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Chapter 1

Introduction

We are living in a universe composed of a great variety of elements and iso-
topes. 118 elements have been identified [1] (94 chemical elements are found
terrestrially), and 252 isotope variations of these elements are considered stable
[2]. Mapping our understanding of the universe we live in is a complex and still
ongoing journey in science. One of the ”Eleven Science Questions for the New
Century” [3] is: How do we explain the origin of the heavier elements:
from iron to uranium? To make an attempt at answering this question, let
us start from the beginning.

Each element can take several isotopic forms, each form containing a nucleus
with its own characteristic nuclear properties, different from all other nuclei.
The vast amount of discovered isotopes is shown in the Chart of Nuclides in
Figure 1.1. Luckily, the variations are simply consisting of different amounts of
two simple components: neutrons and protons. Only for very high energies can
a nucleon be produced or annihilated. All ”prompt” nuclear reactions can be
described as a shuffling and reshuffling of neutrons and protons into new nuclei,
the only exception being the β-decay process where an interchange between a
proton and a neutron occur. In principle, these reactions enable any transform-
ation from one nucleon into another, even at low energy.

The matter in our universe consists of many elements in a given abundance, as
shown in Figure 1.2. After the Big Bang, the universe consisted of a dense and
hot quark-gluon plasma, which quickly drifted apart, cooled down and allowed
the quarks to settle into their preferred constellation: protons and neutrons.
It seems likely that all elements evolved from simple hydrogen since protons
are stable, while neutrons will eventually decay into to a proton. In the very
early stages after the Big Bang, chemical reactions occurred creating a few light
elements like beryllium and lithium. But chemistry alone far from explain the
elemental abundance we see today. Hydrogen 1H is by far the most abund-
ant element to this day (∼ 71%), followed by helium 4He (∼ 27.4%), which is
formed due to stellar burning of hydrogen. This type of stellar burning happens
as the star possesses a self-governing mechanism where the temperature is ad-
justed so that the energy flow through the star is balanced through generation
of nuclear energy. The remaining (∼ 1 − 2%) consists of what astrophysicists
refer to as ”Metals”: every other element we know to exist [4]. After production
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Figure 1.1: The Chart of known Nuclides, where each plotted box represent one
nuclei with the number of neutrons in the nuclei plotted against the number
of protons. The colors indicate the half-life of the isotope, where the valley of
stability in black in the center hosts the stable isotopes. Figure is taken from
Ref. [2].

Figure 1.2: Abundances of the chemical elements in the Solar System. Figure
is taken from Ref. [5].
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Figure 1.3: An illustration of the Stellar Burning happening in shells inside
large stars. Figure is illustrated by Ref. [6], reflecting the content of Ref. [7].

of helium from hydrogen burning, higher temperatures are generated through
gravitational collapse and increasing pressure to burn helium, which creates car-
bon, and so on. The stellar burning cycles continue in a similar way, in layers as
shown in Figure 1.3, up to the point where a star no longer can fuel its energy
production from fusing lighter elements together. This process therefore halts at
iron, and we need other processes to explain why we for example have beautiful
necklaces of silver and gold.

In the famous 1957 paper, E. M. Burbidge et al. [8] proposed that all ele-
ments except very light chemical elements are synthesized inside stars, as a
result of nuclear reactions. Another article appearing that same year by A.G.W
Cameron [9] proposed a very similar hypothesis, and the two articles together
are still the framework of the theories we use today.

The most probable way elements heavier than iron are made is through two
main contributing processes. They have been given the names s-process (the
slow neutron capture process), and r-process (the rapid neutron capture pro-
cess). The speeds slow and rapid are denoted with respect to the rate of which
a β-decay would occur for this isotope, as in a β−-decay a neutron will turn
into a proton (and also send out an electron and a neutrino).

The s-process takes place over thousands of years, hence living up to its name.
Therefore this process involves neutron capture on stable nuclei. Due to free
neutrons decaying quickly, the s-process has to take place in an environment
where neutrons are readily supplied over thousands of years. Asymptotic-giant
branch (AGB)-stars were showing technetium absorption lines in the ground
breaking 1952 article by Merill [10]. This observation provided evidence that
the s-process does occur in such stars, as technesium has no stable isotopes, and
must have been created at this location. Since then, massive stars with a mass
eight times the solar mass (in their helium-burning phase), have been proposed
as a potential s-process site as well.
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The main assumption for the s-process, is that the time scale τ ∼ 1/λ, where
λ is the reaction rate, for neutron capture (n, γ), is much longer than the time
scale of competing β-decay of unstable isotopes: λβ � λn,γ . This way, the path
towards heavier nuclei travels along the valley of stability (see Figure 1.1), in a
slow yet steady manner.

