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Abstract

This thesis concerns itself with the ordinary Hall effect in variable range hopping systems.
The best example of such a system occurs in compensated, lightly doped semiconductors
at temperatures of a few Kelvin. In this state, the semiconductor acts as an insulator and
electrons are highly localized to impurity states. The resultant transport in this system is
only possible via phonon assisted tunneling, given the name variable range hopping (VRH).
There are two types of VRH, Efros-Shklovskii (ES) VRH which considers dynamic Coulomb
interactions of donor states, and Mott VRH which neglects this interaction. Both with
their respective conductivity laws that are studied in this thesis. The Hall effect plants
itself in VRH systems via constructive interference of the Aharanov-Bohm phases between
different electron paths.

We have developed a kinetic Monte Carlo algorithm that simulate the time development of
charge transport in a VRH system in external electric and magnetic field. We use periodic
boundary conditiosn and a lattice model for the main simulations. The longitudinal and
Hall conductivities, σx and σH respectively, are measured from simulations. In the Mott
case, results align almost perfectly with theoretical predictions and experimental results.
There are small deviations that were explained as lattice effects. In the ES case, simulated
σx acted as expected whereas σH did not. ES regime σH featured large fluctuations making
it difficult to draw precise conclusions. The cause of these fluctuations is not known, but a
possible explanations is given. The sign of the Hall effect is found to be independent of
charge carrier, in agreement with established VRH theory.
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CHAPTER 1

Introduction

Semiconductors have had a tremendous impact on human life. The technological applications
have revolutionized human life far more than anyone could have anticipated. With the significant
importance of these materials, it has become the area of focus for scientists everywhere. Almost
every aspect of these materials are studied with great enthusiasm. In this project we turn our
eyes to conductivity in the low-temperature regime of the compensated semiconductor, the
hopping conduction regime.

First proposed by Mott [1] and Convell [2], and independently by Anderson et al, hopping
conduction is a phonon induced process that allows charge transport through hopping between
highly localized impurity states. Such states are highly disordered, both positionally and
energetically. The wavefunction overlap between highly localized neighboring states decreases
exponentially with the distance between them. This results in a conductivity that tends to zero
as the temperature is lowered. Hopping conduction is the dominant conduction mechanism at
temperatures low enough such that no electrons are present in the conduction band, typically
at a few Kelvin. The electron jumps have the interesting property of hopping-length increasing
with decreasing temperature. This property has given the mechanism the name variable
range hopping (VRH). It has later been discovered that VRH occurs not only in compensated
semiconductors, but also in granular materials [3] and quantum dots [4].

There are two laws for VHR conduction, Mott’s law and Efros-Shklovskii’s law. Generally
Mott’s law describes hopping in amorphous materials, and Efros-Shklovskii’s law describes
hopping in crystalline semiconductors where Coulomb interactions are important. With these
laws, variable range hopping conduction is adequately described.

The Hall effect in the VRH regime was a difficult question for a large number of years.
Holstein [5] was the first to prove that there should be a Hall effect associated with hopping
conduction. It should arise from interference between electron jumps on a minimum of three
sites. Using his premises, other scientists used percolation methods to develop theories for the
Hall mobility with similar yet different results [6–9].

Normal conductivity is very small, but possible to measure. The Hall conductivity is even
more small and experimental measurements have proven difficult. Magnetoresistance adds
another layer of difficulty to measurements. Initial experiments in the 1960s and 1970s showed
no result, the instruments at the time weren’t sensitive enough to measure the very small Hall
effect. The first measurements of the Hall conductivity were made in 1987 [10] and were in
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1. Introduction

good agreement with predictions from Ref. [6]. Later experiments [11–14] found results on the
same function form, but with parameter values in disagreement with Refs. [6] and [10].

The first simulations of VRH Hall effect were done in 1981. Percolation methods were used
to measure the Hall mobility as function of concentration [15, 16]. Later simulations were
performed in 2018 [17], again using percolation methods. Percolation methods are static
methods and don’t perform any time evolution. Time correlation effects such as dynamic
Coulomb interactions and polaron clouds cannot be included from such methods.

For many years, time evolving Monte Carlo simulations of VRH conductivity have been slow
and computationally inefficient. The development of the dynamic Monte Carlo algorithm
by Tsigankov et al [18]. has made such simulations much more efficient and realistic to
perform. Such simulations have been used to successfully study important qualities of VRH
conduction [19,20]. To date there are no time evolution simulations of the VRH Hall effect.
The aim of this thesis is to perform such simulations.

1.1 Project goals

The aim of this thesis is to use Kinetic Monte-Carlo (KMC) methods to simulate the time
evolution of VRH hopping conduction under the influence of magnetic fields, and to measure the
temperature dependence of the Hall effect that arises in these simulations. To our knowledge,
such simulations have not as of yet been conducted.

The first challenge of this thesis is to establish the KMC algorithm that best fits the problem.
There are three KMC algorithms that will be discussed, the rejection-free algorithm, the
rejection algorithm and the dynamic algorithm [18]. The programming starting point is a C++
code with Tsignakov’s dynamic algorithm, developed by Martin Kirkengen and Andreas Glatz.
The code has been used in previously published scientific works [19–21]. The second challenge
is to extend the code to include Holstein’s equations and make it produce a Hall effect.

Once a working program is established, the temperature dependence of the Hall effect will
be studied. Simulation measurements can be tested against known VRH Hall effect theories,
experiments and percolation simulations.

The thesis is structured as follows. Semiconductors is where VRH research began, therefore it is
a good topic to study to understand VRH. Chapter 2 gives an understanding of semiconductors,
percolation theory and the VRH mechanism when there are no magnetic fields present. Chapter
3 aims to explain the Hall effect and how it is expected to behave in VRH conditions. Chapter
4 details the algorithms that are used in this thesis and how measurements of system properties
can be made. Chapter 5 covers the results produced in the present work, and discusses them.
Finally chapter 6 summarizes the main findings and discusses possible next steps.
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CHAPTER 2

Semiconductors and variable range
hopping (VRH)

The aim of this chapter is to build an understanding of VRH conductivity. Before discussing
VRH, semiconductors and phenomenological percolation theory is covered.

2.1 Lightly doped semiconductors

Semiconductors are materials that have small energy gaps between valence and conduction
bands. At temperatures below the semiconductor band gap, there are free charge carriers in
the conduction band and the valence band is completely filled. As a result the electrons are
localized to their atoms and cannot move through the material.

The properties of semiconductors are altered by doping with acceptor or donor impurities. The
energy levels are displayed in Fig. 2.1. Acceptor impurities are atoms with one less electron
than the intrinsic semiconductor atoms. They leave one empty energy state close to the valence
band. This allows intrinsic electrons to be excited to these states even at low temperatures.
The empty state left by the excited electron creates holes in the valence band. The holes act
as positive charge carriers and the hole state is able to move through the material, making
it able to pass current. Donor impurities have one more electron than the intrinsic atoms.
The extra electron state has energy just below the conduction band. These electrons are
easily excited to the conduction band and the semiconductor can pass current through these
negative charge carriers. Acceptor (donor) doped semiconductors are often called p(n)-type.
A semiconductor with both types of impurities is called a compensated semiconductor. The
degree of compensation, K, refers the ratio of acceptor to donor concentration NA/ND.

Let us investigate the properties of the donor state. Assume that it is localized to the atom.
The electron feels Coulomb interaction from the other electrons and the nucleus. The electrons
and protons screen each other such that the electron effectively only feels +1 charge from
the atomic nucleus. The scenario described can be approximated as a 2-body hydrogen-like
problem. There are only two necessary alterations, the particle mass m0 needs to be replaced
with the effective mass m∗, and the dielectric constant κ needs to be included by replacing
ε0 with ε0κ. The effective mass accounts for how particles actually move, and depends on
the band structure. The dielectric constant is included to account for the polarization of the
environment the donor electron is submerged in. The equation for the hydrogen ground state
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2. Semiconductors and variable range hopping (VRH)

Figure 2.1: Energy levels in a semiconductor with acceptor and donor impurities. Figure taken
from Ref. [22].

energy is

E = − me4

2(4πε0)2~2 = − e2

8πε0a
, a = 4πε0~2

me2 ,

where a is the Bohr radius, often called the localization length. Putting the effective mass and
dielectric constant into the hydrogen ground state gives the donor energy Ed. The result is

Ed = − m∗e4

2(4πκε0)2~2 = − e2

8πε0κa
, a = 4πκε0~2

m∗e2 , (2.1)

The donor wavefunction is on the form

ψ(r) ∝ e−r/a, (2.2)

same as the hydrogen ground state wavefunction. The donor state acts like a hydrogen electron
in it’s ground state. The localization length of the donor electron is of special interest. The
value of m∗ for the donor state can vary a lot between semiconductors. To give some examples
m∗ = 1.06m0 in Si semiconductors at 4K [23], and m∗ = 0.066m0 in GaAs [24]1. Typical values
are m∗ < m0. The dielectric constant is always > 1. This means the localization length of the
donor electron is quite large, and often bigger than the lattice constant. While still localized to
the donor atom, the donor electron state wavefunction can extend over many intrinsic atoms.
It is important to consider how much the wavefunctions of neighboring donors overlap. If this
overlap is small then the semiconductor is said to be only lightly doped. This occurs when
Na3 � 1, with N as the concentration of impurities. A key feature of lightly doped conductors
is the exponentially vanishing conductivity as T → 0, whereas the conductivity of a heavily
doped semiconductors is only weakly temperature dependent [25].

2.1.1 Conductivity in lightly doped semiconductors

The conductive behavior of semiconductors has severe variations with temperature. A qual-
itative sketch of the logarithmic resistivity is displayed in Fig. 2.2. Consider a n-type
semiconductor (the arguments are similar for p-type). In region A, the conductance is primarily
caused by intrinsic electrons. The high temperature allows valence band electrons to be excited

1page 201
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2.1. Lightly doped semiconductors

to the conduction band. Region B corresponds to temperatures below the band-gap, such that
only impurity charges can pass current. Region C is a gradual freeze-out of impurity charges
from the conduction band.

In Region D conduction is purely caused by transport through impurity states. This only
happens in compensated semiconductors, as empty states are a requirement. In highly doped
semiconductors, the donor states have a large overlap causing electrons to be delocalized. It
can be described as an impurity band of free moving electrons. If the impurity concentration is
small, in lightly doped semiconductors, there is only a small overlap and states are heavily
localized. In the localized system electrons can hop from occupied to empty donor states.
This is called hopping conduction. It should be noted that hopping conduction does not only
occur in lightly doped semiconductors, other examples are granular materials [3] and arrays of
quantum dots [4, 26].

It is possible to break down region D further. First is nearest neighbor hopping. As the name
implies, jumps happen almost exclusively between nearest-neighbor donor sites. The region
is associated with a constant activation energy. The final region is variable range hopping
(VRH). In VRH the activation energy is itself a function of temperature. The region features
an increasing average jump length as the temperature sinks.

Figure 2.2: Logarithmic resistivity ρ variations with inverse temperature. There are 4 high-
lighted conduction regions: A: intrinsic electrons, B: donor (acceptor) electrons (holes) conduct
in conduction (valence) bands, C: gradual freeze-out region of extrinsic charge carriers from
the valence band, D: impurity conduction. Figure taken from Ref. [25] p. 75.

Semiconductors can be either amorphous or crystalline. The intrinsic atoms of an crystalline
semiconductors are located on an ordered lattice. In amorphous materials they are disorderly
located. Amorphous semiconductors might still be ordered on a small-scale, but there is
no long range order like in crystalline semiconductors. In both amorphous and crystalline
semiconductors the impurity atoms are disorderly positioned. The deformation potential
approximation is a way of dealing with crystal deformations. Due to it, the potential energy is
fluctuating through the material. Amorphous semiconductors experience larger fluctuations
than crystalline ones. The deformation potential is often referred to as the disorder potential
φ.

Consider a compensated lightly doped semiconductor with more donors than acceptors at
T = 0K. NA donor electrons are de-excited to the acceptor states, leaving ND−NA electrons in
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2. Semiconductors and variable range hopping (VRH)

the donor states. There is an equal number of positively charged donors and negatively charged
acceptors, and there are ND −NA neutral donors. The impurities in the material are located
in a semi-random structure. Each impurity site experiences a unique charge configuration
experiences, leading to a random and fluctuating Coulomb potential. The Coulomb potential
changes every time an electron is moved, meaning the site potentials are changing with time.

The impurity site potentials are randomized both by the deformation potential and the Coulomb
interaction. The energy situation at T = 0K is displayed in Fig. 2.3a. The site energies are
randomly distributed and all the donor levels below the Fermi level are filled. Since the site
potentials are different, every jump is happens with the absorption or emission of a phonon.

(a) (b)

Figure 2.3: (a) Energy levels in a compensated, lightly doped, semiconductor at T = 0K.
Figure taken from [25] p. 57 with personal edits. (b) Conduction by hopping in presence of
electric field. Part of figure taken from Ref. [27], combined with (a).

2.2 Introduction to percolation theory

In this section we give a brief, mostly phenomenological, introduction to percolation theory.
This is to better the understanding of the methods used to derive the soon-to-be introduced
random resistor network, and of the theoretical framework behind the theories of the VRH
Hall effect. There are many percolation methods, and they are applicable to many different
areas. For the problem at hand, bond percolation is directly useful.

The framework behind bond percolation is that two sites are connected if a bonding criteria
is met. In terms of hopping conduction it means that electrons are able to jump from site
to another at a given temperature and electric field. The temperature and field are replaced
with a dimensionless percolation parameter ξ. For a low ξ, very few sites will be connected.
Increasing ξ connects more and more sites. Connected sites form a network of paths through
which electrons are able to pass. A sample will contain many such networks, but we are
interested in is a network that will go from one edge of a sample to the other. Such a network
will be able to produce conductivity. At some critical ξ = ξC , such a network will arise. We
call this the percolating or infinite network. The value of ξC varies between samples, and if the
sample size is small then ξC will fluctuate. As sample size increases the value of ξC between
samples will quickly converge to some universal value that holds for infinitely large samples.

The situation looks like Fig. 2.4. Unconnected sites are not shown in the figure. Consider the
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2.3. Variable range hopping (VRH)

sample only within the large dashed box. The networks outside are the hypothetical case if
the box was bigger. The requirement for percolation is a network connecting the left and right
sides of the box. Bonds that are necessary for percolation to happen are called singly connected
bonds (red). If one such bond is removed, percolation breaks. Bonds that are not vital, but
used to percolate, are called the backbone (green). One or more bonds can be removed from
the backbone without breaking percolation. The rest of the infinite cluster consists of dangling
ends (blue). These are parts of the cluster that don’t lead to percolation and can be safely
removed. In reality the vast amount of bonds in the percolating network are dangling ends.
The density of singly connected bonds is vastly over-exaggerated in Fig. 2.4.

Figure 2.4: An example of networks generated by percolation methods. Connected sites are
connected through solid lines. The scale is large such that lattice structure is not visible. LC(x)
denotes the correlation length as function of the percolation parameter (ξ used in text). Color
scheme illustrates parts of the infinite network for the sample only inside the large dashed
box. Figure taken from [25] p. 97 with colors added personally. Red - singly connected bonds.
Green - backbone. Blue - dangling ends. Brown - finite network.

Consider simulations of bond-percolation in a finite 2D sample of quadratic size with edges
of length L. Each site in the sample has some random number x to be used for the bonding
criteria. The aim of the simulations is to find the critical ξC that will produce a spanning
network on the sample. Values of ξ are chosen one at a time, forming networks of bonds allowed
by ξ, until a spanning network is detected. The value of ξ will now be ξC . Two different size
samples with networks made using the same value of ξ can be seen in Fig. 2.4 inside the striped
lines. The large sample features a spanning network, whereas the small sample does not. The
small sample is too small to "see" the infinite network. Here it becomes useful to introduce
the correlation length LC ∼ the typical size of a not-percolating network. If the L < LC , then
there will be large mesoscopic effects, the properties of the sample will vary heavily depending
on the configuration of sites in the sample. If L > LC , then these effects are avoided.

2.3 Variable range hopping (VRH)

First described in 1969 by Mott [28], VRH is the behavior of the lowest temperature region in
the compensated semiconductor. It has the unusual effect of having the important jump lengths
increase as the temperature decreases. There are "regimes" in VRH, Mott and Efros-Shklovskii
(ES). The ES regime considers long range Coulomb interaction between donor electrons. This
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2. Semiconductors and variable range hopping (VRH)

is neglected in the Mott regime. Both consider the disorder potential φ described in section
2.1.1. We will soon see that the important difference between the regimes is in the density of
states.

As previously mentioned, hopping only happens in compensated semiconductors if there are
more donors than acceptors, or opposite. Consider the case of more donor and acceptor
impurities. All the acceptors are occupied with an electron for the temperatures considered.
The acceptors are regarded to be completely static and are regarded as the background of the
platform of donor sites on which VRH happens. The energy of the state at donor site i is

εi = φi +
∑
i 6=j

(ni − ν)(nj − ν)
rij

, (2.3)

where φi is the (random) deformation potential at site i, ni = 0, 1 is the occupation number of
site i, rij is the distance between sites i and j and ν = 1−K is the number of electrons divided
by the number of sites. ν can be considered as the average occupation number. Energy is
expressed in units of the Coulomb interaction, e2/κ. εi represents the energy required to remove
or place an electron at site i, it is often referred to as the single particle energy (SPE). The
last term in Eq. 2.3 accounts for the Coulomb interaction between donor sites in a background
of acceptors, shifting the average charge. The SPE does not give the exact energy for every
site in the system, but on average the SPE should be an accurate estimator for the site energy.
To produce the Mott regime, the Coulomb interaction terms are simply removed from Eq. 2.3.
The Hamiltonian of the entire system is

H =
∑
i

φini + 1
2
∑
i,i 6=j

(ni − ν)(nj − ν)
rij

. (2.4)

The 1/2 factor in Eq. 2.4 is added such that Coulomb interactions are counted only once.
Before looking at the derivation of conductivity in the VRH regime, we examine the random
resistor network model proposed by Miller and Abraham’s in 1960 [29].

2.3.1 Random resistor network

The aim of this section is to show that the problem of hopping conduction can be reduced to a
random resistor network. Each jump an electron can perform, can be represented as having a
resistance Rij associated with that jump. We follow the explanation given in [25] pages 86-89
closely.

Miller and Abraham’s begin with the derivation of the jump rate of electrons going from site i
to j, Γij , with the absorption/emission of an appropriate phonon. The derivation of Γij will
not be given in this text, it can be found in [25] pages 83-86. The result is

Γij = τ−1
0 exp

(
−2rji

a

)
η(∆εij)fi(1− fj), (2.5)

where τ0 is a unit of time related to phonon-relaxation timescales of order 10−12s [25, 30]. fi is
the average occupation number of site i, ∆εij = εj − εi and

η(∆εij) =
{

1, ∆εij < 0
exp(−∆εij/T ), ∆εij > 0

(2.6)
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2.3. Variable range hopping (VRH)

is the probability of finding a phonon with the energy needed to perform jump i → j. T
represents the thermal energy, equal to Boltzmann’s constant multiplied by the temperature.
T is often simply referred to as the temperature in this thesis.

Next we look at the current between sites i and j. It is jij = −e(Γij − Γji). In the absence of
an electric field there should be zero current. Turning on E will change fi and εi to create a
current. In the linear field approximation and direct comparison to Ohm’s law, it is possible to
show

jij = R−1
ij (Ui − Uj) where Rij = T

e2Γ0
ij

, (2.7)

where Ui − Uj is the local voltage drop from site i→ j and Γ0
ij is the jump rate without an

external electric field.

The goal is now to study the resistance Rij . Setting Eq. 2.6 for ∆εij > 0 into Eq. 2.5, and
that into the expression for Rij yields

Rij = T

e2γ0
ij

exp
(2rij

a
+ εij
T

)
∝ T exp(ξij), ξij = 2rij

a
+ εij
T
. (2.8)

This problem can be interpreted as a bond-percolation problem with ξ as the percolation
parameter. The bonding criteria of sites i and j is

2rij
a

+ εij
T
≤ ξ. (2.9)

Increasing ξ will connect sites, creating networks through which electrons can travel. It is the
infinite network that is of interest, this is the only network that will produce current. We are
interested in finding the ξC that will produce an infinite network.

As ξ increases, more and more sites bond, at some ξC the last bonds are formed and the
network will percolate through the sample. It is only the resistance of the largest resistor
before percolation that is of interest. The resistance of the entire network is defined by the last
resistance to be connected. The resistance of the sample is given by R

R ≈ RC = R0 exp(ξC), R0 ∝ T. (2.10)

In normal materials, and in simulations, ξ > ξC tends to be the case. What this means is
that electrons travel down several different paths through the sample. Each path can be
considered to have it’s own resistance Rpath. These paths are opened at some ξ > ξC , and
so Rpath > RC . The approximation in Eq. 2.10 is exact if there is the one percolating path
opened at ξ = ξC . This is clearly not the case, but as will be seen, Eq. 2.10 still proves to be
an excellent approximation.

ξC needs to be calculated in order to find the full behavior of R. But first the density of states
in the VRH system needs to be known.

2.3.2 Density of states

As mentioned earlier, there are two main regimes in VRH studies. Mott and ES. The ES regime
considers long-range Coulomb interaction whereas the Mott regime does not. Experimental
studies show some materials fall neatly into one or the other, and other materials fall somewhere
between the two. The qualitative difference between the two regimes is the density of states.
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2. Semiconductors and variable range hopping (VRH)

Mott regime

The site energies in the Mott regime are determined entirely from the random potential φ. The
potential is uniformly distributed, resulting in a flat DOS for the Mott regime.

Coulomb gap

Efros and Shklovskii [31] showed in 1975 that when Coulomb interactions between the donor
electrons is considered, the DOS should vanish at the Fermi level in the limit T → 0K. Consider
a system at T = 0K. If there is a possible jump, then that jump has to net zero or negative
energy to stay in or reach a ground state. The change in energy ∆εij has to be greater than
or equal to zero. The change in energy associated with the jump i→ j with respective site
energies εi and εj (given by Eq. 2.3) is

∆εij = εi − εj −
1
rij
≥ 0 ⇒ rij >

1
|εi − εj |

(2.11)

Setting the expression ≥ 0 is a requirement for being in the ground state at T = 0K as thermal
excitations are impossible. Setting the Fermi energy µ = 0, the occupation number at T = 0K
is

ni =
{

0, εi > 0
1, εi < 0

. (2.12)

Any possible jump must go from an occupied donor to an empty state. Eq. 2.12 sets the
requirement that these states must be on different sites of the Fermi level. Consider two
donor sites on opposite sides in the energy range (−ε/2, ε/2). From Eq. 2.11 The minimum
distance between the sites has to be 1/|ε|. The minimum concentration in d-dimensions is
n = 1/rd ∝ |ε|d and the density of states is

g(ε) = ∂n

∂ε
∝ |ε|d−1. (2.13)

In the relation above we have set µ = 0. Using a generic Fermi energy simply shifts the result
ε→ (ε− µ). We can now use a completely general DOS

g(ε) ∝ |ε− µ|n, (2.14)

where n = 0 corresponds to the constant Mott DOS and n = d− 1 the Coulomb gap DOS.

2.3.3 Mott and Efros-Shklovskii’s law

The solution to the random resistor network will now be derived. The conductivity of the
random resistor follows the relation

σ ∝ R−1, σ = σ0 exp(−ξC), σ0 ∝ T−1 (2.15)

The conductivity of the hopping type system can be studied as a bond percolation problem.
Two sites are connected according to the bonding criteria Eq. 2.9. For a given ξ, the maximum
values of r and ε allowed by the bonding criteria are

rmax(ξ) = aξ

2 and εmax(ξ)′ = Tξ.

10



2.3. Variable range hopping (VRH)

Percolation methods are often unable to predict values of numerical factors. We set the volume
of a d-dimensional sphere to be V (r) = vdr

d, vd being the dimensional dependent numerical
factors. Using the generic DOS, Eq. 2.14, the concentration of sites in the volume V (rmax),
with energies less than εmax is

n(ξ) = V (rdmax)
∫ µ+εmax(ξ)

µ−εmax(ξ)
g(ε)dε = g(µ)vd

n+ 1 ε
n+1
maxr

d
max(ξ) = g(µ)vd

2d(n+ 1)(kT )n+1adξd+n+1

(2.16)
where g(µ) is the density of states at the Fermi level. Setting n(ξC) = nC , and solving Eq.
2.16 for ξ gives

ξC =
(

2d(n+ 1)nC
g(µ)vdTn+1ad

) 1
d+n+1

=
(
T0
T

) n+1
d+n+1

, T0 =
(

2d(n+ 1)nC
g(µ)vdad

) 1
n+1

=
(
C0
ad

) 1
n+1

.

