streamflow estimates after assimilation; and it was
mainly attributed to the very short transition period between the full snow cover and the complete
melt-out dates [20,24]. On the other hand, studies based on the assimilation of multiple-source remote
sensing data have reported significant improvement in these evaluation metrics [28].

The relative performance of Pbs and LoA varied in response to various factors. LoA was generally
more resistant to uncertainties in the assimilated data. When using low quality fSCA measurements
with several missing observations, the LoA may yield better result than Pbs. For example, LoA was
able to yield relatively better result as compared to the prior estimates in years 2010 and 2015 where
there was an overall low performance of the DA schemes in general and Pbs in particular (Figure 4).
The sensitivity test shown in Figure 9 also reveals that the Pbs performance gets easily deteriorated as
compared to the LoA due to the displacement of the timing window with highest coefficient (W-2)
following the changes in location of τ. A further advantage of the LoA is that different intuitive
evaluation criteria including hydrologic signatures can easily be accommodated in constraining model
states and parameters. For example, the overall grade and persistency of an ensemble member in
reproducing the observed fSCA within the assumed measurement error bounds are included as
evaluation criteria in this study. However, in the presence of several correlated observations such as
the fSCA observations from the complete melt-out period, LoA may suffer from identifiability problem
to distinguish the best performing ensemble members and this leads to low performance as compared
to Pbs. On the other hand, the likelihood with the product of squared residuals renders Pbs a better
capability in identifying the optimal ensemble members under such circumstances.

The overall low performance of the DA schemes in years 2010 and 2015 can be attributed to
different factors. Following year 2014, these years have lowest observed mean catchment SWE value
of 419 and 458 mm respectively as compared to the other years. However, these values are not too
far from the average annual value of 525 mm to explain the relatively poor performance of the DA
schemes in these years. The total number of fSCA observations in these years and distribution of the
observations in the time axis were also assessed since they are expected to have an effect on the DA
result. Similarly, no significant difference on the number and distribution of the observations was
noticed as compared to the other years. Future studies may thus assess quality of the assimilated
MODIS fSCA observations and climatic inputs in relation to the other years since such factors are also
expected to play an important role in the DA result.

A fuzzy coefficient was introduced into the original formulations of the two DA schemes in order
to take into account for the difference in informational value of fSCA measurements from different
timing windows in the ablation period. An fSCA observation in a given time index can assume
different informational value depending on its location in the time axis in relation to the critical points.
In Pbs and other schemes with square of errors-based likelihood function, value of the efficiency
criteria is biased towards data with highest uncertainty, with the bias proportional to the uncertainty
squared [30]. The fuzzy coefficient was thus introduced to rescale the level of this uncertainty with due
consideration to the assumed informational value of each observation. The fSCA observations from the
more informative period were promoted by allocating higher importance weight, while observations
from the other periods were punished in accordance to their location within their respective timing
windows. A further assumption in this study was that all observations carry some informational value;
albeit to varying degree.

The informational value of fSCA observations with time was assumed to follow an
exponential-trapezoidal membership function that broadly divides the ablation period into three
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timing windows. In W-1, the fSCA measurements close to the onset of snowmelt are generally
characterized by low signal to noise ratio. Similarly, during the complete melt-out period (W-3) the
measurements are homogenous; and the informational value generally decreases with correlated data
that leads to less power in constraining model states and parameters. The critical points of the timing
windows, i.e., τ and start of the melt-out period, vary both spatially and temporally in response to
various climatic and physiographic factors. This has highlighted the need for a flexible and automatic
detection of the critical points. Both the parametric and nonparametric change point detection schemes
used in this study yielded similar results with well characterization of the changes. A change point
analysis conducted on the transformed data (running total) was found to be more powerful and robust
to outliers than the one conducted on the raw data. This can be attributed to the smoothing effect
of the noises in the former case. Studies dealing with critical point detection such as the timing of
snowmelt onset are also crucial to a better estimate of the surface energy balance in high latitudes,
since the fraction of available solar radiation that is actually absorbed almost quadruple during the
onset of snowmelt [3].

The results obtained in this study through assimilation of fSCA into a hydrologic model could
also be extended to land surface models (LSMs). Inaccuracies in snow estimates within LSMs can lead
to substantial errors in simulation results since snow cover has a significant impact on the surface
radiation budget as well as turbulent energy fluxes to the atmosphere [69]. An assimilation of fSCA
into LSMs was reported to improve the simulation result as compared to an open-loop model without
assimilation [69,70]. Thus, the fuzzy logic-based DA concept presented in this study can also be
applied in the assimilation of fSCA, or other variables that display fuzzy informational value with
time, into LSMs in order to get an improved result. Alternatively, the use of these schemes could
indirectly yield an improvement in the performances of LSMs through improvement in the hydrologic
component when LSMs are coupled with the latter. In recent years, there has been growing interest in
incorporating a hydrologic component into land surface models (LSMs) in order to improve weather
and extreme hydrologic condition forecasts [71,72].

