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ABSTRACT

Based on a study of isolated restrained columns, and two-column panel frames,

the often complicated mechanics of moment formations in the members are stud-

ied using elastic second-order theory for the purpose of establishing a base on

which procedures for moments due to sidesway can be evaluated. A distinction

is made between moment developments in “supporting (bracing) sway columns”

and “supported (braced) sway columns”. The primary objective is to derive

improved slender column design expressions that are suitable in approximate de-

sign code formats for columns in frames with sway. Both shear, end moments

and maximum moments, applicable over the full range of axial loads, are consid-

ered. Proposals are presented that will allow more economical designs of framed

columns with sway. Extended applications to the general case of load combina-

tions that include both gravity and sideways loading are also made, and discussed

with reference to formulations found in the literature and to two major design

codes for structural concrete and steel structures.
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1 Introduction

1.1 General

Columns and frames in most structures, such as buildings and bridges, exhibit

behaviour that are bounded on one extreme by completely elastic behaviour and

on the other by completely inelastic behaviour. Nevertheless, design procedures

for bending and stability of slender concrete and steel columns (beam-columns)

are most often based on elastic concepts and analyses. Elastic methods that

consider second-order effects of axial forces are therefore important in practical

analysis and design of such structures. This includes approximate methods, that

have been, and still are, important in parallel with, or as a complement to, more

exact methods.

Sidesway of one-storey structures, or stories of multi-storey structures, caused

by lateral loads and possible unsymmetry in the structure and loadings, can be

handled by existing second-order analysis computer programs. Also, approximate

methods whereby overturning (global) second-order effects of vertical loads are

accounted for by storey (system) sway displacement magnification factors, are

available. For an overview of such factors found in the literature and in struc-

tural codes, see for instance Hellesland (2009a, 2009b). Common practice with

approximate methods in existing design codes is to magnify column end mo-

ments (for second-order effects) by such storey-sway factors. However, unlike the

sidesway, which increases percentage wise by the same amount at all interacting

column axes on the same level (storey), the corresponding increase of the larger

end moment of the individual columns of the storey will be smaller (Hellesland

2019). It will also be different in the different columns due to different axial load

levels and end restraints of the columns.

The reduced increase in the larger end moment, as compared to the sway increase

itself, is not recognized in present approximate design procedures of major codes

(e.g., ACI 318 (ACI 2014), AISC 360 (AISC 2016), Eurocode 2 (CEN 2004)and

Eurocode 3 (CEN 2005), etc.). Some, but limited, attention to the matter can

be found in the literature. The AISC Commentary dealt with a reduction in the

maximum moment due to sidesway already in 1969, and later in the 1978 edition

of the Commentary. The same reduction factor expression was suggested for the

sway action of all columns of the storey, and it was allowed to approximate it

by a constant factor (0.85). Both the expression (derived for the special case

of a cantilever column fixed at one end) and the constant are unconservative in

a general case. In later commentary revisions, this reduction factor is omitted.
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Hellesland (1976), recapitulated in a slightly different form in Hellesland (2009a),

derived an expression for end moments in individual column axes for special cases

(columns with equal end moments, or with one end moment known). LeMessurier

(1977) derived a similar expression for a cantilever column, and proposed an

extension to a general column of a sway frame. However, the extension is incorrect

in that it yields the same moment magnifier for moments at both ends of all

columns of the storey. Hellesland and MacGregor (1981) presented an extension

of the previous work by Hellesland (1976). Lui (1992) also suggested an approach

allowing for different moment magnification factors in different column axes. The

approach seems not to be well founded and breaks down in the general case (as

discussed in Hellesland (1992)).

This aspect of different end moment magnifiers in the different column axes, and

other behavioural aspects, was considered in detail in another, companion report

(Hellesland 2019), in which the response of rotationally restrained columns and

frame panels with sidesway were studied, over the full range of axial loads and

thus considering both supporting (bracing) and supported (braced) sway columns.

In that report, emphasis was on column mechanics and the identification and

establishments of simple, novel closed form expressions defining characteristic

points in the axial load-moment solution space, useful in teaching and design

work, and as a complement to full second-order analyses.

1.2 Objectives

In light of the findings in Hellesland (2019), main attention of the present report

is directed towards the formation of moments at the ends, and between ends, of

slender columns in elastic frames with sway, and to establish extended and im-

proved methods for prediction of such moments, that are suitable in approximate

design code formats. The full range of axial loads are considered, thus covering

both suporting and supported columns. More specifically, the main objectives

are 1) to derive appropriate moment multiplication factors that, when applied

to first-order column end moments due to sidesway, account for local (member)

second-order effects, and, not least 2) to establish improved multiplication factors

for the prediction of maximum column moments between ends of columns with

sway, and to consider possible extensions to moments from load combinations of

gravity and sideways loads.
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1.3 Superposition, problem definition, scope

Subject to certain conditions, elastic analyses allow the use of the invaluable

principle of superposition, that allows results from different load cases to be

added directly together to give total results. As is well known, this principle is

valid for elastic first-order analysis results, and also for results of second-order

analyses provided the axial forces in the various members in the structure are the

same in all load cases to be added together. When this is so, the total moments

obtained from second-order analysis at member ends can be written

M1 = M1b +M1s and M2 = M2b +M2s (1)

for a load combination consisting of two load cases labelled b and s, here taken

to be due to gravity loading (selfweight etc.) and lateral (sideways) loading,

respectively. The moments in Eq. (1) are total moments (including first-order

and second-order effects) as computed according to second-order theory.

In slender compression members of the structure, the maximum moment of com-

pression members may develop between ends. For such members without trans-

verse loading, the exact maximum moment, Mmax, can be expressed in terms of

an end moment, for instance the one at the end with the larger moment sum.

Then, if denoting this end as end 2, Mmax can be written as follows:

Mmax = BtmaxM2 = Btmax (M2b +M2s) (2)

where the absolute value of the maximum moment multiplier, Btmax, in second-

order analysis may be written in a well known form (e.g., Galambos 1968, Helles-

land 2019) by

Btmax =

√
1 + µ2

t − 2µt cos pL

sin2 pL
(3)

when µt > cos pL, and Btmax = 1 otherwise. Here, pL = L
√
N/EI, and µt =

−M1/M2 is the ratio between end moments (Eq. (1)), positive when end moments

act in opposite directions at the two ends, and negative otherwise.

For the superposition principle to be valid in second-order analyses (equal axial

forces in all load cases to be added together in a load combination), second-order

computer analyses will have to be carried out for one full load combination at a

time (with all loads in the combination applied to the structure), rather than split

up into the two parts Mb and Ms. With the powerful computers available today,

this is certainly feasible, but nevertheless a drawback of second-order analyses in

many cases of day-to-day design work.
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If second-order analyses programmes are not available, or not found practicable,

advantage may be taken of approximate first-order based elastic methods for

which the uperposition principle is valid. Such methods may also be preferred in

applications to structures with strongly nonlinear material proporties for which

equivalent, representative elastic stiffnesses are not always easy to determine.

Most structural design codes offer approximate methods expressed by magnified

first-order moments. To consider transition to such methods, Eq. (2) may first

be rewritten in terms of first-order moments, here denoted M0b and M0s for the

two load cases mentioned above. Expressed in terms of these at end j = 2, Eq.

(2) becomes

Mmax = Btmax(Be2bM02b +Be2sBsM02s) (4)

where, at the considered end 2, Be2b = M2b/M02b and Be2s = M2s/(BsM02s).

These two factors reflect local second-order effects, while Bs reflects global second-

order sway effects (to be discussed later). In the formulation above, it is tacitly

implied that all effects of first-order sidesway displacements are included in M0s

(also possible sidesway effect due to gravity loading on non-symmetrical struc-

tures). Eq. (4) provides a formulation suitable for discussing simplifications.

Emperically based approximations, often implied tacitly in publications on the

topic, are to set Be,b = 1 and Be,s = 1 and to replace Btmax (in terms of the

total end moment ratios, µt = −M1/M2) by a factor Bmax expressed in terms of

first-order end moment ratios µ0 = −M01/M02. Then, Eq. (2) is replaced by a

first-order based approximation that may be expressed by

Mmax = BmaxM02 = Bmax (M02b +BsM02s) (5)

The accuracy of this expression is dependent on the accuracy of Bmax in describing

local (member) second-order effects.

The “evolution” to this type expression took many years, and many turns and

twists. Details of these and alternative formulations are reviewed and discussed

in Hellesland (2008). The form above was first presented by Lai and MacGregor

(1983) and incorporated into the Canadian code in 1984 (CSA 1984), and into

the sway frame provision of the ACI 318 code in 1985.

The scope and efforts of the present report is primarily aimed at formulation of

improved moment expressions for the sway action, i.e. to the second portion of

the maximum moment expression in Eq. (5), and corresponding end moment

formulations. Even though it is common practice in building structures to design

each column for the maximum moment along the column, reliable end moment

predictions are also of interest, in particular for the design of adjacent structural
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elements (beams, foundations, etc.). Also formulations for the gravity and sway

combination are examined, and proposals presented.

2 Frame mechanics – Moment formation

Fig. 1(a) shows a one storey, laterally loaded three bay frame that relies on the

columns for its lateral resistance and stability. The principles of the presentation

below would not be altered, however, if the frame had been partially braced by

an external bracing in the form of a truss, flexible shear wall, or similar. In the

absence of axial forces in the columns, the lateral load (H) gives rise to a first-

order sway displacement (∆0) that is equal at all column tops when axial beam

deformations are neglected. The lateral load is at this stage resisted by (first-

order) column shears (V0) that are proportional to the relative lateral stiffness of

the columns. When axial loading, that may be different in the different columns,

is applied, the sway displacement of the frame increases to ∆ = Bs∆0 due to

second-order effects. In this process, the shears redistribute, from their first-order

values (V0i) to their final values (Vi) in the respective column axes i.