T0 is often referred to as the temperature constant, even though it depends on a. The numerical
factors in T0 are grouped into some constant C0. The value of C also depends on dimensionality
and the VRH regime. In the Mott regime it additionally depends on the value of the density of
states at the Fermi level. Using self-consistent type of percolation approach, the results in two
dimensions are CMott = 13.8/g(µ) in the Mott regime and CES = 6.5 in the ES regime [25,32].

Setting ξC into Eq. 2.15 gives the conductivity

σ = σ0 exp
(
−
(
T0
T

)p)
, p = n+ 1

d+ n+ 1 (2.17)

Mott’s law is found by setting n = 0, in 2-dimensions p = 1/3. Efros-Shklovskii’s law is found
by setting n = d− 1. In any dimension the law is p = 1/2. Finally they are

σMott = σ0 exp
(
−
(
TMott
T

)1/3
)

and σES = σ0 exp
(
−
(
TES
T

)1/2
)
,

where TMott = CMott/a
2 and TES = CES/a. Continuing forwards, T0 with subscript 0 will be

used to refer to both the Mott or ES regime.

2.3.4 Validity and difficulties with VRH laws

The two laws have their own areas of applicability. In some materials the long range Coulomb
interactions are not significant to the hopping dynamics and follow Mott’s law very neatly.
Other materials follow the Efros-Shklovskii law closely. And yet some materials lie somewhere
between the two.

Below is a description of the methods used to test measured data against the VRH conductivity
laws.

Linearity test

One way to test if measured conductivity follows Eq. 2.17 for some values of p is to plot the
data in a fashion that is expected to be linear. In Eq. 2.17, σ0 ∝ T−1. Multiplying both sides
of Eq. 2.17 with T , then taking the logarithm gives

ln(σT ) = −T p0 T−p + ln(A), (2.18)

11



2. Semiconductors and variable range hopping (VRH)

where A = σ0T is a temperature independent numerical factor. If a material follows the VRH
law, then a plot of measured ln(σT ) versus T−p should result in a straight line according to
Eq. 2.18. This method requires an input of p. A great difficulty is however that the linearity
does not change much between p = 1/3 and p = 1/2. It is often difficult to determine what
value of p best linearizes the conductivity.

Data collapse

The reason it’s often difficult to determine if p = 1/3 or p = 1/2 best linearizes the data is that
the temperature range is not wide enough. Simulating at lower temperatures takes a long time
and results can have large uncertainty. In simulations this issue can be bypassed by comparing
the results from using different localization lengths a. T0 depends on a, meaning different
localization lengths will cover different (T0/T ). If the data is instead plotted as function of
(T0/T )p then the data from the different a should lie on the same line if it follows the law. This
is what we call a data collapse.

We have also found TMott ∝ a−2 and TES ∝ a−1. The exponent of a that best produces a data
collapse can therefore also be used to help determine what law the data follows.

Hill’s method

The above detailed method of determining the conductivities behavior requires us to input an
expected value of p, and then check how well it fits. There is another method by Hill [33] that
seeks to measure what the value of p should be. The idea is to compare the activation energy
with the temperature in a log-log plot. The activation energy ε3 comes from the definition

σ = σ0 exp
(
−ε3
T

)
(2.19)

Solving ε3 from Eq. 2.19 gives

ε3 = −T ln
(
σ

σ0

)
= −T ln(σT )

where in the last step we have used σ0 ∝ T−1 from Eq. 2.10. Another way to solve for ε3 is to
take the logarithm of Eq. 2.19 which gives

ln(σ) = ln(σ0)− ε3
T
⇒ ε3 = −∂ ln(σ)

∂1/T + T (2.20)

Setting Eq. 2.17 in as σ into the last part of Eq. 2.20 returns

ε3 = pT p0 T
1−p

Plotting ε3 = −T ln(σT ) vs T in a log-log plot should return a straight line with slope (1− p).
The gradient of the measured line can then be used to find the value of p from the data. The
measured exponent p can then be compared with the theoretical VRH exponents 1/2 and 1/3.

VRH laws in real materials

There are advantages and disadvantages in the different approaches to determining p. The
linearity test doesn’t make any assumptions about the relative size of input parameters, but it
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2.3. Variable range hopping (VRH)

is difficult to determine what p gives the best linearization. Hill’s method on the other hand
makes assumptions about the size of ln(A), but gives one result for the p it predicts to give
the best fit.

Analyzing experimental results using Hill’s method finds p to take values between 0.18 and
0.70 [25, 33, 34], but most most amorphous follow Mott’s law (in 3-dimensions) closely with
p ≈ 0.25 and most crystalline semiconductors follow ES’s law with p ≈ 0.50.

Amorphous materials experience Coulomb interactions between it’s components. So why
doesn’t it follow the ES law? The answer is that the magnitude of variations in the deformation
potential is much stronger than that of the Coulomb interactions. Amorphous semiconductors
tend to have a constant DOS, with no Coulomb gap. There are dips close to εF caused by
the Coulomb interaction, but they are small compared to the g(ε). The insignificant Coulomb
gap makes the material follow Mott’s law, even when there are Coulomb interactions between
material constituents. The degree of amorphousness will impact the significance of the Coulomb
gap, adjusting the p value between 0.25 and 0.5.

Some materials even exhibit both Mott and ES type conductivity depending on the temperature
[4, 25]. At high temperatures the thermal fluctuations dominate and Coulomb interaction
has minimal effect, leading to Mott type conductivity. At low temperatures the Coulomb
interaction becomes important and the material’s conductivity is closer to that of ES’s law.

Note that in crystalline semiconductors it is only the intrinsic atoms that are positioned in a
structured manner. The impurities are still placed in a disordered configuration. Meaning the
positions used for hopping are in disorder, both for crystalline and amorphous semiconductors.
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CHAPTER 3

Hall effect

The Hall effect is how current traveling through a material is affected when an external magnetic
field is applied. It was E. H. Hall who discovered this effect in 1879 [35]. It has since been
found to be an important tool used to investigate materials. Specifically the Hall effect can be
used to determine the type of charge carrier in materials. Mainly there are two types of Hall
effect, the ordinary and the anomalous. The anomalous Hall effect is when a magnetic material
experiences a Hall effect without an external magnetic field due to internal magnetization.
This project only concerns itself with the ordinary Hall effect.

3.1 Classical ordinary Hall effect

In classical terms it is explained by the Lorentz force F = q(E + v × B). The electric field
accelerates charges parallel or anti parallel the electric field. The magnetic component of the
Lorentz force has direction perpendicular to the applied magnetic field and velocity of the
charges. If the magnetic field has a component perpendicular to the charge velocity, moving
charges will be deflected by the magnetic field, creating charge imbalances in the material. The
Hall effect is different depending on what type of charge carrier is dominant in the material.
Let us consider the cases separately.

Electrons as majority carrier

First consider the situation in Fig. 3.1a. There is an applied electric field pushing the electrons
(white arrows) in the direction of qE. The magnetic field is turned on in Fig. 3.1b. The
direction of the magnetic force q(v × H) will be q2(E × B), since the electric field is giving
the electrons its velocity. In the figure, the electrons are moving down, causing a buildup of
negative charges on bottom surface. The electric charges moving down, moves the positive
holes up. So there are positive charges on the top surface. The charge difference produces a
transverse electric field, Ey. The charge buildup on material boundaries continues until the
force from Ey is balanced by the magnetic deflection. Then the system has reached a steady
state as in Fig. 3.1c. The material posesses a charge difference in the transverse direction, but
current travels through the material normally.

Holes as majority carrier

The process is very similar when holes replace electrons as majority carrier. The holes (black
arrows in Fig. 3.1) are initially moving in the direction of the electric field. The holes have
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3. Hall effect

opposite charge, and opposite velocity direction to the electrons. The combination results in
particles being deflected in the same direction by the magnetic field. The deflection of the holes
will push electrons in the opposite direction, causing a buildup of charge on opposite surfaces.
The resultant field Ey will balance the magnetic force, creating a steady state situation. The
polarization of the charge buildup is opposite for holes and electrons. The sign of Ey depends
on the type of charges carriers in the material.

Real materials

The Hall effect is often characterized by the Hall coefficient RH ≡ Ey/(jxBz). We see that
electrons and holes as majority carrier produces different signs for Ey and therefore have
different signs for RH . Real materials have both electrons and holes as charge carriers. The
opposite charge carriers counteract each other. The combination of both charge carriers lowers
the Hall effect.

If there is an equal number of holes and electrons, then the fields will cancel out and there is
no classical Hall effect! As the sign of the Hall effect depends on the type of charge carrier,
measurements of the effect can be used to determine the charge carrier of materials. Some
specific materials still exhibit a Hall effect with equal number of holes and electrons, this is
called the compensated Hall effect.

Figure 3.1: 3 stages of the classical ordinary Hall effect. White arrows represent electrons and
black arrows represent holes. (a) Current flowing through the material when an electric field is
applied. (b) The movement of the charges is deflected when the magnetic field is turned on.
(c) The deflection causes a buildup of charges on opposite sides of the material, creating Ey to
counteract the influence of Bz. In the final steady state situation, the current is moving just as
it did in (a), without any magnetic field. Figure taken from [24] page 154 with personal edits.

3.2 VRH Hall effect

The effect is different in the VRH regime. The electrons travel by hopping discretely. There is
no velocity on which the Lorentz force can act to cause a magnetic deflection. The Hall effect
can be explained by including higher order electron transitions.
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3.2. VRH Hall effect

The jump rate between two sites, Eq. 2.5, is independent of H and is unchanged by magnetic
fields. The resulting current is unaffected by a magnetic field. Holstein [5] considered jumps
between two sites i→ j, in the direct presence of a third site k, and showed that such jumps
create a magnetic field dependence. The third intermediate site allows the electron two paths
to get from i to j. It can travel directly i→ j or by stopping by the intermediate site i→ k
then k → j. The process is illustrated on Fig. 3.2a. Holstein considered only jumps in which
the intermediate site k was unoccupied. Shumilin [17] extended the model to include jumps
in the presence of an occupied intermediate site. That process is illustrated in Fig. 3.2b. If
k is occupied, then the electron on i cannot jump to k before the electron on k has jumped
to i. The two processes when the intermediate site is occupied are k → j followed by i→ k,
and the direct jump i → j. The two processes are different because the electron on k ends
up on j instead of the i electron for the intermediate path. Even so, the final states are
indistinguishable and it makes no difference which electron went where.

It might be more natural to think of the jumps involving an occupied intermediate site as if
the hole was performing the jump instead of electrons. The hole has two paths, j → k then
k → i, and j → i.

(a) (b)

Figure 3.2: Jump paths from i to j in presence of available (a) and occupied (b) intermediate
sites. The configuration of energy for the different sites in the figure is chosen arbitrarily.

The magnetic field impacts the system through the Aharanov-Bohm effect. The Aharanov-Bohm
effect changes the wavefunction trough the gauge function

χ ≡ e

~

∫ r

0
A(r) · dr

that changes the wavefunction ψ(r) → eiχψ(r). A is the electromagnetic vector field. It is
interference in the phase of the wavefunction between different paths from i to j that produces
a magnetic field dependence in the rate equations. Holstein and Shumilin only consider effects
linear in H. Using (n) to note the occupation number of site k, the magnetic field dependent
rates are

Γ(0)
ikj = 1

t0τ1

(H ·Aikj

2Φ0

)
exp

(
−rij + rjk + rik

a

)
×

[η(∆εij)η(∆εik) + η(∆εij)η(∆εjk) + η(∆εik)η(∆εkj)] fi(1− fj)(1− fk) (3.1)

and

Γ(1)
ikj = − 1

t0τ1

(H ·Aikj

2Φ0

)
exp

(
−rij + rjk + rik

a

)
×

[η(∆εki)η(∆εkj) + η(∆εij)η(∆εki) + η(∆εij)η(∆εkj)] fifk(1− fj). (3.2)
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3. Hall effect

where H is the applied magnetic field, Aikj is the vector area of the triangle with vertices at
sites ikj, Φ0 = h/2e is the magnetic flux quanta, t0 and τ1 are phonon relaxation timescales
and η(∆εij) is defined by Eq. 2.6. The definition of the vector area determines how specific
jump configurations become more or less frequent as the magnetic field increases. The sign
difference in front of the area between Γ(0)

ikj and Γ(1)
ikj mean that electrons and holes effectively

favor different configurations when a magnetic field is present. The reason there is a sign
difference can be interpreted as coming from the charge difference. The product H ·Aikj/Φ0 is
the magnetic flux through the field perpendicular area component Aikj .

The rate equations Γ(n)
ikj are only the magnetic field correction to the total rate of jumps. The

total rate of jumps from i→ j is

Γtotal
ij = Γij +

∑
k

(Γ(1)
ikj + Γ(0)

ikj). (3.3)

As mentioned the rate equations only consider linear magnetic field effects. Effects such as
magnetoresistance are not considered. Magnetoresistance is the effect of decreasing conductivity
with increasing magnetic field. It is explained by a squeezing of the electron orbitals, decreasing
the overlap between neighboring sites.

3.2.1 Explanation of VRH Hall effect

It is not trivial to see that Eqs. 3.1 and Eq. 3.2 will produce a Hall effect. The magnetic field will
increase the rate to some sites, and decrease it to others. The favorable direction is determined
by the definition of the vector area Aikj . The decision was made to set counterclockwise areas
to be positive. As will be seen, this results in a negative sign of the Hall effect.

Let us consider only available intermediate sites first. For simplicity and convenience, the
correction jump rate is split into into magnetic field and electric field components. These
are referred to as transition rates and acceptance rates, as indicated by their respective
subscripts T and A, and will be discussed more in the methods chapter. Eq. 3.1 becomes
Γ(0)
ikj = Γ(0)T

ikj (H)Γ(0)A
ikj (E), where the transition and acceptance rates are defined as

Γ(0)T
ikj (H) = 1

t0τ1

(H ·Aikj

2Φ0

)
exp

(
−rij + rjk + rik

a

)
Γ(0)A
ikj (E) = [η(∆εij)η(∆εik) + η(∆εij)η(∆εjk) + η(∆εik)η(∆εkj)] fi(1− fj)(1− fk),

The effect of the transition rate is to increase the rate of jumps with positive areas and reduce
the jumps with negative areas. The transition rate reduces exponentially with distance, and
increases linearly with area, making short jumps most notable. From symmetry arguments it is
clear that

∑
k Γ(0)T

ikj (H) is independent of H due to pairing of areas with opposite signs. Neither
the transition nor the acceptance rates alone can explain the Hall effect. The combination of
E and H is necessary.

The acceptance rate is a bit more complicated to work with due to the random site energy εi.
Consider a simplified case in which all the site potentials are equal. In this case, η(∆εij) is 1
for any jump in the direction opposite E and is exponentially decreasing with distance going
with E.
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3.2. VRH Hall effect

The simplified system is considered in Fig. 3.3. There is one electron at the center site and
all the other sites are unoccupied. All the site potentials are equal. Electric and magnetic
field are set to 1. We only consider the change in Eq. 3.1 when a magnetic field is added. As
jump rates decrease exponentially with distance, this system only considers nearest neighbors
as intermediate sites. And we only calculate transitions ending up at the corners sites. Each
corner has two intermediate sites leading there, the two transitions having different orientation
and the vector areas of the respective transitions have different sign. The signs are highlighted
by color in Fig. 3.3, blue for negative and red for positive.

∆H

(∑
k Γ(0)

ikj

)
in Fig. 3.3 denotes the change in jump rate going from the center to the a

corner, when the magnetic field is turned on. The radial exponential dependence of Γ(0)T
ikj has

been omitted from ∆H

(∑
k Γ(0)

ikj

)
for visual purposes. The configuration of distances are equal

for all the points, and therefore only results in a constant factor. We are primarily interested
in the jump going against the electric field, as those happen most frequently. ∆H

(∑
k Γ(0)

ikj

)
is

positive going to the bottom left corner, and negative going to the top left one. This means
that when the magnetic field is turned on, more electrons will jump down-left than up-left.

Figure 3.3: Change in jump rate going from center site to corner sites when no other sites are
occupied. Red (blue) color denotes areas aligned with (against) the magnetic field. The green
circle is the occupied electron state.

Effectively what happens is that going to the bottom left site, positive areas pair up with large
phonon probabilities. And negative areas pair up with smaller phonon probabilities. The sum
is net positive. Oppositely, large phonon probabilities pair up with negative areas and small
phonon probabilities with positive areas when going up left.

This means electrons will be deflected from the going up and left, to going down and left when
the magnetic field is turned on. This effect is expected to last when considering variable site
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potentials ε. The resultant Hall effect for electrons should have negative sign.

If the intermediate site is occupied, then the jumps effectively use opposite sign for the vector
area Aikj . Naively one might think that the Γ(1)

ikj will change oppositely to Γ(0)
ikj . However,

the phonon averaging for occupied jumps change the transitions that give large contributions.
The resultant ∆H

(∑
k Γ(1)

ikj

)
are identical to ∆H

(∑
k Γ(0)

ikj

)
. Therefore holes are expected to

produce the same Hall sign as electrons using this model.

3.2.2 Sign of VRH Hall effect

From the calculations in the previous section it appears electrons and holes produce Hall effect
with the same sign. Holstein [36] showed that the sign of the VRH Hall effect does not depend
solely on the charge carrier, but also on the type of jump responsible for the Hall effect. In
this context, he considered jumps involving n sites, and found

sign(RH) = sign
(
qn+1

n∏
i=1

Ji,j+1

)
, (3.4)

where q = ∓1 is the opposite charge of the assumed charge carrier, and Ji,i+1 is the transfer
integral between sites i and i+ 1. The RHS of Eq. 3.4 is the product of transfer integrals going
around the structure of the n site jump. If n = 3, then it is the product of transfer integrals
going around the triangle. Site n+ 1 is defined to be site 1 to make transfer integrals go in a
loop.

The sign of the transfer integral between i and j is opposite for electrons and holes [36],
J

(h)
ij (H) = −J (e)

ij (H). The resultant sign of
∏n
i=1 Ji,j+1 is then the same for electrons and holes

when n is odd-numbered, and different when n is even. As the Cage changes from electrons to
holes, it means the sign of the Hall effect produced by n site jumps is independent of charge
carrier for odd n and changes for even n. Therefore, when considering jumps involving three
sites, electrons and holes should produce the same sign. Jumps involving four sites should
produce different Hall effect signs.

Measurements of the thermoelectric effect can typically be used to determine the charge carriers
of a material, just as the Hall effect traditionally. In many amorphous semiconductors, the Hall
effect experiences no sign change while the thermopower does. [37,38]. The Hall effect anomaly
is explained by Eq. 3.4 if the main contribution comes from odd-numbered loops. While the
structure of amorphous materials is disordered, it is believed to contain many odd-numbered
loops [39]. Hence the experimental measurements are in agreement with Eq. 3.4.

Experimental results of n-type amorphous Si films find the thermopower sign to be electron-like
and the Hall effect sign to be hole-like. The thermopower sign is measured to be hole-like in
p-type amorphous Si films, while the Hall effect sign is electron-like [38]. The electrons in
amorphous Si films are believed to be of anti-bonding orbital type in the conduction band,
and holes to be bonding orbital type in the valence band. The band and the different orbital
structure changes the transfer integrals entering Eq. 3.4. For odd-numbered loops anti-bonding
holes and bonding electrons should produce different Hall signs [39], in agreement with the
results.
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In conclusion, the sign of the Hall effect should not depend solely on the charge carrier, but
also on the local geometry and type of wavefunction for charge carrying particles. For our
simulations we will only consider hydrogen-like wavefunctions, and jumps involving only two
or three sites. Thus we expect the sign to be the same for electrons and holes.

3.2.3 Theoretical approaches to VRH Hall

There are multiple theoretical solutions to the VRH Hall conductivity [6, 7, 9, 40–45]. Most
theories rely on percolation arguments to calculate the VRH Hall mobility. Using similar
methods, they result in slightly different results. Below is a description of the methods and
argumentation behind these theories.

The main idea is to consider current traveling through the percolating network, and see how
the magnetic field correction affects that current. Fig. 3.4a shows a percolating network with
junctions highlighted with circles. The principle idea is that the magnetic field corrections are
only important at the junctions of the percolating network. When an external magnetic field
is present, Eqs. 3.1 and 3.2 should redirect some current from one site to another. This results
in a favorable direction when there is a magnetic field, and the Hall effect is generated.

(a) (b)

Figure 3.4: (a) Junctions in percolating network. L denotes the correlation length, LC used in
text. Figure taken from [46]. (b) Optimal position of sites at junction in percolating network.
Taken from [7].

With this framework, the configuration of sites at the junctions become important in determining
the magnetic properties of the network. The three sites at the junction might not be good
generators of Hall current depending on the configuration of site potentials ε and the intersite
distances. Therefore it is expected that the average distance between effective Hall generators
at junctions is larger than the correlation length of the percolating network. The Hall current
should have a correlation length larger than that of the longitudinal current. This implies the
Hall current is more susceptible to mesoscopic effects than the longitudinal current.

The authors of Ref. [41] find that the main contribution to the Hall effect should come from
equilateral triangles formed by sites in the clusters. Such triangles should generate much more
Hall current than other triangles.
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Galperin et al. [7] develop the theory of optimal triangles for the Hall conductivity. They
find that the Hall conductivity is dominated by some specific configurations of site potentials
and intersite distances. Such a configuration can be referred to as an optimal triangle and
is illustrated in Fig. 3.4b. An optimal triangle is described by several requirements. The
resistances between the sites must all be of the order of the critical percolating resistance
Rij ≈ Rik ≈ Rjk ≈ RC . The site potentials εi, εk, εj all need to be on one side of the Fermi
energy. Two of them need to be within T of some εmax. The sites all need to be as close as
possible, rij ≈ rij ≈ rkj ≈ rik ≈ rmin. The minimum distance rmin is defined from intersite
quantum repulsion. εmax is the maximum energy defined by the bonding criteria Eq. 2.9 when
the intersite distance is rmin.

Using P 3 as the probability of finding an optimal triangle, the correlation length of the Hall
conductivity is defined by LH ≈ LC/P . The result from [7] gives

LH ≈ LC

[
ξ2
C

ln(V/Tξc)

]4

.

Using typical values, LH can be 102 − 103 times larger than LC . In a real material it can be
∼ some millimeters. The drastically larger correlation predicts mesoscopic fluctuations from
sample to sample depending on if or how many optimal triangles there are.

Most works find the Hall mobility to be on the form of

µH ≡
σH
σxH

∝ aγ

T λ−1 exp
(
−α

(
T0
T

)p)
, (3.5)

where α, γ and λ are constants. The implication of Eq. 3.5 is that σH ∝ HaγT−λ exp(−(1 + α)(T0/T )p).

The exact value of α is in dispute between the theoretical predictions. The value of α can be
interpreted as the Hall mobility having a different T0 than the normal mobility. α is expected
to vary with applied magnetic field, the reported values are the zero-field extrapolated value.
The results are gathered in table 3.1. With the exception of Burkov et al. [44], the results
predict an α < 1.

Table 3.1: Values of α and λ for different theories. *Németh and Mühslchlegel find Mott regime
α to depend on dimensionality. α = 0.310 for 2d and α = 0.355 in 3d.

Author αMott λMott γMott αES λES γES
Gruenewald et al. 1981 [6] 0.375 - - - - -

Friedman 1982 [42] - - - 0.2247 1 -
Németh and Mühslchlegel 1988 [9] 0.355,0.310* 0.5 0.5 0.2247 1 1

Burkov et al. 2003 [44] 2 1 2 - - -
Arsenault 2008 [45] 0.375 - - - - -
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Table 3.2: Experimental results for VRH Hall effect. The value of λ is the one that fitted
measurements best. *α value interpreted in Ref. [9]. **Roy et al. found longitudinal conduc-
tivity to follow Mott’s law, but found that both 1/2 and 1/4 fitted for the Hall mobility. They
saw no clear behavior for α as function of applied field and were unable to extrapolate a zero
field value. ***Qiao et al. varied oxygen pressure to control electron density. The two values
reported are for two different densities. Qiao’s et al.’s α parameter is reported at finite field.

