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Chapter 1

Introduction

The everyday world is one of macroscopic variables. We talk about what the inner
temperature of a perfect steak should be, the minimum pressure of a diving tank at
which we should return to the surface, and how to optimally furnish a new apart-
ment according to the available floor area. These macroscopic variables describe
the gross state of the world; a coarse-grained interpretation of the universe. We
never discuss what the exact configuration (position, velocity, interactions, etc.)
of molecules that make up perfectly cooked steak should be. This exact configu-
ration is called the microstate of the perfect steak. If we had a specific microstate
that corresponds to a perfect steak, and then swapped around a few molecules we
would get another, different, microstate. However, these two microstates would
most certainly taste the same. The fact that we would not be able to distinguish
these microstates by taste, is the reason why we care more about macroscopic
states in an everyday description of the world. Macroscopic variables are those
we can reliably measure and use to distinguish different systems from each other.

The macroscopic laws of thermodynamics were largely developed during the
18th and 19th centuries. These laws describe how macroscopic variables like
temperature, pressure, and volume behave with respect to each other. As the foun-
dation of thermodynamics, lie the four laws of thermodynamics, which describe
how heat, energy, and entropy behave under various circumstances. Many famous
statements, which even non-physicists are familiar with, come from these laws:
"energy can never be created nor destroyed, only change form", "it’s impossible
to cool a system to absolute zero", and "perpetual motion machines can not be

created’".



However, these laws were first postulated at a time where we did not know
that the world was built up of elementary particles like atoms and electrons. They
were formulated using macroscopic variables, which are just coarse-graining of
the underlying microscopic variables. With the rise of statistical and quantum
mechanics and a massive improvement in technological capabilities, we began to
be able to detect and measure microstates directly. The natural question that arose
was; How do we explain the empirically observed laws of thermodynamics, from
the underlying microscopic behavior? In some cases, this was not too difficult. For
example, the first law of thermodynamics, the conservation of energy, is deeply
connected to time translation symmetry via Noether’s theorem. In other cases, it
was not so straightforward. The second law implies an arrow of time in physics,
but how can the reversible microscopic dynamics of particles lead to irreversible
macroscopic phenomena? One particular paradox which this thesis focuses on is
Maxwell’s demon. The resolution of this paradox revealed a deep connection be-
tween information and the laws of physics. This has had a large effect on physics,
to such a degree that some researchers consider information to be the most fun-
damental constituent of the universe, rather than quarks or strings. Much of the
work of this thesis is based on the relationship between information and thermo-
dynamics, and how to optimize these information processing systems. We will
discuss ideas from information theory, such as logical reversibility, measurement
and erasure, what the equivalent physical processes of these somewhat abstract
concepts are, and how they relate to the macroscopic laws of thermodynamics.

List of papers

This thesis is an article-based thesis, and as such the main text serves as an in-
troduction to the minimal knowledge needed to read and understand the articles,
which can be found at the very end of the thesis. What follows is a summary of
all papers associated with this thesis.

1. Cooling by heating: Restoration of the third law of thermodynamics 2016
V.B. Sg¢rdal, J. Bergli, Y M. Galperin Physical Review E 93 (3), 032102
In this paper, we perform a detailed analysis of a quantum refrigerator powered by
bosons. The refrigerator model appeared to violate the third law of thermodynam-
ics, by allowing cooling to absolute zero in a finite amount of time. We show that
the cooling power is exponentially quenched when the thermal energy approach
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Chapter 1. Introduction

the scale of the energy level spacing.

2. Influence of measurement error on Maxwell’s demon 2017
V.B. Sprdal, J. Bergli, Y.M. Galperin Physical Review E 95 (6), 062129
We show that errors in a symmetric binary measurement result in an error entropy
S, and that for optimal operation of a Szilard engine this error entropy dominates
the total entropy production, even for very small measurement errors.

3. Quantum particle in a split box: Excitations to the ground state 2019
V.B. Sprdal, J. Bergli Physical Review A 99 (2), 022121
We introduce a method to achieve equal probability to find a quantum particle on
either side of a barrier when it is inserted into a single-particle-box. By exciting
only the first two energy levels, an asymmetric Szilard engine can reach the same
efficiency as a symmetric one, without the need for information compression dur-
ing erasure.

4. Deep reinforcement learning for robust quantum optimization 2019
V.B. S¢rdal, J. Bergli Submitted to Physical Review A
We use deep reinforcement learning (DQL and DDPGQG), as well as traditional op-
timization techniques, to create robust protocols for the insertion of a potential
barrier in an asymmetric quantum Szilard engine.

Structure of thesis

The structure of the thesis is as follows:

* Chapter 2 introduces the historical background to much of the work pre-
sented in the papers and serves as a motivation for the rest of the thesis.
We introduce the laws of thermodynamics, and two systems that appeared
to violate them. The second example, Maxwell’s demon, is the motivating
background for papers 2, 3 and 4.

» Chapter 3 covers basic concepts from statistical mechanics and information
theory, which are needed as a foundation for all articles.

» Chapter 4 is an extension of Chapter 3, where we cover the quantum me-
chanical analogue for principles introduced in the previous chapter. This
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chapter is especially important for papers 3 and 4, since those deal with
quantum mechanical systems.

Chapter 5 serves as an introduction to deep reinforcement learning, an ex-
citing technique from the field of machine learning, which was employed
for article number 4.

Chapter 6 is a summary of unpublished work done in collaboration with the
small biosystems lab at the University of Barcelona, where we study the
energetics and entropy fluctuations of biomolecular motors.

In the appendix, we include detailed calculations of an extension to paper 2.
The calculations of all other papers are more or less contained in the papers
themselves.

Finally, all the papers are included in the last chapter.



Chapter 2

From steam machines to transistors

This chapter serves as a historical and philosophical introduction to controversies
related to the second and third law of thermodynamics. In paper 1 we resolve
an apparent violation of the third law of thermodynamics, and therefore we give
a short brush up on its formulation and history in chapter 2.1. The three other
articles in this thesis deal with questions related to another seeming violation, this
time a violation of the second law. Hence, the larger part of this chapter is in-
tended to introduce this apparent violation and discuss its three main proposed
resolutions.

The laws of thermodynamics are among the most important laws in physics.
Statistical mechanics is an essential tool in all fields of physics, and it has been
adopted by many other sciences. Underlying the formulation of statistical me-
chanics is thermodynamics, the foundation of which is its main four laws. The
zeroth law is quite straightforward; If two systems are in thermal equilibrium, call
them A and B, and a third system, C, is in thermal equilibrium with B, A and C
are also in equilibrium with each other. The first law is the conservation of energy;
Any flow of energy through a system, in the form of heat or work, is compensated
by a change its internal energy, such that the total change in energy of the universe
is zero. The second and third laws are less straightforward, and will be discussed
shortly.



2.1. Cooling to absolute zero

2.1 Cooling to absolute zero

The third law of thermodynamics has its roots in the heat theorem, which was put
forth by Walther Nernst in 1906 [1]. He stated that "the entropy change in a chem-
ical reaction tends to vanish as the temperature approaches absolute zero.", and
his work was expanded upon by Einstein [2] and Planck [3]. Einstein’s statement
of the third law is that the entropy of any substance tends to a constant value as
the temperature falls to absolute zero

lim S(7, X) = Sp. 2.1)

Here X is any parameter of the system that its entropy may depend on. The third
law of thermodynamics was formulated before quantum mechanics, yet it is really
quantum mechanical in nature. A key property of quantum systems is that they
have gapped energy spectrums; the possible energy-eigenstates are discretized
and energies between these discrete states are unattainable. At zero temperature,
the only energy state which the system can be in is its lowest energy state; the
ground state. If this ground state has a degeneracy g, the indeterminacy of the
exact eigenstate is g, and therefore the entropy is Sp = kpIn g. Planck’s state-
ment is essentially the same, only he considered a perfect crystal, which has a
non-degenerate ground state, and therefore the constant will be Sy = kgln1 = 0.

A consequence of the third law of the thermodynamics is the unattainability
principle; it is impossible to cool any system to absolute zero in finite time. This
principle has been proved for many example systems, but a general proof does
not yet exist. Without proof, the validity of the principle has to be checked on a
case-to-case basis. One case that seemed to show a violation of the unattainability
principle, arose in an article presenting a boson powered refrigerator [4]. The
cooling power of the refrigerator was shown to scale linearly with temperature,
which implies that absolute zero temperature can be reached in finite time. In
paper 1, we resolve this apparent violation of the unattainability principle, by
considering a fully quantum mechanical description of the system.

2.2 A violation of the second law?

The Industrial Revolution (~ 1750 — 1850) was a period of monumental change in
the United States and Europe. Automation of labor by machine tools, development
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Chapter 2. From steam machines to transistors
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Figure 2.1: Graph showing the exponential increase in the efficiency of steam
engines from 1700 to 1950. Data gathered by Dr. Grant Walker, University of
Calgary.

of highly efficient factories, and centralization of production lines, dramatically
changed society. Factories created new jobs and made old jobs obsolete. Farmers
migrated in large numbers to the urban centers in search of work. One of the
main driving forces of this revolution was the increased use of steam machines.
Spurred on by the importance of these machines on the new society, science was
also undergoing a sort of revolution, or more appropriately; a paradigm shift.

The first steam machines were primitive and inefficient, and to increase their
efficiency, one first had to understand their driving force. And of course, steam
machines are powered by the flow of heat. In the 18th century, the early days
of the revolution, heat was believed to be a special kind of fluid. It was called
caloric, and was a self-repellent weightless gas, that flowed from warmer to colder
bodies [5]. However, during the early 19th century experiments were performed
that disproved the caloric theory, and new research by the fathers of thermody-
namics (Carnot, Joule, Clausius, Thomson, and others) discovered that heat was
just another form of energy. They realized that motion and heat are mutually in-
terchangeable; compressing a gas requires a certain amount of external energy
(work), the compression heats up the gas so the work performed can be regained
by allowing the gas to expand back to its original volume. How much of the work
performed that can be regained by the expansion of the hot gas depends on how
the exact design of the heat engine, and many new designs were introduced due to

7



2.2. Aviolation of the second law?

the increased understanding of heat, like the Carnot-, Otto-, and Stirling engine.
The exponential increase in the efficiency of steam engines from 1750 to 1950,
can be seen in Fig. 2.1. Similarly to Moore’s law, stating that the number of tran-
sistors per square inch on integrated circuits doubles every year, the efficiency of
steam machines doubled every ~ 60 years over a period of 200 years.

A hot gas and a cold gas both consists of a collection of particles, the only
difference is that the particles in the hot gas have a higher average kinetic energy
than the ones in the cold gas. This connection between heat and the motion of
particles gave rise to the new field of statistical mechanics, which can be consid-
ered the successor of thermodynamics. In statistical mechanics one studies how a
systems macroscopic observables, like temperature and pressure of a gas, can be
described as an ensemble average of its constituent microscopic properties. Pe-
ter G. Tait was a prominent scientist writing a book on statistical mechanics, and
in 1867 he wrote a letter to James C. Maxwell, asking for hints on which topics
to discuss in his book [6]. Maxwell’s answer was the start of numerous debates
and theoretical work on the relationship between physics and information theory,
lasting 150 years until the present day.

2.2.1 Maxwell’s demon

Maxwell’s answer to Tait’s letter was:

Any contribution I could make to that study is in the way of al-
tering the point of view here and there for clearness or variety, and
picking holes here and there to ensure strength and stability. (...) To
pick a hole - say in the 2nd law of thermodynamics, that if two things
are in contact the hotter cannot take heat from the colder without
external agency. Now let A and B be two vessels (...)

The thought-experiment that Maxwell went on to describe was the following:
Imagine a box with two compartments, A and B, and a hatch between them as
shown in Figure 1. The box contains an ideal gas at equilibrium temperature, and
the temperature is the same in either compartment 7'y = T’z. The velocities of the
particles (indicated by the length of the arrows) in a gas at equilibrium are not all
the same, but rather follows a distribution that Maxwell knew very well, since his
name is in it; the Maxwell-Boltzmann velocity distribution, which is illustrated
at the top of Fig. 2.2. Some particles move faster than others, and therefore have



Chapter 2. From steam machines to transistors

Fro ba,bl'lity

> Velocity

Slow L«F:If\_/
1 G

A B
g { mt?m g I f
AR - I R
Nl e LI A
Ta < Tg

=
&l

Figure 2.2: In the top of this figure we show a sketch of the Maxwell-Boltzmann
distribution of an ideal gas. Below this, we illustrate the two compartments, A
and B, and the demon lowering and raising a trapdoor to select which particles are

allowed to pass between the chambers.



2.2. Aviolation of the second law?

higher kinetic energy. For an ideal gas, temperature is just a thermodynamic av-
erage of the kinetic energy of all the particles. The task of the demon is to open
the hatch and let "fast" particles (faster than the current average speed in the com-
partment) pass from compartment A to compartment B, while closing it to block
the "slow" particles. Similarly, it opens and closes the hatch for slow and fast
particles, respectively, moving from B to A. As the demon dutifully perform his
task, over time the fast particles will gather in compartment B and the slow ones
in compartment A. Since temperature is as previously mentioned related to the
kinetic energy of the particles, what we (the demon to be precise) have achieved
is to create a temperature difference between the compartments, where Tz > T'4.
Assuming that the hatch is well oiled, so that the demon can move it without ex-
pending any energy, we have just violated the second law of thermodynamics.
One of its many formulations is that heat can never flow from regions of low to
high temperature without expending energy, which is exactly what the demon has
just accomplished. If we now remove the hatch and put in a small turbine, high
energy particles moving back from B to A would rotate the turbine and generate
energy. After reaching equilibrium, where 7'y = T, the state of the two com-
partments have returned to the initial state. The cycle is therefore a reversible
process; a process that transforms a state back to itself without expending any
energy. The demon can now go back to work and by continuously repeating the
whole procedure we create infinite energy from nothing; a most severe violation
of energy-conservation.

The thought-experiment was designed by Maxwell "fo show that the 2nd law
of thermodynamics has only a statistical certainty” [?]. If particle statistics could
be influenced by an external agent (the demon) then the second law would not
hold. Maxwell emphasized that the demon needed supernatural powers of obser-
vation and pinpoint precision. In his opinion, the operation was only a matter of
scale, and we could in principle violate the second law, "only we can’t, not being
clever enough'.

2.2.2 Szilard engine

In 1929 Léo Szilard introduced a simplified version of Maxwell’s demon, which
is now known as the Szilard engine [7]. Maxwell’s original thought-experiment
consisted of a many-particle gas, but the same violation of the second law can
be illustrated with a much simpler single-particle gas. The Szilard engine has
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Chapter 2. From steam machines to transistors

b7 cl
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Figure 2.3: Schematic illustration of the Szilard engine protocol. When inserting
a barrier in the center of a single-particle-box, the particle will either be confined
to the right or to the left side with probability 1/2 each. After measuring which
side the particle is found, we let the wall expand isothermally into the empty
compartment work. During this isothermal expansion, work can be extracted from
the gas pressure. After the wall has been entirely pushed to one side, we end up
in a state identical to the initial one.

replaced Maxwell’s demon as the standard second law violating information-
thermodynamic thought-experiment, and has been the basis of most the theoretical
work that followed Szilard, including this thesis.

Imagine a one-dimensional box, containing a single particle as shown in Fig. 2.3(a).
Since the walls of the box are elastic, the particle does not lose any energy in col-
lisions. The box is at equilibrium with a surrounding environment with a temper-
ature 7', and infinite heat-capacity. A barrier is inserted in the center of the box,
such that the probability is 1/2 to find the particle on either side of it, as shown in
Fig. 2.3(b1/b2). We now perform a measurement to determine which side of the
box the particle is occupying. If it’s found on the left side, we let single-particle
gas expand isothermally by allowing the barrier to move into the empty compart-
ment. When the particle collides with the barrier, energy is transferred from the
particle to the barrier. The energy of the particle is replenished in the form of
heat from the environment, as shown in Fig. 2.3(c1/c2). Once the barrier has been
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2.3. Three approaches

moved entirely to one side of the box, such that the particle occupies the full vol-
ume again, we remove it. The final state of the box, Fig. 2.3(d), is now identical
to the initial state: the particle occupies the full volume, and has a kinetic en-
ergy given by the temperature of the heat bath. Thus the process can be repeated.
During the isothermal expansion, work is performed by the particle while moving
the barrier (which could be extracted by e.g. attaching a pulley and weight to the
barrier). The total work performed during the isothermal expansion is given by

1%

T

Woap = / Rl 1 — kpTlog2. 2.2)
V/2

and this work is gained by a full conversion from heat energy to work. Conserva-
tion of energy shows that, since the initial and final state is identical with the same
energy, W = —(). Similarly to Maxwell’s demon, the Szilard engine extracts
work from a single heat-bath with uniform temperature, in violation of the second
law of thermodynamics. If the heat capacity of the environment was not infinite,
the work extracted per cycle would be smaller than k57 log 2 since the final state
would have lower energy than the initial one. Nevertheless, by continually repeat-
ing the process the heat bath would eventually be completely drained of energy,
all of which would be converted to useful work. Szilard emphasized the necessity
of performing a measurement for the engine to work. He connected the apparent
violation of the second law with the state of the demon’s knowledge, and believed
that the resolution to the paradox was due to some hidden entropic cost associated
with the measurement.

2.3 Three approaches

There are three main approaches to explain the apparent violation of the second
law that Maxwell’s demon and the Szilard engine implies.

1. The first approach focuses on the role of fluctuations, which are usually
ignored in the idealized thought-experiments but will always be present in
real systems.

2. The second approach follows Szilard’s own belief and focuses on the en-
tropic cost of performing measurements.

3. The third approach focuses on the fact that the demon has to store the infor-
mation it obtains about the system. Unless this information is deleted, the

12



Chapter 2. From steam machines to transistors

Figure 2.4: Illustration of Smoluchowski’s spring-loaded trapdoor.

final state of the universe will not be identical to the initial state. The third
approach focuses on the cost of deleting this memory

In the following section, we will go through each of these approaches.

2.3.1 Fluctuations

The first approach was to consider the effect of fluctuations. The first detailed
analysis of the fluctuations in a Maxwell’s demon-like system was done by Smolu-
chowski [8] in 1912. He removed the presence of an external observer, by replac-
ing the demon with a trapdoor and a spring, as shown in Fig. 2.4. When relaxed,
the spring keeps the trapdoor in the closed positing. The spring-loaded trapdoor
allows particles to move from the right side into the left side, but blocks any par-
ticle moving in the opposite direction. After some period of time, particles will
gather on the left side, building up a pressure difference between the two parti-
tions. This pressure difference could be used to perform work, i.e. by replacing
the trapdoor with a ratchet, lifting up a weight. The ultimate source of the work
produced is the thermal energy of the gas, therefore this process seems to vio-
late the second law of thermodynamics, just like the original Maxwell’s demon.
However, detailed analysis of the Smoluchowski trapdoor and similar apparatuses
[8, 9, 10], all show that there is no true violation of the second law. Initially,
the spring is at rest, with the trapdoor in the closed position. Particles hitting the
trapdoor from the left side, bounces back and does not transfer any energy into
the spring. Particles hitting the trapdoor from the right, push it open, and moves
into the left partition. Since the spring is compressed when the trapdoor opens, it
has to have a finite spring-constant. Therefore the spring itself constitutes a ther-
modynamic system, with potential and kinetic energy. Every time a particle hits

13



2.3. Three approaches

the trap door, energy is transferred into the spring, and it starts to oscillate about
an equilibrium position. As Smoluchowski pointed out, if the impact of a single
particle is enough to open the trapdoor, the trapdoor and spring have to be very
light. This implies that after a few impacts with left-moving particles, the trapdoor
would quickly start to randomly move between its opened and closed position, al-
lowing particles on its left side move into the right side. Therefore there would
not be a consistent buildup of particles on either side, and a pressure difference to
extract work from would not develop.

On short time-scales, there could be small pressure differences between the
partitions, which corresponds to a small decrease in entropy. However one of the
key points of the second law, which is often forgotten, is that it is statistical in
nature [11, 12]. This was pointed out by Maxwell already in 1878;

The truth of the second law is therefore a statistical, not a mathe-
matical, truth, for it depends on the fact that the bodies we deal with
consists of millions of molecules, and that we never can get a hold of
a single molecule.[6]

A proper definition of the second law of thermodynamics is that entropy can not
spontaneously decrease when averaged over a suitable time-scale. What consti-
tutes a suitable time-scale depends on the relaxation time of the system in question
and is difficult to define in a general way. A quantitative description of the con-
nection between fluctuations and the second law was given in 1993, when Evans
et. al introduced the fluctuation theorem [13]. The theorem is actually a group of
closely connected theorems [14, 15, 16], one of which relates the probability of
observing a time-averaged entropy production of magnitude AS, to the probabil-
ity of that it takes the opposite value —AS

PAS) _ aspms > 1 (2.3)

P(—AS)
Since the right side is always positive and larger than 1, the probability to observe
fluctuations that temporarily "violate" the second law is always less or equal to
the ones that obey it. Moreover, the relative probability of producing and consum-
ing entropy increases exponentially with the amount of entropy change. Since
entropy is extensive, the fluctuation theorem also shows that the probability to ob-
serve negative entropy fluctuations goes to zero for macroscopic systems.

14



Chapter 2. From steam machines to transistors

The Smoluchowski trapdoor and similar apparatuses show that closed systems
obeying purely Hamiltonian dynamics can not violate the second law of thermo-
dynamics. Nevertheless, these thought-experiments take away the essential part
of what constitutes Maxwell’s demon: an external agent, collecting information
about, and interacting with, the system. Smoluchowski himself allowed for the
possibility of a modification of the second law, taking into account external agents:

As far as we know today, there is no automatic, permanently ef-
fective perpetual motion machine, in spite of the molecular fluctua-
tions, but such a device might, perhaps, function regularly if it were
appropriately operated by intelligent beings. [8]

2.3.2 Measurement

AVAAVER B
\/

T, T

© ©® o 0 ©

Figure 2.5: The bistable potential well of a single-domain ferromagnet, shown
with the modulation of the potential under the application of a transverse magnetic
field A . lllustration adapted from [17].

If one accepts the presence of the demon, and believe that the second law can
not be violated, there must be some increase in entropy associated with one of
the operations in the demon’s cycle. The question that remained was then; which
step in the cycle is responsible for the unaccounted entropy production? Szilard
himself argued that the increase in entropy was due to the measurement carried
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2.3. Three approaches

out by the demon. He first postulated that the second law has to be obeyed, and
after eliminating all possible sources of entropy production (barrier insertion, ex-
pansion, and extraction), was left with the measurement process. In essence, his
argument was that if the second law was to be obeyed, and the source of the extra
entropy production needed to obey the second law could not be found via a sta-
tistical mechanical analysis of the operational processes in Szilard’s engine; it is
required that the work extracted is compensated by the entropic cost of measure-
ment [18].

Szilard’s view was later supported by Brillouin [19, 20], Gabor [21], and Roth-
stein [22]. Brillouin and Gabor presented specific models of dissipative measure-
ments, sending light into the two compartment to see which side of the Szilard
engine contains the particle after the barrier insertion. Light interacts with the par-
ticle and scatters if it is present, but in order to observe the scattered light, it has to
be distinguishable from the background radiation. Since the electromagnetic field
is in thermal equilibrium with the rest of the system, the blackbody radiation of
the background has a mean energy of kg7'. Therefore, to distinguish the scattered
photon from the background radiation it has to have an energy hv > kgT'. Using
a photon with energy higher than the energy gained by the operation of Szilard’s
engine prevents any net extraction of work from the heat bath.

Efforts by Gabor and Brillouin to formulate a general theory on the entropic
cost of measurement, based on their optical model, proved futile. A measurement
can be described by an interaction between the system and a measurement appara-
tus, which results in a correlation between them. The state of the system can then
be inferred by the state of the measurement apparatus. Of course, there exist mea-
surement procedures to establish correlations between two systems, which also
dissipate energy into the environment. The light scattering measurement is one
of them, but there is no requirement that the measurement of a Maxwell demon
state has to be performed by any kind of optical procedure. Their example is just
one of many measurement procedures that dissipate energy. However, there is no
general theory or principle showing that measurements are always accompanied
by an entropic cost. On the contrary, examples of dissipation-free measurements
have been given by Bennett [17, 23, 24, 25], one of which we will now discuss.
Consider an ellipsoid piece of ferromagnetic material, so small that in the absence
of a magnetic field consists of a single domain, magnetized in either parallel or
anti-parallel to the ellipse axis. The potential landscape as a function of the angle
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0 of the domain magnetization is illustrated in the left plot of Fig. 2.5.

We consider the anti-parallel magnetized state (¢ = —m/2) to be the logical
state 0, while the parallel state (¢ = 7/2) is the logical state 1. A longitudinal
magnetic field H| can be applied to bias the system in favor of either the parallel
or anti-parallel state. The potential landscape can also be modulated by applying
a transverse magnetic field //, , as shown on the right side of Fig. 2.5(a-d), where
we sketch the potential as a function of the applied field /. This modulation
takes the system from a bistable potential as in Fig. 2.5(a), to a monostable po-
tential as in Fig. 2.5(d). An intermediate "soft mode" occurs when the transverse
field has reduced the central potential to zero, as shown in Fig. 2.5(c). Since the
potential barrier between the 0 and 1 state is removed, the magnetization of a sys-
tem in this state is very sensitive to applied longitudinal fields H . This sensitivity
allows us to reversibly copy information from one system to another. An example
of such a measurement is illustrated in Fig. 2.6.

For any measurement to be reversible, the memory which we copy information
into has to be in a standard reference state. Otherwise, a measurement would also
erase information about what state the memory was initially in, and since this is
a logically irreversible process it would generate additional entropy. We will dis-
cuss this in further detail in chapter 3.2.2. Therefore, the measurement apparatus
consists of a reference bit in a known state (the O state in this case), a movable bit
which starts in the same state as the reference bit, and a data bit, which is the state
that we want to copy to the movable bit. As the movable bit enters the transverse
magnetic field it is brought into the soft mode, where the bit becomes monostable.
When the movable bit is brought out from the center of the transverse magnetic
field, towards the data bit, it is very sensitive to the influence of longitudinal mag-
netic fields H). The data bit, which is in the 1 state, exerts a small longitudinal
filed in the direction of its magnetization, thereby biasing the movable bit towards
the same magnetization as it is brought out of the transverse field. We assume the
region of strong transverse field is wide enough so that by the time the movable bit
reaches the bottom edge, the surrounding longitudinal filed is due entirely to the
data bit, and has no influence from the reference bit further away. If the process
of moving the bit from a reference to the data bit is performed slowly, the magne-
tization of the movable bit is a continuous, single-valued function of its position.
Any work exerted on the movable bit during the first half of the process (until it
reaches the center of the transverse field), is compensated by the same amount of
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work, but with opposite sign, in the latter half.

In this example, the information stored in a bit is susceptible to thermal fluc-
tuations and tunneling. These phenomena determine a minimum error rate of the
copying and a minimum dissipation in each step in the process. However, there
is no fundamental theorem that prevents us from making the error probability and
dissipation arbitrarily small. Whether one could build this apparatus in the lab
was not the main point by Bennett. His examples of reversible measurements are
counter-examples to the ones of Gabor and Brillouin. The main point of Ben-
nett was that there is no fundamental law of physics that says that measurements
cannot be done without dissipation.
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Figure 2.6: Illustration of a reversible measurement using a single-domain fer-
romagnet. A movable bit, initially in the reference state 0, is brought through a
transverse magnetic field, and mapped into the same state as the data bit. The
right side shows how the probability density of the movable bit is continually de-
formed from its initial concentration in the 0 state, until it occupies the 1 state, in
agreement with the data bit. Illustration adapted from [17].
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2.3.3 Erasure

If measurements can in principle be performed without dissipation, and the diffi-
culty of operating a real Maxwell demon due to fluctuations is not a fundamen-
tal prohibition of their existence, how can the second law of thermodynamics be
saved? The contemporary view has its origin in Landauer’s information erasure
principle [26]. He was studying heat generation in computing processes and ar-
gued that logically irreversible operations are always associated with physical irre-
versibility, which requires a minimal heat generation. This idea was applied to the
Szilard engine by Bennet [24, 17], who argued that the result of the measurement
that the demon performs has to be stored somewhere. Consider a demon with a
memory in some initial known standard state S. After measuring the position of
the particle in the Szilard engine, and performing the isothermal expansion, we
extract an amount of work kg7 In 2, while reducing the entropy of the heat bath
by the same amount. However, the memory of the demon is now in an unknown
state, either L (left) or R (right), which has increased its entropy by £k In 2. There-
fore, when considering the state of the universe, i.e., the combined system of the
demon, engine, and environment, the net entropy production is zero. Moreover,
the state of the universe is not the same as it was initially, since the state of the

demon has changed from a known state .S, to an unknown state which is either R
or L.

In order to reset the state of the universe to its initial state, so that the engine
can operate cyclically, we have to erase the information stored in the demon’s
memory. This erasure, a two-to-one mapping of the demon’s physical state, is a
logically irreversible operation, which according to Landauer cannot be accom-
plished without heat dissipation. Consider the combined cycle of the Szilard en-
gine and the demon’s memory, as shown in Fig. 2.7. The left side shows the
operation protocol of the Szilard engine, with barrier insertion, measurement and
the isothermal barrier expansion. The state of the demon’s memory is denoted by
S, L or R, and the phase space of the Szilard engine from the point of view of
an external observer who does not know the result of the demons measurement, is
shown on the right side of the figure. In the phase space illustration, the horizontal
axis represents the x-coordinate of the particle, while the vertical axis represents
the state of the memory.