The sway displacement magnifier (Bs) is is defined by

Bs =
∆

∆0

(6)

It reflects global second-order (overturning “N∆”) effects of all interconnected

columns on the same level (storey) of the frame system. It includes, in the general

case, also local second-order (“Nδ”) effects in the individual columns (due to the

axial load action on the column deflection away from the chord through the

column ends). A brief review of a general Bs expression is given in Section 3.

For the sake of the illustration, a pin-ended Column 4 is included in the figure.

It does not contribute towards providing lateral support (bracing) of the frame.

Rather, it has a “driving” or overturning effect on the frame displacement, and

needs lateral support itself in order to remain stable laterally, as indicated in the

figure by its negative shear force. It “leans” on the rest of the frame for its lateral

stability. So does Column 3, that also has a negative shear, but to a lesser extent.

This leaves Column 1 and 2 to provide lateral frame stability. Column 1 has no

axial load and is consequently not affected by local second-order effects.

The formation of moments in the columns will depend on the the axial loading

(second-order effects) and will be discussed with reference to Fig. 1(b), where

possible moment distributions along the individual column axes are illustrated.
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Figure 1: (a) Laterally loaded, braced three-bay frame; (b) Possible moment

diagrams in laterally supporting and supported columns. (From Hellesland et al.

(2013)).

No local second-order effects.

In Column 1, with no axial force and therefore no local second-order effects, the

moment diagram stays linear, and the final moments are directly proportional to

the sway displacement:

M∗
0 = BsM0 (7)

Although this final moment varies linearly along the column axis in the way a

first-order moment does, it does not comply with the definition of a first-order

moment (“obtained from equilibrium based on the undeformed geometry”), since

it includes global second-order effects (through Bs in the present presentation).

For the sake of precision and distinction, it may be labelled “sway-magnified

first-order moment” and denoted M∗
0 (Hellesland 2008, Hellesland et al. 2013).

These moments are also indicated in the moment diagrams for Column 2 and 3.

The pin-ended Column 4 has no shear and no moments due to sidesway. If it was

not perfectly straight, its axial force would have caused imperfection moments

between ends (first- and second-order).
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Moderate local second-order effects.

Column 2 has a positive shear, and thus contributes to the bracing of the frame,

and it has a moment diagram typical for columns with moderate local second-

order effects (due to combination of axial load level, slenderness and rotational end

restraints). The end moment has decreased somewhat below the sway-magnified

first-order moment at end 2 (with the stiffer end restraint), and has increased

somewhat at end 1. In other cases, also the moment at end 1 may decrease.

The end moments at end j = 1 and j = 2 can be given in terms of the respective

sway-magnified first-order end moments as

Mj = Bj(BsM0j) j = 1, 2 (8)

where B1 and B2 are end moment factors at end 1 and 2, respectively. They

reflect the local second-order effects as manifested at the ends. They may be

greater or smaller than unity. In the figure illustration, the maximum moment in

Column 2 is at end 2. Thus Bmax = B2 = 1 in this case.

Significant local second-order effects.

In columns with significant local second-order effects, the maximum moment may

form away from the column end. It may be expressed by

Mmax = Bmax(BsM02) (9)

where M02 is the first-order moment at end 2, which, in line with conventional

practice, will be defined as the end at which the first-order moment has its largest

absolute value. The maximum moment multiplier Bmax reflects local second-order

effects as manifested at the maximum moment location.

Shear formulation.

Similarly, the final shear, which is of importance for deriving moment expressions,

may be expressed by

V = Bv(BsV0) (10)

3 Global second-order effects

Although the sidesway displacement (∆ = Bs∆0) is given (assumed to be known)

in this study, it is appropriate for the sake of perspective and completeness, and

useful for later discussions, with a brief review of a suitable approximate magnifier

expression for unbraced frames, or partially braced frames such as that in Fig. 2.
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The storey (system) sway magnifier Bs is a function of the lateral stiffness of all

interconnected columns of a single storey frame (or on the same level (storey) of

a multistorey frame), and possible external bracing force SB (per unit displace-

ment). It can be determined from horizontal equilibrium between the applied

external horizontal load and the shears (given by Eq. (23)). Solving for Bs gives

Bs =
1

1− αss

(11)

where αss is the storey (system) stability index defined by

αss =

∑
(γnN/L)

(H/∆0)
or αss =

∑
(γnN/L)∑

(γsNcs/L) + SB

(12 a, b)

Here, the ratio H/∆0, between a horizontal load H applied to the top of the

storey and the corresponding first-order displacement ∆0 due to this H, is the

first-order lateral stiffness of the storey (system), and γn and γs are flexibility

factors, reflecting local second-order effects, given and discussed in Section 7.1.

The summations are over all interacting columns. Possible external bracings, for

instance due to a truss such as in Fig. 3, or similar, are normally included in the

computed first-order stiffness (H/∆0) in Eq. (12a). In multistorey structures, ∆0

is the interstorey first-order displacement and H the corresponding storey shear.

SB

∆0

P
∆ B=

∆P P

H

V
(neg.)VV

∆
∆0

3
2

1

S
1 32

Figure 2: Partially braced frame with sidesway (from Hellesland (2009a))

The two Bs expressions are equivalent provided the pseudo-critical loads (in the

latter expression) are calculated with the same first-order restraints implicit in

the H/∆0 calculation. In the derivation, ∆0 was assumed to be equal in all axes

(implying axial beam deformations to be neglible).

These forms were presented by Hellesland (2009a) and applied to 1) system in-

stability problems (αss = 1), to the prediction of 2) effective lengths, 3) sway

displacements and 4) end moments. With the γn factor defined as above, covering

the full range of axial loads, and thus both laterally supporting and supported

columns (and potential sway-braced column interaction), the Bs expression in
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Figure 3: Diagonal bracing truss.

Eq. (12a) above represented a novel formulation when it was presented. In ear-

lier work, also by the author (Hellesland 1976, 1981, 2007), no distinction was

made between a γs and a γn factor. The single gamma factor used was simply

taken equal to that defined by the present γs.

Several authors and codes give similar sway magnifiers. They can all be derived

from simplifications of the αss in Eq. (12) above. For instance, in regular moment

frames, in building structures with similar stiffness and loading of columns, axial

load levels are relatively low so that γn can safely be approximated by γs. Also,

with constant column lengths, L can be placed outside the summation signs, and,

furthermore, the
∑

(γnN) can be replaced by the mean effect γ
∑
N . Stevens

(1967) suggested an effect that can be expressed by γ = 10/9 (= 1.11). Lai and

MacGregor (1983) suggested values for different floor levels, and with γ = 1.15

suggested as an overall conservative value. The AISC code (2016, Appendix 8)

implies γ = 1/0.85 = 1.18. The ACI code (ACI 2014) and the Eurocode 2 (CEN

2004) and Eurocode 3 (CEN 2005) imply γ = 1, which is unconservative.

For practical frames, Bs will normally be lower than 1.5, corresponding to αss

values lower than 0.33. This is well below the loading causing system (global)

instability (at αss = 1). For loads giving a braced critical load index αb (Eq.

17b) of an individual column that exceeds αss, premature system instability will

be induced by local column instability (in an approximate braced buckling mode

of the column).

4 Local second-order effects

The local member second-order (Nδ) effects can be quantified by the ratios of

results obtained from second-order analyses of a column with a specified sidesway
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∆ = Bs∆0 and given axial loads N and results from the same analyses for N = 0

(first-order, determined from an analysis that is based on the original, geometry).

These factors are

Bmax = Mmax/(BsM02) (13)

B1 = M1/(BsM01) (14)

B2 = M2/(BsM02) (15)

Bv = V/(BsV0) (16)

Above, Mmax is expressed as a function of the first-order moment at end 2, which

per definition is taken as the end with the larger first-order end moment (absolute

value).

For frames with sway due to lateral and axial loading only, these coefficients de-

pend on (1) the end restraints, which then uniquely define the first-order moment

gradient, and on (2) the axial load level defined for instance by the nondimen-

sional load parameters αs, αb or αE, as defined by

αs =
N

Ncs

; αb =
N

Ncb

; αE =
N

NE

(17 a− c)

Here, Ncs and Ncb are the free-to-sway and the fully braced critical load, respec-

tively, of the column when considered in isolation from the rest of the frame,

but with rotational restraints reflecting (in an approximate sense) the interaction

with the real frame of which it may be a part. Except when the frame consists of

a single column, these are strictly pseudo-critical loads, but are useful in column

characterisation and discussion. NE is the socalled Euler load (critical load of

a pin-ended column), which is a convenient reference load parameter in several

contexts.

For an elastic, framed member of length L, uniform axial load level and uni-

form sectional stiffness EI along the length, the critical loads above can in the

conventional manner be defined by

Ncs =
NE

β2
s

; Ncb =
NE

β2
b

; NE =
π2EI

L2
(18 a− d)

where β is an effective length factor, equal to βs and βb for the free-to-sway and

the braced case, respectively. As defined above, the load indices are interrelated.

For instance, αs = αE β
2
s , αb = αE β

2
b , αb = αs (βb/βs)

2.

11



Lb
∆= S ∆0B

V

N
−M

N

−M

V

∆

+

1

2
v

2θ

θ1

1

2

∆= S ∆0B

1 − 
∆0

V0 L
γV

N
SV = B n0

EI

EI b1

EI

N
2

N

EI1

1 2

b2

PanelSing convention Single column

(a) (c)(b)

N

EI

2

1

V
L

1 1

2 2

Col. 1 Col. 2

Figure 4: (a) Sign convention; (b) Single column model; (c) Two-column panel

model. Dashed curves show possible deflection modes at member instability.