The r-process on the other hand kicks off and ends within only few seconds,
and involves the very unstable, neutron rich nuclei only. The main assumption
for this process, is that the neutron capture is more likely to happen than the
β-decay, λβ � λn,γ , so that the nucleus has time to catch one neutron, then
another neutron, and another, until it becomes so unstable that the assump-
tion no longer holds. This takes us further right on the Chart of Nuclides, see
Figure 1.1, towards the edge of our known isotopes at the neutron drip line.
This assumption therefore demands an environment of extreme neutron dens-
ity (Nn ≈ 1020cm3). After an r-process cycle has been terminated, a cascade
of β−-decays will bring the unstable nuclei back towards stability, to form new
stable isotopes of new, heavier elements than were the seed nuclei of the process.

After decades of discussing what the astrophysical site of the r-process could be,
the Advanced LIGO and Advanced Virgo gravitational-wave detectors made the
first observation of a Neutron Star Merger (one of which is illustrated in Fig-
ure 1.4) in 2017 [11]. Following shortly after the gravitational-wave detection,
a γ-ray burst was detected by the Fermi Gamma-Ray Burst Monitor [12] and
the INTEGRAL telescope [13]. Measurements of a broad range of frequency
bands of electromagnetic radiation from the collision were made over the fol-
lowing weeks, and the r-process manifested itself for the first time within the
”afterglow” from heavy element production at the site of the merger. We can
therefore confirm the speculations that such an environment can host this pro-
cess. Supernovae are also candidates for hosting the r-process, but this has yet
to be proven. But at this point in time, reaction network calculations simu-
lating neutron star mergers are popular tools for attempts at reproducing the
elemental abundance distribution.

Within the field of nuclear physics at present date, there are a lot of experi-
ments that are of interest to execute to gather more knowledge about exactly
how the nucleus works. In the field of nuclear astrophysics especially, there is
one reaction type which is currently important to investigate for many isotopes,
at many energy ranges. This reaction is called the neutron capture reaction, a
reaction in which a nucleus is introduced to a neutron and picks it up, evolving
to a different isotope. The end goal of this master project, is to study how
likely a 67Zn nucleus is to introduce a new neutron. This reaction is written as
67Zn(n,γ)68Zn. But why is this specific reaction interesting?

A major study is being done for all the stable isotopes of zink in the search
of understanding the nucleosynthesis of heavier elements, with several labs col-
laborating to get a full understanding of the different perspectives one element
can show. Relevant experiments have been performed using 68,70Zn at the Oslo
Cyclotron laboratory, and as a collaboration with NewSUBARU in Japan, com-
plimentary experiments were executed for 64,66,68Zn. The neutron rich isotopes
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Figure 1.4: An illustration of a Binary Neutron Star Merger. Figure is courtesy
of NASA (Ref. [14]).

are important for s-process and r-process models, as improving the measurement
for the stable nuclei can help us get better models for development of the pro-
cesses once they move through the unstable isotopes of Zn. Especially the path
towards the ”magic” (closed neutron shell nuclide, and therefore more stable)
80Zn is interesting, see Figure 1.5 where the magic isotopes are highlighted in
blue. This is a potential branching point for the r-process which is important to
get a well founded understanding of. The proton rich side is closer to 64Zn, and
this isotope is therefore interesting for another less dominating process. The s-
and r-process are often rounded up to contribute all of the abundance of the
elements and isotopes, but this is not entirely true. There has to exist another
process, called the p-process, which is responsible for about 30 shielded nuclei
that can not be reached through s- and r-process. The Zn-project is therefore
potentially an important step in the right direction of understanding the pro-
cesses behind the creation of the elemental abundance we are surrounded by, as
a whole.

This master thesis will focus on one of these Zn isotopes. In both experi-
ments, I will be performing measurements on 68Zn; the end-product nucleus
of the neutron capture reaction 67Zn(n,γ)68Zn. My goal is to discover more
about the nuclear properties of this nucleus, and there are several ways of go-
ing about this problem. Nuclear excitation levels can for example be studied
by performing collisional experiments, where incoming particles with high en-
ergy can transfer energy to a target nucleus, causing an energy excitation. The
first experiment discussed in this master thesis (in Chapter 3) is of this type,
and was performed at the Oslo Cyclotron Laboratory (OCL). In this cyclotron,
light particles are accelerated to quite (from an energy-physics perspective) low
energies, and thereafter they are directed towards a 68Zn target. After being
excited the target nucleus will eventually (well, in all honesty rather fast) calm
down, but release a gleam of light as a result from the energy it gained from
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Figure 1.5: Variation in the theoretical prediction of neutron-capture reaction
rates around mass 70. The (n,γ) rates were calculated with the reaction code
TALYS [15], varying the level density and γ-strength function. Figure taken
from Ref. [16].

the colliding particle. This gleam of light is a light particle, a photon or γ-ray,
which is measured using the newest instrumental addition to OCL: The γ-ray
detector array OSCAR. The reaction occurring is 68Zn(p,p′)68Zn. This is one
of the ways to study how excited our target was, from measuring the energy of
this γ-ray, and from this learn about how the energy levels in the 68Zn nucleus
are distributed. Among the structural qualities that are possible to extract from
this data are the Nuclear Level Density, and the γ-ray strength function, and
these will be thoroughly examined and discussed in this thesis.

