
Attenuation of Seismic Interference Noise with
Convolutional Neural Networks
An attempt to improve the efficiency of seismic
processing

Sigmund Slang
Master’s Thesis, Spring 2019

Attenuation of Seismic Interference
Noise with Convolutional Neural

Networks

An attempt to improve the efficiency of seismic
processing

Sigmund Slang

c© 2019 Sigmund Slang

Attenuation of Seismic Interference Noise with Convolutional Neural Networks

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Acknowledgements
This thesis work was done in collaboration between the University of Oslo and CGG

and I thank CGG, CGG MCNV and Equinor for data used in this thesis. Network

figures are inspired by work done by Haris Iqbal, and I thank him for letting me

utilize his work.

Firstly, I would like to thank my supervisors Prof. Leiv J. Gelius, Dr. Thomas

Elboth and Steven McDonald. Weekly meetings with Prof. Leiv Gelius, at the De-

partment of Geosciences, the University of Oslo, has brought constructive criticism,

broad knowledge and strict deadlines which helped me structure my work and thesis.

Numerous days has been spent at the CGG office. Dr. Thomas Elboth has used

countless hours discussing and brainstorming problems with me. His enthusiasm

and knowledge has been inspiring and helpful for the thesis work. Steven McDonald

has helped a lot with his broad knowledge in seismic data interpretation and pro-

cessing.

Secondly, I would like to thank Jing Sun and Thomas Greiner for countless dis-

cussions regarding machine learning, which have helped me gain new insight to the

field and pushed me to a higher level. Monthly meetings with both and many hours

at CGG spent with Jing has helped this thesis become what it is.

Finally I would like to thank friends and family for moral support and good com-

pany during this process. A special thanks to my peers for making countless late

nights at the university fun and bearable. And Benedicte, who has been cheering

me on this entire time, keeping my spirit up when the days got long and the nights

short.

Sigmund Slang

May, 2019

i

Abstract
The aim of this thesis has been to look at the possibility of using a convolutional

neural network to attenuate seismic interference (SI) noise in marine seismic data.

Modern SI-denoising algorithms employed by the industry are efficient and normally

yield very good results. However, they are often time consuming. Using neural

networks to do real time denoising could significantly improve denoising efficiency,

and thereby save time and money for processing companies.

The dataset used in this thesis consisted of two lines of marine seismic field data,

where one line was denoised marine seismic data and the second line contained

"pure" seismic interference noise recorded in 2015 in the North Sea. These were

combined to create datasets needed to train the convolutional neural networks.

Four different models were applied in this thesis: Classification CNN, Autoen-

coder, No Downscaling CNN and U-NET. The Classification CNN was implemented

asa proof of concept to test whether the network could differentiate between noise-

contaminated data and clean data, which yielded good results. The autoencoder

gave poor denoising results, showing significant loss of geological signal. Both the

No Downscaling CNN and the U-NET gave good results, where U-NET performed

best. It performed good denoising, leaving only a very small residual in special cases

of conflicting dip. The network required approximately 0.02s for denoising a shot

gather, proving that real time denoising of marine seismic data is possible with the

use of convolutional neural networks.

The results from this thesis has been published as an Expanded Abstract and

accepted for oral presentation at the EAGE Annual 2019. The abstract is included

in Appendix B. This thesis has also contributed to a journal paper entitled A con-

volutional neural network approach to deblending submitted to Geophysics (status

is moderate revision) (Sun et al., 2019).

ii

Abbrevations

– AE Autoencoder

– ANN Artificial Neural Network

– AVO Amplitude versus offset

– CC Cross-Correlation

– CNN Convolutional Neural Network

– CV Convolutional

– FC Fully connected

– GPU Graphical processing unit

– HPF Hydrostatic pressure fluctuations

– ML Machine Learning

– NDCNN No Downscaling Convolutional Neural Network

– PSM Pre-stack migration

– ReLU Rectified linear unit

– SI Seismic interference

– SNR Signal-to-noise ratio

– TWT Two-way travel time

iii

Contents

1 Introduction 1
1.1 Artificial Neural Networks . 2

1.1.1 Convolutional Neural Networks 3
Input layer . 4
Hidden layer . 4
Fully connected layer: output layer 4
Training . 5

1.2 Seismics and seismic processing . 6
1.2.1 Marine seismic acquisition . 6

1.3 Motivation - Definition of thesis . 7

2 Noise 9
2.1 Incoherent noise . 9

2.1.1 Swell noise . 9
Hydrostatic Pressure Fluctuations 9
Vortex swell . 10

2.2 Coherent noise . 13
2.2.1 Tugging noise . 13
2.2.2 Seismic interference noise . 13

Move-out of seismic interference 16

3 Neural Networks 18
3.1 Classification vs. Regression . 18
3.2 Structure - Mathematical approach 19

3.2.1 Forward Propagation . 20
3.2.2 Activation functions . 21

Sigmoid . 22
TanH . 23
Rectified Linear Unit . 23
Leaky ReLU . 23

3.2.3 Loss . 24
Mean Square Error - L2 . 25
Mean Absolute Error - L1 . 25
Huber Loss . 25
Binary Cross-Entropy . 26

3.2.4 Backward propagation . 27
3.2.5 Optimizer . 29

Gradient Descent . 29
RMSprop . 29
Comparison . 30

3.3 Layers . 30

iv

3.3.1 Fully connected layer . 30
3.3.2 Convolutional layer . 31

The behaviour of a Convolutional layer 32
The "convolution" operation 33

3.3.3 Pooling layer . 35
3.3.4 Batch Normalization . 36
3.3.5 Upsampling layer . 37

4 Framework 38
4.1 Hardware . 38

4.1.1 GPU vs CPU . 39
4.2 Software . 39

4.2.1 Nvidia drivers . 40
4.2.2 TensorFlow . 40
4.2.3 Keras . 40
4.2.4 Anaconda . 41

5 Method 42
5.1 Dataset . 42

5.1.1 Seismic data vs. conventional images 42
5.1.2 Data Augmentation . 45

Permutation . 46
5.2 Training, validation and testing . 46
5.3 Creating a network model . 48

5.3.1 Classification CNN . 49
5.3.2 Autoencoder . 50
5.3.3 No Downscaling CNN - NDCNN 52
5.3.4 U-NET . 53

5.4 Application of the network model . 54
5.4.1 Data generator . 55
5.4.2 Saving results, testing and visualizing data 56
5.4.3 History . 56

6 Results 59
6.1 Dataset . 59

6.1.1 Data scaling . 60
6.2 Classification . 64
6.3 Autoencoder . 65
6.4 No Downscaling CNN . 71

6.4.1 Loss function . 82
6.4.2 Activation function . 84
6.4.3 Feature maps . 86

6.5 U-NET . 90
6.6 Execution time . 95

v

7 Discussion 97
7.1 Overview of the results . 97

7.1.1 AE . 97
7.1.2 NDCNN . 98
7.1.3 U-NET . 99
7.1.4 NDCNN1 vs U-NET1 . 99
7.1.5 U-NET1 vs Industry Standard denoising 100

7.2 The different parameters of the models 100
7.2.1 Filter size . 100
7.2.2 Number of filters . 101
7.2.3 Number of Layers . 102
7.2.4 Activation Functions . 103
7.2.5 Loss . 104

7.3 Model restrictions . 105
7.3.1 Data . 106
7.3.2 Network structure . 107

7.4 Industry aspect . 108
7.4.1 Execution time . 109

8 Conclusion and further work 110
8.1 Conclusion . 110
8.2 Further work . 111

References 112

A Appendix 120
A.1 Scale . 121
A.2 Loss . 125
A.3 Activation . 128
A.4 Denoising results . 132
A.5 Stack . 138

B Appendix 144

vi

1 | Introduction
This thesis is about the use of machine learning to attenuate noise in marine seismic

data. However, before discussing seismic data in any detail, we will start off with an

introduciton to machine learning. Machine learning (ML) is a popular term these

days. The media mention artificial intelligence (AI) as the new future, while others

are more sceptical, afraid for what it might become. Everyone has watched movies

with robots that are able to think by themselves. Machine learning is often seen

as this complex, difficult and abstract concept. This used to be true, but there

has been major changes the last few years. Machine learning is currently used by

all major internet platforms, such as: Google, Facebook, Instagram, Amazon, etc.

These platforms utilize machine learning in many different ways, but one of the most

common is embedded in the search platform of Google.

Google has in recent years developed a software package called Tensorflow (Abadi

et al., 2015). This is an open source package tailor made for machine learning,

compatible with multiple well known programming languages. Tensorflow has a

relatively high user threshold, which has opened up for wrappers, such as Keras

(Chollet et al., 2015), to use mahine learning libraries as back-end. All of these

packages and libraries has opened the world of machine learning to everyone. If you

have access to a computer, you can start with machine learning for free with relative

ease. The recent availability of powerful GPUs has also opened for the possibility

of running high demand jobs, even at home. Open source software and powerful

hardware is the main reason for the explosion of interest in machine learning. This

thesis will use Keras with a Tensorflow back-end to run a specific type of machine

learning, namely Convolutional Neural Networks (CNNs).

An important thing to mention is the current limitations of machine learning.

Machine learning is domain specific. It is possible to handle specific tasks, if designed

and used correctly, with high precision. Today it is, however, diffucult or even

impossible to create general domain machine learning. To put this into perspective,

you design a network which can remove certain types of noise from images and gain

good results. This has been done multiple times and is the basis for this thesis.

Designing a network which can handle speech, talk back, organize files, brew your

1

INTRODUCTION Artificial Neural Networks

daily morning coffee and find 5 news articles of choice at the same time is however

limited. All these tasks can be done separately, but creating a general purpose

network is still a task yet to be done. When AI is a reality, this task will maybe

be feasible, but it is likely that a few decades will pass before the human kind will

come anywhere near creating an actual AI.

1.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are networks which learn the structure of input

data and execute desired tasks with this data (Gershenson, 2003). The input data

can be what ever the user desires such as: pictures, text files, spread sheets, music

or other sound signals etc. This might seem confusing, so let us use some real world

examples. Assume you are working in an office which has thousands of pages with

important data stored in boxes. This data does not exist in digital format and is to

be digitized and uploaded to a filing system and then stored in respective folders. If

this task has to be done by human hands, all the data has to be scanned and then

looked over, manually page by page. Imagine the hours needed for this task to be

completed. Instead of having humans do the sorting, computers can be trained to

do this automatically. All the data can be digitized and the computer does the rest.

Another usage of ANNs can be image classification. According to reports from

Cisco (2018), approximately 80% of the world’s internet traffic will be video by 2021.

Video is simply moving images, and can thus be interpreted as such by computers.

To be able to monitor all this activity, computers need to learn the format, learn

what to look for in images. Assume a case where a person is given two images, one

of a cat and one of a dog. The human brain will comprehend what these images

contain reflex-like without any effort. The person will have no problem labeling the

images, choosing which contains a dog and which contains a cat. If a computer is

presented with the same problem, it has no understanding of what to look for to

tell whether it is a cat, a dog or even an airplane. It can, however, be trained to

learn characteristics of specific shapes. Training an ANN is therefore needed for it

to work desirably. The theory and structure of an ANN is complex, but the essence

of it is rather simple. Data is fed into the network and the network deals with this

data accordingly. Assume the task is to classify cats and dogs as mentioned above.

If a picture of a cat is fed into the network, we want it to label this image as a cat

2

INTRODUCTION Artificial Neural Networks

and vice versa. This thesis will revolve around the usage of Convolutional Neural

Networks (CNNs) for image processing.

1.1.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are the most commonly used architecture

for image processing. A CNN, or any type of neural network, is a cluster of nodes

connected in a certain pattern. This pattern can be viewed as a layered model

where each layer has a certain amount of nodes. A colored (RGB) image in the

aspect of human eyes is simply regarded as a two dimensional problem, while a

computer regards this type of images in three dimensions: red, green and blue. This

is because each color pixel has its own value, meaning each layer in a CNN has to

be three dimensional in the case of RGB images. One might then understand the

complexity of image recognition in the "eyes" of a computer.

The main idea behind the concept of a CNN originates from work done by Hubel

and Wiesel (1959). They experimented with the eyes of anesthetized cats and mon-

keys to understand how the brain reads information from the visual cortex. They

placed a micro electrode in close proximity to a visual axon (neuron) to measure

it’s action potential. The nervous system uses electric signals and an axon is all or

non signal (on/off) changing in frequency. This signal was recorded by the electrode

as they introduced various shapes in the receptive field of the animals. The ground

breaking discovery they made was proving that different axons respond to different

shapes. Certain axons only fired when presented to horizontal edges or shapes, while

giving no signal when presented to vertical edges and vice versa for other classes of

axons. Kuffler (1953) showed how axons responded well to small spots of light, but

not big spots. This is because the axons has a sensitive center, meaning they work

locally.

These axons can be compared with the nodes in a CNN where different parts of

a CNN catches different features of an image. Similar to axons, a CNN work locally

on an image instead of reading everything at the same time. If multiple nodes are

connected in a network, such as the axons in the human eye, the entire network will

be able to understand complex shapes. A perfectly designed network still require

training to be tuned to a specific purpose. To be able to understand how CNNs

are trained, these layers has to be visualized and understood. Figure 1.1 visualizes

a small scale classification network consisting of three layers. Assume these layers

3

INTRODUCTION Artificial Neural Networks

are respectively: Input layer, hidden layer and fully connected output layer. It is,

however important to notice that this is just a sample network and is not how all

CNNs will be structured.

Input layer

The input layer is often a convolutional layer in a CNN. A convolution is, briefly

explained, a mathematical operation on two functions which explains how much the

two functions overlap at a chosen point in a given domain. The convolution process

in a convolutional layer will be explained in Chapter 3. A convolutional layer has

filters sliding accross the input image. These filters changes the shape and size of

the input image and the machine learns different aspects of the data for each filter

sliding over the data. Since the convolutional layer and the input layer in this simple

CNN (Figure 1.1) is the same, the size of the layer equals the size of the image. This

size is the width and height of the image as well as the last dimension, namely the

color depth. For a normal RGB image, this depth is 3.

Hidden layer

The next layer in the CNN is the hidden layer. The reason this layer is referred to

as hidden is not concise, but mainly because it is hidden from the user. The user

only accesses input and output layer, thus making the intermediate layer(s) hidden.

CNNs are often larger than the simple model presented here, where multiple hidden

layer with different parameters and functions operates differently on the data. The

hidden layers estimates the output as a function of the input data. However, the

function is unknown, since it is learned by the computer as it is trained.

Fully connected layer: output layer

The last layer is the fully connected (FC) layer. As the network name suggests, each

node in the FC layer is connected to every node of the previous layer. The problem

mentioned earlier has two possible outcomes: cat or dog. These are referred to as

classes. The FC layer takes the output of the precursor layer and computes the

probability of the input image being the different classes of the network; a cat or

a dog. The output volume of this layer becomes an array of size 1x1x2 since there

are 2 classes to choose from in the problem. If the output looks like the following:

4

INTRODUCTION Artificial Neural Networks

[.90 .1] the network has predicted the image to be class number 1, a cat, with a 90%

probability and class number 2, a dog, with a 10% probability.

Input Layer Hidden Layer Output Layer

Output

Figure 1.1: A small scale classification CNN were the first layer is a convolutional

layer. All nodes are not connected between layer one and two since convolutional

layers work locally.

Training

The CNN has no way of knowing whether the image is a cat or a dog without being

told which is which. The way the computer learns what to look for is by feeding

it data which has already been classified. The network gets multiple images of cats

and dogs, then tries to tell which class each image belongs to. After it has finished

an iteration over the dataset, the real labels are presented to the network and the

network optimizes its own parameters accordingly. This process is repeated until

the FC layer reaches acceptable accuracy. When the user is pleased with the result,

the network should in theory be able to handle other images which has not yet been

classified. This is a simplification of the truth, but the concept has a wide range

5

INTRODUCTION Seismics and seismic processing

of uses. This thesis will not use pictures of cats and dogs, but seismic data. The

classification approach was explained to ease the understanding of a CNN, but the

denoising of seismic data is a regression problem which will be explained in section

3.1.

1.2 Seismics and seismic processing

In this work seismics and seismic processing is understood to be a field in geophysics

related to the Earths crust. The definition of seismics used here is referring to

the acquisition and processing of seismic data. Seismic data is detailed data of

the underground acquired by sending acoustic energy through subsurface layers,

whether this be on land or at sea (Musset and Khan, 2009). This data allows for

visual representation of deep geological structures and is the main method used by

oil companies in the search for hydrocarbon reservoirs. The reflection of the acoustic

energy in the subsurface allow us to build up an image of the underground. Since this

data is acquired by the use of acoustic energy, the data is always contaminated by

noise and requires noise removal in pre-processing steps to be interpreted correctly.

Seismic data processing is a large field in geophysics. The processing workflow

of seismic data has become more demanding and more complex over the last few

years, thus requiring high competence and large amounts of computing power. It

is therefore a costly procedure to process seismic data with industrial quality. This

thesis uses convolutional neural networks to denoise marine seismic data.

1.2.1 Marine seismic acquisition

Seismic acquisition is the process of generating and recording seismic data. Marine

acquisition are typically executed by towing sources and streamers equipped with

receivers after a seismic vessel at sea, or by placing them on the earth’s surface

(Schlumberger, 2017). This thesis uses data collected from marine seismic vessels

towing hydrophones, Figure 1.2. As can be seen in the Figure, the energy source

generates acoustic energy which is transmitted though the water column down to the

seafloor. This energy passes through the subsurface layers and is reflected back to

the acoustic receiver arrays which are recording the data. These cables are typically

6 − 10km long with one sensor every 12.5m per cable. The vessels usually tow

12− 14 cables. The normal sampling interval of a seismic survey is 2ms resulting in

6

INTRODUCTION Motivation - Definition of thesis

big amounts of data generated. An approximation of data generated per 24 hours

with one component is:

(NChannels ∗NCables ∗ 500 samples/s ∗ 32 bits ∗ 3600 ∗ 24)/8 ≈ 1.5 Tb/day (1.1)

These vessels have an estimated operating cost of around 200 000 US $/day making

marine seismic acquisition surveys a costly procedure. Because of the cost of surveys,

there are on-board staff processing the data in real time, making sure all data is

usable. Invalidated data might contain a high amount of noise, rendering it useless.

The noise contaminated data might have to be reacquired resulting in a loss of

time/profit for the acquisition company. The on-board staff are mainly there to

quickly assess the need for re-acquiring data while still in the area.

Figure 1.2: Seismic acquisition (CGG, 2018)

1.3 Motivation - Definition of thesis

Many types of noise contaminate seismic data such as: swell noise, ambient noise,

electric noise and linear noise. Seismic surveys are, as mentioned, a costly procedure,

and it would be advantageous if the different categories of noise could be automati-

cally detected and removed. The thesis work was to be carried out in collaboration

with CGG in Oslo. During the last few years CGG has made a large number of

noise recordings where they have collected various forms of seismic data noise.

7

INTRODUCTION Motivation - Definition of thesis

The idea of this thesis is to use seismic interference noise records together with

normal “noise free” data as a training set for convolutional neural networks and

the noise will be attempted removed automatically. This concept is not completely

new, but recent papers using CNNs for denoising tend to have the same problem

where they use synthetic data, data with limited dynamic range or random noise

attenuation (Baardman, 2019; Li et al., 2018; Si and Yuan, 2018; Jin et al., 2018).

The data used in this thesis is seismic field data with full dynamic range. Quick and

efficient noise removal can potentially increase efficiency on-board acquisition vessels

and might lower the need for on-board processors. It might be useful in on-shore

processing as a robust and quick way for quality control and improving the quality

of the data. These factors may therefore save both time and money for the industry.

Furthermore, it is worth to mention that if we can show that a neural network

efficiently can attenuate seismic interference noise, the same network can probably

also be trained to tackle other types of noise. It should in if fact also be applicable

for processes like deghosting and demultiple. As such, neural network seismic data-

processing could become a very valuable approach in the not too distant future.

8

2 | Noise
Recorded seismic data always contain various types of noise. Seismic noise is essen-

tially all type of undesirable signal in the seismic data. Seismic noise can appear in

different patterns with different frequencies and amplitudes. Marine seismic noise

can be classified into different categories, all based on the point of reference. In this

thesis, the classifications used are: Coherent and incoherent.

2.1 Incoherent noise

Incoherent seismic noise is noise appearing more or less randomly in the data and

may be referred to as ’random’ noise. Incoherent noise has little or no correlation

with neighbouring channels, nor along the same channel, meaning it has a low spatial

and temporal correlation (Kumar and Ahmed, 2011). The lack of correlation made

stacking a common way to remove incoherent noise. Stacking is, however, obsolete

and has been exchanged with various approaches of noise filtering (Sanchis and

Hanssen, 2011; Chen and Sacchi, 2015). These methods are more suitable for the

industry as most processing steps are done pre-stack.

2.1.1 Swell noise

Swell noise is a type of marine seismic noise which is mainly generated by sea surface

waves (Elboth et al., 2009b). It can, in certain exceptions, show signs of coherency,

but is mainly incoherent. Swell noise is a broad term and can be divided into two

different types of noise, dependant on how it is generated.

Hydrostatic Pressure Fluctuations

The most common type of swell noise is generated by hydrostatic pressure fluctu-

ations (HPF) which are low frequency longitudinal sea surface waves generated by

rough weather conditions, called swells. This specific type of swell noise will be

referred to as HPF generated noise and is given by Kundu (1977) as:

w(x, z) = Aωe−kz sin(kx− ωt) (2.1)

9

NOISE Incoherent noise

(a) Swell noise (b) Swell noise removed

Figure 2.1: Figure (a) shows consecutive shotgathers contaminated with high

amounts of swell noise generated by hydrostatic pressure fluctuations. Figure (b)

shows the same shotgathers after application of a low-cut filter. The swell noise as

seen in Figure 2.1a is completely removed, rendering clear seismic shot gathers.

where z is depth, A is the amplitude of the surface waves, k is the wave number and

ω is the angular frequency (Elboth et al., 2009b). Swells have a typical amplitude

of approximately 1− 10m in open sea, a wavelength of approximately 100m, and a

period of approximately 8 seconds. These hydrostatic pressure fluctuations generate

the most dominant type of noise to contaminate marine seismic data, which can be

regarded as random incoherent noise (Dondurur and Karslı, 2012). The reason

these waves generate so much noise is due to the large amplitudes of the waves.

The pressure change registered by the receivers when oscillating ±0.01m is large

compared to pressure from reflected sub-surface waves. The effect of a low-cut

filter in the Fourier domain can be viewed in Figure 2.2 where the red and blue

line represent the seismic data plotted respectively before and after application of a

low-cut filter.

Vortex swell

The second type of swell noise is generated by interactions between the streamer and

mounted equipment, and the water. This causes vibrations in the streamer. The

vessel is slowly oscillating up and down which creates a transversal wave propagating

down through the receiver cables. These waves typically have an amplitude of a

10

NOISE Incoherent noise

Frequency (Hz)
0 20 40 60 80 100 120 140 160 180 200 220

0 20 40 60 80 100 120 140 160 180 200 220 0

-20

-40

-60-60

-20

00

-20

-40

-60

A
m

pl
itu

de
 (d

B
)

Figure 2.2: Fourier spectrum of a seismic shot illustrating the removal process of

hydrostatic pressure noise. Red line is the data before low-cut filter is applied and

the blue line is after.

few cm and a phase velocity of approximately 50m/s in the transversal direction

and approximately 1500m/s in the longitudinal direction. The oscillation of the

cables create a type of vertices called Von Karman vertices. These vertices travel

in the water and hit neighbouring receivers, thus resulting in a change of pressure.