Author Material Regime α λ

Koon and Castner 1987 [10] SiAs Mott 0.37± 0.02 0
Rhode and Micklitz 1987 [47]* BixKr1−x - 0.28± 0.05 -

Roy et al. 1989 [11] n-type CdSe Mott or ES** < 0.7 0
Zhang et al. 1993 [12] CdSe - 0.46± 0.04 -
Essaleh et al 2006 [48] n-type CuInSe2 Mott - 0
Qiao et al. 2014 [13] In0.27Co0.73)2O3−v Mott 0.82 0
Qiao et al. 2014 [13] In0.27Co0.73)2O3−v ES 0.31,0.39*** 0
Kajikawa 2017 [14] Si doped n-type GaN ES 0.3 1
Stepina 2018 [17] Ge/Si quantum dots ES 0.56 0

The result from the theory of optimal triangles [7] is

µH ∝
a2

T
ξC

[ ln(V/TξC)
ξC

]4
. (3.6)

The main result of Friedman and Pollak [43] is

µH ∝ a2
(
T

T0

)13/4
[
b+ cf1

(
T

T0

)1/4
+ df2

(
T

T0

)1/2
+ ef3

(
T

T0

)3/4
]
, (3.7)

where fn are numerical factors expressed as incomplete Gamma functions. Despite very different
function forms between Eqs. 3.7, 3.6 and 3.4, numerical estimates show they are identical to
exponential precision to αMott = 0.375 [7, 43].

The reason σH has a larger T0 than σx can be intuitively explained through the larger
correlation length. The increased LH implies a critical percolating concentration nC , such that
the numerical factor β should be larger. This argument is not perfect as it is difficult to define
what percolation means for σH .

3.2.4 Experimental results of VRH Hall effect

The purpose of this subsection is to give an overview of experimental results of the VRH hall
effect. There are more published experimental studies, but there are too many to include here.
Some of the results are presented in text, all are gathered in table 3.2.

The first prediction of an impurity conduction Hall effect was made by Holstein in 1961 [5]. His
prediction included an estimate that the Hall effect should be anomalously large. Amitay and
Pollak were unable to measure any Hall effect in 1966 [49]. The negative result was attributed
to a requirement for more sensitive instruments. In 1985 Klein was also unable to measure
anything [50].
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3. Hall effect

The first experimental results of the VRH Hall effect are from 1987 by Koon et al. [10]. They
measured the Hall coefficient in SiAs for temperatures approximately between 0.5K − 4K and
find α in good agreement with [6] theoretical prediction. They find the value of α to depend
on applied magnetic field, but extrapolate to the zero field value at the critical percolating
concentration for their final α. Their measurements are made using magnetic fields between 1
T and 15 T.

Roy et al. [11] find difficulty extrapolating the zero-field value of α. Their measurements are
made using magnetic fields 0.3− 1.0 T. They report a larger α than [10] for the fields used,
and that α may tend to one.

Rhode and Micklitz [47] measured σH in BixKr1−x but do not make attempts to measure α
from their data. Instead they measure the relation σH ∝ σ1.28±0.05

x . The authors of Ref. [9]
imply σH ∝ σ1+α

x and interpret the result from [47] as α = 0.28 ± 0.05. Zhang et al. [12]
instead find the empirical relation σH ∝ σ2−α

x and measure α = 0.46± 0.04 in CdSe. Note that
if σH ∝ σ2−α

x then the only possibility is α = 0.5.

Zhang et al. also find α to be constant for B > 3T , in disagreement with results from Ref. [10].
Zhang et al. perform their measurements on the same material as Roy et al. do in [11],
commenting that Roy et al.’s inability to find a definite α results from using magnetic fields
lower than 1 T.

Qiao et al. measure measure the Hall effect in (In0.27Co0.73)2O3−v and vary the O2 partial
pressure to reproduce both ES and Mott regime conductivity. They find αES > αMott, but do
not extrapolate α values to zero-field.

All experimental results in table 3.2 measure α < 1 and most measure 0.3 < α < 0.5 independent
of conduction regime. The results are not far off some of the theoretical predictions. With
the exception of Kajikawa’s result [14], all the experimental work favors λ = 0. It should be
noted that it is difficult to determine the value of λ without having a data over a significant
temperature range.

3.2.5 Previous VRH Hall effect simulations

The first simulations of VRH Hall effect are from 1981 by P. N. Butcher et al. [15,16]. They
used percolation methods to solve Kirchhoff’s equations to produce a result for the Hall mobility.
An outline of percolation simulation methods is found at the end of the methods chapter. As
function of density, the simulations reported agreement with [40] for high density [15]. As
for the temperature behavior, they report µH on the form of Eq. 3.5 with λ = 0, but no
measurements of α were made [16].

P. N. Butcher et al.’s results were produced using 13x13x13 sites with only one configuration of
disorder potentials. The predicted large correlation length of the Hall mobility is likely bigger
than the simulated system. As such, larger samples and more configurations are important for
making the results trustworthy.

Shumilin and Stepina have used similar methods to simulate the VRH Hall effect, using 100x100
sites in 2-dimensions for multiple disorder configurations [17]. The results follow Eq. 3.5 with
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3.2. VRH Hall effect

αMott = 0.46 and αES = 0.3 and µH ∝ a2 for both regimes. The ES regime is simulated
in Ref. [17] by performing a zero-temperature MC algorithm to produce a Coulomb gap,
then applying percolation algorithms to effectively simulate dynamics using static Coulomb
interactions.
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CHAPTER 4

Methods

The main goal of this project is to measure the conductivity in the x and y-directions as
functions of various parameters. This chapter mainly deals with the Kinetic Monte Carlo
algorithms, and how the simulations are performed. First the system on which the alorithms
act is described. Then the algorithms themselves are detailed, and methods used for measuring
conductivity from simulation data is explained. Finally a brief comparison between the Kinetic
Monte Carlo and percolation algorithms is given.

4.1 System description

For our simulations we use sites located on an ordered lattice of dimensions L× L. The sites
represent the donor impurities in the lightly doped semiconductor. The disorder potential φi
(see Eq. 2.3) is generated for each site as a uniformly distributed random number φi ∈ [−1, 1].
The simulations take the percentage of sites to be filled with electrons as a parameter. This
will be referred to as the fill fraction ν. The sites are randomly filled with electrons until the
fill fraction is satisfied. An example lattice is displayed in Fig. 4.1. This is the platform on
which the simulations are done. The site locations in real materials also feature positional
disorder. This is not accounted for by the lattice model, but is not expected to cause big
problems [32,51]. The lattice model is chosen for its computational effectivity and low memory
usage. The boundaries are periodic.

The simulations are initialized with a constant temperature, electric and magnetic field. The
sites are thermally connected to a heat bath of constant temperature. Phonons are absorbed
and emitted from/into this heat bath. It is assumed to be large such that the temperature is
constant.

The requirement for a semiconductor to be defined as lightly doped is Nad � 1, N being the
concentration of doped impurities. The localization length is very small, and the wavefunction
overlap is a exponentially small. This means that jumps happen very infrequently. Using
realistic localization lengths in simulations would lead to impossibly long computation times.
This project uses localization lengths between 0.2 and 1 times the donor spacing.

The initial state is a randomly generated configuration of occupied and non-occupied states.
The KMC algorithm is used for time evolution. The initial state is likely a very unlikely
configuration for the system to naturally find itself in, because high energy states are just
as likely to be occupied as low energy states. The system uses some configuration time to
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4. Methods

Figure 4.1: Image of the lattice model. Flat lines indicate states, with filled circles representing
electrons occupying those states. Ui is the disorder potential (φi used in text). Figure taken
from Ref. [27].

evolve to a more physical state. After the configuration time has passed, the system enters its
steady state. The dynamics of the jumps happening after the configuration time is what we
wish to study. Therefore the initial jumps needs to be omitted before analyzing the results.
The number of jumps required to reach the steady state depends on simulation parameters
such as temperature, electric field and localization length. In high temperature cases only
the first hundred thousand or so need to be discarded, but a million might be needed at low
temperature.

Both the Mott and ES regime can be studied using this model. The only difference is the range
of the Coulomb interaction. The Coulomb cut-off range is set to be L/2. This prevents an
electron from interacting with itself, but means some sites don’t interact when they should.
This interaction is so small, because those sites are so far away, that it is not significant. The
Mott regime is simulated by setting the Coulomb cut-off to be less than site separation. This
way no sites will have any interation with one another.

Energy is expressed in units of e2/κ such that the Coulomb potential between neighboring
sites is 1. This makes the Coulomb potential stronger than the disorder potential in ES regime
simulations. The strength of the Coulomb interaction relative to the disorder potential is
sufficient to produce the Coulomb gap in the density of states.

4.1.0.1 Randomly positioned sites

The theoretical work behind the random resistor network and the VRH laws use sites with
random positional disorder. The lattice model is one that is used for it’s efficiency, but it is
useful to test the effects the lattice model has on conductivity. This can be done by performing
a few simulations on samples of randomly distributed sites.

4.1.1 Limitations

The periodic bounary conditions employ a limitation in therms of the Hall effect. There cannot
be a buildup of charges on the sides of the system. Therefore the transverse electric field Ey
cannot be simulated and the steady state situation depicted in Fig. 3.1(c) cannot be reached.
Instead we simulate scenario (b) in Fig. 3.1 and sample those properties. The term steady
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Figure 4.2: Example sample of randomly positioned sites. Flat lines indicate states, with filled
circles representing electrons occupying those states. Ui is the disorder potential (φi used in
text). Figure taken from Ref. [27] with personal edits.

state in these simulations refers to the state in Fig. 3.1(b). The Hall effect will be measured
through the Hall current and conductivity, not by any transverse electric fields.

4.2 Kinetic Monte Carlo (KMC)

Kinetic Monte Carlo methods are able to simulate the time development of systems using
relatively little computation time, and as such is especially useful for dynamic systems. There
are many KMC algorithms, but the main concept is to propose and accept kinematics (jumps)
based on probability rates.

4.2.1 KMC algorithms

Here is a brief description of some variants of KMC methods. To be considered here is the
rejection-free, rejection and dynamic KMC algorithms.

The rejection-free algorithm computes the rate Γij from current system state i to every possible
next state j and chooses a jump i→ j with probability proportional to Γij and performs the
jump. The benefit of this algorithm is that no computation time is used on unused jumps. The
disadvantage is that all the rates of all the possible jumps has to be calculated at every time
step. The rate computation is very costly and takes a long time.

The rejection algorithm chooses the set of sites (i, j) with uniform probability from all sets of
sites. The jump is performed with probability proportional to Γij . The benefit of the rejection
algorithm is that only the one rate Γij is calculated at each time. The disadvantage is that
very few jumps are accepted at low temperatures.

The dynamic algorithm was first used by Tsigankov et al. [18] to combine the best features of
the rejection-free and rejection algorithm. The basis of the dynamic algorithm is the splitting
of the jump rate into a transition rate and an acceptance rate. Γij = ΓTijΓAij , with T and A
symbolizing transition and acceptance respectively. Jumps are proposed with probability ΓTij
and accepted with probability ΓAij . The key is that the transition rate is independent of the
current system state. Therefore it can be calculated once, before any time steps are performed.
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4. Methods

The acceptance rates should include all the configuration specific calculations and is only
calcuated once per step.

The rejection-free and rejection algorithms both scale as O(N3), with N being the number
of sites in the simuation. The dynamic algorithm only scales as O(N2) [18]. The dynamic
algorithm has a massive speed advantage over the other algorithms. What the dynamic
algorithm can do in less than a minute might take the other others several hours or days for
normal hopping conduction. Personal tests show that the rejection algorithm is generally faster
than the rejection-free algorithm, but at very low temperature (T < 0.01), the rejection-free
wins. When including magnetic field corrections the rejection-free algorithm takes weeks to run
on a normal computer. The slower algorithms have their advantages as well, the rejection-free
algorithm has proven excellent for studying Coulomb glass relaxation effects [21]. It is great
at finding the important jumps in the system. This is not vital when studying conductivity
where sampling many jumps is more important.

4.2.1.1 Choice of algorithm

The dynamic algorithm is the ideal choice for studying conductivity, however integration with
magnetic field dependence becomes problematic. The dynamic agorithm acts by using one
transition and one acceptance rate. With the magnetic field corrections, the rate of one electron
jumping from site i to site j is

Γtotal
ij = ΓTijΓAij +

∑
k

(
Γ(0)T
ikj Γ(0)A

ikj + Γ(1)T
ikj Γ(1)A

ikj

)
. (4.1)

However it is not possible to split the total rate into a single transition rate and a single
acceptance rate. That is, Γtotal

ij 6= Γtotal(T )
ij Γtotal(A)

ij . A similar issue was tackled by Bergli et al.
in Ref. [20] when considering the possibility of simultaneous electron jumps. The solution was
to let the algorithm first choose between single and simultaneous jumps, then to use the normal
dynamic algorithm with a transition rate and an acceptance rate for each jump mechanism.

Applying the method directly to choose between direct jumps and jump involving three sites
becomes problematic because Γ(n)

ikj is not a jump mechanism, it is just a magnetic field correction
to the normal jump rate Γij . Additionally, Γikj < 0 if H ·A < 0. A negative transition rate
is not physical and cannot be used in the algorithm. Therefore no exact integration of the
magnetic field corrections is possible with the dynamic algorithm.

The rejection algorithm is able to use the magnetic field correction equations exactly. This is
because the entire rate Eq. 4.1 is calculated at once. The issue with the rejection algorithm is
that many jumps are rejected, making it slow. There are some ways the process can be sped
up, but despite everything it is much slower than the dynamic algorithm. Low T or small a
becomes problematic and impossible to study within the scope of this project with the rejection
algorithm

As such we introduce an approximation or "trick" to make it possible to use the dynamic
algorithm. The issue is that Γikj < 0 if H ·A < 0, and since it is negative it cannot be treated
as a jumping mechanism. The trick is to add a constant, magnetic field-independent term to
the correction rate.

Γ(0)T
ikj ∝ H ·A→ Γ∗(0)T

ikj ∝ (1 + H ·A). (4.2)
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4.2. Kinetic Monte Carlo (KMC)

Now the transition rate is positive as long as H ·A < 1, which can be made sure by controlling
the magnetic field. If the intermediate site is occupied then the rate is Γ∗(1)T

ikj ∝ (1−H ·A).

The acceptance rate ΓAikj is treated as being unchanged. The constant term in Γ∗Tikj effectively
represents non-magnetic field dependent interference between the different paths. As it is
constant, and does not have an area dependence, it should not produce a Hall effect by itself.
The constant term does not represent the normal jump rate ΓTij as it has different intersite
distance dependence.

Now that the magnetic field corrections are positive we can use Ref. [20]’s addition to the
dynamic algorithm on the problem. For simplicity we introduce the names two and three-site
jumps to refer to jumps involving only two sites with rate Γij and jumps involving three sites
with rate Γ∗ikj . The algorithm will first choose between a two or a three-site jump, then find a
transition and test it with the corresponding acceptance rate. This procedure ensures that
each transition rate is paired up with it’s corresponding acceptance rate.

The addition of this constant term should only be thought of as a trick used to gain access to
the dynamic algorithm. The trick is quite a heavy approximation, and the ramifications will
have to be considered before conclusions about the results can be made.

The idea is to compare the results coming from the two algorithms to determine if the trick is
usable approximation. If so, the dynamic algorithm can be used to study qualitative properties
while the rejection algorithm can be used to produce the main results.

4.2.2 Dynamic algorithm - algorithm 1

The dynamic algorithm is more complicated than the rejetion algorithm. It is therefore described
first. The two algorithms share many similarities, but they also have many differences. A
flowchart with an overview of the entire algorithm is presented in Fig. 4.3. The explanation of
the steps is given in this section.

Algorithm 1a will refer to the algorithm without the addition of the three-site trick previously
described. It is the exact same algorithm used by the authors of Ref. [18]. Algorithm 1b refers
to the algorithm with the trick.

Initializing transition rates

The transition rate decreases exponentially as the intersite distance increases. The result being
that most jumps don’t go very far. Therefore it is safe to introduce a cut-off distance rcut-off
past which jumps aren’t considered. Because of the lattice structure, the transition rate is the
same for all the sites. The transition rate is calculated going from one site to all other sites
inside a [(2rcut-off + 1) × (2rcut-off + 1)] lattice. To initialize the transition rates, the algorithm
loops over the lattice and calculates and stores the 2 and three site transition rates.

The cumulative sum of the transition rates is stored for every transition. It will be used by the
algorithm to find transitions to test. The final sum of all the rates is also stored for the same
reason. One way of doing this is presented below.

The three-site transition rate is calculated for every combination of possible intermediate and
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Figure 4.3: Flow chart of algorithm 1b with two and three site jumps. Aij (Aikj) is used
in the figure to represent the acceptance rate ΓAij (Γ(n)A

ikj ), n being the occupancy of site k
if a three-site jump is tested). The quantity r is used in the figure to represent a uniformly
distributed random number. A new r is generated each time it is used, and it is normalized to
the acceptance function it is compared with.

final site. An array is used to store the information about if the intermediate site should be
occupied or not when testing the transition rate on the system.

1 n=0;n3=0
2 gamma=0;gamma3=0;
3 // (dx , dy )=f i n a l s i t e , ( dxI , dyI )=inte rmed ia t e s i t e
4 for dx in range(− cuto f f_d i s tance , cu t o f f_ d i s t a nc e +1) :
5 for dy in range(− cuto f f_d i s tance , cu to f f_ d i s t a nc e +1) :
6 i f ( dx!=0 or dy !=0) : // Fina l s i t e d i f f e r e n t from i n i t i a l s i t e
7 r_ i j = s q r t ( dx∗dx+dy∗dy )
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4.2. Kinetic Monte Carlo (KMC)

8
9 gamma += exp(−A∗ r_ i j )

10 gammaT[ n ] = gamma
11 n++
12 // three s i t e jumps
13 for dxI in range(− cuto f f_d i s tance , cu t o f f_ d i s t a nc e +1) :
14 for dyI in range(− cuto f f_d i s tance , cu t o f f_ d i s t a nc e +1) :
15 i f ( dxI !=0 or dyI !=0) : // Intermed iate s i t e d i f f e r e n r t from i n i t i a l

s i t e
16 i f ( dx!= dxI or dy != dyI ) : // Intermed iate s i t e d i f f e r e n t from f i n a l

s i t e
17 area = 0 .5 ∗ ( dx∗dyI − dxI∗dy )
18 r_ik = s q r t ( dxI∗dxI+dyI∗dyI )
19 r_jk = s q r t ( ( dx−dxI∗ (dx−dxI ) + (dy−dyI )∗ (dy−dyI ) )
20
21 onePlusHA = 1+Hz∗area
22 oneMinusHA = 1−Hz∗area
23 i f ( onePlusHA < 0) onePlusHA = 0
24 i f (oneMinusHA < 0) oneMinusHA = 0
25
26 gamma3 += onePlusHA∗ ( exp ( −0.5∗A∗ ( r_ i j+r_ik+r_jk ) )
27 gammaT3 [ n3 ] = gamma3
28 occup iedInte rmed iate [ n3 ] = f a l s e
29 n3++
30 gamma3 += oneMinusHA∗ ( exp ( −0.5∗A∗ ( r_ i j+r_ik+r_jk ) )
31 gammaT3 [ n3 ] = gamma3
32 occup iedInte rmed iate [ n3 ] = true
33 n3++
34 totalGamma = gamma
35 totalGamma3 = gamma3
36 probab i l i ty2S i teJump = totalGamma/totalGamma3

Time of one MC jump

The KMC algorithm is used to simulate the time development of a system. The time used by
the electron jumps is important to store such that correct measurements of time dependent
quantities as current, can be used. The time between jumps is the time in which nothing
is happening. The jumps are of known rates and are time-independent, they are Poisson
distributed. The probability of an Poisson distributed event not occuring is

P (Γij , 0) = e−λ

where λ is the expected number of events in an interval. Considering an event occuring with
rate Γij happening in a time step ∆tMC , we find λ = Γij∆tMC where ∆tMC is the time used
by one Monte Carlo step. The probability of no jumps happening is the product of each jump
not happening. This quantity we call u,

u =
∏
i

∏
j,j 6=i

P (Γij) = exp

−∆tMC

∑
i

∑
j,j 6=i

Γij


Solving for ∆tMC gives

∆tMC = log
(1
u

)∑
i

∑
j 6=i

Γij

−1

.
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Here, u, is a random number ∈ (0, 1). It represents the fact that real events happen in random
time. However, the average of log(1/u) for u ∈ (0, 1) is 1. For simulations that cover a long
time the average time can be computed without any random number, without any meaningful
loss of accuracy. The mean value of ∆tMC is

〈∆tMC〉 =

∑
i

∑
j 6=i

Γij

−1

. (4.3)

The difference between using the ∆tMC and 〈∆tMC〉 is negligable. Using the mean value skips
the need for generation of random numbers, which can become costly if there are many MC
steps performed.

In the system of two and three site jumps, the sum over all the rates is∑
i

∑
j 6=i

Γij

−1

=

∑
i

∑
j 6=i

Γij +
∑

k,k 6=j,i

(
Γ(0)
ikj + Γ(1)

ikj

)−1

=

Nν∑
j 6=i

Γij +
∑

k,k 6=j,i

(
Γ(0)
ikj + Γ(1)

ikj

)−1

where in the last step we have assumed a lattice model. The implication is that the rate is
independent of starting point. The only consideration is whether the starting site is occupied
or not. Nν is the number of occupied sites, and is therefore the number of places the transition
can start from.

The number of attempted jumps before one is accepted is noted as n. The time used by the
successful jump is

tjump = n〈∆tMC〉. (4.4)

The dynamic algorithm proposes transitions with the transition rate and accepts them with
the acceptance rate. The time between each proposed transition is Eq. 4.3 with the transition
rate ΓTij instead of the full rate Γij . Using n as the number of proposed transitions before one
is accepted, the time between accepted jumps in the dynamic algorithm is given by Eq. 4.4.

〈∆tMC〉 is constant throughout the simulations and only needs to be calculated once.

Performing MC jumps

The algorithm needs a way to pick two or three site jumps to test. The total transition rates
for two and three site jumps are defined as

Γ(2)T
total =

∑
i,j,j 6=i

ΓTij , Γ(3)T
total =

∑
i,j,k,j 6=k
j,k 6=i

(
Γ(0)T
ikj + Γ(1)T

ikj

)
. (4.5)

A random number r ∈ (0, 1) is chosen, and a two site jump is tested if

r <
Γ(2)T
total

Γ(2)T
total + Γ(3)T

total
. (4.6)
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If not, a three site jump is tested. The next step is to find the starting point for the jump. In
the lattice structure, the symmetry implies that sum of transition rates for each starting site is
identical. The result being the starting site of a jump is uniformly distributed. An initial site i
is chosen at random, if it is empty then another is chosen until an occupied site is found.

Next, a transition to test is found. Performing an n-site jump, a random number r ∈ (0, 1) is
chosen then multipled with the total rate as rΓ(n)T

total . This quantity represents the transition
rate the algorithm will test. The quantity is compared with the array containing the cumulative
sum. The interval in which the quantity rΓ(n)T

total is the transition rate to be tested. Fig. 4.4 is a
visualization of this process for a system of only 4 transitions with different rates. In Fig. 4.4,∑2
i Γi < rΓ(i)T

total <
∑3
i Γi and so the transition the algorithm will test is the transition with Γ3.

This method ensures that the rate of proposing transition i is proportional to Γi. The method
used to locate i within the array of sums

∑n
i Γi is the binary search method.

Figure 4.4: System of 4 possible transitions. The KMC algorithm draws a random number r
to find what transition to test in the current time step. Transition Γ3 is chosen in the figure.
The figure is taken from Ref. [52] with small edits.

Next the transition is tested. A check is performed to see if the final site is available. If it is
occupied, then the transition is discarded. If the algorithm is testing a three site jump, then
the transition it is testing requires the intermediate site to be either available or occupied. If
the intermediate site is not in the required state then the jump is discarded. If these tests pass,
then the acceptance rate Γ(n)A is calculated. A random number r is picked. If r < Γ(i)A

ij , the
jump is accepted, if not it is discarded and a new two or three site jump is tested.

When a jump is accepted, the occupation numbers of sites i and j are switched. If the ES
regime is used then the site energies are recalculated and updated. System properties such as
time, energy and electron jump is sampled for every time step. The algorithm continues until
a pre-defined number of jumps have been performed.

4.2.3 Dynamic algorithm on random samples - algorithm 1ar

The dynamic algorithm is also extended simulate VRH on sites with positional disorder. The
algorithm is very similar to algorithm 1a. Algorithm 1ar is a bit technical to understand, the
details are described in appendix A. The algorithm is less efficient and uses more RAM than
the algorithm 1a uses on the lattice model. It will only be used to study the impact the lattice
model has on the reuslts. Currently the algorithm only performs Mott regime VRH, using the
standard dynamic algorithm (only two-site jumps).

4.2.4 Rejection algorithm - algorithm 2

The rejection algorithm is much slower than the dynamic one. As such, only the lattice model
will be studied using the rejection algorithm. An attempt at using positional disorder with the
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rejection algorithm revealed it to be too slow for it to be used in this thesis.

The main structure of the rejection algorithm is similar to that of the dynamic algorithm.
Jumps are proposed and tested. The rejection algorithm requires little initialization because it
does not rely on a transition rate. A flow chart is presented in Fig. 4.5 to give an overview of
the algorithm. The details are written out in this section.