For the initial equilibrium state (a), the phase space of the particle occupies

20



Chapter 2. From steam machines to transistors

the full box, with an equal probability of finding the particle anywhere in the box.
The state of the memory is in its standard state S. After inserting the barrier
but before the measurement, the phase space of the particle remains unchanged
(except for a small portion in the center, proportional to the width of the barrier,
which is infinitesimally small), and the state of the memory is still in its standard
state S, as shown in (b). The demon now performs a measurement (c), to find out
whether the particle is on the left (L) or right (R) side of the barrier. After the
measurement, the demon’s state is in either L or R, and the phase space of the
particle is concentrated in the corresponding physical states. Based on the infor-
mation obtained, the demon allows the barrier to expand isothermally (d) while
extracting kg7 In 2 of work. When the expansion is over, the phase space of the
particle again fills the whole apparatus (e), and the state of the demon is still in
either L or R. The expansion procedure (d-e) depends on which side the particle
is found, which is why the demon has to perform a measurement before initiat-
ing it. In (e) the physical state of the engine is the same as its initial state, but
the information of which side the particle was found is still stored in the demon’s
memory. In order to put the demon back to its standard state S, this memory has
to be deleted, which entails a twofold compression of the demon’s phase-space, as
shown in (e-f). According to Landauer, this twofold compression is accompanied
by an entropy increase of kg7 In 2, somewhere else in the total system. That is,
all the work extracted from heat bath during step (c-e), is converted to heat again
when deleting the state of the demon’s memory.

In chapter 3.2.2 we go into further detail about the connection between logi-
cal and physical irreversibility, as well as where the heat dissipation during erase
happens. But for now, we can summarize that the contemporary consensus is
that the Szilard engine and Maxwell’s demon does not violate the second law
of thermodynamics, because one has to take into account the cost of erasing the
information the demon obtains from the measurement. For the full cycle of mea-
surement, expansion, and erasure, the minimum entropy production is zero, which
corresponds to the lower bound of the second law of thermodynamics, AS > 0.
Landauer and Bennett pointed to a deep connection between information theory
and physics. Maxwell’s demon has not only been significant due to the challenge
it posed to physicists view on the second law of thermodynamics, but also because
the resolution of the paradox, and the research surrounding it, revealed the physi-
cal implications of information processing in both classical and quantum systems.
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Figure 2.7: Illustration of the combined system of the Szilard engine and demon
memory. The left side shows the operation procedure of the Szilard engine, while
the right side shows the corresponding phase space evolution of the combined
system. Here L and R denotes the outcome of the demons measurement, while S
is the initial standard state.
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Chapter 3

Statistical mechanics and
information theory

In the first section of this chapter, we summarize the most important concepts from
statistical mechanics. At the heart of the discussion around Maxwell’s demon, lies
the concept of information and its physical embodiment; both logical and phys-
ical irreversibility, what erasing and obtaining information implies for physical
systems, and how these concepts relate to Maxwell’s demon-like systems are dis-
cussed in the later parts of this chapter. This chapter serves as an introduction to
the topics that are needed to understand the rest of this thesis and the associated
research articles.

3.1 Statistical mechanics

3.1.1 Foundations of statistical mechanics

In classical mechanics, the time-evolution of a system is described by Hamiltonian
dynamics. If we want to describe the behavior of systems with a large number of
degrees of freedom, such as an N-particle gas, it is convenient to consider its phase
space. The phase space is an imagined space, where each degree of freedom has
its own axis. Thus, the phase space of a three-dimensional N-particle gas has 3N
axes to specify the coordinates of each particle (z, y, z), and 3N axes to specify the
momentum of each particle (p,, p,,p.). A specific point in the 6N-dimensional
phase space corresponds to one unique microstate. Under Hamiltonian dynamics,
this point moves around in the phase space, as the state of the system changes.
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3.1. Statistical mechanics

There are not many systems where we have access to the exact microstate. If
you are given a container of gas, it would be impossible for you to determine the
exact position and momentum of every particle in it. Thus, in the macroscopic
world, we deal with macroscopic variables. In general, a macrostate of a system
is defined by the properties which we can reliably measure. For a simple ideal
gas, this is its temperature 7', volume V' and pressure p. For magnetic systems,
we would include the magnetization M, and for liquids, the surface tension . All
microstates that correspond to a given macrostate, constitutes a volume in phase
space. Within this volume, we can assign a probability distribution to the points
in the phase space. The exact distribution we assign depends on what information
we have about the system, but the goal is that this probability distribution gives us
the probability for the system to be in the corresponding microstate.

If we consider again the N-dimensional gas, a specific point in phase space
is specified by 6N independent variables; the N three-dimensional momentum
vectors py = (p1, ..., pn), and the N three-dimensional coordinate vectors gy =
(q1,--.,qn)- If the state-vector zy = (py; qy) is known at one time, it is known
for all times, due to deterministic Hamiltonian evolution. Given the Hamiltonian
Hy = H(zn,t), we can find the time evolution of the system using Hamilton’s

equations,

dp; dHy dg; dHy
dt P at  dp; -1

The state-vector x traces out a trajectory in phase space, as it evolves in time.
Since Hamiltonian dynamics defines a unique past and future for a given state
x N, it follows that the trajectory can not cross itself. If it could, then Hamiltonian
evolution would be indeterministic. If we lack complete knowledge of the system,

we have to consider x to be a stochastic variable, and associate a probability
density, p(xy,t) to the phase space. The probability that the state is found in a
volume element dz y around x y at time ¢, is then given by p(xy, t)dz . Since the
state must always lie somewhere in the phase space, the probability density has to
be properly normalized:

/P(fﬁmt)dl’N =1, (3.2)
r

where fF indicates integration over the full phase space. The probability to find
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the system in a region R is then given by
P(zy € R) = / plry,t)dxy. (3.3)
R

We can view this probability density in phase space as an incompressible fluid,
that flows according to Hamiltonian dynamics. Therefore we can use fluid me-
chanics to find its equation of motion; the Liouville equation.

p BB (o)

Figure 3.1: Representation of a 2Nd dimensional phase space, p(zy,t), where d
is the spacial dimension of the system and N is the number of particles. The total
phase space we consider is given by I', while a small volume element of thatis V.
The differential area-element normal to the surface of V' is given by dSS.

Consider a small volume element V' with surface area S,at a fixed point in
phase space, as shown in Fig. 3.1. The total probability is conserved, so any
change in the probability to find the state in this volume,

d 0
%P(QJN cV)= E/VP(QJ’NJ)CZ%N, (3.4)

is also given by the flow of probability through it,

iP(l’N € V) = — f p(l’N,t)l"N -dS. 3.5
dt g
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3.1. Statistical mechanics

Here &y is the velocity of the state-vector, and d.S is the area-element normal to
the surface S. We can now use Gauss’s theorem, which transforms the surface
integral to a volume integral, to obtain

0
> / plon, t)dy = - / V. [o(ay, 1) in) dry, (3.6)

where V. = (Op,---04y,0p,---,0p,) is the gradient with respect to all the

qN >
phase space variables. Since the volume area V' is independent of time, we can

take the time-derivative inside the integral on the left side. The arguments of the
integral therefore have to be the same, giving us

We can calculate the divergence term to get

V$N : [p(xNj)jN] =1Iy- V$Np(xN7t> + p(xN7t)V$N - IN,

and if we now use Hamilton’s equations (Eq. 3.1), we see that

N . . N
. i 8qi 8pi . 82HN 82HN o
VmN e ; (8%’ * api) B ; (5%3}71‘ Opi0g; =0 (38)

From Eq. (3.7) we therefore get

0 .
5 (xn,t) +@n - Veyplzn,t) =0 (3.9)

Since the total time derivative is defined as

d 0
% a +xNVzN7 (3.10)

we see that if we pick a specific point in phase space zy, and follow its trajectory
as the phase space evolves it time, the probability density in the neighborhood of
that point remains constant:

d
plan,1) = 0. (3.11)

We can further rewrite Eq. (3.9) into a more familiar form by using Hamilton’s
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equation.
0 .
82& (xN>t> = _xN'VfBNp(xN7t)
- _Z a% apz a (x t)
- ot o ot op; ) PN

OHy 0 O0Hy O
- _ . 12
Z ( Op; 0q;  Og; 3pi> plen,t) (3.12)

This equation is known as Liouville’s equation, and it is often written using the
Poisson bracket notation:

0

81& (JZN, )Z —{p(l‘N,t),HN}. (313)

It is the equation of motion for the probability density in phase space, and from it
we can solve any dynamical Hamiltonian system, given that we know the initial
probability density p(zy,0). A probability density that does not depend on time,
Op(rN,t) = 0, is associated with a system at equilibrium. The condition that
makes both Liouville’s equation and the stationary probability density compatible
is clearly

{p(zy,t), Hy} =0. (3.14)

Once choice of p(zy, t) that satisfies this equation is one that does not depend on
z . In other words
p(xy,t) = const. (3.15)

In general, the Hamiltonian flow of the phase space density makes an initially
smooth phase space density quickly evolve into an extremely complicated struc-
ture, with tendrils going in all directions in phase space. An illustration of this
is shown in Fig. 3.2, where an initially spherical phase space density evolves into
a complicated structure. However, no matter how complicated the structure be-
comes, its total volume remains the same.

3.1.2 Ensemble theory

Ensemble theory is the foundation that all of statistical mechanics is built upon.
The probability density p(xy,t) can be interpreted as an ensemble of microstates
belonging to the same macrostate. If we imagine we have ) identical copies of
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tlme

Figure 3.2: Illustration of the Hamiltonian flow of a phase space density according
to Liouville’s theorem.

a three-dimensional ideal gas (6N dimensional phase space), each member of the
ensemble is a vector pointing to a point in the phase space. The density of these
representative points in phase space is then given by Mp(zy,1).

The ensemble average of a function f(zy) is defined as

_ fr flzn) plzn,t) doy
Ve = e, t) daw

(3.16)

where the integration extends over the full phase space I". In general f can be
an explicit function of time f = f(xy,t), which makes the ensemble average
time-dependent as well. The ensemble is stationary if

0

and for such an ensemble the average value of any function f will be time inde-
pendent. Stationary ensembles correspond to equilibrium distributions, and the
condition that ensures that a system is both in equilibrium and obeys Hamiltonian
dynamics can be found by combining Eq. (3.17) and Eq. (3.13) to obtain

{p(zn,t), Hy} = 0. (3.18)
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A final thing we need in order to define the different ensembles, is the concept of
ergodicity. We can define the time average of a function f(xy) as

to+T
(f)g = lim l/ f(zn) dt. (3.19)

The ergodic hypothesis states that for a given equilibrium macro state, the time
spent by the system in some region of phase space is proportional to the volume of
the region. This implies that all corresponding micro states are equally probable
of a long period of time, which makes the ensemble average equal to the time
average

(NHr={)r- (3.20)

The exact time scale where the ergodic hypothesis becomes valid depends on the
macroscopic system in question. For some system the time it takes to explore
the full phase space can be so large that the equilibrium state exhibit ergodicity
breaking. We also see that the probability to find a macro state in some specific
region of phase space, is proportional to the area of the region.

The microcanonical ensemble

The simplest ergodic stationary state, is given by a Hamiltonian of constant energy
H(zy) = E. This equation defines a hypersurface in the phase space. For a gas
with 6N dimensional phase space, the energy hypersurface spans 6N-1 dimension.
From theorem Eq. (3.14), we see that the probability density compatible with this
Hamiltonian is one that is constant everywhere on the hypersurface. And from the
ergodic theorem, we know that the probability to find the system in a region R
in phase space, is proportional to the area of that region, which we can normalize
using the total area of the hypersurface
Jp 0(H(zy) — E)dzy  Q(R)

Plx € B) = 1 5 i)~ Bydew 0By 2D

Here Q(R) is the area of the region R, while {2(E) is the area of the full energy
hypersurface. We can then write down the normalized probability distribution of
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the energy surface as

1 forH(zy)=F
p(xN,E)I{ OE)’ or H(zx) (3.22)

otherwise.

This probability distribution constitutes the microcanonical ensemble, and repre-
sents a closed system with constant energy, where we equal a priori probabilities
for the possible micro states.

The canonical ensemble

Most thermodynamic systems do not have an exactly fixed energy. Even a closed
system at equilibrium will exchange heat with its environment, in such a way that
the energy of the system fluctuates around a mean value. To find the equilibrium
distribution of such and ensemble we maximize the Gibbs entropy,

S= ks / duy plzx) 1og plzy). (3.23)

This is identical to the Shannon entropy (derived in chapter 3.2.1), with K =
kp. Since the maximization is constrained by the normalized probability and the
average energy,

[dawpon) =1, [ dogpten) = (), (3.24)
r r
we use the method of Lagrange multipliers to obtain

/\1 — /{?B + )\QHN - ]CB Ing(IN) = 0, (325)

where \; /5 are the Lagrange multipliers. This gives us

A A
play)=exp (22 — 14+ Z2Hy ). (3.26)
kg kg

To determine the Lagrange multipliers we first use the normalized probability
condition and obtain

/exp (ﬁHN) = exp (1 — ﬁ) . (3.27)
T kB kB
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Next, we take Eq. (3.25), multiply it by p(zy) and integrate over I'. This leaves
us with

—kp / dane ) 40 (E) + 5 = 0. (3.28)
T

Comparing this equation to the definition of the Helmholtz free energy ' — U +
TS = 0, we see that \, = —1/7 = —{. Putting it all back into Eq. (3.26) we
finally obtain the probability density for the canonical ensemble;

e~ PHN e~ PHN

= = . 3.29
plen) Jpday e~ BN Zr (329)

The function Zr is the canonical partition function, and can be considered a nor-
malization constant for the probability density p(zy).

The grand canonical ensemble

The grand canonical ensemble is derived in an almost identical way as above,
only now we maximize the entropy with an additional constraint, on the average
number of particles | Np(zn) dzy = (N). The probability density in the grand
canonical ensemble becomes

e_B(HN_.“‘N)

plen) = fF dx e BHN=RN)’

(3.30)

where o is the chemical potential.

3.2 Information and entropy

3.2.1 Shannon entropy

Claude Shannon, while working at Bell Telephone Laboratories, developed in
1948 a mathematical measure of uncertainty, to quantify the loss of information
in phone-line signals [27]. Supposedly while working on this measure he visited
Von Neumann, and they had the following discussion:

My greatest concern was what to call it. I thought of calling it
information, but the word was overly used, so I decided to call it
uncertainty. When I discussed it with John von Neumann, he had a
better idea. Von Neumann told me, "You should call it entropy, for two
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reasons. In the first place your uncertainty function has been used in
statistical mechanics under that name, so it already has a name. In
the second place, and more important, nobody knows what entropy
really is, so in a debate you will always have the advantage".

Shannon followed Von Neumann'’s advice, and called his measure the Shannon
entropy. E.T. Jaynes has a clear derivation of Shannon entropy that we will follow
from now on [28]. Assume we have a variable x that can take on discrete values
(x1...x,). The process that determines what value = assumes can be represented
by the corresponding probabilities (p; .. . p,,), Where p; represents the probability
that + = z;. The goal is to derive a quantity H(p; ...p,), which uniquely mea-
sures the amount of uncertainty represented by this probability distribution. Or
in other words, a function that quantifies our lack of information about a system.
It might seem difficult to create an unique and consistent measure of uncertainty.
Remarkably, only by using three elemental conditions of consistency we can show
that this quantity / is what we now call Shannon entropy. The three conditions
are:

(1) H has to be a continuous function of the p;’s, or else an arbitrarily small
change in their value would lead to a large change in the amount of uncer-
tainty.

(2) If all p; are equal, the quantity h(n) = H(=--- 1) is a monotonic increas-
ing function of n: If you don’t know anything about the distribution, your

uncertainty can only increase if the number of possible choices increases.

(3) The measure H has to be consistent, meaning that if there is more than one
way of calculating its value they all have to give the same answer.

In the opening statement we said that  can assume any of the discrete values
(x1...x,), thus we can not assign p; = 0 for any x;. Unless we know what value
x is e.g., pr = 1, we have to give a finite value for all p,. But if we know that
pr = 1 then we have complete information about the distribution, and a function
describing our lack of knowledge is nonsensical.

According to condition (3), we have a choice between giving the probabilities
of the events (7 ... x,) directly, or partitioning them in groups. We can group the
first k& of them, such that the group probability is w; = (p; + - - - + px), then group
the next m so that the probability is wy = (pgr1 + -+ + Prrm), and so on. The
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amount of uncertainty of the composite events is then H (w1, .. .,wy), where N is
the total number of groups. The conditional probabilities of the events (xy ... xy),
given the composite event wy is then (p;/wy, ..., pr/wi). Doing this for all the
composite events, eventually brings us to the same state of knowledge as if all the
p;’s had been given directly.

H(pi...pn) = H(wi...w,) +wiH(pi/wy ... pe/wr) (3.31)
+ woH (pri1/we . Prym/w2) + -+

That is, the uncertainty given by the p;’s, is the same as the uncertainty of com-
posite events plus the conditional probability of each composite event. As an
example, lets say we have (p1,p2,p3) = (1/2,1/3,1/6) and decide to form the
two following groups; w; = p; = 1/2, and wy = py + p3 = 1/2. We then get

111, 11\ 1. /1\ 1. /1/31/6
H(3.53.5) = H<§,§>+ H(§)+§H (1—/21—/2> (3.32)

2
Coa(LL) (2t
272 2 33

Since H is continuous according to condition (1), it is sufficient to determine H
for all rational values

pi = n;/ Z N, n; = integers. (3.33)

We can then regard each probability p;’s as a grouping of n; equally likely events.
We can group together any number of equally likely events, to create a composite
event of arbitrary probability. Take as an example N = 9 equally likely events,
and then form the following n = 3 groups; one group of n; = 4, one group of
ne = 3, and one group of ng = 2. The composition law, Eq. (3.31) then becomes

4 3 2 4 3 2
—H (=2 2) 4 Sh) 12 “h(2 34
b0 = H (555 ) +gh0+ g+ 20, 639
where h(n) is shorthand for
h(n) = H (1, L 1) . (3.35)
n n
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The general form of Eq. (3.31) with this notation becomes

WO ni) = Hpi,....pa) + Y pih(ns). (3.36)
If we now choose all n; = m, the equation further simplifies to

h(mn) = h(m) + h(n), (3.37)
which can be shown [27] to have the unique solution

h(n) = K log(n), (3.38)

where K is an arbitrary constant. Combining this with Eq. (3.36) we get

H(pi, - ,pn) = Kln(Z”i) - sziln(ni)
= Kln(ZnZ-) —KZpiln <pzinz>
= K]n(Zni)—KZpilnpi—KZpiln (an>

= —-K Zpi Inp;, (3.39)

which is the familiar form of the Shannon entropy, and this is only equation that
satisfies the conditions we imposed. It then follows that for a given a probability
distribution (pq,--- ,p,), the values of the p;’s that maximizes the Shannon en-
tropy is the least biased and most "honest" description of a system, subject to the
constraints imposed by our available information.

We can find the maximum of H, given that the probability is normalized, by
using the method of Lagrange multipliers.

VIHP1...pn) —AG(p1...pn)] =0 (3.40)
y
max{H(p1...pn) | G(p1...pn) =0},

where G(p; ...pn) = ), p; — 1. Performing the calculation of the gradient along
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one dimension pj,, we obtain

—Inp,—1—X=0 3.41)
pr = e (3.42)

which has to apply for all p;. Putting this into the normalization constraint gives

us
N

eV =NV =1 & A=In(N) -1, (3.43)
with the final result

(I+lnN-1) _ ~InN _ i (3.44)

P =€ N

The implication is that p; = % is the least biased probability distribution for the
points (p; . .. p,), and it indicates that we don’t know anything about the distribu-
tion other than how many possible outcomes there are.

3.2.2 Thermodynamic and logical reversibility

Consider a general system where the total phase space is I', and the phase space
coordinates are described by the vectors v € I'. The system is surrounded by a
heat bath at inverse temperature 5 = 1/kgT. A transformation that maps some
initial phase space distribution { 7; } = I'; C I to some final distribution { v } =
I'y C T, is then due to some physical process. The Shannon entropy of the initial
and final state is given by

S; = —/ dyp(y)Inp(y) and Sy = —/ dyp(y)Inp(v),  (3.45)
ver; vely

where p(7) is the probability of the state represented by the phase space point .
If @) is the average heat absorbed by the system under the transformation, the total
entropy production (i.e., system + environment) is then given by

ASiet = (S5 — Si) ~BQ. (3.46)
——

AS
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According to the second law of thermodynamic, total entropy change is bounded
below at zero
ASiy >0 — AS>BQ. (3.47)

A physical process which achieves equality in this bound, is considered a ther-
modynamically reversible process. Notice that the flow of entropy between sys-
tem and bath is possible for reversible processes, if the amount of heat absorbed
by the system is equal to its entropy change. This is because the absorption of
heat by the system results in a decrease in the environment entropy according to

ASerw = _QB

If the phase space points of our system is distributed according to the canonical
distribution, the probabilities p(y) is given by

p(y) = 2 (F=E0). (3.48)

where E(7) is the energy associated with the phase space pointy, and F' = —In Z
is the free energy associated with the distribution of phase space points { v }. With
this probability the entropy of the initial and final state becomes

Sarn =B Uarp — Furp) (3.49)

where U5y = (E(i/5))c is the canonical ensemble average of the energy. Using
the first law of thermodynamics, AU = AW + AQ), where W is the average work
performed on the system, we find that the second law of thermodynamic in this
form becomes

ASpe = B(W —AF)>0 — W >AF, (3.50)

where AF' = F; — F;. We see that if the input work we perform on the system is
equal to its change in its free energy, the process is reversible.

Phase space trajectories can not cross each other, because if they could the
phase space point at the intersection does not have a deterministic Hamiltonian
evolution. The point could evolve according to either trajectory, so we would lose
information about its past. This concept is closely related to logical reversibility.
Consider a set of logical input states /, and logical output states O. Lets for
simplicity consider one single bit of information, that can be in one of two logical
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states { 0,1 }. A logical process, or a computation C, can then be described as
a transformation between the input state and the output state C' : I — O. An
example of an irreversible process is then the ERASE operation, which is defined
by

ERASE: 0—0, 1—0. (3.51)

No matter which state you were in (0 or 1), you end up in the same state (0), and
lose any information about the past. An example of a reversible process is the
NOT operation, which is defined as

NOT: 0—1, 1—0. (3.52)

In this case, given the output, you always know the input. A logically reversible
process can be defined as one that, for any output logical state, a unique input
logical state exists [29]. Meaning that for every logical state in O, there exists a
reversal of C, which is definedas C~!: O — I.

Now let the input and output states be two probability distributions instead of
a single bit. We defined them as Py(n,) for n, € O and P;(n;) for n; € I, with
normalized probabilities. After the operation C, the distribution on O is given by

Py(no) = > Pi(ny), (3.53)

n;: C(n;)=no

where the sum is taken over all n; which satisfies C'(n;) = n,. If the process is
reversible, then there is one unique n; for each n,, giving us

Py(ny) = Pr(C™*(ny)). (3.54)

The input and output logical entropies are given by

Hy= - Pi(n)nPr(ny), (3.55)
n; €1
and
Ho =~ Po(n,)nPo(n,). (3.56)
ne€O

For reversible operations, defined by Eq. (3.54), we see that the logical entropy
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does not change

Hop = — Z PI(Cil(no» lnPI(Cil(no»
n,€C(0)
n; el

In the general case, including non-reversible operation, the entropy difference be-
comes

Ho— 1 =Y Pong) Y. 2y PI(”")) (3.58)

ni: C(ni)=no

3.3 Erasing information: Landauer’s principle

As discussed in the introduction, Landauer’s solution to the apparent violation of
the second law of thermodynamics by the Szilard engine was the fact that one has
to erase the information obtained by the measurement [26, 30, 31]. All physical
systems designed to perform logical operations have specific physical states (mi-
crostates) which correspond to the logical states. A one-bit memory can be mod-
eled as a single-particle-box with a barrier in the center, as shown in Fig. 3.3(a).
The two logical states are a particle found on the left side of the barrier (0) or a
particle found on the right side of the barrier (1). In this model the logical states
{0, 1} correspond to the physical states

0={ze[-L/2,0],|p| = V2mE}, (3.59)
and
1={xze€[0,L/2],|p| =V2mE}. (3.60)

Landauer argued that logically irreversible processes, which reduce the logical
state space, must therefore also compress the physical state space. This compres-
sion of phase space results in an increase in entropy, in the form of heat dissipation
[24, 25]. An example of a logical irreversible process is the ERASE operation dis-
cussed earlier (0 — 0,1 — 0). The physical implementation of this protocol on
the SPB memory is shown in Fig. 3.3(b). The memory is initially in either of
the two logical states { 0,1 }. We then remove the barrier from the center of the
box, and insert it in the far right-hand side of the box. While the barrier back
towards the center, the collisions between the particle and the barrier exerts an
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effective pressure on the barrier. Therefore an amount of work is required to push
the barrier, which is transferred to the heat bath via the thermal contact between
the particle and environment. When the barrier reaches the center of the box, the
particle is always found in a physical state corresponding to the logical state 0.

) [+] ]

- L/L > —L/ZX

) Lo M)

Figure 3.3: Illustration of a binary memory, modeled as a SPB of width L, and
two logical states; left side of the barrier (0) and right side of the barrier (1). In b)
we show a physical implementation of the ERASE operation.

Before the erasure, the probability of 0 and 1 are equally 1/2, giving a logical
entropy H; = In2. After the erasure has been performed, the probability of 0 is
1, so the logical entropy is H; = 0. The difference in logical entropy is therefore
AH = Hy — H; = —In2. Since the logical entropy has to be treated on the
same level as physical entropy, we have AS = AH, and from the second law of
thermodynamics ( Eq. (3.47)) we obtain

—In2> BQ (3.61)

where () is the heat dissipated into the environment. Since the internal energy
does not change during the isothermal erasure we have, according to the first law
of thermodynamics, W = —(). Therefore the work needed to erase one bit of

39



3.3. Erasing information: Landauer’s principle

information is given by
W > kgTIn2. (3.62)

This equation is known as Landauer’s principle. Equality is achieved if the erasure
is performed adiabatically, in such a way that the memory is always in equilibrium
with the environment while we push the barrier towards the center. A quasi-static
isothermal compression requires an amount of work given by

Vi kgT

W pr—
vie V!

dV' = kgTIn2, (3.63)

and is , therefore, an example of a physical erasure protocol that reaches equality
in the Landauer bound. The Landauer principle has in recent years been experi-
mentally verified in a number of different systems [32, 33, 34].

In general, a logical state does not have a one-to-one mapping to a unique
physical state. Rather, a logical state is a subset of the full phase space, I'y/; C T,
and corresponds to many different microstates. By definitionI' = I'yUI'y, and I'yN
I'; = (). If this was not the case, the two logical states would have indeterminate
members which could not be definitely associated with either state. In the previous
case the logical state O is associated with the subspace I'y : {z € [-L/2,0] },
while the logical state 1 is given by I'y : {z € [0, L/2] }. Ignoring the irrelevant
y-coordinate and momentum p’ = p,Z+p, ¥, we denote the probability distribution
of the total phase space by P(x). The probability distribution of the logical states,
Py, is then given by

Pp(i) = / P(z) dx, 1=0,1. (3.64)
zel’;
The conditional probability of the microstate x given the logical state ¢ is therefore
P(z|i) = P(x)/P(). (3.65)
The total entropy, S, is given by the integral over the total phase space

S :/P(x) In P(x) dx, (3.66)
r
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while the logical entropy is given by

H == Py(i)ln Py(i). (3.67)

Following the discussion in Section 3.2.1, we can group the microstates into com-
posite events, i.e. the logical states I'g/; in this case. The total entropy can then
be written as the entropy of the logical states, plus the conditional entropy S(I';|7)
weighted by the logical state probabilities

S=— Z Pp(i)In Py (i) — Z PL(i)S(T;]4), (3.68)

where
S(Ty]i) = / P(z|i)In P(x|i) dx. (3.69)

el
We see that the total entropy can be decomposed into two terms, where one is
the logical entropy H, and the other is the average conditional entropy S;, =
> Pr(i) S(I';]7), which we identify as the internal physical entropy in the logical
subspaces

S=H+ 5. (3.70)

Using this decomposed version of the total entropy, we can calculate contribution
of each term for an ERASURE operation. For this operation the initial logical
probability distribution is Pr(0) = Pp(1) = 1/2, while the final one is P} (0) =1
and P; (1) = 0, which gives us a change in logical entropy AH = —In2. The
change in internal entropy is

ASp = =D PL@STili) + 3 PL@)S(Tili) (3.71)
= —S/(Tpf0) + ZS(ToJ0) + ST
B P(x), Pl(z) 1 P(z) ., P(x) 1 P(z) . P(x)
- [ O RS e L O R 2 L RO R

- _ /J;EFO dr P'(z)In P'(z) + / dr P(z)In P(z) + /xer dr P(z)In(2).

zel’

If we assume the initial and final phase space probabilities are equilibrium distri-
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butions, with P(x) = 1 and P'(z) = ; we obtain
0 2. 2 L1 o1
AS;, = —/ dr —In — / dr —In—+1n2 (3.72)
—L/2 L L —L/2 L L

= —1 2 +1 ! +In2=0
= nr+h-+n2=
Therefore the total change in entropy when adiabatically erasing one bit of infor-
mation is

AS =AH+ AS;,, = —1In2, (3.73)

and the generalized Landauer principle can be expressed as

AH + AS;, > BQ. (3.74)

3.4 Obtaining information: Measurement

A measurement is to make a copy of the state of a system onto a memory. For
the measurement of the state of a Szilard engine, we need a binary memory. We
consider the total phase space (system + memory) to be I' = I'g U I";, where I'g
and I'y, is the phase space of the system and memory, respectively. Let s € S =
{0,1}and m € M = {0,1} be the logical states of the system and memory,
respectively. Their physical states is denoted by 3, € I'g and z,,, € [');. The
conditional probability of finding the total system in the physical state (zs, x,,)
given the logical states (s, m) is then P(zs, x,,|s, m), and the probability of the
physical state is given by

P(xg, ) ZP (s, Tin|s, m)P(s,m) (3.75)

To characterize the correlation between the memory and the system, we introduce
the mutual information. The mutual information quantifies how much information
we obtain about one subsystem when observing another subsystem; If the mutual
information is zero, the state of the memory and system is independent of each
other. The mutual information between the physical states are given by
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while for the logical states we have
Iy(S;M)=H(S)+ H(M)—-H(S® M), (3.77)

where S ® M is the total logical state, i.e. 00,01, 10, 11. The mutual information
between the internal states, given the logical states s and m, are given by

Lin(Ts; Tarls,m) = Sin(Csls) + Sin(Carlm) — Sin(T]s, m). (3.78)
Taking the average over s and m, we obtain

In a similar way that we decomposed the total entropy into the logical entropy
and average conditional entropy in Section 3.3, we can decompose the total mu-
tual information into the correlation between the logical states and the average
conditional mutual information between the physical states:

Iin(Ts;Tpp) = I (S; M) + 1, (Dg; T | S @ M). (3.80)

Taking the mutual information into account, the total change in entropy AS;.
after some arbitrary thermodynamic interaction between the system and the mea-
surement apparatus is given by

ASie = AH® + AHY — NIy + AS;, + AS)) — AL, — 8Q, (3.81)

TV TV
logical entropy AH internal entropy AS;p, heat

where the superscript S and M indicates the system and entropy, respectively.
Going back to the erasure process and Eq. (3.74), we see that if the internal en-
tropy does not change during the erasure (i.e., the initial and final phase space
distribution are equilibrium distributions), we obtain

AH® + AHM — Ay > BQ. (3.82)

After the full cycle of measurement, expansion, and deletion of memory, the logi-
cal states of the system and the memory is the same as the initial ones. Therefore
AHS = AHM = (, and since the internal energy does not change we also have
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@ = —AW. Using this we obtain yet another version of Landauer’s principle
W > Aly/B. (3.83)

The work required to delete the information in a memory, is given by the mutual
information between the system and the memory. In the case of a perfect mea-
surement we have Aly; = In 2, which means that the minimum work we have to
pay to erase the memory is the same as the work we obtain from the Szilard engine.

