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ABSTRACT

Searches for modified gravity in the large-scale structure try to detect the enhanced amplitude of density fluctuations caused by the
fifth force present in many of these theories. Neutrinos, on the other hand, suppress structure growth below their free-streaming
length. Both effects take place on comparable scales, and uncertainty in the neutrino mass leads to a degeneracy with modified
gravity parameters for probes that are measuring the amplitude of the matter power spectrum. We explore the possibility to break the
degeneracy between modified gravity and neutrino effects in the growth of structures by considering kinematic information related
to either the growth rate on large scales or the virial velocities inside of collapsed structures. In order to study the degeneracy up to
fully non-linear scales, we employ a suite of N-body simulations including both f (R) modified gravity and massive neutrinos. Our
results indicate that velocity information provides an excellent tool to distinguish massive neutrinos from modified gravity. Models
with different values of neutrino masses and modified gravity parameters possessing a comparable matter power spectrum at a given
time have different growth rates. This leaves imprints in the velocity divergence, which is therefore better suited than the amplitude
of density fluctuations to tell the models apart. In such models with a power spectrum comparable to ΛCDM today, the growth rate
is strictly enhanced. We also find the velocity dispersion of virialised clusters to be well suited to constrain deviations from general
relativity without being affected by the uncertainty in the sum of neutrino masses.

Key words. large-scale structure of Universe – galaxies: kinematics and dynamics

1. Introduction

Nearly two decades after the first measurements of the acceler-
ated expansion of space (e.g. Riess et al. 1998; Perlmutter et al.
1999; Schmidt et al. 1998) the fact that about 70% of the energy
content of the Universe is in a form with a negative equation of
state of w ≈ −1 has been confirmed in numerous measurements
(Bennett et al. 2013; Planck Collaboration XIII 2016). Never-
theless, the nature of this “dark energy” is as puzzling as it has
been since its discovery. Tremendous efforts in modern cosmol-
ogy go into determining the amount and possible time evolu-
tion of this unknown component. It is particularly problematic
that few well-motivated frameworks for its physical nature exist
apart from a cosmological constant. Many ideas (e.g. Dvali et al.
2000) have by now been ruled out or shown to be intrinsically
unstable. While there are still theories around (and always will
be, since the parameter space of many of these is very flexible),
they contribute little to the understanding of underlying funda-
mental problems such as the absence of gravitational effects of
vacuum energy.

It is also important to recall that gravity is the least well
understood fundamental force, and a lot of implicit assump-

? Hubble fellow.

tions are being made when extrapolating our knowledge over
several orders of magnitudes to vastly different conditions and
scales. These two points are, in fact, the main motivations
behind a class of modified gravity (MG) theories (Amendola
& Tsujikawa 2010; Clifton et al. 2012). Since general relativity
(GR) as a theory of gravity is unique under very general assump-
tions (Lovelock 1972), any modification introduces new physical
degrees of freedom. These can lead to accelerated expansion, but
also tend to enhance gravity on a perturbative level as so-called
fifth forces. To pass observational bounds, any of these models
have to involve a “screening mechanism” leading to negligible
deviations in, for example the solar system where the predic-
tions of GR have been confirmed to high precision (e.g. Bertotti
et al. 2003; Will 2006).

In this work, we circumvent the discussion of what char-
acterises a scientific theory (as opposed to, for instance, an
effective theory), and instead treat the screened MG models
considered as examples of a (much) larger group of models.
These models all possess the common property that in addi-
tion to the Newtonian gravitational force FN, another fifth force
component FFifth exists, which is suppressed by some screening
mechanism in high-density (or high-curvature) environments.
This choice is motivated by the fact that screening occurs in a
range of scalar- and vector-field theories for various physical
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reasons, and is in fact essentially required by a large class of the-
ories in order not to violate local gravity measurements. Exam-
ples of screening mechanisms which are implemented in those
theories include

– Chameleon (Khoury & Weltman 2004), in which the range
of the fifth force is decreased in regions of high space-time
curvature, thus, effectively hiding the additional force;

– Symmetron (Hinterbichler & Khoury 2010; Hinterbichler
et al. 2011), in which the coupling of the scalar field is den-
sity dependent;

– Vainshtein screening (Vainshtein 1972), in which the screen-
ing effect is sourced by the second derivative of the field
value; and

– others such as screening through disformal coupling
(Bekenstein 1993).