Figure 4.5: Flow chart of the rejection algorithm, algorithm 2. Rij is used in the figure to
represent the rate Γij . The quantity r is used in the figure to represent a uniformly distributed
random number. A new r is generated each time it is used, and it is normalized to the
acceptance function it is compared with.

Finding jumps

The first step is to find from what site an electron can jump from and where it will try to jump
to. Only occupied sites are considered as initial sites, and only available sites are considered as
final sites. Additionally only sites within a specified possible jump region around the intial
site are considered as potential final sites. This last step does not cause conflict because the
jump rate decreases exponentially with distance such that jumps outside the specified region
are unlikely to ever happen. The number of sites within this region is labeled Nj . These
considerations are vital for making the rejecion algorithm fast enough to be useable.

Specifically the algorithm uniformly picks random sites until an occupied site i is found. It
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will be the initial site. A displacement from i to another site within the possible jump region
is randomly uniformly picked. The site j that the displacement from i leads to is checked if it
is available or not. If available it is the final site, else another displacement from i is tested.
Next, the jump from i→ j is tested to see if it will happen.

Testing jumps

The complete jump rate Γtotal
ij is calculated according to Eq. 4.1 in this step. A random number

r ∈ (0,Γmax) is generated and the jump is accepeted if r < Γtotal
ij . Else it is rejected. Γmax > Γij

for any possible jump is a requirement. The exact value of Γmax can be chosen arbitrarily
otherwise. A large Γmax will discard many jumps and make simulations slow, therefore it
should be set to a value close but larger than any possible Γij .

Summing over all the possible intermediate sites in Eq. 4.1 to calculate the magnetic field
correction is a costly operation. There are many costly numeric operations needed per
intermediate site. Instead of considering all possible intermediate sites, the process can be sped
up by only considering intermediate sites on the path from i to j. This process is visualized in
Fig. 4.6. Only sites within the minimal bouncing box including both i and j are considered as
intermediate sites when calculating the correction rate. An exception to the rule is made if the
dx or dy= 0. In that case the bounding box is extended on both sides to make sure triangles
with nonzero area are included.

Figure 4.6: Testing a jump from i to j. Only sites within the bounding box are considered as
intermediate sites. The bottom bounding box is the special case in which dx= 0 requiring the
extended box. Figure taken from Ref. [27] with personal edits.

The bounding box method should not have noticable impact on magnetic field dependence as
the jump rate depends inverse exponentially on the intersite distances.

If a jump is rejected then nothing happens and a new jump is found to be tested. The number
of rejected steps for every accepted step is noted to calculate the time used by the resultant
accepted jump.

Performing jumps

When a jump has been accepted the occupation numbers of i and j need to be switched. If
Coulomb interaction is considered then all the site potentials need to be updated. The site
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potential on site k are simply changed by subtracting 1/rik and adding 1/rjk. Data such as the
electron displacement, time and energy is sampled after every jump has been performed. Those
data are written to file for later analysis and calculation of properties such as conductivity.

Time of one jump

The real time used by jumps in the algorithm is calculated by using the number of rejected jumps
before a jump was accepted. If the testing of a jump is assumed to happen instantaneously,
it is only the proposal and rejection of jumps that needs to be accounted for. The number
of jumps that can be found. i is picked among νL2 sites, and j is picked among (1 − ν)Nj

neighboring sites. The number of possible jumps is therefore Ntr = ν(1 − ν)L2Nj . Once a
specific jumps has been picked, the probability of accepting that jump is Pij = Γij/rΓmax. The
mean probability of performing a jump in a given time step is

〈Pij〉 = 1
Ntr

∑
ij

Pij = 1
NTrΓmax

∑
ij

Γij ≡ ∆t
∑
ij

Γij ,

where in the last step we have used the definition of probabilities and rates. ∆t = ∆tMC is the
time one proposed jump. Solving for ∆t gives

∆t = 1
NtrΓmax

= 1
ν(1− ν)L2NjΓmax

(4.7)

∆tMC is constant throughout the simulations. Using n as the number of tries jumps tested
before a jump is accepted, the time of the succesful jump is

tjump = n∆tMC

4.2.5 Energy considerations in ES-regime for magnetic field dependent
jumps

These considerations are relevant for both algorithms. Both algorithms also store single particle
energies εi in the same way. For a normal jump i → j in the ES regime the phonon energy
required is ∆εij = εj − εi− 1/rij . The ε’s are calculated from the configuration of electrons and
sites before the jump happens. The program used has these energies readily available. They
are updated only after a jump has been performed. The phonon energies in the acceptance
rate Γ(n)A

ikj depends on the energy difference between the three configurations depicted in Fig.
4.7. The jump is from i → j in the presence of site k. The program only has the ε’s for

(a) (b) (c)

Figure 4.7: The three possible configurations of electrons on sites i, k, j when there intermediate
site is unoccupied. The circles represent sites, they are filled if occupied by an electron. The
jump orientation is i→ k → j. The site energies ε depend on the current configuration.
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configuration (a) when the jump is to be tested. The site potentials for the other configurations
are calculated by considering the change in Coulomb potential. Take ε′j from configurtion (b)
as an example. Starting from configuration (a), the Coulomb interaction from site i has to be
removed and added from site k. The result is ε′j = εj − 1/rij + 1/rjk. Using this, the phonon
energy to go from configuation (b) to (c) is

∆εbc = ∆εkj = ε′j − ε′k −
1
rkj

= εj − εk + 1
rik
− 1
rij
.

The situation is the same for jumps using occupied intermediate sites. The only difference is
the configuration between which some jumps happen. For instance, the jump k → j happens
from the initial to the intermediate configuration as illustrated in Fig. 4.8, instead of from the
intermediate to the final as with unoccupied three-site jumps. Since this jump starts from the
initial configuration there is no need for alterations to the phonon energy required.

∆εab = ∆εkj = εj − εk −
1
rkj

(a) (b) (c)

Figure 4.8: The three possible configurations of electrons on sites i, k, j when the intermediate
site is occupied. The circles represent sites, they are filled if occupied by an electron. The
jump orientation is i→ k → j. The site energies ε depend on the current configuration.

4.3 System measurements

The main results from the simulations are the conductivity in x and y-direction as functions of
various parameters. A description of conductivity measurements is described below, beginning
with measurements of the current.

4.3.1 Current and longitudinal, Hall conductivities

Ammeters are typically used to measure current in certain directions in real materials. ammeters
are devices that are inserted into the current, such that they become a part of the circuit. They
measure the amount of charge that passes through the ammeter. The current is I = Q/t, where
Q is the total charge that has passed through the ammeter in time t. Current measurements in
the simulation lattice work a bit as if there is an ammeter at every position in the direction of
which the current is measured. That is, to measure the x-current, there is an ammeter at every
x-position that measures how much charge passes that position, regardless of the y-position of
that charge. Likewise to measure the y-current, an ammeter measures the current that passes
every y-position regardless of the x-position of that charge.
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The way this is done is by storing the electron displacement of every jump during the algorithm.
After all the jumps are finished the cumulative sum of x and y-displacement is calculated
separately, jump for jump. Every 10000 jumps, the cumulative sums are written to file, along
with the simulation time t. Using these quantities, the file contains x and y-charge displacement
as function of time.

Consider jumps happening in the i direction. Only one jump happens at each time step s, the
displacement of that jump in i direction being ∆ri,s. Let Ns(t) be number of jumps the system
has performed after the time t has paassed. The cumulative displacement sum in i direction
after a time t is

∑Ns(t)
s ∆ri,s. Multiplying this by the charge q gives us a sort of dipole moment

in i-direction pi(t) = q
∑Ns(t)
s ∆ri,s. It represents the charge that runs through the sample.

Current measurement happens at every position in the i-direction. There are L such positions,
so to get the correct charge it is needed to normalize by L. The current in i-direction is then

Ii = Q(t)
t

= 1
t

pi(t)
L

. (4.8)

As will be demontrated later, p(t) is a linear function of time that begins at the origin. Hence
dividing by t is the same as differentiating with respect to t. The current is now

Ii = 1
L

dpi
dt . (4.9)

The current density is the current divided by the size of the sample. The size is just the cross
section of space regarded for the current, therefore it is the sample length L.

ji = Ii
L

= 1
L2

dpi
dt . (4.10)

The first few timesteps in Monte Carlo simulations do not generally describe physical realities
because the initial state is drawn from complete randomness. With time, the system will
evolve to a state the system is more likely to naturally find itself in. Therefore the first jumps
should not be considered as part of the current measurements. We find that using the last 50%
produces good results. The time derivative of pi can be found via the use of linear regression
to p(t).

The conducitvity is calculated using the current density according to Ohm’s law. In the
direction of the electric field, it is σx = jx/Ex. Similarly the Hall conductivity is using the
transverse current, σH = jy/Ex. The Hall conductivity should depent linearly on H, making it
vital to study σH/H. The Hall mobility we calculate as µH = σH/σxH.

4.3.1.1 Error in measurements

The sample the simulations are performed on is generated randomly. The site potentials ε
are based on the uniformly random disorder potential φ. What jumps or paths are likely or
unlikely are determined by network formed by the φ’s. As a result, the measured conductivity
will depend on the random site potentials. To minimize this randomness from results the
simulations are performed on many different samples for each measurement. For the most part
10 such samples are considered, and the presented values are average quantities based on those
samples.

40



4.3. System measurements

The spread of for instance conductivity between these samples is given by the sample standard
deviation, s. On some data set {x1, x2, ..., xN} with N data points and mean 〈x〉, the standard
deviation is defined as

s =

√√√√ 1
N − 1

N∑
i=1

(xi − 〈x〉)2. (4.11)

The sample standard deviation s is a measure of the spread of how xi varies between mea-
surements. The standard deviation of the mean, defined as s/

√
N , gives a measure of the

uncertainty in the mean value 〈x〉. This is the uncertainty that will be presented as the error
of quantities measured from the algorithm.

The errors and uncertainty above deal only with the spread of measured quantites between
samples, but there is also uncertainty in how quantities are measured from each sample. This
will be discussed now for the conductivity of the samples.

As a result of the finite size of the sample, each sample has it’s own conductance coming from
the set of paths opened by the configuration of randomly generated disorder potentials φi.
But there are many variables that impact the measurement of that conductance. The initial
configuration has a significant impact on the conductivity at low temperatures. The measured
conductivity also depends on how many timesteps are used and what data points are used when
making conductivity measurements. This last point is more important at low temperatures as
the current might be weak and fluctuate with time. There is also the error in the parameter
found by linear regression to the current. This error depends on how linear the current is as a
function of time. The current data will be very smooth and linear for high temperatures and
the parameter error amounts is negligable. Personal testing finds the parameter error to be no
more than 5% for very low temperature measurements of Hall conductivity. For these kinds of
measurements there is a much larger uncertainty coming from the spread between samples.
Therefore the parameter error is also negligable in these cases. This means that the error of
the measurements in the coming result section should be larger than what is presented, but
not so large that it will affect how the data can be interpreted.

4.3.2 Measurements of Hall effect parameter

The Hall effect parameter α describes the relationship between the conductivities, σx and σH .
Effectively it gives the relationship of how resistant to temperature changes the conductivies
are.

There are some different methods that can be used to determine the value of α from the
data. Theoretical predictions are that the Hall mobility, µH = σH/σxH, should be µH ∝
T 1−λ exp(−α(T0/T )p). T0 should only be dependent on localization radius a, and whether
Coulomb interactions are considered or not. p is the VRH exponent and also depends on
if there are Coulomb interactions. If λ is known (method of finding λ will be described
later), then plotting ln

(
µHT

λ−1
)

on one axis and 1/T p on the other should result in a
straight line with slope −αT p

0 . Likewise, the function form of the x-conductivity σx should
be σx ∝ T−1 exp(−(T0/T )p). Therefore plotting ln(σxT ) on one axis and 1/T p on the other
should produce a straight line with slope T p

0 . By comparing measurements of the quantity
αT p

0 from µH and the quantity T p
0 , it is possible to calculate α.
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Another method to compare the conductivities, σx and σH , directly. The Hall conductivity
should be on the form σH ∝ T−λ exp(−(TH/T )p), where TH = (1 + α)1/pT0. Knowing the
value of λ, plotting ln

(
σHT

λ
)
as function of 1/T p should give a straight line with slope

T p
H = (1 + α)T p

0 . Measuring T p
0 from σx using previously mentioned methods, α can be

calculated as
α = T p

H − T
p

0
T p

0
. (4.12)

The relationship between the conductivities can also be expressed as σHT λ ∝ (σT )1+α. This
can also be used to measure α. A plot of ln

(
σHT

λ
)
vs ln(σxT ) should result in a linear curve

with slope = 1 + α that can be measured.

We have three methods that can be used to measure α from the same dataset. If these three
methds return the same or similar values then it supports the function form of σH that has
been theoretically predicted.

4.3.2.1 Error in Hall effect parameter measurements

The error in α, ∆α depends on the method used to calculate it. Starting with calculating from
Eq. 4.12, the error can be calculated from the errors ∆T p

H and ∆T p
0 . Defining α = α(T p

H , T
p

0 ),
we have from Ref. [53] that

(∆α)2 = (∆αT p
H

)2 + (∆αT p
0

)2, (4.13)

where

(∆αT p
H

)2 ≡
(
∂α

∂T p
H

)
∆T p

H (4.14)

and likewise for T p
0 . Setting Eq. 4.12 into the above equations returns the final error

∆α =

√√√√(∆T p
H

T p
0

)2

+
[(

T p
H

T p
0

+ 1
)

∆T p
0

]2

. (4.15)

Let us define T p
µH

= αT p
0 to be the slope measured when plotting lnµH as function of T−p.

Then α = T p
µH
/T p

0 . From [53] the error of this calculation is

∆α = α

√√√√(∆T p
µH

T p
µH

)2

+
(

∆T p
0

T p
0

)2

When using the relation ln
(
RHT

λ
)
vs ln(σxT ), the error is simply the parameter error of the

linear fitted line.

4.3.3 Density of states

Coulomb interactions manifest themselves physically in the VHR system through density of
states (DOS). In the ES regime with Coulomb interactions at T = 0K the DOS is exected to
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vanish at the Fermi energy, forming the Coulomb gap. As temperature is increased the gap
slowly dissapears, but should still be visible at low temperatures. In the Mott regime the DOS
should be constant. The DOS is a good property to measure to ensure test that the Coulomb
gap does exist, and that the ES regime is behaving as expected.

The DOS can be measured by writing the single particle energies εi of all the states to file and
binning the data into a histogram. Using just εi’s from a single 100 × 100 sample will result in
noisy data. Concatenating together multiple simulation runs from different samles together
into one histogram should reduce this noise.

4.3.4 Current maps

Maps of where current is flowing through the sample can be made in the KMC algorithm. The
map can be represented by a matrix M where each matrix element represents a position on
the sample. We consider a jump i→ j, each site k having positions xk, yk. The jump happens
with corresponding displacement dx, dy. The current generated in the x-direction is dx and
dy in the y-direction. The simplest idea for a current generation map is to add the current
generated by that jump to both sites i and j. For an x-current map Mx this is implemented
by performing

Mxxi,yi = Mxxi,yi + dx, Mxxj ,yj = Mxxj ,yj + dx

after every jump. Likewise to produce a y-current generation map My, the map is updated as
Myxi,yi = Myxi,yi + dy for sites i and j, after every jump. These maps give microscopic view
of what is happening in the sample, and will be good tools for later.

The first few jumps in the algorithm should be ignored by the maps such that current generated
on non-percolation clusters does not show up.

In the sample it is very likely that there will be some pairs of sites that are close to each
other in both position and energy. Between such sites, it is easy to jump in both directions.
These kinds of jumps dominate the dynamics happening on the sample at low temperatures.
For instance in Ref. [21] it was necessary to make an algorithm that filters out these types
of jumps from happening. The good thing about the above detailed procedure of making
current generation maps is that these jumps are filtered out. If an electron just jumps back
and forwards between two sites, then no net current is generated and it will not show up on
the maps.

4.3.5 Algorithm limitations

The algorithm comes with several limitations, with their repective difficulties and solutions.

4.3.5.1 Conductivity in non-percolating clusters

The above mentioned algorithm counts any movement in the system as current. It means
current from the finite, non-percolating clusters will be added to the calculated current. (The
brown network in Fig. 2.4 is finite and non-percolating.) This is not problematic for DC current
as most of the current on these finite networks happen only during the configuration time of
the system. Thus the effect is minimized by only using data from after the configuration time.
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Current on finite networks becomes significant for systems using AC voltage. Current will
travel in finite networks until saturated every time the applied electric field is switched.

4.3.5.2 Choice of magnetic field and negative rates

The magnitude of the magnetic field determines how strong the Hall current will be. As will be
seen in the results section, larger magnetic fields give rise to Hall conductivities with smaller
variation between samples. The uncertainty also tends to become large at small temperatures.
To gain stable measurements, a large magnetic field should therefore be used. By treating the
magnetic field corrections as three-site jumps with rate ∝ (1±H ·A), it becomes necessary
to use fields such that H ·A < 1. If a jump has negative rate it will impact the other jump
rates by disturbing the binary search method used in the KMC algorithm. The binary search
method assumes the sum of rates is a monotonic increasing sum. There are many jumps that
go very far, and have large areas such that H ·A < 1. Such jumps have very small transition
rates and would happen very infrequently. The problem is fixed by setting H ·A = 1 if it
should be less. The largest area that is performed often enough is jumps with A = 2. This sets
the requirement for H < 0.5.

4.4 Differences between KMC and percolation approaches

To date, the only other simulations on VRH Hall effect are [15–17], all using percolation
simulations. An outline of the methods used in [17] is described here. The Mott regime will be
described as an example. The sites are created with a random disorder potential φ, but the
sites are not filled. The electric and magnetic fields are applied to sample. The configuration
of φ’s combined with the external fields is used to calculate the average charge on each site.
The percolation parameter ξ is introduced and sites bond by the normal bonding criteria
(Eq. 2.9), until a percolating network forms at some ξC . The percolating network is analyzed
and the currents are calculated to solve Kirchiff’s equations, finding the conductivity in x
and y-directions. [17] uses a zero-temperature Monte Carlo algorithm to produce a ground
state with Coulomb interaction. The resultant ground state is then analyzed with the same
percolation methods, produing a static ES regime.

Figure 4.9: A polaron cloud. An electron jumping to site j effectively pushes other electrons
away from site j. Figure taken from page 235 of Ref. [25]

KMC simulations are arguably closer to nature than percolation simulations. Effectively,
percolation simulations analyze the sample system and gives an estimate for how current
would move on the sample. The KMC algorithm physically simulates the sample dynamics by
simulating the time evolution, allowing for the measurement of time correlated effects. The
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configuration of ε’s being updated after every MC step is such a time correlation. Another
is the polaron cloud effect illustrated in Fig. 4.9. In the ES regime an electron jumping to
site j changes the potential on the other sites, making it easier for them to jump away from
j. The effect is also present in the Mott regime, the occupancy of site j means electrons on
neighboring sites have to find other sites to jump to. Such effects are impossible to add to
percolation methods, as it is a time dependent one.

The sources of error are also different between percolation and KMC methods. Percolation
methods heavily depend on averaging, that act as a potential source of error. Percolation
simulations do not generated random initial positions. The KMC algorithm has errors that
depends on the initial configuration of the sample, the random numbers used for finding and
testing jumps in the simulation, and the decision of how many steps should be performed
before the simulations end. Additionally the question of how long the configuration time (the
time it takes for the system to move from it’s random initial state to a natural, more physical
state), is a source of error when analyzing results.
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CHAPTER 5

Results and discussions

The main goal of this section is to present the results of the Hall mobility simulations. The first
section is devoted to test the algorithms against Mott’s and ES’s law for σx when simulating
using the different VRH regimes. This will be done for all the algorithms. This will include
fitting the simulated data to Mott’s law exponent of 1/3 and ES’s law exponent of 1/2, and
testing whether the TMott or TES best produces a data collapse.

Similarities and differences between the dynamic algorithms and the rejection algorithm need
to be drafted to determine what results can be considered as valid. Then the Hall conductivity
and mobility will be studied.

We wish to remind the reader that algorithm 1 is the dynamic algorithm, using 1a to denote
the standard algorithm and 1b as the dynamic algorithm with three-site jumps. Algorithm 2 is
the rejection algorithm that is able to use the magnetic field rate correction equations exactly.

Distances are presented in unitless form scaled by the lattice constant. A localization radius of
a = 0.5 means the localization length reaches halfway from one site to it’s closest neighbor. T
is the thermal energy, and by setting Boltzmann’s constant kB = 1, the thermal energy and
temperature are identical. Time is always presented in units of the phonon-relaxation time
τ0 ≈ 10−12s, defined by Eq. 2.5.

All electric fields considered in this project are aligned along the x-axis. E = Exx̂. Likewise,
all magnetic fields are aligned along the z-axis. H = Hzẑ

5.1 Current and conductivity in the x-direction

Input parameters such as suitable temperature range, magnetic and electric fields need to be
established before simulations are started. The author of Ref. [27] find that a temperature
range T ∈ [0.02, 0.50] is suitable for simulating variable range hopping. To study just the
normal behavior of σx, the external magnetic field is set to zero.

The conductivity is measured using the relationship between the current density and the
applied electric field. The current density is the gradient of the accumulated charge passed
through the sample as function of time.
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5.1.1 Accumulated charge

The data saved to file from the simulations is the cumulative sum of electron displacement in x
and y directions as function of time. As discussed, this is equivalent to the charge that has
passed through the ammeters. The accumulated charge for 10 samples with an external electric
field is presented in Fig. 5.1. The data is generated using algorithm 1a, the other algorithms
produce accumulated charge behaving in the same manner. The high temperature situation is
shown in Fig. 5.1a, and the low temperature in Fig. 5.1b. Each sample is randomly generated,
and uses different initial configurations and random numbers.

The variation in accumulated charge between samples is low for high temperatures and high for
low temperatures. This can be attributed to the density of paths in the percolating network. At
high temperatures there are many available paths, and so the differences between two samples
is small. For low temperatures there are few paths, and the dynamics are determined by the
characteristics of some important paths. Therefore the spread is large from sample to sample.

(a) (b)

Figure 5.1: Accumulated charge in the x-direction measured in simulations as function of time
for 10 different samples. (a) is for a high temperature T = 0.40 and (b) is for low temperature
T = 0.06. Both figures are simulated using a = 2/3. The graphs show the expected linear
behavior.

The accumulated charge is observed to be linear as expected. At low temperature there are
some visible deviations, especially in the early jumps performed by the system. The decision is
made to only consider the 50% last jumps of the system when sampling properties. A linear fit
is made to each samples’ accumulated charge to find the current. The current is combined
with the external electric field to give the conductivity.

Changing the localization length has a large impact on the rate of acceptation of steps. Keeping
all other parameters constant and changing the localization length from a = 2/3 to a = 2/6
changes Fig. 5.1b to B.1. As seen, smaller localization length makes the current less stable
and introduces larger variance between samples.

The number of jumps decided to use for these simulations should be of the order of 106 to
107, depending on temperature and localization lengths. Smaller temperature and smaller
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localization length requires more jumps to create accumulated charge from which meaningful
conductivities can be extracted. For very low localization lengths 108 jumps might be needed.
The acceptance rate of jumps decreases exponentially with decreasing localization lengths,
meaning simulation time is exponentially increasing.

Based on these observations, and from the results of Ref. [17], this project will look at a ∈ (1, 0.2).
These are localization lengths which are small enough to produce VRH dynamics, and large
enough that simulations are possible.

5.1.2 Ohmic region of electric fields

Ohm’s law, σx = jx/E, is only an accurate model for small electric fields. If large electric fields
are applied, then the conductivity becomes non-Ohmic and has different properties (see [27]).
Therefore it is necessary to classify what electric fields will produce Ohmic conditions. This is
done by simulating the conductivity, calculated using Ohm’s law, for constant temperature
over a spectrum of electric fields. Ohmic conductivity should be constant with E. Simulated
results are presented in Fig. 5.2.

Figs. 5.2a and 5.2b show the conductivity simulated by algorithms 1a and 1b respectively. σx
in Fig. 5.2a is approximately constant for small electric fields and increasing slowly when E is
large. The conductivity increases more for small temperatures than large temperatures. For
T = 0.2, σx ≈ constant for E <= 0.025. For T = 0.3 and T = 0.4 it is approximately constant
for much longer. Up to about E = 0.05 for T = 0.3 and T = 0.4 shows no deviation from
constant behavior.

Algorithm 1b results shows similar yet different behavior. T = 0.2 is initially decreasing before
increasing again as E is increased. The same behavior is observed for T = 0.3 but is less
apparent. T = 0.4 displays a decreasing tendency. Despite the different behavior, σx is ≈
constant for about the same region of E for both versions of the dynamic algorithm.

