
Space-based weak gravitational
lensing measurements of
lensing-selected clusters

Elisabeth Strøm
Master’s Thesis, Spring 2019





Copyright c© 2019, Elisabeth Strøm

This work, entitled �Space-based weak gravitational lensing measurements of lensing-
selected clusters� is distributed under the terms of the Public Library of Science Open
Access License, a copy of which can be found at http://www.publiclibraryofscience.org.





Abstract

Weak gravitational lensing provides a way of estimating the mass and mass distribution
of galaxy clusters at large radii. The clusters act as lenses, so that light emitted by
background sources, is bent and distorted by the gravitational potential of the cluster.
At large radii, the induced distortions in the image of the background galaxies, can be
observed as a subtle systematic shift in their ellipticity. This is parametrized in the
reduced gravitational shear, g. In this thesis, we perform a weak lensing analysis on
three selected clusters, PSZ1 G311.65�18.48 (z=0.443), SDSS J1226+2152 (z=0.435),
and SDSS J1723+3411 (z=0.443), all imaged by the Hubble Space Telescope. First,
objects and their magnitudes are detected. Artifacts are �ltered out by only allowing
objects detected in multiple �lters. By putting an upper an lower limit on their signal-
to-noise ratio, and the sizes of the objects, stars and some cluster galaxies, are also
rejected. Next, we remove the red sequence, formed by cluster galaxies in a color-
magnitude diagram. Stars and are only a�ected by the point-spread-function (PSF) of
the telescope optics, and most form a column in a magnitude versus radius diagram.
They are used to determine the shape of the PSF. The �nal catalog, contains only
background galaxies, and their PSF corrected reduced shear, is measured through a
modi�ed KSB method (Luppino and Kaiser 1997). The azimuthally averaged reduced
shear, is found at di�erent radii, and converted into a 2D surface mass distribution. We
�nd that a NFW pro�le best �t our data, and obtain a mass estimate, M200, through a
best-�t analysis. The NFW pro�le depends on the parameters r200 and c200, the latter
of which is very di�cult to determine. While keeping c200 �xed, and estimated from the
relation found by Du�y et al. (2008), we report the following results: For PSZ1 G311.65�
18.48, we �nd σv ≈ 1066.4 km s−1, and M200 ≈ 1.1× 1015M�h

−1. This mass is about
1/2 of that extrapolated from Dahle et al. (2016), but well within our combined margins
of error. For the SDSS clusters, we were only able to obtain an upper and lower limit
of the mass. SDSS J1226+2152 is a part of a larger multi-cluster structure. This most
likely biases our shear measurements to smaller values, and results in an unexpectedly
small mass, M200 ≈ 2.1 × 1013M�h

−1. We suspect this is the same reason why our
measured cluster galaxy velocity dispersion, σv ≈ 323.0 km s−1, is so much smaller
than that found by Bayliss et al. (2011). For SDSS J1723+3411, we calculate a mass
of M200 ≈ 4.5×1014M�h

−1, and a velocity dispersion of σv = 518.9km s−1. Compared
to the strong lensing analysis done by Kubo et al. (2010) on the same cluster, our σv
values are very similar. If we extrapolate their mass estimate with an SIS pro�le, our
mass is ≈ 0.6 that of theirs.
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Chapter 1

Introduction

A hundred years ago, on May 29th 1919, the Moon passed in front of the Sun, darkening
the sky for 6 minutes and 51 seconds, at the longest. It was the second longest eclipse
since 1416. A total solar eclipse could be seen in a narrow band stretching from southern
Peru in South America, to northern Portuguese Mozambique (Mozambique) in Africa
(Espenak and Meeus 2006).

In Sobral, Brazil and on the island of Principe, o� of the African west coast, sci-
entists led by Sir Frank Watson Dyson and Sir Arthur Eddington, had assembled to
observe the stars that would be made visible during the total eclipse.

Their goal was to measure the position of the stars near the Sun's limb, in order
to verify or falsify Albert Einstein's newly proposed theory of general relativity. What
they found, was that the stars seen near the Sun, appeared to have a di�erent position
compared to observations of the very same stars taken at night. What they had observed
during the eclipse, was the bending of the light of the stars, by the gravitational �eld
of the Sun, making them appear to be elsewhere (Dyson et al. 1920).

This was not unexpected, as it had already been predicted by Sir Isaac Newtons
theory of gravity (Jaki 1978; Cavendish 1921). However, calculations done on the
displacement of the stars using this theory, was o� by a factor of two compared to what
was observed by the 1919 expeditions (Dyson et al. 1920). Using Einstein's general
theory of relativity, however, the correct value was obtained, and Einstein became
famous overnight.

This is the oldest experimental test of the general theory of relativity, and it has
been repeated many times since then. It took advantage of a phenomenon known as
gravitational lensing, which is when a massive object change the path of light that is
passing it by. And while used to verify one theory, it would take quite some time before
gravitational lensing in itself became a popular and useful area of study in astrophysics.
An article by Einstein in 1936 (Einstein 1936) has been considered the beginning of the
�eld. There, he put down the equations describing gravitational lensing done by stars.
Not a year later, Fritz Zwicky (Zwicky 1937a,b) proposed galaxies as a place to look
for the phenomenon, both as a lens, and as the lensed object.

The discovery of quasars in the 1960s, eventually led to the discovery of the �rst
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gravitational lens system, that of the twin quasars QSO 0957+561 A and B. This turned
out to be only one quasar, lensed twice (Walsh et al. 1979) by a foreground galaxy. The
advent of CCD cameras and better telescopes, such as the Hubble space telescope and
the Very Large Array, made this and further discoveries possible. Giant luminous arcs
produced by lensing done by galaxy clusters was found in 1986 (Lynds and Petrosian
1989; Soucail et al. 1987), and marked the discovery of the strong lensing regime. In
contrast, the more subtle weak gravitational lensing e�ect was �rst detected around
galaxy clusters in 1990 (Tyson et al. 1990).

Gravitational lensing has many uses, from acting as natural telescopes, determining
the mass and mass distribution of the lenses, to providing insight into the growth of
structures, and putting constraints on cosmological parameters. It is today an area of
active research with several thousand papers being written each year (Web of Science
2018), and with many further studies sure to come in the future.

1.1 Thesis outline

In this thesis, we will obtain an estimate of the mass of three separate galaxy clusters.
They are PSZ1 G311.65�18.48, SDSS J1723+3411, and SDSS J1226+2152. The mass
estimate will be derived from studying the mass distribution of the clusters through
the weak gravitational lensing e�ect, and �tting the observational data to mass density
pro�les.

In this chapter we go through the historical narrative behind the gravitational
lensing subject. Then we give a short introduction to cosmology and the basic equations
behind gravitational lensing. Lastly we have some properties of cluster lenses, and in
particular about the three clusters that are the subjects of study in this thesis.

In Chapter 2 we go through the methods we use to perform a weak lensing analysis.
This includes a brief description of the telescope and instruments used to obtain the
images of the lens systems, along with how the images have been processed prior to our
own analysis. We describe how we distinguish stars and cluster and source galaxies,
and how we perform point-spread function (PSF) corrections. Lastly we show how we
obtain a mass estimate of the cluster lenses, and how we �t our observational data to
two di�erent density pro�les.

In chapter 3 we show the results of our weak lensing analysis. They are then
discussed and compared with previous lensing studies done on these clusters. We also
provide a short summary.

1.2 Historical background

The �rst calculations on gravitational lensing are often attributed to Johann Sold-
ner (translation by Jaki (1978)) and Henry Cavendish (Cavendish 1921) in the early
eighteen-hundreds (Valls-Gabaud 2006). Seemingly independent of one another, they
were able to correctly analytically calculate the apparent displacement of the stars close
to the Sun, assuming Newtonian gravity. Einstein would arrive at the same value in
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1911 (Einstein 1993). Meanwhile, Einstein would calculate the actual correct value,
using his own theory, in an unpublished notebook in 1912 (Sauer 2008).

Following the 1919 solar eclipse, and the subsequent release of the obtained results
(Dyson et al. 1920), Eddington speculated that the lensing e�ect could give rise to fake
double stars (Eddington 1921). However, he believed that the observed e�ect would
be very small, and not possible to detect with the telescopes of their time. A few year
later, Orest Chwolson would be the �rst to describe what he called the �halo� e�ect
of gravitation: a perfect ring of de�ected light formed by a gravitational lens, should
the lens, the light source, and the observer be colinear (Chwolson 1924). We know this
today as an Einstein ring. He too agreed that fake double stars could be a product of
the lensing e�ect.

Despite these early queries, it would go over a decade before what has often been
considered the pioneering study of gravitational lensing, was published. It was a short
note in Science, written, quite reluctantly, by Einstein (1936). There, he presented
the formulae for the optical properties of a gravitational lens, the same formulae he
had written in his notebook in 1912 (Renn et al. 1997). Seeing as Einstein was only
considering the lensing of individual stars, he concluded, like Eddington, that the phe-
nomenon would be to small too be observed. This pessimistic outlook would rule this
branch of astronomy right up until the 1980s. Still, some notable papers were being
written every other decade or so.

Following Einsteins 1936 paper in Science, Fritz Zwicky suggested that the recently
discovered extragalactic �nebulae� (now known as galaxies) would be better candidates
as both light sources to be lensed, and as the lens itself (Zwicky 1937a). This was due
to their high apparent mass, and their distance from us. He stated the probability of
�nding galaxies that act as lenses to be �practically a certainty� (Zwicky 1937b). He
also predicted the several uses gravitational lensing could have: That it could serve
as another test for the general theory of relativity; it could make galaxies, at even
greater distances than what a telescope could normally see, visible; and the de�ected
light could aid in deciding the mass of the galaxies and galaxy clusters acting as lenses
(Zwicky 1937a). In the time since Zwicky's papers, gravitational lenses has been used
for all of these purposes.

It would, once again, go quite a few years before the next milestone was reached.
Interest was reawakened by a number of papers written independently in 1963-64 by Yu
G. Klimov (Klimov 1963), Sidney Liebes Jr. (Liebes 1964), and Sjur Refsdal (Refsdal
1964a,b). While Klimov wrote of galaxies lensing galaxies, Liebes wrote on the possib-
ility that stars in the Milky Way could act as lenses for stars in the Andromeda galaxy
M31. Refsdal, meanwhile, calculated how to use gravitationally lensed supernovae or
the newly discovered quasars, to determine the mass of the lens and the value of the
Hubble constant, based on the separation and time delay between lensed images.

Another 15 years, and the �rst extragalactic gravitational lens system had been
found. In 1979, Dennis Walsh, Robert F. Carswell and Ray J. Weymann found two
quasars, QSO 0957+561 A and B, lying close together, having a separation of 6 arc-
seconds. While unusual in itself, what was even more strange was that they appeared
to have the same redshift, z = 1.41, and that their optical spectra were almost identical.
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This led them to suspect that they were in fact only looking at one quasar that had
been gravitationally lensed by a massive object lying along the line-of-sight, in between
the quasars and the astronomers (Walsh et al. 1979). This object was later determined
to be the giant elliptical galaxy YGKOW G1, lying at redshift z = 0.39, which belong
to a small cluster of galaxies that also contribute to the lensing (Young et al. 1980;
Stockton 1980).

Technology is continuously evolving, but the year 1979 was a special one in astro-
nomy. In this year the �rst CCD detectors replaced photographic plates, and the Very
Large Array (VLA), went into operation. These technologies made the double quasar
discovery possible (Schneider 2006). CCD detectors are much more sensitive to light
than traditional photographic �lm, having a quantum e�ciency (QE) of 50 %−90 % and
below 5%, respectively. They also have better dynamic range and linearity (Tabbert
and Goushcha 2012; Tozer 2012). CCD cameras were used to detect the foreground
galaxy YGKOW G1 and its cluster acting as a lens. Meanwhile, observations using the
VLA allowed for subarcsecond radio imaging, which con�rmed that the double quas-
ars where radio sources, and that both images displayed similar radio characteristics
(Green�eld et al. 1980a,b).

All in all, it had gone 60 years since the 1919 eclipse, when the bending of light due
to a massive body was �rst observed, until the �rst extragalactic gravitational lens was
found. A number of other discoveries have since followed, such as the triple quasar PG
1115+080 (Weymann et al. 1980), the Einstein cross QSO 2237+0305 (Huchra et al.
1985), and the Einstein ring MG1131+0456 (Hewitt et al. 1988).

Giant luminous arcs where discovered in 1986 independently by Lynds and Petrosian
(1989) and Soucail et al. (1987). These are the strongly elongated images of background
galaxies lensed by the centers of massive clusters (Paczynski 1987). This was the
discovery of what is called the strong lensing regime in galaxy clusters, and can be
viewed as the beginning of studying gravitational lensing done by so called �cluster
lenses�. The Hubble space telescope (HST) was essential in the studying of the arcs
in detail, and recognizing multiple images (Schneider 2006). One of the �rst images
released from the refurbished Hubble after its �rst servicing mission, was that of the
cluster lens Abell 2218 (Kneib et al. 1996).

While strong lensing can produce large, obvious arcs, weak lensing will instead
introduce a subtle change in the shape of background galaxies, called arclets, causing
a systematic alignment of galaxies at large radii, around the cluster core. The weak
gravitational lensing e�ect was �rst detected by Tyson et al. (1990). This e�ect is often
very small, thus hard to detect, so special statistical methods are used. Throughout the
1990's, the development of wide �eld imaging cameras, larger and better telescopes, not
to mention the Hubble Space Telescope (HST), had made it easier to study gravitational
lensing done by clusters, and it is today an active �eld of research (Kneib and Natarajan
2011; Hoekstra et al. 2013). The study of gravitational lensing done by the large-scale-
structure in the universe, called the cosmic shear, was also made possible by these
technologies. On to something smaller, we can also detect a gravitational lensing e�ect
should a distant star pass directly behind a closer massive object, like a star or a star
with an orbiting planet (Alcock et al. 1993). Several such so-called microlensing events



1.3 Cosmology 17

have been observed, and they have become a way of detecting exoplanets (e.g, Udalski
et al. (2005)).

Like Zwicky predicted in 1937, gravitational lensing has been used to determine
the mass of clusters and individual galaxies, and also to derive the density pro�le of
dark matter at di�erent radii. Through comparisons with simulations, this can tell us
something about how clusters are formed (Hoekstra et al. 2013; Kneib and Natarajan
2011). The lensed objects have also been studied, using the lenses as natural telescopes,
and thus increasing our knowledge of distant galaxies. Gravitational lensing has also
been used to constrain cosmological parameters, such as the Hubble constant following
Refsdal's idea, and the matter density parameter. Future studies of weak lensing done
by the cosmic shear, and strong lensing done by clusters, could serve as a probe of the
equation of state for dark energy (Kneib and Natarajan 2011; Schneider 2006).

This is only a brief introduction to the historical narrative of gravitational lens-
ing. We will now continue into the more formal aspect on things, and lay down some
fundamental equations.

1.3 Cosmology

The validity of the cosmological principle is one of the most fundamental assumptions
made in cosmology. It states that, at large scales, the spatial distribution of matter
in the universe is both homogeneous and isotropic. This means that wherever an
observer �nds themselves in the universe, and in whatever direction they observe; on
large enough scales, it will all look the same. By not making our own position in the
universe special, we can use observations made locally to build a model of the universe
that is valid throughout the entirety of it.

Numerous such universe models exist, some describing certain epochs more accur-
ately than others. A metric tensor can be de�ned, which characterizes the geometry
of spacetime in a speci�c universe model. The metric then explains the way distances
in spacetime should be measured in any direction.

One of the �rst to discover the expansion of space was Edwin Hubble (Hubble 1929).
He observed that distant galaxies are moving away from us according to the relation
v = Hr, where v is a galaxy's recessional velocity, H the Hubble parameter, and r its
distance from us. The expansion of space is parametrized by the scale factor a(t). It
is normalized so that today, a(t0) = a0 = 1.