As already indicated above, a major problem in the search for
a new theory of gravity is that ΛCDM so far only gets con-
firmed to higher and higher precision. While minor discrep-
ancies between probes of the early and late Universe exist,
especially in measurements of the Hubble parameter H0 (see e.g.
Planck Collaboration VI 2018; Riess et al. 2019) and Ωm or σ8
(e.g. Hildebrandt et al. 2017; Abbott et al. 2018), no major ten-
sion between its predictions and the data has been found. His-
torically, however, we know that this does not mean that ΛCDM
is correct but that either we have not yet found the right probe
where tensions might arise, or we have to push the limits to
higher precision. While the latter approach can well be fruitful,
as shown by the high-precision measurements of for example the
perihelion precession of Mercury (Le Verrier 1859) and is the
preferred path taken by many next generation instruments such
as Euclid (Refregier et al. 2010) and WFIRST1 (Spergel et al.
2015), we focus on the former path, and are thus interested in
deviations on the &10% level.

Several observable signatures of screened MG models have
been suggested in the literature such as deviations in the halo
mass function (Schmidt 2010; Davis et al. 2012; Puchwein et al.
2013; Achitouv et al. 2016) or the structure of the cosmic web
(Falck et al. 2014; Ho et al. 2018). However one concern raised
by several authors (e.g. Motohashi et al. 2013; He 2013; Baldi
et al. 2014) is that massive neutrinos and beyond-ΛCDM models
might be degenerate.

In this work, we want to investigate how kinematic infor-
mation can be used to break these degeneracies. This paper is
structured as follows: in Sect. 2 we introduce the screened MG
models studied and briefly review the effect of neutrinos on
structure formation. We also describe our numerical simula-
tions used to explore the joint effects numerically. In Sect. 3 we
present our results, before we conclude in Sect. 4.

2. Method

This section briefly summarises the effects of MG and massive
neutrinos on the evolution of the density field. We also present
the simulation suite used to study the combined effects in the
fully non-linear regime.

2.1. Review of modified gravity

To work within a well-defined framework, in this paper we focus
on f (R) gravity. As a starting point we assume the generalised

1 Wide Field Infrared Survey Telescope.

Einstein-Hilbert action2

S =

∫
d4x
√
−g

(
R + f (R)

16πG
+Lm

)
, (1)

where we introduce a function f of the Ricci scalar R, the
Lagrangian Lm contains all other matter fields, and we recover
standard GR if we choose the function to be a cosmological con-
stant f = −2ΛGR. For this paper, we instead use the form estab-
lished by Hu & Sawicki (2007)

f (R) = −2Λ
R

R + m2 , (2)

with a constant suggestively named Λ and an additional scale
m2 that both have to be fixed later on. Assuming m2 � R lets us
expand the function

f (R) ≈ −2Λ − fR0
R̄2

0

R
, (3)

with the background value of the Ricci scalar R̄0 today and
we define the dimensionless parameter fR0 ≡ −2Λm2/R̄2

0 that
expresses the deviation from GR. We return to the characteristic
scale of fR0 later, but typically | fR0| � 1. The constant Λ = ΛGR

is then fixed to the measured value of the cosmological constant
by the requirement to reproduce the standard ΛCDM expansion
history established by observations. However, we note that it
no longer has the interpretation of a vacuum energy. The phe-
nomenology of the theory in this limit is then set by fR0 alone.
This particular choice of parameters also implies that the back-
ground evolution is indistinguishable from a ΛCDM universe,
but the growth of perturbations differs.

To work out the perturbation equations, we vary the action
with respect to the metric to arrive at the modified Einstein equa-
tions

Gµν + fRRµν −

(
f
2
− � fR

)
gµν − ∇µ∇ν fR = 8πGTµν. (4)

The new dynamical scalar degree of freedom fR ≡ d f /dR is
responsible for the modified dynamics of the theory. To obtain
the equation of motion for this scalar field, we consider the trace
of Eq. (4)

∇2δ fR =
a2

3

(
δR( fR) − 8πGδρm

)
, (5)

where a is the scale factor of the metric; we assume the field to
vary slowly (the quasi-static approximation) and consider small
perturbations δ fR ≡ fR − f̄R, δR ≡ R− R̄ and δρm ≡ ρm − ρ̄m on a
homogeneous background. To get a Poisson-like equation for the
scalar metric perturbation 2ψ = δg00/g00 we take the time-time
component of Eq. (4) to arrive at

∇2ψ =
16πG

3
a2ρm −

a2

6
δR( fR), (6)

that now also depends on the scalar field. Solving the non-linear
Eqs. (5) and (6) in their full generality requires N-body simula-
tions, but it is interesting to consider two edge cases to get some
insight into the phenomenology of the theory.