3.4.1 Measurement errors

Measurement errors reduce the mutual information between the system and mem-
ory, and therefore the work required to delete the memory. However, as we argue
in paper 2, it is not possible to saturate the bound in Eq. (3.83) when measurement
errors are present. This is due to an irreversible entropy production not accounted
for, which we will describe briefly in the following. If the system is a standard
Szilard engine, and the memory is a single-particle-box as before, there are four
distinct logical states (00,01, 10, 11). In Fig. 3.4 we show a schematic of the full
phase space of the (system + memory). Here we reduce the dimension of the
phase space to the only relevant degree of freedom (the x-coordinate). Therefore
the horizontal axis represents the x-coordinate of the particle in the system, while
the vertical axis represents the x-coordinate of the particle in the memory. The
total phase space is divided into four quadrants, each of which represents one of
four logical states, associated with which side of the box the particle is in the sys-
tem and memory. The initial state of the system + memory is shown in Fig. 3.4(a),
where the memory is in a standard state 0, while the system is either in the state
0 or 1 with probability 1/2. If an error-free measurement is performed on the sys-
tem and copied into the memory, the full phase space evolve into what is shown in
Fig. 3.4(b). The internal entropy and the logical state of the system and memory
is identical; both the memory and the system is either in state 0 or 1 with the same
phase space distribution.

Consider now the schematic in Fig. 3.5, showing the phase space evolution
of this model when measurement errors are present. The initial state shown in
Fig. 3.5(a), is the same standard state as in the error-free measurement. If the
system is now put into contact with the measurement apparatus and copied into the
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Figure 3.4: Illustration of the combined phase space of a Szilard engine and a
single-particle-box memory. (a) shows the initial state where the memory is in the
standard state O and the system is in either the O or the 1 state. The transition from
(a) to (b) is an example of an error-free measurement, where the both the system
and memory is either in the logical states 00 or 11.

Figure 3.5: Illustration of the total phase space of a Szilard engine and a single-
particle-box memory. (a) shows the initial state where the memory is in the stan-
dard state 0, while the system is in either O or 1 with probability 1/2. A measure-
ment error occurs in (b1)/(b2), and once the barrier is inserted so the phase space
can not flow between the quadrants, the phase space of the incorrectly mapped
states evolve chaotically according to Hamiltonian dynamics as shown in (c).
Coarse graining of the phase space after the time evolution results in the final
phase space distribution shown in (d).
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memory, some of the system states are incorrectly mapped to the memory. This
incorrect mappings come from the cases where the actual position of the particle in
the system does not agree with what was recorded in the memory, and is shown in
Fig. 3.5(b), i.e., the phase space points in 01 are wrongly mapped and should fill in
the empty space in 00. When the barrier is inserted the phase space points can no
longer cross the boundaries between the four quadrants. However, the phase space
continues to evolve according to deterministic Hamiltonian dynamics, resulting in
a complicated structure of the phase space as shown in Fig. 3.5(c). Nevertheless,
since the time evolution obeys Liouville’s theorem, the entropy of Fig. 3.5(c) is
still the same as in Fig. 3.5(b). To reach the final state with uniform phase space
distributions, shown in Fig. 3.5(d), we have to coarse-grain the phase space. We
therefore lose information about the complicated phase space structure. It is this
coarse-graining that introduces an irreversible measurement entropy given by

Se=—¢elne— (1 —¢)In(l —¢), (3.84)

where ¢ is the probability of measurement error.

3.4.2 Experimental detection

For a long time, Maxwell’s demon has only been a thought-experiment, which
was impossible to realize in the lab. However, in recent years, modern technol-
ogy have enabled experimenters to create working versions of Maxwell’s demon
and close analogies, in a range of physical systems: atoms [35, 36, 37], colloidal
particles [38, 39], molecules [40], electrons [41, 42, 43] and photons [44]. It is
therefore natural to consider how theoretical predictions can be verified in these
experimental set-ups. We have suggested a way to detect the measurement en-
tropy, in an experimentally realized Szilard engine based on a single-electron-box
[41], which we will present here.

The experimental set-up is a single-electron-box (SEB), consisting of two
small metallic islands connected by a tunnel junction. The metallic islands con-
tain an electron gas with a large number of electrons, but one is able to control
the position of one extra electron. The potential of the islands can be controlled
separately, and if the islands are in thermal equilibrium at some reference poten-
tial (V, = Vi = 0), the probability to find the extra electron on either island is
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Figure 3.6: Two metallic islands share one excess electron. In (a) the islands are
at equilibrium, with V, = Vi = 0, with equal probability of finding the electron
on either island. In (b), a measurement is performed, and the potential of the
empty island is raised to some value Vj. As the potential of the island is gradually
reduced back to zero, we can extract work whenever the electron occupies the
island whose potential is being reduced, as shown in (c).

determined by the Boltzmann distribution

—BVL/r 1
P =Pp=—o " _- (3.85)

e BVL 4+ ¢—BVr 2
In Fig. 3.6 we show a schematic of the two islands, and how to perform the Szilard
engine protocol for this system. Initially, at ¢ = 0, the islands are at equilibrium,
with V,(0) = Vg(0) = 0, and there is a 50/50 chance to find the excess electron
on either island, as shown in (a). A measurement is then performed, to deter-
mine which island the electron currently occupies. (b) If the electron is detected
at the right island, we instantly raise the potential of the left island to some value
VL(07) = V4. (c) We then slowly lower the potential of the left island back to zero
at time, V7,(07) = Vi — V(1) = 0, where 7 is the duration of the protocol. Due
to thermal fluctuations, the excess electron jumps between the two islands, and
whenever the electron occupies the right island while the potential is decreased,
we extract an amount of work given by W = ftil eV (t) dV, where e is the elec-
tron charge. If there are no measurement errors present in the experiment, and the
measurement of which island we find the island is correct, the value of the initially
raised potential, V[, can be as large as we want. The larger the value, the more
work we can extract as we lower it back to zero. However, if errors are present,
we should limit the value of V4;. When a measurement error occurs, the island
whose potential we raise is the one which has an additional electron, and we have
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to expend a large amount of work, W = el4,.

In our article paper 2, we found that in order to not produce any entropy in this
step, the value we first raise the potential to, V(¢ = 07) = {, has to be equal to
the one we get from the equilibrium Boltzmann distribution for a given error rate
&,

e_V/kBT 1
Pr=€e=——— — VPM = kpT log (— — 1) . (3.86)
€

1+ e V/kaT

This means that after you make a measurement and raise the potential of one of
the islands, you are immediately in a new equilibrium state. If, after the measure-
ment, the potential is raised to any other value, V # VOM B then there will be a
relaxation from that initial distribution to the equilibrium Boltzmann distribution,
with associated heat exchange.
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Figure 3.7: (a) A linear protocol for the potential of the left island as a function
of time. (b) shows the electron jumping between the two islands due to thermal
fluctuations. (c) illustration of how to detect which island the electron is on, by
measuring the current through a quantum-point-contact (QPC). (d) the quantized
QPC current as a function of time, which is can be mapped to (a) to find the energy
of the electron as a function of time.
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The way to experimentally detect which island the extra electron occupies, is
to use a quantum-point-contact (QPC) probe. A schematic is shown in Fig. 3.7(c),
where there are two metallic islands (L and R), and a QPC probe near the right
island. There is a narrow channel between the right island and the QPC, where
conductance is quantized [45]. Its conductance strongly depends on the local
potential, so if there is an electron on the right island, the current through the
channel /, is one unit of quantization lower than if it is no electron there. The
current as a function of time, is shown in Fig. 3.7(d), where I; is the current when
the electron is present on the right island, and [ is the current when it is not.
In Fig. 3.7(a), we show the potential of the island as a function of time, for a
linear protocol from V7,(07) = V;PM — V(1) = 0. Since the QPC current gives
us information about the position of the particle as a function of time, we can
map this to the potential as a function of time, to find the time dependence of the
energy of the extra electron. This plot is shown in Fig. 3.8, where the gray line
V'(t) shows the potential of the unoccupied island we raise after a measurement,
as a function of time. The red line shows the energy of the extra electron as a
function of time. Whenever the electron jumps from the right island to the left
island, an amount of heat ();,, is absorbed from the environment. Similarly, when
the electron jumps from the left island to the right, an amount of heat (),,; is
transferred to the environment. The amount of heat exchanged per jump, is given
by eV, () at the time of the jump. Therefore, we can find the total heat exchange
between the system and environment by summing up all these transitions

Q=Y Q. —> Qu, (3.87)
( J

The measured position of the particle is stored in a memory. When we reset the
memory to complete a full cycle, we have to delete information by expending an
amount of work Wp which has an associated heat released into the environment,
@ p, according to Landauer’s principle. The heat dissipated via deletion can be
found indirectly by the probability of finding the electron on either island at the
time of measurement, and it will Qp = kg7 In 2 if we set V,(7) = 0 at the end of
the protocol and allow time for equilibration between the islands before the next
cycle starts.
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Figure 3.8: Schematic of the heat exchange between the environment, and the
system and memory. The red line shows the energy of the electron as a function
of time for a linear V, (¢) protocol (gray line), which can be used to find the heat
exchange between the environment and system. We can find the heat dissipation of
erasing the memory by using Landauer’s principle. If the experiment is repeated
many times, and we find that it is equally likely that the electron occupies the
particle on the left and right side, the cost of deleting the memory will be Qp =
k BT In 2.
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The net heat transferred between the environment and the system and memory
is therefore

Qnet = Qp — Q. (3.88)
This heat flow will result in a change of entropy of the universe, which is
Sior = S + AS = w (3.89)

Here S. is the entropy produced due to the measurement error, and AS is the
entropy produced as the potential V' (¢) is brought back to zero after the measure-
ment. We predict that this error entropy can be found directly by measuring the
error rate of the system and using the formula

Se=—-clne—(1—¢)ln(l —¢). (3.90)

However, to prove that the error entropy really exists, another way to find it (in-
dependent of our prediction) is by calculating the heat flow Q. as a function of
power, P = Q/(kpTT) (where 7 is the duration of the protocol), and then calcu-
late Sio. Since AS will tend to zero as we approach the reversible regime (zero
power), the intercept will be equal to S, as shown in Fig. 3.9.

: o Qp—Q
]131£>n0 Stot = Il)lm T = Sg. (391)

—0

A summary of the experimental procedure to detect the measurement entropy
is given below.

1. Start with the initial condition being equal probability of occupying either
of the two islands, with V;, = Vg =0

2. Measure which island the particle is found, and raise its potential to VZ =
In (£ — 1), where e is the error rate.

3. Adiabatically reduce the potential back to V(1) = Vz(7) = 0, while mea-
suring the heat flow Q = Qin — Qous.

4. When the potential is back to V;, = Vi = 0, allow the system to reach
equilibrium by waiting for some time, and then repeat from 1.

As long as the lowering of the potential is performed adiabatically, the exact proto-
col to follow is not important, however a linear protocol is probably the simplest.
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Power

Figure 3.9: The total entropy S;.; as a function of power P. The intercept at zero
power will be the measurement entropy S..

Repeating this many times for a single duration of the protocol,r, will give us
statistics for (Q). Also, the heat of deletion is given by Qp = (>-,_; » Pr.In Pr),
where P; and Py are the probabilities of finding the particle on the left and right
island, respectively. These probabilities can be found by registering how many
times the particle was found on the right/left island when measuring. If this is
all repeated for decreasing values of 7, in the limit of 7 — oo, the total entropy
production Sy, should approach the value S. = —clne — (1 —¢)In (1 —¢), as

shown in Fig. 3.9.

3.5 Asymmetric Szilard engine

In all the discussion about the Szilard engine so far, we always inserted the barrier
in the center of the single-particle-box. If the barrier is inserted off center, such
that there is an asymmetry between the compartment sizes, the situation is slightly
changed.

Consider a box of width L as shown in Fig. 3.10. Initially the probability
to find the particle anywhere is a uniform equilibrium distribution. If we now
insert the barrier asymmetrically, such that width of the left and right compartment
becomes

L,=L(1-r), and Lg= Lr, (3.92)

where, r < 1/2, is the ratio between the volumes of the right and left compart-
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Figure 3.10: Schematic of the operation protocol for an asymmetric Szilard en-
gine. Here r is the volume ratio of the two compartments after barrier insertion, L
the total width of the box, and Q1 (Qr) the heat absorbed from the environment if
the particle is detected on the left(right) side.

ment. The work we’re able to extract from the engine during the isothermal barrier
expansion depends on which side the particle is found when performing the mea-
surement. The work depends on the initial and final volumes (V; and V%), in the
following way: W = kg1 In(V;/V;). Therefore we get

Qr = —Wr=kgTlnr, (3.93)
Qr = —Wgr=kgTln(1—r). (3.94)

Since r < 1/2, we see that Qr > @), and we’re able to extract more work from
the heat bath if the particle is detected in the smaller compartment (the one to
the right in this case). However, the probability to find the particle in the smaller
compartment is also lower. The average heat extracted over many cycles, is given
by

(Weap)/kgT =rlnr + (1 —r)In(1 —r),

which is proportional to the change in Shannon entropy before and after measure-
ment. This is exactly the same situation as for the symmetric Szilard engine; The
average amount of work we can extract is given by the amount of information ob-
tained by measurement. In this case however, the amount of information obtained
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is smaller than in the symmetric case. Intuitively, this is because if you measure
the particle in the left compartment, you are less surprised by this outcome, and
this outcome also occurs more often. On the other hand, measuring the particle
on the right side will surprise us more, but this event occurs less often.

The average work (WW,,,) is maximized for r = 1/2, i.e. for a symmetric
Szilard engine which nets us W,,, = kgT'In2. Any value smaller than r =
1/2 will decrease the amount of work we’re able to extract per cycle. Assume
we have an asymmetric Szilard engine with » < 1/2. Since we’re still storing
this information in a binary memory, which we have to delete each cycle with
associated work Wy, = kg In 2, the total work per cycle is

<Wtot> = <Wexp> - <Wdel> < 0. (395)

It seems that the average work per cycle is negative, which implies that the asym-
metric Szilard engine performs much worse than the symmetric one. In fact, if we
delete the memory every cycle, that is true.

However, instead of deleting the memory every cycle, we can keep a sequen-
tial record of the IV previous measurement outcomes, and only delete the memory
every N cycles. Since it is more probable to find the particle in the larger com-
partment (L), the data will contain uneven numbers of L and R measurement
outcomes. The data can therefore be compressed before deletion. One exam-
ple of such a compression strategy for the asymmetric Szilard engine is given in
[46], where they report that after compressing a binary sequence of length N, the
average work per bit needed to erase the compressed data is

(Waer)
N

= kT [ty + (1 =) In(1 = )] + 0 (1/VN), (3.96)

which becomes exactly the same as (W,,,) when N — oo.
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Quantum information theory

In quantum systems, information processing in thermodynamic systems has sub-
tle differences from the classical analogues. One of the main differences is that
measurements in quantum mechanics are invasive; when a quantum state is mea-
sured, the wavefunction of the system collapses into a definite state. Hence, a
measurement will change the state of the system that it is probing, which does
not generally happen in classical systems. The purpose of this chapter is to give a
complete picture of Maxwell’s demon in both the quantum and classical picture,
since papers 3 and 4 are based on quantum systems.

4.1 Basic introduction

The state of a quantum system is described by its wave function |¥). It can be
written as a linear combination of any orthonormal basis { |n) }

T) =) enln). (4.1)

n

A measurement in quantum mechanics is based on the postulate that if you mea-
sure the system in a given basis, you are guaranteed that the system will be in one
of these basis states [n). What sort of state the system was in before the mea-
surement does not have a clear answer in quantum mechanics, other than that its
mathematical description is given by the quantum superposition. According to the
Born rule [47], the probability to find the system in a given state |n) is given by
|cn|2. This type of measurement, where the outcome is always one of the basis
states, is called a von Neumann measurement.
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The wave function given in Eq. (4.1) is a pure state. There is no uncertainty
regarding which state the system is in, even if it is described by a superposition
of basis states; it is in the state |¥). In the cases where we might not know which
state the system is in, we use the framework of density matrices. Similarly to the
ensembles discussed previously, the density matrix is a probability density over
all possible states |¥). While the coefficients ¢, describes the inherent quantum
mechanical uncertainty of a given state, the density matrix is a measure of our
classical uncertainty about the system. The density matrix, describing our state of
knowledge of a quantum mechanical system, where the probability of state |V, )
1S P, 1S defined as

p= P V) (Ul (4.2)
The expectation value of an observable A in terms of the density matrix is
= P (U A W) = Tr(A[0,,) (U,]) = Tr (Ap), (4.3)
and the time evolution is given by

p(t) =U()p(0)UT(t), (4.4)

where U(t) is the time-evolution operator. The density matrix is the quantum
mechanical equivalent of a classical probability density; If we express the set of
possible states { |¥,,,) } in the basis { |i) }

U) =) Cim |d) (4.5)

n

the off-diagonal and diagonal matrix elements of p are given by

(il plj) meczmcjm, (4.6)

and

(i pi) me|cm| 4.7)

respectively. Here |cm|2 is the conditional probability that the system is in the ba-
sis state |7), given that the initial state was |V,,). Therefore the diagonal elements
gives the total probability of finding the system in the state |i), given the proba-
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bility distribution { p,, } of initial states { |¥,,) }. A density matrix consisting of
a single state p = |W¥) (U] is called a pure state. If the pure state is written in the
basis { |i) }, we have

p=T) (W] = e i) (il (4.8)

]

which is a superposition of the basis states { |7) }. In general, a mixed density
matrix is a probability distribution over different state vectors, as in Eq. (4.2).
However, we can also consider the density matrix of the basis states

p=> pili) il (4.9)

which should be thought of as system being in one of the definite basis states |i),
and the density matrix describing our uncertainty of which basis state it is in. This
is in stark contrast to a superposition of basis states, where we cannot think of the
system as being in one basis state or another. Since the density matrix is Hermitian
(p = p"), it can always be diagonalized in some eigenbasis { \; }

p=> Alh) (Nl (4.10)

where \; are the eigenvalues. In this eigenbasis the system is never in a superpo-
sition of the eigenstates, only a statistical mixture.

In quantum statistical mechanics, the von Neumann entropy [48, 49] is the
extension of the classical Shannon entropy. Given a quantum mechanical system
with the density matrix p, its entropy is

S = —Tr(plnp). (4.11)

We immediately see that for a diagonal density matrix, the von Neumann entropy
is reduced to the classical Shannon entropy

S=-Tr(DInD)=—> N\, (4.12)

where )\; are the eigenvalues. For a pure state density matrix the entropy is zero,
while the maximum entropy of a finite dimensional Hilbert space is a maximally
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mixed density matrix where all states are equally likely
F3 ) (nl, e LN @13
maxr — x7 n)y\nf, n ) . .
P N 2
In that case the entropy becomes S = In N, where N is the number of states.
The density matrix for a system in thermal equilibrium with a heat bath at

inverse temperature (3, is a special temperature dependent mixed state, known as
the Boltzmann state

1
p= Zk: e PER W) (W] (4.14)

Here |V,) are the energy eigenvectors, E), the corresponding energy eigenvalues,
and Z is a normalization factor known as the partition function

Z =Y e =Tr(e"), (4.15)
k

where f is the Hamiltonian of the system.

A von Neumann measurement in quantum theory can be described by a pro-

, associated with a given set of basis states { |n) }.
If we perform a von Neumann measurement on a density matrix p, we will find

jection operators, P, = |n) (n

that the system is in state |n) with probability p, = (n|p|n). The density matrix,
P 1s the final density matrix after measurement, and to obtain it from the initial
density matrix p we use the projection operators in the following way:

P.pP,

T Tr(PupP,) (10

pn = |n) (1]

The denominator is there to rescale the density matrix so that the final state is
properly normalized. Although the projection operators P, are linear operators,
the renormalization in the denominator makes the von Neumann measurement
non-linear.

4.2 Work extraction for quantum Szilard engine

The main point of the classical Szilard engine is that the demon is able to uti-
lize information obtained by measurement to extract useful work from a thermal
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system. Classically, work implies applying forces that change the Hamiltonian of
the system, e.g. a gas compressed by a piston. Conversely, heat is a change in
the probability distribution of the energy spectrum, i.e. changing the temperature
changes the Boltzmann distribution. For a quantum system with density matrix p
and Hamiltonian H, the standard way [50, 51] of separating heat and work in the
total energy change is

dE = dTr (Hp) = Tr (d(Hp)) = Tr (dHp) + Tr (Hdp) . (4.17)
ork heat

Therefore work is the change in energy due to the change in the energy eigenstates
given by H, and heat is the change in the density matrix, i.e. the change in the
distribution of the eigenstates. This separation into heat and energy is not com-
pletely satisfying, since work can be done on a quantum system which changes
both the energy levels and their occupation probabilities, e.g. by rapidly changing
the potential of a single-particle-box [52]. Nevertheless, this breakdown can be
used to analyze the work extraction from a quantum Szilard engine with adiabatic
barrier insertion.

There are several differences between the classical and quantum Szilard en-
gine. Chief among them is the fact that no work is required to insert the barrier for
the classical version, which is not the case for the quantum version. The insertion
of the barrier can be modeled by increasing the height of a potential barrier in the
center of the single-particle-box, which will change the energy levels, thus requir-
ing input work. If the increase of the potential barrier is performed adiabatically,
the probability distribution of the energy levels does not change, so AQ) = 0. The
quantum work when isothermally changing an external parameter from X; to X
is then [50]

Xr 9InZ OFE,
wo— g / " gX 418
2 . om ox (19

where Z = Y e PEn is the partition function. Thermalization between the sys-
tem and the heat bath destroys all coherence between the energy states, so the den-
sity matrix becomes diagonal with diagonal matrix elements p,, = exp (—SE,,).
The usual process of wall insertion, measurement, and wall expansion for the
quantum Szilard engine can be described by the following:
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4.2. Work extraction for quantum Szilard engine

After the insertion of the potential barrier wall in the center of a single-particle-
box, but before the measurement is performed, the partition function is

where Z, and Z; are the partition function for the case where the particle is found
on the left and right side of the barrier, respectively. They are given by

_8E W2ﬁ2 2
Zy =7, =Z(L)2) = Ze " B.(L)2) = L (4.21)

where L is the total width of the box. The initial partition function is

T2 h?
(L) n?, (4.22)

Zinz't - Z(L) - Z e_BEn7 Eﬂ(L) -

n

and therefore the amount of work required for the insertion of the barrier is

Wins - 6_1 (ln Zins —In Zznzt) (423)
_ Z(L)
_ 5 (an—an(L/Q)) (4.24)

In the low temperature limit, the particle will be in the ground state F; with unit
probability and the work becomes

Wins = 87 (In2 — [Ey (L) — Ey(L/2)]) (4.25)

A measurement is performed to find which side of the barrier the particle is
found, and the wall is allowed to expand into the empty side. After the expansion
of the wall, the particle occupies the full volume of the box again, and the partition
function becomes

Zewp = Z(L) (4.26)

Regardless of which side the particle is found, the amount of work that can be
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extracted during the isothermal process is given by

Z(L/2)

Wezp = 7 (Z0/1 - Ze:):p) =f""'n W (4.27)
We see that the total work is given by
Wtot - Wins + We:pp - kBT In 2. (428)

Since this is a positive value, it means we can extract an amount k7" In 2 of work,
as in the classical case. In the limit of 3 — 0, we recover the classical result,
where W;,,s = 0 and W, = kT In2.

4.3 Quantum measurement

In the previous section we showed how to extract a work amount of W, =
kpT In 2, from a Szilard engine. In this section we discuss how a quantum de-
mon gains information on the state of a quantum Szilard engine, following [53].
As in the previous section, we consider the Szilard engine to be a single-particle
box, which after the barrier insertion is in the state |L,) or |R,), where n is a
positive integer. Since we have a binary measurement outcome, we can model
the quantum demon as a two-state quantum system. Assume that the demon is in
an initially prepared state | Dy). Since we only measure which side the particle is
on, and not its exact eigenstate, the measurement process is accomplished by the
transition

[Rn) Do) — |Rn)[Dr) - (4.30)

Since we want the measurement to be unambiguous, |Dg) and |Dy) has to be
orthogonal. An example of an interaction Hamiltonian between the system and
demon that accomplishes this is given in [54]. That is, an interaction

Hipy =06 (| L) (Ln| — |Rp) (Ral) (IDr) (Dr| — |Dr) (D) , (4.31)
acting for a duration At = 7wh/40, when the initial state of the demon is
|Do) = (ID1) +|DR)) /V2, (4.32)
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and the initial state of the engine (after barrier insertion) is
pp =271 e PR (L) (L] + | Ry) (Ral) (4.33)
k

results in a full density matrix for the joint system of demon and engine

p=e T3 |Do) (Dol = (pr |D1) (Di| + pr |Dr) (Drl) /2. (4.34)

where
pr = Z70 e PP L) (L, (4.35)
n=1
pr = Z7'Y e PR R ) (R, (4.36)
n=1

If we now take the partial trace of the joint density matrix p, to find the density
matrix of the engine after the interaction we obtain

pe = Trp(p) = (Dr|p|Dr) + (Dr|p|Dr) = pE, (4.37)

and therefore the entropy, S(p) = —kgTr(pln p), of the gas is unchanged for an
external observer. On the other hand, the state of the demon will have changed
from an initial pure state | Do) (Dy| to a mixture

pp = Tru(p) = Y (Lal p|Ln) + (Bul p|Ra)) = (ID1) (Di| + |Dr) (Drl) /2,
' (4.38)

and therefore the entropy of the demon changes by an amount
AS = 5(pp) — S(|Do) (Do|) = kpIn2. (4.39)

So the sum of the entropies of the demon and engine has increased, yet the
entropy of the joint system could not have increased: the measurement process
was a dynamical quantum time-evolution on an isolated engine-demon system,
and unitary operators conserve information. The answer is that the loss of infor-
mation regarding the demon, is compensated by an equal increase in the mutual
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information between the demon and the engine
Al =1(p)—I(pp ® pp) = kpIn2. (4.40)

From the conservation of information, it follows that an increase in entropy must
be accompanied by an equal increase in the mutual information

Al = AS. (4.41)

This mutual information can be used to extract kp In 2 amount of work from the
engine, as discussed in the previous section. However, after this work extraction,
the demon is still in a mixed state, and to perform the next cycle of measurement
and work extraction the state of the demon must be reset. By leaving the demon
in a mixed state when initiating the next cycle, the coupling with the engine via
the interaction H;,,; would not result in an increase of the mutual information. In
order to reset the joint system to its initial state, we have to delete the information
that is already stored in the demon. How to do this will be discussed in the next
section.

4.4 Quantum Landauer’s principle

We are now equipped with the tools needed to formulate Landauer’s erasure prin-
ciple for quantum states, and we will follow the derivation in [49]. We can model
the standard binary memory as a two state system, which is either in the state |0)
or |1). The memory is coupled to a finite sized bath, which is in one of its N ac-
cessible microstates. The /V accessible microstates constitutes a subspace of the
full Hilbert space of the bath. Since the state of the bath is inaccessible to us, as
the observer, we describe it by a maximal entropy state, where all of its states are
equally likely

1
Phath = > |n) (nl. (4.42)
Since the state of the bath is a maximum entropy mixed state, its entropy is
S(pratn) — kBTE [ppath 10 ppatn] = kpIn N (4.43)
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The initial state of the memory is ppen = |i) (i|, where i is either 0 or 1. The
initial state of the full system (memory + bath) is therefore

o =10) (0l @|n) (n], or P =[1) (1@ n) (n], (4.44)

where |n) is the unknown state of the bath. Let’s consider the |0) state as the
standard state of the memory, which it is reset to after deletion. The final state of
the total density matrix after deletion is then

pl™ = Upi™UT = |0) (0] @ pjosn, (4.45)

where ¢ can be either O or 1. Since the time evolution U operator is unitary, all joint
system-bath initial states, |i) |n), that were once orthogonal remains orthogonal in
the final states they are mapped to. This is equivalent to logical reversibility:
by applying the inverse time evolution on the final state, we end up in the same
initial state. The joint state of the memory and bath, |0) |n) is therefore mapped
to orthogonal states, and the final density matrix is on the form

pl™ =10) (0| @ |n,4) (n,i] (4.46)

where U |i) |n) = |0) |n, ). Now since the two possible initial states of the joint
system, pi* and p™ are orthogonal, the two states pj" and p)™ will also be
orthogonal. Since |0) and |1) are orthogonal, we see from Eq. (4.46) that this
implies that the states |n, 0) are all orthogonal to the states |n, 1)

(n,0lm,1) =0, VYV n,m. (4.47)

This is a statement of reversibility: the set of states |n,0) and |n, 1) can not have
any states in common, since if that was the case, we would not be able to discover
what the initial state was by measuring the final state.