Generally an improved estimate of SWE was observed as a result of reanalysis using the DA
schemes with a fuzzy coefficient, although, a slight deterioration in some of the evaluation metrics of
fSCA was observed when using Pbs_F. This can be attributed to the relatively lower weight assigned to
observations from start of the melting period coupled with the fact that most of the weights are carried
only by few ensemble members. During the onset of snowmelt, sensitivity of the SDC to the initial
bare ground fraction is highest and updates during this period are more likely to be dominated by this
parameter than the snow coefficient of variation or precipitation [52]. The increase in fSCA error was,
however, very small as compared to the improvement attained in SWE estimate. Results from this
study suggest that, the concept of variable informational value of fSCA observations is consistent with
the notion that many of the variables that we usually consider to be crisp quantity and deterministic
are actually fuzzy that carry considerable amount of uncertainty [64].

5. Conclusions

Two ensemble-based data assimilation schemes, i.e. particle batch smoother (Pbs) and the limits
of acceptability (LoA) as well as newly introduced versions of these schemes that account for the
variability in informational value of the assimilated observation (fraction of snow cover area, fSCA),
i.e., Pbs_F and LoA_F, were used to reanalyze the model results. Using the LoA approach as a DA
scheme yielded a promising result. All DA schemes resulted in a posterior snow water equivalent
(SWE) estimate that is better than the prior estimate in terms of accuracy as measured using one or
more of the efficiency criteria used in this study. The result was generally encouraging given the high
level of uncertainty associated with optical remote sensing data in general, and MODIS fSCA product
in particular in high latitude areas.

Although all fSCA observations in the ablation period were important in constraining the
perturbation parameters, some observations were more important than others depending on their



Remote Sens. 2019, 11, 28 25 of 28

location in the time axis with respect to certain critical points in the melt season, i.e., the points
where the mean snow cover changes (τ) and the start of a melt-out period. These critical points
varied from year to year and spatially between the grid cells. The parametric (likelihood-based) and
non-parametric change point detection schemes employed to locate τ in each grid cell and year yielded
reasonable results. A fuzzy coefficient was introduced in the original formulations of Pbs and LoA
that renders highest importance weight to the assumed most informative timing window, i.e., to
observations between these critical points. A sensitivity test conducted by moving the fuzzy coefficient
value assigned to this timing window forward and backward in the time axis revealed that, although
somewhat insensitive up to certain distance from its original location, moving this window farther
lead to deterioration of the DA results.

The reanalyzed SWE using Pbs_F was superior to Pbs throughout all years, although the degree
of improvement in the evaluation metrics varied from year to year. Similarly, an improved estimate
of fSCA was obtained for all years when using LoA_F as compared to LoA. On the other hand,
the improvement in SWE estimate when using LoA_F in comparison to LoA as measured using a
given efficiency criterion was not consistent throughout the analyses years. In many of the analysis
years, the relative performance of the DA schemes was also variable from one site to another. Future
studies can examine the physiographic and climatic factors affecting the relative performance of these
DA schemes in order to get a better insight into the relationship between the underlying concept of the
DA schemes and these factors.

Generally, incorporating the variable informational value of the remote sensing data in the DA
schemes was a viable option for an improved estimates of the perturbation parameters and thereby the
reanalyzed SWE values. The assumed informational values of the fSCA observations with respect to
their location in the time axis was based on the general concept that observations with high uncertainty
are more likely to have more informational value than certain observations. Future studies can be
focused on assessment of the informational values using the well-established techniques based on the
information theory and statistical measures. Although this study was focused on fSCA assimilation,
the fuzzy logic-based ensemble frameworks presented in this study can be applied to assimilation of
other measurements that display variable informational value with time.
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Appendices 
Summary of algorithms implemented in this work 
 
Appendix A: Implementation of the algorithms employed in Paper I 

Although an existing uncertainty analysis framework, i.e. the SAFE toolbox was employed to 
conduct the core analyses in this subproject, a number of algorithms were also implemented 
based on this framework or as independent scripts. Unless specified, the algorithms employed 
in this particular work are implemented using Matlab and they are available at: 
https://github.uio.no/aynomtt/UA 

Parameter sampling and Monte Carlo simulation 

GLUE_shyft_param_sampling: this algorithm is used to coordinate parameter sampling.  
Details about setup of the sampling technique such as the number of samples, parameters that 
are allowed to vary, and definition of their minimum and maximum range is specified in this 
script. It prepares the inputs and calls an existing algorithm that samples parameter values 
using the All-At-a-Time (AAT) sampling technique. The implemented algorithm retrieves the 
sampled parameter values and exports the result as a netcdf file.  

run_MC: this python algorithm is used to run a Monte Carlo simulation using the PT_GS_K 
model and the sampled parameter sets. The simulation results, i.e. streamflow and fractional 
snow cover area are exported to netcdf files for use in further analysis. 