This pressure change is recorded as a type of swell noise, further referred to as

vortex swell. The characteristic appearance of vortex swell noise can be seen in

Figure 2.3 where it appears as spikes (Elboth et al., 2009a). As can be seen in

this figure, the vortex swell has affected multiple traces in the same shot gather,

but without much coherency. Previous or later shot gathers will therefore, if vortex

swell noise is present, have spikes at different areas. The frequency range of vortex

swell noise is approximately 0−10Hz which makes it difficult to remove it by low-cut

filters, because this frequency band also contains important geological data. This

type of swell noise is therefore typically removed with sliding F-X filtering in a

statistical approach as can be seen in Figure 2.4. Vortex swell can be categorized

as random incoherent noise, but since it is generated by an interaction between

the streamers and the turbulence, it can in theory be anticipated and reduced.

Contractor companies are therefore continuously working on ways of reducing this

type of motion, thus reducing the generation of vertices in the water column.

11

NOISE Incoherent noise

Figure 2.3: Figure illustrating high contamination of swell noise. Examples of

swell noise are marked in black boxes.

Figure 2.4: Figure 2.3 after swell noise removal. There are still some residual

noise apparent in the Figure.

12

NOISE Coherent noise

2.2 Coherent noise

Coherent seismic noise is noise appearing in some sort of coherency between channels,

streamers or in time. If the frequency spectrum of the noise is significantly different

from the geological signal, frequency filtering might suffice. There are other different

approaches such as multi-channel filtering or spatial averaging for denoise removal,

but coherent noise tends to need a more sophisticated approach (Larner et al., 1983).

2.2.1 Tugging noise

Tugging noise can also be regarded as a type of swell noise, but it is very coherent. It

is generated by longitudinal tugging from the vessel and from the tail buoy (Elboth

et al., 2009a). This type of tugging noise can be seen in Figure 2.5 where it appears

as linear events near the edges of the data. It is normally most visible on the first and

last sections of the streamer, closer to the origin. Longitudinal tugging has a moveout

of approximately 1500m/s and a broadband frequency range of approximately 0−200
Hz making standard cut-off filtering impossible to use. A common way to remove

logitudinal tugging noise is to transform contaminated common channel data to

τ − p domain and mute sections containing tugging noise. The muted areas are

then transformed back to time-offset domain and (adaptively) subtracted from the

original data.

2.2.2 Seismic interference noise

Marine seismic interference (SI) noise is a type of coherent noise occurring when

energy from nearby marine seismic source vessels are recorded. This noise tend to

be well preserved over larger distances (Jansen, 2013). SI noise is a well known

problem for seismic contractor companies and causes artifacts in the data. These

artifacts are coherent noise patterns and have a characteristic appearance as linear

events with high amplitude (Akbulut et al., 2005). Figure 2.7 shows SI for five

consecutive shot records. The characteristic linear events are clearly visible as they

appear at different arrival times in each record. The angles of incidence for SI noise

might differ from survey to survey depending on the relative placement of its ori-

gin to the receiver. Because of this, SI noise might overlap with sub-surface layer

reflections which often have significantly lower amplitudes. SI noise might therefore

13

NOISE Coherent noise

Figure 2.5: Tugging noise in seismic data. There is tugging noise present both

from vessel and tail buoy marked in green squares

be harmful to processing operations such as deghosting, demultiple, velocity esti-

mations and amplitude versus offset (AVO) analysis (Gulunay et al., 2005). The

common workflow for SI removal is illustrated in Figure 2.6. Shotgathers containing

SI noise is transformed to τ − p domain and further sorted to common-p gathers.

Each p-value is then iterated over for each common-p gather using a denoising algo-

rithm of choice. When the iteration is complete the data is sorted back to τ − p and

further transformed back to time-space. The data presented in time-space domain

is just SI noise which is then subtracted from the original data, thus removing the

SI from the real data using an adaptive formulation.

14

NOISE Coherent noise

Figure 2.6: Workflow chart illustrating the process of removing SI (Jansen, 2013).

According to Akbulut et al. (2005) and more recently Laurain et al. (2015) it

has been common for contractor companies to schedule a time-sharing plan due to

high levels of SI. This type of plan is a costly measure, since it can cause substantial

downtime, but have become better coordinated in the later years. Seismic vessels

operating in the North Sea at present date has a downtime of a few percent, reducing

the cost compared to the Mexico Gulf in the mid eighties. Although such a system

causes little downtime and reduces the most harmful SI-noise, there is still SI-noise

present. The most harmful SI-noise is broadside noise, according to processors

at CGG. SI-noise intercepting from the side have a similar moveout as reflections

meaning there are almost no kintematic difference. Seismic interference can be

recorded within a large proximity to the recording vessel. The most harmful SI-noise

originates from less than approximately 40 km away, explaining why the problem

remains.

15

NOISE Coherent noise

Move-out of seismic interference

Seismic interference (SI) noise mainly travels in the water column with the seafloor

and sea surface acting as reflectors. Small parts of the energy may propagate in sub-

surface layers, but will make little to no impact in the data due to high attenuation

factors. SI noise has a rather distinguishable appearance, mentioned in previous

section, but this strictly linear structure only yields when the origin of noise is fur-

ther away than approximately 40km. For SI noise events originating from sources

within a proximity of approximately 40km, the events appear curved. Figure 2.7 il-

lustrates five SI-noise contaminated shot gathers with varying angle and distance to

the source vessel. Shot number one and two show SI noise coming from abeam. This

noise is almost linear due to the distance (40+ km) between the source and reciever

vessel. The alignment of the noise is similar to the seismic signal since they origi-

nate from the same direction. Shot number three shows two white boxes visualizing

SI-noise coming from abeam at a relative close proximity to the ship (15-20 km).

There are some curvature present which might align with the seafloor data. This

type of SI noise is difficult since it kinematically appear similar to reflection data.

Shot number 4 shows SI coming from the side of the boat within close proximity (6

km). The noise appears with much curvature due to the close distance of the source

vessel. The amplitude of the noise is high and may mask the underlying geologic

reflection data. Shot number five show SI coming from ahead with a large distance

(40+ km) to the source vessel. The noise appears similar to shot number one, but

mirrored along the depth direction due to distance of origin. SI noise traveling in

the water column has various velocity depending on level of salinity in the water,

but it can be approximated to 1500m/s.

16

NOISE Coherent noise

Figure 2.7: Consecutive shotgathers displaying seismic interference. White boxes

are marking different characteristics of SI in three of the shots, although SI is present

in every shot.

As mentioned eralier, the goal of this thesis is to investigate the feasibility of using

machine learning -or more specifically convolutional neural networks for attenuating

SI-noise.

17

3 | Neural Networks
Machine learning (ML) can be regarded as a trained approach to function estimation.

Convolutional Neural Networks (CNNs) are no exception. When CNNs are applied

to a problem, the network is trying to estimate a function f(x) = ŷ such that ŷ ≈ y

where x is the input, ŷ is the output and y is the ground truth. In this thesis the

input data is noise contaminated marine seismic data, and the ground truth is noise

free data.

3.1 Classification vs. Regression

The type of network mentioned in 1.1.1 is a convolutional neural network designed

for classification. The purpose of this thesis is to remove noise from seismic data,

which can be classified as a type of regression problem. In ML there are generally two

types of problems: Supervised and Unsupervised learning (Chapelle et al., 2006).

Unsupervised learning is when the user has a dataset and applies various machine

learning method to structure the dataset, learn the structure of the dataset or other

deeper features without a ground truth (Chapelle et al., 2006). It is therefore hard to

estimate the performance of the model. This thesis will, however, only use supervised

learning. In supervised learning, the ground truth is known. The type of ground

truth defines whether the problem is a regression problem or a classification problem.

Classification and regression are two major parts of ML. According to Mohri et al.

(2012) classification is the concept of dividing input items into categories, while

regression is the concept of predicting a value for each item.

Classification can be regarded as a sorting problem. The input data consists of a

given number of classes where the network has to put correct item into correct class,

thus making classification a discrete problem. The most basic type of classification is

a True/False problem, but there are multiclass problems with a lot more complexity

as well. A common example related to CNNs is classifying the public CIFAR-10

dataset, which is a dataset consisting of 6 · 104 small color images of size 32x32

(Krizhevsky, 2009). The dataset has 10 different classes such as; horse, cat and

airplane. When classifying such a dataset, the network has to make a prediction

18

NEURAL NETWORKS Structure - Mathematical approach

on what the input image is and then put the corresponding label on the image. A

loss function checks whether this labeling is correct or not and gives a measure on

the performance of the network. If the network classifies an airplane as a cat, it

will be caught by the loss function and the performance measure will be corrected

accordingly.

Regression is used to predict continuous values, compared to classification which

predicts discrete values. Regression is not an ML term exclusively. It comes from

statistics where regression is often used to predict a relationship between a number

of measurements, or the estimated point for a certain value. Linear regression is a

well known example. If a dataset consists of multiple points spred over a grid, linear

regression will estimate the best fitting line for all points. Regression is not limited

to first order, as linear regression, and multivariate regression is widely used in both

ML and by statisticians.

The problem presented in this thesis can be regarded as a regression problem.

The network recieves noise contaminated seismic data as input and has to predict a

noise free output. For every single data point in the input image, the network has to

predict a noise free output value as close to the ground truth as possible. To be able

to construct a network capable of such a task, the structure has to be understood.

3.2 Structure - Mathematical approach

The definition of a CNN is rather loose and according to Goodfellow et al. (2016)

a CNN has to have at least one convolutional layer to be classified as a CNN.

Each network has to be tailor made for each specific application. However, there

are certain guidelines which can be followed. This thesis uses marine seismic data

which can be regarded as black and white (BW) images. As mentioned in Chapter

1, an image in the eyes of a computer has one additional dimension, namely the

color dimension. The color depth of a BW image is one, meaning marine seismic

data can be regarded as a 2D matrix, not 3D as colored images. Before the different

building blocks of a neural network can be explained in detail, certain important

aspects have to be explained.

19

NEURAL NETWORKS Structure - Mathematical approach

3.2.1 Forward Propagation

There are multiple key concepts in machine learning which might seem confusing at

first. Terms like: weights, biases and nodes are in no way intuitive, but important to

understand. Weights are essentially a decimal number which is used when calculat-

ing the output of a layer in a neural network. A bias is a value which is added to the

output to reduce the chances of unwanted effects such as "dead neurons", which will

be explained at a later point. Understanding the mathematics behind a standard

neural network will ease the understanding of the specific building blocks. The first

important concept in a neural network is the forward propagation, as explained by

Ellacott (1997). A neural network, as mentioned in the introduction to this chap-

ter, can be regarded as a representation of a function, f , mapping the input, x, to

the output, ŷ. A neural network consists of multiple nodes arranged in a network

structure. Figure 3.1 is a good way of visualizing how a node works and, in a larger

scale, how the calculations of a neural network functions. In this case, the input,

x, consists of three values: x = [x1, x2, x3]. The input is fed to the node which has

one weight, wi, for each value in x. The first intermediate step in the neuron is the

linear combination of weights and input:

z =
m∑

i=1

wixi + b (3.1)

where m denotes the number of inputs (in this case 3) and the weights w are multi-

plied with each corresponding value xi plus a bias addition. This can be vectorized,

as shown in Figure 3.1, where

z = wTx+ b, (3.2)

and T denotes taking the transpose of weight vectorw. A more generalized approach

for multiple nodes can be written as

z = WTx+ b (3.3)

Where WT is a matrix with weights. The last intermediate step is passing z through

a non-linear activation function. In this example, we simply apply one of the most

common activation functions used: ReLU (Rectified Linear Unit). The output is

then calculated as follows:

σ(z) = ŷ (3.4)

20

NEURAL NETWORKS Structure - Mathematical approach

x1

x2

x3

ŷz = wT x + b ŷ = σ(z)

Figure 3.1: Illustration of a node with three inputs, x1, x2, x3, and one output, ŷ.

The calculations computed in the node are visualized in a vectorized manner.

where

σ(z) = max(z, 0) (3.5)

This is the main process of a neural network and is referred to as the forward

propagation or the forward pass. The input is multiplied with weights and then

passed through a non-linear activation function. The next step in understanding

neural networks is to realize the importance of activation functions.

3.2.2 Activation functions

Activation functions represent a key feature in neural networks and introduce non-

linearity (Agostinelli et al., 2014). A linear function is, as the name suggest, a

straight line when plotted. Such functions are easy to solve, but they are limited

in their complexity. If all activation functions in a neural network were linear,

the entire network could be represented as a collection of linear operations, i.e. a

more conventional regression problem trying to fit the best line through a number of

samples. Most types of modern problems solved with neural networks have no linear

approximations or solutions. It is therefore benefitial to introduce non-linearity, thus

activation functions.

Another required characteristic of an activation function is that it needs to be

21

NEURAL NETWORKS Structure - Mathematical approach

differentiable. This is because the networks training process and a specific step

called backwards propagation. During backwards propagation, the network adjusts

its weights and biases based on the error between output and ground truth and all

the neurons in the network. A gradient of the non-linear function is calculated to

optimize the network performance, which is not possible if the activation function is

non-differentiable. The concept of back propagation will be discussed in more detail

at a later point.

To summarize, an activation has to be non-linear and differentiable. The most

common used activation functions are: Sigmoid, TanH, ReLU and Leaky ReLU as

seen in Figure 3.2.

Sigmoid

Sigmoid is a differentiable function bounded within the range [0, 1] (Han and Moraga,

1995). It is defined as

S(x) =
1

1 + e−x
=

ex

ex + 1
(3.6)

making the function centered around 0.5 and giving it a characteristic "S-shaped"

curve. Sigmoid fits all necessary requirements, but has been proven non-optimal for

certain machine learning problems.

One of the drawbacks is something called vanishing gradients (Nwankpa et al.,

2018). When the output from a Sigmoid approaches 0 or 1, the gradient of the func-

tion is close to zero. During backwards propagation, these gradients are multiplied

to the neurons, causing them to send little to zero signals. This is a phenomenon

often called "Dead Neurons". Once a neuron is stuck at close to no output, it will

not recover and thus will not contribute to the network.

Another problem of a sigmoid is that it is not zero centered (Nwankpa et al.,

2018). The way Sigmoid is defined, all output will be positive. When multiplying

with the gradient during back propagation, the weights tends to be moved too far

in either direction making Sigmoid an inefficient function which is slow to converge.

Although there are a lot of downsides to Sigmoid, it has proven useful when employed

at the output layer for certain network architectures.

22

NEURAL NETWORKS Structure - Mathematical approach

TanH

TanH (Hyperbolic tangent) is a ’scaled’ version of Sigmoid and defined as

tanhx =
sinhx

coshx
=
ex − e−x
ex + e−x

=
e2x − 1

e2x + 1
. (3.7)

TanH is defined in the range [−1, 1] and is therefore zero centered. Because of this

characteristic, TanH often leads to a better optimization than Sigmoid and tends to

be preferred (Karlik and Olgac, 2011). There are still downsides to TanH and as the

Sigmoid, it also suffers from vanishing and exploding gradients. Since it may cause

"Dead Neurons" it is less and less common in use. The reason it is still employed

is due to its boundary range. Since this is defined between [−1, 1] it is possible

to normalize the input values to this range, thus easing the data handling needed

before feeding data to the network.

Rectified Linear Unit

Rectified Linear Unit (ReLU) is an activation function which has become more

popular during recent years. It is known for its simplicity defined as

a(x) = max(x, 0). (3.8)

This means that ReLU is equal to x if x ≥ 0 and equal to 0 otherwise. The simplicity

of ReLU means that it is faster. It requires less computational power to run and

has even proved to improve results for certain types of deep neural networks (Glorot

et al., 2011). ReLU is non-differentiable at zero which, in theory, makes it a bad

choice for an activation function. It is, however, differentiable at all other places

and can be filled in as a 1 or 0 where the input is 0. A downside to ReLU is that

it, as TanH and Sigmoid, can cause "Dead Neurons" (Maas et al., 2013). A way

of reducing the chance of dead neurons is implementing a small slope for negative

arguments in the ReLU.

Leaky ReLU

Leaky ReLU is a commonly used version of ReLU which adjusts for the vanishing

gradient problem. It introduces a small slope instead of forcing a(x) = 0 when x < 0

and is defined as

a(x) = max(x, αx) (3.9)

23

NEURAL NETWORKS Structure - Mathematical approach

where α is often set to 0.01. It has the same characteristics as ReLU, but a reduced

chance of causing "Dead Neurons" as the gradient is non-zero for x < 0 (Maas et al.,

2013).

3.2.3 Loss

The loss function in a neural network is a way of estimating how well the model is

preforming. It is not arbitrary which function to use. If the wrong loss function is

implemented, the model might preform badly and choosing the best fit is therefore

important. The most common functions used in denoising are Mean Squared Er-

ror (MSE) and Mean Absolute Error (MAE). Huber loss and Binary cross-entropy

(BCE) are also included in this thesis. All loss functions can be viewed in figure 3.3.

Figure 3.2: Illustration of the functional curves of the four most common activation

functions used in neural networks: Sigmoid, TanH, ReLU and Leaky ReLU

24

NEURAL NETWORKS Structure - Mathematical approach

Mean Square Error - L2

The mean square error (MSE) is a common way of measuring the loss in a neural

network (Zhao et al., 2017). It is defined by the equation

h(x) =
1

n

n∑

i=1

(yi − ŷi)2 (3.10)

where ŷ is the predicted value and y is the true value. MSE is a loss function which

penalizes high errors since it is based on a squared error. This means that MSE is

sensitive to outliers which can be a problem in certain cases.

Mean Absolute Error - L1

The mean absolute error (MAE) is another common loss function used in CNNs. It

is defined by equation

h(x) =
1

n

n∑

i=1

|yi − ŷi|. (3.11)

where ŷ is the predicted value and y is the true value. In contradiction to MSE,

MAE is not sensitive to outliers and will not penalize high errors. This means that

MAE is more robust than MSE (Willmott and Matsuura, 2005). There is, however,

a downside to using MAE. The gradient of MAE has the exact same slope as long

as the difference 6= 0. This might cause issues during training where the network

might struggle with converging to a minima due to high gradients.

Huber Loss

The Huber loss is a combination of MSE and MAE which utilizes the best of both

functions. It is defined by the following case wise function (Huber, 1964)

h(x) =





1
2
(y − ŷ)2 if |y − ŷ| < δ

δ|y − ŷ| − 1
2
δ otherwise

(3.12)

If the absolute difference between ŷ and y is less than a given value, δ, the function

calculates the MSE loss. Otherwise, a modified MAE is calculated as can be seen

from the equation 3.12.

25

NEURAL NETWORKS Structure - Mathematical approach

Binary Cross-Entropy

Binary cross-entropy (BCE) is, as the name suggests, a loss function restricted to

binary problems. It is also referred to as the logistic loss or log-likelihood (Murphy,

2012). For binary problems, the output is either 0 or 1. Assume a case where the

network is to label dog and cat: the label for dog is 1 and cat is 0. Using the

equation for BCE gives:

h(x) = − 1

N

N∑

i=1

yi · log(p(yi)) + (1− yi) · (1− p(yi)) (3.13)

where p(yi) is the probability for the input being a dog. If this equals 0, the network

is certain the input is not a dog, and therefore a cat. If more than two labels are

introduced to this loss function it will not work given the binary restriction.

Figure 3.3: Illustration of the functional curves of the loss functions presented in

this thesis: MSE, MAE, Huber and BCE

26

NEURAL NETWORKS Structure - Mathematical approach

zl
j

=

∑
k
wl
jk
a
l−1
k

+bl
j

al
j

= σ(zl
j
)

x
1 =

w l
j1 a l−

11∂C∂x
1 =

∂C∂a l
j

∂a l
j∂x

1

∂C

∂x
2

=

∂C

∂a
l
j

∂a
l
j

∂x
2

x 2
=
w
l
j2
a
l−

1

2

al
j

∂C

∂al
j

Figure 3.4: Figure of a node illustrating the relationship between Forward and

Backward propagation. Forward propagation is marked in green and Backward in

red. Adapted from (Sood, 2018).

3.2.4 Backward propagation

Backward propagation (backprop), as mentioned above, is a key feature of every

neural network. It is the process where the network updates its weights based

on the loss between the ground truth and calculated output. To understand how

backprop works, the forward propagation has to be well understood. The theoretical

framework used in this section is based on Nielsen (2015). The activation output

from one neuron is given as

alj = σ

(∑

k

wljka
l−1
k + blj

)
= σ

(
zlj
)

(3.14)

27

NEURAL NETWORKS Structure - Mathematical approach

where alj is the activation output, wljk are the weights, blj denotes bias and σ is the

activation function. The indices j, k and l denotes respectively node number in

layer, node number in previous layer, and layer number. Equation 3.14 is the same

equation as 3.1 and 3.4 combined, but generalized to a larger model. Corresponding

vectorized form of equation 3.14 is

al = σ
(
Wlal−1 + bl

)
(3.15)

with same annotations as in equation 3.14. To update the weights, we need to

calculate the gradients of the loss function with respect to weights and biases, ∂C
∂wjk

and ∂C
∂bj

. Let y be the ground truth, and ŷ be the output of the network which can

be rewritten as aL(x) being the output from the last activation function (L denotes

the number of layers in the network). Define now the quantity

δlj =
∂C

∂zlj
(3.16)

δlj which denotes the error in the jth neuron in the lth layer. zlj is the weighted input

to a node, as in equation 3.2. ∂C denotes the gradient of the loss function which will

be utilized in the optimizer (section 3.2.5). Back propagation starts at the last layer

of the network (denoted L) and, as the name suggest, propagates backwards through

the network, Figure 3.4. The Figure illustrates an arbitrary node in the network

where green arrows symbolizes forward pass and red arrows symbolizes backward

propagation. The first step of backprop is therefore calculating the error in the

output layer

δLj =
∂C

∂aLj
σ′
(
zLj
)

(3.17)

where ∂C/∂aLj measures how fast the cost is changing as a function of the jth

activation output. σ′(zLj) measures how fast the activation function, σ, is changing

at zLj . Corresponding vectorized form of equation 3.17 is

δL = ∇aC � σ′
(
zL
)

(3.18)

where � denotes the Hadamard product (element-wise multiplication). The next

step is creating a generalized equation for the remainder of the network

δl =
((

Wl+1
)T

δl+1
)
� σ′

(
zl
)

(3.19)

28

NEURAL NETWORKS Structure - Mathematical approach

which propagates through the network from the last layer to the first layer. The

next step of in the training regime is to update the weights and biases. The update

process depends on which optimizer is used.

3.2.5 Optimizer

The optimizer is an important building stone in a neural network. It is used alongside

backward propagation and changes the weights and biases based on the gradient of

the loss function. In essence, an optimizer has two tasks: finding the direction in

which to move the weights and biases and the distance in which to move them

(Mitchell, 1997). There are multiple different optimizers, but most have one thing

in common; they are based on gradient descent.

Gradient Descent

Gradient descent is the basis of most optimizers and the most popular optimizer

used for neural networks (Ruder, 2016). Gradient Descent is defined by

θt = θt−1 −
η

m

(
∂C

∂θt

)
(3.20)

where η is the learning rate, m denotes the batch size, θ denotes either weights

or biases at time step t and C is the loss as explained in section 3.2.4. It min-

imizes the loss function by use of its gradient. It checks whether the gradient is

positive or negative - whether the loss is increasing or decreasing and updates θt
correspondingly.

RMSprop

RMSprop (Root Mean Square propagation) is an attempt to optimize gradient de-

scent proposed by Hinton et al. (2012). It is defined by

gθt = β · gθt−1 + (1− β)
(
∂C

∂θt

)2

(3.21)

θt = θt−1 −
η

m
√
gθt

(
∂C

∂θt

)
(3.22)

where η is the learning rate and gθt is the moving average of the squared gradients

at time step t. More over, m denotes the batch size, θ denotes either weights or

biases, C denotes the loss as explained in section 3.2.4 and β is a user defined scalar.

29

NEURAL NETWORKS Layers

Comparison

The main difference between RMSprop and Gradient Descent is apparent in the

equations listed. The consequence is that Gradient Descent is more efficient to cal-

culate and will therefore have a lower run time compared to RMSprop. Gradient

descent converges relatively fast for large datasets, but might get stuck at saddle-

points. Gradient squared optimizers, such as RMSprop, converges faster and tend

to find better results as they seem less likely to get stuck at saddlepoints (Ruder,

2016).