In the case of an isotropic and homogeneous universe, the spacetime can be described
by the Friedmann�Lemaître�Robertson�Walker (FLRW) metric,

ds2 = −c2 dt2 + a(t)2

(
dr2

1− kr2
+ r2 dΩ2

)
(1.1)

where
dΩ2 = dθ2 + sin2 θ dφ2. (1.2)

Here, ds is the interval between two events in spacetime, dt is the coordinate time, c
is the speed of light, a(t) is the scale factor, r is the comoving radial coordinate, and θ
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and φ is the azimuthal angle and the polar angle, respectively, on a unit sphere.
Another metric is the Minkowski metric of �at spacetime,

ds2 = −c2dt2 + dx2 + dy2 + dz2, (1.3)

where x, y, z are the 3-dimensional Cartesian coordinates. We will assume that around
our gravitational lenses, the local space is described by the Minkowski metric perturbed
by a dimensionless Newtonian potential, Φ/c2, which approaches zero at in�nity. The
perturbed Minkowski metric is given by

ds2 = −c2

(
1 +

2Φ

c2

)
dt2 +

(
1− 2Φ

c2

)
(dx2 + dy2 + dz2). (1.4)

Due to the expansion of space, photons will be redshifted as they move from their
source towards the observer. This relative change in wavelength is called the redshift,
z. It is related to the scale factor through

1 + z =
a(to)

a(te)
, (1.5)

where te is the time the photons where emitted, and to is when they where observed.
If we count our selves as the observers, 1 + z = 1/a(t).

We model the matter content of the universe as a homogeneous perfect �uid with
density ρ(t) and pressure p(t). The density and the pressure are related through the
equation of state

ρ(t) = wp(t)c2, (1.6)

where w is a constant depending on the species of matter (i.e, dust, radiation etc.).
When inserting the FLRW metric into the Einstein �eld equations from General

relativity, and modelling matter as a perfect �uid, they simplify to the two independent
Friedmann equations, (

ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λ

3
, (1.7)

ä

a
=− 4

3
πG

(
ρ+

3p

c2

)
+

Λ

3
, (1.8)

where Λ is the cosmological constant, k is the curvature parameter, and G is the
gravitational constant. The �eld equations relate local spacetime curvature with the
local energy and momentum within spacetime. Meanwhile, the Friedmann equations
relate the evolution of the scale factor to the energy and pressure of the matter content
in the universe.

1.3.1 Parameters

The relative expansion rate of space is parametrized by the Hubble parameter

H ≡ ȧ

a
, (1.9)
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where a dot, ,̇ denotes a derivative with with respect to time, t. The Hubble constant
is the value of the Hubble parameter today, H(t0) = H0, and is the current rate of
expansion. The exact value of H0 has proven di�cult to determine, hence it is often
written as

H0 = 100h km s−1 Mpc−1, (1.10)

with h as a dimensionless number measured to be in the range 0.6-0.8.
The critical density is the average density of the universe, ρ, when the universe

is �at (k = 0). A universe with this average density will halt its expansion after an
in�nite time. It is de�ned as

ρcrit(t) =
3H(t)2

8πG
. (1.11)

If the universe has an average density larger than ρcrit, then k = 1, and the universe's
expansion will slow down until it halts, then it will collapse. If the average density is
less than ρcrit, k = −1, and the universe will expand forever.

We commonly measure densities in terms of the critical density, and de�ne the
density parameter,

Ω =
ρ

ρcrit
, (1.12)

where its value today at t0, is Ω0 = ρ0/ρcrit. Matter, radiation, and dark energy,
contribute to the total density parameter of the universe,

Ωtot = Ωm + Ωr + ΩΛ = 1− Ωk. (1.13)

These are all time dependent quantities. Here, Ωm is the matter (dark and baryonic)
density, Ωr is the radiation density, ΩΛ is the vacuum density or the cosmological
constant, and Ωk is the spatial curvature density,

Ωr =
ρr0

ρcrit
a−4; Ωm =

ρm0

ρcrit
a−3; ΩΛ =

ρΛ

ρcrit
=

Λ

3H2
; (1.14)

Ωk = − kc2

a2H2
= 1− Ωr − Ωm − ΩΛ, (1.15)

where a subscript 0 denotes their values of today, t = t0.
We can rewrite the �rst Friedmann equation in terms of the Hubble parameter and

the density parameters,

H2

H2
0

= Ω0,ra
−4 + Ω0,ma

−3 + Ω0,ka
−2 + Ω0,Λ. (1.16)

Where necessary, we will be using the �at ΛCDM universe model, where the dark
matter is cold dark matter (CDM), spatial curvature is �at, and the density contribution
of radiation can be ignored, Ωk = Ωr = 0. The vacuum density can then be written as
ΩΛ = 1−Ωm, and the total density sums to 1, Ωtot = ΩΛ + Ωm = 1. Here, Ω0,m = 0.3,
and ΩΛ,0 = 0.7 and h = 0.7.
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1.4 Gravitational lensing basics

Here we go through some of the basic principles behind gravitational lensing. Some
of this will be expanded upon in Chapter 2. Much of this material was found in Bar-
telmann and Maturi (2017), Narayan and Bartelmann (1996), Hoekstra et al. (2013),
and Schneider (2006).

Gravitational lensing is a phenomenon that occurs when a massive foreground object
acts as a lens, distorting the light emitted by more distant objects, that traverse through
the lens's gravitational �eld. Stars, galaxies, galaxy clusters, or the large-scale structure
of galaxy �laments, can all act as lenses. What the visual e�ect of this is, varies greatly.
It depends on the relative positions between the object acting as a lens, or de�ector,
and the object being lensed, and the mass and mass distribution of the de�ector. This
distortion is a purely geometric e�ect, and occurs regardless of wavelength.

In the case of strong lensing, we may observe multiple images of a single source
galaxy, or large, bright arcs.

For the more subtle weak lensing, we might �nd it di�cult to see any di�erence
at all without doing a statistical analysis. What we then tend to �nd, is a systematic
distortion of the shape of the background sources, caused by the gravitational tidal
�eld at large radii.

One bene�t of gravitational lensing, is that it is independent of the luminosity and
composition of the lens, or its dynamical state, depending only on the projected two-
dimensional mass distribution of the lens, and geometrical properties such as the source
and lens position (Narayan and Bartelmann 1996). It therefore o�ers an ideal way of
studying dark matter, independent of its nature.

1.4.1 Assumptions

First we lay down some of the base assumptions that we make:

• The overall geometry of the universe is described by the FLRW metric (Equation
1.1), which assumes that space is homogeneous and isotropic. Next we assume
that the inhomogeneities which cause gravitational lensing, are only local per-
turbations (Narayan and Bartelmann 1996).

• Close to the lens, we assume an observer co-moving with the gravitational lens,
to have a locally �at Minkowskian space-time which is weakly perturbed by the
Newtonian gravitational potential of the lens, Φ. This is a valid assumption if we
have a weak gravitational �eld, |Φ| � c2, and if the peculiar velocity of the lens, v
is small, v � c. In practically all cases of astrophysical interest, these conditions
are met (Narayan and Bartelmann 1996; Bartelmann and Maturi 2017).

• We assume that the de�ection angles of the lensed images are small, and that the
extent of the lens along the line-of-sight is much smaller compared to the distance
between the observer and the lens, and the lens and the source. The lens can then
be considered thin, compared to the full length of the light path. Most de�ection
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angles in weak lensing, are also on the order of arcseconds or smaller. This is also
expected if we assume |Φ|/c2 � 1 (Narayan and Bartelmann 1996; Bartelmann
and Maturi 2017).

• The e�ects of di�raction are negligible (Deguchi and Watson 1986).

Now we will be able to make some approximations that can be more readily worked
with.

1.4.2 De�ection angle

The gravitational �eld of the lens will alter the course of light passing trough it, a�ecting
both the speed and direction of the photons. This is similar to what happens when light
passes through a prism. But unlike a prism, where the degree of distortion depends on
wavelength, in a gravitational lens all light is bent by the same degree, regardless of
wavelength.

We can similarly say that the gravitational potential has an e�ective index of re-
fraction(Narayan and Bartelmann 1996),

n =
c

c′
≈ 1− 2Φ

c2
. (1.17)

where c′ ≈ c
(
1 + 2Φ

c2

)
is the e�ective speed of light in the gravitational �eld. As n > 1,

the the e�ective speed of light is reduced in the gravitational �eld. This means that
light rays propagating through the �eld will be delayed relative to light rays propagating
outside it.

The total time delay is called Shapiro delay (Shapiro 1964), or gravitational time
delay, and is caused by spacetime dilation,

∆t =

∫ observer

source

2

c2
|Φ|dl, (1.18)

which is an integral over the light path from the observer to the source.
The change in direction experienced by photons in the the gravitational �eld, is

found by applying Fermat's principle. It states that light follows the path between two
points A and B along which its optical path is extremal (Bartelmann and Maturi 2017).
This leads to the angle of de�ection (Narayan and Bartelmann 1996),

α̂ =
2

c2

∫
∇⊥Φ dl. = −

∫
∇⊥n dl, (1.19)

which is the gradient of n, or the dimension-less Newtonian potential multiplied with
2, perpendicular to the light ray integrated along its path. This integral can be di�cult
to calculate, but as we assume α̂ to be small (usually a few arcseconds or less), the
integration path is approximately straight.
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As a �rst approximation to a gravitational lens, let us assume we have a point mass
M at the center of the coordinate system with gravitational potential

Φ(b, z) = − GM

(b2 + z2)1/2
, (1.20)

where G is the gravitational constant, z is the distance parallel to the z-axis, and b
is the impact parameter of the unperturbed light ray. The impact parameter is the
distance between the point mass M and the unperturbed light ray.

The de�ection angle of a passing ray of light, then becomes

α̂ =
4GM

c2b
=

2Rs

b
, (1.21)

where Rs = 2GM/c2 is the Schwarzschild radius of the point mass.

1.4.3 Lensing geometry

One of our base assumptions was that the angular separation between the lens and the
source is small. We therefore use the small angle approximation,

sin θ ≈ θ and cos θ ≈ 1. (1.22)

We also assumed that the lensing mass distribution is thin compared to the overall
extension of the light path. We can then use the thin screen approximation, which is
analogous to the thin lens approximation in optics.

In the thin screen approximation, instead of considering the three-dimensional mass
distribution of the gravitational lens, ρ(ξ, z), we use the mass distribution projected
along the line-of-sight. The mass is then contained in a sheet which lies in a plane
orthogonal to the line-of-sight. This sheet is called the lens plane, and is characterized
by its surface mass density,

Σ(ξ) =

∫
ρ(ξ, z) dz, (1.23)

where ξ is a 2-dimensional vector in the lens plane. Likewise, we speak of the source
plane, where the source is, and the observer plane.

As long as the thin screen approximation holds, the de�ection angle α̂ can be found
by summing the contributions of all mass elements Mi = Σ(ξ) d2ξ,

α̂ =
4G

c2

∫
(ξ − ξ′)

|ξ − ξ′|2
Σ(ξ) d2ξ′. (1.24)

In the case of an axially symmetric lens, we have that

α̂(ξ) =
4GM(ξ)

c2

ξ

|ξ|2
, (1.25)

where M(ξ) = 2π
∫ ξ

0 Σ(ξ′)ξ′ dξ′ is the mass enclosed within radius ξ = |ξ|.
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Figure 1.1: A set-up of the lensing system. The source position is marked by S, the observed
image at I, and the observer at O. The object acting as a lens is marked by the ellipse near
the middle of the diagram. The optical axis runs through the lens, ending at O, and the two
dimensional distance from the lens center, is marked by ξ. The angle between the optical axis
and the unlensed source, is β, and θ is the angle between the optical axis and the image. α
is the de�ection angle, meaning the angle between the source and its image, while α̂ is the
reduced de�ection angle. The angular distances between the observer and the source, DS, the
observer and the lens, Dl, and the lens and the source, Dls, have also been marked. This �gure
was made with the TikZ package (Tantau 2019).

When using the thin screen approximation, the light-path from the observer to the
source can be approximated by straight lines, as long as we are looking at isolated
structures, like galaxy clusters. A diagram of the gravitational-lens system can be seen
in Figure 1.1.

The solid line is the actual path of the light coming from the source at S, reaching
the observer at O. The image, at I, is where the source appears to be as seen from
O, due to the de�ection of the light rays done by the gravitational lens. The optical
axis runs from the observer, and through the lens. As seen by the observer, the angle
between the optical axis and the source is β, and the optical axis and the image, is
θ. The distances between the observer and the lens, the observer and the source, and
the lens and the source, are Dl, Ds, and Dls, respectively. Clearly, the lensing signal
depends on the redshift of both the source, and the lens. These distances are angular
diameter distances, meaning that the relation,

Dsθ = βDs + α̂Dls, (1.26)

which is found from Figure 1.1, is valid even if space-time is not �at. In general,
Dls 6= Ds +Dl.

From Equation 1.26, we �nd the lens equation,

β = θ −α, (1.27)
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where we have introduced the reduced de�ection angle α,

α =
Dls

Ds
α̂. (1.28)

The lens equation is in general non-linear, meaning multiple images can correspond to
a single source, as is the case in strong lensing.

Next we introduce the lensing potential, also called the de�ection potential, which
we will see, incorporates all imaging properties of a gravitational lens. The lensing
potential is a two-dimensional scalar potential, which is the scaled, projected Newtonian
potential of the lens,

ψ(θ) =
2

c2

Dls

DlDs

∫
Φ(Dlθ, z) dz. (1.29)

Here we used that ξ = Dlθ. We see from this equation that the derivative of ψ with
respect to the angular position θ, is the reduced de�ection angle,

α = ∇θψ (1.30)

where ∇θ = Dl∇⊥.
For a point mass lens, the de�ection angle and lens potential becomes

α =
∂ψ

∂θ
, and ψ =

4GM

c2

Dls

DlDs
ln |θ|. (1.31)

1.4.4 Einstein radius

Multiple images are frequently seen when background sources are viewed via a region
of the lens that have a mass density equal to or larger than the critical surface mass
density, de�ned as

Σcrit =
c2

4πG

Ds

DlDls
. (1.32)

We say that a lens region is supercritical if Σ > Σcrit.
In the case of a single point mass lens, the lens equation (Equation 1.27) can be

rewritten as

β = θ − Dls

DlDs

4GM

c2θ
. (1.33)

In the special case where a source lies directly behind such a lens, i.e it lies exactly
on the optical axis, then β = 0, and the resulting image will be a ring if the lens is
supercritical. This is called an Einstein ring, and its radius is known as the Einstein
radius, θE. We can calculate it to be

θE =

[
4GM

c2

Dls

DlDs

]1/2

. (1.34)

We can see from Equations 1.32 and 1.34, that within the Einstein radius, the mean
mass density is equal to the critical mass density Σcrit.
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The Einstein radius is an important quantity. When multiple imaging occurs, the
typical angular separation of the images is on the order of 2θE. Sources that lie closer
to the optical axis than θE, will experience strong lensing, while sources located well
outside this radius, are not as strongly magni�ed. In this way, it establishes a rough
boundary between sources that will be multiple- and singly-imaged (In general, Σ >
Σcrit is a su�cient condition for a source to be multiple-imaged, but it is not always a
necessary one).

1.4.5 Magni�cation and distortion

What gravitational lensing essentially is, is a mapping from the source plane to the
image plane.

The relation between the source and its image can be locally lineralized given that
the source is much smaller than the scale on which the lens properties change(Schneider
2006). This case is what is referred to as weak gravitational lensing. The distortions
in the image is described by the Jacobian matrix, also called the distortion matrix, of
the lens mapping, A, which has the components

Aij =
∂βi(θ)

∂θj
= δij −

∂αi(θ)

∂θj
= δij − ψ,ij , (1.35)

where δij is the Kronecker delta, and where

ψ,ij =
∂2ψ(θ)

∂θi∂θj
, (1.36)

are the potential derivatives, computed at the center of the lensed image.
During gravitational lensing, the surface brightness is conserved, according to Li-

ouville's theorem from general relativity1. Hence, if a source has the surface brightness
f s(β) in the source plane, the observed surface brightness in the lens plane, is

fobs(θ) = f s[β(θ)]. (1.37)

Written as a remapping of the surface brightness, we get

fobs(θi) = f s(Aijθj). (1.38)

The Jacobi matrix can also be written in terms of the convergence, κ, and the shear
γ or reduced shear, g,

A =

1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 = (1− κ)

1− g1 −g2

−g2 1− g1

 . (1.39)

The convergence perturb the source in that it is rescaled with a constant factor
in all directions. To the �rst order, magni�cation, and sometimes demagni�cation,

1A full derivation of the theorem can be found in Chapter 2, p.585 in Misner et al. (2017)
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depends only on κ. The overall shape of the image remains the same. The convergence
is de�ned as

κ =
Σ

Σcrit
=

1

2
∇2
θψ. (1.40)

Shear is often written as a complex number with components

γ1 =
1

2
(ψ,11 − ψ,22) (1.41)

γ2 = ψ,12 = ψ,21 (1.42)

with γ = γ1 + iγ2 and a magnitude |γ| = (γ2
1 + γ2

2)1/2.
Shear describes the anisotropic distortion of a source caused by the tidal gravita-

tional �eld. The intrinsic shape of the source is stretched along one direction according
to γ1 and γ2.