5 Local second-order analysis of sway-displaced

columns

For the verification of the proposals of the present paper, results were obtained

using the second-order analyses presented in Hellesland (2019). Columns consid-

ered are either single restrained columns, as shown in Fig. 4(b), or columns that

are part of a panel frame, such as shown in Fig. 4(c). The columns are initially

straight and have lengths L and uniform section stiffnesses EI. The deflection

shapes indicated by the solid lines in the figure, are those due to an initial, im-

posed top (joint) displacement ∆ = Bs∆0. For this ∆ to remain constant for

increasing axial loading, the column shears V (lateral loading) will have to de-

crease to compensate for the increased overturning effect of the vertical loading

acting on the relative joint displacement. No gravity load induced moments (such

as from loading on beams) are included. The dashed lines are deflection shapes

developing as the critical axial loading is approached. For the panel, other de-

flection shapes may result depending on the relative stiffness and axial loading in

the members.

The restrained single column may be the complete structure, or it can be con-

sidered isolated from the two-column panel, or from a greater frame. In the

latter case, the rotational end restraints should reflect the rotational interaction

at the joints with restraining beams (“horizontal interaction”), and possible other

columns framing into the considered joint (“vertical interaction”).

The rotational end restraints can conveniently be represented by rotational re-

straint stiffnesses (or spring stiffnesses) labelled k1 and k2 (equal to the moments

required to give a unit rotation), or in nondimensional form by κj at end j = 1
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and j = 2 defined by

κj =
kj

(EI/L)
j = 1, 2 (19)

Alternatively, similar factors, such as the well kown G factors may be used. Un-

like the κ factors, that are nondimensional stiffness factors, the G factors are

nondimensional, scaled flexibility factors. In their generalized forms (Hellesland

and Bjorhovde 1996a, 1996b) they can be defined by

Gj = bo
(EI/L)

kj

(
=
bo
κj

)
j = 1, 2 (20)

where bo is simply a reference (datum) factor by which the relative restraint

flexibilities are scaled. Conventional datum values, as adopted for instance in

AISC (2016), ACI (2014), are bo = 6 and bo = 2 for unbraced and braced frames,

respectively. It should be noted that bo = 6 is used throughout this paper, unless

otherwise noted.

In the present paper, end restraints are due to beams. Then, kj is equal to the

rotational stiffness kbj = (
∑
bEIb/Lb)j of all beams connected to the joint consid-

ered. For rigidly connected beams with negligible axial forces and antisymmetri-

cal, double curvature bending, the bending stiffness coefficient b becomes b = 6.

In this case, bo = 6 will cancel out in Eq. (20), and the well known, conventional

G factor expression for the lateral loading case can be obtained. Other familiar

values of b are 2, 3 and 4, obtained for restraining beams bent in symmetrical

single curvature, beams pinned at the far end and beams fixed at the far end,

respectively.

6 Elastic column response in frames with sway

6.1 Single columns – Stationary restraints

Characteristics study.

In a another study (Hellesland 2019), response characteristics were presented for

single columns and panels with various restraint combinations. Also presented

were closed form expressions defining a number of key characteristics, or ”land-

marks” in the moment versus axial load “map”, useful for for enabling a quick

establishment of moment-axial load relationship of laterally displaced columns.

Moment results from that study, to be used for the verification of approximated

moment proposals, and points of interest for the present paper, will be briefly

recaptured and discussed where appropriate.
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Figure 5: Moments and shear versus axial load level in column with unequal,

relative flexible end restraints (βs = 1.932, βb = 0.785, αE = 0.268αs)

General.

Typical moment and shear responses versus increasing axial load, computed with

the second-order analysis, are shown in Fig. 5, Fig. 6, Fig. 7 and Fig. 8 for

columns with unequal, rotational end restraints with different degree of rotational

stiffness. The columns are illustrated by the insert in the upper, left hand part of

the figures. The column tops are initially displaced laterally by an amount Bs∆0

(”sway-magnified first-order displacement”), and then kept constant at this value

(in a real case by the action of the overall frame of which the column may be

considered isolated from).

The moments and shear are shown nondimensionally in terms of the respective

B factors, Eqs. (13) to (16). Axial forces are given nondimensionally in terms of

axial load indices αs and αE (Eq. (17)). All moment results in the figure are given

in terms of BsM02. Therefore, B1(= M1/BsM01) is represented by B1 ·M01/M02

in the figures.

The curves labelled B2lin, representing a linear approximation of B2, and the

maximum moment factor approximations, Bm, Bm,t and B2m, will be discussed

later (Section 9 and 11). So will the dots (blue) on the B2m curves.
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Figure 6: Moments and shear versus axial load level in column with unequal

end restraints, G1 = 3, G2 = 0 (βs = 1.373, βb = 0.626)

The elastic critical loads Ncb of the fully braced columns, with the end restraints

given in the figure inserts, correspond to αb = 1 in the figures, or αE = 1/β2
b . For

an elastic column, the braced critical load is independent of whether the column

is fully braced at zero or at a non-zero end displacement. Both moments and

shears approach infinity (in either the positive or negative direction) as αb = 1 is

approached.

System instability of real frame.

The results in the figures are independent of the sway magnification factor Bs, as

stated previously. However, if the considered column was part of a larger frame,

it is worth noting that system (total frame) instability (reflected in practice by

Bs reaching large, unacceptable values) may result well before the present “local

instability” is reached (at “αb = 1” in the figure). System instability may in

some cases of very slender columns be initiated by “local instability” (buckling

between ends), in which case αb approaches 1.0 at finite Bs values.

End moments.

For the laterally loaded columns, the largest absolute value of the first-order end

moment is obtained at the end with the largest rotational restraint stiffness. This

end is conventionally denoted end 2 and the moment M2 (B2). So also here. As

seen, M2 (or B2) decreases continuously with increasing load level. At some point,

it becomes zero and changes direction. End moments at the two ends become

equal at αE = 1 (Hellesland 2019).
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Figure 7: Moments and shear versus axial load level in column with unequal,

very stiff end restraints (βs = 1.065, βb = 0.532, αE = 0.88αs)

In cases with relatively low to moderate restraint stiffness at end 1 (Fig. 5, Fig.

6), the end moment M1, reflected by B1 ·M01/M02, typically increases slowly at

first with increasing axial load, and then more sharply towards infinity at αb =

1.

In the case with unequal, very stiff restraints (Fig. 7), both end moments decrease

markedly at first with increasing axial load. Then, when the end restraints at

the two ends are not too different, as in the present case, B1 and B2 follow each

other fairly closely up till rather high load levels at which B1 reaches a minimum,

and then starts increasing sharply towards plus infinity as αb = 1 is approached.

Maximum moment.

The maximum moment (Mmax, Bmax) is initially equal to the larger end moment

(M2, B2). Following an initial decrease along the B2 path, Bmax starts forming

away from end 2. This happens, depending on restraints, for relative axial load

levels within the alternative, equivalent ranges defined by (Hellesland 2019)

0.25 ≥ αE ≤ 1.0 or 1.0 ≥ αs ≤ β2
s (21)

Thereafter, following a continued small decrease with increasing load, maximum

moments increase and approach infinity for axial loads approaching the braced

critical load.

Shears.

The value of the shear, or Bv, required to maintain the column displacement
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Figure 8: Moments versus axial load level for two different cantilever columns:

(a) Fixed at the base (βs = 2 and βb = 0.7); (b) Partially fixed at the base

(βs = 2.635 and βb = 0.843); αs = αEβ
2
s

∆ = Bs∆0, decreases from 1.0 for zero axial load (at αs = 0, or αE = 0) to zero

at the free-sway critical load (αs = 1, or αE = 1/β2
s ) and becomes negative as αs

increases further. At αs = 1, the function of the column changes. Columns with

αs < 1 (V ≤ 0) are capable of resisting external lateral loads, and is referred to

as laterally “supporting sway columns”. On the other hand, columns with αs > 1

(V < 0) need support (negative shears) to maintain the specified sidesway, and

is referred to as laterally “supported sway columns”.

6.2 Panel columns – Non-stationary restraints

In the preceding section, end restraints of the single columns were given as a

constant (stationary, invariant) value with increasing axial loading. For frames

with more than one column, end restraints will not be stationary in the general

case, due to differences in axial load levels and stiffnesses of the columns. This

can be seen in Fig. 9, where a panel of two columns, rigidly connected to beams

at the top and bottom, is considered. It is illustrated in the insert at the top left

of the figure. Also shown by an insert in the figure is a single column, isolated

from the panel by assuming hinged supports at the first-order inflection points

(near midlengths) of the panel beams.
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EI/L values of the panel members are EI/L, 1.1EI/L, 0.333EI/L and 1.667EI/L

for Column 1 (left hand), Column 2 (right hand), top beam and bottom beam,

respectively. The bottom beam is considerably stiffer than the upper beam, and

will attract the larger first-order end moments. Axial forces are neglected in the

beams. The columns have the same axial force N . Then, because of the stiff-

ness difference, the load index in Column 1 (left hand) becomes 1.1 times that in

Column 2 (αE1 = 1.1αE2). Thus, Column 1 is the more flexible of the two panel

columns, and the one at which system instability will be initiated.
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Figure 9: Moments and shears for two cases: (a) Column 1 (see insert, left

hand) of Panel 1 (dashed lines); (b) Column 1 in the panel considered in

isolation with approximate restraints (solid lines). B2lin are approximate secant

predictions of B2.

The results in Fig. 9 are for the most flexible Column 1 in the panel (broken

lines) and for the isolated Column 1 (solid lines). Results are plotted versus

αE1 (αE for Column 1). The αs1(= αE1β
2

s1) abscissa, added for convenience and

information, is computed with the free-sway critical load of the isolated Column

1 defined above (with effective length factor βs1 = 1.483).

