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Abstract 1 

In recent years, genome-wide association study (GWAS) sample sizes have become larger, the 2 

statistical power has improved and thousands of trait-associated variants have been uncovered, 3 

offering new insights into the genetic etiology of complex human traits and disorders. However, 4 

a large fraction of the polygenic architecture underlying most complex phenotypes still remain 5 

undetected. We here review the conditional false discovery rate (condFDR) method, a model-6 

free strategy for analysis of GWAS summary data, which has improved yield of existing GWAS 7 

and provided novel findings of genetic overlap between a wide range of complex human 8 

phenotypes, including psychiatric, cardiovascular, and neurological disorders, as well as 9 

psychological and cognitive traits. The condFDR method was inspired by Empirical Bayes 10 

approaches and leverages auxiliary genetic information to improve statistical power for 11 

discovery of single-nucleotide polymorphisms (SNPs). The cross-trait condFDR strategy 12 

analyses separate GWAS data, and leverages overlapping SNP associations, i.e. cross-trait 13 

enrichment, to increase discovery of trait-associated SNPs. The extension of the condFDR 14 

approach to conjunctional FDR (conjFDR) identifies shared genomic loci between two 15 

phenotypes. The conjFDR approach allows for detection of shared genomic associations 16 

irrespective of the genetic correlation between the phenotypes, often revealing a mixture of 17 

antagonistic and agonistic directional effects among the shared loci. This review provides a 18 

methodological comparison between condFDR and other relevant cross-trait analytical tools 19 

and demonstrates how condFDR analysis may provide novel insights into the genetic 20 

relationship between complex phenotypes.  21 

 22 

23 



 4 

Introduction 1 

Most human traits and disorders have a complex etiology, which is influenced by multiple 2 

environmental and genetic factors. While some phenotypes follow simple patterns of 3 

Mendelian inheritance, large-scale genome-wide association studies (GWAS) conducted 4 

during the last decade have shown that most phenotypes have a complex polygenic architecture, 5 

in which genetic risk is accounted for by a large number of genetic variants, each with small 6 

effect (Visscher et al. 2017). Accumulating evidence from GWAS demonstrates that many 7 

genetic variants influence more than one phenotype, i.e. they exhibit allelic pleiotropy 8 

(Sivakumaran et al. 2011; Solovieff et al. 2013). Identification of shared genetic influences 9 

between human traits and disorders can be highly valuable to inform disease nosology, 10 

epidemiological associations, and diagnostic classification systems, improve treatment 11 

strategies, provide biological insights and uncover shared biological underpinnings 12 

(Sivakumaran et al. 2011; Solovieff et al. 2013; Visscher et al. 2017). For example, it is now 13 

evident that psychiatric disorders share a large proportion of their genetic architecture 14 

(Brainstorm et al. 2018; Cross-Disorder Group of the Psychiatric Genomics et al. 2013), 15 

suggesting that their etiologies are not fully distinct and hence challenging existing diagnostic 16 

guidelines (Smoller et al. 2018).  17 

GWAS typically consist of genome-wide scans of millions of common genetic variants 18 

(tag single-nucleotide polymorphisms [SNPs]), estimating the strength of their association with 19 

the phenotype of interest in massively-univariate regression analyses. Given the large numbers 20 

of SNPs tested, a GWAS must correct for multiple testing and applies a genome-wide 21 

significance threshold of p<5x10-8 to avoid false positive findings. The consequence is that only 22 

a subset of all involved genetic variants is revealed (i.e., many false negative findings), with a 23 

large fraction of the polygenic architecture remaining to be uncovered. This phenomenon was 24 

previously labeled “the missing heritability” (Manolio et al. 2009). With increasing GWAS 25 
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sample sizes, statistical power has improved and more genetic variants have been uncovered 1 

(Visscher et al. 2017). However, despite the assembly of very large GWAS samples, often 2 

involving hundreds of thousands of participants, most of the polygenic architecture underlying 3 

complex human phenotypes remain undetected (Holland et al. 2019). The number of 4 

participants needed for a GWAS to fully uncover all genetic variants influencing a given 5 

phenotype depends on the unique polygenic architecture underlying that phenotype, which is 6 

determined by the number of causal variants involved and the distribution of effect sizes 7 