Algorithm 2 produces seemingly the exact same dependence of jx and σx on E simulated as
algorithm 1a. This is shown in Fig. B.2.

As seen, the choice of electric field affects the measured conductivity. The system only obeys
Ohmic behavior for small electric fields. When simulating the conductivity it is therefore
important to use electric fields small enough such that they are Ohmic. It is also observed that
fluctuations become large for very small fields. Therefore fields that are sufficiently small but
not too small are required. The region of Ohmic fields is observed to increase with temperature.
Ref. [27] made similar observations and decided to use E = T/10 for simulations. We decide
to do the same.

The exact cause of non-Ohmic behavior in this model is still a disputed topic. One idea is
that large electric fields heat up the system, thereby increasing the conductivity. Ref. [27]
find evidence supporting this idea at low temperatures. The three-site algorithm differs from
the standard algorithm in that there are regions where σx is decreasing with increasing E.
The decrease is not expected and is likely un-physical behavior added through the use of the
three-site jump trick.
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(a) (b)

Figure 5.2: Longitudinal conductivity σx dependence on applied electric field E for algorithms
1a (a) and 1b (b). The data is an average of 30 samples.

5.1.3 Mott regime simulations

This section covers results from all the algorithms simulating the Mott regime conductivity, one
algorithm at a time. Algorithms 1a and 2 with H = 0 have been used by other scientific work
and are already known to work. Algorithm 1b needs to be tested see if it is able to reproduce
Mott’s and ES’s laws for σx. There is a comparison and summary at the end. σx is simulated
using E = T/10, for a range of temperatures and for some localization lengths a.

5.1.3.1 Algorithm 1a

The simulated results are presented in Fig. 5.3. The figures use TMott = a−2. The fitting and
plotting is done without the theoretical value of CMott (defined in section 2.3.3). Doing so
allows measurements of CMott to be made from simulations. If a figure shows a linear behavior
it is an indication that it follows the respective law it is plotted as.

Fig. 5.3a shows Mott regime generated data fitted to Mott’s law. For each localization length,
the data shows a linear behavior within itself for low and medium temperatures while falling
off for high temperatures (T ' 0.30). The slope of the linear section should be equal to a
constant C1/3

Mott. The measured slopes are presented in table 5.2 and has a systematic decrease
with decreasing a. This aspect be discussed in section 5.1.3.5.

Fig. 5.3b instead shows Mott regime generated data plotted using 1/2 as exponent instead of
1/3. The red dotted line is the linear fit to the a = 2/3 data points. The data is clearly not
linear on this axis. The trend over all the localization lengths is an upwards curve instead of a
linear slope. Looking at the a = 2/4 or a = 2/6 it is possible to see that the individual curves
are not linear themselves but feature an upwards curve.

Comparing Figs. 5.3a and 5.3b it is possible to determine that 1/3 as exponent fits the data
much better than 1/2. The data collapse in Fig. 5.3a becomes worse at smaller a, but each
localization length produces a linear curve when the exponent is 1/3. A way of testing the
linearity is to plot the difference between the linear fit and the data points. This is done for
both exponents and the data is presented in in Figs. 5.3c and 5.3d. The error in Fig. 5.3d
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5.1. Current and conductivity in the x-direction

clearly follows a systematic behavior, meaning there is some extra behavior not picked up by
the linear fit. The error seems to be more random in Fig. 5.3c, indicating that all the behavior
is included and the errors are just fluctuations. Clearly 1/3 as exponent fits the data better
than 1/2.

(a) (b)

(c) (d)

Figure 5.3: Temperature dependence of Mott regime simulated σx. (a) tests with Mott’s
law and (b) tests with 1/2 exponent. The difference between the linear fitted line to low
temperatures and the simulated σx using exponent 1/3 (c) and 1/2 (d). 1/3 exponent fits the
data better than 1/2.

5.1.3.2 Algorithm 2

Mott regime generated data fitted to Mott’s law is presented in Fig. 5.4 for T ∈ (0.12, 0.44) for
each a. The dotted line in Fig. 5.4 is the linear fit to the linear part of the a = 2/3 data. As
seen, there is a general deviation from the line for the other localization lengths. The deviation
is consistent with observations made from the algorithm 1a data for the given temperature
range.

Numerical values of the slopes in Fig. 5.4 are presented in table 5.2. The slopes in table 5.2
shows that algorithms 1a and 2 do produce the same results.

51



5. Results and discussions

Figure 5.4

Figure 5.5: Mott regime σx plotted as Mott’s law using algorithm 2. The result show similar
behavior to that of algorithm 1a in Fig. 5.3a, but over a smaller temperature range.

5.1.3.3 Algorithm 1b

Mott regime simulation data from algorithm 1b is plotted as Mott’s law is presented in Fig 5.6.
Fig. 5.6b shows the same as Fig. 5.6a, but zoomed in on the large localization lengths and
high (TMott/T ).

Fig. 5.6a shows that the different localization lengths approximately collapse on the same line.
The dotted red line is the linear fit to the linear section of the a = 2/4 data. Fig. 5.6b shows
that the collapse does not work between the large localization lengths. There is a vertical shift
especially noticeable between a = 2/2 and a = 2/3 in Fig. 5.6b. The vertical shift seems to
shrink and become negligible between the smaller a. The measured values of the slopes in Fig.
5.6a are presented in table 5.2. Algorithm 1b measures the same problems as the others, the
slope does not appear to be independent of a.

The collapse discontinuity in Fig. 5.6b might be attributed to the large number of three-site
jumps used by algorithm 1b for these a. As the localization length is decreased, fewer three-site
jumps are used and the collapse seems to work in the same manner as for algorithm 1a. Even
when there are very few three-site jumps there is a clear difference in slopes between algorithms
1a and 1b (see a = 2/6 slopes in table 5.2).

The lack of collapse for large a in Fig. 5.6 might indicate that there is some extra a dependence
not being accounted for by the standard σx equation. Changing σx by including an a dependence
such as

σx ∝
aγx

T
exp

(
−
(
TMott
T

)1/3
)
, (5.1)

we find a data collapse using γx = 2 that can be seen in Fig. 5.7a. The γx = 2 data collapse
fits better for high a, but worse for small a. As such, it will not be possible to find a value of
γx that will produce a perfect data collapse. Do note that the slopes are independent of the
value of γx.
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(a) (b)

Figure 5.6: Mott simulated data using algorithm 1b compared with Mott’s laws. (b) shows
that there are some problems happening at large localization lengths, but (a) the collapse
works well for the lower ones.

(a)

Figure 5.7: Empirical relation for Mott regime σx simulated by algorithm 1b. Adding an aγx

proportionality to σx improves the data collapse for large a, but worsens it for smalla.

Comparison with algorithm 1a

The impact of the "trick" used to design algorithm 1b needs to be studied closely before
conclusions about it can be made. Therefore a comparison with algorithm 1a, that is known to
be producing working results, will be useful.

Looking at Fig. 5.3a, we see that ln(σxT ) is linear or close to linear with respect to T−1/3

for low temperatures. A comparison of the linearity between algorithms 1a and 1b is done
in section C. The conclusion is that it looks like there is systematic behavior simulated by
algorithm 1b, not picked up by Mott’s law, but not critical such that Mott’s law is still a good
approximation. Similar extra systematic behavior is arguably also present in algorithm 1a
simulations, but to a lesser degree.

Table 5.1 shows how the probability of the algorithm choosing to test a three-site jump, P3,
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changes with localization length. P3 is large for large a but decreases quickly as a decreases.
Using a = 2/6 and T = 0.40, only 7% of jumps are three-site jumps. The percentage of
performed three-site jumps is also decreasing with decreasing temperature (not shown). Even
so the few three-site jumps have a significant impact on the conductivity, especially at low
temperatures (see Fig. C.1g).

From this it is possible to see that algorithm 1b has some differences but also many similarities
to algorithm 1a. The differences do not seem to vanish as the number of three-site jumps in
algorithm 1b is lowered by decreasing a.

Table 5.1: Three-site jumps in algorithm 1b. P3 is the probability of algorithm 1b choosing to
test a three-site jump in a given MC cycle. n3 is the percentage of three-site jumps performed
by the algorithm at T = 0.40.

a P3 n3
2/2 0.85 0.70
2/3 0.67 0.45
2/4 0.46 0.26
2/6 0.16 0.07
2/10 0.01 0.004

5.1.3.4 Algorithm 1ar - samples of randomly positioned sites

Mott regime conductivity is also simulated using sites with positional disorder. The same input
parameters of electric field and temperature as earlier are used. The result is presented in Fig.
5.8. The simulated conductivities for different localization lengths all converge together to a
single universal curve.

Figure 5.8: Mott regime longitudinal conductivity σx simulated on randomly positioned sites
using algorithm 1ar. The conuductivity using different localization lengths collapse together
well. The dashed red line is a linear fit with slope −3.26± 0.03.

5.1.3.5 Measured Mott slopes

Table 5.2 presents the slopes of the curves in Mott regime σx fitted to Mott’s law for the
different algorithms.
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The errors presented in table 5.2 is the error of the slope given by the linear regression method.
There is another error coming from what data points are included in the linear regression. As
such is it should be noted that the errors of measured slopes should be larger by some percent,
but not significantly.

The values in table 5.2 are made using a linear fit to the curves within a specified temperature
range. If the temperature range is limited to include only low temperatures in the Mott regime,
say T ∈ (0.04, 0.12), then the same systematic a dependence is observed.

When using the same temperature range, algorithm 1a and algorithm 2 produce almost exactly
the same slopes. This is a strong indication that the algorithms simulate the same dynamics.
It is safe to say that algorithm 2 would produce the same results as algorithm 1a, if given
enough time to simulate low temperatures.

The slope measured by algorithm 1b is consistently smaller than that of algorithm 1a. This
can be explained by considering the definition of the VRH temperature constant. For the Mott
regime it is,

TMott = CMott
a2 , CMott ∝ nC (5.2)

where nC is the critical concentration that will produce a percolating cluster. The introduction
of the three-site jumps introduces a new criteria for two sites to be part of the same cluster.
Three-site jumps therefore change the dynamics of the infinite cluster, hence the critical
concentration will be changed. Adding another jump mechanism should simply lower the
percolation criteria, lowering nC and also TMott. This explains the reduced slope when three-site
jumps are added to the dynamic algorithm.

According to Mott’s law, the slopes of the data in Figs. 5.3a, 5.4 and 5.6a should be C1/3
Mott and

independent of a. The measured slopes from algorithm 1a, 1b and 2 do however clearly have a
systematic a dependence. All the slopes in table 5.2 decrease with decreasing a. The algorithm
using sites with positional disorder does produce C1/3

Mott independent of a, in agreement with
theory. This means that lattice effects are the reason why the other algorithms are unable to
produce a σx data collapse to a universal curve.

Table 5.2: Value of C1/3
Mott measured from Mott regime generated temperature dependence of

σx for all three algorithms. The specified temperature range is the range used for making the
measurement of the slope.

a Algorithm 1a Algorithm 2 Algorithm 1b
T ∈ (0.04, 0.24) T ∈ (0.12, 0.24) T ∈ (0.12, 0.24) T ∈ (0.04, 0.24)

2/2 3.67± 0.01 3.76± 0.02 3.73± 0.02 3.30± 0.02
2/3 3.41± 0.01 3.35± 0.02 3.33± 0.03 3.06± 0.03
2/4 3.29± 0.02 3.10± 0.03 3.06± 0.06 2.95± 0.02
2/6 3.13± 0.02 - - 2.90± 0.04

Algorithm 1ar C1/3
Mott converges to 3.26± 0.03 for all a
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5.1.4 ES regime simulations

This section is structured in the same manner as the Mott regime section. There is a description
of the results coming from each algorithm, with a table of measured slopes at the end. All
the results in this section are simulated using electric fields E = T/10. We begin with a
measurement of the DOS to check if the Coulomb gap is correctly produced in ES regime
simulations.

5.1.4.1 Density of states

Fig. 5.9 shows the DOS when dynamic electron-electron interactions are considered in simula-
tions. The DOS histogram is made by concatenating 10 simulation together, using the single
particle energies εi after 107 jumps. Fig. 5.9 shows a clear Coulomb gap present at ε = 0. The
measured Coulomb gap does not reach g(ε = 0) = 0, that is only expected to happen at T = 0.
The Coulomb gap becomes deeper as the temperature is lowered from T = 0.05 to T = 0.03
hinting it may reach zero at T = 0. For Mott regime simulations, the measured DOS is a
completely constant function of ε (not shown).

In two-dimensions the Coulomb gap DOS is expected to be a symmetric linear function of ε
close to ε = 0 at T = 0. The behavior of g(ε) at T = 0.03 in Fig. 5.9 immediately around ε = 0
seems to be more parabolic than linear. This is not an issue as the linear prediction of g(ε) is
made at T = 0.

Figure 5.9: DOS measured from ES regime simulations for T = 0.05 and T = 0.03, using
a = 2/2. The figure shows a clear Coulomb gap. The simulations are performed using algorithm
1a. There are no visual changes in the DOS when using other algorithms.

5.1.4.2 Algorithm 1a

Fig. 5.10a presents ES regime generated data fitted with ES’s law. We use the definition
TES = a−1. The plots of the different localization lengths seem to collapse together at the very
low temperatures. Only the smallest temperatures T = 0.06 − 0.05 are close to the line of
best fit for a = 2/6. Fig. 5.10b shows ES regime data plotted to 1/3 exponent, showing little
visual difference from the 1/2 exponent in Fig. 5.10a. It seems like it is easier to differentiate
between 1/3 and 1/2 exponents for Mott regime data, than it is in the ES regime.
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5.1. Current and conductivity in the x-direction

The linearity can be tested by looking at the deviation from the linear fitted line for different
exponents. This is done in Fig. 5.10d and Fig. 5.10c. It is difficult to draw solid conclusions
because the ES regime data only becomes linear at low temperatures. From Figs. 5.10d and
5.10c it is arguably possible to see that 1/2 fits the data better than 1/3.

(a) (b)

(c) (d)

Figure 5.10: Temperature dependence of ES regime simulated σx using algorithm 1a. (a) tests
with ES’s law and (b) with 1/3 exponent. The difference between the linear fitted line and the
simulated σx using exponents 1/2 (c) and 1/3 (d). Exponent 1/2 arguably fits the data better.

5.1.4.3 Algorithm 2

Fig. 5.11a shows the simulated ES regime σx simulated by algorithm 2 tested with ES’s law.
Fig. 5.11a shows close to linear behavior for only very small temperatures. Smaller a require
even lower temperatures before linear regime appears.

The slopes from Fig. 5.11a are presented in table 5.3. Comparing with algorithm 1a, algorithm
2 produces the same results just as in the Mott regime.

5.1.4.4 Algorithm 1b

Fig. 5.11b shows the σx simulated by algorithm 1b in the ES regime. The data in Fig. 5.11b
shows a linear behavior at low temperatures. Small a data seems to converge to the linear
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(a) (b)

Figure 5.11: Temperature dependence of simulated ES regime σx for algorithms 2 (a) and 1b
(b). The data is tested against ES’s law and seem to follow it. The temperature range in (a) is
limited by the speed of algorithm 2, but the results are very similar to that of algorithm 1a
over the same temperature range.

behavior of the others, but only outside the simulated temperature range.

The slopes from Fig. 5.11b are noted in table 5.3.

5.1.4.5 Measured ES slopes

Table 5.3 presents the slopes of the curves in ES regime data fitted to ES’s law for the different
algorithms. Slopes for a = 2/6 data is omitted from table 5.3 because too few data points
are available at low temperatures to see if there is a linear behavior or not. As with Mott’s
law in section 5.1.3.5, the slope slopes in Figs. 5.10a, 5.11a and 5.11b should be constant
C

1/2
ES and independent of a. Just as in the Mott regime with the lattice model, a systematic

a dependence is measured in the constant C1/2
ES . This a dependence very likely has the same

cause as that of the Mott regime; it is a consequence of using the lattice model. We don’t have
an algorithm that implements Coulomb interaction with randomly positioned sites. Results of
ES regime σx from such an algorithm would likely measure CES independent of a.

As observed in the Mott regime, algorithm 1a and algorithm 2 measure almost the same slope
for the ES regime when measurements are made using the same temperature range. There is a
small discrepancy for a = 2/4, the two algorithms are 0.02 outside the range of each-other’s
error range. The difference is so small, and the data seems to follow the same trend, and they
were very close for the Mott regime, so it is acceptable and it is possible to say that the two
algorithms also produce the same results for the ES regime.

Likewise for the Mott regime, the slopes measured from algorithm 1b are smaller than that
measured from algorithm 1a. This has the same explanation. Three-site jumps change the
network properties, lowering the critical percolating concentration nC . The ES temperature
constant is TES = CES/a ∝ nC . Therefore lowering nC lowers the measured CES.
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Table 5.3: Value of C1/2
ES measured from ES regime generated temperature dependence of σx

for all three algorithms. The specified temperature range is the range used for making the
measurement of the slope.

a Algorithm 1a Algorithm 2 Algorithm 1b
T ∈ (0.04, 0.24) T ∈ (0.12, 0.24) T ∈ (0.12, 0.24) T ∈ (0.04, 0.24)

2/2 2.49± 0.01 2.38± 0.01 2.36± 0.03 2.42± 0.01
2/3 2.25± 0.02 2.06± 0.01 2.08± 0.02 2.18± 0.01
2/4 2.16± 0.03 1.95± 0.01 1.90± 0.02 2.08± 0.03

5.1.5 Hills method results

Hills method can be used to extract the exponent the from the data itself. The results of
doing so on σx measured for both regimes using algorithms 1a and 1b is presented in table
5.4. The method is not applied to algorithm 2 as only low temperature points are usable for
this method. As algorithm 1a gave the same results as algorithm 2 for measured temperature
constants, we expect algorithm 2 to measure the same exponents as algorithm 1a.

There is a consistent behavior of the slope to decrease with decreasing a. This is in disagreement
with experimental works [4]. The exponents in table 5.4 do not fall exactly on 1/3 for Mott
regime and 1/2 for ES regime. For the Mott regime the values lie mostly around 0.40 while
for the ES regime they lie between 0.60 − 0.40. The measured exponent is systematically
decreasing with decreasing a. This could be an effect of using the lattice model.

The measured ES regime exponent are consistently larger than that of the Mott regime. This
is in agreement with theoretical predictions.

Table 5.4: Exponent measured from data using Hills method detailed in section 2.3.4. Only
temperatures T ≤ 0.16 are used for making the exponent estimate.

Mott regime ES regime
a Algorithm 1a Algorithm 1b Algorithm 1a Algorithm 1b
2/2 0.41± 0.01 0.53± 0.02 0.56± 0.01 0.59± 0.01
2/3 0.40± 0.01 0.39± 0.01 0.49± 0.01 0.50± 0.01
2/4 0.38± 0.01 0.38± 0.01 0.46± 0.01 0.47± 0.01
2/6 0.38± 0.01 0.33± 0.01 0.41± 0.01 0.42± 0.01

5.1.6 x-current generation map

A map showing x-current generated in a sample is presented in Fig. 5.12. The map clearly
shows that current is being generated along many paths that connect the left and right sides
of the sample. The random resistor network (discussed in section 2.3.1) is solved using the
assumption that current only travels through a single percolating path. It means that under
the conditions in Fig. 5.12, that assumption is very wrong. There is a large amount of current
traveling through the sample using many paths.
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Figure 5.12: x-current generation map of a simulation sample. The simulations are done at
T = 0.08 with E = 0.016. The electric field is aligned in the positive x-direction (to the right).
The color red represents current traveling to the left. The map is made using 5 ∗ 107 jumps,
ignoring the first 106.

5.1.7 Comparison with other simulations

There are not many published articles that study the values of T0 for either the Mott or ES
regime using KMC simulations. To our knowledge there are no studies done on the conductivity
data collapse when using different localization lengths.

Ref. [30] use a parallelized version of the rejection algorithm to simulate ES regime VRH
conductivity using the lattice model. Their result using localization length a = 2/2 is CES = 6.2.
They also find σ0 = 2.7/T . Using algorithm 1a with a = 2/2, we find CES = 6.20± 0.05 and
σ0 = (2.7 ± 0.4)/T ). The results from algorithm 1a are in perfect agreement with that of
Ref. [30]. Ref. [30] do not look at any variations in localization length.

In contradiction to the results of Ref. [30] and of this thesis, Tsigankov and Efros find CES = 5.8
using a = 2/2 in Ref. [32]. Tsigankov and Efros use the dynamic KMC algorithm on the lattice
model as described in Ref. [32], but use a different acceptation function. They do not add any
uncertainties to their measurement, so it is possible their CES at a = 2/2 is consistent with
Ref. [30] and of this thesis for the lattice model. They also measure CMott = 13.0/g(µ) using
Mott regime simulations.

The DOS g(ε) in the Mott regime is determined by the randomly assigned disorder potential
φ. As φ is a uniformly distributed random number in (−1, 1), the Mott DOS is a constant
g(ε) = 0.5. Using this DOS and the value of CMott at a = 2/2 from table 5.2 measured by
algorithm 1a, we find CMott = (6.18± 0.02)/g(µ).

The difference in CMott measurements between our thesis and that of Ref. [32] is puzzling.
The only difference should be acceptation criteria for jumps, which should not have such a
significant impact on CMott.

Additionally it is unexpected that the measured value of g(ε)CMott and CES are the same.
For a = 2/2 we found g(ε)CMott = 6.18 ± 0.02 and CES = 6.20 ± 0.05. In fact, using the
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measured values of CMott and CES found in tables 5.2 and 5.3, g(ε)CMott and CES are found to
be consistent, or very close to consistent, with one another for all values of a.

5.1.8 Concluding thoughts on σx results

It is observed to be difficult to determine if the data fits Mott or ES’s exponent better. It
seems to be easier to tell that Mott data does not follow ES exponent than it is the other way
around. The data is only expected to follow VRH law at low temperatures, and it was seen
that ES regime σx starts to follow ES’s law at a lower temperature than when Mott’s regime
σx starts to follow Mott’s law. As such, even lower temperatures are needed for the ES regime
to study the section of σx that should be linear.

However plotting ES data with TMott or vice versa fails to produce any sort of data collapse.
This can be seen in Fig. B.3. The lack of collapse makes it clear that Mott regime data
needs TMott and ES regime data needs TES. Therefore while difficult to determine the correct
exponent, the correct a dependence of the temperature constant is a good tool to distinguish
between the regimes. This holds for all algorithms.

The exponents measured using Hill’s method contain systematic a dependence, but the exponent
of ES regime is always larger than that of the Mott regime in agreement with VRH laws. The
exact values are not as they theoretically should be, but Hill’s method is only an approximate
and it is not expected to get exact results.

Algorithm 1b seems to work at producing σx almost in accordance with the VRH regimes.
While the data only collapses for small a, large localization lengths produce nice looking curves
themselves. The three-site jumps change the percolating network properties and therefore
change the temperature constant. These properties of algorithm 1b need to be considered
when analyzing results of Hall currents and conductivity.

There are many crude approximations and assumptions used to derive the VRH laws. For
instance an assumption that goes into the derivation of Mott’s and ES’s law is that nad � 1,
where n is the concentration and d is the dimension. This assumption is clearly not correct
in these simuations, the localization lengths used are too large. Additionally an assumption
about current only traveling through the single percolating path is made to solve the random
resistor network. This is also clearly not the case, as seen in Fig. 5.12. These assumptions do
cause large impacts on simulation results. The lattice model however does. Using the lattice
model, the simulated conductivity does not collapse to the universal Mott’s or ES’s law curve
for different localization lengths. This is however achieved for the Mott regime using sites with
random positions. This shows that the assumption of positional disorder is necessary for the
conductivity to follow VRH laws closely.

Based on the results of this section, it is possible to conclude that the KMC algorithms are
able to simulate both the Mott and ES VRH conductivity in accordance with known VRH laws.
There is a defined Coulomb gap (see Fig. 5.9) that occurs only when dynamic electron-electron
interaction is considered. We do find that it is possible to distinguish between the regimes by
the dependence of the temperature constant on a. This can be used when studying results of
Hall conductivity for the different regimes. Importantly we also find that the lattice model
impacts measurements of VRH regime constants CMott and CES. A consequence of using the
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lattice model is that CMott and CES have systematic a dependencies. This will be important
when studying the Hall conductivity, as the same property should be present there.

5.2 Current and conductivity in the y-direction

The model used in simulations uses periodic boundary conditions. As such, the Hall effect
causes no charge buildup on material boundaries. And there is no transverse electric field
to measure. Instead the Hall effect is measured through the accumulated charge, current, in
the y-direction, when there is an electric field in the x-direction and a magnetic field in the
z-direction.