The critical loads of the panel columns are lower than those of the isolated

columns with stationary restraints. This is due to the reduced restraints offered

by the panel beams as the axial column loading increases towards the braced criti-

cal load. This is indicated in Fig. 4, and in the insert in Fig. 9, by the unwinding

of the beams from nearly antisymmetrical double curvature (k ≈ 6EIb/Lb) to

nearly symmetrical single curvature bending (k ≈ 2EIb/Lb).
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Figure 10: Moments and shears for two cases: (a) Column 2 (see insert, right

hand) of Panel 1 (dashed lines); (b) Column 1 in the panel considered in

isolation with approximate restraints (solid lines). B2lin are approximate secant

predictions of B2.

Similar results for the stiffer Column 2 of the panel, and for Column 2 considered

in isolation (with βs2 = 1.522), are shown in Fig. 10. Associated with the

reduction in beam restraints, a rather sudden reversal of end moments is seen to

take place in the stiffer Column 2 for loads close to the critical load.

The isolated column is seen to describe the panel end moment response almost

exactly up to fairly high axial load levels. More details and discussion of response

characteristics of this and another panel (with a stiffer Column 2) are given

elsewhere (Hellesland 2019).

7 Shear formulation

7.1 Generalized shear expression

The shear expression V = BvBsV0 (from Eq. (10)) with the linear approximation

of the shear factor Bv defined by

Bv = 1− αs (22)
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provides an excellent shear approximation for supporting sway columns (αs < 1),

as seen in Figs. 5, 6 and 7 for single columns and in Figs. 9 and 10 for panel

columns. However, it becomes increasingly inaccurate (giving too small negative

values) with increasing α values typical for highly loaded, supported (braced)

sway columns. As a consequence, sway magnifier expressions and end moments

calculated based on Eq. (22) may become very inaccurate for highly loaded

columns.

In an effort to extend the range of applications to include effects of highly loaded

columns, Hellesland (2009a) established an approximate shear formulation that

covered the full transition of a column from free-sway to nearly fully braced. It

was applied to derive the sway magnifier in Section 3, and it will be applied in

the general moment formulation in Section 8. It is briefly reviewed below.

The general shear factor Bv can be defined by

Bv = 1− γnN∆0

V0L
(23 a)

or

Bv = 1− αs
γn
γs

(23 b)

The second expression above is obtained from the first expression by first noting

that the free-sway critical load Ncs can be solved for from Eq. (23a) at Bv = 0

(free-sway condition), and written

Ncs =
V0L

γs∆0

(24)

Eq. (23b)) can then be formed by recalling that αs = N/Ncs and noting that γn,

which is a load dependent factor, will be denoted γs at the free-sway condition,

such that

γn = γs at αs = 1 (25)

The novelty of Eq. (23) is represented by the γn factor and the distinction

between γn and γs. Both are column flexibility factors representing the increased

column flexibility caused by the column axial load acting on the deflection of

the column away from the chord through the column ends (Nδ effects). This

increased flexibility in turn increases the global sway. The γs factor will be a

more well known factor than the general γn factor and is discussed in more detail

in Section 7.2.

The general flexibility factor γn is defined by Hellesland (2009a) in terms of γs
and two additional flexibility terms:

γn = γs + ∆γ1 + ∆γ2 (≥ γs) (26 a)
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∆γ1 = 0.12 (γs − 1)(αs − 1) ; ∆γ2 = 0.6αs,b

(
αs − 1

αs,b

)8

(26 b, c)

Here, the free-sway load index (αs = N/Ncs) is defined previously, and αs,b is the

same index at the fully braced critical load (N = Ncb). Thus,

αs,b =
Ncb

Ncs

=

(
β s

β b

)2

(27)

The constants 0.6 and 8 in Eq. (26c) are strictly not constants, but vary with

rotational end restraints, and in particular with the difference in restraints at the

two ends. For the sake of simplicity, fixed values were chosen following compar-

isons with exact results for a wide range of restraints.

The variation in γn for loads between zero (γ0) and the free-sway buckling load

(γs) is very small. For instance, for a cantilever column fixed at the base, γ0 =

1.2 (1.19 according to the two first terms of Eq. (26a)) and γs = 1.216. The

suggested lower limitation on γn (≥ γs) in Eq. (26a) is not necessary, but may be

adopted when this represents a simplification. For pin-ended columns (Ncs = 0),

γn = 1. This value may also be taken in the rare case of a column with axial

tensile loading.

The full γn formulation (Eq. (26)) can be reduced to the first term (γs) for

practical sway frames with reasonably similar columns and loads in the various

axes. In other cases, it is adequate to include the two first terms. Still other

cases, in particular when axial loads are close to the local braced critical load,

may call for the full formulation.

7.2 The flexibility factor at the free-sway condition

The γn factor may take on large values as the braced critical load is approached.

At αs = 1, γn = γs. The γs factor varies between 1 and 1.216 (1.22) for columns

with positive end restraints, and becomes up to about 1.34 in cases with negative

restraints at one end (Hellesland 2009a, 2009b), such as in single curvature regions

of multistory unbraced frames where columns may have negative end restraints

(Hellesland 2009b).

Several diagrams have been established for easy determination of γs for positive

end restraints (Hellesland 1976, LeMessurier 1977), and also for cases with both

positive and negative restraints (Hellesland 2009a, 2009b). Furthermore, general

γs expressions are available, notably one first given by Rubin (1973). A more

detailed summary is provided in Hellesland (2009b).
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Figure 11: The flexibility factor γs at the free-sway condition versus positive

rotational end restraints in terms of G factors (reproduced from Hellesland

(1976)).

A rather simple approximate expression (Hellesland 2000) that is adequate in the

present context, is given by

γs = 1 + 0.11
1 + [1− (0.5Gmax) p] 3

(1 + 0.5Gmin) 2
(28)

where p = 1 for Gmax ≤ 2 and p = −1 for Gmax > 2. Gmax is the larger and

Gmin the smaller of the G factors at the two column ends.This expression can be

extended to include cases with negative end restraints. Eq. (28) breaks down into

a case (pin-ended) that will be considered later (in conjunction with Eq. (34).

Eq. (28) was initially proposed by the author in 1981 (during a research stay at

the University of Alberta, Edmonton), based on observation of the variation of

γs with changing restraints as illustrated in Fig. 11 (from Hellesland (1976)).

8 Moments due to sidesway - General

Good end moment formulations require good descriptions of the shear V . Here,

the shear description in Section 7.1 is adopted. From moment equilibrium of a

laterally loaded (displaced) column (Fig. 4a), M1 + M2 + N∆ + V L = 0, where

∆ = Bs∆0 and V is the shear given by Eq. (23(b)), the end moment sum may

be written
M1 +M2

Bs(M01 +M02)
= 1− γn − 1

γs
· αs (29)
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From this equation, end moments can be computed directly in cases in which

there is only one unknown end moment. There is two such cases. These are:

1) columns pinned at end 1 (M01 = M1 = 0), and 2) columns with equal end

restraints (M1 = M2). In such cases, Eq. (29) reduces to

M2

BsM02

= 1− γn − 1

γs
· αs (30)

End moment predictions with this equation are shown in Fig. 12 (from Hellesland
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Figure 12: Moment factors versus axial load levels for cantilever columns with

two different base restraints (from Hellesland (2009a)).

(2009a)) for two cantilever columns with an imposed sidesway at the top. The

top is pinned (G1 = ∞) and the base is either fully fixed (G2 = 0) or partially

fixed (G2 = 2, k2 = 3EI/L), respectively. The agreement with theory (full lines,

labelled “Exact” in the figure) is seen to be good, in particular in the positive B2

range. Maximum moment predictions (Bm) will be discussed later.

In the general case, with unequal end restraints at the two ends, Eq. (29) is not

directly useful. The distribution of the moment sum to the two ends must be

established before individual end moments can be calculated. Efforts at accom-

plishing this have not been successful, and remains a task for future research.

The simpler task of establishing moment expressions that are valid over a more

limited load range, is pursued here. In typical moment frames, most of the

23



columns will be supporting sway columns with αs < 1. As shown earlier (Eq.

(21)), the maximum moment is always located at an end (with the stiffest ro-

tational restraint) in such columns. It is therefore of considerable interest to

establish approximate expressions for the end moments in this range, and some-

what beyond.

9 Simplified end moment formulations

9.1 Secant formulation

End moments will generally be discussed in terms of the end moment factors B1

and B2 for the simplified case in which γn is approximated by its value, γs, at

the free-sway critical load. This implies a linear shear variation versus axial load

(Eq. (22)), and also a linear variation of the moment sum (Eq. (29)). The linear

shear variation is within 1 % of correct shears for laterally supporting (bracing)

columns (αs < 1).

Linear moment relations for the individual end moments, taken as secant approx-

imations to the end moment curves at load levels in the range αs = 0 to 1.0, were

in Hellesland (2019) expressed by

B1lin =
M1

BsM01

= 1− (1−B1s)αs (31)

and

B2lin =
M2

BsM02

= 1− (1−B2s)αs (32)

where, B1s and B2s are the moment factor values at αs = 1 shown in Fig. 13 for

a wide combination of end restraints.

Results for B2s and B1s coincide in the case with equal end restraints, and are

shown by the dash-dot borderline (labelled G1 = G2). Results for B1s, shown by

dashed lines in the figure, and B2s, shown by solid lines, are located above and

below the borderline, respectively. G2 is by definition taken to represent the end

with the stiffer restraint (with the smaller G value). Corresponding B1s and B2s

curves terminates therefore at the dash-dot curve. At G2 = 0 (fixed end), B2s

may have values between 0.79 and 0.82, and B1s between about 0.82 and 1.05.
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Figure 13: End moment factors B1s and B2s at αs = 1 versus end restraints in

terms of G factors (from Hellesland (2019)).