(Holland et al. 2019). For example, it has been estimated that to uncover most of the genetic 8 

variants influencing the complex disorders schizophrenia and bipolar disorder, genotypes from 9 

more than one million individuals are required (Holland et al. 2019). 10 

 11 

Improved discovery of shared loci using conditional false discovery rate  12 

Although the successive incremental increases in GWAS sample sizes have effectively 13 

improved the discovery of trait-associated loci, an alternative and more cost-efficient approach 14 

is to apply statistical tools that improve the yield of existing GWAS. The conditional false 15 

discovery rate (condFDR) is such an approach, which boosts GWAS discovery by leveraging 16 

auxiliary genetic information to re-adjust the GWAS test-statistics in a primary phenotype 17 

(Andreassen et al. 2013b; Schork et al. 2016). The condFDR method is a model-free strategy 18 

for analysis of GWAS summary statistics inspired by the Empirical Bayes statistical 19 

framework, which is designed for situations with dense elements, such as the large number of 20 

small genetic effects seen in polygenic traits and disorders. Most commonly, the condFDR 21 

method has been applied for cross-trait analysis, by leveraging overlapping SNP associations 22 

(i.e. cross-trait enrichment) between separate GWAS to re-rank the test-statistics in a primary 23 

phenotype conditional on the associations in a secondary phenotype (Andreassen et al. 2013b; 24 

Schork et al. 2016). Other auxiliary enrichment sources, such as genomic annotations (Schork 25 



 6 

et al. 2013), can also be leveraged using condFDR (Lo et al. 2017; Wang et al. 2016b). Since 1 

its introduction in 2013 (Andreassen et al. 2013a), the condFDR method has increased genetic 2 

discovery in a wide spectrum of complex human traits and disorders, including psychiatric, 3 

cardiovascular and neurological disorders, as well as metabolic, psychological and cognitive 4 

traits, among others (see Table 1 for a selection of cross-trait condFDR studies) (Andreassen et 5 

al. 2013a; Andreassen et al. 2014a; Andreassen et al. 2014c; Andreassen et al. 2013c; 6 

Andreassen et al. 2014d; Broce et al. 2018; Broce et al. 2019; Desikan et al. 2015; Drange et 7 

al. 2019; Ferrari et al. 2017; Hu et al. 2018; Karch et al. 2018; Le Hellard et al. 2017; LeBlanc 8 

et al. 2015; Liu et al. 2013; Lv et al. 2017; McLaughlin et al. 2017; Mufford et al. 2019; Shadrin 9 

et al. 2018; Smeland et al. 2019; Smeland et al. 2017a; Smeland et al. 2018; Smeland et al. 10 

2017b; van der Meer et al. 2018; Wang et al. 2016a; Winsvold et al. 2017; Witoelar et al. 2017; 11 

Yokoyama et al. 2017; Yokoyama et al. 2016; Zuber et al. 2018).  12 

The present review focuses on the cross-trait condFDR approach, which returns a 13 

condFDR value for each SNP, defined as the probability that a SNP is null in the first phenotype 14 

(i.e., that it has no association with the phenotype) given that the p-values in the first and second 15 

phenotypes are as small as or smaller than the observed ones. The condFDR estimates are 16 

obtained for each nominal SNP p-value in the primary phenotype after computing the stratified 17 

empirical cumulative distribution functions (cdfs) of the nominal p-values (Sun et al. 2006; Yoo 18 

et al. 2009). The separate strata are determined by the relative enrichment of SNP associations 19 

as a function of increased nominal SNP p-values in a secondary phenotype. The standard FDR 20 

framework derives from a model that assumes that the distribution of test statistics in a GWAS 21 

can be formulated as a mixture of null and non-null effects, with true associations (non-null 22 

effects) having more extreme test statistics than false associations (null effects) on average. 23 

Given a statistical genetic relationship between two phenotypes, stratification of the test-24 

statistics in a primary phenotype based on the genetic associations with a secondary phenotype 25 
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will result in a reduction in the FDR at a given nominal p-value relative to the FDR computed 1 

from the unstratified distribution of the primary phenotype p-values alone, and thus re-rank the 2 

test statistics. 3 

The first step in the condFDR procedure is to construct conditional quantile-quantile 4 

