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Abstract
Time series forecasting is a powerful tool for predicting the future values of vari-
ables involved in industrial processes, identifying their patterns through autoregres-
sion. Making forecasting models of industrial processes requires large amounts of
industrial data, which is becoming more plentiful due to industrial digitalization.
However, companies are aware of their datasets’ value and do not necessarily make
their data publicly available. Luckily, we have had the fortune of analyzing a util-
ity company’s industrial dataset which consists of measurements from thousands of
sensors inside of Oslo’s district heating system. The goal of our analysis has been
to predict local differential pressure, inside a fixed location in the system, up to
40 minutes into the future. Using Artificial Neural Networks, such as LSTMs, it
has been shown that they can better predict the differential pressure than models
commonly used (as e.g. persistence or linear AR models).
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Chapter 1

Introduction

This chapter contains the motivation and goal behind this thesis as well as a de-
scription of the thesis’ general structure.

1.1 Motivation

The living conditions of a country are normally dependent on its energy usage (MPE
2008). However, human energy consumption is also considered one of the main con-
tributions to the problem of climate change (IPCC 2007). To solve this conundrum,
we actively need to transition to more renewable energy sources (RES). The eco-
nomic consequences of this transition are not necessarily detrimental as studies have
shown positive economic effects in multiple countries from the introduction of RES
(Apergis and Payne 2010). In the thermal sector, it is known that district heating
systems (DHS) can play a pivotal role in the exploitation of RES (EU 2013). DHS,
with their low carbon emission levels and cost-effective heat production, bring afford-
able heat to districts without the need for electricity. DHS provide a notable part
of the energy consumption per capita in many countries, such as Finland, Sweden,
Denmark and Germany.

Some of the biggest industries today, like the manufacturing and utility indus-
try, monitor more and more of their systems’ processes with sensors. District heating
systems are no exception. These sensors generate large quantities of historical un-
processed data, which is then processed and saved in a database-like infrastructure
(ABB 2013). Taking recent advances in machine learning (ML) into account, we
hypothesize that this data has a lot of unrealized value. Many applications can be
developed through the use of historical sensor data, such as:
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• Anomaly Detection

Also called outlier detection, anomaly detection is a way of detecting anomalies
from recent data. One way of performing anomaly detection is to check if a
measured value is over or below a certain threshold value.

• Anomaly Prediction / Predictive Maintenance

Accurate forecasting models, usually created with large amounts of historical
data, can predict anomalies that have not yet taken place. Knowing the state of
the processes and equipment, an organisation can perform a maintenance when
it best fits them. This can help reduce costs and downtime, as maintenance
sessions usually are held in fixed intervals.

• Process Optimization

Manually adjusting the state of a process in order to optimize it can be time
consuming. One can use ML algorithms, trained on vast historical datasets,
to automatically find patterns of adjustments that lead to an optimal process.

With these valuable applications in mind and the large quanitity of industrial data,
training predictive ML algorithms on historical data from DHS seems like a worth-
while task, as new insights may help with optimizing the use of heating systems.

1.2 Goals

The goals of this thesis are:

• Create a data pipeline which processes historical sensor data from a DHS,
turning the data into uniform time series.

• Create artificial neural networks and recurrent neural networks for forecasting
pressure sensor data from a DHS.

• Implement a traditional linear autoregression model and a persistence model
to use as benchmark models.

• Analyze time-series data well enough to make predictions that are competitive
with already established forecasting methods.

• Compare and discuss the performance of the different forecasting models.
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1.3 Contributions

In this thesis, we have contributed the following:

• A data pipeline that resamples and forward fills aperiodical data, turning it
into uniform time series which are easier to analyze.

• Standard implementations of ANN and LSTM models from the Keras library
in Python, as well as some specialized LSTM models (Stacked LSTMs and
LSTMs with embeddings).1

• A comparative analysis of ANNs and classical forecasting methods.

1.4 Thesis Structure

This thesis consists of five parts; Background, Theory, Methodology, Analysis/Re-
sults and Summary. The smallest of the five is the background chapter where we
introduce our problem, information around it, as well as briefly touching on the
methods we plan on using. Theory, as the name suggests, holds most of the the-
ory regarding regression and optimization methods. In the Methodology part we
present our data pipeline and discuss our various heuristics we have made to reduce
the amount of irrelevant data in our dataset. The fourth part, Analysis and Results,
discuss different hyperparameter settings, architectures and input features and how
they affect prediction. We also compare our neural network models with each other
and with our benchmark models. In the last part, Summary, we take a critical look
at what we done and try to make sense of our analysis results before we conclude.
Lastly we discuss our contributions and future perspectives.

1The code for both the pipeline and the models can be found on my github at: https://github.
com/mathhat/Timeseries-Forecasting

https://github.com/mathhat/Timeseries-Forecasting
https://github.com/mathhat/Timeseries-Forecasting




Chapter 2

Background

This chapter consists of basic theory and problem information. We start off ex-
plaining what time series are. Secondly, we describe what kind of system our data
is generated from before we present our methods.

2.1 Time Series Forecasting

Before we discuss time series forecasting, let us briefly explain what a time series is.

2.1.1 Time Series

Time series data constitutes data that has a natural order in time, such as weather
data measurements, stock prices, or a particle’s whereabouts in time and space.
Imagine a set of timestamps T = {t0, t1, t2, t3, ..., tN}. A time-series is then the set
of observations xt, where each observation, x, corresponds to the specific timestamp,
t, when the observation was measured. The timestamps are typically uniformally
spaced in time, meaning there is a fixed time interval between each observation.
Industrial historical data, however, are usually generated from event-driven sensors.
Event-driven meaning: A measurement that is saved when it is sufficiently different
from the previously saved measurement. “Event-driven“ will be used multiple times
from this point and will always refer to the preceding definition. This means the
time series data we will be working with are generally non-uniformly spaced.

13
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Figure 2.1: An example of a time series with both seasonality and trend.
The trend and seasonality have been visualized as two individual graphs.

2.1.2 Forecasting

Time series forecasting is the use of a model to predict future values of a time
series, using historical data from the same series (univariate forecasting), or using
historical data from several series (multivariate forecasting). A common approach
in time series forecasting is to model a series as a combination of an oscillating
“zero-mean” function y(t), and a slowly changing trend function m(t) (Brockwell
and Davis 2002)

x̂t = mt + yt. (2.1)

A randomly generated example of such a time series can be seen in figure 2.1.

There are multiple ways of creating models from datasets. In the field of time
series forecasting, the methods are separated into two domains: spectral (frequency)
domain and temporal (time) domain. Frequency based methods typically apply
methods like Fourier and Wavelet transformations to exploit the series’ frequencies
(Brockwell and Davis 2002). While time based methods prefer to handle the data in
its raw form. The way we apply neural networks the forecasting problem is similar
to methods from the time domain, as we infer no Fourier or Wavelet transformations
on the data.
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2.1.3 Multi-step Forecasting

The the type of forecasting we will use in this thesis is called multi-step forecast-
ing. Multi-step forecasting simply means that we will be predicting more than one
timesteps into the future. Typically, one only predicts a single timestep into the
future. By performing multiple predictions (multi-step forecasting), at different
distances into the future, one can get a continuous perspective of the variable’s es-
timated future. The way we choose to predict multiple timesteps into the future is
by creating multiple models, one for each timestep into the future. This is known
as Direct Multi-step Forecasting (DMF).

2.2 The District Heating System

This thesis revolves around predicting sensor data from a DHS in the form of a third
generation heat network. A third gen. heat network transfers heat via pressurized
water in insulated pipes, typically buried beneath the ground. Heat networks con-
tinuously lose their heat as a consequence of both environmental heat dissipation
and customer heat consumption, the latter being what the network is made for.
Heat dissipation is a problem for these networks, as 5-10% of the energy the system
carries spills into its surroundings.

2.2.1 Infrastructure

Conceptually, a heating system is a heat transfer network as depicted in figure 2.2,
with an interwinding network structure that connects a city’s buildings together.
The heating system our data is from is situated under the city of Oslo, the capital
of Norway, and is the largest DHS in Norway. The city’s size is approximately
454 square kilometers, a bit less than one-third the size of London which gives an
estimate of the maximum dimensions of such networks. The water in the network
is heated by multiple boilers, inside heat production plants. The network’s size,
amount of heat sources and the overlapping grid structure are all factors that add
structural complexity.

2.2.2 Energy Sources

The central heat plants are all unique. They can contain multiple boilers, and not
just for one type of fuel. Some boilers run on electricity when electricity prices are
low, using large heat pumps. More popular than the heat pump boilers are the
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Figure 2.2: A simplified heating system. The magnified circle in the figure
illustrates that the water coming out of the heat plant is heated, while the
water returning from the households is cooled.

Figure 2.3: Pie chart of the most utilized fuel sources by Norway’s heating
systems.



Section 2.4 Neural Networks for Forecasting 17

biofuel boilers. The largest energy source of all is recycled heat. As of 2017, 51%
of all the energy fed to Norway’s heating systems came from from recycled sources.
The recycled heat comes mainly from burnt waste (92%) and leftover heat from
industrial processes (6%). In figure 2.3 is a pie chart illustrating the distribution of
the different fuel types that Norwegian heating systems utilize.

The reason why the heat from disposed waste is labeled recycled heat is ratio-
nalized like this: Since a natural deterioration of the trash would release CH4 instead
of CO2 gas, the former being a much more potent greenhouse gas, burning the trash
is a viable strategy in combating climate change. In addition to the burning ar-
guably being environmentally friendly, Norway’s garbage recycling program ensures
that a minimal amount of the waste being burnt comes from a fossil origin. The
most valuable benefits from burning the waste is the electricity it generates, but a
lot of heat goes unused in this process. The excess heat generated from the electric-
ity production can therefore be recycled into our heating system, which otherwise
would have gone to waste.

2.3 Neural Networks for Forecasting

Artificial neural networks (ANNs) are viable tools for the task of forecasting in-
dustrial historical data. Although ANNs have a limited use in today’s time series
forecasting toolbox, their performance is well documented. Already a couple of
decades ago it was shown, by Kolarik and Rudorfer (1994), that a simple artificial
neural network can outperform well established methods for forecasting time series.
This is likely because ANNs are able to model non-linear relationships in the data
(Hornik, Stinchcombe, and White 1989), while older time series forecasting methods
are typically linear models (Zhang 2012).

2.4 The Data

The historical data from the heating system’s thousands of sensors, or “tags”, make
up the entirety of our dataset. Their measurements are timestamped, cleaned for
outliers and saved. The data spans a one and a half year period from 2017-2018
C.E. In this section, we will give some superficial insight into both the sensors and
the data we use.
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2.4.1 Assets and Tags

Inside the heating system are dynamic assets who regulate and monitor different
processes, such as flow regulators and heating ovens. On these assets are sensors,
which will be referred to as “tags” from here on. These tags are event-driven sensors,
but have a constant sampling rate of 1 Hz, meaning that a tag does a measurement
every second and if that measurement is different enough from the last, the measure-
ment is saved. Each tag measures a specific quantity, e.g. temperature, pressure and
differential pressure. Some quantities are unitless, meaning they monitor/represent
something non-physical, such as a binary value representing an open or closed gate.
There are tens of thousand of tags. This makes part of our thesis problem to not
only make models, but also to find the most relevant tags focus on. The words; tag,
variable, input feature and response variable all refer to the array of measurements
of a tag in this thesis.

2.4.2 Format

The historical data is a series of rows, where each row contains the timestamp, the
tag name, the measurement, and various other values which we do not have to worry
about. Below is a sample of measurements taken from a single tag.

" 2018–03–09 22 : 22 : 00 " , "XXX_PT705 . vY" ,747 .59 ,192 ,192 ,4
" 2018–03–09 22 : 23 : 00 " , "XXX_PT705 . vY" ,733 .39 ,192 ,192 ,4
" 2018–03–09 22 : 24 : 00 " , "XXX_PT705 . vY" ,735 .43 ,192 ,192 ,4
" 2018–03–09 22 : 25 : 00 " , "XXX_PT705 . vY" ,739 .50 ,192 ,192 ,4
" 2018–03–09 22 : 26 : 54 " , "XXX_PT705 . vY" ,766 .21 ,192 ,192 ,4
" 2018–03–09 22 : 27 : 12 " , "XXX_PT705 . vY" ,739 .57 ,192 ,192 ,4
" 2018–03–09 22 : 28 : 01 " , "XXX_PT705 . vY" ,750 .72 ,192 ,4
" 2018–03–09 22 : 29 : 01 " , "XXX_PT705 . vY" ,746 .80 ,192 ,192 ,4

The value the sensor measures is the first number to the right of the tag name.
The unit of the value is given by the tag’s name, XXX_PT705.vY, which contains
the initials “PT”, or, “pressure transmitter”. The initials are part of an interna-
tional standard called the ISA standard/codes(ISA Codes n.d.), which is a naming
convention for process intstrumentation. The first letter in an ISA code(e.g. P in
PT), defines the unit of the measurement. Below is a list of fictional examples of
sensor names and what they measure:

NYC_TT705 . vY , temperature , [C ]
LON_PT101 . vY , p r e s s u r e , [ kPa ]
TOK_FT803 . vy , water f l ow / f l u x , [ kgm^3/ s ]
PAR_PDT803 . vy , d i f f e r e n t i a l p r e s s u r e , [ kPa ]



Section 2.4 The Data 19

As you might notice, PT and PDT are different in the sense that PDT measures
differential pressure. Differential pressure is simply the difference in pressure at some
junction in the heating system. This is the type of sensors we will be analyzing in
this thesis.

The last thing to note about the tag names are their first three letters. The first
three letters in a tag’s name gives away its position, e.g. NYC = New York City.
The utility company who provided us with the data has asked us to withhold this
information, which is why all locations in this thesis will be referred to as “XXX”.
XXX is always an arbitrary district within the state/city of Oslo.

2.4.3 Aperiodicity and Asynchronicity

Aperiodicity

In the listed measurements in subsection 2.4.2, it would seem the tag makes a mea-
surement every minute, but the fifth listed measurement breaks with this pattern.
Even though the tags have a measurement frequency of 1 Hz, which is periodic,
the data is saved aperiodically due to the sensors being event driven. An event
driven sensor only saves a measurement when a substantial enough change happens,
usually a fixed percentage of the value’s expected range. This means our data is
aperiodical, and difficult to work with unless we resample it to a periodic frequency.
If the sensor had saved every single value it measured, it would generate tens of
times more data, which can be cumbersome to deal with.

Asynchronicity

The tags in Oslo’s DHS are numerous and mostly independent of each other. A
consequence of this is that one tag’s measurements usually happen at completely
different times than another one. We call this asynchronicity, and it makes multi-
variate forecasting difficult. The models we intend to use are not designed to work
on aperiodical time series who are asynchronous with each other. Our solution to
this is in our data pipeline, where we make the time series uniform/periodical and
synchronized.

2.4.4 Weather Data

We hypothesize that our prediction problem is easier to solve if we bring data from
outside of the heating system. This is because human behavior, such as Oslo’s
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citizens’ tendency to take showers, may have an impact on the heating system.
Perhaps weather affects showering patterns? Data we give our models from outside
of the heating system can be categorical, such as telling our model which day it is,
or numerical, like telling the model how windy it is. Our weather dataset contains
10 minute interval measurements of wind direction, wind strength, max gust, long
term precipitation and 10 minute precipitation:

t imestamp w_d w_s max_w tot_p p_10
01 .01 .2017 – 00 :00 40 0 .6 1 .2 343 .1 0
01 .01 .2017 – 00 :10 37 1 .0 1 .4 343 .1 0
01 .01 .2017 – 00 :20 71 0 .7 1 .2 343 .1 0
01 .01 .2017 – 00 :30 13 0 .5 1 .4 343 .1 0
01 .01 .2017 – 00 :40 14 0 .4 1 .0 343 .1 0
01 .01 .2017 – 00 :50 72 1 .1 2 .1 343 .1 0

The weather data comes from the Norwegian Meteorological Insititute’s weather
station at Blindern, Oslo, Norway and is free for anyone who would wish to analyze
it.



Part I

Theory

21





Chapter 3

Supervised Machine Learning

The point of supervised learning is to create a model which learns to map an input
to an output based on input-output pairs it has seen before. In this chapter we
will discuss some basics of supervised learning, while mainly focusing on the part of
supervised learning called regression.

3.1 Regression or Classification

Supervised learning can be partitioned into two sub classes, classification and regres-
sion. What separates classification and regression in supervised learning is simply
the output of the input-output pairs. The input in both cases is usually a vector
which is mapped to an output signal that is attempting to mimic the output of the
input-output pair, the label. If you are training a classification model, the labels are
categorical, e.g. “green”, “dog”, “False”, or “True”. The model, once it has learned
a pattern between the input-label pairs, can then be used as a classifier for inputs
that not yet possesses a label/class. In the case of regression models, the labels they
learn to mimic are real-valued, e.g. 42.69cm or 13.37s. Classification is a field in
statistics that deals with categorizing datapoints into their corresponding classes,
while regression is a field in statistics that tries to model the relationship between
the input and label. The two methods are illustrated in figure 3.1. Of the two, it is
regression that this thesis revolves around.

23
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Figure 3.1: Supervised learning consists of both classification and regression.
Left: An example of a classifier that is able to distinguish between two types
of datapoints. Right: A regression model that has found a trend in the data.
Image source: Edell (2015).

3.2 Linear Regression

Regression is the statistical measure of estimating the relationship between variables.
If you for example have a set of discrete temperature measurements T = {T0, ...,
Tn} and the times of day these measurements were taken t = {t0, ..., tn}, you can
perform a regression analysis to approximate the relationship between temperature
and time of day; T̂. Just like supervised learning, this is synonymous with teaching
a model to find the relationship between the input-output pairs in a dataset. In
figure 3.2 is a visualization of a model such as T̂. The purpose of this section is to
present the basics of linear regression and show how one goes about to optimize a
model.

Regression has two general purposes:

• Correlation analysis: A correlation analysis finds out whether or not two
variables are correlated. In this thesis, we check for both linear and non-linear
correlation within our data pipeline.

• Regression analysis: As expressed in Zou, Tuncali, and Silverman (2003),
in a regression analysis, the variable we want to predict the behavior of (label)
is called the response variable, while the model’s input variable is called the
explanatory variable. Regression analysis is to model and predict a response
variable (e.g. temperature) as a function of another variable (e.g. time).



Section 3.2 Linear Regression 25

Figure 3.2: A linear model of our temperature measurements. The data is
artificial.

3.2.1 Simple Linear Regression

Simple linear regression analysis assumes that the relationship between your vari-
ables, e.g. temperaturesT (outcome variable) and timestamps t (predictor variable),
is linear. The general goal of SLR is to draw a straight line as close to all your dat-
apoints as possible (see right-hand side of figure 3.2). This line is expressed in eq.
(3.1)

T̂ (t) = βt+ β0, (3.1)
where T̂ are the estimated temperatures, t are the measured timestamps, β denotes
the trend in the model and β0 is the line’s intercept. The parameters β and β0 in
eq. (3.1) must be optimized (tweaked) to ensure a good fit between the line T̂ (t)
and the measurements T(t).

3.2.2 Ordinary Least Squares Optimization

The optimization of a regression model is synonymous with the minimization of its
cost function (see section 4.7.2 for more information regarding cost functions). In
order to optimize a model T̂, we first need to define a function that expresses how
wrong it is. Such a function is called a cost function, and typically accumulates
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Figure 3.3: The same model visualized in figure 3.2, except that we have
now visualized the residuals, the errors of the model. The point of regression
is to minimize the sum of all these residuals.

all the errors the model has made. We can define the errors of our hypothetical
temperature model as the differences between the predicted temperatures T̂ and
the temperature labels T. These errors are named residuals, or ri

ri = T (ti)− T̂ (ti)
= T (ti)− βti + β0.