3.3 Layers

A CNN is built up by layers and understanding the function of each layer is a key

concept when building a network. The different layers have different properties

and functions. If each layer is generalized, the function of a layer in a CNN is

transforming an input volume to an output volume with some differentiable function

(Karpathy, ND). This differentiable function is the activation function, as mentioned

in the previous section. The most common layer used in all neural networks are also

common in classification CNNs, namely the fully connected layer.

3.3.1 Fully connected layer

The fully connected (FC) layer (often called dense layer) is a key building block in

classification networks. They are the main building blocks in the Multilayer Percep-

tron (MLP). MLP is, as the name suggests, multiple perceptrons set into a specific

system. The perceptron is one of the first neural networks and was created by Rosen-

blatt (1958). He first published the perceptron as a possible model for how the brain

stores and organizes the information. This model, as can be viewed in Widrow and

Lehr (1990), consists of analogue valued input connected to six threshold elements

and passed through a desired response node. A way of describing this small scale

network in modern ways is with one node as in equation 3.1, followed by a threshold.

Minsky and Papert (1969) mentioned in their book how the perceptron is limited to

linear problems, highlighting the constraints of the model. Prior to this publication,

Rosenblatt (1961) had already created connected perceptrons known as MLP. It is at

least three layers deep where every node, except for the input layer, uses non-linear

30

NEURAL NETWORKS Layers

activation functions. An MLP is therefore not restricted to linear problems. An

MLP is a feed-forward type of network often used for classification. Feed-forward

means that the data-flow in the network travels from A to B directly with no loop

or feedback. A feed-forward network approximates a function y = f(x; θ) and learns

the parameters θ for the best approximation of f (Goodfellow et al., 2016).

A fully connected layer is a layer where every node in the current layer is con-

nected to every node in the following layer. FC layers are well suited for classifica-

tion. Assume a network structure designed for image classification. The input, x, is

an image of size [32 × 32] where the input data consists of 10 different classes, e.g.

the CIFAR dataset (Krizhevsky, 2009). The network takes these images as input

and maps them to a specific category. For an FC layer to be able to take input,

the input has first to be represented as a one-dimensional array. The input image

therefore has to be concatenated into an array of size 32 · 32 = 1024. The FC layer

will then have 1024 weights for each node in the layer, one for each entry in the

input. Figure 1.1 is a small scale network. If all nodes between layer one and two

are interconnected, this could illustrate an FC network. By using the same example

as above, for each hidden layer, the network has 4096 weights per layer. This shows

why FC layers scales badly with images and is mostly used in latent layers during

classification. The more common way of handling full size images with neural net-

works is using convolutional (CV) layers. This is because FC layers work globally,

while CV layers work locally.

3.3.2 Convolutional layer

A convolutional (CV) layer is a layer which, suggested by its name, convolves the

input. The operation in a CV layer in Tensorflow is, however, not a convolution but

a cross-correlation and calling it a convolution is factually wrong (Tensorflow, 2019).

The literature and entire field of ML using Tensorflow refers to this operation as a

convolution, therefore once the term convolution is used in this thesis, it is actually

referring to a cross-correlation. The math behind both a convolution and a cross-

correlation will be explained in detail below, but to ease the transition, the general

movement and behaviour of a CV layer will be explained first.

31

NEURAL NETWORKS Layers

The behaviour of a Convolutional layer

Each convolutional layer has assigned a set of filters (kernels) where all have the same

size. These filters are normally square matrices consisting of decimal values with a

chosen size. For educational purposes, assume the filters are 3×3 filters with values

x ∈ [0, 1]. The CV layer slides the filters over the input data step wise, typically

referred to as convolving the data. The step length is referred to as stride and is

a user defined parameter. If stride equals one, the filters moves one pixel between

each computation. For each step, the filters compute the elementwise multiplication

between the filter values and the image values, which are then summed and assigned

to the corresponding pixel in the output image. This process can be viewed in Figure

3.5. Although the filters operate in 3D, they create a 2D activation map for each

filter. This means that the depth of the output volume equals number of filters in

the layer. This process is the convolution of the data, and the basis of this specific

layer type.

As can be seen in Figure 3.5, if no padding is applied, a CV layer will reduce

the image size. The size reduction is dependant on the filter size, the stride and the

number of filters in the layer. By using Figure 3.5 as a template, we have an input

volume with size [5× 5× 3]. We set padding to 0, stride to 1 and use 3 filters. The

width of the output volume then becomes:

W − F + 2P

S
+ 1 =

5− 3 + 2 · 0
1

+ 1 = 3 (3.23)

where W is the width of the input volume, F is the filter size, P is the padding and

S is the stride. The same procedure regarding the height of the output volume can

be repeated with equation 3.23, but since the input volume is squared, the width

and height is equal. The total volume of the output then becomes: [3×3×3] where

the depth is equal to the number of filters in the CV layer.

There are two main reason for why CV layers are favourable in image processing.

The first and foremost reason is that CV layers scale well with increasing image size

(Goodfellow et al., 2016). The weights in a CV layer is not dependant on the

input volume size. This means that with static parameters in the CV layer and

with increasing input volume size, the number of weights will remain the same. The

number of weights in a CV layer is given by Fheight×Fwidth×Nchannels where channels

are the depth of the input volume. This means that even for large input volumes,

CV layers are computationally efficient. The second reason for why CV layers are

32

NEURAL NETWORKS Layers

favourable to image processing compared to FC layers is due to the spatial view.

Since CV layers consists of filters sliding across the input data, they can detect

edges, shapes or patterns which are connected over multiple pixels. According to

Goodfellow et al. (2016), CNNs are well suited for 2D images where neighboring

pixels are connected in a larger pattern. It should therefore be possible to denoise

seismic data with localized and ‘random’ noise and we assume that CNNs will be

able to handle seismic data, given its continuous nature and 2D structure.

Filter Movement

Filter * Input

Feature map

Bias

+ =

Input

N
ch

an
ne

ls

Fi
lte

r

Figure 3.5: Figure illustrating how a convolutional layer operates on data. In this

case, no padding is applied which results in a size reduction of the output data. The

input data has multiple channels, which also yields for the filter sets. In this example,

the layers has a single filter set. The output therefore becomes a 2-dimensional

feature map which is the summation of the elementwise product of filter and input

channel. The black arrow on input illustrates how the filter moves across the input

volume.

The "convolution" operation

Convolution (CV) (or convolving) is a mathematical operation which describe the

relationship between three functions (Smith, 1997). It is a measure of how two

functions effect each other. Convolution can be expressed in multiple dimension,

and the 2D operation can be expressed grid wise as follows:

y = (g ∗ F) =
W∑

u=1

H∑

v=1

g[u, v]F [i− u, j − v] (3.24)

33

NEURAL NETWORKS Layers

where y is a measure of how much f and g overlap in the given domain. W and H

denote the width and height of the filter. Although it is called a convolutional layer,

the actual mathematical operation carried out (in Tensorflow) is a cross-correlation

(CC). In contrary to convolution, CC is a measurement of the similarity or relation

between two functions (Lahiri, 2016). Although there is a difference in the purpose of

CC and CV, the definition of cross-correlation has a lot of similarities to convolution

and is given as follow:

y = (g ? F) =
W∑

u=1

H∑

v=1

g[u, v]F [i+ u, j + v] (3.25)

Figure 3.6 is an illustration of the difference between the two operations. The filter

used in CC is the original filter. The convolution rotates the filter in both x and y

direction which therefore results in different outputs for the two operations.

115

Output A

155

Output B

1
3

2

4
0

2

1
5

9

Input
7

8
9

4
5

6

1
2

3

Cross-Correlation

3
2

1

6
5

4

9
8

7

Convolution

Figure 3.6: Figure illustrating the difference between correlation and convolution

with outputs respectively Output A and Output B. The initial filter has the same

alignment as used in Cross-Correlation and is rotated in the Convolution operation.

34

NEURAL NETWORKS Layers

It is important to notice the difference and to know what is actually happening in

the network, but it is also important to know that both operations converge towards

the same output value during training in most cases. If the kernel is initialized with

random values, which is common, it makes no difference whether the filter is rotated

or not. The only cases where the difference might make an impact is with a network

with preset filters. If the user assumes a convolution, a cross-correlation can give

wrong results.

3.3.3 Pooling layer

A pooling layer is a layer constructed from local information with similarity to

convolutional layers. The difference is that pooling layers down-sample the volume,

while a convolutional does operations filter-wise. Pooling layers can be split into

three different categories: max, average and min pooling, see Figure 3.7. Let us

assume the pooling has a filter size of 2 × 2. For each region, the layer does a

specific operation based on the type of pooling. The pooling types will map 4 values

to one output value where: max pooling sets the output value to be the largest of

the 4 values, min pooling sets the output value to be the smallest of the 4 values and

average pooling computes the average of the 4 values. This process can be viewed

in Figure 3.7 where different regions are color coded to ease the understanding. The

output of a 2× 2 pooling with stride 2 is a down-sampling by a factor of 2 in each

direction.

Pooling is much used in machine learning, and the most common type is max

pooling because large values tend to be most important when using images. Max

pooling is a way for the network to extract the sharpest features of an image, thus

the subsequent layers after a max pooling layer will have an image consisting mainly

of important features and less abundant information. Reducing the size of the input

volume is also a way to increase computational speed. The downside to using pooling

is that whenever down-sampling is implemented, information is lost. For networks

where images are down-sampled and up-sampled before output, the end results tend

to be blurry. Max pooling is therefore a good way for the network to learn sharp

features, but might cause lacking output due to information loss.

35

NEURAL NETWORKS Layers

Orignial Image

1

3 2

2

5 6

1 1

7 8

2 4

1

3

0

4

3.25 5.25

2 2

Average Pooling

1 2

1 0

Min Pooling

6 8

3 4

Max Pooling

Figure 3.7: Visual examples of 2× 2 pooling of different kinds

3.3.4 Batch Normalization

When using machine learning, it is common to normalize the data before it is passed

to the network. The reason for this is because the network operates better on num-

bers in a narrow range. Assume input data with value range of [1, 1000] compared

to [0.001, 1]. The range is the same with regards to power, but the network works

better with data in the latter range. If values become too large, the chance of ex-

ploding gradients increase, thus increasing the artifacts in the data. Normalized

input is not normalized after passing through the first layer of the network. A way

of counteracting this is introducing batch normalization (BN) as defined by Ioffe

and Szegedy (2015) as

BN(xi) = γ

(
xi − µB√
σ2
B + ε

)
+ β (3.26)

where µB and σB denotes the mean and the variance of the input batch xi. γ and β

are two trainable parameters enabling the optimization of these parameters during

optimization. BN introduces robustness to the model and might enable the use of

higher learning rates, thus increasing the efficiency of the model.

36

NEURAL NETWORKS Layers

3.3.5 Upsampling layer

The Upsampling layer, often called deconvolution, is essentially a transposed/inverse

convolution. The layer operate in a similar manner to convolutional layer, but

instead of scaling an image down, the image is scaled up. Deconvolution is a bad

name, as it does not undo a convolution, but performs a convolution the opposite

way. The output pixel in a normal convolution is the summation of the elementwise

multiplication between input region and filter values. The transposed convolution

works differently. It multiplies a value in the input with the filter values and copies

it to multiple pixels, Figure 3.8. The output from an upsampling layer will be

weighted copies of the filter, weighted by the input. If upsampling by a factor of 2,

the filter will move 2 pixels in the output for every corresponding pixel in the input.

Overlapping regions in the output will be summed (Li et al., 2017).

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 10, 201735

Input: 2 x 2 Output: 4 x 4

Input gives
weight for
filter

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Figure 3.8: Figure illustrating the process in an upsampling layer for a case with

2 times upsampling with a 3x3 layer (Li et al., 2017).

37

4 | Framework
Machine learning and neural networks is a broad field of work. There is a great

variance in methods and models based on the problem at hand. However, there is

one thing which tends to yield for machine learning as a whole; it is computationally

demanding. Thus, machine learning requires a lot of processing power.

4.1 Hardware

The hardware used to run the neural network models in this thesis was provided by

CGG. The processing GPU cluster consisted of eight nodes where 4 of the nodes

were assigned to this work. Each node has the following specifications:

– CPU: Intel Xeon CPU E5-160 v3, 3.50 GHz, 10Mb cache, (8x)

– GPU: Nvidia GeForce GTX 1080, 8GB, 1.73 GHz, (2x)

– HDD: 62 GB storage (per user)

– OS: Debian 7, Wheezy

Listing the specifications of a computer might be confusing to many, so to put

everything into perspective, the server will be compared to retail computers. Mac-

book pro from Apple is a widespread computer and with the best specifications has

a GPU providing approximately 4GB of GPU memory and retails for 26 000 nok

(Apple, 2019). Comparing these specifications to the server equals 4 Macbook pros

only counting for the GPU memory for a single node. The average retail price for a

GeForce GTX 1080 GPU is approximately 8000 nok, proving how much computing

power these nodes contain compared to average computers.

It might seem like these specifications are unnecessarily high, but machine learn-

ing is a computationally demanding task, especially when used with marine seismic

data. An average network used in this thesis used approximately 14.5 GB of the 16

GB GPU memory. If the number of images per iteration was increased, the GPU

memory was exhausted.

38

FRAMEWORK Software

4.1.1 GPU vs CPU

It might seem strange to some that the computation is done on GPUs rather than

CPUs. CPUs have always been the processing part of a computer, while the GPU

has been used for picture rendering in terms of movies, games and images. Although

this is still the main trend, it is slowly turning. A GPU can be much more efficient

than a CPU for certain computational processes. The way this can be explained is to

analyze the computational speed versus the memory bandwidth. The computational

speed of a CPU is superior to the computational speed of a GPU. If a CPU and a

GPU were both introduced to a single operation problem, the CPU would complete

the task at fractions of the time compared to a GPU. The reason a GPU can compete

with a CPU in regards of machine learning is the memory bandwidth. A high end

CPU may have a memory bandwidth of 40 GB/s while a high end GPU might have

a memory bandwidth of 600 GB/s.

It is important to keep in mind that since the CPU is much faster for single

operations, the task has to be large in number, but low in operation calculation. A

high end CPU has 8 cores while a high end GPU has 4096 cores. Each of the cores

in a GPU can be regarded as simple while each core in a CPU is sophisticated. As

long as the task is simple enough, the 4096 GPU cores will complete it conciderably

faster faster than the 8 CPU cores, no matter how sophisticated they are. This

is the reason why GPUs are a good choice for machine learning. The calculations

done in each node tend to be basic operations such as addition and multiplication,

but there are a lot of nodes and a lot of tasks to be fulfilled. The shear memory

bandwidth of a GPU therefore fits nicely with deep learning.

4.2 Software

During the last ∼5 years, many companies have created open source software tailor

made for machine learning. The programming languages these are compatible with

tend to narrow the range of choices. It is common now to use either Python or

C++ for machine learning as these are the most supported programming languages

for such packages. All work in this thesis is programmed in Python 3. Python is

a high-level programming language which focuses on being general purpose and an

easy code to read (van Rossum, 1995). It has gained a lot of grounds the last 10

years and is slowly taking the position of Matlab since Python is free to use.

39

FRAMEWORK Software

Along with Python, the following packages are installed to make Python run the

neural networks on GPU:

– Anaconda: Distribution package for Python/R

– CUDA toolkit: Development environment for GPU applications

– cuDNN: Deep Neural Network library for GPU

– Keras: Wrapper for TensorFlow

– TensorFlow: Open source machine learning framework

4.2.1 Nvidia drivers

cuDNN and CUDA Toolkit are libraries made specifically for running Deep Neu-

ral Networks on Nvidia based GPUs. cuDNN consists of tuned implementations

for common routines used in neural networks (Nvidia, 2019b). It is free for non-

comercial use making it a good option for students or personal use. CUDA toolkit is

a development environment tailor made for creating applications running on GPUs

(Nvidia, 2019a).

To be able to run TensorFlow on an Nvidia GPU, both cuDNN and CUDA

Toolkit are required. cuDNN and CUDA also require a specific Nvidia driver to be

installed making the installation process tedious. The cuDNN version has to match

the CUDA version and the Nvidia driver version. The correct version of TensorFlow

then has to be installed on top matching the correct version of Python.

4.2.2 TensorFlow

TensorFlow is an open source software machine learning framework originally devel-

oped by Google (Abadi et al., 2015). Tensorflow has implemented almost everything

that is used in machine learning to this date. If certain functions or layer types are

unavailable, these can be created and relatively easily be included with predefined

TensorFlow functions.

4.2.3 Keras

Keras is an overlay for TensorFlow and a couple of other well known machine learning

libraries. Keras focuses on being an easy to use high-level machine learning library

that lowers the threshold of creating machine learning scripts (Chollet et al., 2015).

40

FRAMEWORK Software

4.2.4 Anaconda

Anaconda is a Python (or R) distribution making it easier to install and manage

all Python packages (Anaconda, 2019). Instead of downloading every single library

needed, Anaconda comes predefined with a large number of packages. If the wanted

packages are not installed, simple command line arguments will install the package at

the correct location. Anaconda also enables the use of environments, meaning that

multiple Python versions can be run on the same computer with different packages

installed. Multiple environments mean that different version of TensorFlow and

Keras could be installed on the same computer at the same time flawlessly. This

was utilized much in the first months of the thesis to understand which versions

were most desirable to use.

41

5 | Method
When designing a model, there are multiple factors to take into account. If certain

prerequisites are omitted, the model might under-perform, overfit or behave in other

negative ways. One of the most important factors when designing a model is to fit

the model to the desired task and dataset.

5.1 Dataset

There are as many models as there are problems to solve. The different datasets

existing used for machine learning range over multiple different file types such as

text, video, matrices, images and so on. For this thesis a specific format is used;

namely marine seismic data. This kind of data is represented as matrices, but can

also be regarded as images. It is therefore likely to adapt a model in a similar way as

one might when doing image processing with machine learning. There are, however

significant differences between conventional images and seismic data.

5.1.1 Seismic data vs. conventional images

There are multiple different formats to store image data, but the most popular

formats tend to be JPEG (Joint Photographic Experts Groups) and PNG (Portable

Network Graphics). Both of these image formats can represent up to 24-bit color

images or grayscale images. The main difference between the formats is that PNG

is normally a lossless format, while JPEG is normally a lossy format (Santa-Cruz

and Ebrahimi, 2000). PNG with a lossless format will behave better for image

graphics containing hard transitions, while JPEG with a lossy format will be better

suited for natural photography. When comparing seismic data to conventional image

data the image format is irrelevant as they contain almost the same information.

When referring to a conventional image in this section, either PNG or JPEG are

representative formats.

Marine seismic data represents acoustic wave recordings, and are therefore differ-

ent from conventional images. A standard or conventional image has only positive

values ranging from 0−255 per channel with a color depth of 3, thus 2563 = 16777216

42

METHOD Dataset

possible colors. Seismic data values range from approximately −3 · 104 to 3 · 104

with a color depth equal to 1 since seismics are only greyscale. Another important

aspect about seismic data, compared to normal images is its frequency content. A

conventional image contains higher frequencies than seismics. Deep seismic, as can

be viewed in Figure 2.7, typically will be limited to a frequency range of 5− 40Hz.

In case of a conventional image or photography the frequency content is much

higher. The source is now replaced by high-frequency natural light and the final

image resolution obtained is determined by the camera system. To visualize the

basic difference in features between a seismic and conventional image we follow the

idea of Liner (2000). The starting point is the commonly used Lena image shown

in figure 5.1a. We now convert the axes of this image to seismic measurables.

Thus, the horizontal axis will represent trace number (running from 1 to 250), and

the vertical axis recording time. In this case a temporal sampling interval of 4

msec has been employed. Figure 5.1b shows the corresponding FK-spectrum of the

Lena image (obtained after a 2D Fourier Transform along trace and time axes). To

simulate the characteristics of a seismic image, the spectrum is filtered to seismic

bandwidth employing a bandpass filter defined by [5, 10, 30, 40]Hz, see Figure 5.1d.

After applying a double inverse Fourier transform the seismic version of Lena is

obtained as shown in Figure 5.1c. From direct comparison between Figures 5.1a

and 5.1c the following observations can be made:

– Due to the missing low frequencies, the are shading is lost in the ’seismic

image’.

– Due to the missing low frequencies, there is a loss on steeply dipping informa-

tion in the ’seismic image’.

– Due to the missing higher frequencies, the resolution of the ’seismic image’ is

much poorer.

– Due to the missing higher frequencies, the finer details are lost in the ’seismic

image’.

43

METHOD Dataset

(a) Original image of Lena (b) Lena spectrum

(c) Seismic Band Lena (d) Filtered Lena Spectrum

Figure 5.1: Figure (a) visualizes the well known Lena image. The spectrum of

Lena can be viewed in Figure (b). Figure (d) is the Lena spectrum filtered to seismic

bandwidth [5, 10, 30, 40]Hz. Figure (c) visualizes the seismic band Lena. Adapted

from Liner (2000).

Thus major differences exist between a seismic and conventional image. Direct use

of ML design tailored for denoising of conventional images will likely not work in an

optimal sense if employed for seismic data. This will be demonstrated in chapter 6

of this thesis.

44

METHOD Dataset

Figure 5.2: Figure illustrating augmentation techniques. All images are of the

same tennis balls, but they are all augumented in a specific way. From left to right:

Original, rotated, translated, scaled, clipped.

5.1.2 Data Augmentation

In many cases, the dataset available, is rather small in size. Such datasets will likely

underfit or overfit on the model. This will in turn tend to limit the possible per-

formance of the network. Despite a well designed network model, without a good

dataset to go with the model, it is rendered useless. An important characteristic

of untrained neural networks is that a small change in an image, makes it appear

as something completely different to the network. If the dataset is too small, one

may therefore utilize something called data augmentation. Data augmentation is

a scheme which expands the dataset without substantially changing the character-

istics of the samples (Taylor and Nitschke, 2017). Figure 5.2 visualizes common

augmentation techniques. They include: rotation, translation, scaling and clipping.

Rotation is an augmentation technique which is self-explanatory. The image is ro-

tated a certain degree which may significantly change the way the network views

the image. Rotation works fine if the image is squared, but once the width differs

from the height it requires extra editing before the network can handle the image.

Translation is another operation where the image is shifted certain steps. If this

shift is large enough, the network will no longer fetch the same features at the same

filter locations, meaning it will regard the image as something else. Scaling and

clipping are other operations where the image is either zoomed out, or cut creating

an effect of zooming in. Both of these approaches require extra editing before the

image has the same size as the original data. Data augmentation is a common tool

used to expand the size of the dataset.

45

METHOD Training, validation and testing

Permutation

Data Augmentation is a good way of increasing the size of a dataset, but depending

on the dataset, there may be more clever ways of increasing the size as well. If

the dataset consists of clean files and noise files, where the noise is pure noise,

permutation is a possibility. The permutation approach is simply to combine all

clean files and all noise files in every possible way. The seismic data mainly used

in this thesis consist of clean shots gathers and pure noise gathers. Assume the

dataset consists of 500 clean files and 500 noise files. If they are combined with

permutation, each noise file is added to each clean file. This results in 500 · 500 =

2.5 · 105 files, thus greatly increasing the size of the dataset. The downside of the

permutation approach is that the dataset has to fit certain criteria for permutation to

be possible. Although it might seem like a type of data augmentation, permutation

is not data augmentation. The dataset is never changed in a specific way, it is

simply reorganized, but in a way where it may remove the necessity of any data

augmentation.

When the combination and data augmentation is completed, the dataset can be

regarded as ready to use. To train a model, the user requires three different datasets.

The most common approach is to split the current dataset into three subsets, namely:

training, validation and test datasets. A common distribution of data in the three

subsets are: 80% of data in the training set, 15% of data in the validation set and

the remaining 5% in the test set often referred to as the Pareto Principle (Pocatilu

et al., 2010). Once these subsets are created, they have to be kept separated and

independent for the remainder of the process to gain statistically reliable results.

These subsets are, as their names suggest, used for training, validation and testing.