(Q-Q) plots, which extends the standard Q-Q plots commonly applied in GWAS. Standard Q-5 

Q plots visualize the enrichment of statistical association relative to that expected under the 6 

global null hypothesis by plotting the nominal -log10 p-values of the single SNP association 7 

statistics versus their empirical distribution. Conditional Q-Q plots help visualize the cross-trait 8 

enrichment between two phenotypes and are constructed by creating subsets of SNPs based of 9 

the level of association with the secondary phenotype. Under the global null hypothesis, the 10 

nominal p-values will form a straight line plotted as a function of their empirical distribution. 11 

Under polygenic association, standard Q-Q plots will be deflected leftwards, while cross-trait 12 

enrichment can be seen as successive leftward deflections in conditional Q-Q plots as levels of 13 

SNP associations with the secondary phenotype increase. Figure 1a presents a conditional Q-Q 14 

plot demonstrating SNP enrichment for the psychiatric disorder bipolar disorder (n=51,710) 15 

(Stahl et al. 2019) as a function of the association with intelligence (n=269,867) (Savage et al. 16 

2018), adapted from Smeland et al. (2019). A complementary way to assess for cross-trait 17 

enrichment is to construct fold-enrichment plots, which provide a more direct visualization of 18 

the polygenic enrichment (Figure 1b). The fold enrichment is calculated as the ratio between 19 

the -log10(p) cumulative distribution for a given stratum and the cumulative distribution for all 20 

SNPs. Figure 1b shows that for SNPs with p-values below 0.001 in intelligence, there was up 21 

to 60-fold enrichment of stronger SNP associations with bipolar disorder in comparison to all 22 

SNPs. The enrichment seen in conditional Q-Q plots and fold-enrichment plots reflects 23 

increased tail probabilities in the distribution of test statistics and an overabundance of low p-24 

values compared to that expected by chance, which can be directly interpreted in terms of a 25 
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Bayesian interpretation of the true discovery rate (TDR = 1 - FDR; see Box 1 for mathematical 1 

framework) (Efron 2010). This is illustrated in Figure 1c. 2 

To control for spurious (i.e. non-generalizable) enrichment due to population 3 

stratification or cryptic relatedness (Devlin and Roeder 1999), all test statistics are corrected 4 

using a genomic inflation control procedure leveraging intergenic SNPs, which are relatively 5 

depleted for true associations (Schork et al. 2013). Conditional-Q-Q plots and the condFDR 6 

computation are conducted after random pruning to approximate independence, by selecting 7 

one random SNP per LD block (defined by an r2 > 0.1) averaged over at least 100 iterations 8 

(Andreassen et al. 2013b; Schork et al. 2016). Similar to previously described stratified-FDR 9 

procedures (Sun et al. 2006; Yoo et al. 2009), the condFDR value is then determined for each 10 

SNP by constructing a two-dimensional FDR look-up table where the FDR for SNP 11 

associations with the primary phenotype is computed conditionally on the nominal p-values for 12 

SNP associations with the secondary phenotype (Box 1). Figure 2a presents the respective 13 

condFDR look-up table for bipolar disorder conditional on intelligence, corresponding to the 14 

cross-trait enrichment observed in Figure 1.  15 

The conjunctional FDR (conjFDR) is an extension of the condFDR, which allows for 16 

discovery of SNPs significantly associated with two phenotypes simultaneously (Andreassen 17 

et al. 2013a; Schork et al. 2016). The conjFDR is determined after inverting the roles of the 18 

primary and secondary phenotypes and repeating the condFDR procedure. Based on previous 19 

conjunction tests for p-value statistics (Nichols et al. 2005), the conjFDR is defined as the 20 

maximum of the two condFDR values, providing a conservative estimate of the FDR for a SNP 21 

association with both phenotypes jointly (Figure 2c). Thus, in combination the 22 

condFDR/conjFDR approaches both improve SNP discovery rates (condFDR) and enable 23 

detection of shared genomic loci (conjFDR), respectively. Since the condFDR/conjFDR 24 