In figure 3.3 we display the residuals between the linear model and the measured
labels from figure 3.2. To express all the errors as a function, we sum up all the
residuals. When performing OLS regression, we square the residuals before summing
them. This is because some residuals are likely to be negative, and others positive,
meaning the residuals would simply cancel each other out if we summed them, giving
us a smaller error than what is true. Squaring and summing each residual gives us

Sssr(β, β0) =
n∑
i=1

r(ti)2

=
n∑
i=1

(T (ti)− βti + β0)2. (3.2)

The function Sssr in eq. (3.2) is known as the sum of squared residuals.
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Figure 3.4: A heatmap of the SSR for various temperature models, such as
the one in figure 3.3. The optimal values for β and β0 seems to be positioned in
a diagonal valley across the figure. This is where the residuals are the smallest
and yields the best fitting line through our data.

3.2.3 Minimizing the Cost Function

In figure 3.4 is a plot of how the error in figure 3.3 behaves as a function of β and β0.
It is evident that reducing the error Sssr is done by finding the optimal parameter
values β and β0 for our model. To begin finding the optimal parameter for models,
we need to derive the gradients of their cost function. Before differentiating the cost
function expression w.r.t. β and β0, we need to expand it

Sssr(β, β0) =
n∑
i=1

(T (ti)− T̂ (ti))2

=
n∑
i=1

(T (ti)− (βti + β0))2 =
n∑
i=1

(T (ti)− βti − β0)2

=
n∑
i=1

[T (ti)2 − 2β0T (ti)− 2βtiT (ti) + β2
0 + 2β0βti + β2t2]

=
n∑
i=1

T (ti)2 − 2β0

n∑
i=1

T (ti)− 2β
n∑
i=1

tiT (ti) + nβ2
0 + 2β0β

n∑
i=1

ti + β2
n∑
i=1

t2i .

(3.3)
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Gradients of the SSR

Below are the partial derivatives of a model’s SSR with respect to both its parame-
ters, which we for practical reasons call “gradients”

∂Sssr
∂β

(β, β0) = −2
n∑
i=1

tiT (ti) + 2β0

n∑
i=1

ti + 2β
n∑
i=1

t2i

= −2
n∑
i=1

(
tiT (ti)− β0ti − βt2i

)
, (3.4)

∂Sssr
∂β0

(β, β0) = −2
n∑
i=1

T (ti) + 2nβ0 + 2β
n∑
i=1

ti

= −2
n∑
i=1

(T (ti)− β0 − βti) . (3.5)

Exploiting these error gradients can be done either analytically or numerically. Min-
imizing a cost function numerically is usually done in a gradient descent scheme (see
sector 4.7.4 for more info on numerical optimization). In a gradient descent scheme
we look at the sign of the gradients in order to know which direction to tweak our
parameters in order to minimize the error. These tweaks usually happen for a fixed
number of iterations.

The analytical way to minimize the error would be to set the r.h.s. of the
gradients’ expression equal to zero and find a closed form solution for each of our
parameters. Few models have closed form solutions to their gradient expressions
and so numerical optimization is required for most supervised learning models. The
analytical solution for OLS does exist and is much more efficient than a numerical
optimization scheme. If the reader is interested, we have derived the analytical
solution to OLS regression in appendix (A.1).

3.3 Fit and Predict

In regression analysis, most methods rely on fitting a model ŷ(x) on a dataset
(x,y), so that some error function, e.g. the sum of squared residuals ∑i(yi − ŷi)2,
is minimized. After fitting, one can either analyze how accurate ŷ models y, or one
can attempt to infer the model ŷ on new data observations (xtest,ytest) in order to
see how well it predicts the new observations (prediction). In this section we take
a closer look at regression analysis and the process of fitting and predicting.



Section 3.3 Fit and Predict 29

Figure 3.5: The figure depicts an artificial dataset portraying 50 measure-
ments taken over the course of 50 days. In red is the part of the dataset one
should use to make a model of the temperature. In green is the part of the
data one should not train on, but rather test their model with.

3.3.1 Fitting

The data used to fit, or train, model ŷ is called a training set. Datasets which we use
to evaluate our model are called test sets, and contain datapoints that our model
has not been fitted on. The reason why we evaluate, or test, the model on a test
set rather than the training set is because our model might have overfitted on the
training set during the fitting process (see section 3.4).

As we did in the section on linear regression, let us make another linear model
in order to portray the difference between fitting and predicting. First of all, let
us randomly generate a dataset (x,y) which we split into a training and testset:
(xtrain,ytrain) (xtest,ytest). For practicality, let us pretend x is time and y is a set of
observations of daily average temperature. See figure 3.5 for the randomly generated
data.

It is common to use 50% of the dataset for training and the other 50% for
testing when analysing small datasets, but the bigger the dataset gets, the smaller
percentage of the dataset is used for testing. The reason why only a small portion
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of large datasets are used for testing is because only so many tests are needed in
order to prove the general accuracy of your model. We have for this reason decided
to split the dataset in figure 3.5 into two equally sized subsets.

Before fitting, it is normal to shuffle the dataset so that the input-output pairs
the model trains on are of a wide variety. When the data is chronological however,
one never shuffles the dataset before splitting it into a training and test set. The
reason why is because time series contain inherent temporal components which we
need to exploit if we wish to model the series accurately. To exploit the temporal
connections in the data, the models we make need to be fitted on contiguous parts
of the dataset, or else we destroy the “locality” of the data (see section 5.1 for more
on locality). This is why the training set and test set in figure 3.5 get to keep their
chronological order, making them two contiguous series of data.

Let us fit a simple linear model onto our example training set (the red dots in
figure 3.5). As we discussed in section 3.2.3, fitting/minimizing can be done ana-
lytically or numerically. Using Python code imported from the scikit-learn package,
the implementation we have used performs OLS regression. Remembering that OLS
minimizes the sum of squared residuals, Sssr = ∑

i(yi − ŷ)2, it feels important
to note that this minimization will only happen on the training set, (xtrain,ytrain),
when fitting.

The minimization of the error Sssr(ytrain, ŷ) is known as fitting. This sum of
squared residuals over the training set can be written as:

Sssr train =
∑

x∈xtrain

(y(x)− ŷ(x))2, (3.6)

and the minimization problem can be written as

min
β̂,β̂0

Sssr train(β̂, β̂0),

where ŷ = β̂x+ β̂0. The fitted model ŷ is seen in figure 3.6.

3.3.2 Predicting

Having now fitted a linear model on the training set, we want to see how well it
fits new data / test data. Our model has only been trained to model the average
temperature of the first 25 days of the dataset, so how does one go about to predict
temperatures at a later date? The answer is: By simply inserting x values (or dates)
belonging to the test dataset, xtest, into ŷ. Doing this extends our model into unseen
territory (see figure 3.7).

To measure how well our model predicted the future temperature measurements
in the test set, we compute the residuals between our model ŷ(xtest) and the actual
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Figure 3.6: Using Ordinary Least Squares (OLS) we have fitted a simple
linear regression model to the training set.
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Figure 3.7: This graph shows the same model from figure 3.6. All we have
done is to infer it on future dates: ŷ(xtest). By doing this, we have predicted
the future temperatures. We see that our predictions (green line), on average,
are slightly higher than the true observations (green dots).
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future temperatures ytest (see eq. (3.7)). By “future” we simply mean a time past
the training dataset measurements

Sssr test =
∑

x∈xtest

(y(x)− ŷ(x))2. (3.7)

The summed squared residuals from our predictions, from here on called the “test
error”, Sssr test, is likely larger than Sssr train, or “the training error”. This makes
sense, since the training error is what we minimized when fitting our model. We only
care about the test error and want it to be as small as possible, since the purpose of
our model is to predict unseen data. A small test error means that our model has
is successful at predicting the data pattern, in this example case, the average daily
temperature.

3.4 Overfitting

Since we are on the subject of fitting, overfitting seems like a fitting phenomenon to
fit in here. Overfitting is a phenomenon that happens when a model is complex and
is fitted “too well” onto a training set. To decrease the risk of overfitting models,
a basic understanding of prediction bias- and variance is required. The following
subsections are heavily inspired by Mehta et al. (2018)’s introduction to the bias-
variance tradeoff.

3.4.1 Model Complexity - Polynomial Regression

An intuitive way of discussing overfitting is by looking at complex models. By
complex, we mean that a model has many parameters. Polynomials are a great
example of models with various complexity. As a polynomial’s degrees increase so
does its complexity. In figure 3.8 we have fitted two polynomial functions, one of
third and one of 14th degree, onto a noisy training set. In the figure we see that the
14th degree polynomial is much more adept at mimicing the training data’s pattern,
while the third degree polynomial follows the datapoints in a very “generalized” way.
However, once we attempt to extend these models onto the test set, the roles are
changed. In figure 3.9 we have illustrated the predictions of the models on the test
set, where we observe that the third degree polynomial is far more accurate than its
more complex cousin. The reason why the more complex polynomial model failed
is due to overfitting on the training set. This does not mean that complexity is bad,
but we need a way to balance it. To do this, we look at a model’s variance.
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Figure 3.8: Two polynomials of differing complexity have been fitted onto a
training set (red). Notice how much more adept the more complex model is
at modeling the data’s noise.

Figure 3.9: Two polynomials of differing complexity attempting to predict
the behavior of the test set. Notice the way the less complex model is able to
capture the data’s general pattern.
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3.4.2 Bias and Variance

Given a dataset of N inputs, X =∈ (x1, ..., xN), variance is a measure of how much
a model, f̂(X) fluctuates around its mean

Var(f̂) =
(

1
N

N∑
i

f̂(xi)2
)
− ¯̂
f(X)2, (3.8)

where ¯̂
f(X) is the average value of the model.

If a model is very complex, chances are it has a high variance. These models
(e.g. neural networks or large polynomials) come with a tendency to fit their training
dataset very well, as we saw in figure 3.9, this is not always a good thing. Models
rich in variance risk modeling the data they are trained on too well. What we mean
by this is that real data contains noise, which we do not want to model. Noise
causes data points to deviate, to some degree, from their underlying pattern. High
variance models are so sensitive to noise that they end up modeling the nonexistent
pattern in the noise instead of the underlying data pattern. This modeling of both
the data pattern and the noise pattern is called overfitting and renders the model
unable to make any predictions of value.

As we decrease a model’s variance, its bias starts increasing. Bias is the differ-
ence between the average prediction of a model and the output label it is attempting
to predict

Bias(f̂) = ¯̂
f(X)− y, (3.9)

where y is the output label. Models with high bias are relatively bad at fitting their
training data and have very little flexibility. An example of a model with high bias
is a linear regression model. High bias models do not risk overfitting, but due to
their limitations they risk underfitting. Underfitting is a term used to describe when
a model fails at picking up a pattern in the data, generally leading to a high error.

The average test error, L, of a model is dependent on both its variance and its
bias

L(f̂(X,y)) = (Bias(f̂))2 − Var(f̂) + σ2 (3.10)

where σ2 is an irreducible. Eq. 3.10 expresses the bias–variance tradeoff which is
the problem of how to balance a model’s complexity in order to receive the small-
est error possible. In figure 3.10 is a visualization of how the tradeoff behaves as
a model’s complexity increases/decreases. We can demonstrate the bias–variance
tradeoff experimentally by creating a lot of polynomial models of varying degrees.
In figure 3.11 we have done just that.

There are many different techniques for avoiding overfitting. One can pick a
high bias model and not risk overfitting at all. Alternatively, one can pick a complex
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Figure 3.10: The bias–variance tradeoff visualized. The figure illustrates
how the error (black) can both decrease and increase as we tweak on a model’s
complexity.

model and stop training it before it overfits, using a validation set (see next section).
A third way to avoid overfitting is regularization, a limitation which helps the model
generalize if it is prone to overfit (see section 5.5 for more on regularization).

3.5 Autoregression

As we briefly stated in the introduction, time series forecasting follows a special re-
gression scheme called autoregression. In order to understand the difference between
classical regression and autoregression, let us first recapitulate what a standard re-
gression model does in order to predict the future value of a variable. Standard re-
gression approximates the relationship between an explanatory variable (e.g. time)
and a response variable (e.g. pressure)

p̂t+1 = f(t+ 1) (3.11)
= β(t+ 1) + β0. (3.12)

In eq. (3.12), p̂t+1 is the prediction of a future pressure value, where f(t) is the linear
regression model that models the pressure w.r.t. time. In time series forecasting,
however, it is popular to only use the response variable when creating regression
models. To predict future pressure measurements, pt+1, the model is given previous
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Figure 3.11: The bias–variance tradeoff visualized for some polynomials of
varying complexity. The error is the test error, in a similar format as the sum
of residuals squared, calledMSE (see section 4.7.2 for more on cost functions).
Notice how the best polynomials are those between 7th and 17th degree. The
code to make these polynomials was taken from Hjorth-Jensen (2018).
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pressure values:

p̂t+1 = f(pt, pt−1, pt−2, ...)
= β1pt + β2pt−1 + β3pt−2 + ... (3.13)

This way of performing regression/prediction is called autoregression (AR). Autore-
gression models are a traditional class of linear forecasting models. In this thesis, we
have as goal to implement linear AR models and see how their predictions compare
to artificial neural network models.



Chapter 4

Introduction to Artificial Nerual
Networks

The first thing that comes to one’s mind when machine learning is mentioned might
be artificial neural networks. These networks dominate the sub-domains of machine
learning called supervised learning and reinforcement learning, while also being cen-
tral to the third, unsupervised learning (Graves and Clancy 2019). The first notable
attempt at creating computational models of biological neural networks started with
modeling the neuron. This chapter aims to clarify what an artificial neural network
is, how to train it and how to infer it. First however, we present the basic functions
of a neuron as well as the artificial neuron of McCulloch and Pitts.

4.1 Neurons

Neurons are specialized brain cells who receive, process and transmit signals, electi-
cally and chemically. A general neuron consists of a cell body (soma) and filaments in
the form of dendrites and an axon (see figure 4.1). Dendrites are thin filaments that
branch out into tree like shapes, some hundred micrometers tall. The Neuron re-
ceives electrical signals from other neurons via these dendrites, while outgoing signals
are sent via the axon. The axon is a large filament covered in an insulating sheath
of myelin, and is similar to a cable. Axons branch out, making multiple connections
to multiple other neurons’ dendrites. These connections are called “synapses” can
regulate all signal flow. Repeating the recursive pattern of the dendrites and axon
results in a neural network (see figure 4.2).

39
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Figure 4.1: A typical neuron has a tiny compact body, the soma. From
the soma grows tree-like filaments called dendrite, responsible for receiving
signals. The cable like axon is responsible for outgoing signals by connecting
to other neurons’ dendrite via the axon terminals. Credits: David Baillot/UC
San Diego

Figure 4.2: Neurons connected via the left neuron’s axon and the right
neuron’s dendrites. The synapse is the junction where the axon of one neuron
meets the dendrite of another. Electrical signals in the form of ions usually
flow from the axon of one neuron, into the dendrite of another.
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4.2 McCulloch and Pitts’ Neuron

The predecessor of modern neural networks is the McCulloch and Pitts neuron
(McCulloch and Pitts 1943), a simple logical model of the biological neuron. We will
sometimes refer to this model as the Pitts neuron for practicality. The Pitts neuron
models the biological neuron’s ability to become electrically excited by incoming
ions. As incoming ions from other neurons react with the synapses along a neuron’s
dendrite, the ions’ interaction with the synapses create a change in the voltage
gradient between the incoming synapse and the outgoing synapses. If this change
in electrical potential is large enough, it creates an electrochemical pulse called the
“action potential”. This potential activates the outgoing synapses of the neuron,
either causing them to excite or inhibit the next neuron down the line.

For a computational and biological neuron alike, excitation happens when their
input signals are sufficiently strong. Additionally, these signals must also interact
with the receiving neuron’s synapses who can vary in their conductictivity. Tak-
ing these two points into account, McCulloch and Pitts introduced three classes of
variables to their model: inputs, weights and threshold.

The Pitts neuron consists of n inputs (signals) x1, x2, ...,+xn, who interact
with n unique weights (synapses) w1, w2, ...,+wn. We model this interaction as the
product between the “signal”, x and the “synapse”, w. The sum of these variables’
products, described in eq. (4.1), is then compared to a treshold value. If the sum is
larger than this arbitrary threshold, the neuron fires

h =
n∑
i=1

xiwi. (4.1)

4.2.1 Threshold Activation

When the neuron fires, it outputs the value “1”, if not (due to h being too low), it
returns “0”. We call the firing for an activation. The activation of a Pitts neuron is
described with the function

f(x,w) =

0 if h < t

1 if h >= t,

where h is the sum in eq. (4.1) and t is the chosen threshold value. You can see the
Pitts neuron visualized in figure 4.3.



42 Introduction to Artificial Nerual Networks Chapter 4

Figure 4.3: An illustration of the McCulloch Pitts neuron with an arbitrary
amount of input arguments and weights.

4.3 Feed Forward Neural Networks

Most basic neural networks propogate their nodes’ values forward in the network,
just like the Pitts neuron. This non-cyclic behavior has dubbed these networks as
“feed forward neural networks” (FFNN). Feed forward neural networks are almost
identical to Pitts neurons stacked next to each other. A simple example of one is
the multilayer perceptron (MLP) (see figure 4.4). A simple MLP consists of input,
hidden and output nodes. These three groups of nodes are organized into layers,
which you can see in figure 4.4.

4.4 Forward Propagation

Like the Pitts neuron, a hidden node h in an FFNN is a weighted sum of the nodes
in the layer before it. When a node is the sum of all the nodes in the layer before
it, which is usually the case, we call the layers “fully connected”. The mathematical
expression for each hidden node then becomes

hj =
∑
i=1

(xiwij) + βj. (4.2)

Where hj is the value of the jth hidden node and xi is the ith input node. wij is the
weight that connects the jth hidden node with the ith input node and βj is the bias
node connected to the jth hidden node. The bias node gives the network another
degree of freedom, which it can use to better fit the data it trains on, kind of like
the intercept of a linear regression model.



Section 4.4 Forward Propagation 43

Input #1

Input #2

Bias Node

Output

Hidden
layer

Input
layer

Output
layer

Figure 4.4: A multilayer perceptron with one hidden layer. Each hidden
node is a weighted sum of all the previous layer’s nodes. The output node is
also a weighted sum of its previous layer’s nodes. The weights are illustrated
as arrows, just like in figure 4.3. The yellow nodes are what we call bias, which
play a similar roll in neural nets as intercepts do in linear functions.
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Activation
function

z

Output

x1 w1

x3 w3

Weights

Bias
β

Inputs

Figure 4.5: This figure illustrates the calculation of each hidden node during
the forward propagation. The hidden node is first calculated as a weighted
sum of inputs, a bias and weights. Thereafter the node is activated before it
is sent towards the next hidden layer.
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After the hidden nodes have been calculated and activated, we say that the
network has performed a “forward pass”. The hidden nodes are activated, as seen
in figure 4.5, after the summing of weight and inputs. By activation, we mean
something akin to the threshold step-function of the Pitts neuron. Most activation
funtions differ from Pitts’ binary nature in a sense that they are continuous, and
not step-functions. Since there are multiple activation functions to choose from, e.g.
tanh, sigmoid, ReLU (see Section 4.6), we will use the symbol ϕ as our arbitrary
activation function symbol.

A forward pass is in short: The creation of the next hidden,or output, layer
by multiplying the preceding layer’s nodes with the set of weights which connect
the two layers. The nodes, in the new hidden layer are then each processed by an
activation function

zj = ϕ(hj).
(4.3)

The output node, o, is returned from the last forward pass. To attain it, we make a
forward pass with the activated hidden nodes of the previous layer, z, along with a
new set of unique weights, w(2), connecting the hidden layer and the output node.
We can write the expression for the output node in figure 4.4 as

o =
∑
j=1

(zjw(2)
j ) + β(2), (4.4)

or
o =

∑
j=1

[∑
i=1

(xiw(1)
ij ) + β

(1)
j

]
w

(2)
j + β(2), (4.5)

where o denotes the output node and zj is the jth activated hidden node. Further-
more, w(2)

j is the weight connecting the jth hidden node to the output node, while
β(2) is the bias node connected to the output node. Notice that we have changed
the name of the weight parameters from wij to w(1)

ij to symbolize which interlayer
the weight is located. The bias of the first interlayer has been redubbed similarly
from βj to β(1)

j .