This section covers the properties of the accumulated charge in the y-direction, when an
external magnetic field is present. Positional disorder simulations will not be covered in this
section. We do not have an algorithm available that can be used in this thesis to simulate Hall
conductivity with positional disorder. Only the lattice model will be covered. As algorithm 1a
does not consider any magnetic fields, it will also not be covered in this section.

As with the longitudinal conductivity, the dependence of the Hall conductivity σH on electric
field needs to be studied. Additionally the dependence on magnetic fields needs to be known.
Then, the temperature dependence of the σH can be tested to find the function form that best
fits the simulated results.

5.2.1 Accumulated charge in y-direction

The accumulated charge in the y-direction as function of time is plotted in Fig. 5.13 for high
and low temperature, for algorithms 1b and 2. Fig. 5.13a shows high temperature accumulated
charge in the y-direction for algorithm 2. The behavior is close to linear, as with the x-direction
but with more spread. Comparing Figs. 5.13a and 5.1a, it appears the y-direction current
varies more between samples. At the lower temperature, see Fig. 5.13b, the behavior is much
less linear and the difference between samples is large. Still there is a clear favored direction
for the current.

The high temperature case for algorithm 1b (Fig. 5.13c) looks similar to the algorithm 2 result.
Perhaps algorithm 2 is more linear and has less pronounced fluctuations in time. The lower
temperature case in Fig. 5.13d is much more difficult to analyze. The behavior is somewhat
linear, but with large time fluctuations. The spread between samples is also large, one sample
is accumulating charge in the opposite direction to the others. Still, the data in Fig. 5.13d is
going more up than down.

The large difference between samples indicates that the correlation length for the network of
conduction paths is larger for σH than σx, in agreement with predictions from Ref. [7]. It seems
that the y-current produced by algorithm 1b has a larger correlation length than algorithm 2.

It does also seem like the two algorithms produce jy with different correlation lengths. Looking
at Figs. 5.13b and 5.13d, for the same external parameters algorithm 1b produces jy with
much larger differences between samples than algorithm 2.

As observed in for jx, decreasing a leads to larger differences between samples and larger
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fluctuations in time. Since the correlation length for jy > the correlation length for jx, these
effects are expected to also be larger. Therefore the range of localization length a that can
realistically be studied with meaningful results is smaller for Hall properties.

(a) (b)

(c) (d)

Figure 5.13: Accumulated charge in the y-direction measured in simulations as function of time
for 10 different samples. (a) and (b) show the high and low temperature y-current simulated
by algorithm 2. And (c) and (d) show the high and low-temperature y-current simulated by
algorithm 1b.

We see that the accumulated charge behaves in similar manner for both x and y-directions. It
is apparent that the conductivity in the y-direction experiences larger variation from sample to
sample than the longitudinal conductivity. But it is possible to conclude that the algorithms
produce a current in the y-direction.

If either H or E is set to zero then the accumulated charge in Fig. 5.13 loses it’s systematic
behavior and looks more like random noise. This is the expected behavior for an algorithm
simulating Hall current.

5.2.2 Dependence on electric field

The dependence of σH on E is studied in this section. The results using both algorithm 1b
and algorithm 2 are presented in Fig. 5.14. The Hall conductivity σH has a close to constant
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behavior for E. Using small electric fields does however produce large fluctuations in σH for
both algorithms.

Comparing Figs. 5.2a and 5.14a, it is possible to see that the behavior of σH from algorithm 2
is very similar to the behavior of σx produced by algorithm 1a. σH seems to be constant for
small E, and slowly increasing for large E. Likewise for algorithm 1b, simulated σx and σH
have similar dependence on E (see Figs. 5.2b and 5.14b).

It appears that σH shows a constant behavior for a larger range of electric fields than σx does.
This can be observed for both algorithms. The result of this is that perhaps it will be possible
to use larger electric fields to study σH , than what was possible for σx, while still simulating
Ohmic behavior. This becomes very useful, as the spread of σH between samples is much larger
than that of σx, and using larger E allows for more precise measurements. Using E = T/10
as for σx should guarantee Ohmic conductivity, but it is likely possible to use larger fields to
reduce the uncertainty. From Fig. 5.14 it can be argued that Ohmic electric fields can be even
larger for algorithm 1b than for algorithm 2. This will be tested further later.

(a) (b)

Figure 5.14: y-current (a,c) and Hall conductivity (b,d) and its dependence on applied electric
field for algorithm 1b (top row) and algorithm 2 (bottom row). The behavior of jy is linear for
both algorithms, and the behavior of σH has slight differences between the algorithms. All
figures use H = 0.5.

5.2.3 Dependence on magnetic field

Using the electric field E = T/10 for T = 0.2, 0.3, 0.4, the dependence of σH/H on H is
simulated for H ∈ (0, 1). The results are plotted in Fig. 5.15 for both algorithm 1b and 2. The
two algorithms produce similar results.

The behavior of σH/H in Fig. 5.15 is constant for small-medium H, but decreasing for large
H for both algorithms. There are large fluctuations for in σH/H when H is very small. This
is observed for both algorithms, but the decrease in σH/H is more significant when T = 0.4 in
algorithm 1b than in algorithm 2 for the same temperature.

It seems the dependence of σH/H on H is similar to the dependence of σx on E. This is the
expected result and indicates that the algorithms are able to simulate a normal working Hall
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effect.

In the initialization process of algorithm 1b, the transition rate ΓTikj is set to zero if (1 + H ·
Aikj) < 0 to avoid problems with negative rates affecting the algorithm. What happens if
nothing is done to remove these negatives rates is discussed in section D. The results sets an
upper bound of H = 0.5 for simulations using algorithm 1b.

Negative rates are not a concern for algorithm 2 for the values of H looked at in this project.
Algorithm 2 considers Eq. 4.1 in it’s entirety, and Γij �

∑
k Γikj should be true for very

small fields. As seen in Fig. 5.14a, very small fields cause large fluctuations in σH , and so to
produce reliable results larger fields need to be used meaning Γij >

∑
k Γikj . A small issue

is that
∑
k Γikj falls off more slowly with intersite distance than Γij . Therefore jumps with

large intersite distances might have
∑
k Γikj > Γij . For example, using H = 0.2 jumps with a

distance of 4 units have rates typically ∈ (10−4 − 10−6). The size of
∑
k Γikj might be 0.2− 10

times larger than Γij . However these jumps are selected only a few times during simulation
time such that it should not be an issue. For jumps of length 1,

∑
k Γikj/Γij ≈ 0.1. There

are already a lot of approximations put into the algorithm when simulating normal VRH
conductivity. The theoretical framework of lightly doped semiconductors is made in the region
where na1/2 � 1, but that is clearly not the case for our simulations. Still, the results of section
5.1.1 show that the algorithm does a good job simulating the dynamics. Therefore, we don’t
expect the requirement Γij �

∑
k Γikj to strictly required to get results of a VRH Hall effect.

Based on the above arguments and results, we decide to use a constant magnetic field of
H = 0.2 for the rejection algorithm, algorithm 2. The value of H expected to produce linear
behavior should not be temperature dependence as H connects only directly with the distance
relationships. For algorithm 1b, H = 0.4 will be used for the simulations.

The σx dependence on H is studied shortly in section E. The result is that σx is largely
independent of H, but is slightly increasing for large fields only for algorithm 2. This behavior
is not seen in experiments as magnetoresistance takes place and is much more significant. This
is not expected to have a meaningful impact on results.

From Figs. 5.14 and 5.15 we see that the simulated jy has a linear dependence on both Ex
and Hz. This is the expected behavior if the algorithm was simulating Hall conductivity. It
is a strong indication that the algorithm is working correctly. Additionally, (not shown) the
direction of jy reverses if the sign of either Ex or Hz is reversed.

5.2.4 Sign of the Hall effect

The dependence of σH and σx on ν (ratio of electrons to sites) is presented in Fig. 5.16. The
conductivities are simulated for ν ∈ [0.02, 0.88]. The longitudinal conductivity σx in Fig. 5.16b
seems to be completely symmetric about ν = 0.5. The Hall conductivity σH in Fig. 5.16a is
more noisy, but also seems to be symmetric about ν = 0.5.

When ν < 0.5 , holes are the important charge carrier. And when ν > 0.5 electrons are the
dominant charge carrier. The result that σH is symmetric about ν = 0.5 means that holes
and electrons produce Hall current of the same sign, and of the same magnitude. σH does not
undergo any changes in sign, in agreement with theoretical predictions in section 3.2.2. The
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(a) (b)

Figure 5.15: σH/H dependence on applied magnetic field for algorithms 2 (a) and 1b (b).
σH/H shows a constant behavior for small H that is only valid for H up to ∼ 0.4 for algorithm
1b and ∼ 0.2 for algorithm 2.

simulated σH is in the negative y-direction, as expected when defining the vector area to be
positive when it is anticlockwise. Changing the vector area definition would switch the Hall
effect sign.

The temperature dependence of σH should be investigated at constant ν. The absolute error
in σH is largest for ν around 0.5. But the relative error seems to be independent of ν (not
shown). Therefore ν = 0.5 will be used to have results with the largest possible Hall effect.

(a) (b)

Figure 5.16: σH and σx dependence on ν (ratio of electrons to sites in the system). The
simulation is done using H = 0.20, E = 0.04 and T = 0.20.

5.2.5 Mott regime simulations of σH

This section covers Mott regime results of the σH for both algorithms, one at a time.
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5.2.5.1 Algorithm 2

Based on trial and error, we find that using electric fields E = T/5 does not produce any
non-Ohmic behavior for σH . The σH simulated using algorithm 2 in this section uses E = T/5.
Using these electric fields (instead of E = T/10) leads to smaller uncertainties and more stable
currents.

Based on theoretical and experimental results discussed in section 3.2.3-3.2.5, Mott regime
Hall conductivity σH is expected to be on the form

σH ∝
aγ

T λ
exp

(
−(1 + α)

(
TMott
T

)1/3
)
. (5.3)

Where parameters such as γ and λ need to be determined. Testing the Hall conductivity with
different values of λ finds λ = 1 produces gives the best fit. Setting λ = 1 gives the Hall
conductivity the same temerature dependence as the longitudinal conductivity. Therefore we
plot σH in the same way that σx was plotted earlier, the only difference the ∝ aγ dependence.
The result is shown in Fig. 5.17a. The figure shows a data collapse similar what was found for
σx for the same algorithm (see Fig. 5.3a). The best data collapse is found using γ = 1. The
value of γ changes the vertical position of the σH curves in Fig. B.8a, it does not affect the
slope. See Fig. B.8 for plots with γ = 0. The value of γ is chosen visually, any value between
0.75 and 1.25 produces a good collapse for Mott regime σH .

In section 5.1.3.3 it was seen that adding aγ to σx made it possible to produce a better data
collapse for large a. However the data collapse become worse for small a. Since we cannot
realistically simulate small a for σH , it is not possible to determine if the empirical data collapse
5.17a is valid for small a as well.

The slopes from Fig. B.8a are presented in table 5.6. Similar dependence on a as was found
for σx slope is observed, but it is more difficult to get accurate measurements of the Hall
temperature constant due to more noisy current.

Simulating using a < 2/4 does not produce currents stable enough to produce meaningful σH
over a wide enough temperature range. Therefore only a ∈ (2/2, 2/4) is looked at here.

5.2.5.2 Algorithm 1b

Observations about the Ohmic region of electric fields E for the Hall conductivity σH were
made earlier in section 5.2.2. It was seen that the range of electric fields that will produce an
Ohmic behaving σH is larger than for the longitudinal conductivity. Further yet it was seen
that the algorithm 1b σH can be Ohmic for even larger E than the algorithm 2 σH .

We find a set of "optimal E" that are large enough to produce good measurements while still
being Ohmic. The electric fields used to measure σH are presented in table 5.5. The method
used to determine the Ohmic electric fields was a matter of trial and error. If an electric field
is seen to cause non-Ohmic behavior (see last data points of Fig. B.6) then a smaller electric
field is tried until Ohmic behavior is found.

Due to the ability to use Ohmic behavior using larger electric fields for algorithm 1b than
algorithm 2, it is also possible to simulate σH for smaller a. Empirically we find a down to 2/6
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(a) (b)

Figure 5.17: Simulated Mott regime Hall conductivity σH empirically fitted to Eq. 5.3 by
varying γ for algorithm 2 (a) and algorithm 1b (b). The algorithm’s σH produce best data
collapse with γ = 1 and γ = 4 respectively. Note that the value of γ does not change the slope
of the curves.

to produce σH without too much noise.

Table 5.5: Choice of "optimal" electric fields for different temperatures used for simulating
Ohmic σH with algorithm 1b with lowest possible uncertainty.

T Ex
≥ 0.10 0.1
0.08 0.05

0.06 - 0.05 0.015
0.04 - 0.03 0.010

The Mott regime Hall conductivity simulated by algorithm 1b is also expected to follow Eq.
5.3. λ = 1 gives the best data collapse along with γ = 4. The result is presented in Fig. 5.17b.
All the data curves in Fig. 5.17b fall on top of each other, but with changing slopes. The
slopes are presented in table 5.6. There is the same kind of a dependence in CMott previously
mentioned, likely caused by lattice effects.

5.2.5.3 Measured slopes from Mott regime σH

Table 5.6 presents the slopes measured from simulated Mott regime σH . The slopes feature
much more error for the Hall conductivity than they had for the longitudinal conductivity. The
uncertainties in table 5.6 represent the parameter error given by the linear regression method.
There is another error depending on what data points are and are not included when making
measurements. This is demonstrated in Fig. B.7. The linear fit should only be applied to the
linear part of Fig. 5.17a, and when there is a lot of noise it becomes difficult to determine
what is linear and what is not. Therefore the actual uncertainty is much larger than what is
presented in table 5.6.
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5.2. Current and conductivity in the y-direction

According to Eq. 5.3, the slope in Fig. 5.17 should be equal to (1 + α)C1/3
Mott. The uncertainty

in measurements is much larger for the Hall conductivity σH than it was for the longitudinal
conductivity σx. Even with these large uncertainties, it seem slike there is a systematic
localization length dependence on the measurements in table 5.6. This systematic dependence
is very similar as that seen in σx when using the lattice model. It therefore most likely has the
same origin, lattice effects. This cannot be explicitly confirmed at present, as we do not have
an algorithm available that can simulate the Hall conductivity on sites with positional disorder.

Comparing the values of the slopes measured from σH in table 5.6 with those measured from
σx in table 5.2, the Hall conductivity slopes are consistently measured to be larger. This
suggests α > 1, in accordance with expectations. This aspect will be returned to later when
measurements of α are made in section 5.6.

Table 5.6: Value of (1 + α)C1/3
Mott measured from simulated σH . The temperature range is

chosen such as the data seems to be most linear.

a Algorithm 2 Algorithm 1b
2/2 4.65± 0.06 3.45± 0.03
2/3 4.5± 0.2 3.19± 0.05
2/4 4.4± 0.3 3.22± 0.08
2/5 - 3.06± 0.17
2/6 - 2.4± 0.2

The σH ∝ aγ dependence was tested and found different values of γ for the different algorithms.
Algorithm 2 collapsed with γ = 1 while algorithm 1b collapsed with γ = 4. These values will
likely be the same if simulations were done on sample with positional disorder, because there
were no such changes between the lattice model and the positional disorder samples for the
longitudinal conductivity.

How the aγ factor changes the data collapse for lower data collapse is unknown as results from
such simulations have too large uncertainties and fluctuations. It possible that the value of
γ chosen only makes the data collapse better for the large a studied, and makes it worse for
smaller a.

5.2.6 ES regime simulations of σH

This section covers ES regime results of the Hall conductivity σH for both algorithms, one at a
time.

5.2.6.1 Algorithm 2

The ES regime Hall conductivity is expected to be on the function form

σH ∝
aγ

T λ
exp

(
−(1 + α)

(
TES
T

)1/2
)
. (5.4)

Where values of γ and λ do not necessarily need to be the same as they were in the Mott
regime. Testing finds λ ≈ 1 to be a good fit, giving the ES regime Hall conductivity the same
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as in the Mott regime and of the longitudinal conductivity. Therefore it is plotted in the same
manner. The result is shown in Fig. 5.18a. The best data collapse was found using γ = 2.
The data points in Fig. 5.18a feature very large uncertainties. The actual spread of Hall
conductivity between samples is the same as in the Mott regime, but in the ES regime σH is
much smaller. This leads to large relative errors, which are visible in FIg. 5.18a.

The ES regime Hall conductivity collapses for medium and low temperatures in Fig. 5.18a,
but this is likely largely due to significant uncertainties. σH in Fig. 5.18a appears to be linear
up to low temperatures, where it flattens out for all a. This flattening out at low temperatures
looks a lot like non-Ohmic behavior. It might be that smaller localization lengths require lower
electric fields for the Hall conductivity to be Ohmic. Using smaller electric fields leads to much
larger uncertainty, which would make it difficult to draw conclusions.

Linear regression is applied to the linear sections of data in Fig. 5.18a. The values are presented
in table 5.7. Maybe just remove?

(a) (b)

Figure 5.18: ES regime σH empirically fitted to Eq. 5.4 by varying γ for algorithm 2 (a)
and algorithm 1b (b). The algorithm’s σH produce best data collapse with γ = 2 and γ = 5
respectively.

5.2.6.2 Algorithm 1b

ES regime σH is simulated using algorithm 1b. The results are fitted to Eq. 5.4. The results
are shown in Fig. 5.18b. The best data collapse is found using γ = 5 and λ = 1. The σH
curves are very linear for high a, and large and medium temperatures. The curves flatten out
at low localization lengths and low temperatures. This flattening out at low temperatures
looks like non-Ohmic behavior.

The slopes from Fig. 5.18b are presented in table 5.7 and feature a clear systematic decrease
with a.

5.2.6.3 Measured slopes from ES regime σH

The slopes from Figs. 5.18a and 5.18b are meaured using linear regression and presented in
table 5.7. From a theoretical standpoint, the slope should be (1 + α)C1/2

ES . The uncertainties
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in measurements are much larger in the ES regime than they were in the Mott regime. The
measured σH slope varies greatly depending on the temperature range of data points included
in the linear regression. For instance the slope for a = 2/4 using algorithm 2 varies between
1.0± 0.6 and 2.0± 0.7. The data points included are chosen visually based on where the results
appear linear. Despite large errors it is possible to see a systematic a dependence in measured
σH slope in both algorithms. This is likely the same lattice effect previously documented.

Table 5.7: Value of (1 + α)C1/2
ES measured from ES regime σH simulated data.

a Algorithm 2 Algorithm 1b
2/2 4.04± 0.11 3.07± 0.03
2/3 2.76± 0.16 2.72± 0.06
2/4 1.8± 0.7 2.39± 0.10
2/5 - 2.01± 0.10

5.2.7 Hall current generation map

A map of y-current generated in the presence of a magnetic field is presented in Fig. 5.19a. The
map is made using Mott regime simulations, there are no visual differences in the ES regime.
The figure shows paths of y-current being generated on diagonal paths. The main direction
of the electron movement is in the negative x-direction. The red dots in Fig. 5.19a represent
electrons moving down, blue dots representing electrons moving up. Fig. 5.19a features a lot of
noise, but it is possible to see red diagonals representing paths for electrons to move down and
blue diagonals representing paths for electrons to move up. These paths are paths where it is
easy for the electron to move either up or down. Fig. 5.19a seems to show that Hall current is
generated almost homogeneously throughout the sample. There are some paths where positive
Hall current is being generated, and some paths where negative Hall current is being generated.

The theory of Galperin et al. [7] predicts there to be some optimal triangles that generate
exponentially more Hall current than others. It should be so dominant that Hall current
generated by other triangles is negligible. If that were to be the case in the simulations then
Fig. 5.19a should feature one or a few areas with much much more Hall current than others.
That does not seem to be the case in these simulations.

The definition of optimal triangles does however require sites to be positionally close to each
other in accordance with certain bonding criteria. This aspect is not considered in the lattice
model, as all sites are equally spaced. Percolation simulations of VRH Hall effect by Shumilin
and Stepina in Ref. [17] use sites with positional disorder, and do not find any evidence of
optimal triangles.

5.2.8 Concluding thoughts on σH simulations

The simulated Hall conductivity σH features more uncertainty than the longitudinal conductivity
did. ES regime measurements of σH have much more noise than Mott regime σH . This makes it
difficult to see differences in VRH exponents, whether it should be 1/2 or 1/3. The differences
between plots when changing just the exponent is very slight, and with uncertain data it
becomes impossibl to see a difference. However the a dependence of TMott and TES gives a
clear and simple to read difference. Just as it did for σx. The Mott regime σH is plotted using
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(a)

Figure 5.19: Mott regime Hall current generation map of a simulation sample. ES regime maps
show no visual difference. The simulations are done at T = 0.08 with E = 0.016 and H = 0.2.
The red current represents current moving in the negative y-direction. The map is made using
5 ∗ 107 jumps, ignoring the first 106.

TES and 1/2 exponent in Fig. 5.20a. It shows no data collapse. Adding a σH ∝ aγ dependence
in Fig. 5.20a can improve it, but all three curves will not collapse together. ES regime σH is
plotted using TMott and 1/3 exponent in Fig. 5.20b. The figure shows no data collapse, and is
very similar to ES regime σx plotted in the same manner (see Fig. B.3d). From this it looks
like Mott regime σH does follow the function form of Eq. 5.3. While much more uncertain, it
also looks like ES regime σH follows Eq. 5.4.

The uncertainty in measurements is much greater in the ES regime than in the Mott regime for
algorithm 2. This implies a large difference in the correlation length of the Hall effect between
the VRH regimes. The reason for this is not fully known. The authors of Ref. [17] do not find
such large difference in uncertainty between the regimes when using percolation simulations.

The theory of optimal triangles predicts the Hall conductivity to be largely controlled by
some key sites in the sample [7]. These combinations of sites would be much more efficient at
producing Hall current than other combinations. Therefore the theory predicts large mesoscopic
fluctuations in the Hall conductivity. The theory is developed for both the Mott and ES
regime, with the same prediction. If the optimal triangle theory is true, there would be
large uncertainty in measurements of σH . Which is seen, but only in the ES regime. There
are no visual differences in Mott and ES regime Hall current maps (in Fig. 5.19a). The
homogeneousness was used as an argument to say there are no optimal triangles. Likely the
large errors in the ES regime have other causes.

When doing simulations one should always be vary of code or simulation mistakes. It is difficult
to determine if an unexected result is interesting or worrying. While nothing wrong can be
found in the simulation code, it cannot be ruled out that there might be something wrong
with the Coulomb interaction implementation. If this is the case, then likely the mistake lies
in either the math or the implementation of Coulomb interaction within triangles (discussed in
section 4.2.5).

It was found that λ = 1 (σH ∝ T−λ) worked best for both algorithms and both VRH regimes.
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(a) (b)

Figure 5.20: Regime generated σH plotted using switched a dependency in T0. (a) is Mott σH
plotted with TES and (b) shows ES σH plotted with TMott. No data collapse is possible for
these relations.

The value of γ (σH ∝ aγ) however changes from algorithm to algorithm, VRH regime to
VRH regime. For algorithm 2, γ = 1 was found for the Mott regime and γ = 2 for the ES
regime. Algorithm 1b σH fits best with γ = 4 in the Mott regime and γ = 5 in the ES regime.
It is interesting that the two algorithms find different γ values. The difference in γ value
between algorithms needed for data collapse tells us that the two algorithms simulate Hall
conductivities with entirely different properties. The results from algorithm 2 should clearly
be trusted more, as it is an exact implementation of magnetic field equations. The trick done
to produce algorithm 1b makes it able to simulate a Hall effect that shares many qualities with
algorithm 2, but with some different properties.

There is not much data to compare these values with. Most experiments find λ = 0. However
experiments are often severely limited in temperature range which makes it difficult to see
any difference between λ = 0 or λ = 1. Percolation simulations in Ref. [17] find λ = 1, in
accordance with present results. Ref. [17] is the only reference we have for the value of γ. They
find γ = 2 in both Mott and ES regime simulations, and also on experiments of arrays of
quantum dots.

Limitations of the lattice model affect simulations in the localization length dependence. It
is possible that the value of γ would change for simulations done on samples with positional
disorder. Longitudinal conductivity effectively had σx ∝ aγx with γx = 0. There were no
differences in γx between the lattice and random sample model.

In this section it was seen that the algorithms 1b and 2 do produce systematic Hall conductivity
in presence of magnetic fields. In the Mott regime the Hall conductivity followed the same
general function form as the longitudinal conductivity. In the ES regime the uncertainty
became very large and it became difficult to determine the behavior of the Hall conductivity.
Still it seems like the ES regime σH has similar behavior as ES regime σx.
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5.3 Hall mobility

In this section we cover the behavior of the Hall mobility µH = σH/σxH. As will be seen, the
uncertainty in Hall mobility is quite large, making it difficult to directly measure the slope as
done for σx and σH .