Now, we have to impose the key condition of erasure; the observer should
not be able to determine which state the system was in initially. Therefore the
final microstates of the bath, |n, 0) or |n, 1), must correspond to the same macro-
scopic state. Since the initial macrostate of the bath contains N microstates, the
final state of the bath must therefore be a macrostate containing 2/ microstates.
In other words, the accessible microstates (which is still a subspace of the full
Hilbert space) of the bath, have increased from N to 2/N. The change in entropy
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is therefore
AS = —kgTIn2N + kgTIn N = kT In2, (4.48)

which is the same as the classical case. The Landauer principle has recently been
confirmed in a fully quantum system [55].
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Chapter 5

Deep reinforcement learning

Deep Reinforcement Learning is an exciting field, based on machine learning. It
is a highly adaptable technique, that can be used to solve a large variety of tasks.
In paper 4, we use this technique to solve an optimization problem related to a
quantum Szilard engine. Therefore, we give a general introduction to the field in
this chapter, as well as explain the specific algorithm we used in detail. It is not
required to know anything about deep learning to understand this chapter, and we
will not go into technical details of neural networks. While reading this chapter,
one can essentially think of the networks as function approximators. For more
information on the basics of neural networks and why they are such excellent
function approximators, see [56, 57].

5.1 Short introduction to reinforcement learning

There are three main subfields in modern machine learning: supervised learning,
unsupervised learning, and reinforcement learning. Supervised learning can be
summarized as training a neural network to learn a function that maps input data
to some output. The function is inferred by comparing the current output of the
network to the desired output and updating the network parameters. Unsupervised
learning is used to find commonalities in the input data, and is used to group, clas-
sify or categorize unlabeled data.

Reinforcement learning differs from supervised and unsupervised learning and
is based on letting an agent learn how to behave in a desired way by taking ac-
tions in an environment and observing the effect of the action on the environment.
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Figure 5.1: Schematic showing the basic formulation of the reinforcement learn-
ing. An agent performs an action A; which induces a state change of the envi-
ronment from S; to Sy, 1. The agent then receives an observation of the new state
of the environment, O, 1, and a reward, R, that tells it how good the previous
action was.

In order to define the "optimal" behavior of the agent, we give it feedback in the
form of a reward based on the effect of its previous action. If the action change
the environment into a more desirable state we give it a positive reward, while if it
had negative consequences we give it a negative reward. A schematic of the basic
reinforcement learning protocol is shown in Fig. 5.1. At time ¢ the environment is
in a given state S;. The agent performs an action A; which induces a state change
of the environment from S; to Sy, 1. The agent then receives an observation, O, 1,
of the new state of the environment. This observation may be an observation of
the full state, i.e. O, 1 = S;;1, or it can be a partial observation such that it is a
subset of the full state, i.e. O;11 C Sii1.

As an example task that’s suitable for reinforcement learning, consider the
archetypal the cart pole balancing problem. An inverted pendulum is attached
to a cart as shown in Fig. 5.2. The task is to balance the inverted pendulum in
its upright position by moving the cart right or left. In this task, the state of
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Figure 5.2: Schematic of the cart pole system. The goal is to minimize the angle 6,
and the state of the system is fully described by the position z, horizontal velocity
v, the angle of the pole 6, and its angular velocity w.

the environment would be described by the position of the cart x, its velocity
v., the angle of the pendulum with respect to the central axis 6, and the angular
momentum of the pendulum w. The state space would then be S € {x,v,,0,w}.
Usually the more of a state the agent is allowed to observe, the easier it is to
learn the desired behavior, so let’s say the agent’s observation is complete O = S.
The reward could be r = +1 for every timestep the pole has not fallen below
a certain angle, and » = —10 if the pole falls down. The reward space is then
R € {+1 Vv —10}. In the simplest case, the actions available to the agent could
be to apply a certain amount of force, F),, in the x-direction to either the left or
right side of the cart. The action space is therefore A € {—F, V +F,}. In order
to understand how we could utilize this information to teach the agent to balance
the inverted pendulum we first need to understand the mathematical foundation of
modern reinforcement learning; Markov Decision Processes.
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5.2. Markov decision process

Figure 5.3: An example of a simple Markov chain model. This one have 4 dit-
ferent states, and the transition probability between each state is indicated by the
numbers next to the arrows.

5.2 Markov decision process

5.2.1 Basic introduction

A Markov Chain is a stochastic model for the transitions between different states,
where the transition probability only depends on the current state. The indepen-
dence of the future state on the full history of the states visited is called the Markov
property. Mathematically it can be defined as

P(si11|8:) = P(St21|St, St—15 -+ -5 50), (5.1

1.e., the conditional probability for transitioning to the state s, ; from the state s,
does not depend on the preceding states s;_1, s;—2, ..., So. In Fig. 5.3 a simple
Markov chain model is shown. It consists of four different states, Sy, S1, S, and
S3. The numbers next to the arrows indicate the transition probability from each
state, and the sum of the transition probabilities from each state is equal to 1. In
this example the state S5 is a terminal state, since the only transition available is
to itself. Markov decision processes was introduced by Richard Bellman in 1957
[58]. An MDP is similar to a Markov chain, but now transitions between states
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are mediated by the choice of a set of actions available at each state. In addition,
some state transitions result in a reward, which can be either negative or positive.
An example of a Markov decision process is shown in Fig. 5.4. Here the actions
are chosen by the agent, resulting in a stochastic transition to other states. In the
state Sy there are three available actions to choose from, A;, A, and Ajz. After
choosing the action As there is a 10% chance to move to state S,, receiving a
reward of R = +100, and a 90% chance to move to state Ss, receiving R = +10.
Assuming we ended up in state Sy there is only one available action, A;, which
have 50%/50% probability to take us either back to S or to the terminal state Ss.
Once we reach state S5 there is again only one available action, which takes us
back to S5 with a reward (punishment) of R = —10. In this example the transitions
after choosing an action are stochastic, but a MDP can also be deterministic, i.e.
a given action in a given state always result in the same transition.

The goal of the agent is to find a policy (what actions to take at each state),
which maximizes the total reward received. In the example given one might be
able to find the optimal policy by inspection, but for larger more complicated
MDPs this approach quickly becomes impossible. Richard Bellman found a way
to estimate the optimal policy of a MPD, but to understand it we first need to
define the value and quality functions.

5.2.2 Value function and Quality function

Consider the 2D grid word example shown in Fig. 5.5. Here the state of the sys-
tem is given by the coordinates of the grid, e.g. s = (1, 1) is the state in the upper
left corner. There are two special states in this example; if s = (1,4) we get a
reward of R = +10, while for s = (3,4) we get a reward of R = —10. Both of
these states are also terminal states, so if we reach that state the game is over. The
state s = (2, 2) is also in a sense special, because it is unattainable. For each state
there are four possible actions available to the actor; it can move in either of the
cardinal directions. If the agent moves into any wall, it ends up in the same state
it started in. A policy (denoted 7(a|s)) in RL is an instruction to how the agent
should act for any given state. On the left side of Fig. 5.5 the possible actions
available for each state is indicated by the arrows. This is a random policy, and if
the goal is to get to the state that gives you a reward of R = 410, it is not a very
good policy. In this example, the optimal policy is easy to find by inspection, and
it is shown on the left side of Fig. 5.5.
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5.2. Markov decision process

Figure 5.4: An example of a Markov decision process. As in the Markov chain
model there are four possible states, but now each state has between one and

three possible actions available. Some actions also result in negative or positive
rewards.
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3 I -10 6 3 L] — l -10 ‘

Figure 5.5: A 2D gridworld with 4 x 3 — 1 possible states and two terminal
states, (3,4) and (1,4) which give rewards 410 and —10 respectively. The arrows
indicate the actions available at each state. On the left side we have a random
policy, and on the right side we show the optimal policy.

The value function V. (s) for a given policy 7 is just the expected cumulative
reward gained by following the policy from the state s onwards. The value func-
tion for the optimal policy of the grid word example is shown on the left side of
Fig. 5.6. Since the maximum reward we can get is R = +10, and the optimal
policy we found always takes us to this state, the value function is V. (s) = 10 for
all states except the state s = (3,4) which have the value V,(3,4) = —10. An
important concept we have to introduce now is the discount factor . Because of
inflation and the possibility to gain interest on bank deposits, receiving 100 $ now
is better than receiving 100 $ later, and the discount factor is meant to account
for situations where this concept is applicable. For the cart-pole example from
the previous section, the actions the agent have recently performed are more im-
portant to stabilize the inverted pendulum than actions it performed 100 timesteps
earlier. Applying a discount factor of v = 0.9 to the value function of the grid-
world example gives us the value function as shown on the right side of Fig. 5.6.

The Q-function (quality function) is closely related to the value function, the
only difference is that it gives the expected cumulative reward given a state-action
pair. Q. (s,a) gives you the expected cumulative reward given that you are in
state s, take the action a and follow the policy thereafter. The Q-function for
the gridworld example with a discount factor of v = 0.9 is shown in Fig. 5.7.
The grids are now divided in four, one triangle for each possible action, and the
brightness of the color illustrates the Q-function value for each state-action pair.
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Figure 5.6: In this figure we show the same gridworld as above, only now we have
filled in the value of each state, given that we follow the optimal policy. The right
one is shown without a discount factor, and on the left we have applied a discount
factor of v = 0.9.

For a given state, actions that take us away from the goal are worse than actions
that take us towards it, and the total quality of a state increases progressively as
we get closer to the goal. The actions that take us to the negative terminal state are
obviously the worst possible, so they are indicated by a red color. The advantage
of describing the system by the Q-function instead of the value function is that the
former encodes both the value of being in a certain state, and the policy to follow.
So by finding the optimal Q-value of all the state-action pairs, denoted Q% (s, a),
we also find the optimal policy 7*(a|s). If we always choose the brightest shade
of green in each state of Fig. 5.7 we see that they correspond to the arrows of the
optimal policy shown in Fig. 5.5.

5.3 Deep Q-Learning

5.3.1 Basic formalism

So how do we find the optimal Q-value? The value function can be defined as

Vi(st) = E[R(st, a1, $t41) + YR(St41, Qer1, Seva) + -+ V" R(S7-1, 0721, 87)]

(5.2)
where R(s;, as, s;11) is the reward received by going from state s; to s;,1 via the
action a;, and s is a terminal state. The discount factor is applied for all the future
rewards and [ ] indicate the expectation value, in case there is stochasticity in the
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Figure 5.7: Here we illustrate the quality function of the grid word example with a
discount factor of v = 0.9. The brightness of the green color indicates how good
the state-action pair is (brighter means higher expected reward).

transitions. This equation can be rewritten as
Va(se) = E[R(se, az, 5041) +7Va(se41)], (5.3)

since

Ve(st11) = FE [R(3t+1> Apr1, Sta2) + oo+ T R(s,01, a0, S‘r)] . 5.4

We define the transition probability 7'(s;, as, s;11) as the probability to go from
state s; to s;,1 given that we choose the action a;, and write the expectation ex-
plicitly as

Ve(sy) = Z T(s¢, ar, Se1) [R(se, ar, Se41) + YV (S141)] - (5.5)

St+1

If we have found the optimal Value function 7*(a;|s;) V ¢ the following relation is
obviously true

V(st) = rrgixZT(st, ar, Se41) [R(Se, ae, Se1) + YV (5041)] - (5.6)

St+1
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That is, the optimal Value function (maximum expected future reward) is obtained
by taking the action a; that maximizes the expected immediate reward obtained
plus the expected reward from all possible future states that this action leads to.
This equation is known as the Bellman Optimality Equation [56]. It has a very
similar form for the Q-value function;

Q;(Sn at) = rr}zax E T(St, Gy, 3t+1) {R(st, ag, 3t+1) + v Tax Q;(St+17 at+1)} .
t t41
St4+1

(5.7)
This equation can be used to iteratively update the estimated value for the optimal
Q-value for every possible state-action pair:

Qiﬂ(st,&t) — E T(St, at>5t+1) |:R(5taa't73t+1) + Iclllaii Qi(5t+1aat+1):| .
t+
St4+1

(5.8)
Here Q¥ (s;, a;) is the estimate of the Q-value for the kth iteration of the algorithm.
These estimates are guaranteed to converge to the optimal Q-value, given enough
iterations [56]. Once the optimal Q-value is found, the optimal policy is given by

7" (a¢|s;) = argmax Q" (s¢, a) (5.9)
at
This is an example of dynamic programming; we break down the complex prob-
lem of directly finding the optimal policy to the subproblems of finding the opti-
mal Q-value for each state-action pair, which we then use to extract the optimal
policy.

Finding the optimal policy using Eq. 5.8 can certainly be effective for small
systems. However, the algorithm scales very poorly for larger MPDs with many
states and actions. Using it we have to calculate values for all the state-action
pairs. This is certainly possible for the grid word example introduced earlier,
where we have approximately ~ (3 x 4) x 4 = 48 state-action pairs, but for
the inverted pendulum the state-space is continuous, so we have in principle an
infinite number of state-action pairs. The solution was introduced by DeepMind
in 2015 [59], and involves approximating the Q-function using a neural network.

Q(s,a) ~ Q(s,a,0). (5.10)

Here 6 are the parameters of the neural network (its weights and biases). Neural
networks are excellent function approximators, and with this innovation, Deep-
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Mind was able to greatly outperform humans in several Atari games [59]. Training
a neural network to approximate the Q-values is called Deep Q-Learning (DQL).

A neural network trains by minimizing a loss function (also called a cost func-
tion). Let’s say you want to predict housing prices in Oslo by looking at features
such as the latitude and longitude, number of bedrooms, age of the house, and so
on. You have obtained a certain amount of data where you have the prices of the
houses as well as those features. A common loss function is the mean squared
error (MSE)

n

1 )
MSE =~ 3 (s — %), (5.11)
i=1

where 7 is the number of samples, y; is the true housing price (the target value)
and ; is the price predicted by the neural network. The MSE of the output from
a neural network can be minimized by calculating its gradient and adjusting the
weights and biases of the network accordingly. When the gradient of the MSE
is zero we have reached a minimum (hopefully a global minimum) of the loss
function. The details on the special back-propagation method used for training
neural networks can be found in several articles, blog posts, and books, including
[57].

When training the network in DQL, we do not actually know the real optimal
Q-value. However we know that according to the Bellman equation the optimal
Q-value satisfies

Q*(s¢,a4,0) = F [rt + v max Q% (S¢y1, ri1, 9)] , (5.12)

at41

where we have introduced the short-hand notation 7, = R(ay, s¢, S¢11). We can
use this estimate as our target when training the network. The MSE loss function
for DQL then becomes

LO)=E

2
(Tt + v max Q (5¢41, @41, 0) — Qs ay, 9)> ] (5.13)

at41

5.3.2 Improvements

For DQL to work properly and converge to a good estimate of the optimal Q-
values, there are several improvements we can make. Some of these were intro-
duced in [59], and will be covered in the following.
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Exploration vs Exploitation

When the network is initialized its predictions for the Q-values are of course to-
tally wrong. So if we always chose the actions that maximizes the current pre-
dicted Q-values, argmax Q*(s;, a;), the agent would not learn anything. We need

to let the agent explgtre the state-action space by randomly performing actions. A
typical exploration policy is the e-greedy policy. In the beginning of the training
the agent chooses random actions with probability €, or the ones with the highest
Q-value (greedily) with probability 1 — €. As time goes and the agent explores
more and more of the environment, ¢ is decreased so that it focuses more on the
areas of the state-action space with higher Q-values. Typically, we start by tak-
ing completely random actions, € = 1, and let € converge to some finite number
e ~ 0.0, so that there is always some exploration going on.

Experience Replay

As seen in Eq. 5.13 a single update of the network weights requires the follow-
ing input: the current state s;, the action chosen a,, the immediate reward r;, and
the next state s;.;. We call this tuple, e, = (s;, as, 74, Sev1), that the network
trains on an experience. Instead of training on consecutive experiences we store
them all in a memory M; = {eg,e1,..., ¢}, and then train on randomly drawn
batches of samples from the memory. The memory have a finite capacity, and
new experiences replace older ones when the memory is full. There are three
main advantages of training on the replay memory: It is data efficient since a
single experience can be drawn many times. Only training on consecutive expe-
riences is inefficient, since the network tends to forget previous experiences by
overwriting them with new experiences. The time-correlation of consecutive ex-
periences means that the network update due to the current experience determines
what the next experience will be, so training can be dominated by experiences
from a certain area in the state-action space.

Target Network

Finally, we see that in Eq. 5.13 the current weights of the network determines both
the target Q-value and the predicted Q-value. Thus every network update changes
the target Q-value that we are trying to reach. This is like a dog chasing its own
tail, and makes it hard for the network weights to converge. A simple way to
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circumvent this problem is to use two neural networks, one for the target Q-value
(67), and one for the current Q-value ().

L) =E

2
(Tt + Y mai( Q;(St—i-h Ati1, 0_) - Q(sta G, 0)) ] : (514)
at4+

The target network weights #~ are updated to the current network weights, 6~ —
0, every N iteration of the algorithm. A pseudocode of the DQL algorithm pre-
sented in [59] is shown below

Initialize memory M
Initialize Q-value network with weights 6
Initialize target Q-value network with weights 6~ = 0

for episode = 1 to N, do
Reset environment to initial state sg

fort=11tTdo
Select random action a; with probability e

Else select a; = argmax Q*(sy, a;)
at
Execute action in environment and observe r; and s; 1

Store experience (sy, as, ¢, S¢11) in memory M
Sample random experiences (s;, a;, i, S;11) from M
If s;41 1s a terminal state set y; = 7;
Else sety; = r; + Tﬂf Q(Sit1, @ig1,07)

0

Perform a gradient decent step on (y; — Q(s;, a;, )
Every C steps set 6~ =0

Set s;+1 = s; and decrease €

end

end
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Chapter 6

Fluctuations of biomolecular motors

In this chapter, we give a review of work done in collaboration with the Small
Biosystems Lab at the University of Barcelona. The work revolves around doing
experiments on the interaction between helicases and DNA. Helicases are a class
of biomolecular motors proteins whose main function is to unzip the genes of
an organism, i.e. its DNA or RNA [60, 61]. The one we studied belongs to the
RecQ family of helicases, which unzips double-stranded DNA (dsDNA) into two
complementary single-stranded DNA (ssDNA).

6.1 DNA-helicase interaction

An ssDNA consists of nucleobases (i.e., A, T, C, G) attached to a backbone of
alternating phosphate and sugar residues [62]. The backbone has a directionality
due to the orientation of carbon atoms in the sugar residues, and the two direc-
tions are known as the 3°-5" and the 5°-3” direction. Two ssDNA can combine
to form a dsDNA (or a ssDNA can close on itself and form a hairpin loop as in
Fig. 6.1), if the nucleobases of the two strands are complementary. The base-
pairing rules are that adenine (A) can combine with thymine (T), and cytosine (C)
can combine with guanine (G), to form nucleotide base pairs. The backbone of
the two strands of a dsDNA is always anti-aligned, with respect to the 3°-5" and
5’-3’ direction. When a helicase unzips a dsDNA, other bimolecular motors can
attach to the single strands in order to perform various tasks. An example is the
polymerase enzyme, which binds to the ssDNA and makes copies of a sequence
of nucleobases. The cooperation between the helicase and polymerase is essential
for DNA replication, and thus all of life as we know it.
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6.1. DNA-helicase interaction

We consider a system consisting of a 480 base pair (measured from the handles
to the start of the hairpin loop) DNA-hairpin in an optical trap, which is unzipped
by a RecQ-helicase, as shown in Fig. 6.1(A). Two plastic beads are attached to the
ends of the hairpin, where the smaller bead is kept fixed by a suction force from
a micro-pipette, and the larger bead is trapped in the focus point of an optical
tweezer. We can move the bead in the optical trap, by moving the focus point,
along the axis between the two beads. The bead in the trap pulls on the hairpin
with a constant force feedback while the helicase translocates along it, in the 3’-
5’ direction, opening the base pair bonds as it goes. The helicase is powered by
ATP-hydrolysis and the chemical energy supplied is

EMP = (n(t) = n(0)) Narp A, Ap = parp — papp — pip,- - (6.1)

Here Narp is the number of ATP hydrolyzed per base pair, n(t) the number of
base pairs opened in time ¢, and Ay is the change of chemical potential when
converting one ATP to an ADP and an orthophosphate. The optical trap exerts a
constant force feedback on the hairpin which results in the work contribution

WP = for (x(t) — x(0)), (6.2)

where for is the constant force feedback that we apply with the optical tweezers
[63]. The force applied by the optical tweezers is not large enough to mechanically
break the base pair bonds. The helicase itself breaks the bonds and translocates
along the hairpin. However, the force applied by the optical trap can lower the
energy barrier that the helicase has to overcome to open the bonds. After a bond
is broken, the force feedback quickly stretches the released extension so as to
maintain a constant force on the hairpin. The feedback protocol quickly moves
the trap further away to regain the constant tension force on the hairpin. The
change in energy of the hairpin due to the bond breaking and strand stretching is

z(t)
EtDNA — Efond + Etstretch — Go(n(t) — TL(O)) — /0 fwlc(x)dxa (63)

where (5 is the free energy change due to opening one bond and the integral is
the work required to stretch the ssDNA handles after opening base pairs. The
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Figure 6.1: Schematic of the experimental setup. (A) shows the initial condition,
just after the helicase (yellow hexagon) has attached itself to the DNA hairpin.
In (B) the helicase has opened a number of base pairs, and the tweezers have
stretched the released ssDNA handles. When the hairpin is fully opened (C) the
helicase in the center of the loop prevents recombination of the hairpin. Once
the helicase has passed the loop (D) the hairpin starts to close behind it. Finally,
the helicase switches over to the complementary strand (E) and starts unzipping
again.

conservation of energy therefore gives us the following relation
EMP + WO = BPN 4+ Q (6.4)

We had two main objectives to achieve in our study; to study the kinematics of the
helicase (its average velocity, variance, etc.), and its energetics. We begin with the
former.

6.2 Kinematics

A schematic of the hairpin-helicase interaction is shown in Fig. 6.1, and a typical
experimental helicase unwinding events we observed is shown in Fig. 6.2. In
Fig. 6.2 the vertical axis shows the position of the optical trap A\, where zero is
the relaxed position with a fully closed hairpin. When the helicase attaches to the
DNA and starts to unzip the hairpin, the optical tweezers and the bead in the trap is
moved away from the bead in the micro-pipette in order to keep a constant tension
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Figure 6.2: Typical event measured. In this figure we see what appears to be a
single helicase, opening the hairpin, which closes behind it after it has moved past
the loop, and then switching strand to open it again, for several cycles.

force on the DNA. This is indicated by the red box in Fig. 6.2, and corresponds
to Fig. 6.1(A-B). When the hairpin is fully unzipped, we have a fully unwound
ssDNA. The helicase then moves through the loop, blocking any recombination
of the hairpin, as shown in Fig. 6.1(C) and the blue boxes in Fig. 6.2. Once the
helicase has passed the loop, the hairpin starts to close again behind it (Fig. 6.1(D),
and green box in Fig. 6.2). After some time, the helicase jumps over to the other
strand, and begins to unzip the nucleotide base pairs again (Fig. 6.1(C)). This
process of unzipping, recombination, and strand switching is repeated until the
helicase disassociates from the DNA-hairpin.

We focus on the forward unzipping of the DNA, shown in the red box in
Fig. 6.2, and all further analysis is performed on data of this type. The probability
density of the distance moved by the helicase in a given time At € [25 ms —
800 ms|, when applying a constant force of 10 p/N is shown in Fig. 6.3. The
probability densities are Gaussian for all timescales, with an increasing standard
deviation as a function of time.

The helicase translocates along the DNA-hairpin, hydrolyzing ATP and open-
ing nucleotide base pairs, and it does so at a certain average velocity. We can find
this average velocity by measuring the extension of the whole hairpin with the
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Figure 6.3: The probability distributions of the helicase moving a distance dx in
a given time interval dt when a force of 10 pN is applied by the optical tweezers.
The error bars are the standard deviations of the velocity for each force, and the
number of unzipping events per force varies from 42 for 5 p/N to 146 for 9 pN.
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optical tweezers. This measurement in units of nm/s can be used to estimate the
number of base pairs that is opened per second bp/s, by using the worm-like chain
model (to be introduced in section 6.3.1). Therefore we can define two different
velocities; v, (t) = @(t), which measures the rate of change of the extension of
the DNA hairpin in nm/s, and v,, = n(t), which measures the helicase velocity
relative to the DNA substrate in units of bp/s. In Fig. 6.4 we show plots of the
velocity as a function of the constant force applied by the optical tweezers.

While the rate of change for the extension (measured in nm/s) is an increasing
function of force, the velocity of the helicase with respect to the DNA substrate
(measured in bp/s) is approximately independent of force. For high forces the
end-to-end extension of the sSDNA handles (which is what we measure with the
optical tweezers), is approximately the same as the contour length, i.e. the ssDNA
is fully stretched. Therefore any change in the extension we measure is due to the
opening of base pairs. However, when the force is decreased, such that it is lower
than the entropic force pushing the polymer towards a more entangled configura-
tion, the ssSDNA forms bends and curls. Therefore, when the helicase breaks base
pair bonds in the low force regime, the full length of the newly released segment
does not result in the same length change of the end-to-end distance, but rather al-
lows for more twists and bends in the ssDNA. This is the reason why the velocity
of the end-to-end extension v, (t) decreases for lower forces.

6.3 Energetics

6.3.1 Work cost of stretching DNA polymer

At finite temperatures, the distance between the two ends of a ssDNA (end-to-
end distance) will be significantly shorter than the contour length L,. This is
caused by thermal fluctuations, which result in a coiled, random configuration of
the polymer. Upon stretching the polymer, the accessible spectrum of fluctua-
tions reduces, which causes an entropic force against the external elongation. The
worm-like chain (WLC) model is an interpolation formula that approximates the
force-extension behavior, and is given by

po=t(1_" Col, 6.5
rpe=1(1-1) —ito (6.5)
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Figure 6.4: Velocity as a function of force. The orange line is in units of bp/s (the
actual velocity of the helicase), and blue line is in units of nm/s (the rate of change
of the extension of the DNA hairpin as measured by the optical tweezers).

where x is the end-to-end distance, and P the persistence length, 3 is the inverse
temperature, and f is the external force applied. The persistence length is the
length at which correlations in the direction of the tangent of the polymer are lost.
The ratio /Lo can be considered as the fraction of "stretched" polymer. If it is
equal to 1, there are no coils and the entropy is zero.

Finding the equilibrium extension at a given force

To find the end-to-end distance of a polymer with contour length L, and an ex-
ternal force f, we rewrite Eq. (6.5) as a third order polynomial and relabel the
variable 2’ = x /L,

(14+4fPB)(1—a')’ =42/ (1 -2 —=1=0 (6.6)

(1+4fPB) (22 =22/ +1) —4a' (2% =2/ + 1) =1=0  (6.7)

relabeling C' = 1 + 4 f Pj3, and gathering the terms we get
42”3 — (C +8)x” — (2C +4)2’ + (1 - C) =0, (6.8)
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which is a third order polynomial, which has one real and positive solution. If the
polymer is a single-stranded DNA, we can estimate the contour length as Ly =
Ny ly,, where N is the number of nucleotide monomers in the strand, and [y, is
the length of one nucleotide. One of the roots of Eq. (6.8) is some real positive
number X, which we can use to estimate the number of bases in a SSDNA. With
the root Xy = /Ly we find

T T T
X, — Ny =
0 b XO lbp’

Lo Nyl

(6.9)

where z is the extension at a given force, found from experimental measurements.

To summarize, the worm-like change model is a relationship between the ex-
ternal force, end-to-end distance, and contour length of a polymer; if you know
two of the variables you can find the third. The minimum work done by stretch-
ing the polymer from an end-to-end distance z to z; can be found by integrating

Eq. (6.5)
@t 1 L2 T
WS:/ dx:—{—o——%——} (6.10)
Z0 f Pﬁ 4(L0 — :1:) 4 2 LO o
which in the case where xy = 0 becomes
1 L2 (ZL’t + Lo) ],’2
W, =— 0 _ : 6.11

Stretching of a DNA-hairpin

In the previous section, the assumption was that the polymer is static with constant
contour length. When we consider a DNA-hairpin the interpretation changes a bit.
In that case the contour length is a function of time L (t) = Nyy(t) I, because the
number of nucleotides opened depends in some way on time (either due to time
dependence in the force applied, or due to helicase unwinding activity). However,
assuming that the hairpin itself does not significantly affect the coiling behavior
of the ssDNA handles, we can still use the WLC model. The math would be the
same as in the previous section, up until we find X,. Now every time a base pair
is opened, we gain a length that is equal to two nucleotides, therefore the ratio
between a change in extension Ax and the associated change in number of base

pairs opened ANy, is
Ax Ax

ALy,  20,AN,,

X, (6.12)
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We can define a constant v, given by

Az
AN,

0 = 2X0 lyy (6.13)
which can be considered as a conversion factor between the end-to-end distance
Az and the number of base pairs opened in the hairpin, AN,,. This factor can
be used to find how many base pairs are opened when the extension increases
by an amount Ax. Assume now we have measured an increase in the end-to-
end distance Az, and we want to find the minimum amount of work that was
performed in stretching that new segment. From Eq. (6.11) we find

- 1 L2 ~ (Az + L) N Ax?
. L (QANbplbp)Q o (A.CE + QANbplbp) Aﬂf2
~ PB [4(2ANylL, — Ax) 4 2 (2A Ny lyp)
12 2
_ A { (1 2) } 6.14)
Pﬁ’y 2lbp - 4 4lbp

where we have used Ax = AN,y and ALy = 2ANy,ly,. The net work done is
therefore

Whet = Wor—We = A — P _ P 6.15
= Wor~Ws = ar | - 5o (e - DEEel L 253 sy

6.3.2 Entropy production and fluctuations
Steady state entropy production

In the introduction of this chapter, we briefly discussed the energetics of the com-
bined helicase and dsDNA system. According to the first law of thermodynamics,
the energy balance is

ArNare B eny Z NG+ Q. (6.16)

where AG is the change of free energy of the dsDNA obtained when the helicase
unzips Abp base pairs, or equivalently the bead in the optical tweezer moves a
distance Ax = vAbp

AG = AGy + / Fute da. (6.17)
Z0
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Here AGy = % is the change in free energy due to base pair bond breaking
(AGYy, is the change in free energy per bp, ~ 2kgT" at room temperature), while
the integral is the stretching contribution. Solving this for () and dividing by 7’
we get the entropy production as

1 [Az N A AzAG o

AS — L T NaTp B AT bp + fAzx _/ Fuvte d:L’.:| (6.18)
T Y Y To
Az xt

1
= 2T (NappAp— A ~ Az —
T (NarpAp Gbp)l-i‘ T <f x

N

fwlc dx) (619)

Zo
v ~~

SbP Sstretch

The equation is divided into two parts, which helps us think about the different
contributions to the total entropy production.