estimates are based on nominal p-values only, these methods are agnostic to the effect directions 25 
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of the individual SNPs, and can detect overlapping SNP associations irrespective of the 1 

genome-wide genetic correlation between phenotypes. However, after detecting likely 2 

overlapping SNPs, the directional SNP effects in the loci can be determined post hoc by 3 

comparing the effect-sizes (z-scores or odds ratios) between the phenotypes.  4 

The condFDR/conjFDR approaches have some limitations. Although all SNPs are 5 

randomly pruned using an LD r2 threshold of 0.1, complex correlations among the test-statistics 6 

may bias the condFDR estimates (Schwartzman and Lin 2011). Hence, given strong SNP 7 

associations within long range LD regions, such as the extended major histocompatibility 8 

complex (MHC) region, chromosomal region 8p.23.1, the microtubule-associated tau protein 9 

(MAPT) region or the APOE region (Price et al. 2008), these regions should be excluded to 10 

avoid artificially inflated genetic enrichment. The condFDR/conjFDR procedures are agnostic 11 

about the specific causal variants underlying the overlapping genomic associations, which 12 

could arise from both shared or separate causal variants, or “mediated pleiotropy”, where one 13 

phenotype is causative of the other (Solovieff et al. 2013). Given that the cross-trait enrichment 14 

both reflects the extent of polygenic overlap between the phenotypes and the power of the two 15 

GWAS analyzed, cross-trait enrichment will be harder to detect if one or both investigated 16 

GWAS are inadequately powered. Another important limitation of the condFDR method is that 17 

a large fraction of overlapping participants between the investigated GWAS may inflate the 18 

cross-trait enrichment, and shared participants should therefore be reduced to a minimum. An 19 

extension of condFDR, allowing shared controls, has been proposed (Liley and Wallace 2015). 20 

 21 

Comparison to other cross-trait analytical tools 22 

A large number of tools for cross-trait analysis using GWAS data have been developed in recent 23 

years, which have been reviewed in detail elsewhere (Gratten and Visscher 2016; Hackinger 24 

and Zeggini 2017; Pasaniuc and Price 2017; Schork et al. 2016). In short, the methods 25 
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differentiate in terms of the data analyzed (summary statistics versus individual genotype data), 1 

the underlying mathematical framework and assumptions, whether they are bivariate or 2 

multivariate in nature, and whether they measure overlap at the genome-wide level or across 3 

individual SNPs or loci/regions. Here we compare the condFDR/conjFDR approach to a 4 

selection of relevant cross-trait analytical tools. 5 

The most common approaches for evaluating genetic overlap at the genome-wide level 6 

include tools such as polygenic risk scores (Purcell et al. 2009), mixed-model approaches 7 

(Cross-Disorder Group of the Psychiatric Genomics et al. 2013; Lee et al. 2012) and LD score 8 

regression (Bulik-Sullivan et al. 2015a), which return a single estimate of shared genetic risk 9 

between phenotypes. Polygenic risk scores are per-individual risk profiles based on the sum of 10 

alleles associated with a phenotype weighted by their effect sizes (Purcell et al. 2009). The 11 

polygenic risk score approach uses summary statistics as training data and requires individual 12 

genotype data in an independent target sample to test how well the polygenic risk score explains 13 

phenotypic variation in the target phenotype. Another traditional measure that estimates the 14 

degree of pleiotropy is the genetic correlation, which is defined as the correlation between the 15 

genetic influences for a pair of traits, thus indicating the proportion of variance that the two 16 

traits share due to genetic causes. Mixed-model approaches (Lee et al. 2012), originally 17 

implemented in the Genome-wide Complex Trait Analysis software (GCTA), obtained 18 

unbiased estimates of the genetic correlation using individual genotype data, relaxing several 19 

limitations of traditional studies based on pedigree data. Estimates of genetic correlation can 20 

also be quantified from GWAS summary statistics, using cross-trait LD score regression 21 

(Bulik-Sullivan et al. 2015a) and its multivariate extension Genomic SEM (Grotzinger et al. 22 