If the field is large, | fR0| � |ψ|, we can expand

δR '
dR
d fR

∣∣∣∣∣
R=R̄

δ fR, (7)

2 We adopt natural units c = ~ = 1.
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and we can solve Eqs. (5) and (6) in Fourier space to get

k2ψ(k) = −4πG
(

4
3
−

1
3

µ2a2

k2 + µ2a2

)
a2δρm(k), (8)

with the Compton wavelength of the scalar field µ−1 =
(3d fR/dR)1/2. For k � µ the second term vanishes and we obtain
a Poisson equation with an additional factor 4/3. On the other
hand, for k � µ we recover standard gravity. The Compton
wavelength µ−1 therefore sets the interaction range of an addi-
tional fifth force that enhances gravity by one-third.. This is the
maximum possible force enhancement in f (R), irrespective of
the choice of the function in Eq. (2).

For field values | fR0| � |ψ|, the two terms on the right hand
side of Eq. (5) approximately cancel, so we arrive at

δR ≈ 8πGδρm (9)

and we also recover the standard Poisson equation from Eq. (6).
This is the Chameleon screening mechanism mentioned above
to restore GR in regions of high curvature.

We can get an estimate of the scale where this screening tran-
sition occurs by solving Eq. (5) formally with the appropriate
Green’s function

δ fR(r) =
1

4πr
1
3

∫ r

0
d3r′8πG

(
δρ −

δR
8πG

)
(10)

=
2
3

GMeff(r)
r

, (11)

where we defined the effective mass term Meff acting as a
source for the fluctuations in the scalar field δ fR. This defini-
tion requires Meff(r) ≤ M(r), and both contributions are equal in
the unscreened regime, where Eq. (9) implies Meff = M. In this
case, δ fR = 2/3ψN with the Newtonian potential of the overden-
sity, ψN = GM/r. Since we assumed small perturbations on the
homogeneous background, δ fR ≤ f̄R, we arrive at the screening
condition

| fR| ≤
2
3
ψN(r). (12)

In other words, only the mass distribution outside of the radius
where the equality 2/3ψ(r) = | fR| holds contributes to the fifth
force. We note that screening for real halos is considerably more
complex, since non-sphericity and environmental effects are also
important for the transition. Nevertheless, Eq. (12) gives a rea-
sonable estimate for the onset of the transition between enhanced
gravity and normal GR.

Since screening can function only for ψN ∼ fR, the condition
implied by Eq. (12) sets the scale for the free parameter | fR0|.
Typical values for the metric perturbation in cosmology range
from ψN ∼ 10−5 to ψN ∼ 10−6, so | fR0| should be of the same
order of magnitude to show any interesting phenomenology. For
values of the scalar field | fR0| � ψN, gravity is always enhanced
so we can exclude this parameter space trivially, while in the
opposite limit | fR0| � ψ the theory is always screened and does
not offer any predictions to distinguish it from GR on cosmolog-
ical scales.

2.2. Neutrino effects on structure growth

Cosmology allows us to constrain the physics of neutrinos
in unique ways. Assuming the standard thermal evolution
and decoupling before e+/e− annihilation, their temperature is

related to that of the cosmic microwave background (CMB) pho-
tons by

Tν =

(
4

11

)1/3

TCMB, (13)

which implies for neutrinos with mass eigenstates mν a total con-
tribution to the energy budget of the Universe of (Mangano et al.
2005)

Ωνh2 ≈

∑
mν

93.14 eV
, (14)

where the sum runs over the three standard model neutrino
states. Since the mass of neutrinos is constrained to be small,∑

mν . 1 eV, they decouple as highly relativistic particles in
the early Universe. The energy density of neutrinos therefore
scales as an additional radiation component Ων ∝ a−4 early on,
but during adiabatic cooling with the expansion of the Universe
they become non-relativistic and the energy density behaves like
ordinary matter Ων ∝ a−3 today. The small contribution from
Eq. (14) to the overall energy budget also implies that their effect
on the background expansion history is small.

Their weak interaction cross-section makes neutrinos a dark
matter component. However, compared to the standard cold
dark matter (CDM), they have considerable bulk velocities. This
changes the growth of perturbations on scales smaller than the
distance travelled by neutrinos up to today, the neutrino horizon,
defined by

dν(t0) =

∫ t0

tini

cν(t′) dt′, (15)

with the average neutrino velocity cν, which is close to the
speed of light early on. The neutrino horizon itself is numeri-
cally closely related to the more commonly used free-streaming
wavenumber at the time of the non-relativistic transition, knr
(Lesgourgues et al. 2013)

knr ≈ 0.0178
(
Ωm

mν

eV

)1/2
Mpc−1 h, (16)

where Ωm denotes the current matter density parameter.
On scales exceeding the neutrino horizon, velocities can be
neglected and the perturbations consequently evolve identically
to those in the cold dark matter component. For smaller scales
k � knr within the neutrino horizon, however, free-streaming
leads to slower growth of neutrino perturbations. Because of
gravitational back-reaction on the other species, this causes a
characteristic step-like suppression of the linear matter power
spectrum approximately given by (Hu et al. 1998)

Pν

P

∣∣∣∣∣
k�knr

≈ 1−8
Ων

Ωm
· (17)

To compare the density power spectrum between cosmologies
with and without neutrinos, we assumed the same primordial
perturbations and kept the total Ωm (including neutrinos) fixed,
resulting in equal positions of the peak of the power spectrum
and ensuring that the spectra are identical in the super-horizon
limit. The cosmologies for our neutrino simulations described in
Sect. 2.3 are chosen in the same way.