Spp 1s the entropy production associated with the inefficiency of the helicase
motor. In the reversible case the energy gained by ATP hydrolysis is 100%
used to open base pairs so the term in the parenthesis becomes zero

NarpAp — AGbp =0,

meaning no heat is dissipated in the process and hence no entropy is pro-
duced. In the case where

NATPA;L — AGbp > 0,

we have a contribution to the total entropy production. This contribution is
always positive, or else it would violate the second law of thermodynamics.

Sstreten 18 the entropy production associated with the work performed to stretch the
DNA after base pairs have opened. In the reversible case where

fo—/ Fote dz = 0
o

we use an amount of work fAx = f(z, — ), to increase the free energy
of the DNA by an amount f;ot fuwie dz, but no heat (or entropy) is generated.
All of the work is reversibly converted into potential energy. Now, if we
have

fAz, — / fuwte dx > 0,
zo
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heat is dissipated since we apply more force than needed to stretch the DNA.
Again this contribution is always positive due to the second law.

The integral in the stretching term was found in section 6.3.1. Putting this
result into the entropy formula we get

!
Az | NappAp — A 1 i 142
ASt:—x ATPRAN Gbp+f__ bp _( A,)_i_i
T ﬁP 47(lbp - "}/) 4 Qpr
(6.20)
We now have an entropy production that is linearly dependent on Az,
S = AAz,
where the slope A is given by
2 lop
P NATPAM—AGbp+f_L 2, _(1+7)+ 5
T v BP \ 4y(ly, — ) 4 20,
(6.21)

Fluctuation theorem

We now assume that the entropy production obeys the standard fluctuation theo-

rem [15] P(AS)

P(—=AS)
where P(AS) is the probability to generate an amount of entropy AS, while

= exp [AS/kg], (6.22)

P(—AS) is the probability to consume an amount of entropy —AS. In this for-
mulation AS only varies in time due to variations in the extension Az, which
again depends on time. All other variables are constant in time. The ratio of the
probability distributions of AS and Az are therefore identical, and we have

P(AS) _ P(AZ) _ asjkn _ jan0/ke (6.23)

P(—=AS)  P(-Ax)
where A is defined in Eq. (6.21). For non-equilibrium steady states (NESS), the
fluctuation theorem takes the form [64]

: 1 Pla) \
A A (P(—a) ) =0 (6.24)

fi(a)
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Figure 6.5: Plot of f;(a) as a function of «a, for increasing time intervals from
7 € [15 ms, 600 ms|. As the time interval increases, the curves converges to
a linear function of time with fixed slope, as predicted by the non-equilibrium
steady state fluctuation theorem.

where a = AS/(AS). By taking the logarithm of Eq. (6.23) and dividing by
(Ax), we obtain the NESS fluctuation theorem for our system

Pla) } _ A (6.25)

1
o || = oy

where a is now a = Az/(Az). If we plot the left-hand side of Eq. (6.25) as a
function of a, we see that we can read of the value of constant A from the slope of
a linear fit. In Fig. 6.5 we plot f;(a) for different time-intervals 7, when we apply
a constant feedback force of 12 pN. For larger time-intervals, f;(a) converges to
a linear function, with a fixed slope. The slope of f;(a) converges to a fixed value
as t — oo, as shown in Fig. 6.6.

Moreover, with the experimentally obtained value for the constant A, we can
use Eq. (6.21) to obtain the number of ATP hydrolyzed per base pair opened by
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a=dx/avg(dx) , S«xdx
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Figure 6.6: Plot of the slope of a linear fit of f;(a), as a function of the time
interval 7. As the time interval increases, the slope of the linear fit converges to a
fixed value, as predicted by the non-equilibrium steady state fluctuation theorem.
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the helicase

Ly
v 1 Iy, (1+22) 4 AGy,
Nagp = L [AKT — f 4+ — . .
ATE Ap U BP (47(lbp —7) 4 - 21y, + Ap
(6.26)

Using this equation for the data obtained from 12 p/N constant feedback, we find
that the number of base pairs opened per ATP hydrolyzed is about ~ 14 bp/AT P.
The hydrolyzation of one ATP provides about ~ 20 kp1" worth of energy, while
it costs on average ~ 2 kg’ to break a nucleotide bond. This implies that if the
helicase is operating at 100% efficiency, it can open a maximum of ~ 10 base
pairs per ATP. Since the number we get is higher than this value, it implies that
the tension applied to the nucleotide bonds by the constant force feedback from
the optical tweezers reduces the energetic cost of breaking the bonds.

The problem with the results we obtain by using Eq. (6.20), is that we assume
the only thing the helicase does when it hydrolyzes ATP is that it translocates.
However, the helicase could be using the ATP for conformational changes of the
molecule. Typically, the operation of molecular motors requires successive con-
formal changes, like kinesin "walking" on a microtubule. To account for this
source of entropy production we have to add another unknown "hidden" entropy
production term, that is assumed to be linear in time.

Ax 1 o
AS, = G2t (Varpdu = AGy) + 1 (fot - / o dx) + D (62
~~ - N -— hidden

pr Sstretch

Here D is a constant dissipation rate, which we associate with ATP hydrolysis
which does not result in translation of the helicase. However, since the fluctuation
in the number of base pairs hydrolyzed is not entirely due to the fluctuation in
the change in extension of the DNA hairpin, we can no longer use the fluctuation
theorem on the extension data, and we will have to find an alternate method for
analyzing the data.
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Appendix A

Energy dependent tunneling rate

In our paper on the optimal protocol (paper 2) for a Szilard engine with mea-
surement errors, we assumed the tunneling rate, I', was constant. The experiment
we based our analytical work on [41], is a single-electron box, consisting of two
metallic islands connected by a metal/insulator/superconductor (NIS) tunnel junc-
tion. The tunneling rate of the NIS junction is [65]

I'(V) = 2I',,, cosh? (V/2), I, = Fr?

(A.1)
where Ry is the normal-state resistance of the NIS tunnel junction and A is the su-
perconducting energy gap in the superconducting electrode of the junction. Here
we update our model by using this V' dependent tunneling rate, [V (¢)]. We
include all the details of the necessary calculations, which can also be used to re-
produce our results for the constant I' case. Details that are already in the paper is
left out, so in order to follow the coming calculations, we recommend reading the
paper first.

A.1 Deriving the differential equation

Beginning from the master equation

p1 = —Tliepr +Tope = —I'py +Tay,
P2 =  Tiapr —Toipa = —I'pa + T'io, (A.2)
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A.l. Deriving the differential equation

where [' = I'15 + I'5;. Detailed balance gives us

r
2LV 5 Ip=0+)7T (A3)
1—‘12

Putting this in Eq. (A.3) for p, we get

1
P2 =T(t) L v P21 (A.4)

using the time NIS tunneling rate, this becomes

Py = p = 2T, cosh? (V/2) { (A.5)

1+e” p}
Implementing this into our existing problem is easy. We only have to change
our expression for p, which we update for each step when solving the differential
equation.

It is more difficult when inverting this equation to solve V' as a function of p
and p, which we need if we want to solve the problem in terms of p and p as we
did previously. Rewriting we obtain

p = 20, cosh? (V/Q){ L p}

1+e
= I, [e_V/Q cosh(V/2) — p (cosh(V) + 1)] (A.6)
The power is still given by
1 T
P = —/ dt pv (A.7)
T Jo

but now we can not write V' purely as a function of p and p. We have to change
variables as compared to how we do it for the constant I' case. There we had p
and p as the dependent variables of the Lagrangian, but now we have to use either
(p, V) or (p, V'), and redo all the calculations. Using (p, V'), we get

1 T
P = = / dt pVv (A.8)
T Jo
_ 2 / TdtVF cosh? (V/2) L (A.9)
T 0 " 1+¢€vV P ’
L'

- -m /OT dt vV G(e—v +1) — p[cosh(V) + 1]) (A.10)

T
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for the power, while for the change in information entropy we get

AH _l/Tdtp1n<L) (A11)
T T 0 ]._p

_ 2 _r_ 2 L

= 7_/0 dtln(l_p) ', cosh® (V/2) [1—1—6‘/ p}

— _F_m ’ L 1 -V —

— . /0 dtln(l—p) (2(6 +1) p[cosh(V)—l—l])

The functional we want to minimize therefore becomes

. AH Se 1 [T :
J=§+—+)\P:—~I——/ dt L(p,p, \), (A.12)
T T T TJ
with the Lagrangian
—-P

which can be written in terms of (p, V') as

L(V,p,,\) = —2T,,In <1’%p) cosh? (V/2) { ! . —p} (A.14)

1+e

2\VT,, cosh? (V/2 —
+ 2AVT,, cos <V/){1+6V p}

= 2I,, cosh? (V/2) L —|—1€V —p} [Av —In (%)} .

Using the Euler-Lagrange formalism

oL dOJL
—_— = A.15
Op dt Op ( )
on Eq. (A.13), the left-hand side becomes
oL oV 1 D OV
o p N — = + \p— (A.16)
op " { op  p(1 —p)} pp—1) Op
We have 1
) = 2 (V)2 - A7
p = 2I',, cosh” (V/2) L v p] ) ( )
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and taking by the partial derivative with respect to p here we get

0 1
— |2, cosh® (V/2) |—— —p|| =0
gy [2Tmesst 12 |5 =
oV eV ov
2r h*(V/2) | -—-————= — 1| + —T,,sinh —p| =
m cosh” (V/2) [ e } + ap m sinh(V) |:1—|—€V p} 0
OV [2cosh?®(V/2)eV 1 )
— — sinh — = = —2cosh 2
o [ & 1) sinh(V) L v p” cosh®(V/2)
Solving for OV/dp, we obtain
o 2 cosh?(V/2)
- : cosh? eV
® sinh(V) [ —p] - S
2 cosh?(V/2
o 1(V/ ) . (A.18)
sinh(V) [7er —p] =3
The right-hand side of the Euler-Lagrange equation becomes
doL d D ov
—— =—|-In|{—— A Ap—| . Al
i i () o] e
We can find 0V//0p by using a property of partial derivatives
ov. oV o
=2 (A.20)
dp  OpIp
and since
dp 0 D 1
I — A21
op Op |21, cosh® (V/2) 14¢V (A2
1
= A.22
2I',,, cosh? (V/2)’ ( )
we obtain the following relationship between 0V dp and 0V/dp:
ov Vv
i 2 coshQ(V/2)a (A.23)

b
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We can now perform the time derivate of the right-hand side, and obtain

doL . p
dtop plp—1)

Writing the full Euler-Lagrange equation in terms of the expressions we have

(A.24)

obtained so far, we have

oV adv .d(@V) OV (A25)

Pop ~a Pa\ap) TPop

and we see that the factors with the Lagrange multiplier A on the left and right-
hand side cancel each other
Now we need to calculate . From Eq. (A.17) we get

. %[QCOSH(V/%(Hlev_p)]

. 1 9 V'V .
= VSth(V) 1+6V_p — 2cosh (V/Q) m—i—p
— Vsinh(V) L~ —K—z‘ osh?(V/2) (A.26)
= s oV D 5 D COS .
and solving for V we obtain
. . 2
P+ 2pcosh”(V/2) 5 (A27)
~ sinhV [1+eV —p] -3
The final thing we need to calculate is %%—V
dov. _d !
dt dp  dt | (v —p)sinhV — 1
_ VcoshV (1+ v — p) + sinh V' ( (1+eV) p)
(o —p) sinh V" — 3)°
V [Ltanh(V/2) — cosh V — + psinh V
_ |: ( / ) (1+6V )i| p (A28)

((r7er = p)sinhV — 3)°

Putting all the expressions we have calculated so far into Eq. (A.25) we finally
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A.l. Deriving the differential equation

obtain the differential equation we need to solve:

2 cosh?(V/2) _ p+2pcosh’(V/2)
SlnhV[1+€V —p] —% sth[HeV —p] —%
N 'V[%tanh(V/Q)—coshV(Hv —p)] +psinhV
(sinh V' [i7v — p] — %)2
1
+ 7 (A.29)

sth [1+eV —p] -3

This is a very messy equation, but it can be simplified considerably. Multiplying
by the denominator and gathering terms obtain

1% [cosh V/ (1+ » —p) — 1 tanh(V/2)] — psinh V

sinh V/ [1+eV —p} - %

% = p (A.30)

We now insert for V

p+2pCObh2(V/2) - [COShV (1+ v — p) — %tanh(V/Q)] — ﬁsinh V
2p/p _ sth[ TV p]*§ (A.31)
sinh V [1+eV —p] - %

-] —3]

(p + 2p cosh? (V/Q)) [ } — psinh V [SlnhV [

(sinh V [ — 9] = 5)°

Multiplying by the denominator and p on both sides we get

e 1 1\ o eV
2p (sth L i p} — —) = (pp + 2p? cosh2<v/2)) [T — pcosh V}

1 1
— pPsinhV [sinhV |:1+€V —p} — 5}
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Gathering p terms on the left-hand side and p terms on the right-hand side

1 1\? eV
5|9 ( sinh 1 . nv o
p[ (sm V{l—i—ev p} 2) +p(pcos V 5 )

- 1 1
= [2 cosh?(V/2) (T — pcosh V> —sinh V' (sinhV L v p} -

= E (1+e™") =p(1+cosh V)}

And finally, by isolating p on the left-hand side, we get the following second order
differential equation

L 1+eV)—=2p(1l+coshV
p =7 : ( ) (2 cosh V) - (A.32)
((2p —1)sinh V' + cosh(V))” +p (2pcoshV — e=V)

A.2 Constraints

Fixed power

Since we are interested in optimal protocols with finite power, we have a con-
straint on the heat flux (power) from the environment. This constraint is solved
numerically, similarly as in the case of constant I', but now it becomes

G = P—l/ dtpV =0 (A.33)
0

T

2 ) 1
G = P——/ dt VT, cosh (V/Z){ +6V—p}20

a - P——/ dtV( +1) - p[cosh(V)+1]>:o

Free endpoint

The value of p(t) is not fixed at the endpoint 7, therefore we have the following

constraint:
7).~ (5 )l (5) |
— = = =—In + AV, +ps - =0, (A.34
(8p)t=T <ap)t:7' (1_p7' p ap T ( )
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A.2. Constraints

where the subscript 7 means that the variable should be evaluated at time ¢ = T,
and

<8_V) _ 1
), (7= —p-)sinh(V;) — 3

Solving for A, this constraint becomes

- ln<1f;T)

Ve + e ([ivr — po] sinh(V7) = )

(A.35)

Variation of ./ with respect to 7

The final constraint is due to the fact that the variation of J with respect to the
period 7 should be zero. It is given by
aJ orP O0AH S,

or - )\E or 12

=0 (A.36)

O0AH
or

GAH_E l/dtl p ——l'l Dr _AH
or  or T Jo t l—p N Tan 1—p, 72

but for 9L e get

Here is the same as with constant gamma

oP 0 [1 P pV
dtpV'| =
or 87 [ / P } T T

Expressed in terms of these variables, the constraint becomes

AR B L () S]]

T T

pr1n (1}’* ) 4 [BHES]

[p"rv*r - P]

(A.37)
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Combining the free endpoint and variation of 7 constraints

We can combine the free endpoint and 0.J/07 constraints by canceling the La-
grange multiplier A which is found in both constraints, in the following way

In (ﬁ;T)

Vet i (e — ] sinb(V;) — 3)

Pr )+[AH+S€].

.T‘/‘F—P:‘TI
N e

The combined constraint becomes

o n (725 ) + e In (72-)

F= . - ="
[6:V> — P] Ve + pr (e = pr sinh(V7) = 3)

-1

(A.38)
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Cooling by heating: Restoration of the third law of thermodynamics
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We have made a simple and natural modification of a recent quantum refrigerator model presented by Cleuren
et al. [Phys. Rev. Lett. 108, 120603 (2012)]. The original model consist of two metal leads acting as heat baths
and a set of quantum dots that allow for electron transport between the baths. It was shown to violate the dynamic
third law of thermodynamics (the unattainability principle, which states that cooling to absolute zero in finite time
is impossible). By taking into consideration the finite energy level spacing A, in metals we restore the third law
while keeping all of the original model’s thermodynamic properties intact down to the limit of k3T ~ A, where
the cooling rate is quenched. The spacing A depends on the confinement of the electrons in the lead and therefore,
according to our result larger samples (with smaller level spacing), could be cooled efficiently to lower absolute
temperatures than smaller ones. However, a large lead makes the assumption of instant equilibration of electrons
implausible; in reality one would only cool a small part of the sample and we would have a nonequilibrium
situation. This property is expected to be model independent and raises the question whether we can find an

optimal size for the lead that is to be cooled.

DOI: 10.1103/PhysRevE.93.032102

I. INTRODUCTION

Quantum refrigerators are solid-state devices with huge
potential benefits in technology. With no moving parts and of
microscopic size, they could easily be integrated into existing
technology, such as cellphones and computers, to enhance
their performance by utilizing the waste heat energy they
produce. As always, the technological frontier is supported by
abackbone of theoretical framework, which in recent years has
seen many advancements (see, e.g., [1-6]). In addition to the
technological possibilities they present, quantum refrigerators
are excellent tools for providing insight into the unique
features of open quantum systems. For a review of stochastic
thermodynamics and the formalism used to treat quantum
refrigerators see, e.g., [7,8].

The quantum absorption refrigerator is a version of these
general machines, based on producing a steady-state heat
flow from a cold to a hot reservoir, driven by absorption
from an external heat reservoir. A key tool to understand the
operation of these refrigerators, when approaching the limiting
temperature of absolute zero, is the laws of thermodynamics.
In this article we study one such device that appears to violate
the dynamic version of the third law of thermodynamics (the
unattainability principle), which states that one cannot cool a
system to absolute zero in a finite amount of time. A recent
publication by Cleuren et al. [9] presented a novel model
based on two electronic baths coupled together via a system
of quantum dots and driven by an external photon source.
The article generated some controversy due to its apparent
violation of the unattainability principle, and several authors
[10-13] proposed explanations for this violation. However, we
find that the discussion was without conclusion, and we will
discuss this later in the article.

We will begin by giving a brief presentation of the quantum
refrigerator model, as introduced by Cleuren et al. [9], and

*v.b.sordal @fys.uio.no
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its thermodynamic properties. Then we will summarize and
comment on the discussion that followed. Finally, we will
present a simple modification, based only on the fact that the
energy levels of metals are discrete when treated quantum
mechanically, which becomes important at temperatures 7 <
A, where A is the level spacing. (We measure temperature
in energy units, setting the Boltzmann constant kg = 1.) Our
modification upholds the third law while it simultaneously
reproduces the results from the original model down to the
limit of T ~ A. In essence, we want to make the point that
the validity of the unattainability principle is only guaranteed
when applied to a quantum description of a system and that
the most important quantum effect to consider in relation to
this law is the discretization of energy states.

A. Model

The quantum refrigerator model proposed in [9] is shown
schematically in real space in Fig. 1 and in energy space in
Fig. 2. Here we briefly explain its operating protocol. It consists
of two metal leads and four quantum dots; the large and hot
lead with temperature 77, is coupled to the small cold lead with
temperature Tk, via the set of quantum dots. We assume that
each quantum dot is highly confined and is thus associated
with a single energy level, since the other levels are far outside
the energy range of the system. These four levels are marked in
Fig. 2. The quantum dots form two channels, as illustrated in
Fig. 1, where the energy levels €, (€;) and €5 + €, (€] — €,) are
coupled together in channel 2 (channel 1). The two channels
are spatially separated, therefore we can safely ignore any
Coulomb interaction between the electrons in channels 1 and
2. The basic idea is to move cold electrons (i.e., with energy less
than w) from the hot lead into the cold lead via channel 1 while
simultaneously moving hot electrons (energy greater than the
chemical potential ) from the cold lead to the hot lead via
channel 2. This transport of electrons will thus cool the right
lead by injecting cold and extracting hot electrons. Naturally
the transport will also heat up the left lead, but since we assume

©2016 American Physical Society



V. B. SORDAL, J. BERGLI, AND Y. M. GALPERIN

Channel 2

D
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Q

»

P.

Channel 1

FIG. 1. Schematic of the model shown in real space. A small
piece of metal with temperature Ty is coupled to a larger piece
with temperature 7; > Tk. Four quantum dots form two channels
for electron transport between the metals. The arrows indicate the
desired direction of the net particle current to achieve cooling of the
right metal lead. The distance between the two channels is too large
for any Coulomb interaction to take place between them.

that it is a large piece of metal with a high heat capacity, the
heat absorbed will not result in a measurable change in 77,. We
can obtain the desired particle flow direction by coupling the
quantum dot system to a bosonic bath that induces transitions
between the quantum dots of each pair, i.e., between €; and
€] — €, in channel 1 and between ¢, and €, + €, in channel
2. The bosonic bath can be photons from an external source
and/or phonons from the device. In this discussion we will
consider it to be a photon bath with temperature 7. In Ref.
[9] the photon bath is taken to be the sun with a temperature
Ts ~ 6000 K and we will follow this in the sense that we
will assume that it is the largest energy scale in the system.
In any case the transition rates between the quantum dots are
proportional to the probability of finding a boson with energy
equal to the energy difference between the two quantum dot
levels, which is given by the Planck distribution n(E). The

Tr

81'89

FIG. 2. A hot metal lead 7T, is coupled to a cold one Ty via
two spatially separated pairs of quantum dots, which form two
channels for electron transport between the leads. We consider the
case where u;, = ug = p and the energy levels of the quantum dots
are symmetric about the chemical potential (6, — pu =pu —€; —
€; = —¢). The schematic is adapted from [9].
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rates are thus given by

kég _ FS

ng _ FS
) e/Ts — 1°

L R
Here k' and k% are the rates for upward and downward
transitions in energy, respectively. The difference between
them is that k¥ contains an additional term for spontaneous
emission.

The transition rate for electron transfer from the metal to
an empty quantum dot level is proportional to the probability
of finding an electron in the same energy level in the metal,
which is given by the Fermi-Dirac distribution f(E). For the
inverse transition to take place there has to be an available
energy level in the metal, which has a probability proportional
to 1 — f(E). Thus the transition rates between the quantum
dot and metal are

l=>d ™ Q(E-w/T £ 17 "4=1 7 ou-B/T 11"

2

For transitions involving the right lead the temperature 7 =
Tr, while for the left lead T = T,. Notice that in general
I # T's. These are the constants that set the time scale of the
transitions and depends on the specific details of the device.

AsinRef. [9], we will considering the strongly coupled case
where the energies of the quantum dots are symmetric about
the chemical potential (¢; — u = u — €;). We can therefore
choose to measure all energies relative to i = 0 and combine
the two parameters €; = —€; = €.

We can now introduce three distinct occupation probabil-
ities per channel. Since the two quantum dots in the same
channel are close to each other in space we assume that the
Coulomb repulsion between electrons prevents simultaneous
occupation of the right and left quantum dots. For channel 1 we
then have the probabilities Pél), P,(el), and Po(l), which represent
the probability of finding an electron in the left quantum dot
with energy —(e + €,), in the left quantum dot with energy —e,
and in neither quantum dot, respectively. A master equation
describing the time evolution of the occupation probabilities
in channel 1 can thus be formulated

PO — M(I)P(l), pWm , (3)

where the transition matrix M is given by

MO
SV TRV TR ki
o A Vet
kita Ky —kal = kY

We are interested in the steady state of the system, where the
probabilities do not change as a function of time. To find this
state we set P()' = 0 and solve Eq. (3). By doing this we obtain
the steady-state probability vector P1(e,e,, Tk, T1.), where we
consider I', I, and T as constants. A similar procedure gives
us the steady-state probability vector for channel 2 as well.
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The particle current between the right dot in the lower level
and the cold lead can be written as

IV = Pk S = Bk Sy 4)
and the current through the upper level is
J(Z) = PI(QZ)ksﬁl - P(§2)kle~>d' (5)

The cooling power, i.e., the heat transported out of the right
lead per unit time, can now be defined as

Or = (—€ — W(=JV) + (€ — u)(=J?). (6)

Since the energy levels are symmetric about p, we can set
u = 0 and we obtain the cooling power for the refrigerator
model

Or =e(JV —J). (7)

Optimized cooling is attained by varying €(Tg) and €,(Tr) as
a function of Tk (when T and T} are kept constant). It can be
shown (see Ref. [9] for details) that the cooling power in the
limit of low Tk is given by

leiglo Or « Tg. (8)

When working at an energy scale where €, < Ts we have
k' ~ k*. In this situation we can get a better understanding
of the system and when cooling will occur by considering the
transitions in channel 2. There the energy levels are situated
above p and we have

0< f(E)<1/2, 1/2<1— f(E) < 1.

Therefore, the rate from lead to dot will always be less than
the rate from dot to lead kf,, < k%, for a given energy
E. The requirement for cooling to take place in this situation is
that f(e +€,,T1) < f(€,Tg), i.€., we require (€ + €,)/ Ty, >
€/ Tg. We then have

€+e€g €
k‘é;;’ = kd_)l €+e € € €+e
g 8 8
ki <kiqf = kot >k >ka>kog. O

E E
kiZsa < kg

When k" ~ k¥ we know that the occupation probability P\> ~
P,(QZ) = P and thus Péz) =1—2P. Using the inequalities
shown in Eq. (9), we now consider two different states of the
system. First assume that there is an electron in the quantum
dot system; it can exit into either the left lead or the right lead,
where the currents are k:,ff P£2) and kalP,(f), respectively.
The difference is

P(kg"i = ki) > 0.

which tells us that it is more likely for the electron to exit into
the left lead. Next we assume that the quantum dot system is
unoccupied; an electron can enter from the left lead or the right
lead, with currents kf_tfj’ Po(z) and k7, Po(z), respectively. The
difference is now
(A =2P)(k 5 — ki ) <0,

indicating that it is more likely that an electron enters from the
right lead. Above the chemical potential, electrons entering
from the right lead and exiting into the left lead correspond to
a net cooling of the right lead, which is our desired effect.

PHYSICAL REVIEW E 93, 032102 (2016)

A similar analysis can be done for channel 1, where the
corresponding result of net transport from the left to the right
lead is obtained.

In summary, one obtains optimal cooling of the right lead
by varying the energy levels €; = —e; = € as a function of Tg
and their optimal position is determined by a balance between
the transport rate (higher closer to u) and heat removed per
transition (higher far from ), and the additional requirement
that f(e +€,,77) < f(€,Tg).

B. Unattainability principle

The unattainability principle states that one cannot cool a
system to absolute zero in a finite amount of time [14]. A
system with heat capacity Cy = dQ/dT and cooling power
Q = dQ/dt has a cooling rate given by

dT 0O
—_— == 10
dt Cy (10)
If we assume that Cy and Q scale with temperature to the
power of « and A, respectively, we have

daT

— x T*~. 11

T 1D
For « = A — k < 1 the unattainability principle is violated
[10] and cooling to absolute zero is possible in a finite time.
By inspecting Eq. (8) we find that A = 1. The heat capacity of
the metal lead as T — 0 is dominated by the electronic heat
capacity, which is proportional to the temperature Cy o< Tg
(see, e.g., Ref. [15]), and therefore k = 1. The end result is
that Tz oc T°, in violation of the unattainability principle.

C. Comments

Levy et al. [10] were the first to point out that because the
refrigerator presented in [9] has a cooling power of Q o« Tg
and a heat capacity of Cy o Ty in the limit of T — 0 K, its
cooling rate is given by

dT() _ Q
dt  Cy

That enables cooling to absolute zero in a finite amount of
time. In the original model proposed by Cleuren et al. the
quantum dot system consisted of only two quantum dots, with
the levels €; (€] —€;) and €, (e + €,) being two adjacent
levels within the right (left) quantum dot. Levy et al. suggest
that the violation of the third law may be due to the neglect
of internal transitions within a single dot. This suggestion
was refuted by Cleuren et al. [11], who stated that the model
could also be constructed using two pairs of spatially separated
quantum dots, as we have done here. Their own explanation
for the violation was that the quantum master equation they
utilized does not take into account coherent effects and the
broadening of the linewidth of the quantum dot energy levels
was ignored. Both of these effects becomes important in the
low-temperature limit.

Allahverdyan et al. [12] suggested that the violation occurs
since the weak-coupling master equation used by Cleuren et al.
is limited at low temperatures. They state that one can justify
taking the limit 7 — O for such an equation only while

[0’ T,g = const. (12)
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simultaneously reducing the coupling between the quantum
dot system and heat reservoirs y — 0. Concrete analysis of
the low-temperature behavior of the cooling power is not given.