2019). LD score regression aims to distinguish confounding from polygenicity by regressing 23 

the association statistics of SNPs on their ‘LD scores’, which is a measure of the amount of 24 

genetic variation the SNP represents (Bulik-Sullivan et al. 2015b). Application of LD score 25 
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regression to the bivariate framework estimates the co-variance in the SNP-heritability between 1 

two phenotypes, allowing sample overlap (Bulik-Sullivan et al. 2015a). An alternative approach 2 

estimating local genetic correlations based on the fixed-effects model is also available (Shi et 3 

al. 2017). The condFDR approach is fundamentally different to these approaches by aiming for 4 

discovery of specific genomic loci. However, the condFDR approach similarly focuses on the 5 

polygenic fraction that did not reach genome-wide significance to uncover cross-trait 6 

enrichment. To fully disentangle the genetic relationship between complex phenotypes it is 7 

necessary to complement measures of genetic overlap at the genome-wide level with cross-trait 8 

analytical tools allowing detection of individual shared loci regardless of their directional 9 

effects. For instance, a recent condFDR study demonstrated substantial cross-trait enrichment 10 

between bipolar disorder (Stahl et al. 2019) and intelligence (Savage et al. 2018) (Figure 1) and 11 

uncovered a balanced pattern of concordant and discordant directional effects among 79 shared 12 

loci identified at conjFDR<0.05 (Figure 3) (Smeland et al. 2019). These findings extend and 13 

complies with prior genetic studies reporting no significant genome-wide genetic correlation 14 

between the phenotypes (Brainstorm et al. 2018; Davies et al. 2018; Hill et al. 2016; Lencz et 15 

al. 2014; Savage et al. 2018; Sniekers et al. 2017; Stahl et al. 2019).   16 

There is a large class of cross-trait methods aiming to discover specific genomic loci 17 

unique or shared between phenotypes inspired by the meta-analysis technique (Willer et al. 18 

2010) and its extensions dealing with sample overlap (Han et al. 2016; Lin and Sullivan 2009). 19 

For example, the COMBINE approach (Ellinghaus et al. 2012) consists of two separate runs of 20 

a same-effect and opposite-effect meta-analysis, both using the inverse variance weighted 21 

procedure. In the opposite-effect meta-analysis, the minor and major alleles are flipped in the 22 

second dataset to capture bi-allelic SNPs with opposite effect directions in the two phenotypes 23 

investigated. This method was later refined and extended to multiple heterogeneous traits using 24 

restricted and weighted subset search (ASSET) (Bhattacharjee et al. 2012), which exhaustively 25 
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explore subsets of studies to achieve the best possible trade-off between specificity and sample 1 

size. Its successor, compare-and-contrast meta-analysis (CCMA) (Baurecht et al. 2015), further 2 

improved the power to discover associations by combining the subset search approach with 3 

trans-ethnic meta-analysis (MANTRA) (Morris 2011). Several alternative approaches explore 4 

additional information, including individual-level genotypes (MultiPhen) (O’Reilly et al. 5 

2012), phenotypic correlations (TATES) (van der Sluis et al. 2013) or estimated genetic 6 

correlations (MTAG) (Turley et al. 2018). A common feature of all techniques based on a meta-7 

analysis framework is that the analysis is performed independently for each SNP, thus requiring 8 

a follow-up mechanism to control for multiple testing, such as Bonferroni correction, to avoid 9 

false positive findings. The condFDR analysis, on the other hand, directly works with the entire 10 

original set of p-values from the two GWAS and intrinsically incorporates multiple testing via 11 

the FDR framework (Efron 2010). 12 

Another class of methods aim at disentangling LD structure to reveal underlying causal 13 

genetic mechanisms. Mendelian Randomization aims to distinguish true pleiotropy from 14 

mediated pleiotropy by investigating whether one phenotype is causative to the other (Hernan 15 

and Robins 2006; Lawlor et al. 2008; Smith and Ebrahim 2003; Zhu et al. 2018). Mendelian 16 

Randomization assigns genetic variants, which are expected to be independent of confounding 17 

factors, as instrumental variables to test for causality. Several available Bayesian approaches 18 