The source image is a�ected by both the convergence and the shear. The distortions
we observe, are a result of both. This is incorporated in the reduced shear g, de�ned
as

gi =
γi

1− κ
. (1.43)

The total distortion acting on a circular source with radius R, will then result in
an elliptic image with major and minor axes

a =
R

1− κ− |γ|
and b =

R

1− κ+ |γ|
, (1.44)

respectively.
The total magni�cation of a source as seen in its image, is the inverse of the de-

terminant of the Jacobian:

µ =
1

detA
=

1

(1− κ)2 − |γ|2
=

1

(1− κ)2(1− |g|2)
. (1.45)

So the shape distortion is caused by the shear, while the magni�cation is caused by
both the shear and the convergence.

1.4.6 Measurement

We do not usually know the size of a source prior to its magni�cation. What we do
know, is the ellipticity of the image, and its orientation. For a circular source, the
lensing-induced image ellipticity is de�ned as

ε =
1− b/a
1 + b/a

e2iφ. (1.46)

where φ is the position angle with respect to our chosen center, and the magnitude
of the ellipticity is |ε| = 1−b/a

1+b/a . This is what we actually measure when observing the
background galaxy images.
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In the weak lensing limit the ellipticity directly measures the reduced shear, ε = g.
Thus, we measure g rather than γ itself.

Sources are rarely ever circular. Background galaxies have an ellipticity of their
own, owing to their orientation on the sky, and to their own intrinsic shape. The
ellipticity we actually measure, is then the original ellipticity of the source, together
with the ellipticity induced by the gravitational lens. In the weak lensing regime,

εI =
εS + g

1− g∗εS
≈ εS + g, (1.47)

where εS is the intrinsic ellipticity of the source, and where ∗ denotes the complex
conjugate.

We measure the mean ellipticity at θ to get rid of the shape noise arising from the
intrinsic shape of the sources, and instrument noise. We �nd that

〈ε〉 ≈ 〈g〉 (1.48)

This is the case for an ideal lens, where there is no signal distortion from things like
atmospheric seeing, and the so called point-spread function (PSF). A more realistic
measure of the ellipticity was developed by Kaiser et al. (1995). We will go through
this method in Chapter 2, along with how to get a mass estimate from the measured
ellipticity.

1.5 Galaxy clusters

Galaxies are not randomly distributed throughout space: They tend to cluster together,
forming groups and clusters of galaxies. Groups consist of just a few galaxies, while
clusters have up to a few 1000 galaxies. We can therefore observe overdensities of
galaxies on the sky, and this was the original method of detecting clusters (Schneider
2006). This is how the Abell catalogs (Abell 1958; Abell et al. 1989) were made. Today,
more than a hundred thousand clusters have been found.

Galaxy clusters are usually members of even larger structures called superclusters.
Clusters and superclusters make up �laments, which are threadlike structures separated
by voids, typically with a length of 50 − 80 Mpc. Filaments are the largest known
structures in the universe (Bharadwaj et al. 2004).

Galaxy clusters are the largest and most massive gravitationally bound structures
that we know of, and they consist mostly of dark matter. The �rst indication of this
came from Zwicky in 1933 (Andernach and Zwicky 2017), who noted that the galaxies
in the Coma cluster move so fast that it would need at least 400 times the mass derived
from observing the luminous matter, to keep the galaxies gravitationally bound. X-
ray observations have also shown galaxy clusters to contain a very hot (107 − 108K)
intracluster medium (ICM) emitting X-ray radiation (Bartelmann and Schneider 2001).
They are the most luminous X-ray sources we have ever observed. We expect galaxy
clusters to have a virial mass1 on the order of Mvir ∼ 1014 − 1015M�, of which 80%

1Mass of a cluster, assuming dynamical equilibrium
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is dark matter, ∼ 15% is the intracluster medium, and ∼ 3% is the baryons within
the member galaxies (Schneider 2006). The virial radius of clusters are on the order of
a few megaparsecs, rvir ∼ 1.5h−1, and the one-dimensional velocity-dispersion of the
member galaxies is typically σv ∼ 1000 km s−1 (Schneider 2006).

The �ux and temperature of the ICM, o�ers another way of estimating the mass and
other properties, although we then assume the ICM to be in hydrostatic equilibrium
and having a spherically symmetric potential. If we assume virial equilibrium, the
velocity distribution of the member galaxies can also provide a mass estimate (Schneider
2006). These methods then con�ne us to dynamically stable clusters, unlike when using
gravitational lensing.

There exists several subtypes of galaxy clusters, but we can divide them into two
main ones: regular and irregular. The galaxies in regular clusters are mainly ellipt-
ical(E), lenticular(S0), and irregular galaxies with little star formation. Near the center,
we often �nd a massive cD galaxy, which are the largest galaxies. The cluster is spherical
in shape with a concentrated central core. They are frequently rich clusters, containing
several thousand galaxies.

Irregular clusters come in many shapes, and often have fewer members than regular
clusters. They can have strong substructure and no well-de�ned center. They contain
elliptical, lenticular, and irregular galaxies, and a greater number of spiral(S) galaxies
than regular clusters tend to. Many irregular clusters may have formed only recently,
hence their irregularity (Schneider 2006).

Galaxy clusters are often used in gravitational lensing due to their massive size. As
the lensing signal is proportional to the total mass of the cluster system, they were
the �rst objects used in detecting the weak lensing signal (Hoekstra et al. 2013; Tyson
et al. 1990).

There are multiple methods for detecting galaxy clusters. Cluster galaxies have the
same redshift, and can be found using optical photometry and spectroscopic redshift
surveys (e.g, Wen et al. (2012)). Cluster galaxies also tend have the same colors,
forming the red sequence in a color magnitude plot, due to the high amount of red,
elliptical galaxies (See Figure 2.6). Their red color is due to them consisting mainly of
old, red stars, and there being little or no active star formation in these galaxies. The
colors of elliptical galaxies are therefore evolving slowly with time.

As clusters are some of the brightest X-ray objects we know of, they have been
identi�ed in X-ray surveys. The Sunyaev-Zel'dovich (SZ) e�ect (Sunyaev and Zeldovich
1972), where the cosmic microwave background(CMB) is distorted, and low energy
CMB photons are given an energy boost by high-energy electrons in galaxy clusters,
has also been used (Carlstrom et al. 2000; Marriage et al. 2011).

1.5.1 Three clusters

There are three galaxy clusters that will be studied in this thesis. The images we use,
are all taken by the HST, which is described in more detail in Chapter 2.

Two of the clusters were �rst imaged in the Sloan Digital Sky Survey (SDSS),
but were only later detected as gravitational lenses. The �rst is the cluster SDSS
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J1723+3411, detected by (Kubo et al. 2010), who also did a strong lensing study.
The second is SDSS J1226+2152, detected by Wen et al. (2009). SDSS J1226+2152

is a part of a larger complex structure consisting of several clusters. A strong lensing
study of 26 clusters, including SDSS J1226+2152, has been done by Bayliss et al. (2011).

The third cluster is that of PSZ1 G311.65�18.48, which was �rst detected as a lens
candidate in the Planck survey (Planck Collaboration et al. 2014). A previous strong
lensing analysis has been done on this lens by Dahle et al. (2016).

All three of these cluster lenses have been studied in the past, using strong grav-
itational lensing, as they all contain bright luminous arcs. The two SDSS lenses are
scheduled to be observed with the upcoming James Webb Space Telescope (JWST),
as part of the TEMPLATES Early Release Science Program (Pls J. RIgby/J. Vieira).
Hence we expect bigger data sets of them in the future. A weak lensing analysis of
these three lenses, then seems appropriate.

In Table 1.1, some characteristics of the clusters are shown.

Table 1.1: Cluster characteristics. Here, z is the redshift, α is the right ascension, and δ is the
declination and they are both listed in units of degrees. σv is the velocity dispersion of the
clusters, and Dl is the angular diameter distance in a �at ΛCDM cosmology with Ωm,0 = 0.3.
A − indicates that the parameter value has not been measured.

Cluster z α δ σv Dl

[deg] [deg] [km s−1] [Mpc]

SDSS J1723+3411 0.444a 260.90064 34.199495 530± 17a 830.900

SDSS J1226+2152 0.435b 186.71543 21.873715 730+71
−119

b 821.127

PSZ1 G311.65�18.48 0.443c 237.52933 −78.19177 − 829.827

a from Kubo et al. (2010)
b from Bayliss et al. (2011)
c from Dahle et al. (2016)

The �elds of PSZ1 G311.65�18.48, SDSS J1226+2152 and SDSS J1723+3411, can
be seen in �gures 1.2, 1.3, and 1.4.
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Figure 1.2: A slightly cropped image of the �eld of PSZ1 G311.65�18.48. North is up, and
east is to the left in the image. The image is in the F814W �lter. The �eld of view here is
867′′ × 165′′, or 5900× 5500 pix2.
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Figure 1.3: A cropped image of the �eld of SDSS J1226+2152. North is up, and east is to the
left in the image. The image is in the F814W �lter. The �eld of view here is 107′′ × 90′′, or
3300× 3000 pix2.
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Figure 1.4: A cropped image of the �eld of SDSS J1723+3411. North is up, and east is to the
left in the image. The image is in the infrared F110W �lter. The �eld of view here is 94′′×69′′,
or 2600× 2300 pix2.



Chapter 2

Method

We went through the basics of cosmology and gravitational lensing in Chapter 1. In
this chapter we go more in depth on how to measure the shear of background galaxies
that have been weakly gravitationally lensed by a galaxy cluster, and how we can use
this to obtain a mass estimate of the gravitational lens. The images we are analyzing
were taken in di�erent �lters by the Hubble Space Telescope (HST). We go through
the properties of the telescope, and the speci�c detectors onboard that were used.

The images that we received were not the raw data taken by the HST. They had
already been made ready for a scienti�c analysis, and so we brie�y mention exactly
what was done to the images prior to us receiving them.

We go through in detail how we analyze the images to obtain a shear estimate
γobs by using the Kaiser-Squires-Broadhurst (KSB)(Kaiser et al. 1995) method with
modi�cations made by Luppino and Kaiser (1997), and some corrections made by
Hoekstra et al. (1998). We compare this estimate with the shear calculated from two
di�erent theoretical density pro�les, that of a singular isothermal sphere (SIS), and
the Navarro-Frenk-White (NFW) pro�le. In this way we �t the density pro�le to the
observed data, and �nd an estimate of the mass of the lensing cluster.

We repeat that where necessary, we use a �at ΛCDM cosmology with Ωm,0 = 0.3
and Ω0,Λ = 0.7, and H0 = 100h km s−1 Mpc−1, where h = 0.7.

The results of our weak lensing analysis are found in Chapter 3.

2.1 The Hubble Space Telescope

The images we study in this thesis were taken by di�erent instruments and detectors
onboard the Hubble Space Telescope (HST).

The HST was launched by NASA on the 24th of April, 1990, and remains in low
Earth orbit. It is the only space telescope designed to undergo repairs and upgrades
by astronauts, and there have been several such servicing missions (Garner 2015a).
The �fth and �nal one was completed in 2009. Anyone, anywhere in the world can
request time with the Hubble. Ultimately, it is the Space Telescope Science Institute
(STScI) that decide which proposals and targets to accept, based on a process of peer
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review by international panels of astronomers and technical feasibility evaluation by
STScI. Meanwhile, the Goddard Space Flight Center is in control of the spacecraft itself.
Should an astronomer's proposal be accepted, they have a six-month proprietary period,
after which they are publicly released for anyone to see and study. This has made the
Hubble a very productive telescope, with over 15 000 scienti�c articles published about
its �ndings (Hille 2018).

As the telescope resides outside the atmosphere, light pollution, weather conditions,
and atmospheric turbulence (seeing) does not a�ect its imaging, as is the case for
ground-based telescopes. The HST is di�raction-limited, meaning that the angular
resolution is limited only by the physics of light di�raction, and not other factors
like those just mentioned. Ground-based observatories usually can not view details
or separate between objects lying closer than 1 arcsecond (′′, 1◦ = 1/3600′′) on the
sky. Meanwhile, the optimal angular resolution the HST can achieve, is 0.05 ′′ (Garner
2015b). The result is a telescope able to see deep into space, providing us with extremely
high-resolution images.

The HST is 13.3 meters long, and has two mirrors. The primary mirror, which
catches light from objects in space, has a diameter of 2.4 meters. The light is redirected
to the 0.3 meter secondary mirror, which redirects the light to the focal plane where the
instruments are. There are six instruments onboard the HST, consisting of cameras,
spectrographs, and guidance sensors. They observe in the ultraviolet (UV), visible (V)
and near-infrared (IR) part of the electromagnetic spectrum. The instruments also
have built-in corrections to the spherical aberrations caused by the imperfect primary
mirror. The Hubble is solar powered, having two solar arrays to power its batteries
(Garner 2015b).

Numerous discoveries have been made possible due to the HST, such as determin-
ing the rate of expansion of the universe, �nding extrasolar planets, studying galaxy
mergers, or studying dark matter through gravitational lensing (Garner 2017a).

As no further servicing missions are planned, due to constant exposure to the radi-
ation of space, the instruments will start to degrade, and eventually stop functioning.
Still, the HST is expected to be able to continue operations into the 2020s. The in-
frared James Webb Space Telescope (JWST), which has a planned launch in 2021, will
hopefully be able to work concurrently with the Hubble (Garner 2015b).

2.1.1 Instruments

Hubble possess cameras, spectrographs and interferometers. The two primary cameras,
which are also the ones used to take our exposures, are the Wide Field Camera 3
(WFC3), and the Advanced Camera for Surveys (ACS).

The ACS replaced the Faint Object Camera (FOC) during the fourth servicing
mission (Servicing Mission 3B). It detects light in the near-ultraviolet to the near-
infrared wavelength range, through three independent channels. It was designed to
survey large areas of the sky in great detail, and can also perform spectroscopy by use
of a grism. It has a 10 times greater e�ciency than the previous main camera, the
Wide Field and Planetary Camera 2 (WFPC2).
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Of the three channels of the ACS, the one we used was the Wide Field Channel
(WFC). Its detector consists of two butted 2048 × 4096 pix2 Charge Coupled Device
(CCD) detectors. The �eld of view is 202′′× 202′′, and the pixel size is 15µm× 15µm.
Its pixel scale, which relates an object's angular size to the linear size of its image in
the focal plane, is 0.05′′/pix (Ryon et al. 2019). The WFC has a number of �lters,
which can be found in the ACS handbook (Ryon et al. 2019). The WFC has a spectral
coverage from 350 nm to 1100 nm, and is designed to be particularly sensitive to red
wavelengths. This makes it an ideal tool for surveying redshifted galaxies and galaxy
clusters, at moderate to large distances away (Garner 2016).

The WFC3 replaced the WFPC2 in the �fth and �nal servicing mission. It is
therefore the most technologically advanced instrument onboard the HST, providing
better resolution and a wider �eld of view than its predecessor. It o�ers a performance
comparable to that of the ACS, but over a wider wavelength range, spanning from the
ultraviolet to the near infrared. The WFC3 has two channels: the ultraviolet-visible
(UVIS) channel, and the near-infrared (IR) channel. Their detectors are solid-state-
devices (Garner 2017b; SpaceTelescope nd).

The UVIS channel detector is made up of two butted 2048×4096 pix2 CCD detect-
ors, with a pixel size of 15µm × 15µm. It has a �eld size of 160′′ × 160′′, giving it a
resolution of 0.04′′/pix. It covers wavelengths from 200 nm to 1000 nm.

The IR channel detector has a single CCD detector with 1014× 1014 active pixels
(physical size is 1024×1024 pix2) and a pixel size of 18µm. Its �eld of view is 123′′×136′′,
resulting in a plate scale of 0.13 ′′/pix. Its spectral coverage if from 850 nm to 1700 nm,
and it is designed to be insensitive to wavelengths above this, making it unnecessary to
use a cryogenic cooler. Additional properties on both cameras and their channels can
be found in the WFC3 (Dressel et al. 2019) and ACS (Ryon et al. 2019) instrument
handbooks.