Uncertainty analysis  

The main scripts written to carry out the different uncertainty analysis related tasks are 
outlined below.  

GLUE_shyft_QandSC_param_unc: this script is mainly intended to conduct uncertainty 
analysis based on streamflow as observational dataset. It generates different plots and 
summary statistics such as mean, median, variance, and skewness of the behavioural 
parameter sets. 

GLUE_shyft_Q: used to conduct the residual based uncertainty analysis based on streamflow 
only. Outputs from this script include the cross-validation result of streamflow predictions 
against observed values both for the calibration and validation years. It also generates 
different plots including the observed and simulated hydrographs for each year of analysis. 
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GLUE_shyft_snow: used to conduct the residual based uncertainty analysis based on 
fractional snow cover area as observational dataset. Outputs from this script include the cross-
validation result of fractional snow cover area (fSCA) predictions against observed values 
(MODIS fSCA) both for the calibration and validation years.  

GLUE_shyft_Q_and_snow: carries out the residual based uncertainty analysis using a 
combined likelihood of streamflow and fSCA as observational datasets. Outputs from this 
script include the cross-validation plots and tabular result of the evaluation metrics for 
streamflow and fSCA both for the calibration and validation years. 

GLUE_LOA_shyft_Q_and_snow: used to conduct uncertainty analysis based on the limits 
of acceptability (LoA) concept and a combined likelihood of streamflow and fSCA. This 
algorithm modifies the original formulation of GLUE LoA. Here model realizations that 
satisfy the LoA criteria above certain percentage of the observation time steps (pLoA) are 
considered behavioural. Outputs from this script include the cross-validation plots and tabular 
result of the evaluation metrics for streamflow and fSCA both for the calibration and 
validation years. 

GLUE_LOA_shyft_Q_and_snow_CR_pLoA_analysis: this script is used to assess the 
effect of pLoA on modelling uncertainty (CR) and NSE of the median streamflow prediction. 
Plots displaying CR and NSE against pLoA values are generated for the sample analysis years. 

Appendix B: Implementation of the algorithms employed in Paper II 

In this subproject, the R statistical software and its CART package were used for general 
statistical analysis and in building the machine learning models. This section presents 
summary of the main algorithms implemented in this subproject. Unless specified, the 
algorithms are implemented using R and they are available at:  
https://github.uio.no/aynomtt/ML 

ML_idx_score_pLoA_nea: this matlab script is used to map the model realizations to their 
corresponding efficiency metrics, i.e. pLoA and Score through comparison of the simulated 
against observed streamflow values. The index of model realizations, pLoA, and Score are 
stored for use in training and testing phases of the machine learning methods implemented in 
the following algorithm. 

ML_emulators_rf_knn_nnet: used to build the three machine learning models, i.e. random 
forest, k-nearest neighbours, and artificial neural network as emulators of the Monte Carlo 
simulation. The machine learning models (MLMs) are deployed for use in prediction and 
subsequent analyses. 

ML_emulator_hyd_model_valid: this algorithm is used to identify behavioural model 
realizations based on the time relaxed GLUE LoA concept and the pLoA and score values 
predicted using the MLMs. The deployed MLMs are also tested and validated in this 
algorithm. The evaluation metrics both for the MLMs and the hydrological model are 
computed and exported to a text file. This algorithm also generates plots displaying the 
evaluation result. 
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ML_emulator_posterior_param_statDistn: main task of this algorithm is to compute the 
statistics (e.g. mean, median, variance and skewness) of the posterior distribution for model 
parameters identified using the coupled MLMs and MC simulation. It also calculates similar 
statistics for those directly identified from the MC simulation. The summary statistics is 
exported to a text file. 

ML_emulator_Variable_Imp_and_correlation: used to analyse variable importance, i.e. 
streamflow sensitivity to model parameters. It is also used to compute the correlation between 
the model parameters. Outputs from this algorithm include graphs that display relative 
variable importance and Pearson correlation matrix.  

ML_emulator_percentileQ_plots_of_calib_vs_validn_periods: this algorithm is used to 
analyse quantiles of observed streamflow values for the calibration and validation periods. 