5.2 Training, validation and testing

To arrive on a network model which handles specific data as desired, it has to be

trained. The training of a neural network is a stepwise process iterating multiple

times through the dataset. A full iteration is referred to as an epoch and is visualized

in Figure 5.3. Each epoch starts with the network being fed one batch, often referred

to as mini-batch, of data from the training dataset. The size of a batch is user defined

and should often be as large as possible to gain the best results (Smith et al., 2017).

The network passes the batch of data through the network and calculates the loss of

46

METHOD Training, validation and testing

the output compared with the ground truth. The network then backpropagates the

errors through the network where the optimizer updates weights and biases based

on the gradient of the loss, as referred to in chapter 3. These steps are repeated

until the entire training dataset has been iterated through. Once there is no more

data in the training dataset, the validation begins.

Validation is more or less a repeat of the training regime, but without the opti-

mization of parameters in the network. The network is being fed batches from the

validation dataset which is fed through the network and the loss between output

and ground truth is calculated. Once there is no more data left in the validation

dataset, validation is complete. Validation itself does nothing for the network, but

it is an intermediate measure of how the network is performing (James et al., 2013).

The training and validation datasets are two different datasets and check whether

the network is overfitting to the training dataset or not. Overfitting means that the

network is tuned to a specific dataset and will not perform well on any other data.

A way of detecting overfitting is if the training loss is decreasing while the validation

loss is stationary or increasing. To avoid overfitting, the robustness and versatility

of the model has to be increased. Introducing Batch Normalization or Dropout is a

common way to reduce the chance of overfitting. Batch Normalization reduces the

range of values the neurons can shift around as explained in 3 which might cause

fewer spikes and increase accuracy of the model. Dropout simply means that a per-

centage of the information at user defined locations in the network is removed to

reduce the impact of specific layers.

Once both the training and validation datasets have been fed through the net-

work, one epoch is completed. It is common, and typically necessary, to run multiple

epochs for the network to gain good results. Once the user is satisfied with the per-

formance of the network, the training is completed. Although the loss functions

indicate that the model performs well, it is still important to test the model on

a separate dataset to make sure it actually performs as indicated. The testing is

separate from both training and validation where the biggest difference is that the

network no longer receives the ground truth. The testset is fed into the network

model which then produces the results based on the weights and biases learned dur-

ing training. These results represents an unbiased evaluation of the performance of

the network. In this thesis, a select few samples were plotted for visual inspection

of the performance on the test set.

47

METHOD Creating a network model

Model get data
from generator

batchwise

Forwardpass
batch through

network

Backpropagate
through network

and optimize
weights and

biases

Epoch

Calculate Loss

Run model on
validation set

Calculate Loss

If data,
repeat. Else,

Validation

Figure 5.3: Flowchart visualizing the training process of a network model. The

training of a neural network is an iterative process revolving around epochs, marked

in red.

5.3 Creating a network model

Creating a network model might be relatively easy, but it takes some knowledge to

actually create a versatile model which performs well. The coding of the network

design also varies much based on what ML library is being used (e.g. Tensorflow and

Keras). There are, however, certain aspects which applies for every model. The most

important part of the construction phase is to adjust the network to the dataset and

desired usage. In this thesis, each network model should be designed to handle large

images, since seismic data are represented by large image files. Numerous network

designs were tested during the work of this thesis, but they can all be narrowed down

to three basic structures, namely: Classification CNN, Autoencoder (AE), and No

downscaling CNN (NDCNN).

48

METHOD Creating a network model

5.3.1 Classification CNN

The main job of a classification network, as mentioned in Chapter 3, is to label input

data and try to fit it to the correct class. A classification network can be designed in

various ways, but in this thesis a convolutional approach is used since the input data

are images. When data is fed into a network, it is read as a three dimensional array

of numbers. In this thesis work, the purpose of the classifier was to detect whether

a seismic shot gather contains noise or not. The output of the network should be a

one-dimensional array containing two elements: noise contaminated and clean. This

in terms means that the network has to reduce the number of samples throughout

the network as it learns the structure of the data. The network has to label the

image as noisy or clean correspondingly. Since the network only has two classes to

divide the data into, the problem can be interpreted as a binary problem: True or

False.

Convolution
16Filters
3x3x16

Convolution
32Filters
3x3x32

Convolution
64Filters
3x3x64

Convolution
128Filters
3x3x128

FullyConnected
3x3x128→500

FullyConnected
500→2

TanH TanH TanH TanH TanH Softmax

Maxpool 2x2 Maxpool 2x2 Maxpool 2x2 Maxpool 2x2

Figure 5.4: Figure visualizing the structure of the classification CNN.

49

METHOD Creating a network model

One classification network used in this thesis is shown in Figure 5.4. The model

consists of a 9-layer network where the image decreases in size throughout the layers.

The first part of the network is a CNN consisting of 4 convolutional layers with a

TanH activation function. All filters have the same size of [3× 3] where each layer

has double the amount of filters as the previous layer, meaning the number of filters

for each layer from conv layer 1 to conv layer 4 is [16, 32, 64, 128]. Between each

convolutional layer is a max pooling layer halving the size of the image before it

is fed further into the network. The second part of the network is represented by

two consecutive fully connected (FC) layers. The data is flattened and fed into the

FC layers outputting a two dimensional vector of size [1 × 2] representing the two

classes: clean data and noisy data. The loss function is Binary cross-entropy since

the problem is a binary problem.

Convolutional (CV) layers are used both because the input data are images, since

CV layers have less parameters than FC-layers (chapter 3), and because they can

detect a pattern between neighbouring pixels. Since the network is only going to tell

whether the the data is noise contaminated or not, it only needs specific features,

such as the characteristics of the noise. Max pooling is applied to reduce the size of

the data between each CV layer as well as enhancing the most dominating features.

The size reduction between each CV layer forces them to fetch different features as

the input to each layer is substantially different, increasing the robustness of the

model. The fully connected layers are useful once the size of the image is reduced.

They calculate and return the probability of the two different classes based on the

calculations done by the convolutional layers.

5.3.2 Autoencoder

Autoencoders (AE) are commonly used for image processing in machine learning.

They tend to be built up by convolutional layers, but have a specific structure

separating them from other types of network. Opposite to the classification case,

where the image is downscaled through the network (Figure 5.4), an AE downscales

to a latent layer and then upscales to original size. The essence of an AE might not

strike as a good architecture for image processing, but have proven to yield good

results in various cases (Gondara, 2016; Chaitanya et al., 2017; Xie et al., 2012).

50

METHOD Creating a network model

Convolution
64Filters
3x3x64

Convolution
64Filters
3x3x64

Convolution
64Filters
3x3x64

Convolution
64Filters
3x3x64

Convolution
64Filters
3x3x64

Convolution
64Filters
3x3x64

Convolution
1Filter
3x3x1

TanH ReLU ReLU ReLU ReLU ReLU Sigmoid

Maxpool 2x2 Maxpool 2x2 Maxpool 2x2 UpSampling2x2 UpSampling2x2 UpSampling2x2

Figure 5.5: Figure visualizing the structure of an autoencoder.

The theory behind an autoencoder is to represent data at a latent level. To do

this, the network has to compress the data, thus separate important features, while

omitting less important features. A way of regarding the process is looking at it

through nodes. Assume the input to the network is 1 × 5 while the latent layer

is 1 × 2. All the entries in input array will represent one node in the input layer,

but while the input layer has 5 nodes, the latent layer has only 2 nodes. To be

able to represent the input at the latent layer, parts of the data has to be removed,

while keeping the main structure. The network has to learn which features in the

data are important and which are not. This process is a form of compression. If

the dataset has certain features which repeats in many of the images, the AE will

learn said features and omit the ones which tend to be random or seldom. After

the data is downscaled to the latent level, the network tries to recreate the data

minimizing the difference between the output and the input. The characteristics

of an autoencoder fits well with noise removal. If the noise appearance varies from

image to image, it will be regarded as a feature which is not important and can

therefore be removed. The AE network was implemented as an example of the

51

METHOD Creating a network model

misperformance of conventional networks when applied to the seismic case. Due to

the major differences in the characteristics of a seismic and conventional image, and

also due to the more complex type of noise in the seismic case the performance of a

standard AE is not expected to be good in case of seismic denoising.

A typical AE network tested in this thesis can be seen in Figure 5.5. It consisted

of 7 convolutoinal layers where the first and last layer used respectively the TanH and

Sigmoid activation functions and the intermediate layers used ReLU. The network

used filters with size [3x3x64] throughout the network, except for the last layer

where number of filters were reduced to 1.

5.3.3 No Downscaling CNN - NDCNN

As data is passed through a convolutional neural network, each layer receives slightly

changed data given the operations made by previous layers. Because of this charac-

teristic, each layer should focus on different features in the data with no downscaling

present. By keeping the full image size throughout the network, the chance of loss

is reduced, which is an important aspect for seismic images. Each time an image is

compressed, certain information is lost and the more the data being downsampled,

the higher the chance for that information to be signal, and not noise. This is the

essence behind No Downscaling CNN (NDCNN). Instead of having to recreate the

data from a compressed version, the network only has to augment the data and

remove the specific undesired parts e.g. remove the noise while keeping the signal

intact.

Figure 5.6 visualizes a typical NDCNN model used in this thesis. The network

consists of 8 convolutional layers. The last layer has no activation function and

only one filter to generate a single output. Each intermediate convolutional layer

is followed by a Leaky ReLU activation function and a Batch Normalization layer

before being passed through to the next block. Batch Normalization along with

Leaky ReLU are used in the model to potentially gain faster learning and reducing

the chance of "dead neurons" as explained in chapter 3. A residual layer is added

between conv layer 2 and conv layer 3. The first two convolutional layers have large

filters to try to capture the large scale features in the data by increasing the field

of view. This is due to the shear size of the input data. The output of conv layer 2

is added with the input data to make sure that the remaining part of the network

catches the more local features present in the data.

52

METHOD Creating a network model

+

Convolution
64Filters
7x7x64

Convolution
64Filters
6x6x64

RES
Convolution
64Filters
4x4x64

Convolution
64Filters
3x3x64

Convolution
64Filters
3x3x64

Convolution
64Filters
3x3x64

Convolution
32Filter
3x3x1

Convolution
1Filter
3x3x1

LeakyReLU LeakyReLU RES LeakyReLU LeakyReLU LeakyReLU LeakyReLU LeakyReLU

BatchNormalization BatchNormalization RES BatchNormalization BatchNormalization BatchNormalization BatchNormalization BatchNormalization

Figure 5.6: Figure visualizing a NDCNN model.

5.3.4 U-NET

The U-NET is a model which uses characteristics from both NDCNN and AE. The

network compresses images to a latent level in the same manner as an AE network,

thus removing random features in the data. The data is then re-sampled back to

original size where less noise is present. The compression is a good way of removing

noise, but it might cause unwanted loss. NDCNN was a way of counteracting the

potential loss from AE, but a model with no downscaling will demand more process-

ing power. U-NET utilizes the characteristic downscaling as seen in an autoencoder,

but has residual layers passing higher resolution outputs between each upscaling, as

can be seen in Figure 5.7. The model will receive efficiency and denoising capabili-

ties from the AE structure, but keep the structure of the data as it receives higher

resolution outputs after downscaling.

Figure 5.7 visualizes a U-NET model used in this thesis. The network 7 con-

volutional layers each followed by Leaky ReLU, except for the last layer which has

no activation function. The first two convolutional layers employ max pooling to

reduce the size of the data. There are two consecutive layers at latent level, where

the last employ upsampling. Before passed to the next layer, a residual layer is

employed combining data from the previous layer of same size. This is repeated for

the next upscaling process, as seen in Figure 5.7. Once the data reaches original

53

METHOD Application of the network model

size, it is passed through a convolutional layer, and then fed to the output layer.

The first two convolutional layers employ large filters, as NDCNN, to capture large

scale features.

Convolution
16Filters
6x6x16

Convolution
32Filters
6x6x32

Convolution
32Filters
4x4x32

Convolution
32Filters
3x3x32

RES
Convolution
16Filters
3x3x16

RES
Convolution
8Filters
3x3x8

Convolution
1Filter
3x3x1

LeakyReLU LeakyReLU LeakyReLU LeakyReLU RES LeakyReLU RES LeakyReLU

MaxPool2x2 MaxPool2x2 UpSampling2x2 RES UpSampling2x2 RES

+

+

Figure 5.7: Figure visualizing the structure of a U-NET model.

5.4 Application of the network model

When both the dataset is correctly sorted and the network model is created, the

model can be applied to the dataset. Figure 5.8 is a visualization of the full workflow

needed when starting from scratch with a dataset to a final output from the network.

Figure 5.3 illustrates in more detail the training step, as explained in section 5.2.

To make the network read the data, a data generator has to be created.

54

METHOD Application of the network model

Initialize the
network
model

Train model with
custom

generator for
given number of

epochs

Save
model

Test
model

Organize and
expand dataset

Split data into
Train, Validation

and Test

Raw Seismic
Data

Save and
visualize data

Figure 5.8: Flowchart illustrating the process of creating and training a model. It

is generalized, but has a few aspects which are specific to this thesis.

5.4.1 Data generator

To initiate a model, the data has to be fed to the network in a correct manner.

There are multiple ways of data feeding, but it is important to optimize this process

as it tends to become a bottleneck. As explained in chapter 4, each core on a GPU

is slow, but a GPU has a large amount of nodes and can thus handle much data at

the same time. The data is stored on a hard drive and has to be fed to the GPU

faster than the GPU can compute the data to reduce the running time. If the GPU

has to wait for data, it has nodes which are not computing. This means that the

model is not optimized and will be slower than necessary. It is common for machine

learning libraries to include pre-built data generator functions which feed data to

the GPU with little to no latency. These pre-built generator functions tend to be

file restricted and might not fit for the desired file format. That was the case for

this thesis, and the data generator function had to be custom created.

When writing a custom made generator function, every aspect has to be con-

sidered to increase the efficiency. Python is a versatile programming language, but

it can be rather inefficient if all code is written in the native language. However,

there are multiple libraries which can, if used correctly, greatly increase the exe-

cution speed of a program. The library used to create the custom made generator

was NumPy, which is a library adding support for multi-dimensional arrays and ma-

55

METHOD Application of the network model

trices, and linear algebraic operations running a C backend (Oliphant, 2006). The

custom made generator is almost entirely written with NumPy objects and feed data

to the network with little latency.

5.4.2 Saving results, testing and visualizing data

The training duration of a neural network can vary considerably based on the size of

the network and dimensions of the input data. Due to this, it is important to save

the network model both during training and after training is completed. The saved

model will contain updated weights, biases and status of optimizer. The training

process might shut down unexpectedly and cause hours of training time lost if no

intermediate saving was implemented. Once the training process is completed, the

finished model is easily tested on a new dataset; the test set. The results gained

from the test set are the most important results, as the loss function might not pick

up on certain errors.

Visualizing the data from testing is essential to gain knowledge about the strengths

and flaws of a model. If 90% of the pixels in an output image resemble the ground

truth, the network will likely yield a good loss number, but if the remaining 10%

contains artifacts, the actual performance of the model might still be poor. This is

important when using ML for seismics, as low amplitude reflections contain valu-

able information. To try and capture all aspects of the data, four different steps

were visualized for each test image. The ground truth, contaminated input, output,

and the difference between ground truth and output. The Fourier spectra of the

images were also plotted to gain insight in the performance in multiple domains,

thus increasing the knowledge of the performance of the network model.

5.4.3 History

The timeline of this thesis is an important aspect to prove how and why the final

model came to be. The first step of this thesis work was to investigate whether a

computer could or could not recognise the noise present in the data. If the computer

could not differentiate between clean and noise contaminated data, denoising could

be challenging. The data had to be structured in a suitable way for the computer to

read them and then be fed to a classification network, similar to the one visualized

in figure 5.4. As mentioned in section 5.4.1, it is common for machine learning

56

METHOD Application of the network model

libraries to have pre-built generator functions. The seismic data was stored as PNG-

files and fed to the network by utilizing one of these generator functions. Model

yielded resonable results, proving that the network could differentiate between noise

contaminated data and clean data.

The next step was to create a denoising network. The data was zero padded

to keep the size through the layers. Given the common usage of autoencoders as

well as their characteristics, mentioned in section 5.3.2, it was a reasonable network

model to test. The initial AE model was similar to the model represented in figure

5.5, but with slight changes in activation and loss functions. The loss function used

was binary cross-entropy (see Section 3.2.3). This design gave non-optimal results.

Changing the loss function to Mean Square Error improved the results, but they

were still not optimal. To try and increase the robustness of the model, the data

had to be fed to the network in a better manner. Instead of the data being fed to

the network as PNG-files, the custom generator fed them in as NPY-files which is a

NumPy format. This opened the possibility of using a permutation approach on the

dataset, greatly increasing the number of input samples. A dataset containing 106

samples is large, and therefore 10% of the dataset was used. The results from the

autoencoder improved, but it removed too much signal in the compression during

the network, resulting in images looking synthetic and lacking essential information.

To counter for the data loss during compression, another design approach was

implemented and tested, namely NDCNN. Instead of compression the image and

then decode it, the image was kept at full size throughout the network. The net-

work then only had to remove noise, instead of recreating the entire image. This

network model had the same amount of layers as the autoencoder, but without the

downscaling. It was also evident that the zero padding caused edge effects and a

mirror padding function was implemented to counter these effects 5.9. The results

from NDCNN yielded slightly less signal loss, but a lot more residual noise. To

capture the full range of all frequencies, the first layers of the network had large

diluted filters. A residual layer connecting input data and output from the large

size filter layer was added to ensure that the last part of the network has a full field

of view. Introduction of batch normalization and leaky ReLU produced results with

close to no signal loss, but with a good amount of noise removed. This model can

be viewed in Figure 5.6.

57

METHOD Application of the network model

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

000 0

0 0

0

00 00 0 00

0

0

0

0

0

0

0 0

0 0

0

0

0

0

0

0

0

0

(a) Zero padding

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

6 7 8 9 10

11 12 13 14 15

17 18 19 20

11 12 13 14 15

2

7

12

17

22

3

8

13

18

23

4

9

14

19

24

3

8

13

18

23

9 8

14 13

19 18

14 13

1718

1213

78

1213

16

(b) Mirror padding

Figure 5.9: Figures (a) Zero padding and (b) Mirror padding visualized.

NDCNN required long training time, and the results still had some residuals

left. A third denoising design was implemented employing the characteristics of both

NDCNN and AE combined, namely a U-NET. This network structure contained the

compression structure of an AE, but had residual layers inheriting from earlier higher

resolution layers to counter for unwanted information loss during compression. This

model was much more efficient and gave significantly improved results. The U-NET

can be viewed in Figure 5.7

58

6 | Results
This chapter presents results from the various network models applied in this thesis

work. The dataset will be presented as well as characteristics of the different network

models.

6.1 Dataset

The dataset used in this thesis is marine seismic data acquired by CGG in the

North Sea. Such data is always contaminated by various types of noise to some

extent (as explained in Chapter 2) which might require denoising before used in

neural networks. This problem was avoided since CGG had "pure" SI-noise was

recorded separately. The data used in this thesis consists of two lines of marine

seismic data where one line contains 482 industrially denoised, and therefore nearly

noise-free marine seismic records, and the second line contains 800 records of "pure"

seismic interference (SI) noise. The noise records, as can be viewed in Figure 6.1b,

were acquired by two vessels traveling in opposite direction with one vessel shooting

and one vessel recording. The data was divided into 8 second gathers, coinsiding

with the shot point interval of the shooting vessel. All data was recorded with a

2ms sampling rate. The clean data, as can be viewed in Figure 6.1a, was both shot

and acquired by the towing vessel in good weather conditions and put through an

industrial processing denoising workflow.

Seismic datasets with a 2ms sampling rate hold 500 time samples for each second.

It is common to view events down to at least 6 second two-way travel time (TWT) for

North Sea data thus resulting in 3000 time samples for each trace. This is considered

large compared to conventional images in neural networks, see Chapter 5. The data

was therefore downsampled to 4ms to reduce the size of each shot record entering

the network. The data had an original record time of 9 second TWT, which was cut

down to 6 second to further reduce computation time and memory consumption.

The final input size of the seismic images was 1500x256, as far offset traces were

omitted to increase computational efficiency.

59

RESULTS Dataset

(a) Clean data (b) Noise data

Figure 6.1: Example shot gathers from the datasets where (a) shows a seismic

shot record from the "clean" dataset and (b) shows "pure" SI-noise from the noise

dataset. The shotgathers presented in this figure will be used in numerous examples

in this chapter.

6.1.1 Data scaling

As referred to in Chapter 3, neural networks ideally works on data scaled to [0− 1]

range with fairly uniformly distributed values. The four different scaling methods

used in this thesis were: normalization (Figure 6.2a and Equation 6.4), thresholding

(Figure 6.2b and Equation 6.3), square root (Figure 6.2c and Equation 6.2) and cubic

60

RESULTS Dataset

root (Figure 6.2d and Equation 6.1). In these figures the output from the network is

marked with blue, and the difference between input and output marked with red. It

has to be mentioned that the last three scaling methods will not normalize the data

between 0 and 1. Normalization was therefore applied afterwards to fit the data

to the desired range. All versions were run on similar models displaying the same

shotgather with the same noise. These scaling methods were tested to narrow the

dynamic range of the amplitude values in the seismic data. The figures presented

are cutouts from larger sections. These sections are included in the Appendix A

(Figures A.1 - A.4), and will be referred to correspondingly.

There are clear differences between the scaled models. However, the most striking

difference is between cubic root and the others. The output from cubic root, as seen

in Figure 6.2d, is completely washed out. The amplitudes in the entire image are

scaled up and almost no apparent geological information is visible, as can be seen

in Figure A.1. The difference plot A.1 contains more geology than the output and

it seems likely that the dynamic range became too narrow for the network to learn

features from the data. The cubic root scaling was implemented as follows

f(x) =





3
√
x, x > 0

− 3
√
|x|, x < 0

(6.1)

where x is a matrix and the negative values are forced positive before applying the

cubic root to remove any imaginary numbers.

The square root performs better than cubic root, but is still sub-optimal as

there are a lot of residual noise left in the output, Figure 6.2c. The noise has areas

with quite high amplitudes and the entire section shows washout suppressing the

underlying geological signal. There are many details present in the difference, which

demonstrates that the washout is rather significant and introduces a lot of artifacts

in the data. Figure A.2 shows that the output reconstructs reflections between 2-3

second TWT, but the difference shows substantial loss in the same time range. The

geological signals underlying the intercepting SI-noise are partly reconstructed, but

there are still apparent reflections visible in the zoomed difference section, Figure

6.2c. There is a likelihood that the issue with the cubic root yields for the square

root as well, where the dynamic range might become too narrow. The square root

61

RESULTS Dataset

was implemented as follows

f(x) =





√
x, x > 0

−
√
|x|, x < 0

(6.2)

where x is a matrix and the negative values are forced positive before applying the

square root to remove any imaginary numbers.

The thresholding preformed much better than both of the root functions. Seismic

data has a large dynamic range, where certain areas are high in amplitude, but not

of much interest in reflection seismics; such as the refracted events. Thresholding

was applied to force the high amplitudes down and was implemented as follows

f(x) =




0.01x, |x| > 500

x, |x| < 500
(6.3)

where all values exceeding an absolute value of 500 were multiplied by 0.01 effectively

scaling them down by a factor of 100. The results from the thresholding can be

viewed in Figures 6.2b and A.3 where it is evident that it performs better than

both the square and cubic roots. Residual noise exists in the output, but the noise

is significantly attenuated. The underlying geology is kept relatively well, but still

geological information is lost, as can be seen in the output, Figure 6.2b.