2.1.2 Imaging three clusters

For the cluster SDSS J1723+3411, the WFC3 camera was used. The images were taken
between the 14th to 15th of March 2013 by Michael D. Gladders, and the proposal ID
of these frames is 13003. Two images were taken by the UVIS channel with the �lters
F775W (775 nm) and F390W (390 nm), while two images were taken by the IR channel
with the �lters F160W (1600 nm) and F110W (1100 nm). Of these, only the F775W
image is used in our analysis. The �lters work, by allowing radiation of a certain
wavelength to pass, while blocking out the rest. For instance, the F775W �lter is
centered at 775 nm, and allows a small range of wavelengths around this value, to pass.
This image was made from combining four exposures, each with an exposure time of
595 seconds, and a total exposure time of 2380 seconds.

For the cluster SDSS J1226+2152, the WFC channel of the ACS was used to take
two images: one with the F606W (606 nm) �lter, and one with the F814W (814 nm)
�lter. We use both of these images. Four exposures were taken with each �lter, with
exposure time 512 seconds. The total exposure time of each image, is then 2040 seconds.
The exposures were taken the 14th of April 2011. Their proposal ID is 12368.
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Finally, for the cluster PSZ1 G311.65�18.48, one image was taken by the WFC
channel of the ACS with the �lter F814W (Proposal ID = 15101), and the other was
taken by the UVIS channel of the WFC3 with the �lter F606W (Proposal ID = 15377).
The reason di�erent cameras were used in the last case, is that the ACS is more sensitive
than WFC3 in the F814W-band. This image is combined from eight exposures: four
with an exposure time of 638 seconds, and four with an exposure time of 684 seconds,
making it totally 5280 seconds. The F606W image was retaken at a later date, when the
cluster was revisited. The image is combined from �ve exposures. Two had an exposure
time of 742 seconds, and three had 994 seconds. The total is then 4466 seconds. The
F814W exposures were taken the 21st to the 22nd of February 2018, and the F606W
exposures were �rst imaged the 27th of September 2018, then re-imaged the 18th of
January 2019.

2.1.3 AstroDrizzle

All data obtained by the di�erent cameras are sent to the STScI Operational Pipeline
Uni�ed System (OPUS). Here the raw data is calibrated, and the resulting �nal FITS
�les are ready for scienti�c analysis.

The image calibration is done by two separate packages: calacs (for ACS) or
calwf3 (for WFC3), which corrects for instrumental e�ects, and AstroDrizzle, which
corrects for geometric distortion, cosmic rays and hot pixels1.

The calacs/calwf3 package does the standard calibration of the data, i.e, removing
the bias level, correcting for the charge transfer e�ciency (CTE)2, removing cosmic
rays, subtracting the dark frames, and �at-�elding the images. The details of these
processes can be found in the ACS (Lucas et al. 2018, p. 40�45) and WFC3 (Gennaro
et al. 2018, p. 7�9 and 35�53) data handbooks. Remaining cosmic rays and hot pixels
may be rejected by AstroDrizzle.

Drizzling is the informal term for linearly reconstructing undersampled data, thereby
improving their resolution. It was originally developed for the HST, where the optics
together with the detectors can provide excellent resolution over a small �eld of view,
or it can undersample a larger �eld of view. Drizzling, is then a way of restoring the
lost data when undersampling (Fruchter and Hook 2002). The AstroDrizzle package,
is the one currently used for this reconstruction.

The concept behind it is straightforward enough: pixels in the input image are
shrunk, then mapped onto the �ner pixel grid of the output image. The shrunken
pixels, are known as drops. This is shown in Figure 2.1. The full details can be found
in the original article, Fruchter and Hook (2002).

Drizzling also can also remove geometric distortion, which the data taken by WFC3
and ACS are signi�cantly a�ected by. The main reason for this is that the focal plane
is tilted relative to the optical axis, which is necessary to preserve constant focus across
all detectors. For the WFC3-UVIS channel and the ACS channels, the distortions runs

1Pixels that are damaged and experiences increased dark current (Lucas et al. 2018, p. 96).
2The CTE is a measurement for the fraction of electrons that are succsessfully moved from one pixel

to another during read-out of the CCD.
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Figure 2.1: Figure showing the basic idea behind drizzling. The input pixels are shrunken, then
mapped onto a �ner output grid.

parallel to the diagonal of the CCD, making the projected �eld on the sky the shape of
a rhombus (Dressel et al. (2019, Chapter 2.2); Lucas et al. (2018, p. 3)). This means
that the area of the sky seen by a pixel, is not constant. The AstroDrizzle package
is used to correct this. It also has its own cosmic ray rejection and hot pixel removal
tools. More information on Astrodrizzle can be found in the data handbooks of the
ACS (Dressel et al. 2019) and WFC (Lucas et al. 2018), or on the STScI DrizzlePac
webpage4.

The reduction of the images in �lters F606W and F814W taken of the PSZ cluster,
were conducted by Michael Florian. The observations were done using a 4-point dither
pattern. Dithering are small changes in the telescope position between exposures.
Celestial objects will then be shifted, while hot pixels and other artifacts will remain
constant. Hence, dithering reduces the e�ects of bad pixels, and makes it easier to
sample the point-spread function. The celestial objects are used as references when
aligning the exposures.

The images in each �lter, where aligned using the DrizzlePac routine tweakreg.
The drop size was 0.8 of the original pixel, and Astrodrizzle using a Gaussian kernel,
was used to drizzle the images onto a grid with a pixel size of 0.03′′ (Rivera-Thorsen
et al. 2019).

4http://drizzlepac.stsci.edu/
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2.2 Weak lensing theory

The basics behind gravitational lensing is covered in Section 1.4. We recap and expand
on some of it here.

Light propagating through the gravitational �eld of a massive object, will experience
a change in direction, and be delayed relative to light propagating through space, far
outside of the �eld. This is what is called gravitational lensing. In the case of this
thesis, the massive object is a galaxy cluster, while the source of light is background
galaxies lying at a higher redshift than the cluster.

Gravitational lensing can be roughly divided into two types: Strong gravitational
lensing occurs close to the cluster core, around the Einstein radius θE, and the sources
can be bent and magni�ed into bright luminous arcs, or even be multiply imaged. Weak
gravitational lensing, which is the subject of this thesis, happens at larger radii, and
the e�ect causes a small but coherent distortion of the shape of background sources.
To be able to measure this e�ect, we require a great number of sources. In Section 2.3,
we go through how we can detect this e�ect through a statistical analysis called the
Kaiser-Squires-Broadhurst (KSB) method.

A background galaxy with surface brightness f s(θ) will be distorted by the gravit-
ational potential of the lens. The observed distortion will be

fobs(θi) = f s(Aijθj), (2.1)

where θ is the 2D angular distance from the lens center in the lens plane, and θ = |θ|.
The distortion matrix, Aij (See Equation 1.35), is the Jacobi matrix of the mapping of
the source from the source plane, to its image in the lens plane.

The gravitational surface potential is denoted ψ. It is connected to the gravitational
shear, γ, and the convergence, κ, through the relations,

γ1 =
1

2
(ψ,11 − ψ,22) (2.2)

γ2 = ψ,12 = ψ,21 (2.3)

and

κ =
1

2
(ψ,11 + ψ,22) (2.4)

where the commas represent derivatives of Ψ with respect to the angular radius θ, in
the lens plane

ψ,ij =
∂2ψ(θ)

∂θi∂θj
. (2.5)

The convergence is also related to the surface mass density of the gravitational
lens, κ = Σcrit/Σ, where Σcrit (see Equation 1.32) is the critical surface density. A
usual condition for weak lensing, is that κ� 1. However, we will not be able to make
this assumption in our analysis, as κ will be a signi�cant contributor to the observed
ellipticity. Both the convergence and the shear cause the distortions we see in the
images of the sources. Convergence cause an isotropic magni�cation of the source, while
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shear magni�es and induces ellipticity to the image, stretching it along one, privileged
direction. The actual observable is thus the reduced shear, g, which parametrizes both
of these e�ects:

g =
γ

1− κ
. (2.6)

The reduced shear is then the distortion induced by the gravitational lens onto the im-
age, as light from the source propagates through its potential. But background galaxies
have an intrinsic ellipticity of their own. The ellipticity of the image we observe, εI is
therefore a result of both g and the intrinsic ellipticity of the sources, εS. Addition-
ally, the measured ellipticity will be a�ected by the point-spread-function (PSF). The
PSF is caused by the telescope optics when in space, and, in ground-based telescopes,
by atmospheric seeing, telescope guiding errors, and atmosperhic dispersion as well.
Hence, the equation for the image ellipticity εI in Equation 1.47, describes a very ideal
case, and not what we actually observe. Kaiser et al. (1995) developed a method of
measuring the shear and ellipticity, while accounting for all these things, and some
modi�cations and corrections to their method were made later (Luppino and Kaiser
1997; Hoekstra et al. 1998). We will go through the modi�ed method in Section 2.3.

It can be useful to express the shear, the reduced shear, and the ellipticity in terms
of a tangential component, denoted T, and a curl (or cross) component, denoted ×.
They are rotated 45◦ relative to each other. The shear, for instance, is then written as

γT = −(γ1 cos 2φ+ γ2 sin 2φ) (2.7)

γ× = −(γ2 cos 2φ− γ1 sin 2φ), (2.8)

where φ is the azimuthal angle with respect to our chosen center, which will be the
central galaxy in the cluster. In the case of a spherically symmetric density pro�le,
like that of the singular isothermal sphere, or the NFW-pro�le (see Equation 2.51 and
Section 2.5.2), γ× = 0, and the shear we measure is just the tangential shear.

The convergence can only be recovered up to a constant κ0. This re�ects the fact
that we can add a uniform mass sheet to the lens mass without altering the shear. This
is known as the mass-sheet degeneracy, and was initially discovered by Gorenstein et al.
(1988). As we will �t our data to mass density pro�les, this will not be a problem,
although it will a�ect the aperture mass, which is de�ned in Section 2.3.4.

2.2.1 The PSF

The point-spread function (PSF) plays an important role in astrophysical imaging. We
can say that the PSF is how the imaging system responds to a single, in�nitely small
point source.

The telescope objective captures a fraction of the light emitted, and in an ideal
world, this light would get focused to an in�nitely small point in the focal plane. What
happens instead, is that the light waves undergo di�raction, converging and interfering
with each other, resulting in the image of an Airy disk.

In ground-based telescopes, atmospheric seeing will a�ect the PSF. While we do
not have to worry about atmospheric seeing when doing observations with the Hubble
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Space telescope, the PSF will still not be perfectly isotropic. It will vary both spatially,
and with time. There are various reasons for this, from the behavior of the detectors
and the optical system, to the mechanics that makes the telescope move slightly while
observing (Gentile et al. 2012).

The PSF is important to know and correct for: The isotropic part of the PSF will
smear elliptical objects, making their shapes appear circular, while the anisotropic part
will induce ellipticity in intrinsically circular objects. In gravitational lensing, the true
lensing signal can then be drowned out, at the same time, we will detect "false" lensing
e�ects. The weak gravitational lensing signal is already very low. A PSF that has not
been corrected for, can easily dominate the measured ellipticity of small background
galaxies, which are often smaller than the PSF itself. For bigger galaxies, the e�ect of
the PSF will be smaller.

To determine the anisotropy in the PSF, we would need several points sources,
scattered throughout our �eld of view. In astronomical imaging, we are lucky enough
to have of point sources in the form of stars and quasars. However, the amount of
points sources will depend on the target position in the sky: whether there are plenty
of foreground stars or not.

We go into the practical aspect of how to determine and correct for the PSF in
Section 2.3.1, and how we separate the stars from galaxies in Section 2.4.3.

2.3 Shear measurements

There are multiple ways of converting the observed ellipticity of an image, into the in-
duced gravitational shear. We will apply the Kaiser-Squires-Broadhurst (KSB) method,
which can be found in full in Kaiser et al. (1995), along with some modi�cations by
Luppino and Kaiser (1997) and Hoekstra et al. (1998).

We use the IMCAT software package developed by Nick Kaiser for many of the
operations needed on our way to obtaining a mass estimate. The full de�nition of the
commands can be found on Kaisers webpage12.

2.3.1 Object ellipticities

The relation between the ellipticity ε and reduced shear g, is not as simple as stated in
the Section 1.4.6.

A more accurate parametrization of the observed ellipticity, is the weighted ellipt-
icity, or polarization parameters, eα. They are de�ned from the weighted quadrupole
moments,

Qij =

∫
W (θ)θiθjf(θ) d2θ, (2.9)

where f(θ) is the image surface brightness, and W (θ) is a Gaussian distributed weight
function, or window function, with scale length rg, equal to that of the galaxies.

1https://www.ifa.hawaii.edu/ kaiser/imcat/
2The webpage was down at the time of this writing, although the same manual can be found at

http://docplayer.net/45170446-The-imcat-reference-manual.html
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The polarization parameters can then be written as

eα ≡
Qα
T
, (2.10)

where
Q1 ≡ Q11 −Q22, Q2 ≡ 2Q21, T ≡ Q11 +Q22. (2.11)

Shear, induces a systematic shift in the polarization parameters. To the �rst order,
the shift, δeα, caused by the reduced gravitational shear, g, is

δeα = P sh
αβgβ (2.12)

where we sum over β, and P shαβ is the post-seeing shear polarizability tensor, which can

be measured for each individual source image. That it is "post-seeing" means that P sh
αβ

measures the response of an object to the shear before we have made corrections for the
smearing due to the seeing disk, or in our case, due to the PSF alone. Note that, despite
the name, P sh

αβ is not a tensor, since it transforms eα, which has two components, but
is not a vector. We therefore use greek letters to distinguish them from real vectors.

The pre-seeing shear polarizability tensor, P gαβ (Equation 2.22) was �rst de�ned by

Luppino and Kaiser (1997), and is calculated from P sh
αβ.

P sh
αβ is de�ned as

P sh
αβ = Xsh

αβ − eαesh
α , (2.13)

where (Hoekstra et al. 1998)

Xsh
αβ =

1

T

∫ 2Wθ2 + 2W ′(θ2
1 − θ2

2)2 4W ′(θ2
1 − θ2

2)θ1θ2

4W ′(θ2
1 − θ2

2)θ1θ2 2Wθ2 + 8W ′θ2
1θ

2
2

 f(θ) d2θ, (2.14)

and

esh
α = 2eα +

2

T

∫ (
θ2

1 − θ2
2

2θ1θ2

)
θ2W ′ d2θ. (2.15)

Here, ′ denotes the derivative with respect to θ2.
The objects will experience a smearing because of the anisotropic PSF. Kaiser et al.

(1995) assumed that the PSF can be modeled as a convolution of a circularly smeared
image, with a small and highly anisotropic kernel k(θ). The kernel has the unweighted
quadrupole moments, qlm,

qlm ≡
∫
θlθmk(θ) d2θ. (2.16)

While this is a good assumption for ground based data, the PSF of the HST cameras
are more complicated. This can, however, be recti�ed somewhat by using the galaxy
scale length, rg in the window function, W (θ), when determining the PSF (Hoekstra
et al. 1998), which we go into detail on in the next subsection.
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The shift in polarization due to the PSF, is then

δeα = P sm
αβ pβ, (2.17)

where pβ is a measure of the anisotropy of the PSF, given by

pα =

(
q11 − q22

2q12

)
, (2.18)

and where the smear polarizability tensor, P sm
αβ of an object, is de�ned as

P sm
αβ = Xsm

αβ − eαesm
α (2.19)

where (Hoekstra et al. 1998)

Xsm
αβ =

1

T

∫ W + 2W ′θ2 +W ′′(θ2
1 − θ2

2)2 2W ′′(θ2
1 − θ2

2)θ1θ2

2W ′′(θ2
1 − θ2

2)θ1θ2 W + 2W ′θ2 + 4W ′′θ2
1θ

2
2

 f(θ) d2θ,

(2.20)
and

esm
α =

1

T

∫ (
θ2

1 − θ2
2

2θ1θ2

)
(2W ′ +W ′′θ2)f(θ) d2θ. (2.21)

Here, ′′ is the double derivative with respect to θ2.
What we want to measure is the pre-seeing shear. Luppino and Kaiser (1997)

present in their appendix A, a useful way of calculating the pre-seeing polarization
tensor P gαβ, and a full derivation can be found there,

P gαβ = P sh
αβ

(
1− e2

2

)
− P sm

αδ

P sh?
δµ

P sm?
µβ

, (2.22)

where ? denotes the tensors applied to stellar objects. This tensor can then be measured
directly from the observations. Hoekstra et al. (1998) notes, that it is important that

the weight function W that is used when measuring
P sh?
δµ

P sm?
µβ

, is the same one used when

measuring eobs
α for a galaxy, as

P sh?
δµ

P sm?
µβ

vary with rg. We choose to add the (1 − e2/2)

factor as a correction to the P shαβ tensor, as, while testing di�erent ways of measuring
shear, Heymans et al. (2006) found this correction to reconstruct the shear the best.