9.2 B2s factors in two special cases

For the two cases of a column pinned at end 1 and a symmetrically restrained

column (M1 = M2), Eq. (29) transforms to

B2 =
M2

BsM02

= 1− (1− 1

γs
)αs (33)

Evaluated at αs = 1, B2 becomes B2s = 1/γs. For the two special cases consid-

ered, for which γs is can be found in the literature, B2s can now be defined as

follows:

1) Column pinned at end 1; γs = γs,pin1:

B2s =
1

γs,pin1

with γs,pin1 = 1 +
0.216

(1 + 0.5G2)2
(34 a, b)

2) Column with equal end restraints; γs = γs,equal:

B2s =
1

γs,equal
with γs,equal = 1 +

0.216

(1 +G2)2
(35 a, b)

The γs expression given by Eq. (34b), was derived by Hellesland (1976), and

along different lines and in a different form (CL = 1− γs) by LeMessurier (1977).

Also, Eq. (28) breaks down into this expression for the pin-ended case. The equal

restraint case consists of two pin-ended columns of length L/2. Thus, Eq. (35b)
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can be obtained from Eq. (34b) by replacing L by L/2. The factor 0.216 may

clearly be rounded off to 0.22, or even 0.2, in practical applications. The latter

(0.2) is the correct value of the flexibility factor at zero axial load level (γ0).

B2s = 1/γs for the two cases defined above (Eq. (34) and Eq. (35)), can be

identified in Fig. 13 by the solid line labelled “∞” and by the dash-dot line

labelled “G1 = G2”, respectively. The equal-ended case can be seen to provide an

upper bound on the B2s results, and the pin-ended case a practical lower bound,

except at low G2 values (less than about 1.5) where slightly, but insignificantly,

smaller B2s values result.

9.3 Approximate B2s factors for arbitrary retraints

“Combination” B2s factor for arbitrary retraints.

A possible solution might be to adopt an approximate “combination” expression

for γs, that yields results enclosed by the “limiting” cases given by Eq. (34) and

Eq. (35)). Such an expression might be written as follows:

B2s =
1

γs,comb

with γs,comb = 1 +
0.216

(1 + G1G2

2G1−G2
)2

(36)

Conservative B2s factor for arbitrary retraints.

Alternatively, since the equal-ended case provides an upper bound on the B2s

results, a conservative (a little too big) estimate of the maximum end moment

will result by taking B2s in Eq. (32) according to Eq. (35).

“Average” B2s factor for arbitrary retraints.

Finally, since the B2s results lie within a reasonably narrow band (shaded in Fig.

13), another alternative in the general case is obtained by adopting an “average”

B2s value located approximately in the middle of the shaded band. Such a factor

may be given by

B2s =
1

γs,aver
with γs,aver = 1 +

0.24

(1 + 0.75G2)2
(37 a)

or, when rewriting, by

B2s = 1− 0.24

0.24 + (1 + 0.75G2)2
(37 b)

This expression is independent of G1 (reflecting the relative insensitivity to G1)

and gives B2s values within± 2.5% of the correct value. This accuracy is generally

quite acceptable, and suggests the use of B2lin (Eq. (32)) expressed with B2s taken

according to this latter alternative in the general case.
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9.4 Approximate B1s factor

“Rigorous” estimate of B1s factor for moment M1s.

When B2s is known, the moment factor B1s at column end 1 can be solved for

from Eq. (29) for αs=1 (at which γn = γs). By substituting M1 = B1sBsM01 and

M2 = B2sBsM02 into Eq. (29), B1s can be solved for. It becomes

B1s =

(
B2s −

1− µ0

γs

)
1

µ0

(38)

where

µ0 = −M01

M02

= −G2 + 3

G1 + 3
(39)

is the ratio between the first-order end moments. Such defined, µ0 becomes

positive for single first-order curvature bending and negative for double curvature

bending.

The ratio expression above in terms of end restraints can easily be established

(e.g., see Hellesland 2019). The γs factor in Eq. (38) is a function of both G1

and G2. Sufficiently accurate values can be obtained from Eq. (28).

The accuracy of B1s from Eq. (38) is dependent on the B2s approximation.

Taking B2s according to the “average”, as given by Eq. (37), B2s will sometimes

be smaller, and sometimes larger than the correct value. An overestimation of

B2s will lead to an underestimation of B1s, and vice versa.

Example 1: G2 = 1, G1 = 2: µ0 = −0.8, γs = 1.049 (Eq. (28)). According

to Fig. 13, B2s ≈ 0.925 and B1s ≈ 1.0. Predictions: B2s = 0.927 based on the

“average” value, Eq. (37); B1s = (B2s−1.716)/(−0.8)) = 2.145−1.25B2s = 0.996

according to Eq. (38). The predicted values are almost identical to the correct

results.

Example 2: G2 = 1, G1 = 1: µ0 = −1.0, γs = 1.055. According to Fig. 13, or

Eq. (35), B2s = 0.946 and B1s = 0.946. Predictions: B2s = 0.927 based on the

“average” value, Eq. (37); B1s = 1 − 1.896B2s = 0.969 from Eq. (38). These

predictions underestimate B2s by about 2%, and overestimates B1s by about 2.4

%.

These accuracies are quite acceptable, and the application of Eq. (38) is straigth-

forward. However, considering the lesser importance of obtaining very accurate

B1s predictions, the simpler, more approximate approach below may be justified.
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Simplified estimate of B1s for moment M1s.

B1 for columns with flexible restraints at end 1 stays almost stationary with

increasing axial load at low and moderate load levels (Fig. 5), and follows, as

observed earlier, B2 for stiffer restraints at end 1 (Fig. 7). On this base, a simpler

approximation is proposed, defined by Eq. (31) with

B1s = 1 for G1 > 1.25 (40 a)

B1s = 1− 0.22

0.22 + (1 +G1)2
for G1 ≤ 1.25 (40 b)

This equation is a rewrite of Eq. (35), in which G2 is replaced by G1. Thus, for

G1 ≤ 1.25, B1s is directly given by the curve labelled G1 = G2 in Fig. 13.

Examples: For the examples considered above, this simplified approach, Eq.

(40), gives B1s = 1.0 in Example 1, and B1s = 0.948 in Example 2. These predic-

tions are close to those by the more rigorous approach above, and is sufficiently

accurate.

9.5 B2lin compared with exact results

Linear end moment predictions at end 2, defined by B2lin, Eq. (32), with B2s

given by the “average” γs, Eq. (37), are shown in Figs. 5, 6 and 7 and 8 for

single restrained columns, and in Figs. 9 and 10 for the two columns of a panel.

It can be seen that the linearized end moment approximation generally provides

good B2 predictions not only for supporting sway columns (αs < 1), but also well

beyond this range in the cases considered.

10 Rising moment branch predictions

10.1 Common formulation

The exact maximum moment, Mmax = BmaxBsM02 (Eq. (9)), is here approxi-

mated by

Mmax = BmBsM02 (41)

where the approximate member magnification factor is denoted Bm to distinguish

it from the exact Bmax. The rising moment branch is commonly computed using
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variations of Bm below:

Bm = Bb ≥ limBm (42)

Bb =
1 + Aαb

1− αb

Cm (43 a)

Cm = 0.6 + 0.4µ0 (43 b)

µ0 = −BsM01

BsM02

= −M01

M02

(43 c)

Here, αb and Ncb are the braced critical load index (Eq. (17b)) and the critical

load (Eq. (18b)) of the column considered braced, respectively. Cm is a factor

correcting for non-uniform first-order moment gradient along the column, and

µ0 is the first-order end moment ratio (positive when the member has single

first-order curvature bending, and negative otherwise). A is a factor, typically

about 0.25 for pin-ended columns with uniform first-order bending, but commonly

neglected (A = 0). So also in computations of this study.

Conventional (“present practice”) application (limBm = 1; A = 0).

With the lower limit taken as limBm = 1, and A = 0, the approximate Bm

formulation above can be found in most structural design codes (such as ACI

318 and AISC 360 (limited to “braced moments”), Eurocodes 2 and 3). In AISC

and ACI, Bm is denoted B1 and δ, respectively. The Cm expression, proposed by

Austin (1961) for steel structures, was initially limited to 0.4 to guard against

lateral-torsional buckling. With such phenomena covered by separate provisions

in AISC, the 0.4 limit was later omitted in AISC. And also in the ACI flexural

bending code provisons.

The limBm will be adressed below.

Conventional end restraint assumptions.

For a given, single column, the load index αb is to be computed with the given

restraints (stationary). For a general framed column, being part of a larger frame,

the bending mode of the beams may not be stationary, but change with increasing

load level as discussed in conjunction with the panels in Figs. 9 and 10 (non-

stationary restraints). For regular frames it is common in column design practice

to assume that beams bend into symmetrical, single curvature (with rotational

bending stiffness 2EIb/Lb) at braced frame instability, and to use such restraints

in the calculation of αb. This is considered a prudent approach, and is in accor-

dance with most codes of practice. This assumption will also be adopted in the

comparisons below.

Bm – Effective length factor approach.

Eq. (3) for Btmax is directly applicable to a pin-ended column with applied (“first-
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order”) end moments, since the end moments in this case are identical to the total

end moments. Bm in Eq. (42) was initially derived as an approximation of Eq.