Normalization was, as mentioned, applied in combination with all three scaling

methods discussed above to make sure all values lie between 0 and 1 before passed

to the network. The normalization applied is defined as follows

f(x) = 0.5

(
x

max(|x|) + 1

)
(6.4)

where the input, x, was divided by the absolute maximum value of input and then

shifted to lie between 0 and 1. The result from the use of only normalization can

be viewed in Figures 6.2a and A.4. Residual noise is present in the data, but it is

substantially attenuated. It is evident that pure normalization performs better than

both root methods, and also slightly better than thresholding, Figure 6.2b. The

residual noise in the output from the pure normalization distributes over a larger

area than in case of the thresholding, but at the same time keeps the underlying

deeper geology more intact. Although thresholding might remove slightly more

noise, the most important aspect is to not damage the underlying signals. The

spikes left in the threshold, Figure 6.2b, also have substantially higher amplitudes

62

RESULTS Dataset

than the residual in the pure normalization output. The thresholding performs

better around the refracted events, compared to the pure normalization. Another

important aspect favouring normalization is that the process is reversible, while

thresholding is permanent. Due to these aspects, the scaling method used in this

thesis was chosen as pure normalization defined by equation 6.4.

(a) Normalization (b) Threshold

(c) Square Root (d) Cubic Root

Figure 6.2: Figure visualizing the impact of the four different scaling methods ap-

plied to the data. Figures (a), (b), (c), and (d) respectively visualize Normalization,

Threshold, Square Root and Cubic Root. The blue and red boxes show respectively

output and difference (ground truth - output). The figures are cutouts from larger

sections found in Appendix A (Figures A.1 - A.4).

63

RESULTS Classification

(a) Accuracy

(b) Loss

Figure 6.3: (a) Accuracy and (b) loss results from the classification convolutional

neural network, visualized in Figure 5.4.

6.2 Classification

The classification network was, as mentioned in 5.4.3, created as a proof of concept

to whether the network could understand the structure of SI-noise and differentiate

between the noise and the signal. The network is visualized in Figure 5.4 and is a

6-layer model employing max pooling to compress the image and fully connected

64

RESULTS Autoencoder

layers to classify the output. Figure 6.3a visualizes the accuracy performance of the

classification network where the accuracy quickly rises to almost 100% both for the

training and validation set. The loss from the network can be viewed in Figure 6.3b.

The training loss stabilizes at a value of approximately 10−7 while the validation loss

oscillates slightly, but reaches a value of about 10−4 after 9 epochs. The classification

network clearly performs well on both the training and validation datasets, reaching

almost perfect results after a few epochs.

6.3 Autoencoder

Two types of autoencoder networks were tested in this thesis, further referred to

as AE1 and AE2, see Table 6.1. Autoencoders are, as mentioned in section 5.4.3,

commonly used in conventional image denoising.

AE1 AE2

Conv 32x3x3 Conv 64x3x3

Max Pool Max Pool

Conv 32x3x3 Conv 64x3x3

Max Pool Max Pool

Conv 32x3x3 Conv 64x3x3

- Conv 64x3x3

Up Sampling Up Sampling

Conv 32x3x3 Conv 64x3x3

Up Sampling Up Sampling

Conv 1x3x3 Conv 1x3x3

Table 6.1: Table listing the structure of the autoencoder models used in this thesis:

Conventional (AE1) and Custom (AE2). Both models used ReLU as activation

functions and Sigmoid in the output layer. Autoencoder 2 had TanH as activation

function in the first layer.

The denoising results form AE1 can be viewed in Figure 6.5. The output, Figure

6.5c, shows some SI-noise removed, but there are still significant SI-noise left in the

output data. The zoomed section around 5 second TWT (two-way traveltime), Fig-

ure 6.5iii, highlights an area with significant noise residual. The noise overshadows

65

RESULTS Autoencoder

the underlying signal and it is difficult to see whether the signal is kept intact due

to the low signal-to-noise ratio (SNR). Box vi in Figure 6.5d highlights the same

part in the difference between input and output showing weak residual geological

signals and high amounts of residual noise. The residual noise is pixelated which

is likely an artifact introduced by the compression in the model. Boxes i and iv

respectively Figures 6.5c and 6.5d highlight an area around 2-3 second TWT with

strong reflections and multiples. Box i shows a seemingly clear and noise free re-

construction of this section, but on comparison with box iv in the difference shows

that there are substantial loss in signal in this area. The box ii highlighted in Figure

6.5c around 4 second TWT shows a high SNR as there are little noise present in

this area. Direct comparison with box v in Figure 6.5d shows that some geological

information has been lost. Given the amplitudes of the input in this area, the loss is

quite substantial. It is evident that the model struggles with recreating the refracted

arrival, as can be seen in Figure 6.5d. Careful inspection also show edge effects along

both vertical edges, creating vertical artifacts in the data. Figure 6.4a shows the

frequency spectrum of the input and output. It is clear that the model struggles

with recreating the frequency band as it performs increasingly worse with increasing

frequency from around 25Hz and throughout the spectrum. The frequencies below

25Hz are recreated relatively well. Figure 6.4b show the loss plot for AE1, where the

training loss stabilizes at 3 · 10−5 after 15 epochs while the validation loss stabilizes

at 5 · 10−5.
The results from the use of AE2 can be seen in Figure 6.6. This autoencoder

shares many of the characteristics as seen in the results from AE1, Table 6.1. There

are residual SI-noise left in the output, Figure 6.6c, introducing artifacts in the data

appearing as dipping features with a constant low amplitude as can be seen in box

iii in 6.6c. Comparing the zoomed sections (boxes i and iv) respectively in Figures

6.6c and 6.6d shows that the reflections around 2-3 second TWT are relatively well

recreated, but with some loss. The model performs well at low amplitudes with

high SNR as can be seen in boxes ii and iv in respectively Figures 6.6c and 6.6d

where there are no apparent geological data present in the difference. Both the

residual SI-noise and the refracted arrivals show pixelated artifacts. The frequency

spectra of Figures 6.6a and 6.6c are given in Figure 6.7a, showing that the network

recreates the entire frequency band relatively well, but has some deviations at higher

frequencies (70 − 125Hz). The loss plot for AE2 is given in Figure 6.7b where the

66

RESULTS Autoencoder

training loss is stable at a value of 1 · 10−5 while the validation loss is increasing

throughout every epoch with a final value of 1.4 · 10−4 at 20 epochs.

The most apparent difference between the models is the edge effect present in

AE1, Figure 6.5, which is not present in AE2, Figure 6.6. The residual noise in the

outputs of the models vary as AE1 has higher amplitude loss, while AE2 has lower

amplitude residual. AE2 also shows patches in the noise residual with constant low

amplitudes, which is not present in AE 1. The shallow part of the SI-noise intercept-

ing at about 1 second TWT is better attenuated in AE1 as there are more apparent

residual left in the output from AE2. The outputs from both models appear syn-

thetic, and they both perform relatively poorly. AE2, although performing poorly,

performs substantially better than AE1 as there are a lot less geological information

left in the difference from AE2, Figure 6.6d, compared to the difference from AE1,

Figure 6.5d. AE2 also performs better denoising than AE1. The loss function in-

dicates that AE1 performs better than AE2, but the output and frequency spectra

of AE2 are noticeably better. However, AE2 over estimates the higher frequencies,

producing higher amplitude signal for frequencies above 80 Hz.

67

RESULTS Autoencoder

(a) Frequency spectrum of AE1

(b) Loss plot from AE1

Figure 6.4: (a) Frequency spectrum and (b) loss plot for AE1

68

RESULTS Autoencoder

iv

iv

v

v

vi

vi

i

i

ii

ii
iii

iii

Figure 6.5: AE1 where a), b), c) and d) visualize respectively clean image, input,

output and difference (a-c). Figures i,ii, ... ,vi visualize zoomed sections of interest.

The red sections mark locations in the output c), while the orange sections mark

corresponding areas in the difference d).

69

RESULTS Autoencoder

iv

iv

v

v

vi

vi

i

i

ii

ii
iii

iii

Figure 6.6: AE2 where a), b), c) and d) visualize respectively clean image, input,

output and difference (a-c). Figures i,ii, ... ,vi visualize zoomed sections of interest.

The red sections mark locations in the output c), while the orange sections mark

corresponding areas in the difference d).

70

RESULTS No Downscaling CNN

(a) Frequency spectrum of AE2

(b) Loss plot from AE2

Figure 6.7: (a) Frequency spectrum and (b) loss plot for AE2

6.4 No Downscaling CNN

Multiple versions of the No Downscaling CNN (NDCNN) were tested in this thesis.

A few selected designs are chosen and analyzed in this section, where the structure

of each network is visualized in Table 6.2. NDCNN was implemented as an attempt

of counteracting the artifacts introduced by the AE models.

71

RESULTS No Downscaling CNN

NDCNN1 NDCNN2 NDCNN3 NDCNN4

1 Conv 64x7x7 d(3x3) Conv 4x7x7 d(1x1) Conv 64x7x7 d(1x1) Conv 32x7x7 d(3x3)

2 Batch Norm Batch Norm Batch Norm Batch Norm

3 Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU

4 Conv 64x6x6 d(3x3) Conv 8x6x6 d(1x1) Conv 64x6x6 d(1x1) Conv 42x6x6 d(3x3)

5 Batch Norm Batch Norm Batch Norm Batch Norm

6 Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU

7 Residual (0 + 6) Residual (0 + 6) - Residual (0 + 6)

8 Conv 64x4x4 d(3x3) Conv 16x4x4 d(1x1) Conv 64x4x4 d(1x1) Conv 32x4x4 d(3x3)

9 Batch Norm Batch Norm Batch Norm Batch Norm

10 Leaky ReLU Leaky ReLU Leaky ReLU Leaky ReLU

11 Conv 64x3x3 d(3x3) Conv 32x3x3 d(1x1) Conv 1x3x3 d(1x1) Conv 42x3x3 d(3x3)

12 Batch Norm Batch Norm Batch Norm

13 Leaky ReLU Leaky ReLU Leaky ReLU

14 Conv 64x3x3 d(2x2) Conv 16x3x3 d(1x1) 46x3x3 d(2x2)

15 Batch Norm Batch Norm Batch Norm

16 Leaky ReLU Leaky ReLU Leaky ReLU

17 Conv 64x3x3 d(1x1) Conv 8x3x3 d(1x1) Conv 50x3x3 d(2x2)

18 Batch Norm Batch Norm Batch Norm

19 Leaky ReLU Leaky ReLU Leaky ReLU

20 Conv 32x3x3 d(1x1) Conv 4x3x3 d(1x1) Conv 16x3x3 d(1x1)

21 Batch Norm Batch Norm Batch Norm

22 Leaky ReLU Leaky ReLU Leaky ReLU

23 Conv 1x3x3 d(1x1) Conv 1x3x3 d(1x1) Conv 1x3x3 d(1x1)

#P 361,441 14,441 217,473 130,025

Table 6.2: Table listing the model structure of 4 NDCNN models tested in this

thesis, where d denotes the dilation rate of the filters. All models used MAE loss,

Leaky ReLU with α = 0.3, RMSprop optimizer and ran for 40 epochs.

72

RESULTS No Downscaling CNN

iv

iv

v

v

vi

vi

i

i

ii

ii
iii

iii

Figure 6.8: NDCNN1 where a), b), c) and d) visualize respectively clean image,

input, output and difference (a-c). Figures i,ii, ... ,vi visualize zoomed sections of

interest. The red sections mark locations in the output c), while the orange sections

mark corresponding areas in the difference d).

73

RESULTS No Downscaling CNN

(a) Frequency spectrum of NDCNN1

(b) Loss from NDCNN1

Figure 6.9: (a) Frequency spectrum and (b) loss plot for NDCNN1

The denoising results from NDCNN1 can be viewed in Figure 6.8. The output,

Figure 6.8c, shows some SI-noise residual, but the amplitudes are weak and almost

all noise is removed. The zoomed section (box iii) in Figure 6.8c highlights an area

where the SNR in the input data, Figure 6.8b, is very low. There are some residual

noise left from the strong events, but almost everything is efficiently removed. The

underlying geology is well kept, as there are no apparent geological information in

the corresponding area (box iv) in the difference, Figure 6.8d. Boxes ii and v in

respectively Figures 6.8c and 6.8d highlight an area with strong SNR, but relatively

74

RESULTS No Downscaling CNN

weak signal. The output shows essentially no residual noise and the reflections ap-

pear to be well reconstructed. The difference shows insignificant SI-noise residuals,

but no geological data. This means that the model performs well for both low and

high SNR. Box i in Figure 6.8c shows strong well reconstructed geological reflections

and direct comparison with box iv in Figure 6.8d proves that no geological informa-

tion is left in the difference plot in this area. The difference shows lines intercepting

from the top left corner dipping towards higher offset. These lines are tugging noise

which are present in the ground truth. The model had not been trained to remove

this type of noise, but has learned the characteristic of the noise, thus removing it in

the same process. There are substantial amounts of the refracted arrivals left in the

difference, Figure 6.8d, which cause some loss in the shallow reflections around 1.5 -

2.5 second TWT. The model recreates the frequency spectrum almost perfectly, as

can be seen in Figure 6.9a. The loss is presented in Figure 6.9b, where the training

loss stabilizes at 10−6 after 7 epochs. The validation loss stabilizes slightly higher,

but is still in the same order of magnitude. There are some tugging noise present

throughout the ground truth. Some of this noise is removed by the network and will

be registered with a higher loss since it exists in the ground truth.

Figure 6.11 visualizes the output from NDCNN2. This network model is a min-

imized version of NDCNN1 where the number of filters throughout the layers has

been substantially reduced to test model redundancy and increase efficiency. The

dilation rate has been set to 1 for all layers. NDCNN2 shares similar traits with

NDCNN1 where box-plots i and iv (respectively Figures 6.11c and 6.11d) look al-

most identical to corresponding box plots in Figures 6.8c and 6.8d. The first set

of box plots differ as there are visible SI-noise residuals left in the output, as can

be seen in the difference. Deep regions, box-plot iii in Figure 6.11c, with low SNR

are reconstructed poorer than in NDCNN1, box-plot iii in Figure 6.8c. There are

substantial amounts of SI-noise left in the output, suppressing some geological data

and creating a washout-effect, as can be seen in box-plot vi in Figure 6.11d. The

frequency spectrum, Figure 6.10a is virtually perfectly recreated which also yields

for NDCNN1, Figure 6.9a. The loss plot, given in Figure 6.10b, shows an oscil-

lating validation loss and a higher convergence value than shown in Figure 6.9b.

Both the training and validation loss converge to a value of approximately 9 · 10−4

which is orders of magnitudes higher than NDCNN 1. NDCNN2 reconstructs the

refracted arrivals noticeably better than NDCNN1, and is likely due to the reduction

75

RESULTS No Downscaling CNN

in dilation rate in the filters. Although the refracted arrivals are better recreated,

the shallow geological reflections around 1.5 - 2 second TWT are still impacted, as

shown in the difference, Figure 6.11c.

(a) Frequency spectrum of NDCNN2

(b) Loss from NDCNN2

Figure 6.10: (a) Frequency spectrum and (b) loss plot for NDCNN2

76

RESULTS No Downscaling CNN

iv

iv

v

v

vi

vi

i

i

ii

ii
iii

iii

Figure 6.11: NDCNN2 where a), b), c) and d) visualize respectively clean image,

input, output and difference (a-c). Figures i,ii, ... ,vi visualize zoomed sections of

interest. The red sections mark locations in the output c), while the orange sections

mark corresponding areas in the difference d).

77

RESULTS No Downscaling CNN

iv

iv

v

v

vi

vi

i

i

ii

ii
iii

iii

Figure 6.12: NDCNN3 where a), b), c) and d) visualize respectively clean image,

input, output and difference (a-c). Figures i,ii, ... ,vi visualize zoomed sections of

interest. The red sections mark locations in the output c), while the orange sections

mark corresponding areas in the difference d).

78

RESULTS No Downscaling CNN

(a) Frequency spectrum of NDCNN3

(b) Loss from NDCNN3

Figure 6.13: (a) Frequency spectrum and (b) loss plot for NDCNN3

The performance of NDCNN3 can be viewed in Figure 6.12. NDCNN3 is a

compressed version of NDCNN1 where the same amount of filters has been kept,

but both dilation and multiple layers have been removed. The main trend is that

the output, Figure 6.12c, shows more residual SI-noise than NDCNN1, Figure 6.8c.

There are apparent SI-noise residuals left in the deeper parts of the output, box-

plot iii in Figure 6.12c, creating a washout-effect in the data. This characteristic

is shared with NDCNN2, box-plot iii in Figure 6.11c, but is less prominent. The

residual SI-noise is more distributed over the entire output, Figure 6.12c, compared

79

RESULTS No Downscaling CNN

to NDCNN1, Figure 6.8c, and NDCNN2, Figure 6.11c. This is apparent in the

difference where the residual noise in the deeper parts, box-plot vi in Figure 6.12d,

show rather strong residual noise amplitudes. The underlying geology appear to

be intact as there are no visible geology in the difference. The strong reflections

visible in box-plot i in Figure 6.12c are recreated without loss, as can be seen in

box-plot iv in Figure 6.12d. Although not important, it does remove more tugging

noise than the two other models. The frequency spectrum, visible in Figure 6.13a,

shows an almost perfectly reconstructed frequency spectrum, similar to those from

NDCNN1 and NDCNN2, Figures 6.9a and 6.10a. The loss plot from NDCNN 3

in Figure 6.13b shows that both training and validation loss converge towards the

same value as NDCNN 2, Figure 6.10b, namely 9 · 10−4. The validation loss differs

much from both NDCNN 1 and 2 where it oscillates significantly during the epochs

with a substantial spike around 17 epochs.

NDCNN4 is an attempted optimized version of NDCNN1. It shares the same

characteristichs as NDCNN1 but has a reduced number of filters in most layers.

The output from NDCNN4 is visualized in Figure 6.14c. It is almost identical to

the output from NDCNN1, Figure 6.8c, as suspected. It has a bit more residual SI-

noise left in the image, but shows less washout-effects than NDCNN2 and NDCNN3,

Figures 6.11 and 6.12. Box-plots i, ii (Figures 6.14c) and iv and v (Figure 6.14d)

show no apparent difference with the corresponding subplots in NDCNN1 Figure 6.8.

The only difference between the two network models is connected the strong SI-noise

at 4 - 6 second TWT. Comparing box-plot v from both Figures 6.14d and 6.8d shows

the similar residual noise spikes, but with varying amplitude. This is more apparent

in Figures 6.14 and 6.8, showing a slightly higher amplitude in the SI-noise residual

in the difference from NDCNN4. The frequency spectrum of NDCNN4, Figure 6.15a

is similar to all the other spectra. The loss plot from NDCNN4, Figure 6.15b, shows

a similar curve shape as NDCNN1, Figure 6.9b, but both validation and training

loss in NDCNN4 are one order of magnitude higher than NDCNN1. The loss differs

from all the other models in that the validation and training loss converge towards

the exact same value compared to the other models where the validation loss always

converges toward a slightly higher number. These results are further discussed in

the next chapter.

80

RESULTS No Downscaling CNN

iv

iv

v

v

vi

vi

i

i

ii

ii
iii

iii

Figure 6.14: NDCNN4 where a), b), c) and d) visualize respectively clean image,

input, output and difference (a-c). Figures i,ii, ... ,vi visualize zoomed sections of

interest. The red sections mark locations in the output c), while the orange sections

mark corresponding areas in the difference d).

81

RESULTS No Downscaling CNN

(a) Frequency spectrum of NDCNN4

(b) Loss from NDCNN4

Figure 6.15: (a) Frequency spectrum and (b) loss plot for NDCNN4

6.4.1 Loss function

The loss function in machine learning is a key part of the network. Four different loss

functions have been mentioned in this thesis, and three of them have been tested

to investigate their difference in performance. These three functions are: MSE

(Figures 6.16a and A.5), Huber (Figures 6.16b and A.6) and MAE (Figures 6.16c

and A.7). The fourth one mentioned earlier in this thesis is Binary cross-entropy

which has been omitted since it is restricted to binary problems only (see section

82

RESULTS No Downscaling CNN

3.2.3). In Figure 6.16 the output is marked blue, and the difference between input

and output is marked with red. The network model might be sub-optimal, but this

was purposely done to see how the loss functions performed in such conditions.

By comparison of Figures 6.16a, 6.16b and 6.16c it is evident that MAE perform

best overall. The zoomed sections in the figures show a notable difference in the SI-

noise removal in deep regions, where both MSE and Huber suffer from washout and

underlying geology loss. MAE has substantial amounts of SI-noise left in the output,

but less washout than the other functions with a better recreation of the underlying

geology. Comparing the general performance of all functions, Figures A.5, A.6 and

A.7 shows a significant difference in recreations of main geological events. There are

more residual geology left in both MSE and Huber, 2-3.5 second TWT, compared

to MAE. MSE performs slightly better than Huber, but still sup-par compared to

MAE.

MAE, Figure A.7, recreates the shallow events, such as water bottom reflection

and refracted waves, better than both MSE and Huber, Figures A.5 and A.6. It

shows geological spikes, which are not present in the two other models, but with

relative low amplitude. MAE has a slightly different overall amplitude in the output,

compared to MSE and Huber. Although this might cause concern due to artifacts

in the data, MAE still perform best and is therefore the desirable loss function. The

results will be discussed more in detail in the next chapter.

83

RESULTS No Downscaling CNN

(a) MSE (b) Huber

(c) MAE

Figure 6.16: Figure visualizing the impact of the four different loss functions used

in similar models. Figures (a), (b), and (c) respectively visualize MSE, Huber and

MAE. The blue and red boxes visualize output and difference (ground truth - output).

The figures are cutouts from larger sections found in the Appendix A (Figures A.5 -

A.7).

6.4.2 Activation function

The activation function in Machine learning introduces non-linearity to the network,

as mentioned in Chapter 3. Four different activation functions were tested employing

MAE loss to investigate their performance. These four are: ReLU (Figures 6.17a

and A.8), TanH (Figures 6.17b and A.9), Leaky ReLU with α = 0.01 (Figures 6.17c

and A.10) and Leaky ReLU with α = 0.3 (Figures 6.17d and A.11). In Figure 6.17

84

RESULTS No Downscaling CNN

the output is marked blue, and the difference between input and output marked

with red.

Comparing Figures 6.17a, 6.17b, 6.17c and 6.17d show an apparent poor per-

formance of TanH compared to the three other functions. It is evident that the

function could not reproduce the image and completely failed. The entire output,

Figure A.9, shows almost no geology and the only reconstructed parts are the re-

fracted arrivals and parts of the noise. ReLU, Leaky ReLU with α = 0.01 and

Leaky ReLU with α = 0.3, Figures 6.17a, 6.17c and 6.17d show more resemblance.

ReLU has substantially more residual noise left in the output, and more geology in

the difference, Figure A.8. The residual noise overshadows the underlying geology

causing a bad recreation of the deeper events. Both version of Leaky ReLU perform

better than the latter functions, where α = 0.01 cause a patchy reconstruction, with

substantial geological information left in the difference, Figure A.10. Leaky ReLU

with α = 0.03 has a better overall amplitude with better reconstruction of deep ge-

ology, Figure A.11. It might have slightly more geological residual at 2.5 - 4 second

TWT left in the difference, but recreates the amplitude well and performs better

overall. These results will be further discussed in Chapter 7.

85

RESULTS No Downscaling CNN

(a) ReLU (b) TanH

(c) Leaky ReLU α = 0.01 (d) Leaky ReLU α = 0.3

Figure 6.17: Figure visualizing the impact of four different activation functions

used in a model. Figures (a), (b), (c) and (d) respectively visualize ReLU, TanH,

Leaky ReLU with α = 0.01 and Leaky ReLU with α = 0.3. The blue and red boxes

visualize output and difference (ground truth - output). The figures are cutouts from

larger sections found in the Appendix A (Figures A.8 - A.11).

6.4.3 Feature maps

As already mentioned, NDCNN4 is an attempt to design an optimized version of

NDCNN1. This optimization is based on a systematic analysis of the feature maps

output from a given layer, where empty or duplicate filters were removed to increase

efficiency. Figure 6.18 shows such output from layer 3 in NDCNN1. It is apparent

that both duplicate and blank filters exist. Multiple filters capturing the same

86

RESULTS No Downscaling CNN

features will likely not give an improvement to the model and might in the worst

case scenario affect the model negatively. Figure 6.19 shows the feature maps from

layer 3 in NDCNN4. The number of filters has been reduced by a factor of 2 which

removes some of the duplicates visible in figure 6.18. There are certain features

which NDCNN4 does not seem to capture in this layer and there are other features

which seems to be introduced. The overall output from layer 3 in NDCNN4 seems

to show that there are fewer duplicates and no empty filters.