Accounting for the smearing by the PSF, and having found the pre-seeing shear
polarizability, the observed ellipticity of an image is then

eobs
α = es

α + P gαβgβ + P sm
αβ pβ, (2.23)

where es
α is the intrinsic ellipticity of the galaxy. P gαβ, P

sm
αβ , and e

obs
α are calculated by

the IMCAT command getshapes.
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Determining the PSF anisotropy

To calculate the shift in the polarization, δeα (Equation 2.17), due to the PSF aniso-
tropy, we need to �nd pβ. One way of doing so, is by applying Equation 2.23 to stellar
objects. Stars are intrinsically circular (es?

α =0), and lie in front of the lens, so they are
not sheared (g?β = 0), hence stars are only a�ected by the PSF. We �nd

pα =
eobs?
β

P sm?
βα

. (2.24)

If we use this in Equation 2.17, the galaxy ellipticities can be corrected with an amount
−δeα.

When we have a catalog of stars, we can use the IMCAT command efit to �nd
the PSF anisotropy. efit uses a Taylor expansion, up to the sixth order, where the
coe�cients are �tted to the pα values of the stars. As the stars are so bright, photon
counting noise is negligible. We can then run ecorrect on our galaxy catalog, and
are left with objects with an ellipticity only a�ected by the isotropic PSF, and reduced
shear g. In Figure 2.2 we see the ellipticity of the stars before and after having been
corrected for the PSF.

While drizzling helps reconstruct lost data when undersampling (see Section 2.1.3),
stars are so small that they can still remain unresolved. This is true for the images we
are analyzing in this thesis. We see this when correcting the stars for the anisotropic
PSF: While they do lie closer to the origin in the second eα plot, they can still remain
quite scattered due to the uncertainty of the ellipticity measurements. We try to �t
the PSF to the best of our abilities, regardless.

The �elds of PSZ1 G311.65-18.48 and SDSS J1723+3411 have the highest number
of foreground stars, 159-304 and 60, respectively. We are therefore able, in both cases,
to �t a 6th order polynomial to the PSF. SDSS J1226+2152 lie further away from the
plane of Milky Way. Its �eld has therefore very few foreground stars, only between 9
and 16. A 3rd order polynomial, then seems to �t the PSF the best.

2.3.2 Shear estimates

We rewrite Equation 2.23 to an expression for the reduced shear g,

gα =
eobs
β − es

β − P sm
βα pα

P gβα
=
epsm
β − es

β

P gβα
. (2.25)

In the last equality, epsm
α = eobs

α − P sm
αβ pβ is the observed ellipticities corrected for the

anisotropic PSF using the efit and ecorrect commands described in the previous
subsection.

Assuming the PSF is now close to circular, the o�-diagonal elements of the polariz-
ability tensors will be small compared to the diagonal elements. Ideally, they would be
zero, but due to the various sources of noise in the data, they will instead have some
low value. We can then approximate the polarizabilities with P = 1

2(P11 + P22) (Wold



44 Method

Figure 2.2: e1 versus e2 plot of stars in the foreground of PSZ1 G311.65�18.48, in the F814W
�lter. The image to the left shows the stars prior to being corrected for the anisotropic PSF.
The image to the right, shows the stars after the correction has been applied. We see that in the
right-hand image, the stars are more centralized around the origin, but still with some scatter.
The scatter is most likely due to the HST undersampling the stars, leading to uncertainty in
the ellipticity measurements.

et al. 2002). The mean P sh?/P sm? across all the stars, Nstars, can then be calculated
as 〈

P sh

P sm

〉?
=

1

Nstars

∑
stars

P sh?
11 + P sh?

22

P sm?
11 + P sm?

22

. (2.26)

The pre-seeing shear polarizability is then

P g =
1

2
(P sh

11 + P sh
22 )

(
1− e2

2

)
− 1

2
(P sm

11 + P sm
22 )

〈
P sh

P sm

〉?
. (2.27)

We use the IMCAT command getshapes to �nd eobs
α P sh and P sm for every object.

We can then �nd the reduced shear according to Equation 2.29.
Now, we can correct for the PSF in each individual galaxy, and each galaxy has

a P g associated with it. As this tends to introduce additional noise, it is not what
we will do to �nd the reduced shear. Instead, we separate the background galaxies
into bins based on their magnitude and rg. The bins have a spacing so that we have
approximately the same number of galaxies in each, although there is a scatter of about
20 galaxies, for every cluster.
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The mean rg of a bin is used in the weight function W to calculate the weighted
quadrupole moments Qij (Equation 2.9), used in �nding the polarizabilities and the
anisotropic PSF.

In each bin, we �nd the reduced shear g, by calculating the median P g, P̃ g, and
applying it to the galaxies in that bin.

gα =
epsm
α − es

α

P̃ g
. (2.28)

We can say that 1/P̃ g is a correction factor, applied to each galaxy to �nd the re-
duced shear. But we are not quite there yet, since gα in the above equation is still
contaminated by the "shape noise" intrinsic to each galaxy prior to being lensed.

As we assume galaxies to be randomly oriented, the mean intrinsic ellipticity of
background galaxies should average out to zero, 〈es

α〉 ≈ 0, provided we have a su�cient
sample of sources. Using this, the mean reduced shear, 〈g〉, becomes

〈gα〉 =

〈
eα

P̃ g

〉
. (2.29)

We will use this fact to �nd a mass estimate of the cluster in Section 2.3.4

Weights

As stated in Section 2.2.1, small and faint (low S/N=signal-to-noise ratio) objects are
more heavily a�ected by the PSF, resulting in a larger 1/P g. For large and bright
objects, this correction factor is close to unity. Objects having a low S/N increases the
uncertainty in their ellipticity measurements. We therefore choose to assign weights to
the galaxies, making faint objects matter less in determining the reduced shear. We
calculate weights, wi for each galaxy in bin i,

wi =
1

σ2
g,i

( ∑
iNi∑

i(Ni/σ2
g,i)

)
. (2.30)

Here, σg,i is the dispersion in the reduced shear g in bin i and the term inside the
parenthesis is a normalization constant, where Ni is the number of background galaxies
in each bin, and

∑
iNi is the total number of background galaxies in the catalog.

The weighted shear of each galaxy j in bin i, is then gw,j = wigj .

2.3.3 Distances

The ratio of the angular diameter distance between the source and the lens, Dls, and
the observer and the source, Ds, is given by

β =
Dls

Ds
. (2.31)

The redshift of the source galaxies are unknown, but we will assume that they lie
in the same source plane, at zs ≈ 1.
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The angular diameter distance can be calculated from the luminosity distance,
DA = DL/(1 + z)2. For �at cosmologies with a cosmological constant Λ, Pen (1999)
provides a good approximation to the luminosity distance from redshift z = 0, to some
redshift z. We use this approximation to calculate Dl and Ds. We then use Dl and Ds

to approximate β in the same way as Wilson et al. (2001).
Finally, for each galaxy, j, we calculate the weighted β,

βw,j = wiβj , (2.32)

where wi are the same weights as in Equation 2.30. We use the mean βw value of our
galaxies, 〈βw〉, to calculate Σcrit = c2

4πGDl〈βw〉 .
By using the analytical expression for the angular diameter distance in an Einstein-

de Sitter universe (EdS)(Ωm,0 = 1),

DEdS
A =

2c

H0
(1− (1 + z)−1/2)

1

1 + z
, (2.33)

we can correct for the small error using Pen's approximation induces in Dl,

Dl = Dapprox
l

DEdS
l

DEdS,approx
l

. (2.34)

2.3.4 Mass densitometry

As brie�y mentioned in section 1.4.6, we can use the shear γ to �nd the convergence, κ,
which can be converted into an estimate of the projected mass of a gravitational lens.

One way to make an estimate of the surface mass density of the cluster, is by using
the ζ-statistic (Fahlman et al. 1994) which estimates the mean convergence within
radius θ1,

ζ(θ1, θ2) = 2

(
1− θ2

1

θ2
2

)−1 ∫ θ2

θ1

〈γT 〉 d ln θ = κ(θ < θ1)− κ(θ1 < θ < θ2). (2.35)

Here, κ(θ < θ1) is the mean convergence within angular radius θ1, and κ(θ1 < θ < θ2)
is the mean convergence within an annulus bounded by θ1 and θ2. Meanwhile, 〈γT〉 is
the azimuthally averaged tangential shear de�ned as

〈γT〉 =

∫
γT

dφ

2π
, (2.36)

where γT = −γ1 cos 2φ− γ2 sin 2φ, and φ is the azimuthal angle with respect to our
chosen center.

This provides us with a lower bound on the mean convergence interior to radius θ1,
κ(θ < θ1), without actually measuring the shear inside this radius. We only measure
the galaxy ellipticities in an annulus just outside θ1, bounded by θ1 and θ2.

We can say that the aperture mass, Map, is the estimated projected mass of our
cluster when not making any assumptions as to the cluster's real density pro�le. Due
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to the mass-sheet degeneracy, this estimate is only accurate up to a constant. To get an
as accurate value of the aperture mass as possible, we put θ1 = θinner, and θ2 = θouter

in Equation 2.35, where these radii are the innermost radius in our analysis, and the
outer radius of our �eld, respectively. We only have a single annulus, but one that has
a lower mean convergence than if θ2 had some smaller value. In terms of the physical
2D radius ξ = Dlθ, the aperture mass is then de�ned as

Map(< ξinner) = πξ2
innerζ(ξinner, ξouter)Σcrit (2.37)

Our choice of θinner and θouter, will a�ect our mass estimate. If θouter is too small,
only a few background galaxies will be present in the annulus, generating uncertainty
in the measurements (Poisson noise). If θouter is too large, we risk that our shear
measurements are contaminated by other nearby clusters' gravitational �elds. We must
also make θinner large enough, so that we do not measure any strong lensing e�ects: the
weak lensing approximation must hold. We do the latter by ensuring that our inner
radius is larger than the Einstein radius, θinner = 3

2θE. This particular value arises from
the fact that, when using a SIS density pro�le, κ = γ and g = 1 at the Einstein radius.
We wish to avoid any strong lensing e�ects, and so want to only measure shear where
g < 1/2, resulting in the given minimum radius through the relation g = γ/(1− κ).

We do not use the average shear 〈γT〉 in Equation 2.35, but rather the average
reduced shear 〈gT〉, given by Equation 2.29. The IMCAT command etprofile accepts
θinner, θouter, gw and a log bin size. etprofile then divides the �eld into radial bins, or
annuli, with the provided size, and calculates then outputs the ζ-statistic and measured
mean tangential reduced shear 〈gT〉 (provided we already did all the previous steps in
this section, otherwise, it returns 〈eT〉) in the annuli, along with error estimates. We
also get the inner radii and mean radii of the annuli, the number of galaxies in each
bin, and the S/N of each bin. We can now estimate the aperture mass, Equation 2.37,
and also �t the measured shear to a density pro�le.

To decrease the noise arising from the intrinsic shape of the galaxies, prior to their
lensing, we have a minimum of 10 galaxies in each bin. This is not an issue as the
radius increases, and the number of galaxies in each bin reaches the hundreds, but
in the innermost annulus, the number tends to be smaller. For instance, for SDSS
J1226+2152, we end up with only 16 galaxies in the innermost bin.

2.4 Weak lensing pipeline

This section can be viewed as a summary of the weak lensing analysis. We start with
how we calibrate our images, and how we can detect objects in them. We end with a
short recap of how to obtain a mass estimate of the cluster by measuring the shear.

2.4.1 Image analysis

Before we can start detecting objects, the images need some additional work.
The �rst thing we do is remove corrupt data, such as bad pixels, or areas outside the

camera aperture. The pixels outside the aperture are valued as NaN (Not a Number) in
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our image, or 0. In either case these pixel values are converted into a very low value by
using the IMCAT command ic coupled with the MAGIC argument. This gives the pixel
the MAGIC value, which is the largest negative value available in the pixel format, and
is used by IMCAT for masking bad pixels which are ignored in subsequent calculations.

Ideally, our exposures would only contain the signals of stars and galaxies and
other astrophysical phenomena of interest. But we do in fact record radiation from the
background sky as well. We set the background to zero, by subtracting the median
pixel value from the image. The median value, along with other statistical properties
of the fits image, is found by the stats command.

2.4.2 Detecting objects

Objects were detected by use of the hfindpeaks command from the IMCAT software.
It works by smoothing the image with Mexican hat �lters with di�erent radii, then

detecting the objects with the highest signi�cance. The smoothing reduces the noise
in the image, and thereby also false detections. The trade-o� is that we may lose some
very faint objects. We choose a signi�cance threshold of ν = S/N = 10. We then get
a catalog of stars, galaxies, and some artifacts due to noise and cosmic rays. We also
get some parameters, like ν, and the smoothing radius rg.

Next we use apphot to perform an aperture photometry. We then measure the
�ux, magnitude, half-light radius rh, and other related quantities. As the images have
already been corrected for the background, apphot calculates the growth curve for the
integrated light as a function of radius,

l(< r) ≡ 2π

∫
θf(θ) dθ, (2.38)

where f(θ) is the background corrected surface brightness. This is done by placing an
aperture over the object, and summing the pixel values. The radius of the aperture
should be large enough to contain all the light from the object without being contamin-
ated by neighboring objects, apphot therefore uses a radius of 3rg. The luminosity and
the half-light radius rh, which is the radius at which intensity is halved, is estimated
from this aperture.

We use the command getsky to determine the local background around objects.
Some of the objects detected are artifacts created by strong lensing e�ects, noise,

bleeding pixels due to saturated foreground stars, or cosmic rays that slipped through
the Astrodrizzle software. The cleancat command will put a limit on how close
bright neighboring objects are allowed to be to one another, thereby �ltering out a lot
of the bleeding pixels and arcs produced by strong lensing, which we have in all of our
�elds. This can be seen in picture 2.3.

The noise and cosmic rays can be removed in several ways. If we have multiple
exposures of the same �eld, in di�erent �lters for instance, we can use the commands
mergecats together with unmergecat, to only select objects that are detected in both
�lters. Both noise and artifacts, which can vary between exposures, will then be re-
duced. As far as it is possible, this is the best way. Another way is by putting a limit
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Figure 2.3: Close-up of the �eld of PSZ1 G311.65�18.48 in the F814W �lter. The left-hand
image shows all the initial object detections, marked in magenta. The image on the right
shows the objects after we have performed cleancat. We see that there is now only one object
per saturated star, and fewer objects on the strong lensing arc. getshapes have also been
performed in the right image, meaning some objects, whose trace of the quadrupole moments
were negative, have also been rejected.

on the measured polarizability parameters, emax
α = 0.99. This will remove trailing lines

of cosmic rays in the �eld, which have an ellipticity close to 1.

2.4.3 Separating stars from galaxies

In order to di�erentiate between galaxies and stars, we create a diagram showing the
magnitudes of the detected objects, versus their radius, rh (or rg). The stars can be
faint or bright, and have a very similar, small radius. In the diagram, this makes them
lie in a vertical column. They have been marked in Figure 2.4.

The trailing tail of the star-column at bright magnitudes and increasing radius, is
caused by saturated stars in the exposure, making their radii blow up. Faint stars blend
easily with small galaxies, hence our initial pick of stars are the obvious ones that lie
in the column. We use getshapes to measure the polarization parameters eα, P sm

αβ and

P sh
αβ in our object catalog, prior to selecting the stars. We can then do an additional

�ltering by plotting e1 against e2, in our star catalog. This can be seen in Figure 2.5.
As stars are intrinsically circular, we expect them to lie close to the origin, even when
a�ected by the PSF. Galaxies, we expect to have an ellipticity, and so should lie further
from the center.