(3) for the pin-ended column case (Galambos 1968). An extension to restrained

columns were obtained by replacing the member length L in the expression by

the effective length βbL, and the end moments M1 and M2 by the first-order

end moments M01 and M02, or, rather, by the sway-magnified first-order end

moments BsM01 and BsM02 in the considered case. This approach is known as

the “effective length factor approach” (Winter 1954). The approximation and

its faults are discussed in considerable detail by Lai, MacGregor and Hellesland

(1983).

10.2 Comparisons with single and panel columns (Bm, Bm,t

and Bm,c)

Single column results.

Approximate predictions of the rising maximum moment branch according to

Eq. (42), are shown, in terms of Bm, in Figs. 5, 6 7 and 8 for single restrained

columns.

Two sets of Bm predictions are shown in each figure.

1) Bm: For the single columns (Figs. 5 to 8), the curves labelled just Bm are

computed with the restraints given in the inserts of the figures (G (or k) based

on kb = 6EIb/Lb(= 3EIb/(LB/2)).

2) Bm,t: The curves labelled Bm,t (Figs. 5 to 7) are computed assuming that the

columns have been isolated from a greater frame with rotational beam stiffnesses

of kb = 2EIb/Lb (single, symmetrical curvature bending). These are 1/3rd of the

restraints given in the figures.

As seen, the Bm predictions by Eq. (42) are rather conservative. This is primarily

due to the Cm approximation, that tends to become very conservative (too large)

for columns with significant double curvature bending, as in the present cases.

There are no exact results to which the Bm,t predictions can be compared. The

Bm,t predictions was simply included for comparative reasons, to get an indication

of the extent the reduced end restraints have on the raising moment branch

predictions.

Panel column results.

Two sets of predictions for columns of a panel frame are shown in Figs. 9 and
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10. The Bm,t curves are computed as described above (with beam stiffnesses

kb = 2EIb/Lb). The Bm,c curves are computed by Eq. (42) with A = 0 and αb

taken as the exact critical load index of the panel. For instance, in terms of αE in

Fig. 9, αb = αE/(αE)c, where (αE)c = 1.639 (see figure). The end moment ratios

used (µ0, Eq. (39)), are those obtained from the computer analysis (µ0 = −0.600

and -0.585, respectively, for Column 1 (left) and 2 (right) of the panel).

The Bm,t curves are seen to be very close to the Bm,c curves. This implies

that the assumed single, symmetrical curvature bending of the beam restraints

(kb = 2EIb/Lb) in the Bm,t computation is close to the exact one for this panel.

The difference will be more marked in cases with greater difference between the

columns of the panel.

The predictions of Bm (Bm,t and Bm,c) according to Eq. (42) are seen to give

very conservative predictions also for the panel.

It has proven difficult to develop reasonably accurate approximations for maxi-

mum moments in the general case. An attempt is made below to provide some

improvement to presently common regular design work procedures.

10.3 Thoughts on limitation on axial load indices in design

Unbraced frames. The sway magnifier Bs is in some codes limited to about

1.5. This requires the corresponding storey (system) sway stability index, αss

(Eq. (12)), to be less than 0.33. In unbraced frames (SB = 0 in Eq. (12b)),

this requires the lateral bracing to be provided solely by the columns. Most

of the columns must then have αs values below 0.33 on the average. But an

individual column may have a larger value. In order to get some indication of

what the maximum αs value in an individual column can possibly be, consider

an approximation of αss in Eq. (12b) given by (Hellesland 1995)

αss ≈ (αs1 + αs2 · · · )/n (44)

Example 1, Bs = 1.5, 10 columns: 9 with αs = 0.25 allow one with αs = 1.05.

Example 2, Bs = 1.5, 10 columns: 9 with αs = 0.15 allow one with αs = 1.98.

Example 3, Bs = 2.0, 10 columns: 9 with αs = 0.25 allow one with αs = 2.75.

Eq. (44) becomes increasingly inaccurate with increasing difference between the

individual αs values in the summation. Nevertheless, some rough conclusions

based on the estimates above are justified: Even with the very low, to low,

αs = 0.15 − 0.25 values above in 90 % of the columns, the remaining 10% must
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have αs values less than about 1 to 2 in order for Bs to remain below 1.5. And,

even for the very high sway magnifier of Bs = 2.0, αs is not likely to ever exceed

3.0.

Partially braced frames. For partially braced frames with sway (SB > 0 in

Eq. (12b)), the column indices can be greater than in the unbraced case above

without inflicting a storey (system) sway stability index, αss above 1.5.

However, there is many good reasons in design to limit axial load levels to reason-

able levels, well below the critical braced column loads. For one thing, moments

may change and increase quickly near critical loads. Complicated mechanics

of the frame action at high axial loads (unwinding type phenomena, moment

reversals etc.) combined with the sensitivity of frame action to uncertainties in

restraints assessments, including the effect of possible beam yielding on restraints,

and column stiffness itself, calls for utmost caution.

Column load levels, in terms of critical axial loads for braced cases, or better in

terms of the system critical loads, should probably be limited to values below

0.7αb or so in regular design work.

11 Maximum column moment proposals

11.1 Maximum moment proposal 1

Alternative (1a) – Low to moderately high axial load levels.

For most practical load levels, it is acceptable for design purposes to compute

the maximum moment according to Mmax = BmBsM02, Eq. (41), with the

simplification

Bm = 1.0 (45)

It has been found (Hellesland 2019), from elastic second-order analyses of single

columns with practical (and invariant) end restraints, that this Bm approximation

is conservative for load indices given, in terms of the free-sway and the braced

critical load indices, respectively, by

αs < 3.5 (3.0) or αb < 0.5 (0.8) (46)

If some 5 to 10% underestimation of moments were accepted, the limits above

could be increased somewhat. For columns in sway frames, most columns will

have load indices well below the values indicated above (see Sect. 10.3).
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The numbers in parantheses were found for columns in panels (frames) subjected

to a sidesway displacement. The restraints of such columns are non-stationary in

that the restraining beams, typically bent initially into a double curvature shape,

will change into a more flexible bending shape, typically towards more single

curvature bending, as the axial load is increased towards the braced instability

load. As a consequence of this, the critical braced load indices will be lowered,

and the rising, maximum moment branch will be pressed upwards, towards larger

values (eventually infinity) at smaller load indices than in the single column case.

The limit in terms of the free-sway load index, αs, is seen in the figures to be

affected much less than the corresponding limit in terms αb by the changing of the

end restraints described above. Consequently, αs is the better suited parameter

of the two, to indicate range of applicability of simplified maximum moment

expressions.

Alternative (1b) – Present practice, for any load level..

In partially braced frames with sidesway, axial load indices may exceed those in

Eq. (46). Care should be exercised if allowing columns to approach their critical

braced loads, as moments may change and increase quickly near critical loads.

To complement Alternative (1a) above, it is therefore prudent, at very high load

levels, to include a rising moment branch. Common practice is, as mentioned

before, to calculate Bm according to Eq. (42) defined with limBm = 1 and

A = 0. Thus,

Bm = Bb ≥ 1.0 (47)

11.2 Maximum moment proposal 2

To simplify presentation and discussion, proposal 2 alternatives for maximum

design moment are illustrated for a specific restraint case in Fig. 14.

Alternative (2a) – Low to moderately high load levels

In the figures (Figs. 5-10) it is seen that maximum moment factors, Bmax, are

less than 1.0 up to fairly high load indices, and that they are well below 1.0 in

cases with relatively stiff end restraints. For columns in unbraced sway frames,

αs = 3 is not likely to ever be exceeded (see Sect. 10.3). Taking advantage of

this, a more economical design than that in Alternative 1 above can be achieved

for moderate to relatively high load indices.

For columns with axial load indices αs < 3, it is proposed to take the maximum

moment factor according to a “maximum moment modified B2lin”, labelled B2m,
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Figure 14: Maximum moment proposal alternatives (2a), (2b) and (2c), as

illustrated for a specific case (G1 = 3, G2 = 0.6).

and defined below and in Fig. 14. Thus,

Bm = B2m (48)

where

B2m = 1− g2 · αs ≥ 1− g2 · 1.25 (49 a)

g2 = 1−B2s =
0.24

0.24 + (1 + 0.75G2)2
(49 b)

This B2m factor is defined by a bilinear curve. It follows the descending secant

approximation B2lin (Eq. (32)) for axial loads between αs = 0 and αs = 1.25,

and, thereafter, it is kept constant and equal to the value at αs = 1.25. The g2

function above correponds to Eq. (37).

The rotational end restraints to be used here are those for the column considered

free-to-sway. Typically, in lieu of more accurate values, beam restraints of k =

kb = 6EIbLb and G2 = 6(EI/L)/k, corresponding to antisymmetrical beam

bending, may be assumed.

Comparisons. Predictions by B2m, Eq. (49a), are included in Figs. 5-10. It

can be seen to give good, yet conservative, estimates of the maximum moment

in columns with axial loads up to and often well beyond the value of αs at which

maximum moments form away from end 2 of the column.

The value of αs = 1.25 used in the lower limitation of Eq. (49a) was in an initial

research phase (Hellesland and MacGregor 1981) set conservatively to 1.0. It can
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in many cases be increased also beyond the present value of 1.25. A value of 1.5

have been tried, and found to be acceptable in all cases except for those with

very stiff restraints, such as in Fig. 7. Therefore, the lower 1.25-limit was chosen

here.

B2m, Eq. (49), is shown in Figs. 5-10. It can be seen that it provides conservative

Bmax predictions for αs < 3, for all cases investigated, but for the column that

is fully fixed at the base and pinned at the top, Fig. 8(a). In this latter, rather

special case, B2m can be seen to underestimate Bmax with at most about 12% at

the “limit” of αs = 3 (αE = 3/22 = 0.75). This is considered acceptable for this

theoretical case. For a slightly lower and more realistic fixity at the base. the

underestimation will be significantly reduced.