The interplay between neutrinos and f (R) gravity is inter-
esting owing to a curious coincidence: the typical range of the
fifth force given by the Compton wavelength µ−1 in Eq. (8) and
the free-streaming scale of neutrinos in Eq. (16) are comparable
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Table 1. Summary of the main numerical and cosmological parameters characterising the subset of the DUSTGRAIN-pathfinder simulations
considered in this work.

Simulation name Gravity type | fR0|
∑

mν [eV] ΩCDM Ων Mp
CDM [M� h−1] Mp

ν [M� h−1] σ8

ΛCDM GR – 0 0.31345 0 8.1 × 1010 0 0.842
fR4 f (R) 10−4 0 0.31345 0 8.1 × 1010 0 0.963
fR5 f (R) 10−5 0 0.31345 0 8.1 × 1010 0 0.898
fR6 f (R) 10−6 0 0.31345 0 8.1 × 1010 0 0.856
fR4_0.3 eV f (R) 10−4 0.3 0.30630 0.00715 7.92 × 1010 1.85 × 109 0.887
fR5_0.15 eV f (R) 10−5 0.15 0.30987 0.00358 8.01 × 1010 9.25 × 108 0.859

Notes. In the table, Mp
ν represents the neutrino simulation particle mass, Mp

CDM represents the CDM simulation particle mass, while ΩCDM and Ων

the CDM and neutrino density parameters, respectively. The listed σ8 values represent the linear power normalisation attained at z = 0, while all
simulations are normalised to the same spectral amplitude As = 2.199 × 10−9 at the redshift of the CMB.

for the relevant parameter space of neutrino masses and values
of | fR0|, such that the known standard model neutrinos might
counteract signatures of boosted growth caused by MG. This
makes neutrinos important for constraints on f (R), and this paper
searches for ways to disentangle both effects.

2.3. DUSTGRAIN-pathfinder simulations

Our analysis is based on a subset of the DUSTGRAIN-
pathfinder simulations suite described in Giocoli et al. (2018).
The main purpose of the DUSTGRAIN-pathfinder simulations
is to explore the degeneracy between neutrino and MG effects
by sampling the joint f (R) −

∑
mν parameter space with com-

bined N-body simulations that simultaneously implement both
effects in the evolution of cosmic structures. To this end,
the MG-GADGET code – specifically developed by Puchwein
et al. (2013) for f (R) gravity simulations – has been combined
with the particle-based implementation of massive neutrinos
described in Viel et al. (2010), allowing us to include a sepa-
rate family of neutrino particles to the source term of the δ fR
field Eq. (5), which reads

∇2δ fR =
a2

3

(
δR( fR) − 8πGδρCDM − 8πGδρν

)
. (18)

The DUSTGRAIN-pathfinder simulations follow the evolution
of (2×)7683 particles of dark matter (and massive neutrinos) in
a periodic cosmological box of 750 h−1 Mpc per side from a
starting redshift of zi = 99 to z = 0, for a variety of combina-
tions of the parameters | fR0| in the range

[
10−6, 10−4

]
and

∑
mν in

the range [0.0, 0.3] eV, plus a reference ΛCDM simulation (i.e.
GR with

∑
mν = 0). The cosmological parameters assumed in

the simulations are consistent with the Planck 2015 constraints
(see Planck Collaboration XIII 2016) ΩM = ΩCDM + Ωb + Ων =
0.31345, ΩΛ = 0.68655, h = 0.6731, σ8(ΛCDM) = 0.842. The
dark matter particle mass (for the massless neutrino cases) is
MCDM = 8.1 × 1010 h−1 M� and the gravitational softening is
set to εg = 25 h−1 kpc, corresponding to (1/40) times the mean
inter-particle separation.