Now that we have found stars, we put them in a separate catalog. These will be
used to estimate the PSF, described in Section 2.3.1.
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Figure 2.4: A rg versus magnitude diagram of objects detected in the �eld of PSZ1 G311.65�
18.48. The stars in our star catalog are selected from the vertical column marked with a box in
the diagram. The trailing tail of the column at low magnitudes and increasing radius, is caused
by saturated stars

2.4.4 Removing the Red Sequence

It is very important that the cluster galaxies does not contribute to the shear measure-
ments we make. If they do, the shear will be biased towards lower values.

A galaxy cluster tends to consist of red elliptical galaxies. Because they lie closer
to us, they will also appear brighter, resulting in a high ν = S/N . This provides us
with a way of distinguishing cluster galaxies from background galaxies.

As we have images with bandpasses centered at 814 nm (V) and 606 nm (I) for
two of our clusters (PSZ1 G311.65�18.48 and SDSS J1226+2152), we can plot a color-
magnitude diagram, showing V-I against I. The Red sequence will then lie on an ap-
proximately straight horizontal line, which has been marked in Figure 2.6. We remove
these objects, and make additional cuts in ν. As saturated stars are very bright, these
cuts will also weed them out. We are then left with a catalog of only background galax-
ies, and moderately bright to faint stars. For the cluster SDSS J1723+3411 we �nd
that attempting to �lter it with images in infrared �lters (F110W and F160W), leaves
us with very few objects, too few to run a proper weak lensing analysis. We therefore
decide to settle with only making cuts in ν.
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Figure 2.5: e1 versus e2 plot of stars in the foreground of PSZ1 G311.65�18.48, in the F814W
�lter. The image to the left shows our initial pick of stars from the star-column in Figure 2.4. In
the �gure to the right, we have excluded objects with a high ellipticity, which could be galaxies.

2.4.5 Measuring shear and mass reconstruction

We now have a catalog of stars and a catalog of stars + background galaxies. The �rst
step is to estimate the anisotropy of the PSF, as described in Section 2.3.1. We use the
star catalog for this.

The mean radius in the star catalog is used to mark the lower limit in radius of the
grid we separate the background galaxies into. We then make sure to not include stars
when estimating P sm and P sh of the sources, which would bias our shear estimates
towards smaller values.

Once we have corrected for the PSF anisotropy with efit and ecorrect, we calcu-
late the reduced weighted shear gw, and the mean weighted angular diameter distance
ratio βw in each bin, according to Section 2.3.2 and 2.3.3.

Next, we use etprofile to separate our �eld into radial bins, and calculate the
mean reduced tangential shear, 〈gw,T〉, and ζ-statistic, which gives us a lower bound
estimate of the convergence within some radius. From this, we can calculate the 2D
projected aperture mass of the �eld. This is described in Section 2.3.4. The boundaries
of the �elds of our three clusters, can be found in Table 2.1.

The last thing to do, is to �t our data to a theoretical density pro�le, and obtain a
mass estimate according to this. This is the subject of the next section, Section 2.5.
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Figure 2.6: The objects detected in the �eld of SDSS J1226+2152 are plotted in a color mag-
nitude diagram. We have an image in two �lters, F606W (V) and F814W (I). On the x-axis
we show the I magnitudes, on the y-axis, we have the subtracted magnitudes V-I. The cluster
galaxies make up the red sequence, which is shown in the box.

Table 2.1: The parameter values that we feed to etprofile to calculate the tangential shear,
and the statistic ζ within several annuli, along with error estimates and the mean radius of
each annuli. The innermost annulus has an inner radius of rinner = 3

2θE, while the outermost
annulus has an outer radius of router. Hence, these radii mark the boundaries of our �eld. The
width of the annuli is log spaced. etprofile also needs the center of our �elds, found in Table
1.1.

rinner router width

[arcsec] [arcsec]

PSZ1 G311.65�18.48 43.937 88.525 0.18

SDSS J1226+2152 17.290 72.180 0.50

SDSS J1723+3411 13.631 82.494 0.70

2.5 Fitting to density pro�les

Now that we have found the observed mean reduced tangential shear, 〈gw,T〉, over
several annuli in our �elds, we can �t the data points to the theoretical reduced shear,
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gmodel
T , calculated from di�erent density pro�les.
While di�erent density pro�les have been used to describe galaxy clusters and dark

matter halos, we will focus on two: The Navarro-Frenk-White pro�le, and the singular
isothermal sphere density pro�le.

We do the �tting by calculating the χ2- statistic, where we compare 〈gw,T〉 at the
mean radius of the annuli, for each annulus bin obtained from our data, with gmodel

T

from the density pro�les at the same radius,

χ2 =
(〈gT〉 − gmodel

w,T )2

σ2
g

. (2.39)

Here, σg are the errors in the 〈gT〉 estimates from etprofile.
The parameter(s) that minimize χ2, are the ones we use to calculate the mass of

the clusters. The way this is done depends on the density pro�le we employ, and is
expanded upon in the next two subsections 2.5.1 and 2.5.2. We also calculate the
aperture mass, Map at the inner radius θinner, according to equation 2.37.

2.5.1 The Singular isothermal sphere

The simplest lens model used in gravitational lensing, is that of a singular isothermal
sphere (SIS). It provides a good �t with the lensing properties of galaxies and galaxy
clusters, and it also yields �at rotation curves, as those observed in spiral galaxies.

In this model, we assume that stars and gas behave as particles in an ideal gas,
con�ned by their combined spherically symmetric gravitational potential. The particles
have a Maxwellian velocity distribution at all radii, with a one-dimensional velocity
dispersion, σv.

The mass density of a singular isothermal sphere at radius r, is given by

ρSIS(r) =
σ2
v

2πG

1

r2
. (2.40)

The projected surface mass density is

ΣSIS(ξ) =
σ2
v

2G

1

ξ
, (2.41)

which is circularly symmetric. We repeat that ξ = Dlθ is the projected two-dimensional
radius in the lens plane, where Dl is the angular diameter distance between the observer
and the lens, and θ is the angular radius from the center of the lens in the lens plane.

The projected mass along the line-of-sight is

M2D(ξ) =
πσ2

G
ξ (2.42)

while the mass enclosed within the 3D-radius r is

M3D(r) =
2σ2

G
r. (2.43)
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The Einstein radius then becomes

θE = 4π
(σv
c

)2 Dls

Ds
, (2.44)

where c is the speed of light, Dls and Ds are the angular diameter distance between the
lens and the source, and the observer and the source, respectively.

In the case of a SIS pro�le, the convergence and the shear have the same magnitude;

κSIS(θ) = γSIS(θ) =
θE

2θ
=

1

2Σcrit

σ2
v

Gξ
(2.45)

The reduced shear is found in the normal way, g = γ/(1−κ). As the SIS is a spherically
symmetric model, these expressions for shear and reduced shear, are also the tangential
shear, γT, and reduced shear, gT. We see that at the Einstein radius, κSIS = γSIS = 1

2 ,
and gSIS = 1.

The de�ection angle becomes

α̂ = 4π
σ2
v

c2
, (2.46)

which is independent of ξ, and thereby constant. This makes the reduced de�ection
angle equal to the Einstein radius

α =
Dls

Ds
α̂ = θE. (2.47)

Numerical �tting

We have two di�erent ways of �tting the SIS-pro�le to our data. The �rst is by
calculating the ζ(θ1, θ2)-statistic and calculate the mass directly from that. In which
case, we have a formula for how much ζ underestimates the true mean dimensionless
surface mass density, κ(θ < θ1).

If we assume a surface density pro�le that goes as Σ ∝ ξ−τ where τ > 0, the
underestimation made by the ζ-statistic, of the actual mean surface density within θ1,
is

k−1 =
ζ(θ1, θ2)Σcrit

Σ(θ < θ1)
=
a2 − a−τ+2

a2 − 1
, (2.48)

where a = θ2
θ1

(Kaiser et al. 1994). If we assume a surface density pro�le that goes as
the pro�le of a singular isothermal sphere, Σ ∝ ξ−1, then τ = 1, and

k−1 =
ζΣcrit

Σ
=
a2 − a
a2 − 1

. (2.49)

The projected 2D mass within ξ1 = Dlθ1, is then

M(ξ1) = k · πξ2ζ(ξ1, ξ2)Σcrit (2.50)

while the 3D mass is M(r1) = M(ξ1) · 2/π.
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The other way of doing it, is by using the χ2-test. The SIS model only has one
free parameter; the velocity dispersion σv. To �t the model to our data, we compare
the reduced shear obtained from the data with the reduced shear calculated from the
density pro�le for di�erent σv values, with a spacing of ∆σv = 0.1. We then calculate
the χ2-statistic, and go forward with the σv value that minimizes χ2.

Errors may arise when �tting a circular mass density pro�le to ζ, as the true density
pro�le of the cluster, need not be circular. Nevertheless, when �tting a circular pro�le,
where ζ has been measured from irregular clusters, or clusters undergoing a merger,
this e�ect has been measured to be less than 10% (King et al. 2004).

2.5.2 NFW density pro�le

By studying numerical N -body simulations, Navarro et al. (1997) found that within
the virial radius, rvir, cold dark matter halos over a wide range in mass (from that of
a globular cluster, to that of large galaxy clusters), appear to have a universal density
pro�le. This density pro�le provides a much better �t than that of an isothermal sphere.
The Navarro�Frenk�White (NFW) pro�le goes as ρ ∝ r−1 at small radii and ρ ∝ r−3

at large radii, so it approaches the form of an isothermal sphere when r gets large.
Given that galaxy clusters are thought to be dominated by dark matter, it seems

reasonable to think that their spherically averaged density pro�les will be well approx-
imated by the Navarro�Frenk�White (NFW) pro�le.

It is given by

ρNFW(r) =
δcρcrit(zl)

(r/rs)(1 + r/rs)2
, (2.51)

where ρcrit = 3H2(zl)
8πG is the critical density of the Universe at the halo redshift, here the

lens redshift, zl. The scaled radius
rs =

r∆

c∆
(2.52)

and the dimensionless density

δc =
∆

3

c3
∆

ln(1 + c∆)− c∆/(1 + c∆)
, (2.53)

are both characteristic quantities of the halo. The dimensionless number c∆ is called
the concentration parameter, and depends on the mass of the halo, being smaller for
high-mass halos. The virial radius, rvir, is the radius of a sphere, here centered on
a galaxy cluster, within which virial equilibrium holds. As this can be di�cult to
determine, a common approximation is to use the radius r∆, at which the mean density
is some constant, ∆, times the critical density, ρcrit(zl). This constant depends on the
cosmology of our universe model, but a much used choice is ∆ = 200, which is what
we will use. The historical reason for this, is that in an Einstein-de Sitter universe, the
virial overdensity, ∆ = ∆vir, is well approximated by ∆vir ≈ 200. For other universe
models, ∆vir is generally di�erent from 200. Then, c∆ = c200 and r∆ = r200, which is
the radius at which the mean mass density of the halo is 200ρcrit(zl), independent of
cosmology. The scaled radius is then rs = r200/c200.
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The mass of a NFW cluster at radius r200 is then,

M200 = M(r200) = 200ρcrit(zl)
4πr3

200

3
. (2.54)

The shear of a NFW halo is

γNFW(x) =
ΣNFW(x)− ΣNFW(x)

Σcrit
, (2.55)

where x = ξ
rs

is a dimensionless radius, and ξ = Dlθ is the projected two-dimensional
radius in the lens plane. Due to the spherical symmetry of the NFW model, γ = γT.
ΣNFW is still the surface mass density, and ΣNFW is the mean surface mass density
inside a radius x. The full expressions for ΣNFW and ΣNFW, can be found in Wright
and Brainerd (2000).

The convergence is found in the normal way,

κNFW(x) =
ΣNFW(x)

Σcrit
, (2.56)

and the reduced shear is still g = γ/(1− κ).

The c−M relation

The mass of a galaxy cluster is correlated with the concentration parameter c∆. What
the exact relation between them has been found to be, have varied between studies
(Bullock et al. 2001; Du�y et al. 2008; Bhattacharya et al. 2013), but it depends also
on the redshift of the cluster.

We have chosen to use the relation found by Du�y et al. (2008), given by

c∆ = A

(
M∆

Mpivot

)B
(1 + z)C . (2.57)

For a full halo model, which includes halos that are both relaxed and dynamically
unstable, withM∆ = M200, c∆ = c200 and a redshift z between 0 and 2, A = 5.71±0.12,
B = −0.084± 0.006, and C = −0.47± 0.04. Also, Mpivot = 2 · 1012h−1M�.

We see that this requires some prior knowledge of the approximate mass of the
cluster, M200. What we will do is run two analyses per image and �lter: One where
both c200 and r200 are free parameters, and one where we use the mass obtained from
the previous run, as M in Equation 2.57. In the second analysis we keep c200 �xed,
leaving r200 as the only free parameter. In general, galaxy clusters have a mass around
M200 ∼ 1014−1015M�. From this, we �nd that for redshifts z ≈ 0.44, we should expect
a concentration parameter around c200 ≈ 3.5± 0.2− 2.9± 0.2.

Numerical �tting

We have maximum two free parameters, the virial radius r200, and the concentration
parameter c200. We need to �nd the appropriate values of r200 and c200 that makes the
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NFW pro�le best �t our data. We do this by �rst setting up a grid of r200 and c200

values.
Initially, the distance between grid values is ∆r200 = ∆c200 = 0.1, but as we narrow

down the search area, we make the grid �ner by putting ∆r200 = 0.01. The �elds we
are working on are not that large, making it di�cult to determine c200 with greater
precision, so we do not make a �ner grid for c200 (see �gures 3.1-3.3).

We then �nd the tangential shear, γNFW, the surface density, ΣNFW, and the char-
acteristic density δc which correspond to the chosen pair of parameter values.

These values have been pre-calculated for di�erent x = ξ
rs

and c200 values, and for
a general halo pro�le with di�erent inner slopes α (Jing and Suto 2000),

ρ(r) =
δcρcrit

( rrs )α(1 + r
rs

)3−α and δc =
20

3

[∫ 1

0
x2(cx)−α(1 + cx)α−3 dx

]−1

, (2.58)

where α = 1 reduces these expressions to those of the NFW pro�le.
For every combination of r200 and c200 pairs in the grid, the statistic χ2 is calcu-

lated. The best-�t values of these parameters are found by minimizing χ2. As stated
previously, once found, we make the grid smaller but �ner around these values, and
�nd the r200 and c200 pair that minimizes χ2 again.

Once r200 and c200 are found, we can calculate the mass of the cluster at the virial
radius by using the expression for M200 found in Equation 2.54.

When this is done, we use M200 in Equation 2.57 to �nd an estimate of c200, and
run the analysis again, this time with only r200 as a free parameter.

SIS pro�le comparison

We can compare the mass of the cluster found when assuming a NFW density pro�le
to be correct, with that found if we use a SIS density pro�le instead. We use the
expression in Equation 2.51 to calculate ρNFW(r) at a radius used in the SIS pro�le
calculations, which is usually smaller than r200, and then �nding the 3D mass in the
usual fashion,

MNFW(r) =
4π

3
r3ρNFW(r). (2.59)

We then calculate the mass ratio, MNFW(r)/MSIS(r).
Typically, we expect the virial mass found in a NFW halo to be smaller than the

virial mass found in a SIS halo. In general, the lower the mass of a NFW halo, the
larger the systematic error if it is assumed to be an isothermal sphere. The size of the
error is also dependent on the concentration parameter c200, where a large c200, results
in a large error (Wright and Brainerd 2000).

However, when dealing with rich galaxy clusters, M ∼ 1015M�, the error in the
mass estimate is small, due to the NFW pro�le and the SIS pro�le being very similar
at large radii.
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Chapter 3

Results and discussion

Here, we present the results of our weak lensing analysis of the three clusters, PSZ1
G311.65�18.48, SDSS J1226+2152, and SDSS J1723+3411. We measure the ellipticity
of background sources in their �elds, in accordance with the KSB method (Kaiser et al.
1995), with the corrections of Luppino and Kaiser (1997). From this ellipticity, we �nd
the mean reduced gravitational shear, 〈g〉 in increasing radial bins, centered on the
central cluster galaxy.