Finally, Entin-Wohlman and Imry [13] considered a sim-
plified version of the original model, where only a single
channel contributes to the electron transfer. They assumed
that boson-assisted hopping is the dominant form of electronic
transport [2] (an assumption we will also make later in the
article). If we remove channel 1 from our model and only
consider channel 2, we obtain the same system as considered
n [2]. Using Fermi’s golden rule, they found that the heat
current is exponentially small for €; — i > Tg. They went
on to state that the violation of the third law comes from
allowing the levels €; and €, to approach the chemical potential
linearly as a function of temperature and claimed that this is
unnecessary and complicates the setup. In our opinion, the
linear temperature dependence of the energy levels €; and €;

O+nA

€

&

S+A
+]
=3 | 0
o A =0
c
“1 5-A
0-2A

o=-(m+1)A

QD Metal

FIG. 3. The continuous states of the metal are replaced by a
discrete spectrum with a constant energy spacing A. The asymmetry
between states above and below p is modeled by the parameter §.
For § = A/2 the chemical potential lies exactly in the middle of
two energy levels. The jth (ith) level below (above) u is given by
€, =86—jAle =56+ — DA]L
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in the quantum dots coupled to the cold lead is an essential
feature; it arises from the optimization of the cooling power
suggested in Ref. [9], but not implemented in Ref. [13].

II. DISCRETIZATION OF THE MODEL

One of the assumptions of the model proposed is that
there is a continuous spectrum of energy states in the metal
leads. Thus the electrons are transferred elastically between the
quantum dots and the metals. We will now introduce a simple
discretized modification of the original model and show that
the unattainability principle will then be restored. In our model,
we assume an even spacing between the energy levels. We also
introduce the parameter § to quantify the asymmetry about
the chemical potential v (see Fig. 3). If § = A /2 the energy
levels are symmetrically distributed about w. As long as the
quantum dot and metal energy levels do not exactly overlap,
the transitions are now inelastic and require absorption or
emission of phonons.

A. Cooling power

We can set up a master equation for the dynamics in channel
1, as in Eq. (3), but now for the discrete system. The rate
matrix is almost identical, but since we allow for phonon-
assisted transitions, the rates between the quantum dots and
the discrete levels of the right lead are given by a sum of all
possible emission and absorption transitions. We will use ¢,
(€,,) to denote the nth (mth) level in the metal lead, above
(below) the quantum dot level €;. We also introduce w, =
€, — €) and w,, = €] — €, torepresent the phonon frequencies
associated with transitions between these levels. For transitions
from the lead to the dot, €, and ¢,, are the energies associated
with emission and absorption processes, respectively, while for
dot-to-lead transitions the association is opposite. The matrix
elements change from k5!, — k%" and kilq = k€1, where
we use the superscript d to indicate that it is the transition rate
for the discrete model. These rates are then sums of all possible
emission and absorption processes and can be written as

em15510n absorption
d,eq 2 : €m
kd—>l - k l+ z :kd—ﬂ )
kd J€1 kem + k ( 1 3)
I—>d — 1—d 1—d >
m
absorption emission

where the emission and absorption rates are given by
ki =TIl = fenln(@ey,
ki =TI = fenlin(wn) + 1o},
k% g = Tf (em)n(@m)ey,,

k" q = Tf(e)n(@,) + oy

(14)

Here n(w) = (¢®/™ — 1)~! is the Planck distribution, which
tells us the probability of finding a phonon with energy w, and
f(e) = (e/Tr - 1)~ is the Fermi-Dirac distribution, which
tells us the probability of finding an occupied state at €. We
assume a three-dimensional phonon density of states, thus the

032102-4



COOLING BY HEATING: RESTORATION OF THE THIRD ...

rates have to be multiplied by a w? term. We have absorbed all
other constants from the density of states into the I" introduced
earlier.

The transitions between the left quantum dot and the hot
leftlead, i.e., the rates involving —(€ + €,), remain unchanged
since we still consider this to be a large metal piece with
a quasicontinuous energy spectrum. Again, we solve the
master equation in the steady state and obtain the occupation
probability vector P™", but now for the discrete model. With
this we can find the particle currents in the channel 1 for the
discrete model,

5= RS RS

Thus we can write the part of the cooling power associated
with channel 1 as

S (1 1 €m €n
0% =P (L isen + Lkiren)
- Pé“(Zk;gdem + Zkf;den) (16)

An analysis similar to that shown here can be applied to

channel 2 and provide its corresponding cooling power Q(,?) .
Thus the total cooling power is written as

Or = 0% +0%. (17)

It should be noted that in the limit of Tz — 0 only the two
levels 6 and § — A will contribute to the total cooling power
since all levels above § will be unoccupied and all levels below
8 — A will be occupied. We can now numerically optimize
Eq. (17), with respect to the two parameters € and €,, while
keeping Ty, and T constant. Note that ¢,, and €,, are determined
frome = —e; = €, and are not free parameters. When €, > ¢,
the optimal energy of the quantum dot levels (e, + €) is
independent of € and therefore also independent of Tk (the
only influence of Ty on those levels come via the coupling to
the levels £¢€). This in turn makes the optimal cooling power
Qr approximately independent of €,. Hence the only free
parameter for optimization is €(7Tg).

The plot of the optimized cooling power as a function of
Tk is shown in Fig. 4. As in [9], we have to use numerics to
analyze the behavior of the optimized Q. For simplicity we
set § = A /2 and by fitting the numerical results from Eq. (17)
to the Arrhenius equation (In Q = In A — B/T), we find that
the optimized cooling power as T — 0 K is given by

O e 7T Tp — 0. (18)

B. Heat capacity
The heat capacity of a Fermi gas with temperature-
independent chemical potential u can be expressed as

df(€)
oT -

o0
Cy = / de(e — u)D(e) 19)
0
Here D(e) is the density of states (which is a constant in our
case) and f(¢) is the Fermi-Dirac distribution. When going
from the continuous to the discrete description we have to
exchange the integral with a sum and the continuous variable
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FIG. 4. Graph of the optimized cooling power Q as a function
of the dimensionless variable Tx/A. The dashed line is the result
from the continuous model, while the solid line is the result from
the discrete model. For temperatures Tx = A the discrete model
reproduces the linear cooling power of the continuous model.
However, for temperatures T < A the cooling power changes to an
exponential form. The parameters used are ' =I', =1, T, =20 K,
Ts =6000K, e, =100K, A=1K,and§ = A/2.

€ with the discretized states n A,

oo _ i nA —p 2 A=)/ Tr )
V= - Tx (eMd=/Tr 4 1)2
n=l

This sum can easily be determined numerically, but to gain
additional insight we can consider the heat capacity for a two-
level system. As Tg — O the levels § and § — A will be the
only relevant levels. We can write the grand canonical partition
function for the two-level system as

E=14e P 4 eh078) 4 P20 21
and we can find the energy via
1
U=—>Y He ", (22)
where H; is the energy of the state i. From this the heat capacity
can be obtained from Cy = dQ/dT = dU/dT and we find

A2A +82B + ASC
T2(1 + =P 4 e~ FO-8) 4 ¢=BR3-2))2”
A= eﬂ(Af38) + eﬁ(A*S) + 265(A726)’

Cy =

23
B = eﬁ(A—BS) +eﬁ(2A—36) +eﬂ(A—5) +4eﬂ(A—28) +e—ﬁ5(’ )

C = 2ePB=30) 4 9 BA=8) 4 4,B(A=28)
This expression is greatly simplified at § = A/2, ie., a

symmetric distribution of energy levels above and below p. In
this case we obtain

A 2 e /2Tk
Cy =2l — | — 24
! (m) (AT 41)2 &9
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and with this result, we find that in the limit of T — 0 the
heat capacity is

A 2
Cy = 2(7) e AR T 0. (23)
R

Although this is only true for § = A /2, we see from the general
equation for the heat capacity given in Eq. (23) that the factor
of T 2 is present for all terms and we have found numerically
that the dominating exponential terms in the optimized cooling
power (17) and the heat capacity (25) always cancel each other
as Tp — 0.

III. RESULTS

We can now find the cooling rate dTy/dt for the discrete
system. In Fig. 4 we have plotted the cooling power Q as a
function of the dimensionless variable Tk /A. The solid line
is the result of our numerical calculations, while the dashed
line is the result from the original model [9]. We see that for
Tg 2 A the discrete model reproduces the results from the
original model, while when T < A the result changes to an
exponential form.

The heat capacity Cy is shown as a function of the same
dimensionless variable Tk /A in the inset in Fig. 4. Again the
results from the original model are reproduced for T > A, but
when Ty < A /2 a Schottky-like feature appears, indicating
that only the two levels closest to i = 0 are participating in
the dynamics.

As we discussed earlier, if we can write the cooling rate in
a form like in Eq. (11), we require that« = A — k > 1. In the
original model with a continuous energy spectrum in the right
metal lead, it was found that @ = 0. By numerically calculating
the expressions given in Egs. (17) and (20), we find that the
cooling rate is given by

aTx & 2r o T3,

dt Cy
We obtain o = 2, which implies that cooling to absolute zero
is impossible in a finite amount of time, and the discrete model
is thus consistent with the unattainability principle. The result
is shown in Fig. 5, where we have plotted d Tk /dt as a function
of Tr/A. Also here the result from the discrete model (solid
line) reproduces the result from the original model (dashed
line) for Tx = A, but once T < A it differs.

Although the results from Egs. (18) and (25) are only
valid for 6 = A /2, we find numerically that the dominant

exponential term in Q",?‘ always cancels with the one in Cy.

T
T2 i
Tr — 0, thus we conclude that the cooling rate Tk T,% is
valid independent of the choice of §.

T — O. (26)

The function always converges to a constant value as

IV. DISCUSSION AND CONCLUSION

We have shown that our natural modification of the model
proposed by Cleuren et at. does not violate the dynamic version
of the third law and allows for the same cooling performance at
temperatures 7 > A as the original. This is a positive result,
which tells us that the original model can be used to cool very
efficiently down to the extreme limit of T ~ A, where the
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FIG. 5. Plot of the optimized cooling rate d T /dt as a function of
Tr/A, Again we see that the discrete model (solid line) reproduces
the third law violating constant rate of temperature change of the
continuous model (dashed line) for T 2 A. The inset shows Cy as
a function of the same variable. When Tz < A /2 the heat capacity
obtains a feature similar to the Schottky anomaly, indicating that the
main contribution to the heat capacity comes from the two levels (8
and § — A) closest to i = 0. As aresult, for Tx < A the exponential
term in Q  cancels the one in Cy and we are left with the T2 term from
the heat capacity. The parameters used are I' =I'y = 1, T, =20 K,

Ts =6000K,e, =100K, A=1K,and s = A/2.

cooling power is quenched. Though we assumed a constant
level spacing A, the low-temperature behavior of the cooling
rate is insensitive to this assumption since at T — 0 only the
two levels closest to the chemical potential are important.

The laws of thermodynamics are so general that they should
apply to both classical and quantum systems. The third law in
particular is a theory about the properties of a system as its
temperature approaches absolute zero and at low temperatures
quantum effects become important. Quantum theory predicts
that confined systems have discretized energy levels and when
the temperature 7 becomes comparable to the spacing between
energy levels A, this discreteness needs to be taken into
account. In [9] they use a continuous energy spectrum of
the metal lead, disregarding the quantum discreteness. In the
comments on the violation of the third law [10-13], they
employ a heat capacity derived from quantum theory and it
is this mixing of classical and quantum descriptions that leads
to the breaking of the unattainability principle. If instead we
use a pure classical expression for the heat capacity, which
would be a constant as given by the equipartition principle, the
unattainability principle would be satisfied [16].

One of the assumptions we have made is that the left hot
lead functions as a large heat bath and has no effect on the
cooling rate. A recent article [17] has shown that in a cooling
process the density of states of the left heat bath affects the
cooling rate of quantum refrigerators. A refined model where
we take into account the properties of the left lead would give
us additional insight into the nature of quantum refrigerators.

We have shown that the cooling power and cooling rate is
quenched when T ~ A. The energy-level spacing in metals
is determined by the strength of confinement of the electrons.
By increasing the volume of the lead that is to be cooled, the
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spacing A will decrease. Therefore, the temperature where the
cooling power is quenched approaches absolute zero as the
volume goes to infinity. However, by increasing the volume of
the lead, the assumption of instantaneous equilibration of the
electrons according to the Fermi-Dirac distribution becomes
implausible; in reality, only a small area of the sample would be
cooled and the lead would be in a nonequilibrium state. Larger
leads also have a higher heat capacity and one must remove
more heat per degree of temperature change than for smaller
samples, which decreases the cooling efficiency. Finding the

PHYSICAL REVIEW E 93, 032102 (2016)

limit of efficient cooling for real systems by balancing these
effects would be beneficial and relevant for future cooling
technologies.
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Influence of measurement error on Maxwell’s demon
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In any general cycle of measurement, feedback, and erasure, the measurement will reduce the entropy of
the system when information about the state is obtained, while erasure, according to Landauer’s principle, is
accompanied by a corresponding increase in entropy due to the compression of logical and physical phase space.
The total process can in principle be fully reversible. A measurement error reduces the information obtained and
the entropy decrease in the system. The erasure still gives the same increase in entropy, and the total process is
irreversible. Another consequence of measurement error is that a bad feedback is applied, which further increases
the entropy production if the proper protocol adapted to the expected error rate is not applied. We consider the
effect of measurement error on a realistic single-electron box Szilard engine, and we find the optimal protocol
for the cycle as a function of the desired power P and error ¢.

DOI: 10.1103/PhysRevE.95.062129

I. INTRODUCTION

Maxwell’s demon was introduced as a thought experiment
to illustrate the statistical nature of the second law of thermody-
namics [1]. The demon has very sharp powers of observation,
so it can detect the motion of individual molecules. In addition,
it can rapidly act on the basis of its observations and thereby
sort fast and slow molecules. This makes heat flow from the
cold to the hot side, apparently without the need for any work,
in contradiction to the second law of thermodynamics. For
some time it was thought that the act of observation necessarily
required some amount of work [2,3]. The present consensus
[4,5] seems to be that the observation, in principle, can be
performed without work. At the same time, the erasure of the
information obtained, being a logically irreversible operation,
also is thermodynamically irreversible and has a necessary
cost in terms of work that is converted to heat. However, there
is still some controversy on this point [6-8].

Modern technology now enables us to be as accurate
in observation and quick in action as the imagined demon.
Recently, several experiments, in which close analogies to the
original thought experiment were realized, have been reported
inarange of physical systems: atoms [9—11], colloidal particles
[12,13], molecules [14], electrons [15—17], and photons [18].
This shift from imagined to real experiments motivates us to
study the impact of measurement errors on the performance of
experimental Maxwell’s demons.

If there is some chance that the measurement result is
wrong, it means that the correlation between the state of the
system and the measurement device is not perfect. That is,
the mutual information between the two is less than the full
information of the logical states of the measurement device.
In [8], Sagawa and Ueda show that the traditional Landauer
bound W > T In 2 (we use units where the Boltzmann constant
kg = 1) only holds for a symmetric memory, and the total work
expended on measurement and memory erasure has a lower
bound given by the mutual information / between the system
and the measurement device,

Wmeasure + Werase 2 TI' (1)
The right-hand side is exactly the same as the heat that can

be extracted from a thermal bath using the information about
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the system. Although measurement errors will give reduced
mutual information, we argue that it will not be possible to
reach equality in Eq. (1) in this case. To justify this, consider
the extreme case in which the mutual information [ is zero,
i.e., there is a 50% chance that the measurement is wrong. In
this case, the measurement can be done reversibly without any
work, but there will still be one bit of information stored in the
memory that has to be erased with a cost of 7 In2 according
to Landauer.

II. ANALYSIS OF A MODEL SYSTEM

To clearly show the difference between a true measurement
error and a process that saturates Eq. (1), we will analyze a
simple model. Consider a total system (memory + system)
with a phase space P. We divide its phase space in subspaces
‘P:, each of which corresponds to a specific logical state. With
the probability distribution of the total phase space denoted
P(x), the probability distribution of the logical states is

PL(i)= ) P(x) )
xEP,'

and the conditional probability of the microstate x given the
logical state i is

P(xli) = P(x)/PL(i). 3

The total entropy S, logical entropy (information) H, and
conditional entropy S(P;|i) are then given by

S=-=> PPk, H=-Y Pi)nPi),

S(Pili) = — Z P(x|i)In P(x[i). “

x€P;

The conditional entropy can be thought of as the internal
physical entropy of the distribution P(x|i) on P; for each
of the logical states i. The average conditional entropy is
Sin = Y _; PL()S(P;]i), which we call the internal entropy. It
follows that we can write the total entropy as a sum,

S =H + Sin. &)

©2017 American Physical Society
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FIG. 1. Schematic of reversible and irreversible measurement in a
two-bit total system (system + memory). The four logical subspaces
are 00/01/10/11.

With this formalism, we can analyze the model system
shown in Fig. 1. The system is a standard Szilard engine,
with a single molecule in a box with a dividing wall
that can be inserted, removed, and used as a piston. The
memory is represented by an equivalent single-molecule box.
Consequently, we have four logical states. The phase space of
each molecule is reduced to one dimension by only considering
the movement of the molecule in the direction in which
the volume of the compartments expands and contracts, and
ignoring the momentum, as all processes will be isothermal
and therefore the momentum distribution is independent of
the protocol. The relevant part of the total phase space is
then two-dimensional, and we represent the position of the
molecule in the system on the horizontal axis, and in the
memory on the vertical axis. To calculate the total entropy,
we use Eq. (5) and the fact that the conditional entropy of a
system uniformly distributed in a given region of phase space
is given by the logarithm of the phase-space volume, which
we show in the following subsection.

A. Conditional entropy

The free-energy of an ideal gas in a three-dimensional box

Ve mT 3/2
F(T,V,N)=—NTIn ~ o , (6)

is

which we use to calculate the entropy,

F 2 (mT \*?
S:_<3_) v ER M(g)
AT )y n 2 4N \7h

—N|:3 i \% j| 1 _e«/i mT \ /> o
= 5+"(qu>’ VD) - 4 (W) '

Here V, is of the order of the de Broglie wavelength. To keep
the classical limit, we have to assume that V >> NV, . Further,
we will deal with one particle. Therefore,

S & +1 v (8)
=—4+In{l—).
2 Vy

Our system consists of two volumes (system and memory) with
one particle in each, and we need to calculate the conditional
entropy for the configurations A and D of Fig. 1 (hereafter
denoted 1A and 1D). In each of the four logical states,
i =00,01,10,11, the internal states of the system and memory

PHYSICAL REVIEW E 95, 062129 (2017)

are uncorrelated, and the conditional entropy is the sum of
two contributions of the type shown in Eq. (8). Denoting
the position of the dividing wall in the system as xg and
in the memory x,,; and the length of the box with the gas L,
the conditional entropy in the logical state i can be specified
as

S(P;li) = So +1n (stsz)
v
&E3+2m(—>»1. ©)
Vq

In the following, we omit the constant Sy, which means that
the entropy of the reference state where the dividing walls are
removed is zero, and all given entropies are entropy changes
from this reference state.

B. Irreversible measurement

We perform a measurement on the system and store it
in the memory. Throughout the paper, we assume that the
measurement is classical and does not affect the state of the
system. If there is a probability ¢ that the measurement gives
the wrong result, we have a transition from A to D in Fig. 1.
For configuration 1A, we have two states with probabilities %
each, giving

) ) 1.1
HY ==  PLOIPL() = =2x 55 =In2. (10)

Using Eq. (9) with xg = x) = L/2 and omitting Sy, we get
for the conditional entropy S(Pop|00) = S(Pio|10) = In }1 and
the internal entropy

: : 11
Sip = ZPL(I)S(PiIz) =2x Ean =-2In2. (11

Consequently, the total entropy of configuration 1A is
§4 = H* 4+ 84 = —In2. (12)
For configuration 1D, we obtain in a similar way

l—e. 1-—c¢

2

In

HD=—2x§1n§—2x =In2+S,, (13)

1—¢

SP=2x Smtiax ni=_2m2 (14
in — 2 4 4— s

SP =HP + 8P = —In2+5,, (15)

where S, = —¢lne — (1 — &) In(1 — ¢). The negative-valued
entropies are due to the omitted constant Sy. We see that the
total entropy in the transition from 1A to 1D is irreversibly
increased by an amount S? — §4 = §,. Since both the system
and the memory have equal probabilities of being in their

two logical states, the logical information in each is HS?s[em =
HP = In2. The mutual information between the system

memory ;
and memory is

1P =HY ..+ HY

system memory

H? =mn2-&,.
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C. Reversible measurement

The transition from configuration 1A to 1D can also be
achieved reversibly while extracting work if we consider the
following steps (this process is also considered in [19]):

1A — 1B. In the transition from 1A to 1 B we isothermally
expand the state O of the memory. This allows the particle to
expand into the full volume of the memory. In this process,
work W is performed by the system, and heat O = W is taken
from the reservoir. The entropy change is

AS=W/T =In2

with a corresponding entropy decrease in the reservoir.

1B — 1C. We then perform a measurement on the system,
and we reinsert the partition wall in the memory according to
the result obtained. There is no error in this measurement, and
the correlation between the position of the dividing wall of the
memory and the position (left or right) of the gas molecule of
the system is perfect. Here ¢ is just a parameter that describes
where we insert the divider in the memory. There is no entropy
change.

1C — 1D. We then compress the divider of the memory
isothermally back to the central position. In this process, we
have to perform work on the system, but an amount less than
the work performed by it in the transition from 1A to 1B. The
entropy change is

AS =W/T =S, —In2.

In our view, this process does not represent a real measure-
ment error, which is irreversible and has an associated entropy
production S, due to Gibbs or environmental course-graining.
The final state of this process (1D) is the same as the one
obtained when there was a measurement error, but the whole
process is thermodynamically reversible, and the reduction of
the environmental entropy is exactly the same as the increase
of the system entropy. In the process, we have extracted the net
work from the thermal bath, so that the work of measurement
that enters Eq. (1) is Wieasure = —7'Se, Which is negative.
Erasing the memory requires Wese = T In 2 according to the
usual Landauer’s principle, which gives

Wineasure + Werase = TIn2 = T'S, = TID,

which saturates the inequality (1).

D. Origin of the irreversible measurement entropy

To get a deeper understanding of the irreversible nature
of a measurement with error, consider Fig. 2. In Fig. 2, step
A (hereafter 2A), we have the same initial state as before.
Figure 2, step B (hereafter 2B) shows the state just after the
measurement was performed. Most of the initial states in the
phase space are mapped to the correct final region, but a small

FIG. 2. How a system evolves from step A to D in Fig. 1 after a
measurement error.
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fraction gets mapped to a different region. This corresponds
to the cases in which the result of the measurement does
not agree with the actual position of the system molecule. If
the system and the measurement device constitute an isolated
system during the operation, and no other degrees of freedom
are involved, the mapping from 2A to 2B would be described
by a deterministic Hamiltonian evolution in time. Liouville’s
theorem then guarantees that the entropy of the final state is
the same as that in the initial state. If the evolution is affected
by other microscopic degrees of freedom in the device or
the environment, which is certainly realistic in most cases,
the mapping would be stochastic, and it depends on these
additional degrees of freedom. We assume that after 2B, the
phase points will never again cross the lines separating the
different logical states. The physical meaning of this is that
the barriers between the states are infinite. In a short time, the
phase-space region where the system can be found will develop
into some complicated shape 2C, but for a closed system
the entropy will still be the same. Now we have to appeal
to some coarse-graining procedure. For a closed system, we
refer to the phase-space coarse-graining introduced by Gibbs
(see Ref. [20] for a recent discussion). In the presence of
some interaction with an environment, coarse-graining occurs
over dynamical evolution [21,22]. In this way, the complex
structure of the accessible phase space in 2C is rendered
indistinguishable and is replaced by the uniform distribution
in 2A. This step is irreversible and increases the total entropy
of the system by S, without any decrease in entropy anywhere.

III. MODEL FOR A SZILARD ENGINE
WITH MEASUREMENT ERRORS

To study the effects of this measurement error, we will
now analyze a model of an experimentally realized Szilard
engine [15]. This model is comprised of a single-electron box
consisting of two metallic islands connected by a tunnel
junction. The existence of an additional electron on one of the
two islands can be measured by the charge configuration of the
box, and its state can be controlled by gate voltages applied
to the islands, giving a time-dependent potential difference
V() between the two islands. Work can be extracted from the
system via the following procedure:

(1) Perform a measurement, and quickly set the potential of
the occupied island to zero while raising the potential of the
empty island to some value Vy = V(0™).

(ii) Reduce the potential of the raised island according to
some protocol V(¢) until time ¢ = t, at which point we start
over from step (i).

There is a probability that the electron will tunnel between
the two islands, and whenever the electron occupies the island
where the potential is being decreased, heat is extracted from
the environment and converted to work. We imagine that we are
continuously repeating steps (i) and (ii) above, and we want
to minimize the total entropy production rate when varying
the driving protocol V(¢) and the time 7. In the experimental
protocol in [15], the potential difference was always reduced
back to zero before the next measurement. In our optimal
protocol, it does not need to be zero since the energy gained
from tunneling decreases with the potential difference, and
longer t gives smaller power.
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FIG. 3. Level diagram after the first measurement and raising the
potential of the empty island that does not cost any work.

Details of the protocol

We have a set of two islands—Ieft (L) and right (R)—
divided by a tunnel barrier. The islands are gated, so their
potentials can be manipulated independently. The pair of
islands contains only one excess electron, so each island may
contain either zero or one excess electron; the occupancy of
each island can be measured, say, by single electron transistor.
A similar setup was used in the experiment [15]. Let us start the
protocol from the state where we have measured an electron
on the right island. Then we quickly raise the potential of
the empty island to the value Vj. After this procedure, we
arrive at the level diagram shown in Fig. 3. Then we decrease
the potential of the raised island according to some protocol
V(t) in the time ¢ = [0,7], as shown in Fig. 4 (left panel). At
time ¢ = t, we reach the situation shown in the right panel of
Fig. 4, where the electron can be found on the left island with
probability p, and on the right island with probability (1 — p-).
If we measure the system at that moment, we can arrive at the
level diagram shown in Fig. 5(a) (with probability p.), or at
the diagram shown in Fig. 5(b) [with probability (1 — p.)]. In
the first case, we quickly decrease the energy of the left island
extracting the work V;, and we raise the energy of the left
island to the value Vj (with no cost). The average extracted
work is then (W) = p. V.. Then we arrive at the diagram
shown in Fig. 5(c), which is a mirror of Fig. 3. It is therefore
thermodynamically equivalent and we have a completed cycle.
In the case shown in Fig. 5(b), we quickly move the left
level up to V, (with no cost) arriving at the situation shown
in Fig. 3, again completing the cycle. There exists another
protocol leading to the same consequences. Namely, at the time
instance t = 7 one can quickly decrease the potential of the left
island to zero (before the measurement). The extracted work
is V; while the probability that the left island was occupied is
D+, so the average work is (W) = p. V;. Then we measure the
position of the electron and raise the level of the empty island
up to the value Vj). Again, the cycle is closed.

IV. DERIVING THE OPTIMAL PROTOCOL

A thermodynamically equivalent turnstile version of this
model was previously analyzed [23] when there were no errors
in the measurements, and the consequences of reduced mutual

FIG. 4. Left: Example protocol during time 0 < ¢ < 7. Right:
Level diagram at t = .
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FIG. 5. Completing the cycle.

information were discussed [24]. If there is an error in the
measurement, we have an additional entropy production term
S to the total entropy production, and the feedback operation
V (¢) will have to be adapted to the expected error to minimize
the entropy AS that is produced during feedback operation.
The total entropy produced in a cycle is then given by

ASot= S¢ + AS—-Q/T, (16)
measurement operation

where Q is the heat exchanged between the system and the
environment. Extending the analysis from [23] to finite error
is principally not difficult. We minimize the total entropy
production rate,

. ASior Se AH
Stot = =—+—-P, (17
T T T

using the Euler-Lagrange formalism, which leads to a non-
linear differential equation that has to be solved numerically.
Here AS = A H since we assume there are no excitations from
the ground state of the islands, therefore the internal entropy
change is AS;, = 0. P = Q/(T7) is the rate of heat exchange
between the system and the environment.

A. Thermodynamic properties

Let p;(t) and p,(¢) be the probabilities to find the system in
state 1 (the rightisland) and 2 (the leftisland), respectively. The
transitions between these two states are described by the rates
I'1» and T'p;, which satisfy the detailed balance 51/ T2 =
e®E/T where AE is the difference in energy of the two states
(note that since A E is a function of time, the rates will also be
time-dependent). The master equations are thus

p1 = —Tupi+Tapy=—-Tpi + T,

p2= Tupi—Tuapr=-Tpr+T, (18)
where I'(¢) = I'1(¢) + I'21(2). As in Refs. [23,25], for the sake
of simplicity we choose I to be independent of time, and we
set ' = 1. The energy of state i is denoted E;(¢), and in the
protocol described above we have E | (¢) = Oand E»(¢) = V(¢).
The total work extracted during the period t is

2 T
Wom=3 [ drpts, (19)
i=1
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the change in internal energy of the system is

2
AU = Z [pi(D)Ei(7) — pi(0)Ei (0], (20)
i=1

and the transferred heat from the environment to the system is

2 T
0=aU+Wa=Y [apE®m. @
i=1 70

The information entropy associated with the measurement is
H=— Zizzl pi In p;, and the change in information entropy
can be written as an integral,

AH = H; — Hy

2
=Y [pi(®)In pi(x) = pi(0) In p;(0)]

i=1

2 T
¥ [Canompo, @)
i=1

Since pi(t) = 1 — p,(t), we can relabel p,(t) = p, and we
write the entropy produced per cycle as

AH 1 [° ) p
—_— = dt pln . (23)
T T Jo 1—p

From the master equation (18), we get

1
eV +1’

p=-p+ 24)
where from now on we relabel V(r) = V, and we measure time
in units of I' and energy in units of 7. From this equation, we

can express
1
p+p

The power is defined as the average heat extracted from the
reservoir per cycle 7, P = Q/(T 1), and it can be written as

1 (7 1 (7 1
P=—/ drpvz_/ dtpln( _—1). 25)
T Jo T Jo p+p

We are interested in the optimal protocol for the measurement
and erasure cycle. In this system, the optimal protocol means
finding the protocol V (¢) and the total time t, which minimize
the entropy production rate at a given measurement error €.
We also set the value of the power P, given by Eq. (25), to
see how the solutions depend on the power we want to extract.
The initial condition is set by p(t = 0) = ¢. That is, there is a
chance, ¢, that the electron was on the opposite island of what
we measured.