(Giambartolomei et al. 2014; Pickrell et al. 2016) explore whether two association signals in 19 

the same genomic region obtained from two different GWAS share a single causal variant or 20 

multiple causal variants. Frei and colleagues performed a similar analysis at the genome-wide 21 

level, estimating the proportion of phenotype-specific causal variants and shared variants 22 

between complex phenotypes using GWAS summary data, while controlling for shared 23 

participants (Frei et al. 2019). The analysis demonstrates how the shared polygenic component 24 

may constitute a large fraction of the genetic architecture of one phenotype, while constituting 25 
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a smaller fraction of the architecture of a phenotype with larger polygenicity. While the 1 

condFDR/conjFDR approach is agnostic about the causal variants underlying the identified 2 

associations, it complements these methods by improving the discovery of genomic loci, which 3 

can be used to prioritize down-stream analysis. 4 

 5 

Conclusion 6 

Accumulating evidence has shown that genetic pleiotropy is pervasive among complex human 7 

traits and disorders, providing important insights into etiological relationships. Since its 8 

introduction in 2013, application of the condFDR/conjFDR approach has increased yield of 9 

existing GWAS and aided the discovery of overlapping genomic loci between polygenic 10 

phenotypes. Given that large fractions of the polygenic architecture underlying most complex 11 

phenotypes still remain undetected, the condFDR/conjFDR approach represents a cost-effective 12 

powerful strategy useful for improving GWAS discovery and help elucidating shared genetic 13 

etiologies. 14 
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Box 1:  Conditional and conjunctional False Discovery Rate  1 

The ‘enrichment’ seen in the conditional Q-Q plots can be directly interpreted in terms of a 2 

Bayesian interpretation of the true discovery rate (TDR = 1 – false discovery rate (FDR)) (Efron 3 

2010). More specifically, for a given p-value, under a simple two-group (null and non-null) 4 

model, Bayes rule gives the posterior probability of being null as 5 

FDR(p) = π0F0 (p) / F(p), [1]  6 

where π0 is the proportion of null SNPs, F0 is the cumulative distribution function (cdf) of the 7 

null SNPs, and F is the cdf of all SNPs, both null and non-null (Efron 2007). Here, we assume 8 

the SNP p-values are a priori independent and identically distributed. Under the null 9 

hypothesis, F0 is the cdf of the uniform distribution on the unit interval [0,1], so that Eq. [1] 10 

reduces to  11 

FDR(p) = π0 p / F(p). [2] 12 

F can be estimated by the empirical cdf q = Np / Ν, where Np is the number of SNPs with p-13 

values less than or equal to p, and N is the total number of SNPs. Replacing F by q in Eq. [2], 14 

we get  15 

Estimated FDR(p) = π0 p / q, [3]  16 

which is biased upwards as an estimate of the FDR (Efron and Tibshirani 2002). Replacing π0 17 

in Equation [3] with unity gives an estimated FDR that is further biased upward;  18 

q* = p/q. [4]  19 

If π0 is close to one, the increase in bias going from Eq. [3] to Eq. [4] is minimal. The quantity 20 

1 – p/q, is therefore biased downward, and hence a conservative estimate of the TDR. Referring 21 

to the Q-Q plots, we see that q* is equivalent to the nominal p-value divided by the empirical 22 

quantile, as defined earlier. We can thus read the FDR estimate directly off the Q-Q plot as  23 

-log10(q*) = log10(q) – log10(p), [5]  24 

i.e. the horizontal shift of the curves in the Q-Q plots from the expected line x = y, with a larger  25 



 21 

shift corresponding to a smaller FDR. To estimate the conditional FDR of a given SNP, we 1 

repeat the above procedure for a subset of SNPs with p-values in the secondary GWAS equal 2 

to or lower than that observed for the given SNP. Formally, this is given by 3 

FDR(p1|p2) = π0 (p2)p1/ F(p1|p2), [6]    4 

where p1 is the p-value for the first phenotype, p2 is the p-value for the second, and F(p1 | p2) is 5 

the conditional cdf and π0 (p2) the conditional proportion of null SNPs for the first phenotype 6 

given that p-values for the second phenotype are p2 or smaller. The condFDR framework is 7 

closely related to the stratified FDR method developed by Sun et al. (2006). Whereas they 8 

propose computing FDR separately conditional on membership in pre-defined discrete strata of 9 

p-values, here, we condition the estimated FDR on a continuous random variable, the SNP p-10 