We generated the initial conditions for the simulations by
following the Zel’dovich approximation to generate a random
realisation of the linear matter power spectrum obtained with
the Boltzmann code CAMB3 (Lewis et al. 2000) for the cosmo-
logical parameters defined above and under the assumption of
standard GR. For the simulations including massive neutrinos,
besides updating the CAMB linear power spectrum used to gen-
erate the initial conditions accordingly, we also employed the
3 www.cosmologist.info

approach described in Zennaro et al. (2017) and Villaescusa-
Navarro et al. (2018). This amounts to generating two fully cor-
related random realisations of the linear matter power spectrum
for standard cold dark matter particles and massive neutrinos
based on their individual transfer functions. Neutrino thermal
velocities are then randomly sampled from the corresponding
Fermi distribution and added on top of gravitational velocities to
the neutrino particles. We used the same random seeds to gener-
ate all initial conditions to suppress cosmic variance in the direct
comparison between models. As the simulations start at zi = 99
when f (R) effects are expected to be negligible, no modifications
are necessary to incorporate MG into the initial conditions and
the standard GR particle distributions – with and without neutri-
nos – can be safely employed for both the GR and f (R) runs.

A summary of the main parameters of the simulations con-
sidered in this work is presented in Table 1. Giocoli et al.
(2018) provide a more detailed description of the DUSTGRAIN-
pathfinder simulations.

3. Cosmic degeneracies

The first N-body simulation to investigate the joint effects of
neutrinos and MG was performed in Baldi et al. (2014) where
the authors pointed out the degeneracy between the competing
signals. This was confirmed by multiple recent papers based on
simulations to study how neutrinos can mask f (R) imprints in the
kinematic Sunyaev–Zeldovich effect of the large-scale structure
(Roncarelli et al. 2017, 2018), weak lensing statistics (Giocoli
et al. 2018; Peel et al. 2018), and the abundance of galaxy clus-
ters (Hagstotz et al. 2019). A first attempt to exploit Machine
Learning techniques to separate the two signals was put forward
by Peel et al. (2019) and Merten et al. (2019).

All these studies confirm a degeneracy in observables that
rely on structure growth, which makes the unknown neutrino
masses an important nuisance parameter when constraining f (R)
gravity, as pointed out in Hagstotz et al. (2019). These papers
also show that especially the redshift evolution can be a poten-
tially powerful tool in distinguishing these models since the time
evolution of the modifications induced by f (R) and neutrinos
differs in general. However, many large-scale structure data sets
available today do not have sufficient redshift reach to set strin-
gent constraints on deviations from GR while marginalising over
neutrino mass.

We refer to the above cited papers for details how these
degeneracies play out for various probes and how they can be
broken with higher redshift data, but the main challenge is sum-
marised in Fig. 1, where we show the relative change induced
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Fig. 1. Left: relative deviation induced by f (R) gravity and massive neutrinos in the matter power spectrum measured in a subset of our simulations
at z = 0. The large deviation caused by the additional growth in | fR0| = 10−4 is almost completely counteracted by massive neutrinos with∑

mν = 0.3 eV. We find a similar case for | fR0| = 10−5 and
∑

mν = 0.15 eV. Right: same degeneracy in the simulated abundance of halos at z = 0.
We note that the degeneracy is non-trivial; the same P(k) can lead to different cluster abundances in f (R) since the collapse threshold is changed
in MG. The uncertainty for the cluster abundance is calculated with Poisson error bars. Shaded grey bands indicate the 10% deviation region in
both plots.

in the matter power spectrum (left) and the halo abundance
(right). We note that even though the halo mass function is
clearly derived from the matter power spectrum, the degeneracy
in the cluster abundance demonstrated here is non-trivial since
the threshold of collapse δc also changes in f (R) gravity (e.g.
Schmidt et al. 2009; Kopp et al. 2013; Cataneo et al. 2016; von
Braun-Bates et al. 2017). Within current observational accuracy,
the effect of MG leading to additional structure growth and the
suppression effect of neutrino free-streaming are thus difficult
to distinguish. Therefore, extending the cosmological parameter
space with free neutrino masses tends to weaken existing limits
on | fR0|.

Since the degeneracy is broken by the different redshift evo-
lution of the density δ in f (R) and neutrino cosmologies, it is
interesting to consider the growth rate of structures to tell them
apart. In linear theory, the continuity equation

∂δ

∂t
+

1
a
∇ · v = 0, (19)

relates the growth rate f+ = d ln D+/d ln a directly to the velocity
divergence

θ =
1
H
∇ · v = −aδ f+, (20)

with the Hubble rate H = ȧ/a, and we use θ as a probe of the
different growth histories in GR, MG, and neutrino cosmolo-
gies. We then investigate the degeneracy between the latter in
two regimes: First we discuss the large-scale velocity divergence
two-point function in Fourier space Pθθ as a proxy for the growth
rate and present the detailed results in Sect. 3.1. Then we turn
towards the velocity dispersion of non-linear collapsed struc-
tures in Sect. 3.2.