For fun, let us write the expression for an output node of a network with one
more (two) hidden layer

o =
∑
k=1

∑
j=1

(∑
i=1

(xiw(1)
ij ) + β

(1)
j

)
w

(2)
jk + β

(2)
k

w(3)
k + β(3). (4.6)

The expression in eq. (4.6) is not too messy. Yet, trying to differentiate the expres-
sions above, which we later must, is potentially time consuming. We need to switch
notation before going any further.
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4.4.1 Layer Notation

We want a notation that can generalize to multiple hidden layers. Our weights
and biases already supports such notation, e.g. w(1)

ij and β(1)
j . Labeling our nodes’

exponents by the layer they belong to, x → x(l), provides our example network
with these new parameter names: x(0)

i , h(1)
j , z(1)

j . This notation will prove useful for
formulating forward propagation in deep neural networks.

4.4.2 Matrix Notation

Matrix notation is a relief when dealing with neural networks, since all layers and
weight summation can be represented as vector and matrices products. From eq.
(4.2) we have described forward propagation as a sum formula:
zj = ϕ

(∑
i(xiw

(1)
ij ) + β

(1)
j

)
. To introduce matrix notation, we pack the input nodes

and the first set of weights into matrices. For our example network there are two
input nodes connected to three hidden nodes, resulting in a 3× 2 weight matrix

w(1) =


w

(1)
11 w

(1)
21

w
(1)
12 w

(1)
22

w
(1)
13 w

(1)
23

 ,X =
[
x

(0)
1

x
(0)
2

]
,β(1) =


β

(1)
1

β
(1)
2

β
(1)
3

 . (4.7)

(4.8)

With matrix notation it is possible to show that the hidden nodes in eq. (4.2) can
be computed with a simple matrix product

w(1)X + β(1) =


w

(1)
11 w

(1)
21

w
(1)
12 w

(1)
22

w
(1)
13 w

(1)
23


[
x

(0)
1

x
(0)
2

]
+


β

(1)
1

β
(1)
2

β
(1)
3

 (4.9)

=


x

(0)
1 w

(1)
11 + x

(0)
2 w

(1)
21 + β

(1)
1

x
(0)
2 w

(1)
12 + x

(0)
2 w

(1)
22 + β

(1)
2

x
(0)
3 w

(1)
13 + x

(0)
2 w

(1)
23 + β

(1)
3

 =


h

(1)
1

h
(1)
2

h
(1)
3


= h(1).

The activated values, z(1)
j , can now be written as

z(1) = ϕ(h(1)) = ϕ(w(1)X + β(1)), (4.10)

where the activation function operates elementwise on the hidden nodes, h(1), giving
z(1) the same length as h(1).

Next up is the output layer/node. Since there is only one output node in our
example, we will treat the output value as a scalar. The expression for the output
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node has already been described in eq. (4.4) as o = ∑
j(z

(1)
j w

(2)
j ) + β(2), but for the

sake of generalization (and later derivations), let us introduce an activation function
in the output layer: o = z(2) = ϕ∗(∑j(z

(1)
j w

(2)
j )+β(2)). In order to not mess with our

model, ϕ∗ is simply the linear activation function: ϕ∗(x) = x. Since each activated
node is named z, the output node of our example network is now dubbed z(2):

z(2) = ϕ∗
(
w(2)z(1) + β(2)

)
(4.11)

= ϕ∗

[w(2)
1 w

(2)
2 w

(2)
3

] 
z

(1)
1

z
(1)
2

z
(1)
3

+
[
β(2)

]
= ϕ∗

([
w

(2)
1 z

(1)
1 + w

(2)
2 z

(1)
2 + w

(2)
3 z

(1)
3 + β(2)

])
= ϕ∗

([
h

(2)
1

])
=
[
z

(2)
1

]
.

The unactivated output node, which we here unintuitively call h(2), is activated by
the linear activation function ϕ∗. Doing this gives us a consistent way to express
backward propagation later on in this thesis.

The last thing we want to do in this section is to use eq. (4.11) to make a
generalized way of computing the lth layer of nodes in any feed forward neural
network from the l-1th layer

z(2) = ϕ∗
(
w(2)z(1) + β(2)

)
=⇒
z(l) = ϕ

(
w(l)z(l−1) + β(l)

)
. (4.12)

We now have a matrix multiplication scheme that makes for a much more compact
notation and algorithm. Keep in mind that for a neural network of n layers (in-
cluding the input layer and the output layer), the last/n-1th forward propagation
should have ϕ∗ as its activation function, since z(n−1) is the output node. Addition-
ally, l ∈ {2, ..., n− 1} because z(0) does not exist. In order to find the first layer of
activated nodes, z(1), we must use eq. (4.10)

z(1) = ϕ(w(1)X + β(1)).

4.5 Initialization

Having already talked about how data flows through a neural net, we have yet
to discuss how one is created. This section introduces standard ways of how one
would initialize a neural network’s weights and bias nodes. A newly initialized neural
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network is next to useless without having been trained, but the initialization method
can have large consequences for the training duration. In addition to discussing the
effects of certain initialization methods, this section will also briefly touch on the
effects of a neural network’s size.

4.5.1 Layers and Nodes

Before deciding how many layers and nodes you would like for your network, it’s
important to know their effect on the network. Vaguely put, additional layers and
nodes serve to increase the flexibility of a neural network. By flexibility we mean the
neural network’s ability to fit a regression line through our data. Just like flexible
regression methods, neural networks also risk overfitting when given enough nodes
and layers. Since there are multiple methods to bypass overfitting when training a
neural network, one is almost guaranteed to not fall into the trap of overfitting their
model.

The computational complexity of training and using a neural network is directly
dependent on the number and nodes and layers in your network. Assuming you have
an input layer of n nodes, n layers, excluding the output, and n nodes in each hidden
layer and n output nodes, the complexity of the forward propagation becomes O(n4).
To derive this, we start with the input layer of length n, which is multiplied with
a square weight matrix of dimensions n × n. This forward propagation outputs n
hidden nodes, which then receive n activation operations, one for each hidden node.
This forward pass happens n times since we have n layers.

nforward_pass ≈ nlayers × (nmatrix_mul + nϕ) (4.13)
= O(n)(O(n3) +O(n))
= O(n4) +O(n2)

In eq. (4.13), nϕ is the number of elements the activation function has to operate
on, while nmatrix_mul is the number of multiplication operations when multiplying
a vector with a square matrix. The approximation sign is there due to us ignoring
the bias nodes, which make a negligible contribution to the complexity.

4.5.2 Weight Initialization

The number of weights are defined by the number of layers and nodes you have
decided to go with. The number of weights grow qudratically with n, when n is
the number of layers and nodes making it normal to find hundreds of thousands
of weights in large neural networks. These weights are the actual parameters of a
neural network, as they are doing all the learning, while the nodes simply are their
sums.
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The initialization of weights can be divided into two categories, uniform and
normally distributed weights. There are many methods withing these two categories,
but they all have in common that they draw numbers from random distributions
and use these to set the weights’ values.

• All Zero Initialization (etc.) is the initialization of all weights to zero,
which belongs to neither of the aforementioned categories. It is not advised
to initialize the weights to zero. Although it is reasonable to assume that in a
fully trained network, half its weights will be negative and half of them will be
positive, setting our weights to zero can be thought of as a good approximation.
The problem with this initialization is that all weights will be treated similarly
during the backpropagation algorithm (see Section 4.7.3), meaning they will all
be updated in an identical manner. This causes a complete lack of asymmetry
between neurons, disallowing any form of learning. The reason why is because
all our parameters are acting as one, removing all flexibility from the model.

• Uniform Distribution Initialization Uniform probability distributions are
utilized in multiple heuristics for initializing a neural net’s weights. In some
of these methods, weights are drawn from a distribution, U [−a, a], where a is
some function of the number of nodes in the previous layer

a(din) = c/
√
din. (4.14)

Some ways to go about designing these distributions, like Fahlman (1988) did,
is to manually find the best uniform distribution through testing. By best, we
mean the distribution which consistently returns weights that end up helping
the neural network learn the fastest.

• Xavier initialization was developed with deeper networks in mind. Deep
neural networks struggle with what we call the “vanishing gradient problem”,
as well as the “exploding gradient problem”. In Glorot and Bengio (2010), the
authors illustrate how certain weight initialization methods, in combination
with sigmoidal activation functions, block the flow of information by making
the nodes converge towards zero. This is the “vanishing gradient problem”.
The authors’ illustration, figure 4.6, illustrates both the vanishing gradient
problem and how their initialization method solves the problem.
To begin initializing the weights, we begin with a normal distribution N (0, 1)
- centered around zero with a standard deviation of 1. Second, we fill all our
weight matrices with number from this distribution. We then calculate the
variance of each weight matrix:

var(w(l)) = 2
din + dout

where w(l) is the lth weight matrix, din is the length of the previous layer,
and dout is the length of the next one. The next step is to create a customized
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Figure 4.6: Both plots contain five scaled histograms. The histograms show
how the values of activated hidden nodes from five individual hidden layers
of a neural network are distributed. Top: Trained neural network which uses
tanh activation and uniform distribution initialization. Bottom: Same net-
work, except the weights have been Xavier initialized. Notice how the signal’s
distribution stays nearly identical along all five forward passes, meaning there
are less vanishing signals. Figures taken from Glorot and Bengio (2010)
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normal distribution, N (0, 1/
√
var(w(l))) for each weight matrix and fill each

with values drawn from their custom distribution. These distributions give the
weight matrices a variance that scales with the number of weights inside of
it. As a consequence, the forward and backward propagated matrix products
(hidden layers) get an estimated variance of 1. This results in propagated
signals neither diminishing nor exploding.

4.5.3 Bias Initialization

There is not much to be said about bias initialization. Typically, one sets all bias
weights to zero. This does not have any negative consequences as long as the weights
are initialized asymmetrically. A variance in the weight values allows the weight
update algorithm (See backpropagation in section 4.7.3) to work properly. This al-
gorithm is able to adjust both the weights and the bias so that our error function can
reach a better minima. Although zero initialization is most popular, one can treat
bias initialization as a hyperparameter and attempt to optimize bias initialization to
get better learning results by e.g. using random numbers from a uniform or normal
distribution instead of zeros.

4.6 Activation Functions

Without activation functions, an artificial neural network is no more than a combi-
nation of linear products between the inputs and weights of the network. In order to
mimic an arbitrary non-linear function, neural networks need to possess a non-linear
activation function.

Activation functions like the step function of the Pitts neuron are made to model
the firing rate of biological neurons’ activation potential. Unlike the step function of
the Pitts neuron, most activation functions are continuous, with continuous deriva-
tives. A notable exception to activation functions with continuous derivatives is the
ReLU function.

4.6.1 ReLU

“ReLU” stands for rectified linear unit because it functions as a unit which rec-
tifies its input. A rectifier is a function which returns its positive arguments and
nullifies any negative ones

ϕReLU = x+ = max(0, x). (4.15)
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Figure 4.7: ReLU, short for rectified linear unit, is an activation function
that only returns the positive part of its argument. Other variants of ReLU,
such as SmoothReLU exist. The advantage of the latter is its continuous
derivative. When we reach the section on backpropagation, we will explain
why a continuous derivative can be a plus.

In figure 4.7, you can observe how ReLU behaves when activating hidden node
values. Contrary to sigmoidal activation functions, ReLU does not diminish positive
signals. The consequence of using ReLU as an activation function is the same as for
Xavier initialization, namely that vanishing gradients have a lower chance of taking
place in the later layers. This leads to quicker learning in deep neural networks
(Krizhevsky, Sutskever, and E. Hinton 2012).

The ReLU activation function and its derivative are much quicker to calculate
than their sigmoidal cousins. Since ReLU is zero all the way until x > 0, and linear
afterwards, we can define its derivative function as :

ϕ′ReLU(x) =


0 x < 0
undefined x = 0
1 if x > 0.

4.6.2 Sigmoids

Using an activation function of the sigmoid family in your neural network causes
the hidden node values to be mapped to a range, usually between -1 and 1 or 0
and 1. A more formal definition of the sigmoids is; a differentiable real function,
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Figure 4.8: Above is a depiction of various sigmoids. The two first labels
are likely the most popular among sigmoid activation functions. Both this
image and figure 4.7 are based on graphs made by Georg-Johann. This figure
specifically is based on a figure from Johann (2010).

defined for all real inputs, with a positive derivative at each point (Han and Moraga
1995). Infinitely many such functions and some of the most popular variants used
in machine learning is seen in figure 4.8.

Sigmoids are such that if they receive increasingly large inputs, the output val-
ues saturate by converging towards 1. This effect also happens for increasingly large
negative input, which result in outputs converging toward 0 or -1. This saturation
is positive and negative for learning. On one hand, sigmoids make it harder for
the neural networks’ nodes to diverge, the explosive gradient problem, since all the
nodes are attentuated by the sigmoid activation. On the other hand, this squashing
effect can induce the vanishing gradient problem. The asymptotic saturation also
removes the neural networks ability to distinguish between large inputs and even
larger inputs. This reduces a network’s continued ability to learn.

The sigmoid function we have used in this thesis is the sigmoid

σ(x) = 1
1 + exp(−x) . (4.16)

Going forward in this thesis, the term “sigmoid” will always refer to the function in
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eq. (4.16). Since we need the derivative of the sigmoid in order to backpropagate
later, I will do a quick derivation of its derivative here

∂σ(x)
∂x

= ∂

∂x

[
1

1 + exp(−x)

]
(4.17)

= ∂

∂x
(1 + exp(−x))−1 (4.18)

= −(1 + exp(−x))−2(− exp(−x)) (4.19)

= 1
(1 + exp(−x))

exp(−x)
(1 + exp(−x)) (4.20)

= 1
1 + exp(−x)

(1 + exp(−x))− 1
1 + exp(−x) (4.21)

= 1
1 + exp(−x)

[
1 + exp(−x)
1 + exp(−x) −

1
1 + exp(−x)

]
. (4.22)

Substituting eq. (4.16) into eq. (4.22) gives us
= σ(x)(1− σ(x)). (4.23)

As we can see, in the case of the sigmoid function, its derivative can be rewritten in
terms of itself.

4.6.3 Bias and Activation

Adding bias to the hidden nodes after they have been calculated has an effect on the
threshold of the subsequent activation. Activation functions are similar to thresh-
old functions, especially ReLU(see figure 4.7). For ReLU, input signals which are
negative are blocked, while positive signals are allowed through. What bias offers
is a way to control the activation function’s threshold so that input signals that
previously would get squashed to zero are allowed to pass through, or oppositely.
The figures in 4.10 detail how bias can move the threshold of activation, changing
the nature of signal flow throughout the neural network.

4.7 Training the Neural Network

Although we have not yet talked about what we mean by learning, we have defined
all the variables which require learning, i.e. weights and biases. Learning, training
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Figure 4.9: When a neural network has no trainable bias, the activation
functions behave as the static threshold-like functions seen above.

Figure 4.10: As the bias node changes, we see that it affects the activation
of the hidden nodes. Negative bias push the threshold, or center, of the ac-
tivation functions forward, raising the bar for what it means to be a strong
signal. While positive bias increase the weaker signals’ chance to successfully
propagate.

and fitting are all synonymous with each other and refer to the fitting of a model’s
parameters. Training a neural network model is similar to fitting a regression model,
which we touched upon in section 3.3. Compared to the two parameters of a simple
linear regression model, neural networks with their thousands of parameters are
much harder to optimize. In this section we will repeat some basics of training
regression models, introduce the loss function, followed by an introduction of the
backpropagation algorithm.
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4.7.1 Data Split

In section 3.3 we introduced the splitting of data into training- and test datasets
before training regression models. With neural networks on the other hand, it is com-
mon to split the data (X,y) into three non-overlapping subsets: a training dataset
(Xtrain,ytrain), a test dataset (Xtest,ytest) and a validation dataset (Xval,yval). In
most regression problems, y, is a simple vector of N label values. X on the other
hand, is an N ×M matrix. Xi, where i ∈ {1, 2, ..., N}, are input vectors of length
M . The point of a regression model is to output that best matches the target value
yi by simply feeding the model batches of Xi while

As training progresses, the neural network becomes better and better at model-
ing data it has already seen. But, the point of the model is to infer it on data which
it has not yet seen, which is why we made the test dataset. Using the test set, we
can evaluate our model’s ability to map Xtest to ytest. However, there will likely be
a discrepancy between how well it performs on the training data and the test data.
This is due to the potential of overfitting (see section 3.4). In order to circumvent
overfitting, we stop training when the model’s ability to fit the validation dataset
starts to decrease. We will come back to this in section 8.3, which is after we have
discussed exactly what it means to train a neural network.

4.7.2 Cost Functions

An important part of training a neural network is its cost function. A cost function,
also called loss function, is the function that helps define our learning problem as a
minimization problem. The function shows how far off a neural network’s prediction
is. The “targets”, or y, is what we want our neural network to predict.

The prediction of our example neural network is the same as its output node,
z(2). For the sake of generalization, let us call the ouput node z(o). How far off a
model’s prediction is, is represented by a residuals. We introduced residuals in the
section on OLS 3.2.2. Similarly to neural networks, OLS minimizes a cost function,
sum of squared residuals, in order to train a model.

The residual of a prediction w.r.t its target is the difference between them

ri = yi − z(o)
i (Xi).

Here, z(o)
i (X i) is our model’s output for the ith training example (Xi, yi) where Xi

serves as the input layer and yi as the target.

After calculating the error residuals ri over multiple training examples, we usu-
ally accumulate them. How one does this depends on which cost function the neural
network uses. Below we present MSE along with two other popular loss functions.
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• MSE, the mean squared error, is an aggregation function whose output is
the mean of the squared residuals. In this thesis, we have exclusively used the
MSE as loss function and so, MSE is implied going forward.

MSE(w, β) = 1
2N

N∑
i

(yi − ŷi(Xi))2

The reason why we add a “2” in the denominator is so that the expression of the
derivative of the cost function becomes prettier. Just like in OLS regression,
the backpropagation algorithm minimizes the cost function by first finding and
exploiting its derivatives.

• MAE, or the mean absolute error, is a loss function very similar to MSE,
the only difference being that we don’t square the residuals (i.e. l1 norm).
This means outliers are not weighted as heavily.

MAE(w, β) = 1
N

N∑
i

|(yi − ŷi)|

• Cross-Entropy loss is a popular loss function used in categorization prob-
lems, which is not what we are doing in this thesis. For categorization prob-
lems, there are usually multiple output nodes in a network. The jth output
node represents the network’s certainty of the ith training example belonging
to the jth class, e.g. cat, dog or bird. The output nodes, or predictions, are
intuitively called pij, while the label yij is either 1 or 0, e.g. cat or not cat.
Having set up our notation, we can use Cross-Entropy which measures the
dissimilarity between the prediction pij and the truth yij:

CE(w, β) = 1
N

N∑
i

− K∑
j

yij log(pij)


4.7.3 Backpropagation

The basics of the backpropagation algorithm was first derived by Kelley (1960) and
Bryson (1961). The full potential of this algorithm was not realized until some
30 years after its invention, when its popularity started to grow for real. This is
likely due to computational resources being too limited for the algorithm to run on a
network of sufficient size at the time. The goal of this section is to create an intuitive
understanding of backpropagation, an algorithm that computes partial derivatives,
or “gradients” of a loss function, by using the chain rule recursively. Onwards, the
word gradient will refer to the derivative of a node in a neural network, e.g. z(l)

j ,
w.r.t. the loss, L.
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Figure 4.11: The figure shows the minimization of our loss function L by
tweaking the weight wij . Using gradient descent, we know which way to tweak
wij since we know the sign of the loss function’s derivative. The figure is taken
from Jiaconda (2016).