values with respect to a second phenotype. 11 

 To identify SNPs jointly associated with two phenotypes using conjunctional FDR, the 12 

conditional FDR procedure is repeated after inverting the roles of the primary and secondary 13 

phenotypes. Similar to previous conjunction tests for p-value statistics (Nichols et al. 2005), the 14 

conjunctional FDR estimate is defined as the maximum of both conditional FDR values, which 15 

minimizes the effect of a single phenotype driving the common association signal. Formally, 16 

the conjunctional FDR is given by  17 

FDRPhenotype1&Phenotype2 (p1, p2) = π0 F0(p1, p2) / F(p1, p2) + π1 F1(p1, p2) / F(p1, p2) + π2 F2(p1, p2) 18 

/ F(p1, p2), [7]    19 

where π0 is the a priori proportion of SNPs null for both phenotypes simultaneously and F0(p1, 20 

p2) is the joint null cdf, π1 is the a priori proportion of SNPs non-null for the first phenotype 21 

and null for the second with F1(p1, p2) the joint cdf of these SNPs, and π2 is the a priori 22 

proportion of SNPs non-null for the second phenotype and null for the first, with joint cdf F2(p1, 23 

p2). F(p1, p2) is the joint overall mixture cdf for all phenotype 1 and 2 SNPs.  24 



 22 

Conditional empirical cdfs provide a model-free method to obtain conservative 1 

estimates of Eq (7). This can be seen as follows. Estimate the conjunction FDR by  2 

Estimated FDRPhenotype1&Phenotype2  =  3 

max {Estimated FDRPhenotype1|Phenotype2, Estimated FDRPhenotype2|Phenotype1}, [8]    4 

where Estimated FDRPhenotype1|Phenotype2 and Estimated FDRPhenotype2|Phenotype1 are conservative 5 

(upwardly biased) estimates of Eq. [6]. Thus, Eq (8) is a conservative estimate of max {p1/F(p1| 6 

p2), p2/F(p2|p1)} = max{p1F2(p2)/F(p1, p2), p2F1(p1)/F(p1, p2)}, with F1(p1) and F2(p2) the 7 

marginal non-null cdfs of SNPs for phenotype 1 and 2, respectively. For enriched samples, p-8 

values will tend to be smaller than predicted from the uniform distribution, so that  9 

F1(p1) ≥ p1 and F2(p2) ≥ p2. Then 10 

max {p1F2(p2) / F(p1, p2), p2F1(p1) / F(p1, p2)}  11 

≥ [π0 + π1 + π2] max{p1F2(p2) / F(p1, p2), p2F1(p1) / F(p1, p2)}  12 

≥ [π0p1p2 + π1p2F1(p1) + π2p1F2(p2)] / F(p1, p2). 13 

Under the assumption that SNPs are independent if one or both are null, reasonable for 14 

disjoint samples, this last quantity is precisely the conjunctional FDR given in Eq (7). Thus, Eq 15 

(8) is a conservative model-free estimate of the conjunctional FDR. 16 

 17 

 18 

19 



 23 

 1 

Table 1. Selected cross-trait conditional false discovery rate studies 

Primary phenotype Secondary phenotype Novel loci for primary 

phenotype 

Citation 

Schizophrenia Cardiovascular-disease risk 

factors 

14 at condFDR<0.01 (Andreassen et al. 2013a) 

Primary sclerosing 

cholangitis 

Autoimmune diseases 33 at condFDR<0.001 (Liu et al. 2013) 

Bipolar disorder Schizophrenia 2 at condFDR<0.01 (Andreassen et al. 2013c) 

Schizophrenia Multiple sclerosis 5 at condFDR<0.01 (Andreassen et al. 2014a) 

Systolic blood pressure Comorbid traits and diseases 42 at condFDR<0.01 (Andreassen et al. 2014b) 

Alzheimer disease C-reactive protein, plasma 

lipids 

55 at condFDR<0.05 (Desikan et al. 2015) 

Coronary artery disease Cardiovascular-disease risk 

factors 

67 at condFDR<0.01 (LeBlanc et al. 2015) 

Alzheimer disease Autoimmune diseases Not available (Yokoyama et al. 2016) 