3.1. Velocity divergence two-point functions

We compute the velocity divergence θ = 1/H∇ · v and interpo-
late it on a uniform, 5123-point grid, using the publicly available

Delaunay Tessellation Field Interpolation (DTFE4) code (Cautun
& van de Weygaert 2011). The DTFE code uses the Delaunay
Density Estimator Method – a volume-weighted (as opposed to
mass-weighted) interpolation technique which preserves sharp
density contrasts (caused by e.g. filamentary structures) due to
the tessellation. Another advantage of this interpolation tech-
nique is that it is automatically adaptive, that is, it samples higher
density regions better than underdensities. For our usage this
leads primarily to decreased computing time.

This interpolation allows us to compare the power spectrum
Pθθ in the ΛCDM simulation with the f (R) and massive neutrino
simulations in Fig. 2 where we plot (as in the left panel of Fig. 1
for the matter power spectrum) the relative deviation from the
ΛCDM value. Clearly, all MG simulations show an increased
velocity divergence – and therefore growth rate – on scales
&0.1 Mpc h−1; the | fR0| = 10−4 simulation shows the strongest
enhancement since the fifth force becomes active first. Very large
scales k � µ−1 exceeding the range of the force given by the
Compton wavelength of the scalar field are not affected. These
results confirm previous findings (see e.g. Jennings et al. 2012)
that the velocity power spectrum provides a much stronger sig-
nature of MG compared to the density power spectrum, thereby
representing a more powerful tool to test gravity on cosmological
scales. In principle the velocity power spectrum can be probed
by redshift space distortion measurements sensitive to f+σ8/b,
assuming knowledge of the tracer bias b (Peacock et al. 2001;
Alam et al. 2017). However, the scale dependence of f+ in MG,
changes in galaxy formation, and subsequently the tracer bias,
and difficult modelling of the non-linear effects in MG make this
analysis challenging (see the discussion in Jennings et al. 2012;
Hernández-Aguayo et al. 2019).

The addition of neutrinos (cf. the two | fR0| = 10−5 runs in
Fig. 1) dampens the velocity divergence field slightly overall, but
unlike for the density power spectrum this effect is not sufficient
to counteract the enhanced growth rate in f (R). This confirms
the redshift evolution of the degeneracy in the density field: at

4 https://www.astro.rug.nl/~voronoi/DTFE/dtfe.html
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Fig. 2. Relative change in the velocity divergence power spectrum Pθθ

compared to ΛCDM for various models with MG, massive neutrinos,
or both. The deviation from ΛCDM is more pronounced compared to
the approximately degenerate density power spectra for combinations of
| fR0| and

∑
mν shown in Fig. 1. The dip in the spectra marks the onset of

collapsed structures. The shaded band indicates a 10% deviation range.

early times z & 0.5, f (R) effects are small, and neutrino suppres-
sion of the matter fluctuations dominates. As soon as the addi-
tional force enhancement becomes active, it tends to win out and
we arrive at the approximate degeneracy currently observed as
shown in Fig. 1. In the future evolution, f (R) effects will domi-
nate over the neutrino damping for the cases shown here.

The plot also demonstrates that hierarchical formation of col-
lapsed objects in f (R) proceeds faster than in a ΛCDM universe.
Small structures form first and this process proceeds to larger
scales with time. Since the fifth force accelerates the collapse,
cosmologies with higher values of | fR0| contain larger non-linear
structures at a given redshift z. The transition to these collapsed
structures appears as a characteristic dip in the velocity diver-
gence power spectrum (see also the detailed explanation in Li
et al. 2013).

3.2. Cluster velocity dispersion

We now turn to the kinematics inside of non-linear structures.
The velocity dispersion of galaxy cluster members is a long-
established measure of the total gravitational potential via the
virial theorem, and therefore this measure can serve as a mass
proxy of the system (Biviano et al. 2006). The first studies of
f (R) effects on virialised systems were presented by Lombriser
et al. (2012), and recently efforts have been made to use the
phase-space dynamics of single massive clusters to constrain
MG (e.g. Pizzuti et al. 2017).

We focus on the change in the mean observable velocity dis-
persion instead of detailed studies of single objects. The start-
ing point is the virial theorem, which itself is a consequence
of phase-space conservation expressed by the Liouville equa-
tion and holds for any system obeying Hamiltonian dynamics.
It is therefore unchanged by f (R) gravity, and states in its scalar
form

2Ekin + Epot = 0, (21)

with kinetic and potential energy of the system, respectively.
From there, we can get a rough estimate for the velocity dis-
persion

σ2 ≈
GM(r)

r
(22)

for a virialised system of size r. This makes the velocity dis-
persion a direct measurement of the gravitational potential of a
bound system. For an unscreened cluster in f (R), Eq. (8) leads to
an enhancement of the gravitational force and potential by a fac-
tor 4/3; we therefore expect the velocity dispersion to be boosted
by (4/3)1/2 compared to the standard prediction.