Figure 6.18: Feature maps from NDCNN1 layer 3. Examples of duplicate (or

empty) filters are marked with borders of similar color, grouping them together. This

layer consists of 64 filters, explaining the high amount of feature maps.

87

RESULTS No Downscaling CNN

Figure 6.19: Feature maps from NDCNN4 layer 3. Four feature maps are high-

lighted and visualized below.

(a) (b) (c) (d)

Figure 6.20: Figure highlighting a section of the feature maps viewed in Figure

6.19 where the figures are color coded with the same colors.

88

RESULTS No Downscaling CNN

Although there are fewer duplicates, most features seems to be kept intact in

the filter reduction. There is a similar variance in features in the feature maps

from NDCNN1, Figure 6.18, than there are for NDCNN4, Figure 6.19. The feature

maps from NDCNN4 also show multiple duplicates. Figure 6.20 shows a selection

of 4 feature maps from the layer. Figures 6.20a - c are different and thus fetching

different features from the data. However, Figure 6.20d seems very similar to Figure

6.20b, demonstrating that there still are duplicates in this layer. The performance

of NDCNN4 was quite similar to NDCNN1, but with slightly poorer performance at

large traveltimes. This is likely due to variance loss in the feature maps for certain

layers, giving the network a more narrow feature representation and it therefore

recognizes less features. Another negative observation from both, Figures 6.18 and

6.19, is that the network seem to focus too much on the water bottom reflection and

refracted events. They have a substantially higher amplitude and seem to draw too

much attention from the network, leaving the geology and noise less in focus.

89

RESULTS U-NET

6.5 U-NET

Two versions of U-NET were tested in this thesis and the structure of these networks

are visualized in Table 6.3. U-NET was implemented as a way of combining AE and

NDCNN, utilizing features from both network structures to create a robust and

efficient model.
U-NET1 U-NET2

1 Conv 16x6x6 Conv 16x3x3

2 Leaky ReLU Leaky ReLU

3 Max Pool Max Pool

4 Conv 32x6x6 Conv 32x3x3

5 Leaky ReLU Leaky ReLU

6 Max Pool Max Pool

7 Conv 32x4x4 Conv 32x3x3

8 Leaky ReLU Leaky ReLU

9 Conv 32x3x3 Conv 32x3x3

10 Leaky ReLU Leaky ReLU

11 Up Sampling Up Sampling

12 Residual (11 + 5) Residual (11 + 5)

13 Conv 16x3x3 Conv 16x3x3

14 Leaky ReLU Leaky ReLU

15 Up Sampling Up Sampling

16 Residual (15 + 2) Residual (15 + 2)

17 Conv 8x3x3 Conv 8x3x3

18 Leaky ReLU Leaky ReLU

19 Conv 1x3x3 Conv 1x3x3

#P 50,577 29,153

Table 6.3: Table listing the structure of the U-NET models used in this thesis:

U-NET1 and U-NET2. Both models used Leaky ReLU with α = 0.3, MAE loss and

RMSprop optimizer. Both models had dilation rates of 1 in all layers.

90

RESULTS U-NET

iv

iv

v

v

vi

vi

i

i

ii

ii

iii

iii

Figure 6.21: UNET-1 where a), b), c) and d) visualize respectively clean image,

input, output and difference (a-c). Figures i,ii, ... ,vi visualize zoomed sections of

interest. The red sections mark locations in the output c), while the orange sections

mark corresponding areas in the difference d).

91

RESULTS U-NET

(a) Frequency spectrum of U-NET1

(b) Loss from U-NET1

Figure 6.22: (a) Frequency spectrum and (b) loss plot for U-NET1

The denoising results from U-NET1 can be viewed in Figure 6.21. The output,

Figure 6.21c, shows some residual SI-noise, but it has weak amplitudes and with

almost everything being attenuated. Box-plot iii in Figure 6.21c highlights a section

where the high amplitude SI-noise blends with the input data. Almost no residuals

are left, as can be further illustrated in box-plot vi in Figure 6.21d containing the

noise removed. The underlying geology is well recreated as there is essentially no

geological information left in the difference. Comparing sections with less noise,

i.e. box-plot ii in Figure 6.21c and box-plot v in Figure 6.21d, show low-amplitude

92

RESULTS U-NET

residual noise, an virtually no geological loss. The network model does a good job

at recreating the shallow events, i.e. box-plot i in Figure 6.21c and box-plot iv in

Figure 6.21d, where almost no geological information is left in the difference. The

frequency spectrum of U-NET1, 6.22a, is well reconstructed with apparently no

deviation at any frequency. The loss plot, Figure 6.22b shows a step-wise training

loss which stabilizes at 10−4 after approximately 25 - 30 epochs. The validation loss

is oscillating much until 15 epochs, but stabilizes at the same value as the training

loss.

Results from U-NET are plotted on Figure 6.23. The output, Figure 6.23c, shows

some weak residual SI-noise. Direct comparison of box-plots iii and iv in Figures

6.23c and d and 6.21c and d shows more SI-noise residuals in output from U-NET2,

but with low amplitude. Both models recreates the underlying geology well, as there

are essentially no geology visible in the difference. Box-plots ii and v from Figures

6.23c and 6.23d show low-amplitude noise residuals, with apparent difference from

the corresponding boxes in Figures 6.21c and 6.21d. There is a small difference in

in the recreation of shallow events between U-NET1 and U-NET2. U-NET2 shows

small spikes of geology, box-plots i and iv in Figures 6.23c and 6.23d, which are

not present in corresponding box-plots in Figures 6.21c and 6.21d. These spikes

are minor and sparse, and there is little significant difference in the performance

of the models. The frequency spectra of U-NET2, 6.24a, is well recreated without

apparent loss and show significant resemblance with the spectrum of U-NET1 6.22a.

The loss plot, Figure 6.24b shows the same trend as U-NET1, but with a significant

larger saddle point at 8 ·10−4 before approaching similar values. The model appears

to not have converged fully, and might improve slightly with more training.

93

RESULTS U-NET

iv

iv

v

v

vi

vi

i

i

ii

ii

iii

iii

Figure 6.23: U-NET2 where a), b), c) and d) visualize respectively clean image,

input, output and difference (a-c). Figures i,ii, ... ,vi visualize zoomed sections of

interest. The red sections mark locations in the output c), while the orange sections

mark corresponding areas in the difference d).

94

RESULTS Execution time

(a) Frequency spectrum of U-NET2

(b) Loss from U-NET2

Figure 6.24: (a) Frequency spectrum and (b) loss plot for U-NET2

6.6 Execution time

The execution times of the 4 NDCNN models and 2 U-NET models compared are

listed in Table 6.4. The most striking difference in this table is the training time

required for the different NDCNN models compared to the U-NET models. While

two of the NDCNN models need more than 100 hours, the U-NET models require

only 7-8 hours training time. Another clearly visible result is how training time

increases with number of filters. NDCNN2 has the same amount of layers as ND-

95

RESULTS Execution time

CNN1, but still has a lower training time than NDCNN3 which has less than half

as many layers. The number of filters in NDCNN1 and NDCNN3 are high, while

the number of filters in NDCNN 2 is greatly reduced. This is directly connected to

the number of parameters in a model, Table 6.2. The more parameters in a model,

the higher the computational demand. The optimized verison, NDCNN4, required

33% less training only due to filter reduction.

There is quite a large difference in number of parameters between the two U-

NET models, yet there is little difference in training time. This is likely due to the

training time reaching optimal conditions and being bottlenecked by reading and

writing to files. All network models yielded efficient results for real time denoising,

once training was completed. The most demaning model used 0.16s to denoise 1

shot, while the most efficient model required only 0.02s per shot. A key note from

this section is that the U-NETS ran significantly faster than all NDCNN models,

even though the NDCNN2 has less parameters than both the U-NETS.

NDCNN1 NDCNN2 NDCNN3 NDCNN4 U-NET1 U-NET2

Train 157:58:19 35:44:28 53:06:37 101:40:03 7:26:26 7:3:28

R.T. 0.16s 0.03s 0.05s 0.1s 0.02s 0.02s

Table 6.4: Execution time for the different models on a marine seismic shot gather

with 1500 time samples and 256 traces per shot where R.T. denotes real time de-

noising. The training times for the networks are given on the format HH:MM:SS

and Real time denoising is measured in seconds.

96

7 | Discussion

7.1 Overview of the results

In this section the results will be reviewed and discussed in more depth. The chal-

lenges faced in this thesis can be divided into two aspects. The first one is to perform

quality denoising of marine seismic data, and the second one is to not damage the

data in the process. Four different architectures were tested, namely: Classifica-

tion CNN, Denoising Autoencoder, NDCNN and UNET. The Classification CNN

does not perform denoising and was implemented to prove whether a neural net-

work could distinguish between noise contaminated data and clean data. The model

reached almost perfect results after a few epochs, which indicates that the network

can separate clean and noisy data with high certainty, which was later demonstrated

in the denoising results.

7.1.1 AE

It is evident that the downscaling process in the AE models affect the seismic signal

negatively by removing important information. The difference image in both AE

models show considerably high-frequency residual while this is much less prominent

in the NDCNN and UNET models. Downscaling in neural networks, as explained in

Chapter 3, is a way of removing information which appears as incoherent between the

different input images. The fact remains that compression removes information and

in the case of the AE models, appear to have removed too much information, leaving

the outputs looking slightly synthetic. The pixelated artifacts in the intercepting

SI-noise as well as the refracted events are also likely a result of the compression,

where the high frequencies are poorly recreated. There is less pixelation in AE2

than AE1 which might be due to the extra layer added at latent level in AE2. The

extra layer makes the model focus more on data which lacks high frequencies, thus

omitting more content from the direct arrival, causing the output to look slightly

more synthetic. This is likely due to the lower frequencies being more consistent

between the shots, while the high frequency content vary more. The noise is poorly

denoised, as there are much residuals left in both AE models.

97

DISCUSSION Overview of the results

7.1.2 NDCNN

The NDCNN models perform significantly better than the AE models. The output

from each NDCNN model, Figures 6.8c, 6.11c, 6.12c and 6.14c, look rather clean

with mostly minor noise artifacts present. There is a clear difference in the noise

attenuation between the four models where NDCNN1 and NDCNN4 attenuate most

of the noise, only leaving small residuals, and NDCNN2 and NDCNN3 show higher

amplitudes and more residuals. The most coherent difference between these net-

work models is the dilation rates, where NDCNN1 and NDCNN4 have increased

dilation, while NDCNN2 and NDCNN3 have a constant dilation of 1 throughout

the networks. NDCNN1 is the computationally most demanding model, but also

yields the best results. All network network models perform well, but struggle with

the shallow events, e.g. refracted events and water bottom reflection. The high

frequency content and amplitudes of these events probably make it hard for the

network to recreate such features and an ideal input dataset would have had these

events muted.

There is an apparent difference between the NDCNN models with respect to

the shallow reflections and the refracted events. The network models with sparse

filters, a dilation rate higher than one, show a poorer reconstruction of these events.

This can be seen where NDCNN1 and NDCNN4, Figures 6.8 and 6.14, have more

residuals from the refracted events, causing a poorer recreation of the shallow reflec-

tions compared to NDCNN2, Figure 6.11. NDCNN3, Figure 6.12, performs poorly,

even though no dilation is present, but this might be explained by the reduction in

number of layers. It is likely that the network models struggle due to the high fre-

quency content in these events. The highest frequency in the shot gather is 125Hz

representing Nyquist. If the sparsity in the higher diluted filters becomes larger,

the filter will most likely not be able to recreate the higher frequencies. The first

layer in NDCNN1 and NDCNN4 has a 3x3 dilation rate. This means there are two

"empty" pixels between each sample mapped by the filters, making the filter sample

every 4 pixels. This implies that it might struggle to recover the higher frequencies,

explaining why there is much residuals left of the refracted and shallow events in

these models.

The frequency spectra of all NDCNN models, Figures 6.9a, 6.10a, 6.12 and 6.14,

show that each model perform well for the whole band. This implies that even if

some high-frequency content is lost in the very shallow parts, the overall impact is

98

DISCUSSION Overview of the results

negligible due to small amplitudes in the difference images. The main information

in the difference plots for the NDCNN, Figures 6.8 and 6.12, are carried by noise,

proving that the network models do recreate most parts, even in the shallow regions.

7.1.3 U-NET

It is evident that the U-NET models performed best of all network models consid-

ered in this thesis, Figures 6.21 and 6.23. They recreated the entire seismic image

with good precision, even at the high frequency shallow events where the other

models were sub-optimal. Residual noise is present in both models, but with low

amplitudes and little to no washout effects present. U-NET2, Figure 6.23d, shows

more residual SI-noise left compared to U-NET1, Figure 6.21d, but it still performs

better than all the NDCNN network models. It seems that the combination of

downscaling, while adding the output from previous layers create a robust model

for working with seismic. This is likely due to an increased resolution gained in the

combination of upscaling and inheritance from previous layers (Ronneberger et al.,

2015). Furthermore, the U-NET models are much more efficient as they only require

approximately 10% of the training time needed for the NDCNN network models.

7.1.4 NDCNN1 vs U-NET1

As U-NET1 performed best, and NDCNN1 performed best of the NDCNN models,

these two networks have been compared in the case of different types of SI-noise. The

results are included in the Appendix, Section A.4, visualising three different types

of SI. The U-NET appear to be more robust than the NDCNN, as can be seen from

Figures A.12 and A.13. Both network models struggle with SI-noise with similar

moveout as the refracted events. Both models leave residual noise in case the noise

crosses the direct arrivals, but removes a descent amount of the noise intercepting

at larger arrival times. NDCNN1 left higher amplitude noise and struggled more

with the refracted events, while the U-NET showed slightly more washout while

removing more noise. Both network models fail in the case of strong SI-noise from

the side, Figures A.14 and A.15. SI-noise intercepting from astern is removed well by

both models, Figures A.16 and A.17. The kinematic of the SI-noise is substantially

different from the geological data in this case, making the noise easier to remove.

The U-NET models were trained with a more optimal generator function, as there

99

DISCUSSION The different parameters of the models

were a slight issue with the function used to train the NDCNN models. This means

that the U-NET is trained with a higher variance of data, compared to the NDCNN

models. The NDCNN could therefore potentially give slightly better results, but

the difference would likely be small.

7.1.5 U-NET1 vs Industry Standard denoising

Figure A.18 shows a noise contaminated stack from a different area. The denoising

result of U-NET1 on this stack can be seen in Figure A.19 with the difference

shown in Figure A.21. The U-NET removes a significant amount of noise, while

keeping almost all geology intact. There are patches with residual noise present in

the time range 800-1200s and 1700-2200s, but the remainder of the stack is well

denoised. These ranges contain respectively strong SI-noise from ahead and from

the side. The difference, Figure A.21, shows low amplitude geology removed in

the denoising process. Figure A.20 visualizes the denoising result employing an

industry standard procedure. It is evident that the industry standard denoising

performs better than the U-NET. The difference for the industry standard, Figure

A.22, shows no apparent geology and more noise removed than from the U-NET.

An important aspect to mention in the comparison industry denoising and the

U-NET is the differences in data handling of the two. The U-NET is reading one

shot at a time and denoising in real time. The industry standard is using a multi-

shot approach to break the coherency of the data (Shen et al., 2019), thus giving the

industry denoising an advantage over the neural network. This could in principle

be done for the network as well, but will not be optimal as the network is restricted

to small batch sizes.

7.2 The different parameters of the models

When building a neural network model, there are numerous hyper parameters which

have to be fine tuned obtain the optimal results.

7.2.1 Filter size

The filter size greatly increases the total number of parameters and thus has a direct

impact on the execution time. Comparing NDCNN2, Figure 6.11, and NDCNN3,

100

DISCUSSION The different parameters of the models

Figure 6.12, show that these two network models mainly differ in the recreation of

the shallow events. They share the same filter sizes in the first layers, but NDCNN3

does not have any smaller filters and rely entirely on features extracted from larger

filters. This might explain differences observed in ouput data, but there is also major

differences in the number of layers between the models. One noticeable difference

between all the network models is that NDCNN2 and NDCNN3 show slightly more

washout and high-amplitude spikes where the high amplitude SI-noise intercepted,

while NDCNN1 and NDCNN4 attenuate more of the noise. This is likely caused

by the dilation rate, as both NDCNN2 and NDCNN3 only has dilation rates of 1

throughout the networks.

U-NET1, Figure 6.21, and U-NET2, Figure 6.23, only differ in filter sizes, where

U-NET1 has larger filter sizes in the first layers, while U-NET2 has small filters

throughout the network, Table 6.3. There is close to no visible difference between

the U-NET models. The only visible performance difference in the models are with

respect to the shallow events and slightly higher amplitudes of the residual noise.

U-NET1 removes slightly more noise, box-plot iii in Figure 6.21c, while U-NET2

shows small noise spikes, box-plot iii in Figure 6.23c, not present in U-NET1. It is

likely that the compression in the U-NET reduces the impact of the filter change,

given the small difference between the two network models. It might also be the

case that the filter size has less impact on the data than initially assumed, thus

favouring smaller filters due to lower run time.

7.2.2 Number of filters

The filters in a neural network capture characteristics of the data, where more

filters per layer will capture a broader variation. One key finding in this thesis is

that the number of filters did impact the data, but did not impact it as much as

first suspected.

NDCNN1 and NDCNN2 are two network models with a significant difference

in the number of filters. Figure 6.11c shows a relatively good recreation of the

geological data. There is almost no geological information lost in the image, as

can be seen in Figure 6.11d, except for the refracted waves which every model

struggled to recreate. The main difference between these two network models relates

to noise attenuation. Comparing Figure 6.11d with Figure 6.8d shows considerably

more noise residuals left in the output from NDCNN2. It appears as if the model

101

DISCUSSION The different parameters of the models

captures the characteristics of the noise: the noise has been attenuated, but not

removed. The output from NDCNN1 clearly shows less noise residuals left in the

output although far from perfect. NDCNN2 shows washout zones where the main

SI-noise intercepts. NDCNN2 shows loss of underlying signals in this area, while

NDCNN1 performs much better. It is evident that the number of filters directly

correlates with the denoising performance.

Comparing NDCNN1 and NDCNN4 strengthens this assumption. These two

network models are almost identical, only differing in the change of number of filters

per layer. NDCNN4 was designed in an attempt to optimize NDCNN1 without any

performance loss. This was almost accomplished, but more noise residuals are left in

the output from NDCNN4, Figure 6.14c, compared to NDCNN1, Figure 6.8c. Since

the only difference between these models are the number of filters, the reduction

in filter size has to be the cause for the extra residual noise. Adding more filters

will likely reduce the noise, but this has to be done in a controlled manner. If too

many filters exist per layer, model update will slow down. There is a limitation

in the amount of features a network can identify from an image, thus introducing

too many filters will only lead to overlapping features and non-active filters. If

too many filters are introduced, this might impact the output negatively as certain

features become weighted more in favour of others. As can be seen from Table 6.4,

the more filters a network model has, the higher run time and the more memory

needed. A deep model with many filters therefore requires much more processing

power and requires longer training time before it converges. This is why NDCNN4

was an attempted optimization of NDCNN1. It increased computational efficiency

by approximately 30%, but suffers from more residual noise.

7.2.3 Number of Layers

Establishing the necessary number of layers in machine learning is not an exact

science. There are certain rules of thumbs stating that a linearly separable problem

does not require a hidden layer. A more pragmatic approach is to simply assume

that more layers means more complexity in the data. The more layers a network

contains, the more complexity is introduced. Theoretically, a network can map

close to any map-able function containing three layers, and the function is not

necessarily map-able if any more layers are needed (Tamura and Tateishi, 1997).

Marine seismic data consists of a large amount of samples per shotgather and in

102

DISCUSSION The different parameters of the models

this thesis a size of 1500x256 was used, resulting in 3.84 · 106 samples per shot.

It might not theoretically be possible to perfectly map a denoising function, but

it does not have to be lossless. As long as the loss is kept relatively low without

significant residuals present in the data, the result is acceptable. Introducing more

layers might therefore prove reasonable when working with marine seismic data, as

the data might appear relatively complex for the computer.

Model NDCNN3 is a compressed version of NDCNN1. It consists of three con-

vololutional layers, but keeps the same number of filters as NDCNN1, see Table 6.2.

Comparing the results from the use of these two network models demonstrate that

a certain number of layers are needed for a network model to yield optimal results.

NDCNN3, Figure 6.12, was impacted less by the layer reduction than assumed, but

still performs notably worse than NDCNN1, Figure 6.8. More washout zones ex-

ist where the noise intercepted data, although the underlying geology appear to be

well recovered. It seems likely that the shallow events (with more high frequency

features) require more layers for the network to recreate, as they introduce complex

and overlapping structures. The remainder of the data is less complex and more

easily recreated. It has to be mentioned that this only applies for linear data noise,

as SI-noise appear more curved when originating from within close proximity to the

towing vessel.

7.2.4 Activation Functions

Activation functions are introduced to the network to create non-linearity and thus

solving problems that are governed by a higher-order equation. The three different

activation functions tested were: TanH, ReLU and Leaky-ReLU. It is evident that

TanH failed and gave poor results. This is likely due to vanishing gradients as TanH

is known to have this problem, see section 3.2.2. Once the value from TanH approach

-1 or 1, the gradients are so small that it might stop the network from learning

properly. ReLU has the opposite problem as it may cause exploding gradients. It

has no boundaries and the gradients can become increasingly large. ReLU performed

well in areas where no noise was present, but struggled once the high amplitude SI-

noise intercepted. As ReLU is 0 for x < 0, the gradients can approach 0 and stop

the model from enhancing. It seems likely that either or both of these special cases

of ReLU caused the poor performance. If the amplitude values of the noise were

negative, the error was lower than zero. If the amplitudes were positive, it might

103

DISCUSSION The different parameters of the models

have caused exploding gradients.

Leaky ReLU adjusts ReLU for the zero-gradient problem, adding a slant for

negative values of ReLU. Two different versions of α were tested, 0.01 and 0.3. The

results suggests that α = 0.3 performs best, as the output, Figure A.11, is attenuated

more with less artifacts. Although seismic data may seem complex, they contain

a high degree of linearity (superimposed linear wavefields). Increasing the slope of

Leaky ReLU pushes the activation function towards becoming linear. As this yields

better results, it is likely that less complexity and more linearity in the model makes

the model perform better.

7.2.5 Loss

The loss function is an important aspect of neural networks. Each time a batch is

passed through the network, the loss is calculated and the parameters are updated

accordingly. If the loss function is sub-optimal, the model might break down. The

three loss models tested were MSE, Figure A.5, Huber, Figure A.6, and MAE, Figure

A.7. It is evident that Huber performed worst of the three functions. MSE yielded

notably better results, while MAE performed best. MSE is sensitive to outliers

given the quadratic operation in the loss function, Equation 3.10. The shallow

events, such as water bottom reflection and refracted events, have amplitudes order

of magnitude higher than the deeper geological reflections. The SI-noise used in

this thesis was abnormally strong, therefore outliers were created, especially in the

deeper regions. The performance of the loss function, Figure A.5, supports this

observation especially for the intercepting SI-noise crossing the deep reflections at

5 - 6 second TWT. The entire area is washed out and with no underlying geology

reconstructed.

The MAE loss function performs significantly better. Both the shallow events

and the noisy parts are better reconstructed as well as the geological information

in the entire image, figure A.7. This is likely due to the fact that MAE weights

differences equally, as can be seen from Equation 3.11. Intercepting high amplitude

SI-noise at late arrival times (5-6 second TWT) will not be weighted differently,

than SI-noise crossing the shallow events. The noisy parts are better attenuated

than those of the MSE, A.5, which is likely due to this characteristic. Although the

MSE is sensitive to outliers, the shape of the function yields lower gradients when

the loss approaches zero in contrast to MAE which has constant gradients for all

104

DISCUSSION Model restrictions

errors. A constant gradient when the loss is approaching zero causes oscillations in

the loss as the optimization might shift parameters too much in the direction of the

gradient. The Huber loss is a combination of both MSE and MAE, combining the

strengths of both functions, Equation 3.12.