Gradient Descent

Backpropagation is a form of gradient descent. Gradient descent uses the gradient
of a loss function with respect to one of its parameters to minimize the loss func-
tion. This minimization is possible because the gradient of the loss function reveals
whether to increase or decrease said parameter in order to decrease the loss. For a
visual representation of gradient descent, see figure 4.11. Similarly to how we solved
the linear regression problem with OLS, we can minimizing the MSE loss function
with respect to the weights and biases of the network

L(β(1), β(2), w(1), w(2)) = 1
2N

N∑
i

(yi − z(2)(Xi))2, (4.24)

min
w(1),w(2),β(1),β(2)

L(Xi). (4.25)

As the name suggests, gradient descent requires gradients, or partial derivatives,
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of the loss in order to minimize the loss:

∂L(X)
∂w

(1)
ij

,
∂L(X)
∂w

(2)
j

,
∂L(X)
∂β

(1)
j

,
∂L(X)
∂β(2)

When a derivative is computed, gradient descent changes the parameter (e.g. a
weight w(2)

j ) in the negative direction of its derivative

w
(2)
j := w

(2)
j − α

∂L(X)
∂w

(2)
j

. (4.26)

This is the same as “updating” the network, or “training”. The coefficient of the
gradient, α, is called the “learning rate”. There exists multiple techniques for how
to dynamically change the learning rate in order to reach a best minimum for the
loss as possible (see section 4.7.4). In figure 4.11, the learning rate can be thought
of as the distance the loss changes between each step of the algorithm.

Numerical Gradients

Backpropagation gradient descent uses the analytical gradient instead of the nu-
merical gradient of the loss. Numerical gradients are approximations and are found
using methods such as two point estimation:

∂L(w(2)
j )

∂w
(2)
j

≈ lim
ε→0

L(w(2)
j )− L(w(2)

j + ε)
2

Where ε is a small increment in w(2)
j . This method requires two forward propagations

for every parameter, because we need to obtain both L(w(2)
j ) and L(w(2)

j +ε) in order
to update w(2)

j . For a network of n layers with n nodes per layer, we found that
forward propagation has a computational complexity of O(n4) (see section 4.5.1).
Such a network has n2 weights between each layers, making up n3 weights in total.
To update n3 weights with numerical gradients, we would have to forward propagate
the network at least twice for each weight, resulting in a very heavy computation:
O(n3× 2×n4) ≈ O(n7). Let us rather derive how to find the gradients analytically.

Analytical Gradients

Analytical gradients are faster to compute and more accurate compared to numerical
gradients. The only downside to analytical gradients is that if one is to implement
a neural network from the ground up, one has to know how to differentiate a com-
plex function like a neural network. Luckily for us, we have used frameworks like
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Tensorflow/Keras which do these tedious things for us. In this section we present
how to derive the analytical gradient of a parameter in our simple example network.
We then generalize these steps to create an algorithm that can update any of the
weights in our network.

To derive an expression for the gradient of a weight, w(2)
j , we backpropagate its

derivative w.r.t. the error, L, by expanding the derivative with the chain rule
∂L

∂w
(2)
j

= ∂L

∂h(2)
∂h(2)

∂w
(2)
j

. (4.27)

We can easily find each of the partial derivatives on the right hand side of eq. (4.27)
independently

∂L

∂h(2) = ∂L

∂z(2)
∂z(2)

∂h(2) (4.28)
∂L

∂z(2) = ∂

∂z(2)
1
2(y − z(2))2

= −(y − z(2))∂z
(2)

∂z(2)

= z(2) − y (4.29)

∂z(2)

∂h(2) = ∂ϕ∗(h(2))
∂h(2)

= 1 =⇒ (4.30)
∂L

∂h(2) = z(2) − y

= δ(2). (4.31)

The gradient of the error, L, with respect to the node h(l)
k will from here be written

as δ(l)
k where l and k denotes which layer and where in the layer the node resides. The

output node h(2) is alone and so the error gradient of the output node δ(2) requires
no index k. To find the gradients of parameters further back in the network, we
must propagate this gradient backward. But first, let us finish updating the weight
w

(2)
j by finding the last derivative in eq. (4.27)

∂h(2)

∂w
(2)
j

= ∂

∂w
(2)
j

∑
j′
w

(2)
j′ z

(1)
j′ + β(2)

 . (4.32)

As the sum function in eq. (4.32) iterates over the nodes in the last layer, eventually
j′ will match the index j. For all iterations where j′ and j do not match, the
derivative expression returns zero

∂

∂w
(2)
j

∑
j′ 6=j

w
(2)
j′ z

(1)
j′ + β(2)

 = 0, (4.33)
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but when they finally match we get a non-zero result

∂h(2)

∂w
(2)
j

= ∂

∂w
(2)
j

(
w

(2)
j′=jz

(1)
j′=j + β(2)

)

= ∂

∂w
(2)
j

w
(2)
j z

(1)
j + β(2)

= z
(1)
j . (4.34)

The gradient of w(2)
j can now be expressed as the gradient of its subsequent node

and the preceding activated node

∂L

∂w
(2)
j

= δ(2)z
(1)
j . (4.35)

After a successful forward and backward propagation, and having finally attained
the gradient in eq. (4.35), we can now update the parameter w(2)

j by subtracting
the gradient from the parameter, as seen in eq. (4.26):

w
(2)
j := w

(2)
j − δ(2)z

(1)
j .

The gradient of a bias node β(2) is quite similar to derive as a gradient of
a weight from the same interlayer (w(2)

j ). The only difference from the gradient
expressions is their last factor

∂L

∂w
(2)
j

= δ(2) ∂h
(2)

∂w
(2)
j

∂L

∂β(2) = δ(2) ∂h
(2)

∂β(2) . (4.36)

The last factor of the bias gradient always equals one due to the differentiation
canceling all other terms out

∂h(2)

∂β(2) = ∂

∂β(2)

∑
j′

(
w

(2)
j′ z

(1)
j′

)
+ β(2)


= 1 =⇒

= ∂L

∂β(2) = δ(2). (4.37)

In eq. (4.37) we can see the error gradient of the bias connected to a node h(l)
k is

always equal to the gradient of said node, δ(l)
k . From eq. (4.35) we can conclude

that the gradient of a weight w(l)
jk is equal to the gradient of the node h(l)

k multiplied
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with the activated node in the preceding layer, z(l−1)
j

∂L

∂w
(l)
jk

= δ
(l)
k z

(l−1)
j , (4.38)

∂L

∂β
(l)
k

= δ
(l)
k . (4.39)

Here, j is the index of nodes in preceding layer, while k is the index of nodes in the
subsequent layer.

Equations 4.38 and 4.39 both depend on the error gradient of the nodes, δ(l)
k .

In order to update a weight in the second interlayer, we first had to find δ(2), and
likewise, to update a weight in the first interlayer, we are going to need δ

(1)
j . By

δ
(1)
j , we mean the error gradient of h(1)

j . To find the error gradient of a node that
precedes our obtained error, δ(2), we must backpropagate the error, L, another step

δ
(1)
j = ∂L

∂h
(1)
j

=
1∑
k

∂L

∂h
(2)
k

∂h
(2)
k

∂h
(1)
j

=
1∑
k

δ
(2)
k

∂h
(2)
k

∂z
(1)
j

∂z
(1)
j

∂h
(1)
j

. (4.40)

Let us remind ourselves that there is only one output node in our example
network, while the preceding layer of the output has 3 nodes, so k ∈ {1]} and
j ∈ {1, 2, 3}. We have indexed the output node so that our equations can be
generalized to any layer

δ
(l−1)
j =

1∑
k

δ
(l)
k

∂h
(l)
k

∂z
(l−1)
j

∂z
(l−1)
j

∂h
(l−1)
j

. (4.41)

From eq. (4.30) we see that the last factor in eq. (4.41), ∂z(l−1)
j /∂h

(l−1)
j , can be

written as z′(l−1)(h(l−1)
j ) → z

′(l−1)
j . The last derivative in eq. ( 4.41), ∂h(l)

k /∂z
(l−1)
j ,

can be rewritten as the weights connecting the subsequent layer with a node in the
preceding layer

∂h
(l)
k

∂z
(l−1)
j

=
∑
j′ w

(l)
j′kz

(l−1)
j′ + β

(l)
k

∂z
(l−1)
j

(4.42)

= w
(l)
jk . (4.43)

With these two new finding we now rewrite the formula for the backpropagation of
the node gradients in eq. (4.41) as a much more readable expression

δ
(l−1)
j = z

′(l−1)
j

1∑
k

w
(l)
jk δ

(l)
k , (4.44)
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where l ∈ {2, ..., n − 1}, for a neural network with n layers, including input and
output layers.

Matrix Notation

Like forward propagation, backward propagation can be written as a series of matrix
operations. In section 4.4.2 we showed that∑

i

xiw
(1)
ij → w(1)X, (4.45)

and by extension, the sum in eq. (4.44), where the sum index of the weight matrix
is transposed, can be written as∑

k

w
(l)
jk δ

(l)
k → w(l)Tδ(l), (4.46)

where the weights in the backpropagation are the same weights used in the forward
propagation, but transposed. The product in eq. (4.46) returns the gradients of
the nodes in the l-1th layer, δ(l−1)

j , except that they also have to be multiplied with
z
′(l−1)
j . To multiply the factors z′(l−1)

j with our nodes w(l)
jk δ

(l), as is done in eq. (4.44),
we can use the Hadamard product

δ
(l−1)
j = z

′(l−1)
j

1∑
k

w
(l)
jk δ

(l)
k →

δ(l−1) = z′(l−1) ◦ (w(l)Tδ(l)). (4.47)

In eq. (4.47), z′(l−1) is a vector with the same shape as z(l−1) and whose elements
are ∂z(l−1)

j /∂h
(l−1)
j for the nodes {j} in layer l-1. The Hadamard product in eq.

(4.47), ◦, is an operation which performs an elementwise multiplication between the
elements in z′(l−1) and our backpropagated matrix product w(l)Tδ(l), whose shapes
are the same. The returned values in δ(l−1) therefore contains all the gradients δ(l−1)

j

of the nodes {j} in layer l-1 from eq. (4.44).

For our example neural network, we can use eq. (4.47) to find δ(1), if we already
have δ(2), the error of the output layer. The error of the output, which we found in
eq. (4.31), was simply the difference between the prediction and the true value

δ(l′) = z(l′) − y. (4.48)

Here, l′ denotes the output layer and y is simply the value we want to predict. Once
we possess the gradients in the output layer, δ(l′), we can use eq. (4.47) to find the
gradients in all the other prior layers of the network.

Knowing how to backpropagate the nodes’ gradients in our neural network with
matrices, let us also find the matrix equations for the weight and bias gradients.
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Beginning with bias gradients, the expression in eq. (4.39) shows us the gradients
of the bias parameters are equal to the gradients of the nodes in the same layer,
meaning we do not have to make any extra calculations to find the bias’ gradients

∂L

∂β
(l)
k

= δ
(l)
k =⇒

∆β(l) = δ(l). (4.49)

We have written the vector holding the gradients as, ∆β(l), which is the matrix
holding all the derivatives the loss with respect to all the bias nodes for any layer l.
Equation (4.38) shows the weight gradient of the weight connecting the jth preceding
node to the kth subsequent note, between layer l-1 and l, is the product of the node
in the preceding layer and the error of the node in the subsequent layer. To find
the gradient of every single weight, we need to multiply every single preceding node
z

(l−1)
j with every single subsequent error δ(l)

k . This operation can be written as an
outer product between a vector holding the nodes, z(l−1) and the vector holding the
errors, δ(l):

∂L

∂w
(l)
jk

= δ
(l)
k z

(l−1)
j →

∆w(l) = δ(l)z(l−1)T . (4.50)

Backpropagation for MLP

We dedicate this section to sum up the steps to backpropagating a simple MLP with
n layers (including input and output), using matrix notation. Backpropagation is
the algorithmic procedure that trains a neural network.

• The first step to backpropagation is forward propagation. Forward propagat-
ing the neural network lets us save all the nodes {h(l), z(l)}, where l indicates
which layer the nodes belong to.

• After forward propagating, we can produce the error gradients in the output
layer l′:

δ(l′) = z(l′)− y

• With the error in the output layer, we can calculate and save the error gradients
in all the other layers by backpropagating repeatedly:

δ(l−1) = z′(l−1) ◦ (w(l)Tδ(l))
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• We can then compute the gradients of the weights and biases in all the layers
l ∈ {1, ..., n− 1} since we now possess the errors and nodes of all layers

∆β(l) = δ(l)

∆w(l) = δ(l)z(l−1)T .

• Lastly we update all of our parameters {w(l),β(l)} with the gradients {∆w(l),∆β(l)}.
In section 4.7.4 we present the various ways of doing this.

Backpropagation is slightly more computationally expensive than forward prop-
agating. As we saw in section 4.5.1, forward propagating a neural network of n layers
and n nodes per layer results in a time complexity of O(n4). Backward propagating
such a network has a time complexity of O(n5). This is two orders better than using
numerical differentiation for updating the parameters, which has a complexity of
O(n7).

4.7.4 Gradient Descent Variants

Gradient descent has many variants in the field of deep learning. The common
denominator between all gradient descent methods is how they use the gradient of a
loss function w.r.t. a parameter to change the parameter. In this section we present
basic methods such as standard/batch gradient descent, stochastic gradient descent
and more advanced variants such as RMSProp and Adam.

Batch Gradient Descent

Updating a neural network starts with us computing the error gradients from a train-
ing example (Xi,yi). The computed error gradients for our parameters, {∆w(l)

i ,∆β
(l)
i },

corresponds to the single training example (Xi,yi). Say we have a big training set
of n training examples: i = {1, ..., n}. Batch gradient descent performs backward
propagation for every single training example, and then takes the mean of our n
gradients:

∆W (l) = 1
n

n∑
i=1

∆w(l)
i (4.51)

∆B(l) = 1
n

n∑
i=1

∆β(l)
i . (4.52)

After finding these mean gradients we update the weights and biases

w(l) := w(l) − α∆W (l) (4.53)
β(l) := β(l) − α∆B(l). (4.54)
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After updating the network like this, we likely have to do it for many more iterations
before the minimization of the loss converges (see figure 4.11). Backpropagating the
network for an entire training set is often time consuming, and having to do it
multiple times makes this method unpopular.

Stochastic Gradient Descent

Stochastic gradient descent, SGD, does what batch gradient descent does, but for
small samples of the training set. Instead of calculating the mean of a weight’s
error gradients over all training examples, this mean is only w.r.t. a random subset
of training examples. Say we have n = 1000 and a batch size b = 10. SGD
backpropagates and updates the network for 100 batches bj of ten random training
examples.

∆W (l)
j = 1

b

∑
i∈bj

∆w(l)
i (4.55)

∆B(l)
j = 1

b

∑
i∈bj

∆β(l)
i (4.56)

The gradients (∆W j, ∆Bj) which we have computed from a small batch of training
examples serve as approximations of ∆W and ∆B, which we can use to update the
weights and biases. We can update the parameters, as we did in eq. (4.53) and
(4.54), after backpropagating each batch of training examples. How well (∆W j,
∆Bj) approximate (∆W , ∆B) depends on how high the dataset’s redundancy is. If
the dataset is sufficiently redundant, the increase in update frequency substantially
improves the training time. SGD was first presented in Herbert Robbins (1951),
decades before neural networks and backward propagation existed.

RMSProp

In spite of its wide use, RMSProp, for Root Mean Square Propagation, is an un-
published method. RMSProp is a method that helps the parameter updates in eq.
(4.53) and eq. (4.54) become more consistent. The method scales the gradients of
the parameters so that no sudden large change to the parameters take place. The
gradients (∆W j, ∆Bj) can vary in size for each batch, which can cause a larger,
or smaller, change to the parameters than we want, even when the learning rate is
constant.

RMSProp scales the gradients with the moving average of their second moment,
called MeanSquare, v(w, j). The degree to how much this moving average depends
on the gradients from the previous and current batch is dependent on a constant
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called the forgetting factor, γ

v(w, j) = γv(w, j − 1) + (1− γ)(∆W j)2. (4.57)

The index j indicates which batch we are on, but also the timestep of the Mean-
Square, v(w, j). For the first timestep, j = 0, the MeanSquare is simply the gradi-
ents squared: ∆W 2

j=0. RMSProp’s update rule scales the gradients with the square
root of the running mean, v

w := w − α√
v(w, j)

∆W j. (4.58)

The reason why we scale the gradients with a running average of the squared
gradients, instead of simply scaling/normalizing the gradients with themselves squared,
is because the size of the gradients matter to some degree.

Adam

Adaptive Moment Estimation is an extension of RMSProp optimization. It is
often hinted at being the standard optimizer in deep learning and has empirically
been shown to perform better than most other popular optimizers in the paper where
it was first published (Kingma and Ba 2014). Adam uses the moving average of the
second moment of the gradients, like in RMSProp, but also the running average of
the gradients themselves.

v(w, j) = γ1v(w, j − 1) + (1− γ1)(∆W j)2 (4.59)
m(w, j) = γ2v(w, j − 1) + (1− γ2)∆W j (4.60)

The running averages are then scaled with their respective forgetting factors, pow-
ered by the timestep / batch number

v̂(w, j) = v(w, j)
(1− γj+1

1 )
, (4.61)

m̂(w, j) = m(w, j)
(1− γj+1

2 )
. (4.62)

Because the forgetting factors end up with very large exponents in eq. (4.61) and
(4.62), the authors suggest setting γ1 and γ2 to values between 0.9 and 0.999. The
final expression for the parameter update is similar to RMSProp

w := w − α m̂j√
v̂j + ε

, (4.63)

where m̂j = m̂(w, j), same for v̂j, while ε is a small scalar which prevents zero
division. The Adam optimizer is the sole optimizer used for training neural networks
in this thesis.



Chapter 5

Advanced Neural Networks and
Regularization

One of the goals in this thesis is to implement different types of neural networks and
to see how they compare with traditional forecasting methods. In this chapter we
discuss the theory behind specialized neural networks, such as RNNs. For a brief
demonstration on how we implement neural networks; see section 6.8.1.

When using neural networks, certain architectures perform better on certain
datasets. We have gone in depth regarding the MLP, which is seen as the most
basic artificial neural network architecture. Other network architectures build on
MLP, but can do a much better job at solving ML problems of a specific nature.
Convolutional neural networks (CNNs), do well at categorizing image data, while
recurrent neural networks (RNNs) dominate on problems regarding sequential data
such as time series. For this reason we have mostly worked with recurrent neural
networks in this thesis.

5.1 Architectures and “The Principle of Locality”

5.1.1 Locality in Images

Convolutional neural networks (CNNs) exploit the principle of locality in image data
in order to obtain super-human classification abilities. By locality, we mean that
those values that are close to each other, in either an image or a data sequence,
form a contextual bond, a kind of information in itself. A CNN does not only
look at each pixel in an image uniquely to draw meaning from the image, but
at multiple neighbouring pixels at the same time. Exploiting spacial locality in
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Figure 5.1: A grey scale image can be represented as a matrix with pixel
values between 0 and 255, where 0 represents black and 255 represents white.

this way, the networks is able to draw much more information from the image. A
CNN mathematically extracts information from digital images due to the images’
numerical form. Looking at grey scale images, we see that images can be represented
as matrices on a computer (see figure 5.1).

More explicitly, a CNN transforms, or convolves, neigbouring pixel values in an
image into weighted sums. Illustrated in figure 5.2 is an example of a convolution
operation done on a section of a grey scale image.