Next, we �t our data to the theoretical reduced shear calculated from two density
pro�les: the Navarro-Frenk-White (NFW) pro�le (1997), and the Singular Isothermal
Sphere (SIS) pro�le. We then obtain an estimate of the 3 dimensional mass density
distribution, ρ(r) of our clusters, implicitly assuming ρ(r) to be spherically symmetric.
The �tting is done by �nding the parameters that minimize the χ2-statistic. We then
calculate the best-�t mass, with uncertainty estimates. We compare the mass estimated
from these two pro�les, with each other, but also with mass estimates calculated for the
clusters, in previous studies. We then discuss our results, with our conclusions found
in Chapter 4.

As before, where necessary, we use a �at ΛCDM cosmology with Ωm,0 = 0.3 and
Ω0,Λ = 0.7, and H0 = 100h km s−1 Mpc−1, where h = 0.7.

3.1 Results

The results of our weak lensing analysis of the three clusters PSZ1 G311.65�18.48, SDSS
J1226+2152, and SDSS J1723+3411 can be found in tables 3.1 and 3.2. The tables
include the two-dimensional projected aperture mass, Map, and the three-dimensional
mass found by �tting our data to the SIS density pro�le (Mχ(r1) and Mκ(r1)), and the
NFW density pro�le (M200 and MNFW(r1)). The best-�t parameter values that give
us these estimates, (σv for the SIS pro�le, c200 and r200 for the NFW pro�le), along
with the minimum χ2 for each model, is also shown. As promised, we run two analyses
when �tting the NFW pro�le to our data: One where c200 is a free parameter, and one
where the mass obtained in the �rst analysis, is used to calculate a �xed c200, following
Du�y et al. (2008), in the second analysis.
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For the two SDSS clusters, we have two additional analysis results for a �xed c200.
Here, c200 is calculated while assuming M200 = 1014h−1M�, and M200 = 1015h−1M�.
The reason being that the c200 parameter, calculated for the F606W �lter of SDSS
J1226+2152, and for the F775W �lter of SDSS J1723+3411, is unrealistically small.
We call these the third, and fourth analyses.

We have also calculated the ratios between the mass according to the NFW model
(MNFW), and the two masses found from the SIS pro�le. They are calculated at the
same radius, r1, which di�ers according to cluster. This is the mean radius of the
innermost annulus in our �elds. The value of r1, is found in tables 3.1 and 3.2. The
ratios ς = MNFW/MSIS (where MSIS is Mχ or Mκ), are found in tables 3.3 and 3.4.

The joint con�dence interval for our three clusters, are shown in �gures 3.1, 3.2,
and 3.3. The contour lines are drawn at one and two σ con�dence. For two parameters,
this means ∆χ2 = χ2 − χ2

min = 2.30 for 1σ, and ∆χ2 = 6.14 for 2σ.
The measured, and the theoretical, mean reduced tangential shear 〈gT〉 as a function

of the mean radius r in the annuli, are shown in �gures 3.4, 3.5, and 3.6.

Table 3.1: Results of the weak lensing analysis of the PSZ1 G311.65�18.48 cluster. Map is the
2D projected aperture mass, θE is the Einstein radius, and r1 the mean radius of the innermost
annulus. σv is the velocity dispersion, while Mκ and Mχ are the 3D SIS masses according to
the ζ-statistic, and the χ2-statistic, respectively. The concentration parameter c200, and the
radius r200, are quantities of the NFW pro�le. M200 is the 3D mean mass at r200. All limits
are calculated from the maximum and minimum of the parameter values, within 1σ (χ2

min + 1).
MNFW(r1) is the 3D mass from the NFW pro�le, calculated at r1, where the limits are found
from the maximum and minimum mass within 1σ.

Cluster PSZ1 G311.65�18.48

Filter F606W F814W

Map [1013h−1M�] 9.963± 1.769 9.291± 1.374

θE [arcsec] 29.291

r1 [h−1Mpc] 0.192

SIS

σv [km s−1] 1066.4+67.2
−74.7 1010.7+36.1

−38.2

Mκ(r1) [1013h−1M�] 16.127± 2.790 13.253± 2.189

Mχ(r1) [1013h−1M�] 15.950+2.072
−2.155 14.329+1.042

−1.063

χ2
min 1.0613 1.2202

NFW, free c200

c200 24.2+0.5
−20.7 2.4+14.9

−2.2

r200 [h−1Mpc] 0.87+0.52
−0.06 1.55+2.18

−0.69

M200 [1014h−1M�] 2.432+7.488
−0.469 13.755+177.936

−11.406

MNFW(r1) [1013h−1M�] 2.539+2.433
−0.450 4.661+0.608

−2.140
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χ2
min 0.8543 0.5320

NFW, �xed c200

c200 3.1 2.8

r200 [h−1Mpc] 1.44+0.15
−0.12 1.45+0.11

−0.12

M200 [1014h−1M�] 11.030+3.818
−2.534 11.261+2.762

−2.571

MNFW(r1) [1013h−1M�] 4.813+0.808
−0.627 4.602+0.544

−0.580

χ2
min 1.9770 0.5481

Table 3.2: The results of our weak lensing analysis of the clusters SDSS J1226+2152 and SDSS
J1723+3411. c14200 and c15200, are the concentration parameter calculated from M200 = 1014M�,
and M200 = 1015M�, respectively. For further explanation of the parameters, look in the
description of Table 3.1. Note the di�erent units of the masses Map and M(r1) (SIS and
NFW), in this table compared to in Table 3.1.

Cluster SDSS J1226+2152 SDSS J1723+3411

Filter F606W F814W F775W

Map [1012h−1M�] 3.726± 4.259 3.010± 4.387 10.324± 3.551

θE [arcsec] 11.527 9.087

r1 [h−1Mpc] 0.087 0.074

SIS

σv [km s−1] 301.2+163.4
−300.2 323.0+158.0

−322.0 518.9+92.2
−121.4

Mκ(r1) [1012h−1M�] 4.309± 10.075 7.618± 9.932 15.056± 8.001

Mχ(r1) [1012h−1M�] 5.761+7.942
−5.761 6.625+8.066

−6.625 14.510+5.614
−5.995

χ2
min 0.5323 0.0172 4.8029

NFW, free c200

c200 0.2+24.6
−0.0 21.8+3.0

−21.6 0.4+3.9
−0.0

r200 [h−1Mpc] 0.99+0.75
−0.90 0.29+1.41

−0.20 2.18+0.11
−1.48

M200 [1014h−1M�] 3.551+15.727
−3.548 0.089+17.890

−0.087 38.314+6.097
−37.045

MNFW(r1) [1012h−1M�] 2.259+2.126
−2.223 1.031+3.086

−0.996 4.501+1.839
−1.123

χ2
min 0.2478 0.0002 1.8167

NFW, �xed c200

c200 3.1 4.3 2.6

r200 [h−1Mpc] 0.40+0.23
−0.39 0.36+0.19

−0.35 0.92+0.18
−0.21

M200 [1014h−1M�] 0.234+0.681
−0.234 0.171+0.438

−0.171 2.880+2.043
−1.556

MNFW(r1) [1012h−1M�] 1.935+2.254
−1.935 1.727+2.160

−1.723 5.126+1.365
−1.545

χ2
min 0.4216 0.0350 2.2430
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NFW, �xed c14
200

c200 3.5 3.5

r200 [h−1Mpc] 0.39+0.21
−0.29 0.38+0.21

−0.29 0.82+0.12
−0.20

M200 [1014h−1M�] 0.217+0.573
−0.214 0.201+0.551

−0.198 2.039+1.033
−1.158

MNFW(r1) [1012h−1M�] 1.917+2.199
−1.844 1.825+2.176

−1.752 5.379+1.183
−1.875

χ2
min 0.4427 0.0487 2.5145

NFW, �xed c15
200

c200 2.9 2.9

r200 [h−1Mpc] 0.38+0.27
−0.37 0.37+0.26

−0.36 0.87+0.17
−0.19

M200 [1014h−1M�] 0.201+0.804
−0.201 0.185+0.730

−0.185 2.435+1.725
−1.272

MNFW(r1) [1012h−1M�] 1.935+2.254
−1.935 1.646+2.397

−1.646 5.135+1.420
−1.530

χ2
min 0.4156 0.0586 2.3400

Table 3.3: Comparison of the SIS masses (MSIS) Mκ(r1) and Mχ(r1), with MNFW(r1). ς =
MNFW/MSIS is the ratio between the NFW mass and the SIS mass. The subscript, κ or
χ, indicates the ratio with respect to Mκ(r1), or Mχ(r1), respectively. The superscript "fr",
indicates that the values are for a free c200. The superscript "�x" indicates the values are for
a �xed c200

Cluster PSZ1 G311.65�18.48

Filter F606W F814W

ς fr
κ (r1) 0.192+0.449

−0.135 0.352+0.476
−0.163

ς fr
χ (r1) 0.159+0.360

−0.116 0.325+0.397
−0.164

ςfix
κ (r1) 0.363+0.508

−0.271 0.347+0.465
−0.261

ςfix
χ (r1) 0.302+0.407

−0.232 0.321+0.388
−0.262
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Table 3.4: Comparison of the SIS masses (MSIS) Mκ(r1) and Mχ(r1), with MNFW(r1). ς =
MNFW/MSIS is the ratio between the NFW mass and the SIS mass. The subscript, κ or
χ, indicates the ratio with respect to Mκ(r1), or Mχ(r1), respectively. The superscript "fr",
indicates that the values are for a free c200. The superscript "�x" indicates the values are for a
�xed c200. The superscript 14 or 15 means the ratio is calculated for c14200 or c15200, respectively.

Cluster SDSS J1226+2152 SDSS J1723+3411

Filter F606W F814W F775W

ς fr
κ (r1) 0.296+57547.381

−0.002 0.135+54050.198
−0.002 0.299+0.899

−0.147

ς fr
χ (r1) 0.392+69043.804

−0.003 0.156+64847.977
−0.002 0.310+0.745

−0.168

ςfix
κ (r1) 0.254+54989.074

−0.000 0.227+51020.894
−0.000 0.340+0.920

−0.155

ςfix
χ (r1) 0.336+65974.415

−0.000 0.261+61213.499
−0.000 0.353+0.762

−0.178

ς14
κ (r1) 0.252+54016.835

−0.004 0.240+52515.267
−0.004 0.357+0.930

−0.152

ς14
χ (r1) 0.333+64807.949

−0.005 0.276+63006.408
−0.005 0.371+0.771

−0.174

ς15
κ (r1) 0.227+55742.173

−0.000 0.216+53080.005
−0.000 0.341+0.929

−0.156

ς15
χ (r1) 0.300+66877.965

−0.000 0.249+63683.965
−0.000 0.354+0.770

−0.179
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Figure 3.1: Joint con�dence interval for r200 and c200 for galaxy cluster PSZ1 G311.65-18.48 .
First frame is for the F606W �lter, while the second is for the F814W �lter. The outermost
contour marks values within 2σ (∆χ2 = 6.14), while the innermost marks values within 1σ
(∆χ2 = 2.30).The best-�t values have been marked with a ×.
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Figure 3.2: Joint con�dence interval for r200 and c200 for galaxy cluster SDSS J1226+2152.
First frame is for the F606W �lter, while the second is for the F814W �lter. Values within 2σ
(∆χ2 = 6.14), lie below the topmost line, while the values within 1σ (∆χ2 = 2.30) lies below
the lowest line. The other side of the contour then lies beneath the x-axis, at very low r200
values. The best-�t values have been marked with a ×.
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Figure 3.3: Joint con�dence interval for r200 and c200 for galaxy cluster SDSS J1723+3411.
The �lter is F775W. The outermost contour marks values within 2σ (∆χ2 = 6.14), while the
innermost marks values within 1σ (∆χ2 = 2.30). The best-�t values have been marked with a
×.
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Figure 3.4: The mean measured tangential shear, 〈gT〉 with errors for the two images in �lters
F606W and F814W for the cluster PSZ1 G311.65-18.48. On the x-axis is the mean radii of the
annuli, r, in h−1Mpc. Also shown are the best �t calculated mean tangential shear from the
NFW pro�le and the SIS pro�le. We see that the �tted pro�les �t well within the error bars of
their respective images. With exception of the �rst point, the measured shear in both images
fall within the range of each others errors, and the errors decrease as r increases.
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Figure 3.5: The mean measured tangential shear, 〈gT〉 with error bars for the two images in
�lters F606W and F814W for the cluster SDSS J1226+2152. On the x-axis is the mean radii of
the annuli, r, in h−1Mpc. The calculated mean tangential shear according to the NFW pro�le
and the SIS pro�le, is also shown. The �tted pro�les �t well within the errors of the observed
shear in both �lters. The errors of the observed shear also overlaps, and grow smaller as r
increases.
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Figure 3.6: The mean measured tangential shear, 〈gT〉 with error bars for the cluster SDSS
J1723+3411 in �lter F775W. On the x-axis is the mean radii of the annuli, r, in h−1Mpc.
The calculated mean tangential shear according to the NFW pro�le and the SIS pro�le, is also
shown. The �tted NFW pro�le, �ts within the errors of the two �nal points, although not the
�rst point. The SIS pro�le shear is not within any of the error bars, but lie close in the two
�nal points. This is re�ected in Table 3.2, where the χ2

min-value for both pro�les, is quite high.
The errors of the observed shear grow smaller as r increases.
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3.2 Discussion

We begin with the SIS model �t. The calculated SIS mass for the two methods, Mκ

and Mχ, vary little within, and between, �lters. This goes for all clusters, with the
masses lying well within each others limits of uncertainty.

For SDSS J1226+2152, we can see from Table 3.1, that there is very large uncer-
tainty in the σv and mass estimates of the SIS model: The lower limit is so large, as
to make σv, Mκ, and Mχ, almost equal to 0 at the lowest. There are several sources
of error that could contribute to this uncertainty. The extremely small number of
foreground stars, only 9, makes it di�cult to determine the anisotropic PSF. In addi-
tion, the �elds in our images are not very large, meaning we get very few measuring
points to run statistics on. For the PSZ cluster, etprofile returns four annuli, while
for the SDSS clusters, we only get three. Increasing the number of annuli, would in-
crease the noise of the innermost annuli, as we would end up with very few galaxies in
these bins. For this cluster, the number is already only 16. So the small �eld, and a
badly determined PSF, can in turn give rise to very large uncertainty in the ellipticity
measurements. However, in the case of SDSS J1226+2152, the largest source of this
uncertainty, is most likely the larger, multiple-cluster structure that SDSS J1226+2152
is a part of. These other structures will contaminate the shear measurements. We see
this also in the plot of mean reduced shear versus radius in Figure 3.5: The curve of
the measured 〈gT 〉, stays very �at, over large radii, were normally we would expect it
to fall as r increases. This is most likely also the reason the velocity dispersion is found
to be as small as it is, between σv = 301.2+163.4

−300.2 km s−1 and 323.0+158.0
−322.0 km s−1. For

a galaxy cluster, we would expect a value around σv ≈ 1000 km s−1. In comparison,
Bayliss et al. (2011) found through spectroscopic measurements of the cluster galaxies,
that σv = 730+71

−119 km s−1. As our methods di�er, and the gravitational shear will be
impacted by nearby structure, the discrepancy in our results, is not unexpected.

The small velocity dispersion, in turn, cause the obtained mass to be small. While
the values of Mκ and Mχ lie within each others error range, they are slightly smaller
in the F606W �lter than the F814W �lter. These large errors, will propagate down to
where we calculate the mass ratios, ς, in Table 3.4. There, the low-end mass estimate
of Mχ and Mκ, makes the positive limits very large.

SDSS J1723+3411 has more foreground stars than the other SDSS cluster, and
so the anisotropic PSF, could be �tted to a 6th order polynomial. The uncertainties
in σv, are smaller than for SDSS J1226+2152. The same goes for the two masses,
although the error estimates are larger for Mκ, than for Mχ. Here, χ2

min = 4.8029,
which is the largest out of all the di�erent analyses we run. This is true for the NFW
model �t as well, where χ2

min = 1.8167. This can also be seen in Figure 3.6 as well,
which shows the observed and calculated mean reduced shear, 〈gT 〉 against radius r.
The �tted SIS model does not actually �t within the error-bars of the observed mean
reduced shear, but it is still the closest �t we are able to �nd. The velocity dispersion is
518.9+92.2

−121.4 km s−1. This is very close to what was found in the strong lensing analysis
done by Kubo et al. (2010), where σv = 530± 17 km s−1.