Appendix C: Implementation of the algorithms employed in Paper III 

Unless specified, the algorithms employed in this particular work are implemented using 
python. The scripts are available at: https://github.uio.no/aynomtt/DA 

Estimating global parameter values 

The global parameter values for the PT_GS_K model are estimated through inverse modelling 
using streamflow as an observational dataset. The directory paths to the meteorological and 
physiographic dataset files as well as information related to setup of the model are specified in 
relevant ‘yaml’ files accompanying the model. The generated calibration file containing the 
global parameter values is saved for use in subsequent model runs to estimate the prior values. 
An existing template script accompanying the PT_GS_K model is used for running the model. 

Snow water equivalent (SWE) reanalysis 

The estimated prior SWE values are reanalysed using four data assimilation schemes. The 
perturbation parameters are constrained using fractional snow cover area (fSCA) as 
observational dataset. The following scripts are implemented to accomplish different tasks 
including data preparation, reanalysis, and post-processing. 

DA_main: This algorithm is responsible to organize the main tasks. Basic setup of the SWE 
reanalysis schemes such as value of the perturbation parameters, the reanalysis period, as well 
as fSCA and SWE output file names are specified in this script. The reanalysis routine is 
repeated for a user specified number of random iterations and number of reanalysis years. The 
perturbation parameters are generated for the specified number of ensemble members. The 
model iteratively runs using these values. After each model run, the simulated prior fSCA and 
SWE values are retrieved and stored.  Following that, the methods within the DA_analysis 
algorithm such as the one responsible to prepare the fSCA observations as well as the data 
assimilation methods with and without the fuzzy-logic concept are invoked in this algorithm. 
The reanalysed values are retrieved and stored for use in further analysis. 
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DA_analysis: This algorithm contains methods that carry out specific tasks. These methods 
include: 

get_obs_scf_swe: used to extract the observed fSCA values from a netcdf file for selected 
number of grid cells (33), reanalysis period, and year of analysis.  The netcdf files contain 
fSCA data for the whole Nea-catchment, i.e. 812 grid cells. 

pbs_analysis: this method is used to carry out SWE reanalysis tasks based on the different 
data assimilation schemes, i.e. LoA, LoA_F, PBS and PBS_F. The data assimilation schemes 
with the fuzzy coefficient, i.e.  LoA_F and PBS_F require the identification of critical periods 
in the time axis. Hence, an algorithm responsible to detect the change points 
(scf_cpt_detctor_param_and_nonParam) is also called by this method. It also invokes other 
methods implemented in the same class that are written to accomplish specific tasks such as 
the get_wt_trimf, get_type_2_mf, get_perc_days_mf, and the weighted_quantile method. 

eval_assimilation:  this method is used to evaluate the simulated prior and reanalysed SWE 
and fSCA values through comparison against their respective observed values. The evaluation 
metrics calculated in this method include: the mean absolute bias (MAB), Pearson correlation 
(r), and root mean squared error (RMSE). 

Other algorithms implemented in this subproject include: 

scf_cpt_detctor_param_and_nonParam: This algorithm estimates the change point 
positions using parametric and non-parametric approaches. The parametric approach was 
adopted from the script by Bellei (2018), while the non-parametric approach, i.e. CUMSUM 
was newly implemented based on the paper by Taylor (2000). This algorithm has methods 
that are meant to carry out the change point detection and calculation of the confidence 
interval associated with the detected change points. 

DA_sensitivity_and_fSCA_distn: this algorithm is used to conduct sensitivity analysis of the 
efficiency metrics, i.e.  RMSE, r, and MAB in response to change in position of the critical 
points. The critical points are the point where the mean snow cover fraction changes and the 
point where the melt-out period starts. The algorithm shifts position of the critical points both 
forward and backward in the time axis with subsequent analysis of its impact on the 
evaluation metrics as compared to the originally detected change points. Outputs from this 
algorithm include the sensitivity analysis graphs as well as the conceptualization graph 
displaying value of the fuzzy coefficient in relation to dynamics of fSCA in the ablation 
period. 

DA_TS_analysis_and_plot: used to analyse the prior and reanalysed SWE estimates and 
fSCA dynamics both in space and time. It displays the output using relevant plots. 

DA_CP_param_vs_nonparam_plots_and_statcal_summary: used to analyse and display 
the change points for all grid cells as detected using the parametric and non-parametric 
approaches. This algorithm also generates annual statistical summary (e.g. mean, median, 
variance, and skewness) of the detected change points based on grid cell values.  
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DA_plots: used to display different plots based on the analysis on the prior and reanalysed 
SWE and fSCA values.  

extract_transect_sd_swe: this matlab script is used to extract SWE values, their geographical 
location, and observation date from the radar measurement files. It masks the data points 
based on geographical location of the model grid cells. It also displays location of the 
observed values on map of the Nea-catchment (mainly as a check on whether the data points 
are correctly extracted), and exports the extracted data to a mat file. 

 