B. Minimizing the entropy production rate

Since we want to minimize the entropy production rate
while keeping the power at a finite value P, we have to
introduce the Lagrange multiplier A to obtain the functional

Se AH Se 1 ’ .
J="24 """ 4aPr="4=| diL(p,p.r), (26)
T T T Jo

T
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p 1 .
1_p>+kln<p+p —1>]p. 27

Using the Euler-Lagrange equation
(28)

with the Lagrangian

L(p,p,k) = [— ln(

oL dIL

ap  dtap’
we obtain the following second-order nonlinear ordinary
differential equation:

_ P +p—1/2)
p(p+p—D+p/2
To solve this equation, we need to impose a set of constraints

to the solutions we want. The first constraint is that the power
has to be a finite fixed value P, given by Eq. (25):

(29)

T
G(t,p,p)=P — l/ dtpln( ! - — 1) =0. (30)
T Jo p+p
The second constraint comes from a consideration of the
end-point values of p(¢). The initial condition of p(¢) is
given by p(0) = ¢, but since the value of p(¢) is not fixed
at the end point p(r) = p,, we have a second constraint,
(0L/0p)i=. = 0, which can be written as

Fi(x,7,p)

_ 1 Pr
=Alln — — 1)+ — -
Pr + Pe (pr + pr — D(pe + po)

—In (p—> =0. 31)
l_pr

The third and final constraint is due to the fact that variation
of Eq. (17) with respect to the period T should be zero. It is
given by

0J opP 0 AH S,
T ot + it T 72 (32)
where
oP a1l [* 1
—_— = — —/ dt pln - —1
ot at |t Jy p+p
;. P
_P_ln( —1)—— (33)
T pPr+ P T
and

d AH a 1 [T

——=———/ dt pln P

it T it 1 Jo 1-p
1

(34)

I
|
|
<
)
5
VN
—
<
~
N——"
I
‘l>
T

The full equation for the third constraint is thus

1—p: . 1
E,t,p)=|In + Ap:In — —1
Pt P+ D-

1
—AP — —[AH + S,] = 0. (35)
T

This constraint can be combined with the free-end-
point constraint by eliminating the Lagrange multiplier A
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to obtain

F(t,p:,pr)

Eln<1 frp )[P(pr +Pz)(Pz +pr - 1)+p3]

S| . 1
- pr+1n —._1
T P+ De

X(pr + po)(pe + pr — 1)] =0, (36)

where S; = AH+ S =—p;Inp, — (1 — p;)In(1 — p;) is
the entropy of the system at time ¢t = t. Euler’s method is
then used to solve the second-order differential equation in
Eq. (29). Since it is a second-order equation, we have two
constants that need to be fixed (t and V). We find these values
as the roots of the two constraints in Egs. (30) and (36) by
using Newton’s method.

V. RESULTS

We now present the main results of this analysis. The model
has a parameter I that determines the tunneling rate between
the two islands, and we measure time in units of I'"! and
energy in units of temperature 7'. In Fig. 6 we plot the optimal
period T as a function of the power P for selected values of
the error €.

A. High power limit

We find that there is a maximal amount of power one can
extract, P™*(¢). As this value is reached, T approaches zero
linearly, and the entropy production rate diverges to infinity.
To leading order we have

T o P — P, 37)
S, ! (38)
of X ————.
tot pmax _ p
€001  4f

10° \ ool

/
\ Tl

10"k

N\

~1 02 \\\\\ 2 L
‘T[_‘ \§\Q 10% 102 107 10°
\
_ P/P™
e 10
\
10°

o'
107 10° 10° 10* 10° 10% 10" 10° 10' 10°
P (k;TT)

FIG. 6. The main figure shows t as a function of P for different

¢ (in steps of 0.02). The inset gives the scaled form of the same data,
with T as a function of P/P™.

PHYSICAL REVIEW E 95, 062129 (2017)

If 7 is plotted as a function of P/ P™*, the scaled graphs are
close to collapsing over the whole range of powers, as shown
in the inset of Fig. 6. We can always find the value of P™*
numerically, but we can also derive a single transcendental
equation that determines P™¥*, and in the case of error-free
measurements we can also solve it analytically. By taking the
limit as t — 0 in Eq. (25), we find that

max __ - 1
P™ = Vopo = Vo(m - «9), (39)

which expresses P™** in terms of Vj. Consider Eq. (36) when
T — 0. Since the other terms are finite, the only way to avoid
a divergence of the last term is for the expression in the large
square brackets to be zero. For r = 0 we have p, = ¢, and
with Eq. (24) we find that V} satisfies the equation

1+ —Vpe —ee" +1)?=0. (40)

For ¢ = 0 we find that the maximum power is given by the
Lambert W function,

P™ = W(e') =0.27846. .. (41)

with the initial value of the potential Vo = 1 4+ W(e™"). This
analytical result is in perfect agreement with our numerical
result.

B. Low power limit
When P = 0, we can assume that the system is always in
equilibrium at the given value of V, which means that p =

pa = (" + 1)_1. We assume for small P that we have p =
Pa + O(P), and that T = A/P. Inserting into Eq. (25) and
expanding in P, we find that it becomes

1 o0
1= —/ dt V p. + O(P). (42)
A Jo

In the limit T — o0, corresponding to quasistatic operation,
the entropy production will vanish if

1
@+ l'=py=e— Vy=In (g - 1), (43)

as shown in [24]. It is reasonable, and confirmed by the
numerical solution, that at small P and long time 7 the
potential difference will be brought all the way back to zero,
V(t — o00) = 0. With these two boundary values, we get

* Yo dpa
A=/ dtha=—/ vdv =mn2-3S,. 44
0 0 dVv
The end result is that in the limit of low power, P — 0, the
optimal period t diverges as

t=(n2—S.)P, (45)

in agreement with our numerical result. In the polynomial
expansion as P — 0 of the total entropy production, A Sy, =
co + ¢1 P, we know that for perfect measurements c( has to be
zero since there is no entropy production during reversible
operation. We have 7 = (In2 — S;)P~! for small P, and
therefore we get Smt = ASiot/T X P72 in agreement with
[23]. If errors are present, the measurement entropy S, exists
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FIG. 7. V(t) for ¢ = 0.1 and several values of P.

even for reversible operation so that ¢y = S, and we obtain an
additional linear behavior of the entropy production rate

St = Se(In2 — )~ P + ¢t P2, (46)

which we confirm numerically in Appendix 2.

C. The optimal protocol

Examples of optimal protocols for ¢ = 0.1 and several
values of P are shown in Fig. 7. We observe that the
time t before the protocol should be repeated decreases
with increasing P, and the initial value V| increases with
decreasing P. The quasistatic limit (z — oco/P — 0) found
in Eq. (43) was Vp = ln(é — 1), which is marked in the plot.
See Appendix 1 for more details on the behavior of V() and
p(t) at time t.

To extract maximum power, one has to balance the
following: the amount of energy gained per tunneling event,
the probability that tunneling occurs, and the probability of
back-tunneling while reducing the potential difference. These
results tell us that the maximum power is reached with rapid
measurements, favoring low probability high-energy tunneling
events, and a steeply sloped V (¢). However, this comes at the
cost of divergence in the entropy production rate. This result
is obtained assuming a constant total tunneling rate I', and it
may change for systems in which I' depends on the potential
difference between the two islands.

D. Effect of the measurement error

To clearly see the effect of the measurement error on the
total entropy production, we plot in Fig. 8 the ratio S, /S for
various values of . For P — 0 we approach reversible oper-
ation (AS = 0), and all of the total entropy production is due
to the measurement error. When P — P™, the measurement
entropy dominates again since there is no time for heat transfer
from the environment when t — 0. For vanishingly small
errors, its effect is only noticeable at the boundary values of P,
but even for relatively minor measurement errors a significant
portion of the entropy production is due to the measurement
error for all P.

PHYSICAL REVIEW E 95, 062129 (2017)

e=0.08 __ €<0.04

Se¢/S
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FIG. 8. The fraction of the total entropy production Sy, that is
due to the measurement error S, as a function of power for various
values of ¢.

VI. SUMMARY

If we make an error in a measurement, there is an associated
net entropy production. This applies to measurements of
any type and with an arbitrary number of outcomes. For a
symmetric binary measurement where the probability of error
is ¢, the entropy increases by the amount S,. This entropy
increase can be understood from a coarse-graining of either the
phase space (for a closed system) or the dynamical evolutions
(for an open system). We have investigated the consequences
of a finite error on the optimal performance of a realistic
Szilard engine at finite (given) power. We found the existence
of a maximal power P™¥*, which also exists for error-free
measurements, and which decreases with increasing error.
The entropy production rate diverges as the maximal power
is approached. For small power, the entropy production rate is
quadratic in P in the absence of errors, but it becomes linear
when errors are present.

16 T T T T T
14 e \ i
124 /7 ]
1.0+ -
- 1 .
ﬁ‘f 0'8_. ~e=10" |]
(4 n S 135 e =102 |4
> 0.6-.___. € 1073
£€=10
044" o1t
024 . 1.25 —--g=10°
—— & = 5x109
0.0 1-3%00 0.005 0.010 b
0.00 005 0.10 0.15 0.20 0.25 0.30
P(kBT I)

FIG. 9. V, as function of P for different £. The inset shows
enlarged what happens for small errors and powers.
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FIG. 10. p, as a function of P for different ¢.
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APPENDIX: ADDITIONAL RESULTS

Here we present some additional results on the optimal
protocol.

1. V(¢) and p(t) at time 7

Figure 9 shows V(r) = V; as a function of P for different
e. While it seems that for any finite ¢ we find V; — 0 as
P — 0, we see that for small & one has to go to very small
powers to see this, and for most powers V; is between 1 and
1.5. This indicates a singular behavior of the function V;(P,¢)
at P = O and ¢ = 0, and the limiting value will depend on how
this point is approached. In Ref. [23] we found that V; = 1.33
for ¢ = 0 and small P. From Fig. 9 (inset) we can see that
this agrees well with what we would expect if we first took the
limite — O and then P — 0. The same singularity is reflected
in the probability p- to find the electron on the opposite island
at time t from the one it was measured at time 0 as shown

PHYSICAL REVIEW E 95, 062129 (2017)

10

H 1
o dy A
o d,

d, from Eq (A2)

S/p

0 0.01 0.02 0.03 0.04 0.05

FIG. 11. §/P as a function of P with labels on the curves giving
¢. For each curve, the value at P = 0 and the slope of the tangent at
that point will give the coefficients ¢; and ¢, of Eq. (Al). These are
shown as functions of ¢ in the inset, together with ¢; from Eq. (A2).

in Fig. 10. For all finite ¢ we have limp_,¢ p, = 0.5, but for
small ¢ this only happens at very small P.

2. Polynomial expansion of $

In Ref. [23] it was found that for ¢ = 0 and small P, S is
proportional to P2. We find that this is not true for finite &. We
expand to second order,

S=d P+d,P? (A1)

where d; and d, are functions of ¢. Plotting $/ P as a function
of P (Fig. 11), we get d, and d, as the intercept and slope
of the tangent at P — 0 (Fig. 11, inset). From the analytical

results in Eq. (46), we know that d; = S,(In2 — S,)~!,
S=d P with dy=S.(In2—-S,)", (A2)

which, as shown in Fig. 11 (inset), agrees perfectly with the
numerical solution.
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Quantum particle in a split box: Excitations to the ground state
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We discuss two different approaches for splitting the wave function of a single-particle box (SPB) into two
equal parts. Adiabatic insertion of a barrier in the center of a SPB in order to make two compartments which
each have probability 1/2 of finding the particle in it is one of the key steps for a Szilard engine. However, any
asymmetry between the volume of the compartments due to an off-center insertion of the barrier results in a
particle that is fully localized in the larger compartment, in the adiabatic limit. We show that rather than exactly
splitting the eigenfunctions in half by a symmetric barrier, one can use a nonadiabatic insertion of an asymmetric
barrier to induce excitations to only the first excited state of the full box. As the barrier strength goes to infinity
the excited state of the full box becomes the ground state of one of the new boxes. Thus, we can achieve close
to exact splitting of the probability between the two compartments using the more realistic nonadiabatic, not
perfectly centered barrier, rather than the idealized adiabatic and central barrier normally assumed.

DOI: 10.1103/PhysRevA.99.022121

I. INTRODUCTION

The Szilard engine is a simple conceptual model of an
information processing system [1]. The classical model is a
single particle in a box, coupled to a thermal bath. By inserting
a movable barrier in the center of the box, the probability of
finding the particle in either compartment becomes 1/2. If we
now perform a measurement to find out which compartment
the particle is in, we generate one bit of Shannon information
which is stored in some memory. Since the box is coupled to
a thermal bath, we can extract work by allowing the compart-
ment in which we find the particle to expand and fill the whole
box. The maximum work extracted in this way is kg7 In 2,

and this is achieved by isothermal expansion. To complete
the cycle the memory is deleted, which has a minimum
energy cost of kgT In 2, according to Landauer’s principle [2].
Therefore, if we perform reversible operations, the full cycle
of measurement, work extraction, and information deletion
generates no entropy. The quantum mechanical version of
the Szilard engine is similar, only now we are splitting the
wave function of the particle. The quantum measurement and,
assuming the memory is classical, deletion is similar to the
classical case, but there are subtle differences when it comes
to the insertion, expansion, and removal of the barrier [3].

The adiabatic theorem in quantum mechanics tells us that
a system remains in its instantaneous eigenstate as long as it
has a gapped energy spectrum and the perturbation acting on
it is slow enough to prevent transition between the eigenstates.
Based on this, it has been remarked in [4] that if the particle is
in the ground state and the barrier is inserted off-center, such
that one compartment is larger than the other, the particle will
always be localized in the larger compartment. This is because
the energy spectrum is proportional to L=2, where L is the
length of the compartment. The result is independent of how
small the asymmetry between the compartments is; any finite
difference between the compartment sizes will give the same
result.

2469-9926/2019/99(2)/022121(6)
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With modern technology we can now experimentally re-
alize what was before only a thought experiment. In the last
decade, the creation of Szilard engines has been reported in
a range of physical systems: atoms [5—7], colloidal particles
[8,9], molecules [10], electrons [11-13], and photons [14].
In experiments the barrier is not inserted adiabatically nor
exactly in the center, and one can ask the question of how
the result of the previous paragraph changes when the barrier
is inserted at a finite rate.

Although a finite rate of insertion can make the probability
of finding the particle in the smaller compartment nonzero,
the downside is that a fast rate results in excitations to higher
energy levels. The Szilard engine measurement procedure
traditionally only determines which side of the box the particle
is found, not its exact eigenstate. Therefore excitation of
high energy states introduces additional entropy that is not
accounted for in the which-side measurement. Information is
therefore lost when performing the measurement, leading to
decreased efficiency of the Szilard engine.

Previous work [15] has studied the asymmetric insertion
of a § potential barrier at high rates of insertion. In contrast
to their work, we expand the full wave function in its in-
stantaneous energy eigenstates and point out the fact that it
is possible to asymmetrically insert a barrier with a finite rate
and obtain very close to an equal probability distribution, with
negligible excitations to higher states than to the first excited
state. Therefore, the asymmetric Szilard engine with finite rate
of insertion of the barrier can have the same efficiency as the
symmetric Szilard engine with adiabatic insertion.

There are two fundamentally different ways to get an equal
probability of occupying the left and right box of a Szilard
engine. One way is to follow the usual protocol of splitting
a symmetric wave function into two exactly equal parts, i.e.,
inserting a barrier in the center of a box with a particle in
the ground state. Figure 1 shows the time evolution of the
eigenstates and eigenenergies when inserting a barrier with
time-dependent strength «(¢) (dashed vertical line), in the

©2019 American Physical Society
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FIG. 1. Schematic of the three first eigenfunction and energies
for a symmetric box for three different values of the barrier strength
a(t). (a) Initial state of the system, before the barrier is inserted.
(b) At an intermediate time before «(t) — co. We see that when the
barrier is inserted at the center of the box it hits the nodes of the
antisymmetric eigenfunctions, and therefore there are no excitations
to this state [see Eq. (6)]. (c) The limit when «(t) — oo. The total
wave function is symmetric about the barrier, and the probability of
finding the particle in either compartment is 1/2.

center of the box. Figure 1(a) is the initial state of the system,
before the barrier has begun to be inserted. Figure 1(b) is
an intermediate step with 0 < o < oo before the two com-
partments have been completely isolated from each other in
Fig. 1(c) as o« — oo. The eigenstates in Fig. 1(c) are split
exactly in half, with a probability of 1/2 on either side.

The second way is to insert the barrier asymmetrically and
nonadiabatically, in such a way that only the first excited
state is excited; the eigenfunction of the ground state will
be large in the larger compartment and small in the smaller
compartment, and vice versa for the first excited state. This
method is illustrated in Fig 2. The initial state in Fig. 2(a),
before the barrier is inserted, is identical to that in Fig. 1(a).
However, as the barrier is increased via 2(b) through 2(c) the
symmetric eigenfunction becomes zero in the smaller com-
partment, while the antisymmetric becomes zero in the larger
compartment. Of course it has to be this way, since when

(@) a=0 (b)0<a<w» (c) a»
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FIG. 2. Same as Fig. 1(a), but for an asymmetric box. (a) The
initial state of the system, identical to Fig. 1(a). Only now the
eigenfunction of the first excited state is nonzero at the point we
insert the barrier, allowing excitations from the ground state. From
the intermediate time step in (b) to the final state in (c) the eigen-
function of the ground and first excited states evolves such that
it is approximately zero in the smaller and larger compartments,
respectively.

o — oo what we have is essentially two rescaled copies of
the initial state. The third energy level in Fig. 2(a) becomes the
new first excited state of the larger compartment in Fig. 2(c),
while the first exited state in Fig. 2(a) becomes the new ground
state of the smaller compartment in Fig. 2(c). Only exciting
the first excited state of the original box still results in no
excitations after the measurement, since it becomes the new
ground state of the compartment.

A good thought experiment is never set in some compli-
cated system with many degrees of freedom. Rather, it is a
surprising result or counterintuitive implication obtained from
the study of a simplified model of reality. One might ask why
further study of a thought experiment that has already been
experimentally realized is necessary. In our opinion there are
two main reasons: The first reason is that studying all the
aspects of this conceptual model helps us to understand the
key physical effects that gave rise to the thought experiment
in the first place, and guides us in how to think about their
order of importance. The second reason is that even though
thought experiments can guide our understanding regardless
of whether it is possible to experimentally perform them, it
is also important to investigate whether they present practical
possibilities. They can act as benchmarks for testing how well
one can control the heat and entropy flow in experiments,
with the goal being to minimize heat waste in electronics. The
Szilard engine, with its measurement and memory scheme, is
ideal in this sense.

In the rest of this article we address the two following
questions related to how we can limit excitations to the first
excited level only, using a simple protocol for the barrier
insertion: How sensitive is the nonadiabatic splitting of the
wave function to asymmetry in barrier insertion, and what is
the probability of exciting states higher than the lowest two
when we insert the barrier with a finite rate.

II. ANALYSIS

The box is shown in Fig. 2 and is defined by the potential
V(x) =0 for x € [—a, b] and V (x) = oo elsewhere. The bar-
rier is a 6 function with time-dependent strength o (¢) inserted
at x = 0. We choose the barrier to be a § function since it
allows presenting the eigenstates in analytical form. A barrier
with finite width was used in [4], while in [15] they used
a § function barrier and obtained similar results. The width
of the barrier would only affect the tunneling rate between
the compartments, but the qualitative results would remain
unchanged. The insertion of the barrier is described by a
time-dependent Hamiltonian given by

282

L
® 2m 0x2

+ a(r)8(x), ey
where m is the mass of the particle. The instantaneous eigen-
functions |y, (¢)) that evolve are found as the solution to the
time-independent Schrodinger equation

H(@) 1Y, (1)) = E@) [y (1)) . @

At any given time the instantaneous eigenfunctions is an
orthonormal set (Y,|¥,,) = 8,.m. Therefore the total wave
function |W(¢)), which is the solution of the time-dependent
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Schrodinger equation
ihd, V() = H (@), 3)

can be expressed as a linear combination of them

(W) =Y calt) [Ya(0) €7C, 6, = —%fo E,(t")dt'.

“4)

Here c¢,(t) is a set of complex constants satisfying
ZZO lc.(t)]*> = 1. As shown in Appendix A, the system of
coupled differential equations giving the time evolution of the
coefficients {c,} is

WaOIH Y (O) 6,5,
E,—E, '

() ==Y cm(®) (5)

m#n

We first need to find the instantaneous solutions |1, (¢)) for
the asymmetric barrier problem, and the details of these
calculations are given in Appendix B. After finding the in-
stantaneous solutions we numerically solve Eq. (5) to find the
time evolution of |W(z)).

III. RESULTS

Let us now see to what extent it is possible to make the
probability of finding the particle in either compartment equal
(or as close to equal as possible), while limiting excitations to
higher energy states.

We set the total length of the box equalto L =a+b =1,
and define a = 1/2 + €, where € is the asymmetry parameter
that determines how much larger the compartment on the left
side of the barrier is than the one on the right side. We also
set i = m = 1. The initial state is chosen to be the ground
state, which is ¢1(0) = 1 and ¢,(0) = 0 for n > 1. We found
that including the six first eigenstates was sufficient to capture
all the excitations for the insertion rates we explored. We set
the maximum strength of the barrier at the end of the protocol
(t = t)toa(r) =400 Ey, where Ej is the ground state of the
box of L = 1 without a barrier. This value was chosen to make
sure that the coefficients {c,(t)} converged to constant values.

For the protocol we chose a(t) = At?, where A is some
constant that determines the rate of insertion. We also tried a
linear protocol, but found that in order to limit higher-order
excitation the rate of insertion had to start small and steadily
increase as a function of time. The reason for this can be
understood by studying the coupling between the {c,(¢)} in
Eq. (5) at a given time ¢

(YOI H [P (t))
E, — E,

:d(t)(wn(t)IB(X)lwm(t))' ©)
Em - En
When we insert the barrier, the probability of finding
the particle at the insertion point decreases in proportion
to the strength of the barrier. Therefore the numerator,
(wn(t)|3(x)|1pm(t)), which measures overlap between the
eigenstates at the insertion point, will be largest in the be-
ginning and decrease toward zero as the barrier strength is
increased. This prevents transitions for high barriers. The
denominator is the energy difference between the eigenstates,
E,, — E,, and its dependence on the barrier strength is shown

T ——
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FIG. 3. Energy levels as a function of time. We see that the
odd energy levels approach the evens as the strength of the barrier
increases, and the final spacing between them decreases with the
magnitude of the asymmetry.

in Fig. 3. The energy difference between the ground state
and the first exited state is largest in the beginning and
asymptotically approaches a final small value that increases
with the asymmetry between the compartments. This makes
transition between these more likely as the barrier strength
increases.

In Fig. 4 we plot the ratio (wl(t)|3(x)|1//m(t)) J(En — EY)
and interpret its magnitude as an indication of the coupling
strength between the ground state and the mth eigenstate.
As argued in the previous paragraph we see that indeed the
ground state’s coupling to the first excited state dominates
over its coupling to other eigenstates once the barrier has
reached a certain strength (~4 Ey in this example, where € =
0.1). As seen in Eq. (6), we can control the coupling strength
via a(t). By choosing a «(t) that is small in the beginning
and large toward the end of the protocol, we suppress early

v
A= — =2
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N\
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3 ‘ ™
< 0.004 K N
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— ’.‘. . \\N‘
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0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5 20.0
a (units of EgL)

FIG. 4. Dependence of the ratio W on the strength of
the barrier «. Its magnitude gives us an indication of the coupling
between the ground state and the higher excited states. We see that
the coupling between the ground state and the first excited state
remains substantial for high values of «, while all the others decay
quickly. This indicates that we can induce transitions between those
two levels without exciting higher states when « is large. This plot
was obtained with e = 0.1.
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FIG. 5. Probability of finding the particle in the largest compart-
ment (solid lines), as a function of the barrier insertion rate constant
A and the asymmetry parameter €. The probability to excite levels
higher than the first excited state is shown in the dashed lines.

transitions between the levels when (i, (t)|3(x)|1pm @)/
(E,, — E,) is large. Since the energy difference between the
ground state and the first excited state becomes much smaller
than the difference between the ground state and any of the
higher states, we can induce transitions between them, even
when the wave function overlap is very small, if we choose a
a(t) that is suitably large.

In Fig. 5 we show a contour plot of the probability of
finding the particle in the bigger compartment (solid lines)
at the end of the protocol as a function of the asymmetry
parameter € /L and the insertion rate parameter A. We see that
even for asymmetries of the order of € ~ 0.01 the probability
of finding the particle in the bigger compartment is quite large.
Although increasing the barrier faster makes the probabilities
of finding the particle in either side more equal it also incurs
a penalty; the faster you increase the barrier the more likely it
is that you excite higher-order states in the energy spectrum.
Higher-order excitations increases the entropy of the system,
since the internal states of the Szilard engine are assumed to
be either the ground state (bigger compartment) or the first
excited state (smaller compartment).

IV. SUMMARY AND DISCUSSION

When designing a Szilard engine one wants the probabili-
ties of finding the particle in either compartment after barrier
insertion to be equal. Experimentally it might be difficult
to design a perfectly symmetric double-well potential. We
point out the fact that excitations to the first excited state are
special in the sense that after the barrier strength becomes high
enough to stop tunneling between the two compartments, and
a measurement to determine which compartment the particle
is found is performed, the system is still in the ground state
for the relevant compartment. This is a generic result, but
exactly how to limit the excitations to only the first excited
state depends on the specific protocol «(¢). We have used
a simple protocol that is quadratic in time as an example,
and investigated how sensitive the probability distribution of
the divided single-particle box is to asymmetry between the
compartment size. We find that for this protocol even small

differences between the width of the compartments, results
in a probability distribution that is skewed toward the larger
compartment. The faster one increases the barrier strength,
the more even the final distribution becomes. However, this
rapid increase also leads to higher-order excitations in the box,
which results in unwanted entropy production. The question
remains whether a protocol can be constructed such that it
gives an equal final distribution between the left and right side,
and how sensitive it is to variations in the asymmetry.
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APPENDIX A: WAVE FUNCTION FOR TIME-DEPENDENT
HAMILTONIAN

In this section we follow [16] (Sec. 10.1.2) and write the
total wave function |W(¢)) as a linear combination of the
instantaneous eigenstates |y (¢),) and derive the coupled dif-
ferential equation for the coefficients. When the Hamiltonian
changes with time, the eigenfunctions and eigenvalues are also
time dependent,

H@t) |Ya(t)) = Eq(t) |$,(1)) -

The eigenfunctions at any given time is an orthonormal set,
(Y (t)|Yrm(t)) = 8,.m, and the total wave function which can
be found as the solution of the time-dependent Schrodinger
equation

(AD)

ino, W) = H W) (A2)
can be expressed as a linear combination of them:
(W) =Y calt) [Yn(8)) €, (A3)
where
1 t
O, = ——/ E,(t"dt'. (A4)
i Jo

Inserting this linear combination into the time-dependent
Schrodinger equation gives us

iRy [én W) + cu [¥n) + icy [¥) 1™ (AS)

=Y, cal [Y) €. (A6)

Now since én = —E,/h and A |V,) = E, |¥,), the right-hand
side exactly cancels the last term on the left-hand side and we
are left with

S Lén 1) + ca )1 = 0. (A7)

We now take the inner product with the eigenfunction 1,
and since the eigenfunctions constitute an orthonormal set at
any given time 7, we obtain a set of N coupled differential
equations for the N coefficients ¢,, n € [1, N].

Z[énam,n +cp <¢m|¢n>]ei6 = 07

n

Em(t) ==Y cn (Ymln) €O,

n

(A8)

(A9)
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We can rewrite this equation by taking the time derivative of
Eq. (A1) and then the inner product with v, to obtain

WUl H V) + En (Yl n) = ESppn + En (Yl . (A10)

which shows us that the inner product (i, |¥,) can be
written as

(Yl H )

<Wm|WH) = E, — E,

, (ALT)

as long as the system is nondegenerate and n # m. Putting this
result into Eq. (A9) we get

(Yl H 1Y) )

Al2
E _E, (Al12)

Em = —Cn (Yl m) = Y _ €
n#m

This form of the differential equation is particularly well
suited to our problem. First, the Hamiltonian contains a §
function at x = 0, so the integral (v,,|H |v,,) is simply given
by (using the eigenfunctions from Appendix B)
(Yl H 1Y) = @A, Ay sin(k,a) sin(kya). (A13)

In addition, the term (wmll/)m) is always zero. This is be-
cause the instantaneous eigenfunctions |v,,) are orthonormal

((Wmlwm) = 1) and real:
d . .
5 (Yl ¥m) = (Yml¥m) + (Yml|¥m) = 0. (A14)

Since (Y| Vm) = (V| ¥m)” we get

Ynl¥m) = — (Unl¥m)” — Re[(¥nl¥m)] = 0.  (ALS)

Therefore the coupled differential equations we need to solve
become

fiy)
tm=— —(‘Z’" '_ EM !0, (A16)
netm n m

APPENDIX B: ASYMMETRIC BARRIER

We can find the stationary states from the time-independent
Schrodinger equation and they have the form

_ JAsin[k(x + a)],
Yx) = { Bsin[k(x — b)),

x € [—a, 0],

xe[0.b]. (BI)

where k = +/2mE /h. At x =0 the wave function is con-
tinuous while its derivative has a discontinuity. These two
conditions are

(YO -0~ yO+el=0. (B
L0+~ F0 -1 = 25y, B3

and for our system they result in
Asin(ka) = —B sin(kb), (B4)
Bcos(kb) — Acos(ka) = ingA sin(ka). BS)

Combining these equations gives us another one, which we
can solve numerically to find the wave vectors k for a given
a, b, and «.
. 2ma .
sin[k(a + b)] = _W sin(ka) sin(kb). (B6)

The solutions to this equation defines a discrete set of allowed

values for the wave vector k — k,, n=1, 2, ..., which de-
termines the energy spectrum of the system via
ho,
E, = %kn. B7)

The wave function has to be normalized on the domain of x,

0 b
/ A% sin?[k,(x + a)] + / B2sin’[k,(x —b)] =1, (BS)
- 0

a
which combined with Eq. (B4) gives us the normalization
constants A,

Ai _ a sin(2k,a)
2 4k,

sinf(kpa) (b sin(2k,b)\ ]~
sin2(k,b) (5 TS )] '

(B9)
B, can be found via Eq. (B4).
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Machine learning techniques based on artificial neural networks have been successfully applied
to solve many problems in science. One of the most interesting domains of machine learning,
reinforcement learning, has natural applicability for optimization problems in physics. In this
work we use deep reinforcement learning and Chopped Random Basis optimization, to solve an
optimization problem based on the insertion of an off-center barrier in a quantum Szilard engine.
We show that using designed protocols for the time dependence of the barrier strength, we can
achieve an equal splitting of the wave function (1/2 probability to find the particle on either side
of the barrier) even for an asymmetric Szilard engine in such a way that no information is lost
when measuring which side the particle is found. This implies that the asymmetric non-adiabatic
Szilard engine can operate with the same efficiency as the traditional Szilard engine, with adiabatic
insertion of a central barrier. We compare the two optimization methods, and demonstrate the ad-
vantage of reinforcement learning when it comes to constructing robust and noise-resistant protocols.