The Huber loss, though it is supposed to be an optimized loss function, performed

poorly and in certain areas worse than MSE, Figure A.6. It performed a better

denoising than MSE, but at a cost of poor recreation of the geological reflections

throughout the image. Huber should in theory work better then both MSE and

MAE, but this was not the case. Since Huber relies on a user defined parameter, δ,

the only reasonable explanation of this poor performance is a poorly chosen value.

Higher and lower values will only shift the model towards either MAE or MSE, thus

the weak performance is of unknown origin.

Neural networks are typically rated for the loss they produce. If there are no

visible way of determining the result of the model, the entire performance is based

on loss. MAE gave higher loss values than MSE, but performed better. The loss for

all NDCNN models converged after 10-20 epochs and did not improve after that,

although the network models had to train for a lot longer to gain optimal results.

The U-NET behaved differently, as it did not converge before 30-35 epochs. This

loss behaviour fits better with the actual performance of the networks, and might

be cause by the large images in NDCNN. If substantial parts of a large image are

relatively well recreated, these loss functions will give a rather good result, even

though the remaining parts are poorly recreated. This is because of the number of

samples in the image. The U-NET performed better since it compresses the image.

Error in a pixel in a smaller image will have a larger impact, thus explaining why

the loss performance was different. The performance test of the loss functions could

have been more thorough, testing more cases for more networks, but was omitted

due to the high demand of running multiple models. Instead, all functions was

tested on the same network model where loss was the only varying factor.

7.3 Model restrictions

The model restrictions in this thesis will vary depending on which network model

is in focus. Since U-NET1 gave the overall best results and NDCNN1 gave the best

results of the NDCNN models, these will be the two network the models considered

105

DISCUSSION Model restrictions

in this section.

7.3.1 Data

The data tends to be a restriction of every network model, as the entire job of

a neural network is to process data. Each shot gather represents a large amount

of data, which is the reason for why it was downscaled and cut before fed to the

network. The downsized images are still to be considered large for a neural network,

limiting the possible batch size due to high memory demand. This is a restrictions

of the network model as the network optimizes weights between each batch. Since

the batch size was limited to 2 shot gathers per batch, the network will update

parameters based on a small variance and might therefore adjust weights in a wrong

direction or with a too high magnitude. This can, to some extent, be countered

with decreasing the learning rate, but this will then increase training time needed

for reaching optimal results.

Seismic data contains many fine details which have to be kept intact. A convo-

lutional layer with no padding will shrink the size of an image. Thus, at the end

zero padding was applied, but it caused some edge effects. To counter these, mirror

padding was applied before zero padding, Figure 5.9. The edge effects would there-

fore be introduced in the padded rows/columns of the data which were to be cut

off. Mirror padding may not be optimal, as it pulls some stronger events into the

image at high offsets. A case with deeper strong intercepting SI-noise might pull

some features into the output due to the mirroring along the last trace in the shot

gather, as can be seen in Figure 6.12c.

The way the data is fed to a model might impact the running time considerably.

Reading and writing data take time and might cause a queue where the nodes on

the GPU are waiting for information, thus remaining idle. It is preferable to use all

nodes on the GPU to their full extent during training, to reduce the run time. One

way of doing this would be to load all data into a stack, which implies all reading

is completed before the network is launched, narrowing the waiting time for the

network. The dataset used in this thesis is abnormally large for machine learning

standards, and loading all data into memory at once would require Terra-bytes of

memory. Such amounts of memory is not easily accessible and would likely cost

more than beneficial to use.

The seismic data has a very large dynamic range. Typically amplitudes of interest

106

DISCUSSION Model restrictions

vary from more than 105 near the water bottom and for refracted events to less than

0.01 after 4-5 second TWT. Many of the network models struggled with recreating

these high amplitude shallow events, and it was shown that the feature maps in

NDCNN1 and NDCNN4, Figures 6.18 and 6.19, omitted important characteristics

in favour of focusing on these shallow events. This caused the models to yield

sub-optimal results as datasets without such events would likely perform better.

Four different scaling methods were implemented as an attempted solution to this

problem. All scaling methods, except for normalization, adjusted the dynamic range,

thus reducing the difference between the low and high amplitudes. Normalization

was the scaling method working best, and also the only scaling method not adjusting

the dynamic range. It is evident from the results that the scaling methods did not

work optimally, but reducing the dynamic range still seems like a feasible solution.

A much used trick in seismic processing is to use a gain function (T2 or maybe T1.6)

to reduce the dynamic range in the data. In our case this was not really an option

since a gain would boost the (already high amplitude) noise disproportionate to the

underlying geology.

The intercepting SI-noise is well attenuated in the results discussed in Chapter 6.

This particular SI-noise is only one of a range of different types of SI-noise used for

training. The denoising of SI-noise with different dips and moveout are presented

in Appendix A, Section A.4. The network models perform well for SI-noise coming

from astern, Figures A.16 and A.17, but struggles more when the noise intercept with

the same dip as the underlying geology, Figures A.12 and A.13. High amplitude SI-

noise coming from the side makes the network models fail, as there are no underlying

geology to map, Figures A.14 and A.15. These shots are presented in A.23. The

underlying geology is entirely covered with high amplitude SI-noise. This noise is

shot to shot coherent, and the networks therefore has no features to map from the

underlying geology. It is likely that this is the reason for why the networks struggled

in this area.

7.3.2 Network structure

The network structure is an important part where restrictions may lie. Comparing

the NDCNN models with the U-NET models shows a major difference in perfor-

mance of the network structure. NDCNN2 has a significantly longer run time than

U-NET1, even though U-NET1 has four times as many parameters. It seems evi-

107

DISCUSSION Industry aspect

dent that even though the number of parameters affect the run time, the size of the

image is much more important. The U-NET models have a substantial difference in

parameters, but this does not show in the run time. This is likely because the model

structure has become optimal enough to begin to be affected by the bottlenecking

of reading and writing to files.

The loss function used in these models might not be optimal. The results pre-

sented in Chapter 6 support that MAE is the optimal loss function, but from a

theoretical point of view Huber should give a better fit. There might be an error in

the implementation of the loss function, or eventually that the example presented

was not representative enough to conclude with regards to the best performing loss

function. Although the loss seems to converge after 10-15 epochs for almost every

network model, the results still improve until 35-40 epochs. This should in theory

not be the case, and is likely explained by a loss function which is not optimal

enough to view the large seismic files and take the full dynamic range into account.

Each network structure involves many hyper parameters to be set. There are

rules of thumb as to how one should move forward when designing a model. However,

a nertwork model will never be optimal without trial and error, and there will always

be room for improvements.

7.4 Industry aspect

The UNET1 network gave the best results similar to the performance of industry

standard denoising a few years ago (Gulunay et al., 2005). Certain SI-cases exist

where the network model fails, Section A.4, but the overall denoising capability is

rather good, as can be seen in the denoised stack, Figure A.19. It is evident that

the industry steadily improves the processing software and use current standard

denoising, as shown in Figure A.20. The results shown in this thesis can not compete

with such industry standard for now, but neural networks still perform better than

industry standard denoising with respect to time.

Real time denoising, opens up for the possibility to test whether data has to be

re-shot during acquisition. The data flows in continuously and real time denoising

by using neural network makes it easier to efficiently create rough estimates to

whether the data is too contaminated or not. It is less common for contractor

companies to actually re-shoot now a days, but it may still prove a valuable tool for

108

DISCUSSION Industry aspect

QC geophysisists on board.

Neural network opens up for more efficient and robust quality control of seismic

processing possibly in real time. It may then be possible to check whether any in-

teresting features exist in the data and if it is worth spending time and resources on

processing. If data with no important information can be omitted easily, the con-

tractor companies might increase their efficiency and spend more time on important

data.

7.4.1 Execution time

The efficiency of denoising algorithms are important to the industry. The less com-

puting time needed for denoising, the more time (and thus money) saved. Neural

networks are, as presented in Table 6.4, very efficient when fully trained. Direct

comparison with standard industry denoising is not an exact science as the com-

puting time needed varies a lot based on the severity of the SI-noise as well as the

survey. We therefore assume that denoising of a single shotgather takes x seconds. A

typical seismic survey may cover an area of 3000km2 which requires approximately

106 shots where the towing vessel tows 12 reciever cables. The total computer time

required for this will be:

106 · 12 · x
3600 · 24 ≈ 139 · x days (7.1)

This will of course be ran in parallel, but give an estimation of how much computing

time is needed for denoising a marine seismic survey.

Assume that 10% of the data is denoised, taking approximately 14 · x days. If

this data was used to train a neural network, where the training might take multiple

days (or even weeks), the processing of the remaining 90% could then be done in real

time. Another example would be to train on vintage data and then denoise in real

time when new data (from the same area) comes in. It is, as mentioned, not possible

to give an exact estimation of the value x, but the U-NET (Table 6.4) used a mean

of 0.02 seconds for each shot gather. Some of the NDCNN models required more

computation time, where the most demanding model required 0.16 seconds. This is,

according to processors at CGG, substantially lower than conventional SI-denoising.

109

8 | Conclusion and further work

8.1 Conclusion

Neural networks have become increasingly more popular during the last 5 to 10

years. They have been tested in various fields of application, but with less studies

carried out in the field of seismic data processing. It is common for the North Sea to

have rough weather during the winter months. This results in high seismic activity

during summer, as the weather conditions tend to be better. When multiple surveys

are carried out simultaneously, SI-noise becomes a problem. If the SI-noise could be

removed more automatically on board, it would potentially increase overall efficiency

for the vessels and strengthen the QC on board. It may also be deployed onshore,

with a potential to speed up processing.

Using convolutional neural networks for SI-noise removal has been proven to work

in this thesis. The results obtained demonstrate that a high percentage of the noise is

attenuated, while mostly all geological information is kept intact. The SI-noise used

in this thesis is unusually strong which therefore creates a more complex problem

than what normally encountered during seismic acquisition. Thus the performance

of each of the network models considered is therefore determined for a highly realistic

acquisition case.

All data was processed in the shot domain, which may not be the optimal domain

to work in. A resorting or transformation of input data will likely enhance the

results, but will also remove the real time denoising aspect of the network models.

Never the less, the network models performed well in the shot domain, with U-NET

being the best both with respect to output results and computational efficiency. It

required only 7.5 hours to train, and used 0.02 seconds per seismic shot gather once

finished training. This is significantly faster than any existing industry denoising.

The results does not compete completely with state-of-the art denoising, but proves

that denoising with neural networks is possible.

Furthermore, it is worth to mention that since we clearly can use a neural network

to efficiently attenuate seismic interference noise, the same network can probably

also be trained to tackle other types of noise. It should in if fact also be applicable

110

CONCLUSION AND FURTHER WORK Further work

for processes like deghosting and demultiple. As such, neural network seismic data-

processing could become a very valuable approach in the not too distant future.

8.2 Further work

There are multiple aspects of both the dataset and the network models which this

thesis does not test. One of the most evident improvements would be to identify a

way for the network model to handle a significantly increased batch size. This will

increase the variance of the models and might make it possible to better remove

SI-noise with conflicting dip, as well as a generalized improved result. There are

numerous ways of solving this problem. One of the simpler ways would be to upgrade

the hardware, thus increasing the available GPU memory. This is an easy fix,

given the available funds, but will not increase efficiency of the model. As demand

increases, this will only postpone the problem, rather than fixing it.

Instead of increasing hardware capabilities, the way the data is represented and

fed to the network can be optimized. Moving to another domain, such as common

channel, will both break the coherency of the SI-noise, but will also enable for larger

batch sizes, as a common channel gather can easily be cut into smaller pieces (Sun

et al., 2019). The downside is that the network looses real time capabilities, as

preprosessing of a full line is needed to create common channel gathers. Alternative

ways of sorting and/or transforming data should be further investigated.

Seismic data contains a large dynamic range which causes problems for many

of the network models presented. The shallow events are high in amplitudes and

take too much "focus" from the network. Muting the high-amplitude reflections

and refractions is one way to solve this problem, unless used for FWI. It is an

irreversible process, but the data is commonly muted at a later processing step

anyways. Another way of solving this problem would be to employ a scaling method

which balances the dynamic range without breaking the model. Both cubic and

square root amplitude balancing were implemented, but gave poor results. Further

work should include alternate scaling methods.

The U-NET gave significantly better results than the other network models

tested, and it seems to be a good network structure for seismic applications. The

network model has not been tested thoroughly enough yet and there are likely room

for improvements in the model structure.

111

CONCLUSION AND FURTHER WORK Further work

SI-denoising of marine seismic data in the shot domain is a complex task. Since

the results presented here proves that it is feasible, there is a likelihood that other

types of denoising might work, such as: demultiple, deswell and deghost.

112

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,

Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,

J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,

J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,

V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and

Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous

systems. Software available from https://www.tensorflow.org/.

Agostinelli, F., Hoffman, M., Sadowski, P., and Baldi, P. (2014). Learning activation

functions to improve deep neural networks. CoRR, abs/1412.6830. arXiv:1412.

6830.

Akbulut, K., Saeland, O., Farmer, P., and Curtis, T. (2005). Suppression of seis-

mic interference noise on gulf of mexico data. SEG Technical Program Expanded

Abstracts 1984, pages 527–529. doi: https://10.1190/1.1894083.

Anaconda (2019). Anaconda Software Distribution. https://www.anaconda.com/

distribution/ [Read 27.02.19].

Apple (2019). Macbook pro. https://www.apple.com/no/shop/buy-mac/macbook-

pro/15-tommer [Read 05.05.19].

Baardman, R., . T. C. (2019). Classification and suppression of blending noise using

convolutional neural networks. Society of Petroleum Engineers. doi: 10.2118/

194731-MS.

CGG (2018). Seismic acquisition [FIGURE]. https://www.cgg.com/imgs/overview-

images/4_full.jpg [Downloaded 26.08.18].

Chaitanya, C. R. A., Kaplanyan, A. S., Schied, C., Salvi, M., Lefohn, A.,

Nowrouzezahrai, D., and Aila, T. (2017). Interactive reconstruction of monte

carlo image sequences using a recurrent denoising autoencoder. ACM Trans.

Graph., 36(4):98:1–98:12.

113

https://www.tensorflow.org/
arXiv:1412.6830
arXiv:1412.6830
https://10.1190/1.1894083
https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://www.apple.com/no/shop/buy-mac/macbook-pro/15-tommer
https://www.apple.com/no/shop/buy-mac/macbook-pro/15-tommer
10.2118/194731-MS
10.2118/194731-MS
https://www.cgg.com/imgs/overview-images/4_full.jpg
https://www.cgg.com/imgs/overview-images/4_full.jpg

REFERENCES REFERENCES

Chapelle, O., Schölkopf, B., and Zien, A. (2006). Semi-Supervised Learning. The

MIT Press, Cambridge MA. ISBN: 978-0-262-03358-9.

Chen, K. and Sacchi, M. D. (2015). Robust reduced-rank filtering for erratic seismic

noise attenuation. GEOPHYSICS, 80(1):V1–V11. doi: https://doi.org/10.1190/

geo2014-0116.1.

Chollet, F. et al. (2015). Keras. https://keras.io.

Cisco (2018). [Internet] https://www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.

html#_Toc484813970 [Read 28.08.18].

Dondurur, D. and Karslı, H. (2012). Swell noise suppression by wiener prediction

filter. Journal of Applied Geophysics, 80:91–100. doi: https://doi.org/10.1016/j.

jappgeo.2012.02.001.

Elboth, T., Geoteam, F., and Hermansen, D. (2009a). Attenuation of noise in marine

seismic data. SEG Technical Program Expanded Abstracts 2009, pages 3312–3316.

doi: https://library.seg.org/doi/pdf/10.1190/1.3255547.

Elboth, T., Reif, B. A., and Øyvind Andreassen (2009b). Flow and swell noise

in marine seismic data. GEOPHYSICS, 74(2):Q17–Q25. doi: https://doi.org10.

1190/1.3078403.

Ellacott, Stephen W., M. J. C. A. I. J. (1997). Mathematics of Neural Networks.

Springer Scinence + Business Media, New York. ISBN: 987-1-4613-7794-8.

Gershenson, C. (2003). Artificial neural networks for beginners. CoRR,

cs.NE/0308031.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks.

In Gordon, G., Dunson, D., and Dudík, M., editors, Proceedings of the Fourteenth

International Conference on Artificial Intelligence and Statistics, volume 15 of

Proceedings of Machine Learning Research, pages 315–323, Fort Lauderdale, FL,

USA. PMLR.

Gondara, L. (2016). Medical image denoising using convolutional denoising autoen-

coders. In 2016 IEEE 16th International Conference on Data Mining Workshops

(ICDMW), pages 241–246. doi: 10.1109/ICDMW.2016.0041.

114

https://doi.org/10.1190/geo2014-0116.1
https://doi.org/10.1190/geo2014-0116.1
https://keras.io
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html#_Toc484813970
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html#_Toc484813970
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html#_Toc484813970
https://doi.org/10.1016/j.jappgeo.2012.02.001
https://doi.org/10.1016/j.jappgeo.2012.02.001
https://library.seg.org/doi/pdf/10.1190/1.3255547
https://doi.org10.1190/1.3078403
https://doi.org10.1190/1.3078403
10.1109/ICDMW.2016.0041

REFERENCES REFERENCES

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

http://www.deeplearningbook.org.

Gulunay, N., Magesan, M., and Baldock, S. (2005). Seismic interference noise at-

tenuation. SEG Technical Program Expanded Abstracts 2004, pages 1973–1976.

doi: https://library.seg.org/doi/abs/10.1190/1.1843302.

Han, J. and Moraga, C. (1995). The influence of the sigmoid function parameters on

the speed of backpropagation learning. In From Natural to Artificial Neural Com-

putation, pages 195–201, Berlin, Heidelberg. Springer Berlin Heidelberg. ISBN:

978-3-540-49288-7.

Hinton, G., Srivastava, N., and Swersky, K. (2012). Lecture 6e. rmsprop: Di-

vide the gradient by a running average of its recent magnitude. Lecture

in CSC321. University of Toronto. http://www.cs.toronto.edu/~tijmen/csc321/

slides/lecture_slides_lec6.pdf [Downloaded 04.03.19].

Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s

striate cortex. Journal of physiology, 148(3):574–591. PMCID: PMC1363130.

Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Statistics,

53(1):73–101. doi: 10.1214/aoms/1177703732.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. CoRR, abs/1502.03167. arXiv:1502.

03167.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to

Statistical Learning: with Applications. Springer. ISBN 978-1461471370.

Jansen, S. (2013). Two marine seismic interference attenuation methods. Master’s

thesis, University of Oslo. DUO: http://urn.nb.no/URN:NBN:no-34309.

Jin, Y., Wu, X., Chen, J., Han, Z., and Hu, W. (2018). Seismic data denoising by

deep-residual networks, pages 4593–4597. doi: 10.1190/segam2018-2998619.1.

Karlik, B. and Olgac, A. V. (2011). Performance analysis of various activation func-

tions in generalized mlp architectures of neural networks. International Journal

of Artificial Intelligence And Expert Systems, 1(4):111–122.

115

http://www.deeplearningbook.org
https://library.seg.org/doi/abs/10.1190/1.1843302
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
10.1214/aoms/1177703732
arXiv:1502.03167
arXiv:1502.03167
http://urn.nb.no/URN:NBN:no-34309
10.1190/segam2018-2998619.1

REFERENCES REFERENCES

Karpathy, A. (N.D.). Convolutional neural networks. http://cs231n.github.io/

convolutional-networks/ [Read 21.01.19].

Krizhevsky, A. (2009). CIFAR-10 dataset. https://www.cs.toronto.edu/~kriz/cifar.

html.

Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian

retina. Journal of Neurophysiology, 16(1):37–68. doi: https://doi.org/10.1152/jn.

1953.16.1.37.

Kumar, D. and Ahmed, I. (2011). Seismic noise. Encyclopedia of Solid Earth Geo-

physics, pages 1157–1161. doi: https://doi.org/10.1007/978-90-481-8702-7_146.

Kundu, P. K. (1977). Fluid mechanics. Academic Press: New York. 1st edition.

Lahiri, A. (2016). Chapter 6 - fourier optics. In Lahiri, A., editor, Basic Optics,

pages 539 – 603. Elsevier, Amsterdam.

Larner, K., Chambers, R., Yang, M., Lynn, W., and Wai, W. (1983). Coherent noise

in marine seismic data. GEOPHYSICS, 48(7):854–886. doi: https://doi.org/10.

1190/1.1441516.

Laurain, R., Ruiz-Lopez, F., and Eidsvig, S. (2015). Managing and modeling the

seismic interference. In 77th EAGE Conference and Exhibition 2015. doi: https:

//doi.org/10.3997/2214-4609.201412597.

Li, F.-F., Johnson, J., and Young, S. (2017). Lecture 11: Detection and segmenta-

tion. CS231n: Convolutional Neural Networks for Visual Recognition, Stanford,

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf.

Li, H., Yang, W., and Yong, X. (2018). Deep learning for ground-roll noise attenu-

ation, pages 1981–1985. doi: 10.1190/segam2018-2981295.1.

Liner, C. L. (2000). On the history and culture of geophysics, and science in general.

The Leading Edge, 19(5):502–504. doi: https://doi.org/10.1190/1.1438642.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve

neural network acoustic models. ICML, 30.

Minsky, M. and Papert, S. A. (1969). Perceptrons: An introduction to Computational

Geometry. The MIT Press, Cambridge MA, 1st edition. ISBN: 0-262-63022-2.

116

http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1152/jn.1953.16.1.37
https://doi.org/10.1152/jn.1953.16.1.37
https://doi.org/10.1007/978-90-481-8702-7_146
https://doi.org/10.1190/1.1441516
https://doi.org/10.1190/1.1441516
https://doi.org/10.3997/2214-4609.201412597
https://doi.org/10.3997/2214-4609.201412597
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
10.1190/segam2018-2981295.1
https://doi.org/10.1190/1.1438642

REFERENCES REFERENCES

Mitchell, T. (1997). Machine learning. McGraw-Hill Pub. Co. (ISE Editions): Lon-

don.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). The Foundations of

Machine Learning. MIT Press. http://mitpress.mit.edu/books/foundations-

machine-learning-0.

Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. MIT Press, New

York. ISBN 978-0262018029.

Musset, A. E. and Khan, M. A. (2009). Looking Into the Earth. Cambridge Univer-

sity Press, New York. ISBN: 978-0-521-78574-7.

Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.

Nvidia (2019a). CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit [Read

26.02.19].

Nvidia (2019b). Nvidia cuDNN. https://developer.nvidia.com/cudnn [Read

26.02.19].

Nwankpa, C., Ijomah, W., Gachagan, A., and Marshall, S. (2018). Activation func-

tions: Comparison of trends in practice and research for deep learning. CoRR,

abs/1811.03378.

Oliphant, T. (2006). NumPy: A guide to NumPy. http://www.numpy.org/.

Pocatilu, P., Alecu, F., and Vetrici, M. (2010). Measuring the efficiency of cloud

computing for e-learning systems. WSEAS Transactions on Computers, pages

42–51.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional Net-

works for Biomedical Image Segmentation. arXiv e-prints, page arXiv:1505.04597.

arXiv:1505.04597.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review, 65(6):386–408. doi: http:

//dx.doi.org/10.1037/h0042519.

Rosenblatt, F. (1961). Principles of neurodynamics: Perceptrons and the theory of

brain mechanisms. Cornell Aeronautical Laboratory.

117

http://mitpress.mit.edu/books/foundations-machine-learning-0
http://mitpress.mit.edu/books/foundations-machine-learning-0
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cudnn
http://www.numpy.org/
arXiv:1505.04597
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1037/h0042519

REFERENCES REFERENCES

Ruder, S. (2016). An overview of gradient descent optimization algorithms. CoRR,

abs/1609.04747. arXiv:1609.04747.