For the last cluster, PSZ1 G311.65�18.48, we measure a velocity dispersion ly-
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ing between 1010.7+36.1
−38.2 km s−1, and 1066.4+67.2

−74.7 km s−1. The errors of σv and the two
masses, are quite small as well. The masses in both �lters, and with both methods, lie
within each others error ranges. As no previous measurements of σv has been done, we
have nothing to compare our results with. However, for a rich galaxy cluster such as
this, a σv ≈ 1000 km s−1, is what we would expect.

When �tting our data to the NFW pro�le, we �nd that the best-�t parameters
are di�cult to determine, for all three clusters. This applies in particular, to the
concentration parameter c200, which is highly uncertain, due to the smallness of our
�elds. In �gures 3.1, 3.2, and 3.3, the joint con�dence interval of r200 and c200 for the
three clusters and their various �lters, can be seen. In all three cases, there is a wide
range in c200 values, lying within 1σ.

The pre-calculated values γNFW, ΣNFW, and δc (see Section 2.5.2), depend on both
c200 and r200. In the F606W �lter of SDSS J1226+2152, and the F775W �lter of SDSS
J1723+3411, we can se from �gures 3.3 and 3.2, that best-�t c200 value, is extremely low,
while having a high r200 best-�t value. As we deem such a low concentration parameter
to be unrealistic, we choose not to calculate γNFW, ΣNFW, and δc, for any lower c200

and higher r200 pair. This is also why, in the NFW (free c200) section of Table 3.2, the
lower limit of c200, is 0 for SDSS J1226+2152, �lter F606W, and SDSS J1723+3411.
Galaxy clusters typically have a mass on the order of M200 ∼ 1014 − 1015M�. We
therefore calculate c200 for the SDSS clusters (see Section 2.5.2) at 1015 h−1M� and
1014 h−1M�, and use this to estimate M200. We have then, a lower and higher bound
mass estimate.

In our free concentration parameter analysis of SDSS J1226+2152, c200 have widely
di�erent values in the two �lters, c200 = 0.2+24.6

−0.0 for F606W, and c200 = 21.8+3.0
−21.6

for F814W. The error estimates are also enormous, spanning almost the entirety of
the c200 range we tested. The same is true for the �rst analysis of PSZ1 G311.65�
18.48. r200, while di�erent in the two �lters, lie within each others lower and higher
limit, and are of the same order. However, the best-�t value in the F606W �lter,
r200 = 0.99+0.75

−0.9 h−1Mpc, lies closer to the expected value of r200 ∼ 1h−1Mpc, compared
to r200 = 0.29+1.41

−0.20 h
−1Mpc in the F814W �lter. Due to the di�erence in r200, between

the �lters, the mass,M200 vary greatly as well. For �lter F606W,M200 = 3.551+15.727
−3.548 ×

1014 h−1M�, while for �lter F814W, M200 = 0.089+17.890
−0.2 × 1014 h−1M�.

In our second analysis, we kept c200 �xed. We see that the �xed c200, based on
Du�y et al. (2008), is quite di�erent than the c200 found to be the best �t to the data.
While r200 andM200 are now more similar in both �lters, the latter quantity is still only
on the order of ∼ 1013 h−1M�. This remains true, for the third and fourth analysis
as well. As stated, this is most likely due to the surrounding structure of the cluster,
biasing the shear measurements towards lower values.

For SDSS J1723+3411, c200 in the �rst analysis, is very small. Meanwhile, r200 and
M200 is quite large. The second analysis, gives a much more realistic concentration
parameter, c200 = 2.6, and r200, and M200 values. Still, c200 and r200 are smaller than
the lower bound estimate found in the third analysis, where c200 = 2.9. However, this
di�erence is small, and the mass and radius in the second, third, and fourth analysis,
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all �t within each others error range. The lower and higher bound limits on the mass
(from the third and fourth analysis), are M200 = 2.039+1.033

−1.158×1014 h−1M� and M200 =

2.435+1.725
−1.272 × 1014 h−1M�, respectively.

In the �rst analysis of PSZ1 G311.65�18.48, we �nd that the concentration para-
meter varies quite a bit between the two �lters. They still �t within each others limits,
due to the limits being so large. For F606W, c200 = 24.2+0.5

−20.7, while for F814W,
c200 = 2.4+14.9

−2.2 . The r200 values are also a little di�erent. This results in the mass
being on the order of M200 ∼ 1014 h−1M� in �lter F606W, but M200 ∼ 1015 h−1M� in
�lter F814W.

For the second analysis, we �nd c200 = 3.1 and c200 = 2.8, for �lters F606W and
F814W, respectively. Both r200, and M200, are now very similar across �lters. The
mass is M200 = 11.030+3.818

−2.534 × 1014 h−1M� and M200 = 11.261+2.762
−2.571 × 1014 h−1M�, for

�lters F606W and F814W, respectively. This appears to be the most massive out of
our three clusters.

3.2.1 Mass comparisons between models

The ratio ς = MNFW(r1)/MSIS(r1), has been calculated for our three clusters. This
can be seen in Table 3.3 for PSZ1 G311.65�18.48, and Table 3.4 for the two SDSS
clusters. The upper bound estimates, are found by dividing the maximumMNFW, with
the minimum MSIS. Similarly, the lower bound estimates are found by dividing the
minimum mass ofMNFW with the maximum mass ofMSIS. ForMκ, where the negative
limit is so large, as to suggest negative mass, we put the lower limit at Mκ × 10−5.

For the SDSS clusters, we have included the ratios for all four analyses, but as the
results are so uncertain for the two �rst analyses, we will focus on the last two. This
gives us a maximum lower and upper boundary for the mass ratios.

For SDSS J1226+2152, the ratios vary between 0.240 and 0.333. The huge positive-
, and small negative error estimates, come from the very small lower bound mass in
Table 3.2, which is only on the order of 107 h−1M�.

For SDSS J1723+3411, the ratios seem to lie between 0.357, and 0.371. They are
slightly larger for Mκ, than Mχ.

The ratios of PSZ1 G311.65�18.48, have a similar value. For a �xed c200, ςκ =
0.347+0.465

−0.261 − 0.365+0.508
−0.271, and ςχ = 0.302+0.407

−0.232 − 0.321+0.388
−0.262.

As expected, we derive a larger mass from the SIS pro�le, than from the NFW
pro�le. By showing the shear for both models, as a function of radius, as seen in �gures
3.4-3.6, we �nd that the NFW pro�le, seem to �t our data the best, regardless of �lter
and cluster. From looking at the tables 3.3 and 3.4, we therefore say that the SIS
model, errors included, may underestimate the mass by a factor of 0.78 at the most,
or overestimate it at most, by a factor of 7.4. We here exclude the enormous positive
limit of the ratios for SDSS J1226+2152. If we only consider the ratios for the third
and fourth analysis of the SDSS clusters, and the second analysis of the PSZ cluster,
the best-�t NFW pro�le mass estimate values, are, approximately, 0.4 to 0.3 that of
the SIS pro�le estimates.
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3.2.2 Mass comparisons with earlier works

Our three clusters, have all previously undergone strong lensing analyses, by di�erent
authors.

For SDSS J1226+2152, Bayliss et al. (2011) did not calculate the mass of this indi-
vidual cluster, but rather found the mean mass of a larger cluster sample. Meanwhile,
Wen et al. (2009) did a study of the larger cluster structure that SDSS J1226+2152
is a part of. For this cluster, we can therefore not compare our mass estimates with
previous studies.

For SDSS J1723+3411, the Einstein radius is larger than the one found by Kubo
et al. (2010). There is a bright arc at their Einstein radius, θK10

E = 4.7′′ (note that the
value depends on the redshift of the arc), but there is also a fainter arc at θE = 9.087′′,
seen clearer with an infrared �lter (see Figure 1.4). They performed a strong lensing
analysis, and found the enclosed mass to be MK10(θE) = (3.5± 0.5)× 1012 h−1M�. As
they do not state if this mass is 2D or 3D, we assume it to be 2D. We extrapolate this
value out to r1 while assuming a SIS pro�le, MK10(r1) = 1.370+0.196

−0.196 × 1013 h−1M�.
We use a SIS pro�le, because, at this radius, its behavior should be similar to the NFW
pro�le. The ratios are M14

NFW /M
K10 = 0.617+0.878

−0.351, and M
15
NFW /M

K10 = 0.589+0.877
−0.362

for a NFW pro�le. We see that our mass estimates is about 0.6 times that found by
Kubo et al..

In the case of a SIS pro�le, the ratios areMχ/M
K10 = 1.663+2.691

−0.854, andMκ/M
K10 =

1.726+3.084
−0.708. This indicates that the mass we found, is around 1.7 times that found by

Kubo et al. (2010). For both the NFW pro�le, and the SIS pro�le, we �nd that the
error estimates are quite large.

Dahle et al. (2016) have done a strong lensing analysis of PSZ1 G311.65�18.48.
They found the same Einstein radius as us, and that the 2D enclosed mass at rE =
0.169±0.025 Mpc, isMD16(θE) = 1.8+0.6

−0.5×1014M�, with h = 0.7. Again, we extrapolate
this mass out to r1 for this cluster, while assuming a SIS pro�le. The mass is then
MD(r1) = 2.048+0.331

−0.312 × 1014M�. The ratios become, Mfix
NFW/M

D16 = 0.527+0.726
−0.395

for F606W, and Mfix
NFW/M

D16 = 0.504+0.665
−0.379 for F814W. In both cases, our mass is

almost half the value found by Dahle et al.. When using the SIS model, Mfix
χ /MD16 =

1.747+2.329
−1.301 and Mfix

κ /MD16 = 1.452+1.996
−1.044 for F606W, and Mfix

χ /MD16 = 1.570+1.987
−1.251

and Mfix
κ /MD16 = 1.452+1.996

−1.044 and for F814W. This discrepancy between what has
been previously found, and our estimates, might be partially due to us assuming a SIS
model when extrapolating, as a NFW pro�le seem to �t our data the best. As found in
Section 3.2.1, there is a di�erence between these two models, when just doing a �tting
to our own data. However, we note again, that the errors are quite signi�cant.

3.3 Future studies

Any future analyses of these clusters, would bene�t from getting better constraints
on the concentration parameter, c200. As seen in our results, it varies wildly for the
same cluster, just depending on the �lter applied to the image, and with large margins
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of error. Weak lensing studies at larger radii, would reduce the uncertainty in c200.
Both SDSS J1226+2152, and SDSS J1723+3411 are candidates up for imaging with
the James Webb Space Telescope. Its considerably larger �eld of view, compared to
the Hubble, should be able to help providing these constraints.

For the cluster SDSS J1723+3411, we only use one one image, with �lter F775W.
Getting additional deep exposures in other �lters, would help decrease the risk of our
shear measurements being contaminated by the cluster galaxies.



Chapter 4

Conclusion

In this thesis, we have performed a weak lensing analysis on three separate galaxy
clusters. These are PSZ1 G311.65�18.48, SDSS J1226+2152, and SDSS J1723+3411.
They were imaged by two di�erent wide-�eld cameras onboard the Hubble Space Tele-
scope; the wide-�eld channel of ACS, and the UVIS channel of WFC3. For PSZ1
G311.65�18.48, and SDSS J1226+2152, we had one image, combined from multiple
exposures, each in two �lters, the F606W �lter, and the F814W �lter. For the cluster
SDSS J1723+3411, we had one image, combined from multiple exposures, in the F775W
�lter.

We measured the reduced shear in the �elds of our clusters, by using the KSB
method with corrections (Kaiser et al. 1995; Luppino and Kaiser 1997; Hoekstra et al.
1998). We then �tted the data to two di�erent density pro�les, the NFW, and the SIS,
by minimizing the χ2-statistic.

We found that the velocity dispersion of the PSZ cluster, was around the value we
would expect from a rich cluster, from 1010.7+36.1

−38.2 km s−1 to 1066.4+67.2
−74.7 km s−1.

For SDSS J1723+3411 the velocity dispersion was 518.9+92.2
−121.4 km s−1, which is very

close to the value found in the strong lensing analysis done by Kubo et al. (2010), on
the same cluster.

For the last cluster, SDSS J1226+2152, σv was very small, in the range of σv =
301.2+163.4

−300.2 − 323.0+158.0
−322.0 km s−1. This value, together with the large error estimates,

was most likely due to contamination of the shear measurements, from the larger sur-
rounding structure that this cluster is a part of. Hence, the curve of the measured and
calculated mean reduced shear, 〈g〉, as a function of radius, r, stayed quite �at, when
we would normally expect it to fall with increasing radii. Our obtained σv value, did
not �t with the one found by Bayliss et al. (2011). This is, perhaps, not unexpected,
considering Bayliss et al. found their σv value through a spectroscopic study of the
velocities of the cluster galaxies, and not through a gravitational lensing analysis. Our
obtained mass, is therefore also small.

When �tting the NFW model to our data, the concentration parameter, c200 varied
greatly between �lters of the same cluster. As the size of our �elds are not that large,
we did not expect to be able to estimate c200, with any great precision. The joint
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con�dence intervals of r200, and c200, supported this, as a wide range of c200 values,
from > 0.1 to 24 <, could �t within 1σ con�dence. We therefore also did an analysis
for a �xed concentration parameter, using the c −M relation found by Du�y et al.
(2008). For the PSZ cluster, we found that c200 = 2.8 − 3.1. The mass then became
M200 ≈ 1.1× 1015 h−1M�, making this a rich cluster.

In the case of the two SDSS clusters, the best-�t c200 was found to be unrealistically
small. We therefore did two additional analyses for these two clusters, where c200 was
calculated from M200 = 1014 h−1M� and M200 = 1015 h−1M�. We ended up with
c = 3.5, and c = 2.9, respectively, for both clusters. This way, we obtain a maximum
upper and lower bound estimate of r200, and M200.

For SDSS J1226+2152, the upper and lower bound mass estimates, were M200 =
1.185+0.730

−0.185 − 0.201+0.804
−0.201 × 1014 h−1M�, for c200 = 2.9, and M200 = 0.201+0.551

−0.198 −
0.217+0.573

−0.214 × 1014 h−1M�, for c200 = 3.5. These masses were lower than what we
would usually expect, and the uncertainties in the measurements were also large. This
was most likely due to the larger structure surrounding the cluster, biasing the gravit-
ational shear towards lower values, and making it so that the mass density pro�le, is
not entirely spherical.

For SDSS J1723+3411 the upper and lower bound mass estimates, were M200 =
2.435+1.725

−1.272 × 1014 h−1M�, for c200 = 2.9, and M200 = 2.039+1.033
−1.158 × 1014 h−1M�, for

c200 = 3.5. Despite these masses being of the expected order, the minimum χ2, was the
largest out of all our clusters. We could only divide our �eld into three annuli, which
might be the reason for the poor �t.

By comparing the measured shear with the shear calculated from the NFW and
SIS model, we found that the NFW model proved the better �t, for all of our clusters.
However, at these radii, the two pro�les behave very similarly, ρ ∝ r−2. This was
mirrored in our comparison of the mass estimates from the two models: While the SIS
model gave a higher best-�t mass, both models lie within each others margins of error.
We conclude that the NFW model provides the best estimate to the "true" mass of the
cluster. For the best-�t mass estimates, the NFW pro�le mass, were approximately 0.4
to 0.3 times the SIS pro�le mass estimates.

All three clusters display luminous arcs around their cores. They have all been
subjected to a strong lensing analysis in the past, but only PSZ1 G311.65�18.48 (Dahle
et al. 2016), and SDSS J1723+3411 (Kubo et al. 2010), had had an individual mass
estimated at their Einstein radius, θE. While assuming a SIS pro�le, we extrapolated
these measurements to a larger radius r1, which vary depending on the cluster, for a
comparison. Our obtained mass estimates were smaller than what was found by Dahle
et al. (2016) and Kubo et al. (2010), when we use the mass calculated from a NFW
pro�le. Our mass estimates were generally larger than theirs, when we assumed a SIS
pro�le instead. For SDSS J1723+3411, our best-�t mass was approximately 0.6 times
the value found by Kubo et al., when we used our NFW pro�le estimates, but almost
1.7 times larger when we used a SIS pro�le. Similarly, for PSZ1 G311.65�18.48, our
mass estimates where approximately 0.5, and 1.5 times the mass found by Dahle et al.,
for a NFW and SIS pro�le, respectively. However, the estimated errors were large, so
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there may well be overlap between our mass values, and those found by Dahle et al.,
and Kubo et al..
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