Amyotrophic lateral 

sclerosis 

Schizophrenia 5 at condFDR<0.01 (McLaughlin et al. 2017) 

Schizophrenia Educational attainment 23 at condFDR<0.01 (Le Hellard et al. 2017) 

Sporadic frontotemporal 

dementia 

Alzheimer disease, 

Parkinson disease 

13 at condFDR<0.05 (Ferrari et al. 2017) 

Schizophrenia Cognitive traits 13 at conjFDR<0.05 (Smeland et al. 2017a) 

Corticobasal degeneration Progressive supranuclear 

palsy, frontotemporal 

dementia 

3 at conjFDR<0.05 (Yokoyama et al. 2017) 

Amyotrophic lateral 

sclerosis 

Neurodegenerative disorders  22 at condFDR<0.05 (Karch et al. 2018) 

Frontotemporal dementia Autoimmune diseases 5 at conjFDR<0.05 (Broce et al. 2018) 

Schizophrenia Subcortical brain volumes 3 at conjFDR<0.05 (Smeland et al. 2018) 

Attention-deficit/ 

hyperactivity disorder 

Educational attainment 4 at condFDR<0.01,       

1 at conjFDR<0.05 

(Shadrin et al. 2018) 

Alzheimer disease Cardiovascular-disease risk 

factors 

4 at conjFDR<0.05 (Broce et al. 2019) 

Schizophrenia, bipolar 

disorder 

Intelligence 20 schizophrenia loci 

and 4 bipolar disorder 

loci at conjFDR<0.01 

(Smeland et al. 2019) 

2 
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Figures 1 

 2 

Figure 1. Cross-trait enrichment between bipolar disorder (BD; n=51,710) (Stahl et al. 2019) 3 

and intelligence (n=269,867) (Savage et al. 2018), adapted from Smeland et al. (2019). (a) 4 

Conditional Q-Q plot displaying the nominal -log10 p-values of the single SNP association 5 

statistics versus their empirical distribution in BD below the standard GWAS threshold of 6 

p<5×10−8 as a function of significance of association with intelligence at the level of p ⩽ 0.1, 7 

p ⩽ 0.01, p ⩽ 0.001, respectively. The blue line indicates all SNPs. The dashed line indicates 8 

the null hypothesis. (b) Fold-enrichment plot of enrichment versus nominal -log10 p-values in 9 

BD as a function of association with intelligence.  (c) Conditional true discovery rate (TDR) 10 

plot illustrating the increase in TDR associated with increased enrichment in BD conditioned 11 

on intelligence. The test statistics were corrected for genomic inflation, SNPs were randomly 12 

pruned across 500 iterations using a linkage disequilibrium r2 threshold of 0.1, and the extended 13 

major histocompatibility complex region and chromosomal region 8p.23.1 were excluded 14 

(Smeland et al. 2019).15 
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 1 

 2 

Figure 2. (a) Conditional false discovery rate (condFDR) 2D look-up table for SNP 3 

associations with bipolar disorder (BD) conditional on SNP associations with intelligence, 4 

corresponding to the cross-trait enrichment observed in Figure 1. The FDR in BD SNPs are 5 

computed conditionally on the nominal intelligence p-values. (b) condFDR 2D look-up table 6 

for SNP associations with intelligence conditional on SNP associations with BD. (c) 7 

Corresponding conjunctional FDR (conjFDR) 2D look-up table for SNP associations shared 8 

between BD and intelligence. The color refers to the FDR values.  9 

10 

b ca
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1 

Figure 3. Common genetic variants jointly associated with bipolar disorder (BD; n = 51,710) 2 

and intelligence (n = 269,867) at conjunctional false discovery rate (conjFDR) < 0.05, adapted 3 

from Smeland et al. (2019). Manhattan plot showing the – log10 transformed conjFDR values 4 

for each SNP on the y axis and chromosomal positions along the x axis. The dotted horizontal 5 

line represents the threshold for significant shared associations (conjFDR < 0.05, ie, –log10 6 

(conjFDR) > 1.3). Independent lead SNPs are encircled in black. For details, see Supplementary 7 

Table 9 in Smeland et al. (2019). 8 
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