Sanchis, C. and Hanssen, A. (2011). Multiple-input adaptive seismic noise canceller

for the attenuation of nonstationary coherent noise. GEOPHYSICS, 76(6):V139–

V150. doi: https://doi.org/10.1190/geo2010-0367.1.

Santa-Cruz, D. and Ebrahimi, T. (2000). An analytical study of jpeg 2000 function-

alities. In Proceedings 2000 International Conference on Image Processing (Cat.

No.00CH37101), volume 2, pages 49–52 vol.2. doi: 10.1109/ICIP.2000.899222.

Schlumberger (2017). Seismic Acquisition. Schlumberger Oilfield Glossary [In-

ternett] Schlumberger. https://www.glossary.oilfield.slb.com/Terms/s/seismic_

acquisition.aspx [Read 27.08.18].

Shen, H., Elboth, T., Tao, C., Tian, G., Wang, H., Qiu, L., and Zhou, J. (2019).

Using data regrouping methods to attenuate shot-to-shot coherent interference

noise in marine seismic data. Earth and Space Science. doi: https://doi.org/10.

1029/2018EA000485.

Si, X. and Yuan, Y. (2018). Random noise attenuation based on residual learning

of deep convolutional neural network, pages 1986–1990. doi: 10.1190/segam2018-

2985176.1.

Smith, S. L., Kindermans, P., and Le, Q. V. (2017). Don’t decay the learning rate,

increase the batch size. CoRR, abs/1711.00489. http://arxiv.org/abs/1711.00489.

Smith, S. W. (1997). The Scientist and Engineer’s Guide to Digital Signal Process-

ing. San Diego: California Technical Publishing, 1st edition.

Sood, D. (2018). Backpropagation concept explained in 5 levels of diffi-

culty. https://medium.com/coinmonks/backpropagation-concept-explained-in-5-

levels-of-difficulty-8b220a939db5 [Read 19.02.19].

Sun, J., Slang, S., Greiner, T., Elboth, T., McDonald, S., and Geluis, L. J. (2019).

Deblending of seismic data via deep convolutional neural networks. Submitted to

GEOPHYSICS.

118

 arXiv:1609.04747
https://doi.org/10.1190/geo2010-0367.1
10.1109/ICIP.2000.899222
https://www.glossary.oilfield.slb.com/Terms/s/seismic_acquisition.aspx
https://www.glossary.oilfield.slb.com/Terms/s/seismic_acquisition.aspx
https://doi.org/10.1029/2018EA000485
https://doi.org/10.1029/2018EA000485
10.1190/segam2018-2985176.1
10.1190/segam2018-2985176.1
http://arxiv.org/abs/1711.00489
https://medium.com/coinmonks/backpropagation-concept-explained-in-5-levels-of-difficulty-8b220a939db5
https://medium.com/coinmonks/backpropagation-concept-explained-in-5-levels-of-difficulty-8b220a939db5

REFERENCES REFERENCES

Tamura, S. and Tateishi, M. (1997). Capabilities of a four-layered feedforward

neural network: four layers versus three. IEEE Transactions on Neural Networks,

8(2):251–255.

Taylor, L. and Nitschke, G. (2017). Improving deep learning using generic data

augmentation. CoRR, abs/1708.06020.

Tensorflow (2019). convolutional.py. https://github.com/tensorflow/tensorflow/

blob/master/tensorflow/python/layers/convolutional.py [Read 05.03.19].

van Rossum, G. (1995). Python tutorial. Technical Report CS-R9526, Centrum

voor Wiskunde en Informatica (CWI), Amsterdam.

Widrow, B. and Lehr, M. A. (1990). 30 years of adaptive neural networks: percep-

tron, madaline, and backpropagation. Proceedings of the IEEE, 78(9):1415–1442.

doi: 10.1109/5.58323.

Willmott, C. J. and Matsuura, K. (2005). Advantages of the mean absolute error

(mae) over the root mean square error (rmse) in assessing average model perfor-

mance. Climate Research, 30(1). doi: 10.3354/cr030079.

Xie, J., Xu, L., and Chen, E. (2012). Image denoising and inpainting with deep

neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and Weinberger,

K. Q., editors, Advances in Neural Information Processing Systems 25, pages

341–349. Curran Associates, Inc.

Zhao, H., Gallo, O., Frosio, I., and Kautz, J. (2017). Loss functions for image

restoration with neural networks. IEEE Transactions on Computational Imaging,

3(1):47–57. doi: 10.1109/TCI.2016.2644865.

119

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/layers/convolutional.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/layers/convolutional.py
10.1109/5.58323
10.3354/cr030079
10.1109/TCI.2016.2644865

A | Appendix
This appendix presents full size images of the scaling methods (Figures A.1) - A.4,

loss functions (Figures A.5 - A.7) and activation functions (Figures A.8 - A.11) which

were only included as cutout in the main body of the thesis. These figures visualize

the output from the network marked blue, and the difference between ground truth

and output marked red. Ground truth and input can be seen respectively in Figures

6.8a and 6.8b. It also includes denoising results from NDCNN1 and U-NET1 with

different types of SI-noise. The denoising results of a noise contaminated stack is

appended where both industry standard SI-denoising and the U-NET1 denoising are

included.

120

APPENDIX Scale

A.1 Scale

Figure A.1: Figure visualizing the effect of cubic root scaling of the data. The blue

and red sections visualize the output and the difference of the model.

121

APPENDIX Scale

Figure A.2: Figure visualizing the effect of square root scaling of the data. The

blue and red sections visualize the output and the difference of the model.

122

APPENDIX Scale

Figure A.3: Figure visualizing the effect of thresholding of the data. The blue and

red sections visualize the output and the difference of the model

123

APPENDIX Scale

Figure A.4: Figure visualizing the effect of normalization of the data. The blue

and red sections visualize the output and the difference of the model.

124

APPENDIX Loss

A.2 Loss

Figure A.5: Figure visualizing the effect of using MSE loss function. The blue and

red sections visualize the output and the difference of the model

125

APPENDIX Loss

Figure A.6: Figure visualizing the effect of using Huber loss function. The blue

and red sections visualize the output and the difference of the model

126

APPENDIX Loss

Figure A.7: Figure visualizing the effect of using MAE loss function. The blue

and red sections visualize the output and the difference of the model

127

APPENDIX Activation

A.3 Activation

Figure A.8: Figure visualizing the effect of using ReLU activation function. The

blue and red sections visualize the output and the difference of the model

128

APPENDIX Activation

Figure A.9: Figure visualizing the effect of using TanH activation function. The

blue and red sections visualize the output and the difference of the model

129

APPENDIX Activation

Figure A.10: Figure visualizing the effect of using Leaky ReLU activation function

with α = 0.01. The blue and red sections visualize the output and the difference of

the model

130

APPENDIX Activation

Figure A.11: Figure visualizing the effect of using Leaky ReLU activation function

with α = 0.3. The blue and red sections visualize the output and the difference of

the model

131

APPENDIX Denoising results

A.4 Denoising results

Figure A.12: Denoising result from NDCNN1 with SI-noise coming from abow

where a), b), c) and d) visualize respectively clean image, input, output and difference

(a-c)

132

APPENDIX Denoising results

Figure A.13: Denoising result from U-NET1 with SI-noise coming from abow

where a), b), c) and d) visualize respectively clean image, input, output and difference

(a-c)

133

APPENDIX Denoising results

Figure A.14: Denoising result from NDCNN1 with SI-noise coming from the side

where a), b), c) and d) visualize respectively clean image, input, output and difference

(a-c)

134

APPENDIX Denoising results

Figure A.15: Denoising result from U-NET1 with SI-noise coming from the side

where a), b), c) and d) visualize respectively clean image, input, output and difference

(a-c)

135

APPENDIX Denoising results

Figure A.16: Denoising result from NDCNN1 with SI-noise coming from astern

where a), b), c) and d) visualize respectively clean image, input, output and difference

(a-c)

136

APPENDIX Denoising results

Figure A.17: Denoising result from U-NET1 with SI-noise coming from astern

where a), b), c) and d) visualize respectively clean image, input, output and difference

(a-c)

137

APPENDIX Stack

A.5 Stack

Figure A.18: Noise contaminated stack

138

APPENDIX Stack

Figure A.19: Denoised stack by U-NET1

139

APPENDIX Stack

Figure A.20: Denoised stack by industry standard SI-denoising

140

APPENDIX Stack

Figure A.21: Difference U-NET1

141

APPENDIX Stack

Figure A.22: Difference industry standard SI-denoising

142

APPENDIX Stack

Figure A.23: 5 consecutive shotgathers highlighting area where the U-NET strug-

gles to denoise.

143

B | Appendix
This appendix presents the Expanded Abstract, based on results from this thesis,

accepted for oral presentation at the EAGE Annual 2019.

144

81st EAGE Conference & Exhibition 2019

3-6 June 2019, London, UK

Leave this section empty

Using Convolutional Neural Networks for Denoising and
Deblending of Marine Seismic Data

S. Slang1,2*, J. Sun1,2, T. Elboth2, S. McDonald2 and L. Gelius1

1University of Oslo, Norway, 2CGG

Summary

Processing marine seismic data is computationally demanding and consists of multiple time-
consuming steps. Neural network based processing can, in theory, significantly reduce processing
time and has the potential to change the way seismic processing is done. In this paper we are using
deep convolutional neural networks (CNNs) to remove seismic interference noise and to deblend
seismic data. To train such networks, a significant amount of computational memory is needed since a
single shot gather consists of more than 106 data samples. Preliminary results are promising both for
denoising and deblending. However, we also observed that the results are affected by the signal-to-
noise ratio (SnR). Moving to common channel domain is a way of breaking the coherency of the noise
while also reducing the input volume size. This makes it easier for the network to distinguish between
signal and noise. It also increases the efficiency of the GPU memory usage by enabling better
utilization of multi core processing. Deblending in common channel domain with the use of a CNN
yields relatively good results and is an improvement compared to shot domain.

81st EAGE Conference & Exhibition 2019

3-6 June 2019, London, UK

Introduction
The recent availability of powerful GPUs and open source software have enabled artificial neural
networks (ANNs) to be applied to a number of practical and industrial scale problems. The level of
adoption of this technology within the field of O&G exploration is well illustrated by the number of
abstracts related to ANNs that are submitted to the annual EAGE and SEG conferences. Since 2001,
there have typically been one or two papers per year discussing ANNs. In 2018 the level rose
significantly to between 50 and 100 papers.
In seismic processing, ANNs have the potential to be applied to many of the key processing steps
(swell noise attenuation, seismic interference attenuation, deblending, deghosting etc.) which today
involve significant testing time and computational power. Once trained, ANNs are computationally
very light and potentially adaptable to varied datasets. Their use could therefore significantly save
processing times and, in the long term, impact the whole business sector.
A natural first step in this direction is to look at various forms of seismic data denoising. This is not an
entirely new concept, and is clearly inspired by work done on natural picture denoising, where we
refer to Zhang et al. (2017) for a recent overview. However, this field is still immature and, as
indicated by Xie et al. (2018), a lot of work is needed before ANNs can be effectively applied to
seismic data denoising.
A common limitation in recent papers using ANNs for seismic data denoising (see e.g. Ma (2018),
Baardman (2018), Si and Yang (2018), Li et al. (2018), Jin et al. (2018), and Zhang et al. (2018)) is
that they only use synthetic data or noise on datasets with limited dynamic range and/or frequency
content. As proof of concept, this has value. However, we have not yet seen convincing examples that
compare against existing state-of-the-art denoising results.
In conventional processing, it is a common practice to sort and/or transform the seismic data into
domains wherein it is easier to separate the noise from the desired signal. We have not yet seen this
approach utilized in ANN denoising, and we believe that this could potentially improve results
significantly.
This paper is structured as follows: in the theory section, we will introduce our network architecture
and outline the design approach. We will then present two examples of denoising done on real marine
seismic data, before pointing towards how we believe this work could be taken further.

Theory – CNNs for seismic denoising
A common type of layer in ANNs is the Fully Connected (FC) layer. They tend to give good results,
but they are computationally heavy since they have one parameter for each sample in the input data.
Seismic datasets tend to be large (~106 samples per shot gather), making the use of FC layers a
challenging undertaking given the large memory requirements and computational demand. This leads
us to another common ANN type, which is the Convolutional Neural Networks (CNNs).
CNNs are neural networks consisting of at least one convolutional layer. Convolutional layers differ
from other types of layers in that they employ convolutions over subsets of the data, rather than a
general matrix multiplication. According to Goodfellow et al. (2016), this makes CNNs well suited
for 2D images where neighboring pixels are connected in a larger pattern. It should therefore be
possible to denoise seismic data with localized and ‘random’ noise either in the shot domain or when
sorted to, for example, the channel domain. We assume that CNNs will be able to handle seismic data,
given its continuous nature and 2D structure. This will greatly reduce the computational cost and
memory requirements compared to FC layers. Although it is much more efficient to use CNNs with
respect to computational power, seismic images are large and still push the limits of hardware
available today.
Seismic noise varies a lot in amplitude and might be orders of magnitude larger than the underlying
signal, making it hard for the network to recreate the underlying signal structure. Given the difficulties
raised by the large input volumes and the sometimes low SnR that can occur in recorded seismic data,
it is understandable that previous attempts have been made with synthetic data or data subsets with
limited size and dynamic range. When using synthetic data, the user has full control over the dataset.
In this work, we apply CNNs to real life, full-scale marine seismic gathers and investigate how well
this works for two types of commonly encountered seismic noise attenuation problems.

81st EAGE Conference & Exhibition 2019

3-6 June 2019, London, UK

Example 1: Seismic interference noise attenuation
The first example investigated is the attenuation of seismic interference (SI) noise. This is dispersive
coherent acoustic energy originating from other seismic crews operating nearby. The energy is mostly
propagating in the water column, and is typically recorded with amplitudes similar to or larger than
that of the seismic reflection signal. As such, it is common practice to try to attenuate this noise early
on in the processing flow.
CNNs require both noisy images and clean images, which are regarded as ground truth, in image
denoising. The network calculates the error between the denoised image and ground truth to update
the weights. Our marine seismic training data consists of 800 records containing almost pure SI-noise
recorded from different directions, and 482 (nearly) noise-free seismic shot gathers from the North
Sea. It is a straightforward task to blend clean shots with varying SI-noise creating a dataset for the
network to train on where ground truth is known.
The network architecture is based on common models used in image analysis with CNNs. It consists
of convolutional layers with batch normalization and Rectified Linear Unit (ReLU) activation
function. To handle the full seismic range, residual learning is applied, making sure all layers learn
from the full frequency range in the original input image. The main difference compared to other
attempts is that no downscaling is applied. The image is full-size throughout the network to reduce
potential blurring and precision loss. This results in a large model requiring significant computational
power and about 12GB GPU memory to train on a single image. The overall training process to
achieve this level of denoising involved around 104 shot gathers, and took nearly two weeks on a
modern GPU (6 GB x2). However, we note that once the network is trained, the actual denoising of a
single shot gather is done in less than a second.

Figure 1: Figure illustrating the removal of SI noise from shot gathers where the different images from left to
right are: A) clean shot, B) SI noise contaminated shot, C) denoised shot, D) difference between clean and
denoised shot. The numbers above each shot are picture values showing the maximum and overall energy of the
image. Fourier spectra (logarithmic and absolute) are appended at the bottom of the image to show the
frequency content of each image.

Figure 1 illustrates that the network is removing SI rather well for cases where the SnR is relatively
high. This is visible in the spectra showing that the network has a good recovery for all frequencies.

81st EAGE Conference & Exhibition 2019

3-6 June 2019, London, UK

There is some leakage apparent in D), but it appears more dominant due to the high gain applied to
the images. However, in cases with strong SI with very similar direction to the underlying reflection
data, the results are not as good. Moving to common channel domain, where the noise is less coherent,
is a way to overcome this problem. This allows us to use smaller images which still contain coherent
signal but contain less coherent noise. Smaller images require less computing memory, which opens
the possibility of using FC-layers. The downside of such a domain change is that ‘real time’ denoising
during data acquisition is no longer possible since multiple shot records are needed to construct
common channel images.

Example 2: Seismic data deblending
The second example is the deblending of N+1 shot data to extend the useful record length in the
seismic data. Deblending (separation) of overlapping seismic records is important since it is a key
technology enabling improved sampling and/or more efficient acquisition. The basic idea was
probably first introduced almost 50 years ago by Barbier (1971), but wide scale industrial adoption
has only been achieved in the last few years.
Our dataset consists of 1300 towed unblended marine split spread gathers. The shot gathers are
artificially blended with the N+1 shot with a fixed delay of 1.2 second and a specially designed dither.
Based on our study, we have found that it is difficult for the neural network to learn how to deblend
seismic data in the shot domain. The events of two different shots in the blended data share similar
characteristics in both amplitudes and dip, thus there is no clear characteristic features for the network
to learn. Sorting the data into common channel domain, as mentioned in Example 1, gives better
results. The N+1 shot in common channel exhibits randomness, while shot N has a continuous nature.
Thus, deblending of overlapping seismic records in common channel domain is similar to removing
random noise in image processing. The characteristics of CNNs, as mentioned in the theory section, is
suitable for this case. The unblended data serves as ground truth for the network and is used to update
the weights of the artificial neurons.

Figure 2: Figure illustrating the deblending result from shot gathers where noise amplitude is 80% of signal
amplitude. The images from left to right are: A) unblended shot, B) blended shot, C) deblended shot, D)
difference between unblended shot and deblended shot. The numbers above each shot are picture values
showing the maximum and overall energy. Fourier spectra (logarithmic and absolute) are appended at the
bottom of the image to show the frequency content of unblended shot and deblended shot.

81st EAGE Conference & Exhibition 2019

3-6 June 2019, London, UK

Figure 2 illustrates that the network has the ability to learn deblending, and works well when we only
introduce 80% of shot N+1, thus artificially enhancing the SnR. The recreated plot visible in C) has a
quality that is close to current state-of-the art commercial processing, but would compare less
favorably without artificial SnR enhancement. The training, validation, and test sets consist of 14400,
2700, 900 images respectively with 60 channels per image to reduce memory usage. This particular
test took approximately 2.5 days to run, however, once the network was trained, the computational
cost of deblending a single image was approximately the same as Example 1 – less than a second. All
the processing is done in common channel domain. The records with no overlapping noise are almost
perfectly recreated.
The network architecture is similar to Example 1, with a network consisting of convolutional layers
with applied batch normalization. The largest difference is the usage of Leaky ReLU activation
function to reduce the risk of “dead” neurons. Compared to common CNNs, both our mentioned
network models differ in terms of static image size and thus no max pooling. This reduces the risk of
blurring and loss of geological data. Even with a robust network, deblending in common channel
domain remains a challenging task. This is because the SnR tends to always be low over a large area
compared to other types of noise removal. Although this issue may cause some residual noise in the
output image, the network is removing a significant amount of the N+1 shot and keeping detailed
underlying signal intact. As mentioned in Example 1, there are multiple ways to potentially enhance
the result. One way could be preprocessing the data to improve the SnR or moving the processing to a
sparser domain. These novel approaches will be the focus of our future work.

Conclusions
Convolutional neural networks show promising results for interference noise attenuation and N+1
deblending of marine seismic data. When applied alone, the results are below the level achieved by
state-of-the-art commercial processing. However, we have shown that applying machine learning to
seismic data processing can still produce encouraging results and is an approach worth exploring
further. For the problems shown, sorting the data into common channel domain seems to give better
results than shot domain, due to the random nature of the noise in said domain. The higher the signal
to noise ratio, the better the results become. We finally mention the importance of having high quality
training datasets. The ground truth should ideally be without any noise. This is difficult to achieve
when we work with real data, which inevitably will have some noise contamination.

Acknowledgements
The authors want to thank CGG MCNV for providing the field data used in this paper.

References
Baardman, R [2018] Classification And Suppression Of Blending Noise Using CNN. First EAGE/PESGB
Workshop Machine Learning 2018
Barbier, M. [1971] Seismic Exploration. US patent 3956730A
Goodfellow, I., Bengio, Y. and Courville, A. [2016] Deep Learning. MIT: MIT Press.
http://www.deeplearningbook.org
Jin, Y., Wu, X., Chen, J., Han, Z., and Hu, W. [2018] Seismic data denoising by deep-residual networks. SEG
Technical Program Expanded Abstracts 2018: pp. 4593-4597.
Li, H., Yang, W. and Yong, X. [2018] Deep learning for ground-roll noise attenuation. SEG Technical Program
Expanded Abstracts 2018: pp. 1981-1985.
Liu, D., Wang, W., Chen, W., Wang, X., Zhou, Y. and Shi, Z. [2018] Random-noise suppression in seismic
data: What can deep learning do?. SEG Technical Program Expanded Abstracts 2018: pp. 2016-2020.
Mikhailiuk, A. and Faul, A. [2018] Deep Learning Applied to Seismic Data Interpolation. 80th EAGE
Conference and Exhibitions 2018.
Si, X. and Yuan, Y. [2018] Random noise attenuation based on residual learning of deep convolutional neural
network. SEG Technical Program Expanded Abstracts 2018: pp. 1986-1990.
Xie, P., Boelle, J. and Puntous, H. [2018] Generative-adversarial network-based fast-noise removal on land-
seismic data. SEG Technical Program Expanded Abstracts 2018: pp. 2171-2175.
Ma, J. [2018] Deep learning for attenuating random and coherence noise simultaneously. 80th Annual
International Conference and Exhibition, EAGE, Expanded abstracts
Zhang, Y., Lin, H., and Li, Y. [2018] Noise attenuation for seismic image using a deep-residual learning. SEG
Technical Program Expanded Abstracts 2018: pp. 2176-2180.

	Introduction
	Artificial Neural Networks
	Convolutional Neural Networks
	Input layer
	Hidden layer
	Fully connected layer: output layer
	Training

	Seismics and seismic processing
	Marine seismic acquisition

	Motivation - Definition of thesis

	Noise
	Incoherent noise
	Swell noise
	Hydrostatic Pressure Fluctuations
	Vortex swell

	Coherent noise
	Tugging noise
	Seismic interference noise
	Move-out of seismic interference

	Neural Networks
	Classification vs. Regression
	Structure - Mathematical approach
	Forward Propagation
	Activation functions
	Sigmoid
	TanH
	Rectified Linear Unit
	Leaky ReLU

	Loss
	Mean Square Error - TEXT
	Mean Absolute Error - TEXT
	Huber Loss
	Binary Cross-Entropy

	Backward propagation
	Optimizer
	Gradient Descent
	RMSprop
	Comparison

	Layers
	Fully connected layer
	Convolutional layer
	The behaviour of a Convolutional layer
	The "convolution" operation

	Pooling layer
	Batch Normalization
	Upsampling layer

	Framework
	Hardware
	GPU vs CPU

	Software
	Nvidia drivers
	TensorFlow
	Keras
	Anaconda

	Method
	Dataset
	Seismic data vs. conventional images
	Data Augmentation
	Permutation

	Training, validation and testing
	Creating a network model
	Classification CNN
	Autoencoder
	No Downscaling CNN - NDCNN
	U-NET

	Application of the network model
	Data generator
	Saving results, testing and visualizing data
	History

	Results
	Dataset
	Data scaling

	Classification
	Autoencoder
	No Downscaling CNN
	Loss function
	Activation function
	Feature maps

	U-NET
	Execution time

	Discussion
	Overview of the results
	AE
	NDCNN
	U-NET
	NDCNN1 vs U-NET1
	U-NET1 vs Industry Standard denoising

	The different parameters of the models
	Filter size
	Number of filters
	Number of Layers
	Activation Functions
	Loss

	Model restrictions
	Data
	Network structure

	Industry aspect
	Execution time

	Conclusion and further work
	Conclusion
	Further work

	References
	Appendix
	Scale
	Loss
	Activation
	Denoising results
	Stack

	Appendix