Bullets are included on the B2m curve at load indices corresponding to 70 % of the

braced critical load (αb,t = 0.7) computed with single curvature beam bending

(horizontal tangent at beam midlength). The purpose of this inclusion is simply

to indicate a load level in terms of the braced critical load that might have been

chosen as an application limit instead of that in terms of αs. It can be seen in

the figures that αb,t = 0.7 sometimes represents a lower axial load, and somtimes

a higher, than αs = 3. On the overall, αs = 3 represents a more consistent limit,

it seems, and is chosen as the prime indicator here.

Alternative (2b) – Very high axial load level.

To cover load levels at which the maximum moment rises above the value of B2m,

as given above, a rising moment branch approximation defined by

Bm = Bb ≥ B2m (50)

is adopted. Here Bb is, as before, given by Eq. (43a). In predictions in this

report, A = 1 is used.

This Bm is equal to the “present practice” formulation, except for the lower limit,

which now is lowered from 1.0 to by B2m. As discussed previously, and seen in

Figs. 5-10, a rising moment branch defined in terms of Bb is very conservative

for columns with significant double curvature bending.

At one stage, also B2lin = 1−(1−B2s)αs, Eq. (32), was considered as a lower limit

on Bm in Eq. (50), instead of B2m. It provided improved predictions at moderate

to high axial loads for a wide range of end restraint combinations. But this was

not so in cases with very stiff end restraints, for which the limit was found to be

unconservative at higher load indices. It was therefore not considered further.
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Alternative (2c) – Very high axial load levels.

A less conservative magnifier than that defined above by Eqs. (47) and (50)) is

illustrated in Fig. 14 by the curve marked (2c). It is given by a product defined

by

Bm = Bb ·B2m ≥ B2m (51)

In this formulation, the rising branch of the proposal alternative (2b) above is

lowered by the multiplication with B2m. Predictions by Eq. (51) are not included

in the figures (Figs. 5-10), but the effect is that the conservativeness of the rising

moment branch predictions is reduced, yet still quite conservative in most cases

investigated.

An exception is found for the case of the cantilever column pinned at the top

(G1 = ∞) and fully fixed (clamped) at the base (G2 = 0). This case is shown

in Fig. 15, where it can be seen that Eq. (51) gives somewhat unacceptably

unconservative predictions (Column (a), the lower dashed curve). However, be-

fore concluding, two aspects of fixed-pinned cantilever columns may be worth

considering:

B2mB m B2mbB=

G  =0.25
2

1

2

G  =022

1

2B

maxB

1

0.5

1.50.5 1

B

1.5

α = N / NEE

0

(b)

(a)

Column (a) 

Column (b) 

Theory (G  =0)
2

Figure 15: Exact maximum moment results (G2 = 0) and predictions according

to proposal alternative (2c) for two cases: (a) fully fixed-pinned cantilever

column; (b) cantilever column with a small base restraint reduction.

(i) For a column hinged to a frame, an ideal, moment-free pin (at the column

top in our case) is in practice difficult to achieve. There will normally be some

moment restraint offered at the hinge. If only a small restraint of, say G1 = 10 or

so, is present, the apparent unconservativeness in the present case will be more
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than compensated for by this alone.

(ii) Full fixity (at the column base in our case) is also difficult to achieve in

practice. A small reduction in the intended fixity will reduce the mentioned

unconservativeness.

To illustrate item (ii), consider Fig. 15, where alternative (2c) predictions are

shown for a Column (a) with theoretically full fixity at the base (G2 = 0) and

a Column (b) with the slightly more flexible base restraint of G2 = 0.25 (k2 =

24EI/L). Whereas the predictions for Column (a) are unconservative (lying

below the exact Bmax results), the predictions for Column (b), with the small

restraint reduction (giving, approximately, βs = 2.10, βb = 0.74, αb = 0.546αE),

are seen to be in close agreement with exact results.

Validity conclusion: Separately, or in sum, items (i) and (ii) justify the use Eq.

(51) also for practical pin-ended cantilever columns with very stiff base restraints.

Consequently, alternative (2c), Eq. (51), can be considered applicable to any

practical column.

Alternatively, if one does not want to rely on this “postulate”, predictions of pin-

ended cantilever columns can be carried out with slightly unfavourable (reduced)

base restraint stiffnesses. At present, it is tentatively suggested to replace the

theoretical G2 by G2 + ∆G2, where ∆G2 = 0.25(1 − 0.5G2) ≥ 0. This relation

implies there is no need for modifications for cases with G2 ≥ 2 (k2 ≤ 3EI/L).

This can be confirmed by the cantilever case with the base restraint G2 = 2 in

Fig. 8.

Summary and conclusions on maximum moment proposals.

The framed column proposals above for columns with sway due to lateral loads

are all considered feasible in design.

From a practical design point of view, the proposal (1) alternatives (a and b) are

believed to be the most suitable in early design phases, when details of column

end restraints are yet to be determined.

The proposal (2) alternatives (a, b and c) will allow more economical designs than

the proposal (1) alternatives, but are believed to be most suitable in final design

phases, following preliminary design, and in possible design check situations.

The alternative (2c) formulation has the advantage over alternative (2b) that it is

less conservative in. Also, and conceptually more important, it can be applied in a

more rational manner in cases with load combinations that also include moments

from gravity loading (see Eq. (53a)). The latter aspect is important.
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12 Maximum moments for combinations of lat-

eral and gravity loads

12.1 Maximum column moment proposal for load combi-

nations

For framed columns with first-order end moments from both lateral loading (M0s)

and gravity loading (M0b), the sway modified first-order moment sum at the two

ends are defined by

M∗
01 = M01b +BsM01s and M∗

02 = M02b +BsM02s (52)

where M∗
02 is taken, per definition, to be the moment at the end with the larger

moment sum (absolute value), and M∗
01 the moment at the end with the smaller

end moment sum.

Proposal 2, alternative (2c) offers the most rational maximum column moment

formulation. Adopting this alternative, it is proposed to calculate maximum

column moments as follows:

(i) When the larger moment sum occurs at the end with the larger sway moment

M0s (i.e., at the end with the stiffer end restraint), it can be calculated from

Mmax = Bb (M0b +B2mBsM0s)2 (53a)

(ii) When the larger moment sum occurs at the end with the smaller sway moment

M0s (i.e., at the most flexible end restraint), as above but with B2m = 0. Thus,

Mmax = Bb (M0b +BsM0s)2 (53b)

Here,

B2m is defined by Eq. (49);

Bb is defined by Eq. (43a), but now subject to the restriction Bb ≥ 1;

Cm is defined by Eq. (43b), but now with µ0 in Eq. (43c) replaced by

µ0 = −M
∗
01

M∗
02

= − (M0b +BsM0s)1

(M0b +BsM0s)2

(54)

The moment ratio is taken positive when the member has single first-order curva-

ture bending, and negative otherwise. Eq. (53aa) breaks down to Eq. (51) when

M0b = 0, and into the conventional, common practice formulation for gravity load

moments when M0s = 0.
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It is believed that this proposal is most relevant in a final design phase, following

preliminary design carried out with B2m = 0. It is a drawback of the proposal

that it is necessary to check if the larger end moment sum and the larger sway

moment occur at the same or different column ends. The advantage is a more

economical design.

The relevant ACI code provisions, reviewed below, are similar to the proposal

above when B2m is taken equal to 1.0.

12.2 Simplified maximum column moment proposal for

load combinations

Simplification-1. A more conservative alternative than that above is obtained

by combining maximum moments computed separately for each load case in the

load combination, such that

Mmax = Bb,bM0b +Bb,sB2mBsM0s (55)

where M0b and M0s are the larger first-order end moments in the respective load

cases; it should be noted that they may occur at different column ends in the two

load cases.

Bb,b and Bb,s, both to be taken greater or equal to 1.0, are the local member

moment magnifiers defined by Eq. (43a). For the gravity load case, Bb,b(≥ 1)

is to be computed using the Cm factor defined with the end moment ratio µ0 =

−M01b/M02b. Similarly, for the sway load case, Bb,s(> 1) is to be computed with

the ratio µ0 = −M01s/M02s. According to the principle of superposition, these

moment magnifiers (Bb,b, Bb,s) should be computed for the same axial loads in

the columns, i.e., the axial loads from the load combination. Axial loads from

the lateral load case are often small, thereby allowing rough load estimates to be

made.

The maximum moment in one load case may not occur at the same section as

the maximum moment in the other load case. Clearly then, the summation of

these maximum moments may lead to a very conservative prediction, and one

that may be considerably more conservative than obtained from Eq. (53a).

Simplification-2. In the study of the sway column response in Sect. 11.2

above, it was concluded in conjunction with the proposal (2a) alternative that

the accurate maximum moment factor Bmax was less than B2m for a wide range
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of low to moderately high axial load levels. In such cases, it is justified to take

Bb,s = 1. Then,

Mmax = Bb,bM0b +B2mBsM0s (56)

In view of the general conservativeness of adding the two maximum moment

contributions, this formulation is probably also conservative at high axial load

levels. The author is not aware of investigations into this.

Simplification-3. A further simplification is obtained by taking B2m = 1. Thus,

Mmax = Bb,bM0b +BsM0s (57)

This last simplification makes Eq. (57) more conservative than Eq. (56). Such a

formulation was proposed by Ford et al. (1981), and incorporated into the 1983

edition of ACI 318. This form was was also adopted by AISC, and it is still

retained as an alternative today (AISC 2016); see also Eq. (59). In a discussion

of the paper by Ford et al. (1981), Hellesland and MacGregor (1982) suggested a

similar provision, but with the maximum member magnifier Bb,s included in the

sway portion of the expression.