5.1.2 Locality in Time Series

A recurrent neural network (RNN), can be applied on time-series data to utilize
the principle of locality in a temporal sense. Just like CNNs use their architecture
to look at neighbouring pixels simultatiously, RNNs look at neighbouring values in
time/order to predict the next value of a time series. This is beneficial for forecasting
time series data, e.g. weather, since yesterday’s weather is highly correlated to
today’s weather. We anticipate that models based on these networks will perform
best for the task at hand, which is to forecast time series.
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Figure 5.2: Left: A convolutional network’s filter (three by three pixels in
size here) convolving nine neighbouring pixels in a digital image. Right: The
output of the convolution becomes a new image where each cell holds the
convolved value. The convolution is a weighted mean between the network’s
filter and the pixel values. The weights have all been set to 1 in this illustration,
giving us the mean.

5.2 Simple RNNs

MLPs typically take an argument x and maps it to a hidden layer/state h (Earlier
we have used z to represent a neural net’s hidden layer and output layer, but from
here on we use h to represent the hidden layer/state).

h = ϕ(whx + βh) (5.1)

RNNs exploit sequential data’s locality better than MLPs thanks to their se-
quential architecture. A simple recurrent network (SRN), such as an Elman network
can be visualized as a series of T basic MLPs, with one hidden layer, stacked next
to each other (see figure 5.3). Each cell in the Elman network is its own little MLP,
which processes its input, xt, together with the hidden state of the previous cell,
ht−1, for t ∈ {1, ..., T}. This creates a contextual process where the output of each
cell in the network depends on the input and output of the previous cells

ht = tanh(whxt + ht−1u+ βh) (5.2)
zt = tanh(wzht + βz). (5.3)

In eq. (5.2), the input xt is multiplied with the weight matrix wh while the state
from the previous RNN cell, ht−1, is multiplied with its own set of weights, u. The
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Figure 5.3: Snippet from an Elman network, which is a SRN. The activation
function used in this arbitrary Elman network is seen to be tanh. Figure based
on figure from Karpathy (2015).

Figure 5.4: The image shows multiple RNN structures where the amount
of “cells” vary. The red blocks are input layers xt, the green are the hidden
states ht, while the blue are the output zt. In our regression problem, we use
a “many to one” model. This figure is based on a figure from Karpathy (2015)

forward propagated values are then summed together to form the hidden state in
the current state, ht. Eq. (5.3) propagates the hidden state to the output my
multiplying it with the weights wz. The weights and biases are the same for every
cell in an RNN. It is basically the same neural network inferred on itself recurrently.

For prediction problems, the output of an RNN’s last cell, zT , is usually the
only output that matters. When only computing the output of one RNN cell, we
call it a “many to one” network (see figure 5.4).

Training a recurrent neural network is no different to training an MLP. The
cells of an RNN functions very much like layers in an MLP when we unpack it

zt = ϕ(wzht + βz) (5.4)
= ϕ(wz(xtwh + ht−1u+ βh) + βz). (5.5)

After unpacking the network’s cells as layers, we simply compute the output
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zt=T for a training example, compute the error of the output and then recurrently
backpropagate w.r.t. the weights and biases.

5.3 LSTMs

Simple RNNs with many cells risk problems like the vanishing gradient problem if
the network’s activation function is of a saturating nature (sigmoids). Long short-
term memory (LSTM) is a type of recurrent neural network, published in Hochreiter
and Schmidhuber (1997), shown to be resistant to both the vanishing and exploding
gradient problem. Due to this resistant nature, an LSTM can consist of thousands
of cells/timesteps, allowing previous information from far back in time to affect the
present outcome of a prediction.

One cell in an LSTM network is more complex than the cells in a simple Elman
network. The original LSTM variants possess an “input” and “output” gate. The
input gate is a set of weights which regulate the flow of new values into the cell. The
output gate controls how much of the new values in the cell is used to calculate the
cell’s output. A couple of years after the LSTM was published, new variants with
“forget gates” became the standard for LSTMs. The forget gate controls the degree
to which a value of the LSTM cell remains and was first published in forgetgate.

The three gates are computed in a similar fashion, each with their own set of
weightsw and u, wherew forward propagates the input features while u propagates
the previous hidden state vector ht−1

it = σ(wixt + uiht−1 + βi) (5.6)
ot = σ(woxt + uoht−1 + βo) (5.7)
ft = σ(wfxt + ufht−1 + βf ). (5.8)

With these gates, we compute the cell state and the hidden state for the cell, ct and
ht

ct = ft ◦ ct−1 + it ◦ tanh(wcxt + ucht−1 + βc) (5.9)
ht = ot ◦ tanh(ct). (5.10)

In contrast with an Elman cell, the LSTM cell forwards two outputs to the subse-
quent cell in the network, both ct−1 and ht−1. The initial values of these output
vectors are zero: c0 = h0 = 0. The ◦ operator is the Hadamard product, while σ
is the sigmoid activation function. We have provided an illustration of an LSTM
cell in figure 5.5. In this thesis, the most frequent type of neural networks contain
LSTMs.
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Figure 5.5: The gigure shows how the inputs xt, ht−1 and ct−1 are propa-
gated through the various gates in an LSTM cell, resulting in the output of ct
and ht. The × symbols represent Hadamard products, elementwise multipli-
cation.

5.4 Sparse Encoding and Embeddings

Input layers are usually filled with nodes containing numerical values such as stock
prices and pressure values or other quantities, but what do we do if we also want to
tell the network which season it is?

5.4.1 One Hot Encoding

A simple way to make categorical data into numbers that make sense is to give
each category its own scalar index: 0 = winter, 1 = spring, 2 = summer and 3 =
fall. We then simply put these number into an input node in the input layer. The
problem with this solution is that all four seasons share the same weights. The only
thing that distinguishes them is their index. The two most differing seasons in our
solution is winter (0) and fall (3), which does not make sense since summer should
be furthest from winter. We can conclude that simply representing categories as
scalar numbers is an inadequate scheme.

It’s popular to represent categorical data points as vectors instead of scalars to
meaningfully distinguish between categorical values in a neural network. We start
by creating a vector as long as the number of categories we have, which is four in
this example. We then fill the vector with zeros, except for the in the index that
corresponds with the scalar index we have designated to the category. This way of
representing categorical data is called “one hot vector encoding” and is visualized
in figure 5.6.
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Figure 5.6: In order properly distinguish between categorical data, we can
represent them as “one hot vectors”. In a one hot encoding scheme, a categor-
ical datapoint of the nth category is represented as a zero vector, where the
nth index is set to 1. Figure taken from Tensorflow (n.d.).

5.4.2 Embeddings

One hot vectors, which represent categorical data in a neural network’s input layer,
is typically connected to a set of weights in the form of an embedding. An embedding
can be pictured as a simple weight matrix, which we multiply with a one hot vector.
The embedding weight matrix is randomly initialized and its elements are optimized
just like any other parameter in a neural network. It has a number of rows equal to
the number of categories. The product between a one hot vector of the nth category
and the embedding weight matrix is simply then nth row of the embedding weight
matrix (see figure 5.7).

We are not limited to only feeding the network one type of categorical data.
In this thesis we have experimented with feeding the network data about weekday,
month, and time of day, all at the same time. To tell a neural network what weekday
it is, we need a one hot vector of length seven and to tell it which month it is, we need
a vector of length 12. The vector for Monday would look like this: [1, 0, 0, 0, 0, 0, 0]
and the vector for January would look like this: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. When
feeding a network two types of categorical data, such as which weekday and month
it is, we concatenate the one hot vectors:

xMonday in January =
[
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

]
This gives us a sparse vector of length 19, meaning our embedding weight matrix
needs to have 19 rows. Figure 5.8 illustrates how a sparse input vector such as ours
interacts with the embedding to form three hidden nodes, parallell to an MLP.
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Figure 5.7: The figure shows the pipeline of a categorical datapoint from
input to forward propagation. We begin by giving each categorical data value
a scalar index corresponding with its category. Secondly, we turn said index
into a one hot vector. The one hot vector functions like an input layer, which
we multiply with the weight matrix in order to receive our hidden nodes (here
dubbed embedding).

Figure 5.8: The figure shows a feed forward neural network, or MLP, which
is connected to an embedding. The embedding propagates the sparse input
vector of originally categorical data into three hidden nodes, here called “three
dimensional embedding”. The hidden nodes from the embedding and the non-
categorical input, “longitude” and “latitude”, are forward propagated to the
subsequent hidden layer. From what we see in the image, the neural network
is attempting to predict a place’s temperature by looking at its geographical
position and time of year. The image is based on a figure from Google (2019).
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There are no fixed rules regarding what to do with hidden nodes spawned from
embeddings. The three nodes born from the embedding in figure 5.8 are concate-
nated with the input layer, containing the “latitude” and “longitude” inputs. An-
other alternative for what to do with the three embedding nodes in the figure could
have been to simply sum them with the subsequent hidden layer, or concatenate
them to it. The best alternative is like to be found through testing.

In our thesis we have incorporated embeddings together with LSTMs in order
to improve our predictions of differential pressure. The edge we obtain in machine
learning when using categorical depends on what we wish to predict. Since the
pressure values we are analyzing are dependent on human behavioral patterns, cate-
gorical data regarding holidays have also been used in order to improve our models’
accuracy.

5.5 Regularization

Neural networks, with their ability to mimic any function, are at risk of overfitting
on the data set which it is trained on (see section 3.4 for overfitting). Many advanced
methods have been designed to counter act this overfitting. In modern neural net-
works, layer normalization, batch normalization, group normalization, Dropout and
other methods have newly been devised to make neural networks perform “better”,
for a lack of a better word. These methods have in common that they indirectly
cause a neural network to generalize better. In this thesis we have looked at classical
regularization methods such as the L2 norm, and newer ones such as Dropout and
found that the latter performed better for our problem.

5.5.1 L2 Norm Regularization

As the name somewhat suggests, L2 norm regularization takes the L2 norm of all
the weight matrices in the network, multiplies it with a small scalar and appends
it to the cost function. Since the cost function is minimized during training, the
network will penalize the weights for adding complexity to the model, reducing the
overfitting. The L2 norm of an N ×M weight matrix is simply the sum of all its
weights squared

L2(w) =
N∑
j

M∑
i

w2
ij. (5.11)

In statistics, a problem solved using L2 norm regularization is called a ridge regres-
sion, while L1 norm regularization, which looks at the absolute value of the weights
instead of their squared value, is called LASSO regression. In machine learning
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problems where we use stochastic gradient descent, we call L2 regularization for
“weight decay”.

5.5.2 Dropout

New regularization methods such as Dropout (Srivastava et al. 2014), have little
to do with mathematical theorems and are perhaps the reason why some AI re-
searchers call their field “alchemy”. The highly successfull method is responsible for
reducing overfitting in neural networks and has proven quite useful in this thesis.
Dropout picks a random subset of nodes in a neural network, while it is training
on a batch, and turns them off. That is to say, all values these nodes propagate
forward become zero. The inhibition of a subset of nodes forces the other nodes to
learn more efficiently and results in much less overfitting. Dropout is the main form
of regularization used for our models.



Part II

Methodology
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Chapter 6

Data Pipeline and Implementation

Before we start implementing models, we need to have our data in order. The first
goal of our thesis is to make a data pipeline which turns our asynchronous and
aperiodical data into uniform time series.

In this chapter we discuss different aspects of the pipeline, from start to finish.
The pipeline sorts, extracts, resamples, scales and feeds the data to our models. It
consists of different steps, some that we only have to do once, and some which we
repeat every time we want to train a new model. We will present each step our data
goes through, both graphically and with snippets of code, before ending up in the
inputs of one of our models.

6.1 Sorting by Name

To make sense of one year worth of measurements made by thousands of sensors,
we organised the measurements by the tag they belonged to. Each measurement a
tag makes includes its name, making it easy for us to divide our data into individual
files. In section 2.4 we showed this snippet of the original data file:

" 2018–03–09 22 : 22 : 00 " , "XXX_PT705 . vY" ,747 .59 ,192 ,192 ,4
" 2018–03–09 22 : 23 : 00 " , "XXX_PT705 . vY" ,733 .39 ,192 ,192 ,4
" 2018–03–09 22 : 24 : 00 " , "XXX_PT705 . vY" ,735 .43 ,192 ,192 ,4
" 2018–03–09 22 : 25 : 00 " , "XXX_PT705 . vY" ,739 .50 ,192 ,192 ,4
" 2018–03–09 22 : 26 : 54 " , "XXX_PT705 . vY" ,766 .21 ,192 ,192 ,4
" 2018–03–09 22 : 27 : 12 " , "XXX_PT705 . vY" ,739 .57 ,192 ,192 ,4
" 2018–03–09 22 : 28 : 01 " , "XXX_PT705 . vY" ,750 .72 ,192 ,4
" 2018–03–09 22 : 29 : 01 " , "XXX_PT705 . vY" ,746 .80 ,192 ,192

79
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6.2 Reading Tags into Arrays

Tags are the main focus of this thesis. When we predict future pressure values in
the heating system, it is measurements made by a specific tag we are predicting.
The tag

“XXX_PDT2002.vY ′′

(which from here on will be called PDT2002) is of special interest to the company
who has given us the dataset. Most of our models have been developed and trained
on PDT2002, however, our methods can be inferred on any other tag in the dataset.
In order to predict tag PDT2002’s future measurements, we feed our models its
previous measurements (univariate forecasting). This means we have to be able to
effortlessly read tags from our district files into arrays in our programs. The Numpy
and Pandas packages in Python solve this problem and lets us quickly extract the
tags we want.

#t e s t . py
impor t pandas as pd
a r r a y = pd . r e a d_p i c k l e ( ’ path_to_tag / tag . p i c k l e ’ )
a r r a y . head ( ) #show f i r s t v a l u e s i n data f rame

$python3 t e s t . py
>>

Value
Date
2017–06–28 16 : 02 : 57 248.870667
2017–06–28 16 : 02 : 58 251.745056
2017–06–28 16 : 03 : 59 253.693481
2017–06–28 16 : 04 : 59 251.926849
2017–06–28 16 : 05 : 59 250.785965

After reading tags into arrays, we can start processing and plotting the data.
In figure 6.1 you can see a plot of the measurements made by some tags over a small
time interval.

6.3 Resampling

As you can see in figure 6.1, a tag’s measurements happen at aperiodical timesteps.
Feeding inconsistently spaced values in time into a forecasting model is going to make
our model confused. The model will treat measurements that are 2 minutes away
from each other no different from measurements that are 5 hours away from each
other, resulting in meaningless predictions. To solve this, we make our measurements



Section 6.4 Resampling 81

Figure 6.1: The figure shows a time interval of differential pressure measure-
ments made by tags in the heating system. Notice that the measurements are
aperiodical and asynchronous.

equally spaced in time. The patterns our model finds will then be patterns that are
consistent with the normal passage of time. To give our data a constant timestep, we
use a linear interpolation scheme which maps all measurements to rounded timesteps
(eg. 00:00, 00:01, 00:02). Our code has been implemented to allow us to dynamically
choose the size of our timestep.

#t e s t 2 . py
t im e_ i n t e r v a l = 60 #t ime s t ep s i z e ( s econds )
a r r a y = pd . r e a d_p i c k l e ( ’ path_to_tag / tag . p i c k l e ’ )
a r r a y = a r r a y . r e samp l e ( ’\%ds ’\% t im e_ i n t e r v a l ) . mean ( )
p r i n t ( a r r a y )

$python3 t e s t 2 . py
>>

Value
Date
2017–06–28 16 : 02 : 00 250.307861
2017–06–28 16 : 03 : 00 253.693481
2017–06–28 16 : 04 : 00 251.926849
2017–06–28 16 : 05 : 00 250.785965
2017–06–28 16 : 06 : 00 248.639206

In figure 6.2 and the listing above, you can see how this interpolation modifies
the data features in figure 6.1 to have a uniform timestep, but in the figure we see
that some timesteps are vacant of any values.
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Figure 6.2: The figure shows an interpolated version of the tags in figure
6.1. The interpolation maps our data to rounded timestamps. In this figure
we have the the timestep to one minute, which maps all values to their closest
rounded minute. The vacancies in the data were there to begin with, but are
a problem for our analysis nonetheless.

6.4 Filling Vacancies in the Data

In figure 6.2 we can observe timesteps where no measurements exist (the 5 minute
mark). Our models are going to struggle with analyzing such a holey data sequence,
since they need an actual input xt at all timesteps t. We therefore want to fill these
vacant positions with values. As mentioned in section 2.4, our sensor tags are event
driven. The sensors make measurements every second and only saves a new value to
its array when there is a significant change from the last measurement. From this
we can presume that wherever there is a vacancy in a tag’s measurement history, the
best approximate value to fill the void time interval with is the last measurement the
tag made. This is a method called forward fill. Applying forward fill to the tags
in figure 6.2 results in i voidless dataset which we can use train machine learning
models on.

a r r a y = pd . r e a d_p i c k l e ( ’ path_to_tag / tag . p i c k l e ’ )
a r r a y = a r r a y . r e samp l e ( ’\%ds ’\% t im e_ i n t e r v a l )
# f i l l v a c a n c i e s w i th p r e c e d i n g v a l u e
a r r a y = a r r a y . f i l l n a (method=’ f f i l l ’ )

In figure 6.3 is the forward filled version of the tag arrays from figure 6.2.
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Figure 6.3: The figure shows an interpolated and forward filled version of the
tags originally depicted in figure 6.1. Now that all our data is synchronized
and periodical, we can start using it to train ML models.

6.5 Feature Scaling

In machine learning problems, it is normal to scale you data in order make it easier
for the models to find patterns in them. Each feature we intend to feed or predict
in our neural net will be standardized. Standardization is a way to scale a dataset,
which sets the data’s variance to 1, and its mean to 0

x̂ = x− µx
σx

, ŷ = y− µy
σy

, (6.1)

where σ is the standard deviation in the data, and µ is the mean. Standarization
(Yann et al. 1998) greatly helps gradient-based learning, which neural networks
depend on. The scaling, however, results in our neural network having to predict
unitless labels ŷ. The output predictions of our neural network, ẑ, will therefore
also be unitless and so will have to be transformed back to their original units

y = ŷσy + µy =⇒ (6.2)
z = ẑσy + µy. (6.3)

The scaling is quite easy to implement, below is an snippet from our code that is
performing standardization on all input features:

means=[] #we save the mean and s t anda rd dev .
s t d s =[ ] #– o f each f e a t u r e a r r a y
f o r i i n dims : #dims i s the number o f i n pu t f e a t u r e s
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mean = Ar ray s [ i ] . mean ( )
s td = Ar ray s [ i ] . s t d ( )
A r r ay s [ i ] –= mean
Ar ray s [ i ] /= s td
means . append (mean )
s t d s . append ( s td )

Once a feature is scaled, we can feed it into a model. If the model is multivariate,
we scale all the features individually, as the code above illustrates. After getting
our predictions, ẑ, we can scale them back to real units (kPa) with the help of eq.
(6.3), letting us to calculate the physical error:

[ . . . ] #pos t r e g r e s s i o n
#r e s c a l e p r e d i c t i o n s to p h y s i c a l u n i t s
p r e d i c t i o n s = p r e d i c t i o n s ∗ s t d s [ l a b e l _ i n d e x ] + means [ l a b e l _ i n d e x ]
r e s i d u a l s = ( p r e d i c t i o n s – y_te s t ) . abs ( ) #t e s t e r r o r s
MAE = r e s i d u a l s . mean ( ) #mean ab s o l u t e e r r o r i n p h y s i c a l u n i t s

6.6 Creating Data Batches

The last step of the data pipeline is the data’s transition into a model’s input.
Since we have resampled, and forward filled each feature, we know that each value
is equally spaced in time. To refer to one measurement, we write xt. To refer
to a measurement which comes after xt, we write xt+k, where k is the number of
timesteps into the future from when xt took place. In time series forecasting, we
want to predict future values xt+k, by using older values like xt, xt−1, xt−2, etc. as
inputs simultaneously.