I. INTRODUCTION

Machine Learning is becoming an essential tool for
data analysis and optimization in a wide variety of
scientific fields, from molecular [1] and medical science
[2] to astronomy [3]. One of the most exiting devel-
opment in machine learning, comes from combining
reinforcement learning [4] with deep neural networks [5].
Reinforcement Learning (RL) differs from supervised
and unsupervised learning and is based on letting an
agent learn how to behave in a desired way by taking
actions in an environment and observing the effect of
the action on the environment. In order to define the
optimal behavior of the agent, we give it feedback in
the form of a reward based on the effect of its previous
action. If the action changes the environment into a
more desirable state we give it a positive reward, while
if it had negative consequences we give it a negative
reward. Recently RL has enjoyed increasing popularity
in quantum physics, and have been used to explore
the quantum speed limit [6, 7], protect qubit systems
from noise [8], design new photonic experiments [9], and
many other applications [10-12]. For an excellent review
of the application of machine learning in physics, see [13].

We use deep reinforcement learning (DRL), specifically
Deep-Q Learning (DQL) [5] and Deep Deterministic
Policy Gradient (DDPG) [14], to solve an optimization
problem based on the barrier insertion of an asymmetric
(off-center insertion) quantum Szilard engine, which we
will motivate it the following paragraphs. The goal is to
find barrier insertion protocols that effectively achieves
equal splitting of the wave function of a single-particle-
box. We compare the results from DRL with those
obtained by using chopped random basis optimization

* vegardbs@fys.uio.no

[15], a more traditional optimization algorithm. Finally,
since it can be difficult to experimentally determine the
exact asymmetry, we show that DRL can be used to
find robust protocols, which performs well for a range
of asymmetries. We do this by simultaneously training
on many instances of the single-particle-box (SPB),
where each instance has a different asymmetry. This is
essentially the same as training in an environment with
a noisy Hamiltonian, as in [7, 8].

The Szilard engine is a classic example of a information
processing system, which can convert one bit of Shannon
information (obtained by a binary measurement) into
an amount kg7 In2 of useful work [16]. This is done by
inserting a barrier in the center of a SPB, performing a
measurement to determine which side of the barrier the
particle is found (giving one bit of Shannon information),
and then letting the compartment the particle occupies
isothermally expand into the empty one resulting in
a work-extraction of kgT'In2. This work is not free
however, since the information obtained has to be stored
in a memory, which subsequently has to be deleted at an
energy cost of kg7 In 2 according to Landauer’s principle
[17]. Both work extraction from a Szilard engine, and
Landauer’s principle, have recently been experimentally
confirmed [18-21].

For the quantum version of the Szilard engine [22],
there are some subtle differences in the entropy flow dur-
ing insertion, expansion, and removal of the barrier [23].
Moreover, the position of the particle is now described
by a quantum wave function, which is divided into two
parts when inserting the barrier. When adiabatically
inserting a barrier in the center of a quantum SPB in its
ground state, the wave function is split in half in such a
way that each half becomes a new ground state in each
compartment, when the barrier strength goes to infinity.
The probability to find the particle on either side of the
barrier after insertion becomes 1/2. However, as long



as there is an asymmetry in the insertion of the barrier,
i.e. it is not put exactly in the center, the adiabatic
theorem guarantees that the particle will be found in
the larger compartment [24]. Since the initial state is
the ground state, and the adiabatic theorem implies
the time evolved state will stay in its instantaneous
eigenstate, the particle always ends up in the global
ground state. The global ground state is found in the
larger compartment since the energy is proportional to
LE?L), where Lg(ry is the width of the compartment on

the right(left) side of the barrier.

If we want to achieve equal probability on both sides
of the barrier for asymmetric insertion, we have to insert
the barrier non-adiabatically in such a way that we
excite higher eigenstates. This will in general decrease
the efficiency of the quantum Szilard engine, since the
measurement only determines which side the particle is
found, not its exact eigenstate. However, there is one
special way of obtaining exact splitting of the wave func-
tion without losing any information in the measurement,
for the asymmetric Szilard engine [25]: If we insert the
barrier in such a way that the total wave function is a
superposition of only the first and second eigenstate at
the time of measurement, i.e. |¥) = (|¢o1) + |12)) /V/2,
the which-side measurement does not result in any
information loss since the second eigenstate becomes the
ground state of the smaller compartment. When one
now measure which compartment the particle is in, one
is certain that it is in the ground state of the respective
compartment.

Our goal is to split the wave function of a single-
particle-box in the ground state, by inserting a barrier
off-center, in such a way that only the second eigenstate
is excited, and the probability to find the particle in all
higher states are as close to zero as possible. However,
finding a protocol for the barrier insertion which will
achieve this goal is non-trivial, since it will have to
take advantage of complicated interference between the
time-dependent eigenstates.

II. SINGLE-PARTICLE-BOX

The SPB is defined by the potential V(z) = 0 for
x € [-L/2,L/2], where L is the total width of the box,
and V(z) = oo elsewhere. The barrier is a J-function
potential inserted at x = d > 0. An illustration of the
SPB is shown in Fig. 1, along with its three first eigen-
functions and eigenenergies before the barrier is inserted.
If ¢ = 0 the box is split symmetrically, i.e. the width
of the left and right compartment is equal. However,
for d > 0, the width of the left compartment becomes
Ly = L/2+d, while the width of the right compartment
becomes Lr = L/2 — d. The time-dependent Hamilto-
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FIG. 1. Illustration of a single particle box with total width
L. The eigenfunctions and eigenenergies are shown for the
initial state a(t) = 0.

nian of the insertion procedure is given by

-~ h* 02
B = oo

where «(t) is the strength of the barrier at time ¢, and m
is the mass of the particle. For the rest of this article we
set h = m = 1. The total wave function, |¥(¢)), can be
expressed as a linear combination of the instantaneous
eigenfunctions

+ a(t)d(x — d), (1)

90 = SO, 6= [ B0
2)

where E,,(t) are the instantaneous eigenenergies when
the barrier strength is a(¢), |¢(t)) are the instantaneous
eigenfunctions, and ¢, (t) are complex coefficients. The
initial state is therefore given by |c1(0)]* = 1, and the
goal is to construct a protocol «(t), which brings us to
a final state where |cy(T))* = |eo(T)]* = 1/2, where T
is the duration of the protocol. More details on how
the instantaneous eigenstates are calculated, and how the
time evolution of the total wave function is numerically
solved, is given in [25].

IIT. CRAB OPTIMIZATION

We use chopped random-basis (CRAB) optimization
[15] to find protocols «(t) that splits the wave function
in two equal halves for asymmetric barrier insertion in
a quantum box. In CRAB optimization we expand the
protocol in a complete basis (the Fourier series in our
case), in the following way

at) = ap(t) |1+ A(t) ZC Ay, cos(wy) + By, sin(wy,)

(3)
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FIG. 2. Results from the CRAB optimization for d = 0.01
and d = 0.02. In (a) and (b) we show the protocols a(t), while
in (c) and (d) we show the time evolution of |c,(t)]>. We see
that the protocol in (b) gives negligible excitations to states
n > 2 throughout its duration. However the protocol in (a)
excites the third eigenstate during the first discontinuity in
G(t) right before ¢ = 3, but this excitation is depleted during
the second discontinuity around ¢ = 4.

Here «(t) is an initial guess for the optimal protocol, A(t)
is a regularization function used to implement boundary
conditions, and {4,,, By,,w,} is the set of Fourier coeffi-
cients we optimize to maximize the cost function

2

O{AnBuwnd) =1- Y (lealDP —05)" . (4)

n=1

We fix the boundary conditions to be «(0) = 0 and
a(T) = 200EyL (where Eq = 72/2 is the ground
state at «(0) = 0) , and choose A(t) = sin(nt/T). To
minimize Eq. (4) we use a gradient free method, like
the Nelder-Mead [26] or Powell’s method [27]. Using
the Nelder-Mead method we are able to almost exactly
split the wave function in half, and results for d = 0.01
and d = 0.02 are shown in Fig. 2. In these examples
we obtained |c;(T)]* = 0.4986, |co(T)[> = 0.4979, and
> so len(T)] ~ 1073 for d = 0.01, while for d = 0.02
we got |er(T)° = 0.5001, |eo(T)]> = 0.4999, and
S healea(T)]? ~ 1075, In Fig. 2(a) and Fig. 2(b) we
show example protocols for d = 0.01 and d = 0.02,
respectively, while in Fig. 2(c) and Fig. 2(d) we show
the time evolution of the probability to be in a given
eigenstate, |c,(t)].

The protocols obtained by CRAB are designed to split
the wave function in two for a given asymmetry. They
work extremely well for the asymmetry they were de-
signed for. However, the protocols generalize poorly to
other asymmetries, as shown in Fig. 3. There we plot
len(T)|? as a function of the asymmetry d, using the
protocol designed for d = 0.01 and d = 0.02. We see
that the performance of a protocol designed for a specific

asymmetry dramatically reduces if it is applied to single-
particle-boxes of different asymmetries. An interesting
feature is seen in Fig. 3(b), where the protocol designed
for d = 0.02 achieves exact splitting for asymmetries
other than the one that was used for training. However,
even this protocol has bad performance in the regions
between these points of exact splitting, so it would not
be useful unless one knows the exact asymmetry of the
single-particle-box.

(a) protocol designed for d = 0.01
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FIG. 3. Plot showing how the protocols designed for two
specific asymmetries performs on other asymmetries. In (a)
we show the results for the protocol designed for d = 0.01,
while in (b) we show the one designed for d = 0.02. The
light blue and the blue line shows the occupation at ¢ = T for
the first and second eigenstate respectively, while the purple
line shows the occupation of all eigenstates higher than the
second, i.e. the unwanted excitations. The black dashed lines
shows the target |, (T)[> = 0.5, and the red crosses shows
the asymmetry trained on.

IV. DEEP Q-LEARNING

We now give a short review of the DQL algorithm
introduced in [5]. In the next section we will show how
this general algorithm is adapted to our problem. A
schematic of the basic reinforcement learning protocol is
shown in Fig. 4. At time ¢ the environment is in a given
state s;. The agent performs an action a; which induces
a state change of the environment from s; to s;4+1. The
agent then receives an observation of the new state
of the environment, s;1;. After taking an action the
agent receives a reward 1 = (8¢, at, S¢41). The reward
function r(s¢,at, st+1) is designed by us, according to
what goal we want the agent to achieve.

The behavior of the agent is determined by its policy
m(at|st), which is the probability of taking the action
ay in given the observation s;. If the agent is in state
st, the Q-function (quality function) Q(s¢,a:) gives the
expected cumulative reward given that the action a; is
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FIG. 4. Schematic showing the basic setup of deep Q-learning.
The current state of the system s; is fed as input nodes into a
deep neural network (DNN). The output nodes are the set of
all possible actions, {a }, and their values are the estimated
Q-value for the given state-action pair. The policy w(s,a)
is given by the action node with the highest output value,
or by a random action if the agent is exploring. The action
determined by the policy is performed in the environment,
inducing a state change from s; — s¢+1. Associated with this
state change, a reward r; is given, which is used to determine
how good the given action was in this state. This reward is fed
back into the DNN and used to update its weights according
to Eq. (8). Schematic adapted from [28].

performed and the policy 7 is followed for all proceeding
states.

Q(st,at) = Est+1 [Tt =+ ")/Tt+1 —+ ’)/27’t+2 4+ ... |st,at,7r]
= Est-{-l [rt + VQ(St+17 at—O—l)‘Stv Qt, 77] (5)

Here v < 1 is a discount parameter, which determines
how much the agent values immediate reward compared
to future reward. If v < 1 the agent will value future
reward less than immediate reward, which is useful for
learning in stochastic environments where the future is
more uncertain. The optimal Q-function, Q% (s, ay), is
the maximum expected cumulative reward obtained by
taking the action a; in state s; and then acting optimally
thereafter, and it is shown to obey the Bellman optimal-
ity equation [4]

Qr(st,a:) = Eg oy [7e + ’Ylariilf Qi (841, ae41)|51, at
(6)
If we have Q%(s,a) for all possible state-action pairs,
it is clear that we can find the optimal policy, ©*, by
choosing a; = argmax, Q% (s:,a’), i.e. following the
policy

7" (ar|s¢) = argmax Q7 (s, a’). (7

The key idea introduced in [5], is to estimate the optimal
Q-function using a neural network Q% (s, a) ~ Q% (s, a, ),
where 6 is the weights and biases of the neural network.

This neural network is called a Deep-Q network (DQN),
and is updated by performing gradient ascent on the
mean-squared-error of the current predicted Q% (s,a,0),
while using the Bellman equation as the target. The loss
function for DQN is therefore

y 2
L(9) = E,, ., {(Qﬂ(st,ame) —Yt) } . (8)
where
Yr =1y +y max Qr (st41,a141,0) 9)

To create the neural network we used tensorflow’s im-
plementation of the Keras API [29, 30], with Adam [31]
as the optimizer. The network consists of three hidden
layers, with 24, 48 and 24 neurons, respectively, as well
as 2 input neurons and 20 output neurons. When the
network is initialized its predictions for the optimal Q-
values are of course totally wrong. So if we always chose
the actions that maximizes the current predicted Q-
values, the agent would not learn anything. We need
to let the agent explore the state-action space by ran-
domly performing actions. A typical exploration policy
is the e-greedy policy. The agent chooses random actions
with probability €, or the ones with the highest Q%-value
(greedily) with probability 1 —e. As time goes and the
agent explores more of the environment, € is decreased
so that it focuses more on the areas of the state-action
space with higher Q%-values by taking deterministic ac-
tions. Typically we start by taking completely random
actions, € = 1, and let ¢ converge to some finite number
€ ~ 0.05, so that there is always some exploration go-
ing on. As seen in Eq. (8) a single update of the network
weights requires the following input: the current state s;,
the action chosen a;, the immediate reward r;, and the
next state s;y1. We call this tuple, e; = (s, ar, r¢, St+1),
that the network trains on an experience. Instead of
training on consecutive experiences we store them all in
a memory My = {ep,e1,...,en}, and then train on ran-
domly drawn batches of samples from the memory. The
memory have a finite capacity, and new experiences re-
place older ones when the memory is full. There are three
main advantages of training on the memory: It is data
efficient since a single experience can be drawn many
times. Only training on consecutive experiences is inef-
ficient, since the network tends to forget previous expe-
riences by overwriting them with new experiences. The
time-correlation of consecutive experiences means that
the network update due to the current experience deter-
mines what the next experience will be, so training can
be dominated by experiences from a certain area in the
state-action space. Finally we see that in Eq. (8) the cur-
rent weights of the network determines both the target
Q%-value and the predicted Q%-value from the Bellman
equation. Thus every network update changes the target
Q%-value that we are trying to reach, and makes it hard
for the network weights to converge. A simple way to
circumvent this problem is to use two neural networks,



one for the target Q%-value (67), and one for the current
QZ%-value (). The target network is softly updated dur-
ing training according to 6~ <+ 6~ (1 — 7) + 07, where T
is a hyper-parameter that determines how close the two
networks are in the network parameter space.

V. DQL RESULTS

For our system, we defined the state to be a tuple of the
strength of the d-barrier and the time ¢, i.e. S = {a(t),t}.
The available actions is a set of &(t), given by

A={at(t)==+2", for n=1,2,...,10}.

The initial state is S = {a(t) = 0,t = 0}, and the goal
is to reach a state where |co|* = |e1|* = 1/2, at the end
of the protocol t = T. A sequence of selected actions,
from time ¢t = 0 to t = T, defines a protocol «(t). The
number of times the agent chooses an action per protocol
is given by Ny, and the time-step is therefore dt = T'/N;.
The environment that the agent acts in is the quantum
mechanical SPB, with initial state |¢;|* = 1 and |ep»q|* =
0, and time evolution given by the Schrodinger equation
10y |(t)) = H(t)|v(t)), which we solve as in [25]. The
sequential process for one episode is then

1. Initial state is sg : (ag = 0, = 0)
2. Agent chooses action based on sg, e.g. ag = c'v;[
. The next state is then s : (g + &3 dt, t + dt)

. Repeat 2. — 3., for s1,59,... untilt =T.

ot s W

. Solve the Schrodinger equation for the given proto-
col (set of all states { s, t, }) and calculate reward.
Repeat from 1. until maximum number of episodes
reached.

The reward function we used is defined by

0, ift <T and & € [0, Anaz)
—10, ift<T and a ¢ [0, mas)

2 2
100 exp<— 2 w> ift=T
(10)

where o determines how sharp we want the reward
distribution to be. If the agent chooses actions such
that a(t) < 0, we give it a punishment of —10 and set
a(t) = 0, and for actions that would give a(t) > amax
we punish and set a(t) = qnaz. We do this to keep the
state space bounded. The space of possible protocols
grows exponentially with dt~!, so it is impractical to set
dt so small that we get approximately continuous c(t).
The accuracy of our numerical solution of the quantum
time evolution decreases if we have discontinuous &(t),
so to circumvent this problem we use cubic spline to
interpolate the final protocol before calculating the
reward.

r(t) =
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FIG. 5. Results from DQL when training on a single asym-
metry, € = 0.02. In (a) we show the protocol a(t), while in
(b) we show the time evolution of |¢, (t)|* for the asymmetry
we trained on. Similarly to the protocol in Fig. 2(a), there
is a good amount of excitations to the third eigenstate in the
very beginning of the protocol, which is then depleted around
t =1 s. In (c¢) we show how the protocol generalizes to other
asymmetries, by plotting the distribution |e,(T)|* at t = T
for asymmetries in the range d € [0.01,0.1]. The parameters
of this protocol was T'=15 s, Ny = 10, aimaz = 800 EoL, and
o = 0.05.

In Fig. 5 we show an example protocol learned by
the DQL agent, and the corresponding time evolu-
tion of |c,(t)|*>, when training on a single asymmetry
(e = 0.02) for 10 000 episodes. The final distribution
was |c1(T))* = 0.4996, |co(T)]* = 0.4935, and with
higher excitations ) ., |¢n|? ~ 1072, The results, when
training on a single asymmetry, tended to be worse for
DQL than for direct CRAB optimization. There are
many ways to improve the results obtained by DQL; we
can add actions to, or change the action space, train
for a longer time or increase the number of actions
per episode N;. Alternatively, one could implement
algorithms similar to DQL that can perform actions in
a continuous action space, like deep deterministic policy
gradient (DDPQG) [14]. However, most of these changes
would also increase the necessary training time.

In real experiments one may not know exactly how
large the asymmetry of the single-particle-box is. A far
more useful protocol would be a robust one, designed to
work best for a given range of asymmetries. One of the
main benefits of DQL is that it is a model-free algorithm,
so this task is easily achieved. One only has to let the
agent train on random samples of the set of asymmetries
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FIG. 6. Results from DQL when training on 10 different
asymmetries in the range d € [0.04,0.06]. In (a) we show the
protocol obtained, while in (b) we show |¢, (T)|? all asymme-
tries up to d = 0.1, where the red bar indicates the range of
asymmetries we trained on. When compared to Fig. 3, we see
that the protocol performs much better overall than the ones
designed for one specific asymmetry, particularly in the range
we trained on. The parameters of this protocol was T' =5 s,
N = 20, maz = 800 EyL, and o = 0.05.
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FIG. 7. Scatter plot of the reward received per episode, when
training on multiple asymmetries, shown in blue dots, and a
running average shown in red. The probability to take ran-
dom actions is gradually reduced with the number of episodes,
leading to a final protocol which the agent determines to be
the best.

one wants the protocol to be optimized to. Since the
agent tries to maximize the expected cumulative reward,
this added stochasticity is no hindrance. How much
the agent values a given state-action pair is averaged
over the random samples from the memory, which is
proportionally filled with the number of asymmetries we
train on.

As an example, say one could determine the asym-
metry with a given accuracy d = 0.05 + 0.01. An
example protocol that was obtained when training on
multiple asymmetries (10 equally spaced samples in

the range d € [0.04,0.06]) is shown in Fig. 6. As seen
in Fig. 6(b), this protocol performs better on the full
range of asymmetries than the ones designed for a single
asymmetry, shown in Fig. 3. The excitation to states
higher than the two first eigenstates is largest for small
asymmetries. This is due to the fact that when d — 0,
the wall is inserted close to the central node of the
second eigenstate, and the central anti-node of the third
eigenstate, as shown in Fig. 1. Therefore excitations
to the second eigenstate becomes less likely, while the
opposite is true for excitations to the third eigenstate.
Since this is an intrinsic property of the system, it is
impossible to find protocols that avoids excitations for
d — 0. For d = 0, the ground state of the left and right
compartment constitute a doubly degenerate global
ground state, and to achieve an equal splitting of the
wave function, one has to insert the barrier adiabatically
[25].

In Fig. (7) we see the total cumulative reward received
per episode in a scatter plot, as well as a running
average. We see that in the early episodes, where
there agent mostly performs random actions, there are
many episodes with negative cumulative reward. This
is because there is an equal probability that the agent
chooses negative and positive ¢, and since the initial
state is a(t = 0) = 0 there is a high probability that the
agent chooses actions which gives a(t) < 0, resulting in
a punishment of -10 every time. In this early stage the
agent explores and learns about its environment. As the
probability to take random actions decreases (according
to the e-greedy protocol) with each episode, the agent
takes more deterministic actions based on its experience,
and the reward per episode increases steadily. The
stochasticity observed in the rewards for final episodes
is due a finite final exploration rate e = 0.05. We obtain
the final protocol after training by setting ¢ = 0, and
let the agent act deterministically. The efficiency of the
protocol obtained by training on a range of asymmetries
can be increased by implementing the same changes as
for the one designed for a single asymmetry.

VI. DEEP DETERMINISTIC POLICY
GRADIENT

Our set of possible actions for the DQL algorithm is
somewhat arbitrarily chosen. For our specific control
problem, there are infinitely many protocols that can
achieve our goal, so the exact set chosen is not critically
important. However, the performance of the algorithm
depends on this choice, and the optimal protocols we
find can always be defined by some subset of the total
action-space. That is, not all actions are used for the
optimal protocol, so we could retroactively reduce the
action-space after learning which actions was needed.
For many control problems in physics, it is more natural



to let the action values be drawn from a continuous set,
on some interval A € [amin, Gmaz]. For DQL, this is not
possible, since the optimal policy 7*(at|s;) comes from
taking the maximum argument of a finite dimensional

Q*(Sm at)~

When the action-space is continuous, the optimal Q-
function Q*(s,a) is assumed to be differentiable with re-
spect to the action a. In Deep Deterministic Policy Gra-
dient [14], the goal is to find a deterministic policy u(s),
which gives is the optimal action to take for any state,
a* = p(s). This deterministic policy is approximated
by another neural network p(s) ~ u(s,®), where ¢ are
the parameters of the network. The Q-function is, as in
DQL, also approximated by a neural network, and the
essence of introducing the deterministic policy is to re-
place the largest Q-value for a state-action pair in the
following way:

arg max Qr(st,0',0) = Q" (st1, (5141, 9),60).  (11)

The Q-network is updated in the same way as in DQL,
by using the Bellman equation, but instead of Eq. (9),
the target for the loss function now becomes

Y =1t + YQ" (St41, 1(St41, 9), 0). (12)

As for the policy network, it was shown in [32] that its
weights can updated in proportion to the gradient of the
Q-function

¢k+1 = ¢k: + A-EISGB [V¢Q*(S,M(S, ¢)7 9)] ) (13)

where X is the learning rate, which determines the step-
size of the gradient ascent. Since the gradient will, in
general, move the weights in different directions for dif-
ferent states, an average over a batch of experiences is
taken. By applying the chain rule to Eq. 13, we can de-
compose it into a product of the gradient of the policy
with respect to its network weight, and the gradient of
the Q-function with respect to the actions

V¢Q*(Sa ﬂ(sa ¢)a ‘9) = V¢/-L(87 ¢)VaQ* (87 a, ¢)|a:;4(s,(qi)4>

Exploration in DDPG is driven by adding noise to the
policy, sampled form some distribution N; suited to the
environment, which is annealed over time

1 (s¢) = p(se, @) + Ny (15)
We use a Gaussian white noise process, and annealed
its standard deviation from oy = 0.3 to oy = 107%

over the course of the training. DPPG is called an
actor-critic model, and the sense is that the policy is
an actor, taking actions in an environment, and the
Q-function acts as a critic, determining how good the
actions where, and feeding the result back to the actor.

For the DPPG algorithm, we used an adapted im-
plementation from Keras-RL [33], which includes the
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FIG. 8. Results from DDPG, when training on 10 different
asymmetries in the range d € [0.04,0.06]. In (a) we show the
protocol itself, while in (b) we show how the protocol performs
on a range of asymmetries d € [0, 0.1]. The red bar marks the
range we trained on. The parameters of this protocol was
T =5s, Nt =20, @maz = 800 EpL, and o = 0.05, and we
trained for 20 000 episodes.

same modifications we used for DQL; i.e. experience
replay and different networks for the target and current
Q-function and policy. The policy network takes as
input the same state tuple as for DQL, S = {«(t),t},
which is connected to three hidden layers, with the
same architecture as DQL; 24, 48, and 24 neurons,
respectively, and outputs a single value, the action
&(t). The Q-function network takes as input the action
value suggested by the policy, as well as the state
S = {«(t),t}, again connected to three hidden layers
with the same architecture as DQL, and outputs a value
which is its estimation of the optimal Q-value of the
state-action pair. The output actions form the policy
network are clipped at |&(t)] < 1000 EyL/s, and we use
the same reward function as for DQL.

In Fig. 8(a) we show a protocol obtained from
DDPG, when training on 10 asymmetries in the range
d € [0.04,0.06], and in Fig. 8(b) the performance of the
protocol on a range of asymmetries from d € [0,0.1]. As
expected, the best results are obtained for the range of
asymmetries we trained on, indicated by a red bar. A
rigorous comparison between DQL and DPPG is diffi-
cult, partly due to the large amount of hyper-parameter
tweaking needed to optimize each algorithm, but largely
due to the arbitrary choice of discrete action values for
DQL: for our example problem, there is no natural set
of available actions to choose. As mentioned earlier, the
performance of DQL for our problem, depends on the set
of actions chosen, and therefore a fair comparison of the
algorithms is complicated. The choice between discrete
and continuous-action algorithms, has to be taken based
on the specific problem one wants to solve. For our SPB
problem, there are infinitely many ”good” solutions,



and since we interpolate the protocol at the end of each
episode, both DQL and DPPG are well suited.

We used a 3.40 GHz CPU, and the training time for
the most resource-intensive computation (the protocol in
Fig. (6)) was about 48 hours, so increased training time is
something that more advanced computation systems can
handle. The most computationally-intensive part of the
training, by a large margin, was solving the Schrédinger
equation after each episode. As for the hyper-parameters
of the neural networks, we used a learning rate A = 1073,
target network update every 7 = 1073 time-step, and
a replay memory size between 10% — 50% of the total
number of experiences. The e-greedy exploration policy
was a linear decrease from € =1 to € = 0.05.

VII. DISCUSSION AND SUMMARY

We have used CRAB optimization and deep rein-
forcement learning to construct protocols, a(t), for the
time-dependent strength of a barrier inserted asymmet-
rically in a single-particle-box, in such a way that the
wave function is split in two equal halves. These results
implies that the asymmetric quantum Szilard engine
can reach the same efficiency in information-to-work
conversion as the symmetric one, since no information is
lost in the which-side measurement.

Using CRAB optimization, the protocols we obtain
performs very well for the specific asymmetry we
optimize for, but the protocol generalize poorly for
different asymmetries. Although more time consuming
and than CRAB optimization, we can also use DRL to

find high performing protocols when training on single
asymmetries. However, one of the biggest strengths of
reinforcement learning based techniques is the possibil-
ity to perform robust and noise-resistant optimization.
When training on a range of different asymmetries
simultaneously, DRL can be used to find the protocols
that performs best on the average of all the asymmetries
sampled. Both DQL and DDPG were able to find good
protocols for our example SPB problem, but in general,
the choice between discrete and continuous-action
algorithms has to be made on the basis of what specific
problem one wants to solve. The advantage of using
reinforcement learning for quantum control, is multi-
faceted: having model-free algorithms makes it simple
to change the optimization criterion to make the agent
solve different problems within the same environment,
one only have to change the reward function to suit the
new goal. Furthermore, since the agent is not tailored
to any specific environment, it can easily be adopted
to work in entirely different systems (e.g. we can use
the agents constructed here to perform state-transfer
in qubit systems [6]). Finally, the stochastic nature
of the agents learning procedure is advantageous when
one wants to perform robust optimization which can
perform well with noise. These points all suggests that
reinforcement learning can become a very useful tool in
physics.
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