12.3 Comparable structural code formulations

Comparable expressions, presently in the two major codes ACI 318-14 (ACI 2014)

for concrete structures and AISC 360 (AISC 2016) for steel structures, are given

by

ACI : Mmax = δ (M2ns + δsM2s) (58)

AISC : Mmax = B1Mnt +B2Mlt (59)

where the notation is that used in the respective codes. In ACI, Mns is the

first-order moment “due to loads that cause no appreciable sidesway”, and Ms

the first-order moment “due to loads that cause appreciable sidesway”. Corre-

spondingly, in AISC, Mnt is the first-order moment “assuming there is no lateral

translation”, and Mlt is the first-order moment “caused by lateral translation

only”. The difference between these definitions is minor in most practical cases

with reasonable symmetry, and consequently with little sidesway due to gravity

loads.

B2 is similar to the present Bs. B1 and δ are defined in similar ways in the

two codes, both given by Bb in Eq. (43a) with A = 0, but with an important

difference in the manner the moment ratio µ0 in the moment gradient factor, Cm

(Eq. (43b)), is defined: B1 in AISC is computed with µ0 defined by the ratio of
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Mnt end moments, whereas δ in ACI is computed with µ0 defined by the ratio of

end moment sums (Mns + δsMs).

From a column mechanics point of view, the ACI approach is clearly the most

rational of the two, and generally the least conservative one.

13 Conclusions

Development of shears, end moments and maximum moments between ends of

framed columns have been studied using second-order theory. Main attention

was on columns with imposed sidesway displacements. These allowed the study,

over the full range of axial loads, of any type of columns in frames with sidesway,

i.e. of both “supporting sway columns” (αs < 1) and “supported (braced) sway

columns” (αs > 1).

An explicit, closed form shear force expression, that gives excellent shear predic-

tions for columns with low to moderate and high axial loads, have been reviewed

and applied, and the accuracy of a linearized approximation discussed.

Considerable attention has also been given to end moments caused by sidesway.

Linearized, secant approximations have been derived that give excellent moment

predictions for supporting columns, and also for supported columns with rather

high axial load levels.

Major attention was on development of maximum moment approximations for

columns with sidesway, that are suitable in typical design code formats. Alter-

native design moment expressions have been proposed and dicussed. They are

simple to incorporate in regular design work, and will reduce the conservative-

ness of current procedures, thus allowing more economical designs than presently

available structural code expressions.

Extensions of the proposals, for columns with sway, to the general case of columns

with moments from both gravity and lateral loading, have been made, and dis-

cussed with reference to formulations found in the literature and to two major

design codes for structural concrete and steel structures.
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NOTATION

Bb = conventional rising moment branch approximation;
Bm = approximate maximum moment magnification factor;
Bmax = maximum moment magnification factor applied to first-order moments;
Btmax = maximum moment magnification factor in second-order analysis;
Bs = system (storey) sway magnification factor;
B1, B2 = first-order end moment magnification factors;
EI,EIb = cross-sectional stiffness of columns, and beams;
Gj = relative rotational restraint flexibility at member end j;
H = applied lateral storey load (sum of column shears and bracing force);
L,Lb = lengths of considered column and of restraining beam(s);
M0j ,Mj = moment in first-order and second-order analysis, at end j;
N = axial (normal) force;
Ncr = critical load in general (= π2EI/(βL)2)
Ncb, Ncs = critical load of columns considered fully braced, and free-to-sway, respectively;
NE = Euler buckling load of a pin-ended column (= π2EI/L2)
SB = lateral stiffness of external bracing(s) ;
V0, V = first-order, and total (first+second-order) shear force in a column;
kj = rotational restraint stiffness (spring stiffness) at end j
αcr = member (system) stability index (= N/Ncr);
αb, αs = load index of column considered fully braced, and free-to-sway, respectively;
αss = system (storey) stability index;
αE = nominal axial load index of a column (= N/NE);
β = effective length factor (at system instability);
βb, βs = effective length factor corresponding to Ncb and Ncs, respectively;
∆0,∆ = first-order, and total lateral displacement;
γ, γn = flexibility factor in general, and load (N -) dependent flexibility factor;
γs, γ0 = flexibility factor at free-sway, and at zero axial load, respectively:
κj = relative rotational restraint stiffness at end j (=kj/(EI/L)).

REFERENCES

ACI (2014). “Building code requirements for structural concrete (ACI 318-M14) and
Commentary (ACI 318-RM14).” American Concrete Institute, Farmington Hills,
Mich.

AISC (2016). “ANSI/AISC 360-16 Specification for structural steel buildings, and
Commentary.” American Institute of Steel Construction (AISC), Chicago, IL.

Austin, W.J. (1961). “Strength and design of metal columns.” J. of the Structural
Divison, ASCE, 87(ST4), 1–32.

42



CSA (1984). “CAN3-A23.3-M84-Design of concrete structures.” Canadian Standards
Association (CSA), Rexdale, Ontario, Canada.

CEN (2004). “Eurocode 2: Design of concrete structures – Part 1-1: General rules
and rules for buildings (NV 1992-1-1:2004:E).” European standard, European Com-
mittee for Standardization (CEN), December, Belgium.

CEN (2005). “Eurocode 3: Design of steel structures – Part 1-1: General rules and
rules for buildings (EN 1993-1-1:2005:E).” European standard, European Commit-
tee for Standardization (CEN), December, Belgium.

Galambos, T. V. (1968). “Structural members and frames.” Prentice Hall, Inc., En-
glewood Cliffs, N.J., USA.

Hellesland, J. (1976). “Approximate second order analysis of unbraced frames.” Tech-
nical Report, Dr. ing. Aas-Jakobsen Inc., Oslo, Norway, 43 pp.

Hellesland, J., and MacGregor, J.G. (1981). “Mechanics and design of columns in sway
frames.” Preliminary draft (unpublished), Dept. of Civ. Engineering, Univ. of
Alberta, Edmonton, Canada.

Hellesland, J., and MacGregor, J.G. (1982). “Discussion of ’Design indications from
tests of unbraced multipanel concrete frames’ by Ford, Chang and Breen.” Concrete
International, 4(2), 55–56.

Mechanics and design of columns in sway frames.” Preliminary draft (unpublished),
Dept. of Civ. Engineering, Univ. of Alberta, Edmonton, Canada.

Hellesland, J. (1992). ’Discussion of “Geometrical imperfections on inelastic frame
behavior,” by Lui, E-M. (1992).’ J. Struct. Eng., ASCE, 119(9), 2795–2797.

Hellesland, J. (1995). “Simplified system instability analysis.” 4th Pacific Struc-
tural Steel Conference (PSSC), 25-27 October, Singapore; in Shanmugan, N.E. and
Choo, Y.S. (eds.), Structural Steel, Vol. 1:Steel Structures, Elsevier Science, UK,
NY, Japan, 95 – 102.

Hellesland, J. and Bjorhovde, R. (1996a). “Restraint demand factors and effective
lengths of braced columns.” J. Struct. Eng., ASCE, 122(10), 1216–1224.

Hellesland, J. and Bjorhovde, R. (1996b). “Improved frame stability analysis with
effective lengths.” J. Struct. Eng., ASCE, 122(11), 1275–1283.

Hellesland, J. (2000). “Discussion of ’An improved K factor formula’ by Cheong-Siat-
Moy”. J. Struct. Eng., ASCE, 126(5), 633–635.

Hellesland, J. (2007). “Mechanics and effective lengths of columns with positive and
negative end restraints.” Engineering Structures, 29(12), 3464–3474.

Hellesland, J. (2008). “Mechanics and slenderness limits of sway-restricted reinforced
concrete columns”, Journal of Structural Engineering, ASCE, 2008, 134(8), 1300–
1309.

Hellesland, J. (2009a). “Extended second order approximate analysis of frames with
sway-braced column interaction.” Journal of Constructional Steel Research, 65(5),
1075–1086.

Hellesland, J. (2009b). “Second order approximate analysis of unbraced multistorey

43



frames with single curvature regions.” Engineering Structures, 31(8), 1734–1744.

Hellesland, J., Challamel, N., Casandjian, C. and Lanos, C. (2013). “Reinforced con-
crete beams, columns and frames–Section and slender member analysis.” ISTE Ltd
and John Wiley & Sons, Inc., London, UK, and Hoboken, N.J., USA.

Hellesland, J. (2019). “Mechanics of columns in sway frames – Derivation of key char-
acteristics.” Research Reports in Mechanics, No.1, February, Dept. of Math., Univ.
of Oslo, 37 pp.

Lai, S.-M. A., MacGregor, J. G. (1983). “Geometric nonlinearities in unbraced frames.”
J. Struct. Eng., ASCE, 109(11), 2528–2545

Lai, S.-M. A., MacGregor, J.G., Hellesland, J. (1983). “Geometric nonlinearities in
nonsway frames.” J. Struct. Eng., ASCE, 109(12), 2770–2785

LeMessurier, W.J. (1977). “A practical method of second order analysis, Part 2 - Rigid
frames.” Eng. J., AISC, 14(2), 49-67.

Lui, E. M. (1992). “Geometrical imperfections on inelastic frame behavior.” J. Struct.
Eng., ASCE, 118(5), 1408–1415.

Rubin, H. (1973). “Das Q∆-verfahren zur vereinfachten berechnung verschieblicher
rahmensysteme nach dem traglastverfahren der theorie II. ordnung.” Der Bauinge-
nieur, 48(8), 275-285.

Stevens, L.K. (1967). “Elastic stability of practical multistory frames” Proceedings,
Institution of Civil Engineers, 36, London, England.

Winter, G. (1954). “Compression members in trusses and frames.”The Philosophy
of Column Design, Proceedings of The Fourth Technical Session, Column Research
Council, Lehigh University, Bethlehem, Pa., USA.

44