6.6.1 Samples

To create training examples, we first need to define far into the future we want to
see and how many preceding timesteps we want to use as inputs simultaneously. Say
we have a feature, x, and we want to predict which value comes after xt, e.g. xt+1
(k = 1). As inputs for the prediction, we take a set of n measurements from time
t and earlier: {xt, xt−1, ..., xt−(n−1)}. Using a series previous values to predict the
ones that come after is called “autoregression”. To evaluate the prediction, x̂t+k, we
compare it to the label, xt+k. The input and the label forms an input-output pair
which make up any supervised learning dataset. We also call these pairs for training
examples or simply “samples”

xn=3,t = ({xt, xt−1 xt−2}, xt+1). (6.4)
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Figure 6.4: The diagram is a visualization of a feature’s values over time.
Marked green are the inputs for an input sample x3,t, while in red we find the
label we want to predict.

In eq. (6.4) is a sample consisting of the n = 3 preceding time steps from time t, and
a label that is k = 1 time steps into the future. Figure 6.4 is visual representation
of this sample, where the input is marked green and the label is marked red.

6.6.2 Batches

In the previous subsection we explained how to make a single sample from a feature
array, and we chose to call such a sample xn,t, where n are the number of inputs
and t is timestep of the most present input. One sample is a very tiny piece of data
and is not going to be enough to train a model. We are going to need samples.
We briefly touched on batches in section 4.7.4. Batches are collections of samples,
usually in groups to the power of two (e.g. 32, 64, 128, etc.).

If you look at the sample x3,t from figure 6.4, you might notice how trivial it is
to create a new sample, x3,t+1. To create more samples we simply move the inputs
and label of the previous sample one timestep forward. More specifically, what we
do is take every term in x3,t = ({xt, xt−1 xt−2}, xt+1) and we iterate them one
step forward in time: x3,t+1 = ({xt+1, xt xt−1}, xt+2). Repeating this process can
be visualized as a filter moving along the timesteps, collecting samples. Once the
sample filter reaches the edge of our feature array, all possible samples have been
created, which we can begin feeding into our models as batches. In figure 6.5 we
have visualized the filtering-like process of creating samples.

In our code, we separate the input and output pairs of the sample

xn,t = {xt, ..., xt−(n−1)}, yn,t = xt+k.

Here is a snippet of code inspired by our own, however, this snippet is not our
actual code. The actual code for this stage is a bit uglier and much less intuitive as
a consequence of wanting it to run faster.

n = 30 #number o f p r e c e d i n g t ime s t e p s we want i n each sample
k = 1 #number o f t ime s t e p s i n t o the f u t u r e we p r e d i c t
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Figure 6.5: The first sequence is the same as the one in figure 6.4 and shows
the inputs and label of sample x3,t, where x3,t = ({xt, xt−1 xt−2}, xt+1).
The two following sequences illustrate the next two samples we can collect,
x3,t+1 and x3,t+2. To create each of these samples, we simply move the inputs
and label to be their neighbouring values, one timestep into the future. As a
reminder, the green values are the inputs and the red value is the output of
the sample.

f o r t i n t ime s t e p s [ n : –k ] :
r = range ( t – ( n– 1) , t ) #number o f p r e c e d i n g v a l u e s as i n p u t s
r . append ( t+k )
dataX [ t ] = a r r a y [ r [ : – 1 ] ] #i npu t samples
datay [ t ] = a r r a y [ r [ – 1 ] ] #l a b e l s

After we have sampled the data, we divide them into a training, test and validation
set before training a model. More on optimization in section 8.3.

t e s t_pe r c e n t a g e = 20 #20% of the samples go to the t e s t s e t
t e s t_ c u r s o r = i n t ( (1 – t e s t_pe r c e n t a g e /100) ∗ datax . shape [ 0 ] )
#t e s t c u r s o r i s the i ndex at the 80% mark o f the samples

t e s t x = dataX [ t e s t_ c u r s o r : ]
t e s t y = datay [ t e s t_ c u r s o r : ]
t r a i nX = dataX [ : t e s t_ c u r s o r ]
t e s t y= datay [ : t e s t_ c u r s o r ]
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6.7 Differencing the Data

In time series forecasting, predicting a feature’s future value is not always the goal.
Sometimes, predicting the difference between the present value and future value
results in better predictions. Doing this requires us to perform “differencing” on
our features. To differentiate our inputs and labels, we take our feature vector x,
of length n, and simply subtract the n− k last features with the the n− k earliest
features. The resulting feature vector is similar to the original one, except that each
value is the difference between its original value and the value k timesteps in the
past

∆x =


xk
xk+1
...
xn

−

x1
x2
...

xn−k

 . (6.5)

Once we have a differenced feature vector, we can begin creating samples and batches
as we have described in figure 6.5.

When differencing we want to predict ∆xt+k = xt+k−xt, where k is the number
of timesteps into the future. Usually when predicting a differenced time series, our
inputs are also differenced. An expression for a regression model which predicts the
difference between the present feature value (corresponding to timestep t) and the
future feature value can be written as f(∆xt,∆xt−1, ...) = ∆x̂t+k, where ∆x̂t+k+xt =
x̂t+k is the model’s prediction of xt+k.

In this thesis, we have tried using differencing to boost our predictions’ accuracy.
Differencing a feature emphasizes the short term relationships in the data series.
There also happens to sometimes exist long term relationships inside time series, also
known as Long Memory or Long-Range dependencies. Geophysical time series, such
as river flow data, has been shown, to contain long term relationships (Hurst 1951).
It seems reasonable to presume that the Heating System also contains similar long
term relationships which we want to exploit. Econometrician Granger and economics
professor Joyeux wrote about differencing in, Granger and Joyeux (1980), where they
noted that: “Some econometricians were reluctant to this technique (differencing),
believing that they may be losing information, by zapping out the low frequency
components.”. Presumably, differencing removes long term relationships in time
series.
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6.8 Input Data and Model Implementation

This section is dedicated to present the final destination of the data pipeline as well
as deliver som insight into how we make our models.

6.8.1 Implementing a Small Neural Network

After the data pipeline has created all our samples and we have divided the dataset
into a test and training set, we can begin making our models. To make neural
network models, we have used the Python library; Keras. For linear AR models,
we use the scikit-learn library. Let us walk through how we make and train neural
network models. The first step is to import everything we need from Keras.

from t e n s o r f l ow . k e r a s . l a y e r s impor t Dense , I npu t
from t e n s o r f l ow . k e r a s . models impor t Model
impor t t e n s o r f l ow as t f

Second, we define our input layer. Let us assume our data samples consist of the 20
preceding values of a single feature.

n = 20 #samples c on t a i n 20 o f the p r e c ed i n g v a l u e s
i n p u t_ l a y e r = Inpu t ( shape =( [ 20 , 1 ] ) )

If we are to make a multilayer perceptron for example, then we need to add at least
one hidden layer and an output layer:

n = 20
h = 128 #number o f h idden nodes
i n p u t_ l a y e r = Inpu t ( shape =([n , 1 ] ) )
h i dd en_ l a y e r = Dense (h , k e r n e l _ i n i t i a l i z e r =

’ g l o ro t_no rma l ’ , a c t i v a t i o n=’ReLU ’ ) ( i n p u t_ l a y e r )
ou tpu t_ l a y e r = Dense (1 , k e r n e l _ i n i t i a l i z e r =

’ g l o ro t_no rma l ’ , a c t i v a t i o n=’ l i n e a r ’ ) ( h i dd en_ l a y e r )

The word “Dense” is used to describe a simple feed forward propagation. Notice
how Keras connects the layers together because we pass the previous layer as an
argument to the subsequent one. There are other ways of building a neural network
in Keras, this way is called “the functional API”. We are not done yet, however, what
remains is as intuitive to implement as what has already been seen. After making
a model with the “Model” class, we train the model by deciding which optimizer to
use and things like batch size and validation set size:
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v a l i d a t i o n_p e r c e n t a g e = 5
ba t ch_s i z e = 64 #how many samples to t r a i n on pe r update
model = Model ( i n p u t s=i npu t_ l a y e r , ou tpu t s=ou tpu t_ l a y e r )
o p t im i z e r = t f . k e r a s . o p t im i z e r s .Adam( )
model . comp i l e ( l o s s=’ mean_squared_error ’ , o p t im i z e r=

op t im i z e r , me t r i c s =[ ’mse ’ , ’mae ’ ] )

model . f i t ( t r a inX , t r a i n y ,
v a l i d a t i o n _ s p l i t=v a l i d a t i o n_p e r c e n t a g e /100 ,

ba t ch_s i z e=ba t ch_s i z e )





Chapter 7

Feature Reduction and Selection

In the previous chapter, we talked about the data pipeline and how it processes our
data before sending it to a model’s input layer. Before data is sent down the pipeline,
however, most of it is removed by heuristics described in this chapter. Additionally,
we discuss how we pick fitting features for multiregression models.

7.1 Manual Feature Reduction

Feature is a word used to describe an array of input data, such as the measurements
from a tag. A hard nut to crack in this thesis is how to cleverly choose which features
to feed into our models to predict another. We possess thousands of tags, 4-5 types
of weather features, and multiple artificially created features which potentially could
help boost our predictions. Naively attempting to feed the entire dataset into our
model to predict PDT2002 makes it difficult for a model to distinguish good or bad
features. This section is dedicated to explain how we have reduced the amount of
tags in our dataset by using non-analytical heuristics.

7.1.1 Local Models

The first step to selecting relevant tag features for our multivariate models, is to
find those with something in common with the label tag. By label tag, we mean the
tag we are trying to predict the behavior of (PDT2002). Thousands of tags measure
pressure, the unit of our tag of interest, yet these tags behave very differently. The
difference in the tags’ behavior is clearly because they are placed in entirely different
locations inside of Oslo’s Heating System. By following something along the lines
of the principle of locality (see section 5.1), we assume tags lying near each other
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are likely to have a valuable correlation between their measurements. The features’
spacial information is therefore, presumably, exploitable. To exploit tags’ locality it,
we compare their district code. As a reminder: Each sensor has a name that starts
with its area code, followed by the unit it measures:

”XXX_PDT3401.vY”.

As mentioned earlier in this chapter, I have redacted/switched the area codes with
the letters “XXX”. Altogether, there are tens of thousands of tags in our system.
By only focusing on tags that belong to a common district when predicting pressure
measurements of a tag in said area, we manage to reduce the amount of candidate
input tags from thousands to hundreds.

7.1.2 Removing Lazy Tags

Some of the tags in our dataset are almost or completely inactive. Intuitively, a tag
that rarely makes a measurement is not a helpful input feature that will help our
models learn to predict PDT2002. Removing “lazy tags” is done by setting a lower
threshold value of 25’000. If the amount of measurements a sensor has made for an
entire year is lower than the threshold, we disregard it (such a sensor makes / 2.5
measurements per day on average). Removing such lazy tags potentially relieves
us of 9/10 tags, depending on the district the tag we are predicting belongs to.
Specifically, the area of PDT2002 possesses 976 sensors of which 834 are lazy. The
remaining 142 tags are the only ones we deem eligible to become input features.

To sum up our feature reduction steps:

• We have reduced thousands of potential input features to hundreds by only
training models with tags from our label tag’s (PDT2002) district.

• We further reduced the remaining number of features by removing the most
inactive of them.

7.2 Feature Selection

In this section, we will explain the less heuristic methods we have used to choose
the optimal input tags for a specific response variable / label tag, using filter fea-
ture selection methods. Feature selection is a crucial field within data science
that tackles the problem of finding optimal input features for your model. Feature
selection methods can be divided into three categories:
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• Filters
Filters are methods that measure relevance between an input feature and a
label feature. This relevancy is not clearly defined, but popular quantities
to measure are: covariance and Pearson’s correlation coefficient. If an input
feature scores high on these tests, it shows that there is a correlation or de-
pendence between it and the label. We keep the input features that score high
on these tests and dump the ones that do not.

• Wrappers
Wrappers are methods that turn you optimization problem into a search algo-
rithm. Some wrappers, such as the Recursive Feature Elimination algorithm
(Guyon et al. 2002), trains a model on the entire feature set, then removes
features of lesser relevance. Other wrappers train multiple models on a lot of
subsets of your features. Each model’s prediction error ends up functioning
as a score which determines the best model. Wrappers usually give the best
result when optimizing through feature selection, but they cost much more
computational resources than other methods.

• Embeddings
Embeddings are characterized as methods that perform feature selection dur-
ing the model’s training. Embedding methods penalize those input features
that are characterized as noise, zeroing them out with a penalizing weight.
LASSO regression (Santosa and Symes 1986), is perhaps the most commonly
known example of an embedding method. In neural networks however, an
embedding is typically a trainable feed forward layer which transforms com-
binations of categorical/binary values to real values. See section 5.4 for more
uses of embeddings.

7.3 Filtering Methods

We have looked at two filtering methods and will in this section discuss each one’s
characteristics. The methods are all used in a univariate feature selection scheme,
meaning we investigate the response variable’s dependence on one other feature at
a time. The features that score highest are used as input variable to multivariate
regression models, which we compare to models that are univariate.

7.3.1 Covariance and Correlation

To see if our label tag / response variable PDT2002, Y , is dependent on a feature
tag, e.g. X, we can calculate their covariance. Covariance, expressed in eq. (7.1),
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can be interpreted as a measure of how similarly two variables vary

σXY = 1
N

N∑
t=1

(Xt − µX)(Yt − µY ). (7.1)

In eq. (7.1), t denotes the timestep of the variables, µ is the average of each variable
and N is the total number of timesteps.

If we scale the covariance between the response and the feature variable with
their standard deviation, we get a measure of their linear correlation, the so-called
Pearson correlation coefficient.

ρX,Y = cov(X, Y )
σ(X)σ(Y ) . (7.2)

The Pearson correlation coefficient, ρX,Y , can tell us how linearly dependent X and
Y are. The coefficient’s value will vary between -1 and 1. A high negative or
positive value implies a strong linear dependency between the variables. Whereas
0 correlation translates to a lack of any linear dependence. Note that the variables
may be non-linearly dependent anyway, making this method suboptimal for selecting
features in non-linear regression problems. This method has performed quite well
for us nonetheless.

In figure 7.1 we have plotted a heatmap of a small chunk of something called
the correlation matrix, for all the active features close to PDT2002. The code
needed to calculate the correlation, ρ, between all the features exists in the Pandas
library of Python, which is what we used. For n features X1, ..., Xn, the correlation
matrix is an n×n matrix where the (i, j) index is the Pearson correlation coefficient
ρ(Xi, Xj) from eq. (7.2), between feature i and j. The variables with the highest
absolute correlation are used in our multivariate models to predict the response
variable PDT2002.

7.3.2 Mutual Information and Entropy

Since our neural network models are able to find non-linear relationships between
inputs and label, a high mutual information score, MI, is a presumably a viable
criteria for adding features to our model. The reason for this is that MI represents
both linear and non-linear correlation between two variables.

Mutual information is a quantity that measures how much one variable tells us
about another. In statistical terms, it is defined as how much the uncertainty of
one variable is reduced, given knowledge of the other. By uncertainty we mean the
entropy, which is a measure expressed in eq. (7.3).

S(X) = −
∑
i

PX(i) logPX(i) (7.3)
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Figure 7.1: The correlation matrix shows us the degree to which of our vari-
ables are linearly correlated. I’ve plotted absolute correlation since we don’t
need to distinguish between negative and positive correlation. The diagonal
is green because the correlation between one variable and itself is equal to 1.

In our case PX(i) is the value PX(Xi), where PX is the probability distribution func-
tion of X, Xi is the i’th value of feature X and PX(Xi) is the marginal probability of
Xi. A probability distribution is a bit problematic when dealing with a real valued
problem since our real valued features mostly have unique values. The probability
distributions of the features are therefore uniform, which is unhelpful. MI was ac-
tually for categorical variables, who tend to have a finite number of classes. The
typical solution to making a meaningful probability distribution for real values is to
use binnings. The binned entropy is expressed similarly as eq. (7.3) in eq. (7.4)

S(X) ≈ S∗(X) = −
∑
x

P ∗X(x) logP ∗X(x), (7.4)

where the sum function iterates over the bins, x, of X’s binned probability distri-
bution; P ∗X . P ∗X(x) is the marginal probability for the x’th bin in X. The next
expression needed for calculating the MI is the conditional entropy, S(X|Y )

S(X|Y ) =
∑
y

PY (y)
[
−
∑
x

PX|Y (x|y) log
(
PX|Y (x|y)

)]
. (7.5)

In eq. (7.5), PX|Y (x|y) is the probability of x given y where x and y are values/bins
of X and Y . With this we can write the Mutual Information as

I(X;Y ) = S(X)− S(X|Y ). (7.6)
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Notice that I goes to zero if S(X|Y ) = S(X) in eq. (7.6), which is synonymous
with the variables being statistically independent/non-correlated.



Chapter 8

Optimization

Creating predictive models is a multi-step process in which we need to design models,
optimize, run benchmarks and repeat. In this chapter, we discuss the complicacies
of creating models of value by focusing on their features, hyperparameters and ar-
chitecture.

8.1 Input Features

Linear regression models, MLPs and LSTMs are the three types of models which we
have used to perform time series forecasting. All three have been used to perform
univariate analysis, which in this thesis means: A regression which trains a model
on multiple inputs contiguous in time from a single feature, in order to predict the
feature’s value k timesteps into the future (go back to figure 6.5 to get a visualization
of the inputs and prediction labels of a time series). Only LSTMs have been used
for making multivariate models, where a model takes multiple sequences of inputs,
each sequence being from a unique feature. Since LSTMs have an architecture which
discerns which timestep the input belongs to, we assume they are less likely to be
overwhelmed by multiple input features.

8.1.1 Numerical Input Features

Most of the candidate input features we have are the measurements of tags such as
PDT2002. Besides tags from the heating system, we also have weather measurement
data features of Oslo taken from the Norwegian Meteorological Institute. These
features measure wind speed and precipitation. Lastly, we created a numerical
encoding for time data without using embeddings. Realizing features such as “time
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of day” or “week day” can be represented as sine and cosine functions with periods
equal to 24 hours or 7 days, we can use these sine and cosine functions as inputs to
our models. This did sadly not give us any improvements. The encoding method is
presented in an online article at Wyk (2018).

The last section in the previous chapter discusses how to find relevant input fea-
tures for multivariate regression by using linear correlation and MI filters. Knowing
the most correlated features to our label, PDT2002, still leaves the question: How
many features should we simultaneously use as inputs to boost prediction accuracy?
The answer is found by simply trying with different amounts. The number of fea-
tures to input into our multivariate models is effectively a hyperparameter, which
we have quite a lot of in in our models.

8.1.2 Categorical Input Features

In section 5.4 we presented embeddings and explained how they allow us to feed
categorical data into our network. The categorical data we have used in this thesis
is mainly temporal. That is to say, we have experimented with how our network
responds to being told which week day it is, which month it is and what time of day
it is. We have also created a categorical feature which tells the network whether
or not if there is a large event in Oslo at the moment, such a a soccer game or a
public holiday. The categorical features we created were: time of day, week day,
week number, month and holiday.

8.2 Hyperparameters

Regarding models, we have primarily discussed neural networks with their param-
eters; weights and biases. These are parameters which we optimize during the
training/learning process. Hyperparameters are parameters which we set before the
training begins. This includes the number of nodes in a neural network’s layer, the
number of layers, which activation function to use, the size of the timestep in our
data, the amount of timesteps into the future we want to predict and so on.

Our problem possesses many hyperparameters, making it difficult for us to
optimize a each model we make. The choice of value for our hyperparameters is
crucial in optimization and can lead to a huge boon in model accuracy, but since
hyperparameters are set before the training process, optimizing hyperparameters is
a time costly affair. Below are some bullet points presenting and discussing some of
our hyperparameters and the scope inside which we plan to vary them:
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• Timestep Size
The original data is technically sampled at 1 Hz. This is unnecessarily fre-
quent. We can downsample and interpolate and forward fill the data and still
avoid aliasing seasonal patterns. Decreasing the resolution of our data into a
constant timestep grants us a very easy way of defining how far into the future
we want to predict. We will set our timestep to fixed values between one and
20 minutes to see how it affect predictions.