However, the screening mechanism of f (R) gravity outlined
in Sect. 2.1 is crucial to understand the full phenomenology of
the theory. We can estimate the mass scale of objects with poten-
tial wells deep enough to activate the screening mechanism with
the condition set by Eq. (12). In order to do that, we consider the
force enhancement caused by f (R)

g(r) ≡
dψ/dr

dψN/dr
(23)

relative to the Newtonian potential ψN. We can from there calcu-
late the average additional potential energy of the system

ḡ =

∫
drr2w(r)g(r)∫

drr2w(r)
, (24)

which varies between 1 (for the screened case) and 4/3 (for the
unscreened case), where the weighting function

w(r) = ρ(r)r
dψN

dr
· (25)

Following Schmidt (2010), we assume that the additional force
is only sourced by the mass distribution beyond the screen-
ing radius rscreen, which is defined by the equality in condition
Eq. (12), i.e.

2
3
ψN(rscreen) = f̄R(z). (26)

This implies for the force enhancement

g(r) = 1 +
1
3

M(< r) − M(< rscreen)
M(< r)

, (27)

and since we are considering the average behaviour of halos,
we can solve the equations above by assuming Navarro–Frenk–
White (Navarro et al. 1996) density profiles to determine ḡ. We
use the concentration-mass relation by Bullock et al. (2001) to
fix the density profiles, but the overall results for ḡ are rather
insensitive to the specific choice of c(M, z). From the modified
potential energy, the virial theorem then suggests the scaling of
the velocity dispersion σ in f (R) as

σ f (R)

σΛCDM ∝ ḡ1/2. (28)

The screening radius rscreen itself depends on time via the evolu-
tion of the density profile c(M, z) and the background evolution
of the scalar field

f̄R(z) = | fR0|
1 + 4 ΩΛ

Ωm

(1 + z)3 + 4 ΩΛ

Ωm

· (29)

The velocity dispersion measured in our simulations at z = 0 is
plotted in Fig. 3, where the width of the contours represents the
standard deviation found among the objects. Most of the clusters
virialise either to the ΛCDM equilibrium or the boosted f (R)
value, and since the maximum force enhancement is identical
for all models, | fR0| merely determines at which mass scale the
transition between the two cases occurs. We also show results
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Fig. 3. Velocity dispersion σ within clusters of a given mass M200m for a
subset of the studied cosmologies at z = 0. The shaded region shows the
standard deviation found in our simulations. We note that most systems
are virialised, either to the ΛCDM value or the boosted unscreened f (R)
equilibrium. Neutrinos do not have any detectable effect on the velocity
dispersion inside of clusters, and we just show the case with | fR0| =
10−5 and

∑
mν = 0.15 eV for clarity. The relative deviations are shown

separately in Fig. 4.

for the simulation with | fR0| = 10−5 and
∑

mν = 0.15 eV as
an example of a cosmology with both MG and massive neu-
trinos, but we note that neutrinos have no detectable effect on
the cluster velocity dispersion. Therefore the dynamics of galax-
ies within clusters are an excellent way to break the degeneracy
found in measurements relying on the amplitude of the matter
fluctuations.

We focus on the relative deviations from ΛCDM in Fig. 4,
where we normalise the curves to the values measured in our
fiducial simulation. Dashed lines show the prediction ∆σ/σ ≈
ḡ1/2 from Eq. (24).

Clusters for | fR0| = 10−4 are all unscreened and virialise to
the f (R) equilibrium value boosted by a factor (4/3)1/2 ≈ 1.15.
On the other hand | fR0| = 10−6 is almost completely screened,
and just shows slight deviations for low mass systems with
M200m ∼ 1013 M� h−1. The intermediate case | fR0| = 10−5

demonstrates how the screening mechanism becomes active for
clusters with M200m ∼ 2 × 1014 M� h−1 with a long transition tail
towards the fully screened regime. This also implies that single
very massive clusters are not well suited to constrain f (R) mod-
els (see e.g. Pizzuti et al. 2017, for a case study).

The simple model from Eq. (24) somewhat overestimates the
efficiency of the screening mechanism, in agreement with find-
ings by Schmidt (2010). It therefore only serves as a conservative
estimate for the transition region. In addition, even clusters that
are screened today can still carry the imprint of the fifth force if
parts of the progenitor structures were unscreened in their past.
The relaxation time of a galaxy cluster of richness N is approxi-
mately given by (Binney & Tremaine 2008)

tr ≈
0.1N
ln N

tcross, (30)

where typical crossing times tcross ≈ 1 Gyr; this leads to relax-
ation timescales of order tr ≈ 2 Gyr for a richness N ∼ 100 and
can range up to the Hubble time tr ≈ 14.5 Gyr for very massive
clusters with N ∼ 1000 member galaxies.