5.3.1 Algorithm 2

According to the VRH laws for longitudinal conductivity, and Eqs. 5.3 and 5.4, the VRH Hall
mobility should be on the form

µH = σH
σxH

∝ aγ

T λ−1 exp
(
−α

(
T0
T

)p)
. (5.5)

Where T0 = TMott and p = 1/3 represents the Mott regime and T0 = TES and p = 1/2
represents the ES regime. The values of λ and γ have already been measured by studying the
Hall conductivity in section 5.2.

Mott regime µH simulated by algorithm 2 is presented in Fig. 5.21a. The figure uses γ = 1, as
found in section 5.2. The curves collapse well, but with large fluctuations at low temperatures.

Fig. 5.21b shows ES regime µH . This figure uses γ = 0, in contradiction with γ = 2 found
earlier. Using γ = 0 gives the best collapse for µH . Using γ = 2 instead does not make the
σH curves overlap. That result can be seen in Fig. B.10a. This inconsistent measurement of
γ is strange. It can be interpreted as the function form of the simulated ES regime σH not
following Eq. 5.4. If it did, then the same γ value should be needed for a data collapse.

Measurements of the Hall mobility slopes from Figs. 5.21a and 5.21b are presented in table
5.8. Measurements are relatively easy to make in the Mott regime. The fluctuations are not
too large. In the ES regime however the fluctuations are very large. This makes measurements
precise measurements impossible. An attempt is made using only the data points in the
seemingly linear regions of µH at high temperature. The results are presented in table 5.8, but
the fluctuations are too large for them to be reliable.

5.3.2 Algorithm 1b

Calculating the Hall mobility requires both the Hall and longitudinal conductivities. Algorithm
1b found a different set of electric fields (see table 5.5) to produce Ohmic behaving σH than
that of σx. The electric fields used for σH therefore simulate non-Ohmic σx. As the function
form Eq. 5.5 is developed using Ohmic assumptions, it is necessary to compare Ohmic σH
with Ohmic σx. Therefore σH with the "optimal" electric fields will be combined with σx using
standard E = T/10 electric fields to calculate the Hall mobility. The actual impact of doing
this is not significant, but it does produce more linear behaving curves and measurements with
smaller uncertainty.

When studying the longitudinal conductivity simulated by algorithm 1b, it was found that the
data collapse using standards Mott’s law did not work very well for large a. An empirical aγx

proportionality to Mott’s law σx. Using γx = 2 the data collapse improved for large a, but
became worse for small a. The result can be seen in Fig. 5.7a.
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(a) (b)

Figure 5.21: Mott (a) and ES (b) regime Hall mobility µH simulated by algorithm 2. Each
regime µH is plotted as the respective regime law given by Eq. 5.5.

If the longitudinal conductivity σx simulated by algorithm does have an a2 proportionality,
then it should reflect in the Hall mobility as µH ∝ σ−1

x ∝ a−γx . The value γ = 4 was found
previously when studying the Hall conductivity. Using these parameters µH is plotted in
Fig. 5.22a. The result does not show the data collapse expected. The µH curves for different
localization length do not fall on top of each other. The a = 2/3 curve lies on top of the
a = 2/2 curve, which does not look right considering all the previous results. Tweaking with
other values of γ and γx we are unable to find a data collapse with any significant improvement
from 5.22a.

No empiric σx ∝ aγx dependence was needed in the ES regime for algorithm 1b. ES regime
Hall mobility is plotted in Fig. 5.22b. The figure uses γ = 2.5, the one that gave the best
visual data collapse.The value of γ found from ES regime σH using algorithm 1b was γ = 5.
Using γ = 5 does not produce anything resembling a data collapse. That result is shown in
Fig. B.10b. The inconsistent value of γ likely means the simulated µH and σH do not follow
Eqs. 5.5 and 5.4 closely in the ES regime.

Measurements of Hall mobility slopes are made and presented in table 5.8. The data features
large fluctuations, making it difficult to make measurements. Only the seemingly linear section
for high-medium temperatures are included in the linear regression.

5.3.3 Measured Hall mobility slopes

Measurements of Hall mobility slopes are presented in table 5.8. Measurements are made in
the Mott and ES regime using both algorithm 1b and 2. According to Eq. 5.5 the slopes
should respectively be equal to αMottC

1/3
Mott and αESC

1/2
ES . The slopes measured from algorithm

1b is increasing with decreasing a for both regimes. In the case of algorithm 2 the slope is not
systematically changing in the Mott regime but decreasing with decreasing a in the ES regime.

The same systematic localization length a dependence that has been measured previously
should also be present here as the lattice model is used. The results show instead different
systematic a dependence, and some non-systematic a variations. This indicates that there is
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(a) (b)

Figure 5.22: Mott (a) and ES (b) regime Hall mobility µH simulated by algorithm 1b. µH is
plotted as according to Eq. 5.5. The values of γ are the ones that give the best visual data
collapse.

also an a dependence in α. This will be studied more in detail later.

Table 5.8: Value of αMottC
1/3
Mott for Mott regime data and αESC1/2

ES for ES regime data, measured
by applying linear regression to ln(µH).

Mott regime
a Algorithm 2 Algorithm 1b

2/2 0.74± 0.03 0.16± 0.01
2/3 0.82± 0.11 0.28± 0.02
2/4 0.67± 0.17 0.35± 0.02

ES regime
a Algorithm 2 Algorithm 1b

2/2 1.32± 0.13 0.50± 0.01
2/3 0.7± 0.2 0.64± 0.06
2/4 0.4± 0.3 0.70± 0.17

5.4 Relation between longitudinal and Hall conductivity

As explained in section 3.2.3, the Hall conductivity is expected to be related to the longitudinal
conductivity as

σHT
λ

Haγ
∝ (σxT )1+α (5.6)

This relationship can be tested. According to Eq. 5.6, a plot of the LHS vs the RHS in a
log-log plot should produce a collapse to a straight line with slope (1 + α). The method of
plotting the conductivities against one another according to Eq. 5.6 does not assume any a
dependence in TMott or TES. If the result from such plots is a straight line then it implies that
σH and σx have the same such a dependence. The exponential part of σx ∝ exp(−(T0/T )p)
must therefore be the same for σH .
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In section 5.2 λ = 1 was found to give a good description of σH for all algorithms and VRH
regimes. The value of γ varied on the VRH regime being simulated and the algorithm used.
The value of γ also varied depending on what was being tested. For instance γ = 2 was found
from looking at σH from algorithm 2, but γ = 0 was better when looking at µH for the same
algorithm and same VRH regime. This inconsistent γ value should also be reflected when
testing Eq. 5.6.

When using algorithm 1b, larger electric fields have been used to study σH to reduce the
uncertainty in measurements. It was found that this did not cause non-Ohmic σH , but would
cause non-Ohmic σx. As such, considering the theoretical frameworks in section 3.2.3 always
consider Ohmic σx, it will be more correct to compare σH with the "optimal" electric fields (see
table 5.5) with σx calculated using the normal field sizes E = T/10. The impact of doing this
is more linear looking curves, with smaller uncertainty but with approximately the same result.

As for algorithm 2, σx was previously simulated using E = T/10 while σH has been simulated
using E = T/5. The difference in σx between using E = T/10 and E = T/5 is small and will
not cause σx to become strongly non-Ohmic. Therefore the conductivities σH and σx simulated
by algorithm 2 will be compared both using E = T/5.

5.4.1 Mott regime

Studying Mott regime σx using algorithm 1b found σx ∝ aγx to improve the data collapse for
large values of a. Inserting this dependency into Eq. 5.6 gives

σHT

Haγ
∝
(
σxT

aγx

)1+α
. (5.7)

Algorithm 2 σx does not need any such dependence and effectively has γx = 0.

The conductivity relationship Eq. 5.7 for the Mott regime is plotted in Fig. 5.23. A straight
line is indeed produced in Fig. 5.23a using algorithm 2. The straight line holds for all the
localization lengths looked at, and only with γ = 1 and γx = 0. The relationship is plotted
in Fig. 5.23b using γ = 4 and γx = 2 for algorithm 1b. For algorithm 1b the curves do fall
approximately on a line, but there are deviations in the gradient underway. The last data
points for small a also seem to fall off the line quite systematically. This is likely the effect of
using γx = 2, it makes the data collapse worse for small a.

The slopes from Fig. 5.23 are presented in table 5.9. For algorithm 2, all the measured slopes
are within the uncertainty of each other, making it possible that the slope is independent
of localization length a. For algorithm 1b, it is clear that the slopes change with a, but no
systematic a dependence is found.

5.4.2 ES regime

No σx ∝ aγx was found in the ES regime for any algorithm. Using Eq. 5.7, Figs. 5.24a and
5.24b are created. Algorithm 2 requires γ = −1 to produce something that follows a straight
line. The best result for algorithm 1b is found using γ = 2, but the data does not follow much
of a straight line.
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(a) (b)

Figure 5.23: Relation Eq. 5.7 for algorithm 2 (a) and algorithm 1b (b). The subsequent slopes
measured are presented in table 5.9.

Table 5.9: Measured slopes from Fig. 5.23. The slope is equal to (1 + αMott) according to Eq.
5.67.

a Algorithm 2 Algorithm 1b
2/2 1.33± 0.03 1.10± 0.01
2/3 1.44± 0.07 1.14± 0.01
2/4 1.43± 0.07 1.22± 0.01
2/5 - 1.12± 0.05
2/6 - 0.94± 0.08

Contrary to previous findings, γ = −1 is needed for the data produce by algorithm 2 to produce
a data collapse. By fitting σH earlier it was found γ = 2 to give best collapse. Using γ = 2
in Eq. 5.6 produces no data collapse, the results can be seen in Fig. B.4a. Likewise from
algorithm 1b, γ = 5 was found to give a good collapse when studying σH . But γ = 2 seems to
give a good collapse in Fig. 5.24b, while using γ = 5 does not (seen Fig. B.4b.

The slopes in Fig. 5.24 should be equal to (1 + αES) and are presented in table 5.10. The
measured slope for algorithm 2 does not see any systematic a dependence, but the error is
very large in the ES regime. All the measured values are within the error of each other. For
algorithm 1b the measured slopes have clear changes with a, but it is not possible to see any
systematic a dependence.

5.5 Comments on inconsistent γ values

Through Hall mobility and Hall conductivity data collapses as well as the relationship between
the conductivities, inconsistent values of γ have been found. The only consistent γ value has
been measured in the Mott regime of algorithm 2. γ = 1 has consistent been found for all data
collapses and straight lines from Mott regime algorithm 2. In the ES regime of algorithm 2, γ
values of −1, 0 and 2 were found for different types of collapses and straight lines. ES regime
simulated by algorithm 1b found γ values of 2, 2.5 and 5.
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(a) (b)

Figure 5.24: Relation Eq. 5.6 for algorithm 2 (a) and algorithm 1b (b). Both figures use γx = 0.
The subsequent slopes measured are presented in table 5.9.

Table 5.10: Measured slopes from Fig. 5.23. The slope is equal to (1 + αES) according to Eq.
5.6.

a Algorithm 2 Algorithm 1b
2/2 1.87± 0.05 1.16± 0.01
2/3 1.8± 0.1 1.39± 0.04
2/4 2.0± 0.3 1.07± 0.02
2/5 - 0.92± 0.08

Mott regime conductivities simulated by algorithm 1b did find consistent values of γ to produce
the best data collapse. But even the best possible data collapse found for the Hall mobility
was different from expectations, and the other results.

We are confident in the function form of the longitudinal conductivity for both regimes using
algorithm 2. The same cannot be said for algorithm 1b σx, as discussed from Fig. 5.7a. These
inconsistent γ values are therefore interpreted as the Hall conductivity not following Eq. 5.4 in
the ES regime for both algorithms, and Mott regime algorithm 1b σH not following Eq. 5.3.
Only Mott regime σH from algorithm 2 has been seen to follow Eq. 5.3.

Thus far only algorithm 2 is able to produce σH in accordance with theoretical and experimental
results, and only for the Mott regime. ES regime results, and Mott regime for algorithm 1b,
all show inconsistencies when compared with the theoretical and experimental function form of
σH .

5.6 Measurements of VRH Hall effect parameter

The Hall effect parameter α gives the relationship of how susceptible the longitudinal and
Hall conductivities are to temperature changes. As described in section 4.3.2 there are three
methods that will be used to measure the Hall effect parameter α from the data sets. One way
is to measure the slopes from both σx and σH , and use the relationship between them (in Eq.
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4.12) to calculate α. Another to compare slopes measured from µH and σx. And the last is to
use the relation Eq. 5.6 to extract α.

These three methods all test the function form of σH and σx in different ways. If the simulations
had measurements with no uncertainty then all the methods should give the same α. We do
have uncertainty in measurements, but measurements of α should be consistent. Within the
uncertainty of each other. The methods weigh data points of σH and σx differently, leading to
some difference in results. If the α results are inconsistent then it might mean the function
form assumed to derive the α measurement methods is wrong or incomplete.

In sections 5.1.1 it was seen that the effect of using the lattice model is the measured values of
CMott and CES have an extra a dependence. This means that the a dependence in TMott and
TES in the lattice model does not fit the data perfectly. Instead of inputting an assumption
about the a dependence in these temperature constants, it is better to compare them a priori
of a dependence. This means using measured TMott instead of CMott from the longitudinal
conductivity when measuring α. All these values have been measured from all conductivities
and algorithms and can be seen in table B.1.

Simulating on a lattice as compared to samples with positional disorder affects the measured
VRH temperature constants by introducing a dependence on localization length. This is
observed for both σx and σH . If the lattice effects are exactly the same, then measurements of
α will be independent of a. If they are different, then α will depend on a. As will be seen, the
case is the latter. As we don’t have an algorithm to simulate Hall conductivity on samples
with positional disorder, we will not be able to give a final result for α.

5.6.1 Mott regime

Mott regime α calculated using the values in tables B.1 and 5.9 is presented in table 5.11. The
αMott measured from algorithm 2 is consistent between the three methods of measurements.
The values from all methods is always within the uncertainty of the others. It does seem like
maybe αMott is increasing with decreasing a, but the uncertainty is too large to determine if it
is constant or varying.

αMott measured from algorithm 1b simulation data does experience clear changes with a. The
behavior is not consistent and a systematic trend is not possible to find. The results between
the different methods are not always consistent with one another.

Measurements from algorithm 2 are consistent whereas the ones from algorithm 1b are not.
The fact that there is consistency for algorithm 2 supports the claim that the Hall conductivity
follows Eq. 5.3. And it means that σH simulated by algorithm 1b likely does not follow Eq.
5.3 as closely as one might have hoped when designing the algorithm. Algorithm 2 has only
been used to simulate three values of a, and it is unknown if αMott measurements would be
consistent for lower a.

5.6.2 ES regime

αES calculated using values in tables B.1 and 5.10 are presented in table 5.12. There is some
inconsistency in measured αES values from both algorithms. There are clear changes in αES
with a, but no systematic behavior is found for either algorithm. As already seen in section
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Table 5.11: αMott measured from algorithms 2 and 1b simulations using different methods.
The error is calculated using methods from section 4.3.2.1.

a Algorithm 2
µH and σx σH and σx σHT ∝ (σxT )1+α

2/2 0.33± 0.02 0.33± 0.03 0.33± 0.03
2/3 0.42± 0.07 0.38± 0.08 0.44± 0.07
2/4 0.44± 0.08 0.41± 0.13 0.43± 0.07

a Algorithm 1b
µH and σx σH and σx σHT ∝ (σxT )1+α

2/2 0.08± 0.01 0.14± 0.02 0.08± 0.01
2/3 0.14± 0.02 0.14± 0.03 0.14± 0.01
2/4 0.21± 0.02 0.17± 0.03 0.23± 0.01
2/5 0.14± 0.06 0.06± 0.05 0.12± 0.06
2/6 −0.11± 0.09 −0.14± 0.07 0.1± 0.1

5.2, the uncertainty in measurements from simulated σH are large such that it is difficult to
draw conclusions about the functional behavior of ES regime σH .

Measuring αES simulated by algorithm 2 for a = 2/3 using different methods produces
inconsistent results. The inconsistency can be interpreted as σH not following Eq. 5.4 closely.
There is some behavior not accounted for by the equations. The value of αES for a = 2/2 and
a = 2/4 are consistent with one another. But with the very large relative uncertainty it does
not have to be meaningful if results are consistent with one another.

There are many inconsistencies in αES when using algorithm 1b. This is not a surprise as σx
simulated by algorithm 1b was already found to have some extra behavior not accounted for
by the VRH laws. And σH was found to display similar behavior.

Table 5.12: αES measured from algorithm 2 simulations using different methods.

a Algorithm 2
µH and σx σH and σx σHT ∝ (σxT )1+α

2/2 0.78± 0.09 0.73± 0.09 0.87± 0.05
2/3 0.52± 0.08 0.4± 0.1 0.8± 0.1
2/4 0.8± 0.4 1.0± 0.4 1.0± 0.3

a Algorithm 1b
µH and σx σH and σx σHT ∝ (σxT )1+α

2/2 0.29± 0.01 0.21± 0.04 0.16± 0.01
2/3 0.41± 0.03 0.24± 0.05 0.39± 0.04
2/4 0.2± 0.1 0.13± 0.05 0.07± 0.02
2/5 0.06± 0.06 −0.1± 0.1 −0.08± 0.08
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5.6.3 VRH Hall effect parameter dependence on H

The theoretical studies on VRH Hall effect discussed in section 3.2.3 are developed in the limit
of small magnetic fields. Many experimental works [10,11] measure α to depend on the applied
field. Some authors try to extrapolate α to H = 0 when presenting a final result [10].

There were some inconsistencies in measurements of αES, therefore we will only look at how
αMott varies with applied magnetic field.

The dependence of temperature constants on magnetic field measured from Mott regime
algorithm 2 simulations is located in table B.3 for a = 2/2 and in table B.5 for a = 2/3. The
tables show that all the temperature constants do depend on magnetic field, and decrease
systematically with it.

Before calculations of α are done, let us briefly discuss the appropriate σx to calculate with.
It was seen earlier that σx increases with magnetic field for algorithm 2. Theoretical works
do not consider any changes to σx with the magnetic field. Real materials would experience
magnetoresistance effects, and decreasing σx with magnetic field. As the impact of magnetic
fields on σx is on a different nature in simulations to experiments and theoretical works,
σx(H = 0) should reflect more on experiments. Both cases will be looked at, with σx as
function of applied field and with constant σx at H = 0.

The extrapolation procedure is difficult because there are no theoretical predictions of how α
should depend on H. The authors of Ref. [10] assume a linear dependence with decent results.
The authors of [11] do not find a linear dependence to fit well with their results, and do not
find a way of extrapolating to zero field. The dependence of calculated αMott for a = 2/2 and
a = 2/3, when considering both σx with and without dependence on H is presented in Fig.
5.25.

αMott has a very clear linear dependence in Fig. 5.25b when a = 2/2 and σx(H = 0) is
considered. In the other cases the linear model works well, but it is less clear. Extrapolated
results of αMott to H = 0 is presented in table 5.13. As seen, the value of αMott does not
change much whether σx(H) or σx(H = 0) is used in calculations.

Table 5.13: Extrapolated αMott to H = 0. Extrapolation is seen in Fig. 5.25.

a Using σx(H) Using σx(H = 0)
2/2 0.36± 0.02 0.37± 0.02
2/3 0.48± 0.09 0.45± 0.08

5.6.4 Concluding thoughts on VRH Hall effect parameter values

The α parameter was found to vary with localization length in all cases. In the ES regime
this was expected as it has already been seen that the function form of simulated σH does not
follow Eq. 5.4. Therefore the measurements of α have little physical meaning, and are difficult
to interpret for the ES regime. The Mott regime simulated by algorithm 2 is the only σH that
is behaving as predicted by theory. Even so, it experienced variations in αMott with localization
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(a) (b)

(c) (d)

Figure 5.25: αMott variations with H for a = 2/2 (top row) and a = 2/3 (bottom row) calculated
with σx with H dependence (left column) and σx at H = 0 (right column). The values in the
figures are also presented in tables B.2, B.4 and B.6.

length. This is likely caused by lattice effects, as σH simulated on sites with positional would
most likely converge to a universal curve as it did for σx (see Fig. 5.8)

The values of αMott measured from algorithm 2 generally coincide with experimental values.
The measured αMott lies somewhere between 0.30 and 0.50, same as most experimental results
covered in table 3.2. Simulations of σH with positional disorder would most likely find an α
value somewhere in this range.

By measuring αES using different methods on the same data set we found results inconsistent
with one another. This suggests that σH simulated by algorithm 2 is not on the function
form we have assumed. Therefore whether any values of αES coincide with any theoretical or
experimental results is of little importance. This is in agreement with the inconsistent values
found for γ in the ES regime. The inconsistent γ values were interpreted as the function form
of simulated ES regime Hall conductivity not following Eq. 5.4.
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5.7 Comparison with percolation simulations

The rejection algorithm, algorithm 2, seems to do an excellent job at simulating both σx and
σH in the Mott regime. With the exception of small localization deviations, which are shown
to stem from lattice effects, everything is according to theory. Here it is useful to compare
with the percolation simulations of Shumilin and Stepina in Ref. [17]. They use sites with
positional disorder and do therefore not experience any lattice effects. Their result for Mott
regime longitudinal conductivity σx seems to have the exact same qualities as found by the
KMC algorithm with positional disorder (Fig. 5.8).

The Mott regime Hall conductivity result was also very similar. Here the difference of lattice
effects comes in, as that could not be taken care of in this thesis. The value of γ (from σH ∝ aγ)
was found to be γ = 2 in Ref. [17], and γ = 1 in this thesis. The value γ = 1 was found
consistently for all methods used to test σH . The lattice only directly affects the simulation
through the localization length. Therefore it is not unthinkable that KMC simulations of σH
using positional disorder would find γ = 2, or some other γ. But there is also no evidence to
explicitly think that.

The percolation simulations of Ref. [17] were also able to simulate the ES regime of σx and σH .
The result found in Ref. [17] were according to theory. Shumilin and Stepina found the ES
regime Hall conductivity to be on the form of Eq. 5.4. The KMC results of this thesis featured
large amounts of fluctuations. Inconsistent values of γ and α were measured such that despite
the large fluctuations it was possible to see that the simulated σH does not follow Eq. 5.4.
This is unexpected. And the function form, if there is one, of the simulated ES regime σH is
not known.

5.8 Final comments on results and algorithms

The algorithms made in this thesis have largely been succesful at simulating Hall conductivity.
Algorithm 2 is the one that given the best results, which was expected as it has exact
incorporations of magnetic field equations. When comparing with experiments or other results,
this is the algorithm that makes sense to use. The approximative trick done to create algorithm
1b did have a large impact on the simualted results. It changes the a dependency of the Hall
conductivity, and the α values were completely different from that of algorithm 2.

The largest success of this thesis has been algorithm 2’s result for Mott regime Hall conductivity.
It behaves very well according to theoretical, experimental and previous simulation results.
It produces consistent results for γ (σH ∝ aγ) and α when tested in multiple ways. There
are differences in γ values between this thesis and the results of Ref. [17], but there is no
established value of γ that should be correct. The only discrepancy seen in Mott regime σH is
very likely caused by lattice effects. Simulations of Hall conductivity using positional disorder
would take too long for it to be completed within this thesis. As result of this, no definite α
value is presented. The results did find α to be in the range 0.30 to 0.50, in excellent agreement
with experimental, theoretical and percolation results.

The biggest problem in this thesis has been the ES regime Hall conductivity. It features
large fluctuations, and it’s function form does not follow Eq. 5.4. This was concluded from
inconsistent γ measurements and inconsistent α measurements. There are experimental results,
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theoretical predctions and percolation simulations that all find σH to follow Eq. 5.4 in the ES
regime. Therefore it is unlikely that the unexpected results of the KMC simulations is new
physics. Most likely there is physics either missing or incorrectly coded into the simulations.
As the only discrepancy found is in ES regime σH , it is likely the way Coulomb interaction is
calculated in the magnetic field dependence of jumps where something is missing or wrong.
Careful double and tripe checks finds no logical mistakes in the math or the code. Perhaps
there is some interaction that has not been considered or thought of. When doing simulations
there is also always the possibility of something being wrong in the code. While nothing can
be found, the prospect cannot be ruled out.

A final test that could be done for ES regime σH should be to run simulations for longer time
and for larger samples. These results would very likely have smaller fluctuations. But the
issue is that algorithm 2 scales as O(N3), with N being number of sites in the sample. These
simulations would take far too long for them to be completed within the scope of this thesis.
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CHAPTER 6

Conclusion

The aim of this thesis was to develop an algorithm able to simulate the time evolution of the
Hall current in variable range hopping conduction. This was found possible using a rejection
type kinetic Monte Carlo algorithm. Unfortunately, exact incorporation of magnetic fields
was not found to be possible with the much faster dynamic algorithm of Tsigankov et al. [18].
Using some rough approximations it was possible to modify the dynamic algorithm to make an
algorithm able to reproduce some qualities of the VRH Hall effect.