• Future Vision
How far into the future do we want to predict? From a naive perspective, as
long as possible, but from a practical perspective, as far into the future as is
needed to respond to the foreseen event. Modern Heating Systems are water
based and Oslo’s require many minutes, e.g. 30, to properly respond to an
energy increase from a heat plant. We will therefore try to predict PDT2002’s
behavior from one to 40 minutes into the future. Predicting the differential
pressure tag’s behavior at multiple steps will give a contiguous picture of what
might happen in the future, which is much more insightful than only knowing
what might happen in exactly 30 minutes.

• Input Sample
The input to our model can be a large amount of preceding values from our
features’ time series. We get to define whether to look one minute or many
hours back in time, when trying to estimate the a future data point in the
series. In a series where the timestep size is 5 minutes, ten timesteps translates
to the last 50 minutes of feature values. We will experiment with using input
samples of 3-20 timesteps for our models, regardless of timestep size.

• Network Architecture
In the case of Artificial Neural Networks, multiple of hyperparameters are
introduced to a regression problem. Such as a model’s layer type (e.g. feed
forward or recurrent), the number of layers, the number of nodes in each layer,
the type of activation function behind each layer, whether to use regularization
or not, which loss function or optimizer to use and how many epochs to train.

– Models and Layers
Our MPLs all have four layers. Our recurrent neural network models are
either LSTMs followed by a feed forward layer, or two feed forward layers.

– Nodes and Layers
To make things easy for us, we use 128 hidden nodes in each feed forward
layer, and in each of the weight matrices in the LSTM gates.

– Activation Functions
We have extensively tested both ReLU and sigmoid in our models. The
nodes connected to the output node is activated by the linear activation
function.
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– Regularization
We have used L2, Dropout and sometimes neither.

– Loss Function and Optimizer
The Mean Squared Error is the sole loss function used to train networks.
The Adam optimizer is likewise the only optimizer we have used. The
Adam optimizer has three initial parameters: learning rate, β1 and β2,
which all can be treated as hyperparameters.

• Epochs

An epoch passes every time a model has been trained on the entire training
set. A model can typically train on the training set multiple times before it
overfits. For this reason we have let our models train for ten epochs, and saved
the network with the best validation accuracy each time.

• Differencing

Differencing the data can be thought of as a binary hyperparameter which
we can turn on or off whenever we please. We have extensively tested it and
found that it has its pros and cons prediction.

8.3 Evaluation

To improve our models, we minimize their training error, L(Xtrain,ytrain). More
important than the training error is the model’s performance on data it has not
trained on. In supervised learning it is customary to have both a validation set and
a test set which the model is not allowed to be fitted on. Both datasets are used to
evaluate the model, but each in their own way.

8.3.1 Test Error

The test error, L(Xtest,ytest), is the most robust metric for evaluating our model
and corresponds, in our thesis, to the MSE error of our models’ predictions on the
test data. The test error is calculated after the training process and is usually
computationally costly, but much less so than the training itself. By taking the
square root of the test MSE gives us the average prediction error, which we easily
can convert to physical units [kPa] by following the steps in section 6.5. The average
physical test error is the result we use when comparing how accurate our models’
predictions are.
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8.3.2 Validation Error

To achieve the minimum test error possible, which is essentially the same as avoiding
overfitting, the validation set was made. The validation set, which we touched on
in section 4.7.1, is typically smaller than the test error. While 75% of the samples
in PDT2002 go into the training set and the test set holds 20% of the samples, the
remaining 5% defines the validation set {Xval,yval}. Just like a mini test set, we
do not train our model on the validation set. Instead of using the validation set to
evaluate the model after training, we evaluate on it during training.

By using the validation set to evaluate our model between epochs, we can stop
training as the network beings overfitting. Since the validation set is so small, the
evaluation does ideally not slow down the training/fitting process. The validation
error, L(Xval,yval), like the test error, shows us how good a model’s predictions
are on data it has not yet trained on. As each training epoch passes, the training
error and validation error diminish, but eventually the validation error will start
increasing (see figure 8.1). This means overfitting is taking place.

Instead of stopping training when the validation error starts increasing, we train
each model for ten epochs and save the weights and biases whenever the validation
error decreases. The reason why we do not immediately stop the training when the
validation error starts increasing is because it might decrease a couple of epochs
later.
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Figure 8.1: The figure shows a graph of the training, test and validation
MSE error for a neural network model. As the training progresses, the model
overfits. In epoch seven, the model seems to have the smallest validation and
test error, making it an ideal time to stop training. We do not calculate the
test error after each epoch, that is what the validation set is for.



Part III

Comparative Analysis and Results
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Chapter 9

Univariate Analysis Results and
Hyperparameter Optimization

The first regression models we made were neural networks such as MLPs, LSTMs
with a feed forward layer and LSTMs with two feed forward layers. The LSTMs
with two feed forward layers and the MLPs were free to use either ReLU or sigmoid
activation functions in their first feed forward layer, while the activation function
connected to the output has to be the linear activation function. In this chapter
we present the results of our univariate models and which hyperparameter values
worked best.

9.1 LSTMs

Especially many models were trained in the first rounds of optimization, because
we did not yet know which hyperparameter values were optimal for our problem.
During the univariate model optimization, we mainly dealt with different LSTMs
while tweaking almost every single hyperparameter. Although the univariate mod-
els are far from our best models, training them gave us valuable insight into the
hyperparameters which resulted in minimum prediction error.

As described in the hyperparameter section, 8.2, we have many types of hyper-
parameters: timestep size (for the data), input sample size, differencing the data
and adding an extra feed forward layer after the LSTM, resulting in the possibility
for adding an activation function - a hyperparameter in itself. We have looked at
six timestep sizes and ten different sizes of input samples. The amount of unique
combinations of hyperparameters in our univariate problem are 6 ∗ 10 ∗ 2 ∗ 3 = 360.
Making a model for all of these configurations is called “grid search”, which is what
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we have done. Additionally, each of these 360 models had to be trained up to nine
times in order to make them predict different distances into the future.

9.1.1 Univariate LSTM Results

Below, in table 9.1, is a compact representation of the most successful models in our
grid search analysis. Each row in the table describes an LSTM model with a unique
set of hyperparameters, each of which outperformed douzens of other LSTMs with
a similar architecture, but different hyperparameter settings.

Table 9.1: The table shows the hyperparameters belonging to the mod-
els with the lowest prediction errors. Each model has a set data resolution
(timestep size) as well as a set distance into the future which it has been
trained to predict.

Future[min] Timestep[s] Input Sample Differenced MAE [kPa] Activation
2 60 25 Yes 5.47 ReLU
3 180 30 Yes 7.36 ReLU
6 120 30 No 13.03 None
10 60 15 No 19.67 None
15 180 20 No 26.04 ReLU
20 60 20 No 30.84 Sigmoid
30 300 20 No 35.89 None
35 60 20 No 37.77 None
40 60 25 No 38.05 None

The column ”Future“ shows how far into the future the model was trained to
predict, while ”MAE“ is the mean absolute test error of the model. An activation
of ”None“ means that the LSTM has one feed forward layer with a linear activation
function instead of two feed forward layers. The models with two feed forward layer
following the LSTM layer had either ReLU or sigmoid as the activation function in
the first feed forward layer. The input sample size denotes how many LSTM cells
are in the network, as well as the length of the input data sequence.

9.1.2 Hyperparameter Insights

Conclusions we can draw from table 9.1 is that differencing is good for short term
predictions, but bad for long term predictions. There also seems to be a trend in
the amount of timesteps to use as inputs. All our top models prefer between 15 and
30 timesteps when predicting, meaning the models need to look far back in time in
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order to make better predictions. This implies that PDT2002’s feature vector has
long term dependencies and explains why differencing ruins long term predictions.

In addition to many timesteps being a preferred hyperparameter setting, so it
seems that small timesteps lowers prediction error. This is not unexpected, since
downsampling our data to have larger timesteps between each value will cause some
information to disappear. We also risk aliasing periodic patterns in our features if
we have make too large timesteps. For this reason, the preferred timestep for our
other analyses will be as 60 and 120 seconds. Setting the timestep size to 30 seconds
did not improve our models and only slowed the learning process.

A lot of hyperparameters regarding the network had little no effect. Initial
learning rate, hidden nodes in the hidden layers, batch size were all initially optimal,
with the learning rate set to 0.001, the hidden nodes to 128 and the batch size to
64. We did notice small improvements when halving the learning rate to 0.0005 and
so we kept it halved.

9.1.3 Benchmarking with Persistence Models

Before benchmarking our findings with linear regression models we want to present
an even more basic baseline as a benchmark. In order to find out if our forecasting
models are any good, a standard way of benchmarking in time series forecasting is
to compare your regression model with a persistence model. A persistence model
is a model which assumes that no change is going to happen to the feature x over
time. As an example, a persistence weather model assumes the weather tomorrow is
the same as today. The persistence model, in other words, predicts that the future
feature value of x, xt+k, is equal to the most recent value of x it is given as an input
(e.g. xt)

f(xt) = x̂t+k

= xt,

where k is the number of timesteps into the future you want to predict. The predic-
tions made by a persistence model are bad, but not terrible. Their predictions are
accurate for features with low variance, since they always guess that the variable
will not vary. In figure 9.1 we have visualized a persistence model trying to predict
what PDT2002’s feature values will be, one timestep into the future.

The mean absolute test error of a persistence model varies with how far it
predicts. Below, in table 9.2, we can see how our best univariate models’ results
from table 9.1 and the persistence model’s results compare to each other. The
results show that our models beat the persistence model, but this is not something
we should brag about.
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Figure 9.1: The figure shows a persistence model next to the PDT2002 fea-
ture. Since the model knows the value corresponding to the current timestep
of the feature, it simply predicts the next value to be the current one. At
some points, this turns out to be accurate, but sudden changes in the feature
creates large errors which are visualized as see-through residuals.



Section 9.2 Linear Prediction and MLPs 109

Table 9.2: Above is a comparison of our best univariate LSTM model, vs.
the persistence model’s mean prediction error on PDT2002’s test set.

Future[min] LSTMs MAE [kPa] Persistence MAE [kPa]
2 5.47 6.50
3 7.36 8.77
6 13.03 15.19
10 19.67 22.37
15 26.04 29.51
20 30.84 34.96
30 35.89 42.46
35 37.77 44.97
40 38.05 46.79

Because we feel like comparing nine separate LSTM models with with the per-
sistence model is a bit unfair, so we trained a final univariate LSTM model (with
a single feed forward layer after the LSTM layer) to give a visual representation of
how the models fare against each other. The hyperparameters are inspired by what
we learned from our first analysis: timestep size of 60 seconds, 20 timesteps as input
and no differencing. The comparison between the LSTM and the persistence model
is visualized in figure 9.2.

9.2 Linear Prediction and MLPs

Other benchmark models we can compare our LSTMs to are linear autoregres-
sion models and multilayer perceptrons. In time series forecasting, linear regression
models used on samples of previous feature values to predict future values is called
Linear Prediction. Linear Prediction models have a bit fewer hyperparameters than
a neural network, only timestep size and input sample size. We presumed the same
hyperparameters that benefited LSTMs also benefits Linear models and MLPs. We
therefore trained models with input samples of 20-30 timesteps and timestep sizes
of 60-120 seconds.

9.2.1 MLPs

Multilayer perceptrons like LSTMs are neural networks and can therefore be cus-
tomized to a greater extent than Linear Prediction models. We chose to make the
MLP networks 4 layers long, with 2 feed forward layers and 128 hidden nodes in
the two hidden layers. Just like our MLPs, the one in figure 9.3 illustrates a 4 layer
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Figure 9.2: In blue is the average absolute test error of the persistence model
and in red is the same error of the LSTM. As we try to look further into the
future, the errors seem to increase somewhat logarithmic.
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MLP, except that it has way fewer hidden nodes. Half of the networks we trained
had ReLU activation in their first hidden layer and the other half used sigmoid. The
input nodes, corresponding to the input sample size, varied from 20 to 30 inputs.
The predictions of the MLPs are slightly worse than the LSTM, which is expected
of non-RNN networks who do not exploit a sequence’s locality. In figure 9.4 is a plot
of the prediction error of the best MLP, which has a timestep of 60 seconds, input
sample of 25 timesteps and a sigmoid activation function, next to the latest LSTM
we trained in the previous section from figure 9.2.

9.2.2 Linear Prediction Results

Our linear autoregression models performed increasingly better on long term predic-
tions (20+ minutes forward in time) when the timestep size of the data got bigger
(300-600 seconds), but this in turn increased the short term prediction error. Table
9.3 contains the mean test errors of the two linear regression models which came
out on top. In figure 9.5 we have visualized the prediction error of the linear model

Table 9.3: The table lists the test error of two Linear Prediction models.
They both have an input sample size of 30 timesteps, but possess different
timestep sizes. The model trained on data with smaller timesteps is better
at short term predictions, while the model trained at 300 second timesteps is
better at long term predictions (20 minutes and longer).

Future[min] MAE [kPa], (Timestep = 60s) MAE [kPa], (Timestep = 300s)
2 5.69 –
3 7.58 –
5 11.45 11.53
6 13.32 –
10 19.67 20.18
15 26.04 26.73
20 31.71 31.31
30 37.25 36.42
35 38.73 37.71
40 39.69 38.49

trained on 60 second timesteps, in order to visually compare it to our univariate
LSTM model. Linear models seem more competent that MLPs when it comes to
predicting both short and long term, but fall short of univariate LSTMs.
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Figure 9.3: A sequence of a time series of stock prices being fed into an
ANN in order to predict its future value. This multilayer perceptron does not
exploit the principle of locality to the same degree as a RNN (LSTM), but the
figure shows the essence of using ANNs to predict time series data. The input
layer propagates the input values to the hidden layers and then to the output
layer. The single output value represents the predicted next value of the time
series, xt+1.
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Figure 9.4: The MLPs performs consistently worse than the LSTM and is
even outperformed by the persistence model when predicting between 10 to
25 minutes into the future of PDT2002’s values.
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Figure 9.5: The figure shows the average prediction error of the univariate
LSTM model from figure 9.4 and a Linear Prediction model from table 9.3.
Although the LSTM is dominating with its smaller prediction errors, it is not
by much.



Chapter 10

Multivariate Analysis Methods
and Results

For our multivariate analysis we trained LSTM based neural networks. During
the analysis we experimented with how many variables to use as inputs as well
as adding regularization and embeddings to our networks. We found that the co-
variance achieved better results than mutual information when choosing the most
correlated input features available. We also found that adding more than ten feature
variables to our LSTM at the same time was ineffective in reducing the prediction
error. The multivariate LSTMs predict the near future much more accurately than
our univariate models, while accurate long term predictions were harder to improve.

10.1 Feature Selection Results

In our predictions we assumed that the same hyperparameter values that were op-
timal for univariate LSTMs also benefit the multivariate ones. We therefore set the
timestep size to 60 seconds and the input sample size of each input feature to 20
timesteps.

Our first multivariate models were trained as an attempt to find out whether
to use covariance or mutual information filters to decide which input features we
want. In section 7.3 we talked about correlation filters like covariance and mutual
information and how we can use them to measure correlation between features. We
calculated the covariance and MI correlation between PDT2002 and all other fea-
tures in the same area. Subsequently, we created two models with ten input features
each. One model was fed the ten input features with the highest covariance with
PDT2002, and the other was fed ten features with the highest mutual information.
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In table 10.1 one can see how the models fared against each other. It’s evident that
covariance is the better feature selector.

Table 10.1: The table shows the differences in prediction error w.r.t. corre-
lation type used to choose inputs. The two models each possess ten different
input features. These features were chosen by either looking at their Pearson
or MI correlation w.r.t. PDT2002. The results show an overall improvement
when using features with high Pearson correlation as inputs instead of mutual
information. Both models perform better than the univariate LSTM on short
term predictions, but are slightly worse at long term predictions.

Future[min] MAE, N = 10, MI MAE, N = 10, P
2 4.33 4.14
3 6.10 6.01
6 11.90 11.47
10 18.20 18.03
15 25.50 25.18
20 30.37 30.02
30 37.06 35.84
35 38.05 37.07
40 38.44 38.31

10.2 Number of Features

The most defining aspect of our multivariable models is that they use other features
than PDT2002 (as well as PDT2002) in order to predict PDT2002’s future. How
many of these features to put in can be approximated with a little testing. In the
last section, in table 10.1, we already created benchmark results for a model with ten
input features. To get a better understanding of how many features we should use as
inputs, we created three more models, one with five input features, one with 15 and
one with 20. The features are chosen in accordance with their Pearson correlation
score w.r.t. PDT2002. In table 10.2 we have listed which number of input features
were most ideal for predicting a specific distance into the future. The number of
input features which consistently leads to the smallest error is 10, which is why we
chose to go with this amount in our later models.
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Number of Input Features Responsible for Smallest Prediction Errors

Future[min] Features MAE [kPa]
2 10 4.14
3 10 6.01
6 15 11.44
10 15 17.99
15 10 25.18
20 10 30.02
25 5 34.29
30 10 35.84
35 10 37.07
40 15 38.25

Table 10.2: The table shows us which model came out on top when trying
to predict the value of PDT2002 n minutes into the future. Most often the
model with ten input features has the smallest error, while the model with 15
input features dominates half as often.

10.3 Regularization - Dropout

In section 5.5.2 we briefly explained the simple, but effective regularization method
called Dropout. We notice little to no change with traditional regularization methods
such as LASSO/L2 regularization. Dropout, however, gave notable improvements to
our multivariate LSTMs. Table 10.3 compares two models, one with and one without
Dropout between the LSTM layer and the feed forward layer. The probability for
a Dropout event to occur for a node during a forward/backpropagation is set to
25%. Both models are given the same ten input features chosen with our covariance
feature selection scheme. The results are mixed, some predictions have improved
and some have not, but it would seem Dropout performs slightly better on average.

10.4 Stacked LSTMs

Just like MLPs consist of feed forward layers stacked after one another, so can LSTM
layers be stacked. By LSTM layer, we mean the series of LSTM cells which make
up a basic LSTM network. In an LSTM layer, each cell represents a timestep from
our input sample and is fed all feature data belonging to that timestep. In a basic
LSTM layer, the inputs are propagated forward to the subsequent cell. In a stacked
LSTM, there are LSTM cells both in the subsequent horisontal position and vertical
position. Our stacked LSTM model looks quite similar to the one in figure 10.1,
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Table 10.3: Table shows the prediction errors of the same LSTM network,
with and without Dropout between the LSTM layer and the output layer.
Most predictions have improved when adding Dropout to the model. The
predictions happening 20, 30 and 35 minutes into the future have, however,
worsened. In spite of this, we feel like Dropout is the way to go forward.

Future[min] LSTM, MAE [kPa] LSTM+D, MAE [kPa]
2 4.14 3.91
3 6.01 5.77
6 11.47 11.17
10 18.03 18.04
15 25.18 24.79
20 30.02 30.48
25 34.72 34.16
30 35.84 36.43
35 37.07 37.28
40 38.31 38.12

except that ours has a feed forward layer connected to the LSTM output.

We notice an increase in prediction error when using a stacked LSTM with three
LSTM layers or more, but using two layers gave decent results. The results were
however not an improvement overall and so we assume the extra computational cost
that comes with the extra LSTM cells are not worth the small potential improve-
ment. In table 10.4 we present a side by side comparison of our LSTM model with
Dropout and our stacked LSTM model, which also uses Dropout after each LSTM
layer.

Table 10.4: The Stacked LSTM seems to perform just as well as the sim-
ple LSTM. Of the forecasts, the stacked LSTM outperforms only half of the
benchmarks from the simple multivariate LSTM. Both models use Dropout.