We also compare the results found in the simulations to
an empirical σ(M) relation, which we obtained by combining
the mass-richness relation of Johnston et al. (2007) and the

1013 1014 1015

M200m [M�/h]

−0.1

0.0

0.1

0.2

0.3

0.4

∆
σ
/σ

Λ
C
D
M

measured

|fR0| = 10−4

|fR0| = 10−5

|fR0| = 10−5 ,
∑
mν = 0.15 eV

|fR0| = 10−6

Fig. 4. Relative velocity dispersion within clusters of a given mass in
the extended cosmologies, normalised to the mean value of the ΛCDM
simulation. The (propagated) error bar of the ratio ∆σ/σ is showcased
for the | fR0| = 10−4 model as the shaded region, and has a simi-
lar magnitude for all curves. The other error bars are suppressed for
clarity. Also shown is the empirical relation (blue) with propagated
error bars as described in the text. Dashed lines show the expectation
∆σ/σ ≈ ḡ1/2 from the simplified force enhancement model in Eq. (24).
For unscreened clusters, the velocity dispersion is larger by a factor√

4/3 ≈ 1.15 as expected from the virial theorem in f (R).

σ-richness relation of Becker et al. (2007). Both studies used
the catalogue of the Sloan Digital Sky Survey (SDSS; Sheldon
et al. 2009), which allowed us to combine the two empirical rela-
tions. Specifically, we used their fit to the data relating the cluster
richness N (i.e. the number of detected galaxies per cluster) and
the mass. Becker et al. (2007) and Johnston et al. (2007) esti-
mated kinematic and lensing mass measurements, respectively.
The uncertainty shown in Fig. 4 is the (propagated) uncertainty
quoted in these studies.

Even without giving a quantitative upper limit on fR0 here,
we note that the | fR0| = 10−5 results seem to be incompatible with
the observed cluster velocity dispersion irrespective of neutrino
effects. This is comparable to current upper limits obtained from
large-scale structure data (e.g. Cataneo et al. 2015).

4. Conclusions

Neutrinos are of great interest for MG searches in the large-
scale structure since they suppress the growth of structures on
scales comparable to the range of the fifth force expected in
deviations from GR. The uncertainty in the neutrino mass scale
leads to an uncertainty in the size of this suppression, which
can mask the characteristic additional growth of structures in
f (R) gravity. This degeneracy was studied before in the con-
text of the amplitude of matter fluctuations and found to be time
dependent, since the modifications in the growth of structures
induced by neutrinos and the fifth force have different redshift
dependencies.

Therefore, in this paper we studied the velocity divergence
power spectrum Pθθ in Sect. 3.1 as a proxy for the linear growth
rate. Compared to ΛCDM it is strictly enhanced in our simu-
lations at z = 0, as well as in cosmologies including both MG
and massive neutrinos that show a comparable amplitude of mat-
ter fluctuations at that time. We conclude that for combinations
of parameters that show approximate degeneracy in the current
matter power spectrum, neutrino suppression dominates in the
past, while in the future evolution the additional growth induced

A46, page 7 of 8

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935213&pdf_id=3
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935213&pdf_id=4


A&A 629, A46 (2019)

by the fifth force will win out. This effect can be probed by
redshift-space distortion measurements, but an analysis account-
ing for the scale dependent growth in f (R) remains challenging
(Jennings et al. 2012; Hernández-Aguayo et al. 2019).

As a second step, we studied the kinematics inside of clus-
ters in Sect. 3.2. The velocity dispersion found in our simulations
agrees well with the expectations from the virial theorem, and it
is enhanced in the unscreened f (R) regime by a factor (4/3)1/2

proportional to the maximum force enhancement. Neutrinos on
the other hand do not have any detectable effect on the veloc-
ity dispersion. Since the free-streaming length is larger than the
typical cluster size, neutrinos behave as a smooth background
component. So while they suppress the overall cluster abun-
dance, the kinematics inside of halos are completely unaffected.
We also compare the simulated dynamics to the empirical σ−M
relation found by combining the results from Johnston et al.
(2007) and Becker et al. (2007) and find good agreement with the
ΛCDM simulation. While we do not find a stringent upper limit
on the modified gravitiy parameter | fR0|, we point out that the
observed relation is in strong tension with expectations from an
| fR0| = 10−5 model for clusters of mass M200m ≈ 10−14 M� h−1,
i.e., independent of the neutrino mass.

Overall, kinematic information is an excellent observable to
detect fifth force effects irrespective of the unknown neutrino
mass. Using kinematic information could also be potentially
useful to break other degeneracies with (screened) MG theo-
ries such as baryonic feedback processes stemming, for exam-
ple from active galactic nucleis, which also reduce clustering
(Arnold et al. 2014; Ellewsen et al. 2018).
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