Both the rejection algorithm and the modified dynamic algorithm produce systematic Hall
current when in the presence of an external magnetic field. In the Mott regime using the exact
algorithm, the simulated Hall conductivity follows same general function form as theoretically
predicted and experimentally tested results. The approximative algorithm’s Mott regime Hall
conductivity behaved mostly similarly to expectations, but with some deviations. In the ES
regime, the simulated Hall conductivity features large errors, making it difficult to draw precise
conclusions. Inconsistent results were found in the ES regime by testing the Hall conductivity
with different methods. These inconsistent results are interpreted as the simulated ES regime
Hall conductivity not following the same function form predicted by theoretical works and
found by experiments. This holds for both algorithms.

The main simulations were done using the standard lattice model. It was chosen for it’s
efficiency. It was seen that using the lattice model affects the results through the dependence on
localiation length. Values that should be constant had systematic dependencies on localization
length. A type of dynamic algorithm was written to include positional disorder. In this case
the constants had no dependence on localization length. No simulations were performed for the
Hall conductivity with positional disorder. An algorithm using exact incorporation of magnetic
fields with positional disorder would be too inefficient for simulations to be done within the
scope of this thesis.

The main result of this thesis is that the exact KMC algorithm found the Mott regime Hall
conductivity to be on the same function form as predicted by theoretical works, and as tested
by experimental results and percolation simulations. The same did not work for the ES regime.
When doing simulations one should always be vary of unexpected results. Is it caused by coding
errors? Is there something missing or wrong in the physics coded into the simulations? Or is it
new physics? The latter is unlikely to be the case. Probably there is something happening with
the Coulomb interaction inside triangles, that has not been properly adressed in the smulation
code.
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The future work possible is very clear. Write a rejection algorithm with exact incorporation
of magnetic fields and with positional disorder. The Mott regime case should be tested first.
Simulations could be sped up by making a paralellized version, using the scheme developed
by the authors of Ref. [30]. Use this algorithm to simulate the Hall conductivity for a range
of temperatures and localization lengths. A plot of simulated ln(σHT/Haγ) vs (TMott/T )1/3

should show a convergence to a universal curve. The value of γ will need to be determined,
likely it is γ = 1 or γ = 2. Then measure the slope of the universal curve and use it to calculate
the Hall effect parameter α. The value will likely lie in the range 0.30 to 0.50.

A different aspect of the VRH Hall effect could also be studied using KMC simulations. If rigid
walls were used on the y-boundaries instead of periodic conditions then it should be possible to
see an accumulation of charges on simulation boundaries. Measurements of charge density as
function of y-position could be used to calculate the transverse electric field usually associated
with the Hall effect.

The anomalous VRH Hall effect (AHE) is also something that has become of interest in recent
years. Theoretical predictions by Xiong-Jun Liu et al. in Ref. [54] predict the anomalous Hall
conductivity, σAHH to be σAHH ∝ σ1+α

x where 1.33 ≤ α ≤ 1.76. The sign of the AHE has also
been measured to change sign with temperature [13, 55]. Ref. [56] find the sign of the AHE
to change depending on the temperature at which the lattice is grown. Ref. [44] predicts the
AHE sign to depend on the derivative of the DOS at the Fermi energy.

It might be interesting to study the sign of the AHE numerically, using KMC simulations
similar to this project. The first difficulty in such a project would be the implementation of
ferromagnetic behavior into the lattice model. The Ising model could likely be used for this.
The Ising spin interaction would then act to change site potentials, affecting what jumps are
likely/unlikely to happen. The AHE is expected [54] to act similarly in both the Mott and
ES regime, so the Mott regime without Coulomb interaction but with Ising spin interaction
should be the first situation to study. The studies should focus on temperatures at which the
Ising sample is ferromagnetic, but it would also be interesting to study what happens to the
conductivities around the ferromagnetic to paramagnetic transition happening at the critical
temperature [57].

Such studies should study if different samples produce AHE with different sign, and if the
change in sign was associated with changes to the DOS derivative. This could then be compared
with the predictions of [44].
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APPENDIX A

Algorithm 1a with positional disorder
algorithm 1ar

Algorithm 1a is also extended to simulate VRH dynamics on samples with randomly positioned
sites. We call this algorithm 1ar. There are many similarities between algorithms 1a and 1ar.
This section only covers the differences.

A.1 Initialization process

Algorithm 1a uses the lattice structure to reuse properties such as neighbors, distances and
rates for all the sites. This is not possible for the random sample, and the properties for each
site has to be stored individually. This makes the initalization process more complicated. The
algorithm uses a cutoff jump distance, labeled maxJL.

1 // N i s the number o f s i t e s in the sample
2 for ( i =0; i<N; i++){ // Assign random p o s i t i o n s to s i t e s
3 randomNumber = RNG(0 ,1 ) // random number between 0 and 1
4 s i t e P o s i t i o n s [ i ] [ 0 ] = L ∗ randomNumber ; // x p o s i t i o n o f s i t e i
5 randomNumber = RNG(0 ,1 ) // random number between 0 and 1
6 s i t e P o s i t i o n s [ i ] [ 1 ] = L ∗ randomNumber ; // y p o s i t i o n o f s i t e i
7 }
8
9 for ( i =0; i<N; i++){

10 for ( j =0; j<N; j++){ // Ca l c u l a t e d i s tanceMatr i x and c a l c u l a t e number o f
ne i ghbor s f o r each s i t e

11 dx = s i t e P o s i t i o n s [ j ] [ 0 ] − s i t e P o s i t i o n s [ i ] [ 0 ] ;
12 dy = s i t e P o s i t i o n s [ j ] [ 1 ] − s i t e P o s i t i o n s [ i ] [ 1 ] ;
13
14 // Per iod ic boundary c o n d i t i o n s
15 i f ( dx > L/2) dx −= L ;
16 else i f ( dx < −L/2) dx += L ;
17
18 i f ( dy > L/2) dy −= L ;
19 else i f ( dy < −L/2) dy += L ;
20
21 di s tanceMatr ix [ i ] [ j ] = s q r t ( dx∗dx + dy∗dy ) ;
22 i f ( d i s tanceMatr ix [ i ] [ j ] < maxJL) nNeighbors [ i ]++;
23 }
24 GammaT[ i ] = new double [ nNeighbors [ i ] ] ;
25 f i n a l 2 S i t e [ i ] = new int [ nNeighbors [ i ] ] ;
26 dxNeighbor [ i ] = new double [ nNeighbors [ i ] ] ;

95



A. Algorithm 1a with positional disorder algorithm 1ar

27 dyNeighbor [ i ] = new double [ nNeighbors [ i ] ] ;
28
29 }
30
31 // Ca l c u l a t e a l l t r a n s i t i o n r a t e s
32 for ( i =0; i<N; i++){ // I n i t i a l s i t e
33 gamma = 0 . 0 ;
34 n = 0 ;
35 for ( j =0; j<N; j++){ Fina l s i t e
36 ove r l ap_i j = di s tanceMatr ix [ i ] [ j ] ;
37 i f ( ove r l ap_i j < maxJL) { // I f f i n a l s i t e i s a ne ighbor o f i n i t i a l s i t e
38 i f ( i != j ) {
39 // n r e p r e s e n t s what ne ighbor s i t e j i s to s i t e i .
40
41 f i n a l S i t e [ i ] [ n ] = j ;
42
43 dxNeighbor [ i ] [ n ] = s i t e P o s i t i o n s [ j ] [ 0 ] − s i t e P o s i t i o n s [ i ] [ 0 ] ;
44 dxNeighbor [ i ] [ n ] = s i t e P o s i t i o n s [ j ] [ 1 ] − s i t e P o s i t i o n s [ i ] [ 1 ] ;
45
46 i f ( dxNeighbor [ i ] [ n ] > L/2) dxNeighbor [ i ] [ n ] −= L ;
47 else i f ( dxNeighbor [ i ] [ n ] < −L/2) dxNeighbor [ i ] [ n ] += L ;
48
49 i f ( dyNeighbor [ i ] [ n ] > L/2) dyNeighbor [ i ] [ n ] −= L ;
50 else i f ( dyNeighbor [ i ] [ n ] < −L/2) dyNeighbor [ i ] [ n ] += L ;
51
52 gamma += exp(−A∗ ove r l ap_i j ) ;
53 GammaT[ i ] [ n ] = gamma;
54
55 n++;
56 }
57 else { // Rate o f go ing to i t s e l f i s zero
58 GammaT[ i ] [ n ] = gamma;
59 n++;
60 }
61 }
62 }
63 totalGammatoSitei [ i ] = gamma;
64 totalTotalGamma += gamma;
65 cumulativeTotalTotalGamma [ i ] = totalTotalGamma ;
66 }

A.2 Time of one Monte Carlo cycle

The derivation of the time of one Monte Carlo cycle 〈∆tMC〉 is the same as for the lattice model
up to Eq. 4.3. In the lattice model

∑
j 6=i ΓTij is independent of site i, because the lattice is

homogeneous. This is not the case in the random sample. Instead, the double sum in
∑
j 6=i ΓTij

is simply computed. The Monte Carlo time step becomes

〈∆tMC〉 =

ν∑
i

∑
j 6=i

ΓTij

−1

, (A.1)

where ν is the ratio of sites with electrons able to move. The sum
∑
i

∑
j 6=i ΓTij is equivalent to

"totalTotalGamma" in the code snippet in the initialization process.
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A.3. Performing MC jumps

A.3 Performing MC jumps

Algorithm 1ar performes jumps on a random lattice in a very similar manner to how algorithm
1a does it on the lattice model. The only difference is in finding the choice of initial and final
site.

The algorithm first has to find an initial site where a jump can start. The lattice model picks
this uniformly as all the sites have equal transition rates. The random sample algorithm instead
uses the binary search method on the sum of transition rates for each site. If the site found is
empty then the binary search method is applied again until an occupied site is found.

The sum of transition rates from site i is
∑
j 6=i ΓTij , and the sum of all the transition rates is∑

i

∑
j 6=i ΓTij . A uniformly distributed random number r ∈ (0, 1) is generated. This random

number is then compared with the sum of transition rates to find the appropriate initial site.
For example, if r

∑
i

∑
j 6=i ΓTij lies between the sum of transition rates for sites i = 2 and i = 3,

as
∑
j 6=2 ΓT2j < r

∑
i

∑
j 6=i ΓTij <

∑
j 6=3 ΓT3j , then site number 3 is tested to be the initial site. If

it is occupied then it will be chosen, if it is empty the binary search method is applied again.

The next step is to find a final site j the jump from i can hop to. This is done in the same
manner as algorithm 1a. The only difference is that the transition rate from site i, and the
number of neighbors close to i, has to be used. Else everything is the same.

Now that the transition i→ j has been found, it has to be tested. This is done in the same
exact way as algorithm 1a.
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APPENDIX B

Additional results

In this appendix we present some additional results that were not in the main text.

Figure B.1: Accumulated charge in the x-direction over 10 samples using localization length
a = 2/6, T = 0.06 and Ex = 0.006. The graph shows linear tendency, but the small localization
length causes large differences between samples. This leads to larger error in results when the
localization lenght is small.

Table B.2: Calculated αMott for a = 2/2 using different methods with variable magnetic field.
The presented values are calcualted from the temperature constants in table B.3.

H µH and σx σH and σx σHT ∝ (σxT )1+α

0.1 0.39± 0.02 0.39± 0.04 0.39± 0.02
0.2 0.34± 0.01 0.34± 0.03 0.34± 0.01
0.3 0.33± 0.02 0.34± 0.03 0.34± 0.02
0.4 0.35± 0.02 0.35± 0.03 0.36± 0.01
0.5 0.31± 0.01 0.32± 0.02 0.31± 0.01

99
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(a) (b)

Figure B.2: The dependence of jx (a) and σx (b) on electric field E simulated by algorithm
2. These results are found to be in exact accordance with the results of algorithm 1a for the
simulated points, found in Fig. 5.2. This supports the claim that algorithm 1a and algorithm
2 produce exactly the same results.

Table B.1: Temperature constants measured from simulations using various algorithms. H = 0.2
was used for algorithm 2 and H = 0.4 was used for algorithm 1b. Subscript H means the value
was measured from simulated σH . Subscript µH means the value was measured from simulated
µH . M - Mott regime, ES - ES regime.

a Algorithm 1b
T

1/3
M T

1/3
M,H αMottT

1/3
M,µH

T
1/2
ES T

1/2
ES,H αEST

1/2
ES,µH

2/2 3.03± 0.03 3.46± 0.03 0.25± 0.01 2.44± 0.02 2.96± 0.05 0.70± 0.02
2/3 3.66± 0.03 4.18± 0.07 0.50± 0.06 2.68± 0.03 3.33± 0.07 1.11± 0.07
2/4 4.35± 0.04 5.08± 0.09 0.9± 0.1 2.96± 0.04 3.33± 0.05 0.6± 0.3
2/5 5.02± 0.07 5.3± 0.2 0.7± 0.3 3.13± 0.07 2.7± 0.2 0.2± 0.2
2/6 5.7± 0.1 4.9± 0.3 −0.6± 0.5 - - -

a Algorithm 2
T

1/3
M T

1/3
M,H αMottT

1/3
M,µH

T
1/2
ES T

1/2
ES,H αEST

1/2
ES,µH

2/2 3.49± 0.02 4.63± 0.06 1.16± 0.06 2.31± 0.01 4.0± 0.2 1.8± 0.2
2/3 4.28± 0.03 5.9± 0.3 1.8± 0.3 2.50± 0.03 3.4± 0.2 1.3± 0.2
2/4 4.80± 0.07 6.7± 0.4 2.1± 0.4 2.55± 0.01 5± 1 2± 1

Table B.3: Dependence of temperature constants on applied magnetic field using a = 2/2. The
values are used to calculate the αMott values in table B.2.

H T
1/3
M T

1/3
M,H αT

1/3
M,µH

0.1 3.53± 0.03 4.91± 0.04 1.38± 0.06
0.2 3.44± 0.02 4.63± 0.06 1.17± 0.05
0.3 3.37± 0.02 4.50± 0.06 1.12± 0.06
0.4 3.28± 0.02 4.42± 0.06 1.14± 0.05
0.5 3.19± 0.01 4.21± 0.04 0.98± 0.03
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(a) (b)

(c) (d)

Figure B.3: Plotting regime σx as the wrong regime VHR law. Mott regime σx as ES’s law is
plotted in (a) and (c), ES regime σx as Mott’s law is plotted in (b) and (d). Top row shows
algorithm 2 results and bottom row shows algorithm 1b results. No data collapse is possible
for these relations. This is used to support the claim of Mott regime conductivity following
Mott’s law, and ES regime conductivity following ES’s law.

Table B.4: Calculated αMott for a = 2/3 using different methods with variable magnetic field.
The presented values are calcualted from the temperature constants in table B.5.

H µH and σx σH and σx σHT ∝ (σxT )1+α

0.1 0.50± 0.14 0.44± 0.09 0.51± 0.13
0.2 0.44± 0.07 0.42± 0.08 0.45± 0.05
0.3 0.43± 0.07 0.42± 0.04 0.40± 0.03
0.4 0.49± 0.03 0.48± 0.05 0.48± 0.02
0.5 0.40± 0.04 0.40± 0.07 0.44± 0.02
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(a) (b)

Figure B.4: ES regime attempted data collapse using the relation between the longitudinal and
Hall conductivity (see Eq. 5.6). The γ parameters are the ones found from RH data collapse.
As seen, the data does not collapse for these parameters. This suggests the function form used
to derive Eq. 5.6 does not hold for the ES regime conductivity.

Table B.5: Dependence of temperature constants on applied magnetic field using a = 2/3. The
values are used to calculate the αMott values in table B.4.

H T
1/3
M T

1/3
M,H αT

1/3
M,µH

0.1 4.23± 0.04 6.09± 0.3 2.1± 0.6
0.2 4.25± 0.03 6.04± 0.3 1.87± 0.3
0.3 4.10± 0.03 5.81± 0.3 1.75± 0.3
0.4 4.11± 0.03 6.08± 0.11 2.01± 0.14
0.5 4.08± 0.04 5.70± 0.18 1.63± 0.15

Table B.6: Slope αT 1/3
M,µH

measured from µH when using σx at H = 0 and σH at H = 0.2 in
algorithm 2. The values are used to calculate the αMott values in tables B.7 and B.8.

H a = 2/2 a = 2/3
0.1 1.24± 0.06 2.08± 0.7
0.2 1.04± 0.05 1.72± 0.3
0.3 0.85± 0.05 1.40± 0.2
0.4 0.77± 0.04 1.91± 0.11
0.5 0.58± 0.06 1.46± 0.10
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(a) (b)

(c) (d)

Figure B.5: Log-log plot of ε3 with temperature T for algorithms 1a and 1b for Mott and ES
regime. The figures show linear behavior at low temperature, the slope of which should give
the exponent. Measured exponents are presented in table 5.4.

Table B.7: Calculated αMott for a = 2/2 using different methods with variable magnetic field.
The presented values are calculated using σx temperature constant T 1/3

M = 3.66±0.03 at H = 0.
The rest of the values are taken from tables B.3 and B.6.

H µH and σx σH and σx σHT ∝ (σxT )1+α

0.1 0.33± 0.02 0.34± 0.04 0.34± 0.02
0.2 0.28± 0.01 0.26± 0.04 0.28± 0.02
0.3 0.23± 0.01 0.23± 0.04 0.23± 0.02
0.4 0.21± 0.01 0.21± 0.04 0.21± 0.01
0.5 0.16± 0.01 0.15± 0.04 0.17± 0.02

103
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Figure B.6: Demonstration of non-Ohmic behavior for the two (maybe three) lowest simulated
temperatures. All the data is generated using Ex = 0.10. The lowest three simulated
temperatures are 0.06, 0.08 and 0.10. Plotting like this was used to find the set of optimal
electric fields possible to use to simulate Ohmic Hall conductivity with algorithm 1b.

Table B.8: Calculated αMott for a = 2/3 using different methods with variable magnetic field.
The presented values are calculated using σx temperature constant T 1/3

M = 4.29±0.03 at H = 0.
The rest of the values are taken from tables B.5 and B.6.

H µH and σx σH and σx σHT ∝ (σxT )1+α

0.1 0.48± 0.16 0.42± 0.08 0.49± 0.14
0.2 0.40± 0.08 0.41± 0.08 0.43± 0.06
0.3 0.33± 0.05 0.35± 0.08 0.36± 0.04
0.4 0.44± 0.02 0.42± 0.05 0.43± 0.02
0.5 0.34± 0.02 0.33± 0.06 0.37± 0.02
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Figure B.7: Temperature dependence of RH with a = 2/4 simulated using algorithm 2. The
figure illustrates the difficulty in identifying what is linear behavior, what data points should
and should not be included in measurement and the subsequent large error in results. The
black filled line has slope= 3.49± 0.13, the dotted brown line has slope= 4.20± 0.2and the
dashed red line has slope= 4.4± 0.3.

(a) (b)

Figure B.8: Simulated Mott regime Hall conductivity σH plotted as standard Mott’s law
without any ∝ aγ dependence using algorithm 2 (a) and algorithm 1b (b). The figure shows
vertical gaps between curves with different localization lengths. No data collapse is possible in
this case.
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(a) (b)

Figure B.9: Regime generated σH plotted using switched a dependency in T0. (a) is Mott data
plotted with TES and (b) shows ES data plotted with TMott. No data collapse is possible for
these relations. This shows that Mott regime σH does not follow ES’s law, and that ES regime
σH does not follow Mott’s law.

(a) (b)

Figure B.10: ES regime Hall mobility µH plotted using values of γ that was found to give the
Hall conductvity σH the best data collapse. The result is no data collapse. This shows an
inconsistency in values found for γ in the ES regime.
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APPENDIX C

Comparison of algorithms 1a and 1b

The left column of Fig. C.1 shows the Mott’s law plot for algorithms 1a and 1b for localization
lengths a ∈ (2/2, 2/3, 2/4, 2/6). The right column of Fig. C.1 shows the difference between the
linear regression, and the data. The linear regression uses measurements from the five smallest
simulated temperatures (T ∈ [0.05− 0.12]). For the largest used localization length a = 2/2,
we see that both the algorithms increase above their fitted lines before decreasing a little.
Algorithm 1b starts to decrease at a higher temperature than algorithm 1a does. Looking
at Fig. C.1d, algorithm 1a only has a small "bump" of one data point above the fitted line
whereas algorithm 1b has many. In Fig. C.1d algorithm 1b data points deviate first below
then above the linear fit line. The behavior of going first below and then above (or opposite) is
an indication of systematic behavior not picked up by Mott’s law. If σx follows Mott’s law
exactly then there should only be random fluctuations in the figures in the right column of Fig.
C.1. The extra systematic behavior to be present for both algorihms for large a, but dissapears
for a / 2/3 in algorithm 1a. It is also more prominent for algorithm 1b.

The effect of introducing three-site jumps in algorithm 1b seems to change the behavior of σx
to be less like Mott’s law. Still, Mott’s law is a very good approximation to the simulated σx.
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C. Comparison of algorithms 1a and 1b

(a) (b)

(c) (d)

Figure C.1: Comparison between algorithms 1a and 1b when fitting simulated σx to Mott’s
law temperature dependence. Left column graphs show Mott’s law plots. Right column graphs
show difference between line fitted to the 5 lowest temperature data points.
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(e) (f)

(g) (h)

Figure C.1: Comparison between algorithms 1a and 1b when fitting simulated σx to Mott’s
law temperature dependence. Left column graphs show Mott’s law plots. Right column graphs
show difference between line fitted to the 5 lowest temperature data points.
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APPENDIX D

Impact of not dealing with negative
rates in algorithm 1b

In the initialization step of algorithm 1b we set Γ(n)T
ikj = 0 if it instead would be negative.

When this is considered σH shows a close to linear dependence on H, see Fig. D.1a. If it is
not considered, then the dependence is still linear but with a clear discontinuity at H ≈ 0.5.
This is seen in Fig. D.1b where linear regression has been applied to data for only large or
small H. These fitted lines intersect between H = 0.48 and H = 0.50. When H = 0.5, jumps
with area A = 2 have either Γ(0)T

ikj = 0 or Γ(1)T
ikj = 0. Increasing H more, one of the rates

becomes negative. Since the discontinuity happens at H = 0.5, the discontinuous behavior
can be attributed as jumps with Aikj = 2 disturbing the system through negative rates. It
can be interpreted as jumps with Aikj = 2 being the longest jump that is important to the
simulations of σy. Jumps with larger areas, for example Aikj = 10 sets ΓTikj = 0 when H > 0.2.
However for such jumps ΓTikj ≈ 0 even when H < 0.2, and impact of setting them to zero does
not have meaningful impact on the simulated dynamics. This is seen as there is no measurable
discontinuity or irregularity in Fig. D.1b at H = 0.2. Therefore H = 0.5 sets an upper bound
for simulations using algorithm 1b.

(a) (b)

Figure D.1: (a) Hall conductivity dependence on H when nothing is done to stop negative
rates from disturbing simulations. (b) Adjustment Γ(n)T

ikj = 0 used if Γ(n)T
ikj < 0 otherwise.
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APPENDIX E

Longitudinal conductivity depenence
on H

The effect on σx when applying a magnetic field is shown in Fig. E.1 in appendix A. As seen,
there is no visible effect for small H but σx is increasing with H for large fields in algorithm 2.
Experimental results show that σx decreases with H. The explanation to the experimental
work is magnetoresistance, the magnetic field squeezes the valence electron wavefunction ψ
such as to decrease wavefunction overlap between neighboring sites and thus decreasing the
conductivity. Magnetic deformations of ψ is not something considered in the development of
Eqs. 3.1 and 3.2, and not something considered in these simulations.

The behavior from the two algorithms is clearly different. Algorithm 1b shows close to constant
σx with variations in H while algorithm 2 shows a steady increase. The increase simulated by
algorithm 2 is explained by the phonon probabilities in Γikj being larger when moving against
E. Therefore

∑
k Γikj is on average larger when moving against the field than with. And hence

the total rate of moving against E increases with H, increasing σx. Perhaps this effect is not
felt by algorithm 1b as it only considers one neighbor at a time, while algorithm 2 considers all
the important intermediate sites together.

(a) (b)

Figure E.1: σx dependence on H for algorithm 1b (a) and alorithm 2 (b). Algorithm 1b finds
no σx to be seemingly completely independent of H. Algorithm 2 finds a stable σx for small H
but increasing for large H.
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