Future[min] Stacked LSTM, MAE [kPa] LSTM+D, MAE [kPa]
2 4.04 3.91
3 5.67 5.77
6 11.27 11.17
10 17.94 18.04
15 24.89 24.79
20 29.72 30.48
25 34.71 34.16
30 36.26 36.43
35 37.43 37.28
40 38.08 38.12
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Figure 10.1: Two LSTM layers stacked on top of each other, forming a
Stacked LSTM. In our model, the output of the top right cell is propagated
through a feed forward layer whose output is evaluated as the network’s pre-
diction. The image is based on a figure found in Tong et al. (2018).
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10.5 Embeddings and Time Data

In this section we introduce both new input features and additional architecture to
our models in an attempt to improve our predictions. By architecture, we mean
changes to the neural networks instead of the features. The new input features
we began introducing were categorical features. To input this data, we created an
embedding which transforms a sparse encoded vector into a set of 64 hidden nodes
which we concatenated with the output of the LSTM. A feed forward layer connected
this merged layer to the output. We included Dropout between the merged layer
and the feed forward layer.

Most of the categorical data we made were one hot encoded vectors which repre-
sent the timestamp of the most recent input timestep, t (the timestep corresponding
to the rightmost input of the LSTM in figure 10.1). We assume that given awareness
of the time of the prediction, the network might pick up new patterns in the data
that are unique to a certain timeperiod of the year/week/day. By this logic, we
also made a one hot vector of length one, which describes whether or not today is a
national holiday or a national sports event.

10.5.1 Categorical Time Data

The motivation behind improving our models with categorical data came from our
hearing about CatBoost (Dorogush et al. 2017), a powerful machine learning method
that can be used for both regression and classification using categorical data. In-
stead of using methods like CatBoost and other ”decision tree“ methods in our
thesis, we have stuck with neural networks to keep things manageable. For neural
networks, embeddings and encoding methods are required to make categorical data
into something numerical and by thereby applicable.

We feed our categorical data into our network by encoding it into sparse vectors
which we then send through an embedding. As we explained in section 5.4, an
embedding is a weight matrix which maps a sparse binary vector to a real valued
vector. The sparse vectors we input alongside our features are concatenated one hot
vectors. Each one hot vector is a representation of e.g. which month it is or what
time it was when the feature’s value was measured. Say the input sample we are
putting into our model was measured April 4th, 2018 at 12:31 PM on a Wednesday.
We can then, parallell to feeding our LSTM the numerical measurement, feed our
embedding a sparse vector corresponding to the date and time that the numerical
measurement was observed.

We observed in our results that models fed different combinations of time data
inputs had both positive and negative effects on the network’s ability to predict
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PDT2002’s values. With inputs such as a one hot vector representing the mea-
surements month, time of day, weekday etc. we found that a combination of these
created a general improvement in our results. This optimal combination was a sparse
input vector/feature representing both the: day in the month, weekday in the week,
month in the year and minute of the hour which corresponded to when the numer-
ical input features of the input sample were measured. In table 10.5 is a side by
side comparison of the new LSTM model and the basic LSTM with Dropout. In
the table we observed improvements in both long term and short term predictions,
however, most prediction errors between 6 and 35 minutes have worsened.

Table 10.5: The LSTM model with Dropout is here given an embedding.
Most errors have increased with the introduction of the embedding, but the
error of predictions of PDT2002, 40 minutes into the future, has significantly
decreased. For this reason, we feel like LSTMs with an embedding has the
potential to become good long term prediction models.

Future[min] Embedding + LSTM, MAE [kPa] LSTM+D, MAE [kPa]
2 3.90 3.91
3 5.60 5.77
6 11.32 11.17
10 18.44 18.04
15 25.47 24.79
20 30.86 30.48
25 34.86 34.16
30 36.36 36.43
35 37.67 37.28
40 37.77 38.12

10.5.2 Special Features

A big decision and assumption we made in this thesis was to use features close to
tag PDT2002 to predict its future measurements because we assumed tags who are
close are correlated. We have not used features from other places in Oslo. A set of
features was given to us, by the utility company responsible for the tags, representing
tags associated with adjacent heating factories. These do not share area code with
PDT2002, but were thought to affect it nonetheless. We ran a Pearson correlation
filter over each of the features w.r.t. PDT2002 and fed our LSTM+embedding model
an increasing amount of the most correlated tags to see if they had a positive effect.
In addition to these tags, we also still used the ten tags from PDT2002s district as
inputs.
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10.5.3 LSTM with Embedding and Special Features

We saw improvements in long term predictions when adding four of the special
features most correlated to PDT2002 into our models. Fewer or more than four
special features had negative effects on the overall predictions (1 to 6 special features
were tested). In table 10.6 is a comparison between the new model trained on
the four special features vs. the older LSTM from section 10.5. Both models use
embeddings. The new model is fed information about which month, weekday and
day of the month took place, as well as holiday information. The older model was
also informed which minute it was, during the hour of the measurement, something
we excluded from the newer model to enhance predictions.

Table 10.6: The left column lists the mean prediction errors of the previous
Embedding LSTM we presented the results of. The right column lists the
errors of the same model, except that the LSTM cells also are given features
adjacent to surrounding heat factories which we have called ”special features“.

Future[min] Embedding, MAE [kPa] Embedding + Special, MAE [kPa]
2 3.90 3.84
3 5.60 5.89
6 11.32 11.34
10 18.44 18.03
15 25.47 24.87
20 30.86 30.26
25 34.86 33.82
30 36.36 36.49
35 37.67 37.05
40 37.77 37.55

In a last attempt to improve our predictions, we are going to take our short term
prediction models and train them on differenced data, which we earlier observed to
decrease the prediction error of our 2 and 3 minute predictions in table 9.1. We
managed to reproduce the same effect with the current LSTM we have been feeding
special features. In table 10.7 we have put the prediction errors of the model before
and after differencing the data and it’s clear that differencing has a positive effect
on short term predictions.

10.5.4 Basic LSTM with Dropout and Special Features

Not only did the special features improve the LSTMs with embeddings, they also
improved the LSTMs without it. Below, in table 10.8, is a side by side comparison
of the LSTM with Dropout from table 10.3 next to the same model being fed the
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Table 10.7: Differencing our features give us better prediction errors when
predicting into the near future (2-3 minutes), but not from 6 minutes onward.
The model is the same multivariate LSTM from table 10.6, trained on special
features.

Future[min] Differenced, MAE [kPa] Non-Differenced, MAE [kPa]
2 3.52 3.84
3 5.35 5.89

4 special features we used in the previous section. While these results are overall
inferior to the LSTM + embedding model, they still tell us something about the
special features. The results confirm for a second time that the features from the
surrounding heat factories have the ability to enhance our long term predictions.

Table 10.8: This table describes the effect of special features on univariate
LSTMs instead of multivariate ones. Feeding special features into a univariate
LSTM model without embeddings seems to improveme the prediction errors.

Future[min] LSTM+D+Special, MAE [kPa] LSTM+D, MAE [kPa]
2 3.94 3.91
3 5.67 5.77
6 11.21 11.17
10 18.18 18.04
15 24.94 24.79
20 30.27 30.48
25 34.34 34.16
30 36.44 36.43
35 37.68 37.28
40 37.88 38.12

10.6 Final Comparisons

To properly showcase our results we will in this section benchmark all the predictions
our models have made against each other. As evaluation metrics we will use the
mean absolute test error, which is the metric we have been using to present the
prediction errors with up until now. We will also show the absolute median error.
The mean errors are presented in table 10.9 and the median errors in table 10.10.
Overall the multivariate LSTMs have the best prediction errors. The LSTM with an
embedding tends to have a smaller median error, and a very similar mean absolute
error, compared to the LSTM without an embedding.
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Table 10.9: The table shows the MAE of our univariate models (MLP
and Linear Prediction) and our mulitvariate models(LSTM, LSTM+E). The
LSTMs both contain Dropout and have been trained on special features.
LSTM+E is shorthand for LSTM with Embedding and the ”Baseline“ is the
persistence model. We have boldfaced the best predictions.

Future[min] MLP Linear LSTM LSTM+E Baseline
2 6.55 5.69 3.94 3.84 6.50
3 8.09 7.58 5.67 5.89 8.77
6 14.11 13.32 11.21 11.34 15.19
10 22.79 20.14 18.18 18.04 22.37
15 30.80 26.86 24.94 24.79 29.51
20 36.29 31.71 30.27 30.48 34.96
25 40.10 35.76 34.34 33.82 39.19
30 41.31 37.25 36.44 36.49 42.46
35 41.65 38.73 37.68 37.05 44.97
40 40.81 39.69 37.88 37.55 46.79

From table 10.9 and 10.10 we see the model that makes the best predictions for
most of the distances forward in time is the multivariate LSTM equipped with an
embedding (LSTM+E). In both tables we can that the LSTM without the embed-
ding performs best on predictions 2, 3, and 30 minutes forward in time, but this is
not enough to really compete with LSTM+E. Because we like graphs we two more
(figure 10.2 and 10.3), with all models except MLP, visualizing both the mean and
median prediction errors.
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Figure 10.2: Comparison of our models’ mean squared prediction error.
The multivariate LSTMs dominate the linear model, but it is hard to visually
distinguish the performance of the LSTMs themselves.
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Table 10.10: The table shows the Median Absolute Error of our models. The
LSTMs listed here are multivariate.

Future[min] MLP Linear LSTM LSTM+E Baseline
2 5.16 4.04 2.64 2.57 4.36
3 5.38 5.19 3.85 3.92 5.67
6 10.09 8.83 7.29 7.36 9.42
10 16.38 13.20 11.75 11.55 13.46
15 21.13 17.35 15.93 15.76 17.46
20 24.39 20.31 19.17 19.10 20.49
25 25.84 22.23 21.35 21.03 22.85
30 26.95 23.69 22.74 23.01 25.10
35 27.49 24.68 23.50 23.31 26.54
40 26.43 25.36 23.43 23.23 27.78

Figure 10.3: Comparison of our models’ median absolute prediction error.
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Chapter 11

Discussion and Conclusion

In this chapter we discuss our methods and results to see if we can draw conclusions
from them. We begin by discussing the quality of our methods and analysis, followed
by a closer examination of the results. Before we draw any conclusions we will also
discuss related works in the litterature on the subject of using ANNs for time series
forecasting to see if our results are in agreement with similar experiments.

11.1 Discussion

While our analysis has resulted in seemingly competent models, some of the steps
along the way deserve some scrutiny. First of all, we interpolated our data mea-
surements to the closest timestep (minute) they belonged to, something that may
have removed important information from the data. As we mentioned in the data
pipeline chapter (6), the data actually has a frequency of 1 Hz. Resampling the
data to be 1/60 Hz, or less, is likely going to remove some patterns from the data,
but working with data on a higher resolution was not feasible. This is mainly due
to our limited hardware capabilities.

Despite our interpolation potentially removing information from the data, our
models still found patterns in them. The models we made outperformed the per-
sistence model, meaning they did manage to learn from the processed data we fed
them. Downsampling lead to holes in our data, but these were filled with forward
filling. This way of filling holes in sequences creates data that is coherent with re-
ality. This is because of the event-driven nature of the sensors, meaning the gaps
are there due to no noticeable change having taken place since the previous data
measurement.

In our analyses, we have assumed that the hyperparameters that worked well for
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univariate LSTMs also were good for multivariate LSTMs. Even though thr results
show that multivariate LSTMs perform better than the univariate ones, a new grid
search of hyperparameter values might have improved thr results even more. In
the multivariate analysis we also introduced new hyperparameters, e.g. number
of local input features, Dropout, number of categorical input features and number
of special features. We did not run a large grid search over all these parameters,
instead we optimized w.r.t. one hyperparameter at a time, which might have had
negative consequences for models. In hindsight, we could have tried to make a
random hyperparameter search.

All model permutations1 were trained once to predict a specific distance into the
future, creating a notable potential for uncertainty in our results. Doing multiple
runs for each model to analyze the variance in the prediction error for each one
was too time consuming. This is because of the high number and variations of
hyperparameters we had to test for, resulting in thousands of models needing to be
trained. Although there is reason for worry, the models are each trained ten different
times to predict ten different distances into the future. This means that if a model
has a lower prediction error that another one, for all ten prediction distances into
the future, the winning model has proved itself ten times, making its performance
anything else than a coincidence.

The results show that LSTM models performed consistently better than the
linear autoregressive models. At every prediction interval the multivariate LSTMs
had a lower prediction error than the univariate LSTMs, which in turn gave more
accurate predictions than the linear models. Multiple papers in the forecasting
litterature have compared the predictions of linear autoregressive models to ANNs,
often MLPs, and the results often favor ANNs, like Balkin and Ord (2000), or Jain
and Kumar (2007). What these papers have in common is that they find that
traditional forecasting models are linear in nature and thus struggle with non-linear
data.

While LSTMs performed better than linear AR models, MLPs performed worse.
The reason behind this might be that we did not perform a proper optimization of
the MLPs architecture, by simply going with 128 hidden nodes and one hidden layer
from the start. Optimizing a neural network model is more strenous than traditional
time series forecasting models. Perhaps the MLP would have performed better if we
had put more resources into optimizing the structure of it. There are cases where
MLPs perform worse than linear models, either when modeling linear time series or
when simulating physical phenomena (Fishwick 1989). Linear time series, however,
are rare to come by in real world data.

The success of models that run on categorical data, such as Catboost (Dorogush

1By permutation we mean a model with a unique set of hyperparameters and type (MLP/AR/L-
STM).
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et al. 2017), still has us convinced that we can improve our models through the use
of more categorical data. However, categorical variables provided only some minor
improvements to the predictions of the LSTM model. We firmly believe that there
is much more potential to be gained from using categorical input data than was
achieved in our limited investigations. The physical system we have been making
predictions for is highly dependent on human activity from both customers and
those working on the system. In order to foresee effects on the system made by
these agents, we need to feed the network categorical information related to human
activity, such as time and whether or not people are working that day.

11.2 Conclusion

In this thesis, we have created a data pipeline for industrial data, implemented var-
ious neural network models for forecasting and compared their prediction accuracy
with traditional linear AR models. The short-term forecast was performed on an in-
dustrial dataset from a DHS. There was also some experimentation with categorical
data as inputs for the neural network models. Among the proposed neural network
models, the LSTM models provide a promising alternative to classical forecasting
methods, like linear AR models. From the results, we can saw that the LSTM
models give smaller prediction errors than linear AR models. As demonstrated in
the thesis, LSTMs require multiple correlated input features in order to achieve a
minimal prediction error. Feeding categorical features as inputs with an embedding
brought a minor, but not significant, improvement to the LSTM’s prediction error.

11.3 Perspective

Our results do not prove the superiority of all ANNs over traditional forecasting
models, but they strengthen the hypothesis: Neural networks, such as LSTMs, are
better-suited models for time series prediction than their linear natured ancestors
(e.g. linear regression). LSTMs’ predictions in particular have been shown to out-
perform complex AR models, known as ARIMA (Box and Jenkins 1970), as well as
RNNs and SVMs (Cortes and Vapnik 1995) in Zhao et al. (2017). However, ML
ensemble methods like xgboost (Chen and Guestrin 2016), LightGBM (Ke et al.
2017) and CatBoost, are consistently winning both classification and forecasting
competitions at the moment (Rajkumar 2019). If we were to do further analysis
on the subject of time series forecasting, we would compare neural networks with
modern ensemble methods.
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Appendix A

OLS Derivation

If you remember univariate optimization from calculus, you know that we can set
a function’s derivatives equal to zero to find which parameter values return the
function’s minima. The point of this appendix is find an analytical expression for
any OLS model. Initially, we take the gradients of the OLS cost function w.r.t. its
parameters, β and β0, from eq. (3.4) and 3.5 and set their r.h.s. to zero

∂Sssr
∂β

(β, β0) = −2
n∑
i=1

(
tiT (ti)− β0ti − βt2i

)
= 0, (A.1)

∂Sssr
∂β0

(β, β0) = −2
n∑
i=1

(T (ti)− β0 − βti) = 0. (A.2)

Starting with (A.2), we can remove the −2 coefficient and use the fact that ∑n
i x =

nx̄ to get the following solution for β0

∂Sssr
∂β0

(β, β0) = 0 =⇒

−2
n∑
i=1

(T (ti)− β0 − βti) = 0 =⇒

nβ0 + nβt̄− nT̄ = 0 =⇒
β0 = T̄ − βt̄. (A.3)
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The optimal value for the slope variable β that minimizes our error can now be
found by inserting the expression for β0 from (A.3) into (A.1)

∂Sssr
∂β

(β, β0) = 0 =⇒

−2
n∑
i=1

(
tiT (ti)− (T̄ − βt̄)ti − βt2i

)
= 0 =⇒

n∑
i=1

(tiT (ti))−
n∑
i=1

(
T̄ ti

)
+

n∑
i=1

(
βt̄ti

)
−

n∑
i=1

(
βt2i

)
= 0 =⇒

n∑
i=1

(tiT (ti))− nT̄ t̄+ nβt̄2 − β
n∑
i=1

(
t2i
)

= 0 =⇒

n∑
i=1

(tiT (ti))− nT̄ t̄ = β

[
n∑
i=1

(
t2i
)
− nt̄2

]
.

Solving this equation for β yields us a steadily prettier expression

β =
∑n
i=1 (tiT (ti))− nT̄ t̄∑n

i=1 (t2i )− nt̄2

β =
∑n
i=1 (tiT (ti))− nT̄ t̄∑n

i=1 (t2i )− nt̄2

(see section A.1)

=
∑n
i=1(ti − t̄)(T (ti)− T̄ )∑n

i=1(ti − t̄)2

= Cov(t, T (t))
Var(t) . (A.4)

With (A.4) we can now write a closed form solution for β0 too

β0 = T̄ − t̄Cov(t, T (t))
Var(t) . (A.5)

A.1 Side Proof

The point of this subsection is to derive eq. (A.4), or rather prove the following
equivalence ∑n

i=1 (tiT (ti))− nT̄ t̄∑n
i=1 (t2i )− nt̄2

=
∑n
i=1(ti − t̄)(T (ti)− T̄ )∑n

i=1(ti − t̄)2 . (A.6)
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We can prove that the l.h.s. is equal to the r.h.s. in eq. (A.6) by individually
proving that its numerators are equal and that its denominators are equal. The new
problem now becomes to prove eq. (A.7) and (A.8). Notice that we have changed
notation from t to x and T to y.

n∑
i=1

(x2
i )− nx̄2 =

n∑
i=1

(xi − x̄)2 (A.7)

n∑
i=1

(xiyi)− nx̄ȳ =
n∑
i=1

(xi − x̄)(yi − ȳ) (A.8)

We prove both equations by deriving the l.h.s. from the r.h.s., starting with A.7. We
begin the derivation by expanding A.7s r.h.s. and the use the fact that nx̄ = ∑

i xi

n∑
i=1

(xi − x̄)2 =
n∑
i=1

(x2
i − 2xix̄+ x̄2)

=
n∑
i=1

(x2
i )− 2x̄

n∑
i=1

(xi) + nx̄2

=
n∑
i=1

(x2
i )− 2nx̄2 + nx̄2

=
n∑
i=1

(x2
i )− nx̄2. (A.9)

As you can see, A.7’s right hand side is equivalent with its left hand side.

On to proving A.8. Here, we also exploit the fact that ∑i x = nx̄. We start
with the right hand side of A.8 to derive its left hand side

n∑
i=1

(xi − x̄)(yi − ȳ) =
n∑
i=1

(xiyi − xiȳ − yix̄+ x̄ȳ)

=
n∑
i=1

(xiyi)−
n∑
i=1

(xiȳ)−
n∑
i=1

(yix̄) +
n∑
i=1

(x̄ȳ)

=
n∑
i=1

(xiyi)− ȳ
n∑
i=1

(xi)− x̄
n∑
i=1

(yi) + nx̄ȳ

=
n∑
i=1

(xiyi)− nx̄ȳ − nx̄ȳ + nx̄ȳ

=
n∑
i=1

(xiyi)− nx̄ȳ. (A.10)
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