The other experiment involved looking at the probability of a neutron being
emitted as a response to photon irradiation: 68Zn(γ,n)67Zn, using slightly higher
energy γ-rays with an energy above the so called neutron separation energy Sn,
which suitably is the energy threshold where a 68Zn starts seeing the release of
one of its neutrons as a way of letting off some of the excess energy received.
This experiment was performed at NewSUBARU in Japan, and Laser Compton
Scattering was used as a way of acquiring almost mono-energetic γ-rays, which
is crucial to this experiment. 68Zn was placed in a neutron detecting chamber
to count how many neutrons were released from the target from being exposed
to different γ-energies. The details on this experiment is given in Chapter 4.

This master thesis will go into detail about the experiments, the calibration
procedure and the data analysis. In Chapter 2, the important qualities level
density and γ-strength function, and some other theoretical phenomena I find
very relevant to the context, will be covered. The end goal is to look at the
experimental data sets as a representation of the γ-ray strength function as a
whole, and apply it for discussions in Chapter 5. I will discuss the program TA-
LYS [15], applied to estimate the reaction rates of the neutron capture reaction
67Zn(n,γ)68Zn from the resulting γ-strength function. Using this method and
other experimental approaches on different isotopes of interest, we will eventu-
ally uncover more about the way the neutron capture processes unfolds, and
how and why the element abundance in our Solar System has the composition
we measure today.
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Chapter 2

Theory

Although this master thesis is heavily based upon experimental studies, the
work is also carried out in a theoretical framework which is necessary to un-
derstand before both executing such experiments, and also to read about the
experiments. At this point, there are plenty of experimental data for neutron
capture on stable isotopes [17, 18] and (n,γ) reactions are often seen as the best
understood type of nuclear reaction. However, some isotopes are difficult to
study experimentally. Those include those where (n,γ) takes you into another
stable isotope and isotopes with too short lifetime to be made targets of. Sev-
eral labs in Europe have developed setups for studying radioactive targets, but
the lifetime must be long enough to be able to make a target. On the theory
side, there are many open questions related to nuclear structure far away from
stability. Stand-alone theories do not yet explain the full truth, nor manage
to reproduce the abundance of elements in our solar system. The theoreticians
therefore demand new, relevant experimental data, so that the theories and
models can be improved. This is why an international collaboration is studying
several Zn-isotopes, attempting to improve our theoretical understanding of this
element, and mass region. Leaving the experimental side of things for now, let
us look at the theory behind the experiments as it stands today.

2.1 Nuclear reactions and scattering

A large part of experimental nuclear physics is performing fixed target experi-
ments, where a chosen target nucleus is placed in a chamber, and bombarded
with a beam of accelerated particles, inducing nuclear reactions. In nuclear
reactions with no particle production, the number of nucleons is conserved. A
general nuclear reaction is often written as

a+A→ B + b, (2.1)

where a is the incoming particle, A is the target nucleus, B is the target nucleus
after the nuclear reaction, and b the outgoing particle from the reaction. The
incoming and outgoing particles, are usually lighter than the target nucleus. If
a is a photon, we call it a photonuclear reaction. If b is a photon, it is called
a radiative capture reaction. If the resulting particles differ from the initial
partners, a nuclear transmutation has taken place.
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However, if the final reaction partners are identical to the initial ones, they
have gone through an elastic scattering event where kinetic energy is conserved
and the initial and final quantum states are the same. This reaction is written
as:

a+A→ A+ a. (2.2)

Another outcome is inelastic scattering, where the final reaction partners are
identical before and after the reaction, but their initial and final quantum states
are not the same throughout the scattering process. The target nucleus may be
excited in the process. This reaction can be written as:

a+A→ A′ + a′. (2.3)

Another form of notation which is often used, and will be used extensively in
this text, is:

A(a, a′)A′, (2.4)

and it is popular as it is more efficient, but may not be as descriptive of the
reaction to anyone new to the field of nuclear physics.

2.1.1 Nuclear Reaction Models

To describe a nuclear reaction, the quantum states of the partners both before
and after a collision must be known, as well as the Hamiltonian operators work-
ing on the initial quantum state, governing the nuclear reaction process. There
is a strong connection between nuclear reaction models and nuclear structure,
and nuclear models are the main tool for investigating the properties of nuclear
systems. Another important part of modelling nuclear reactions, is knowing
the potentials governing the interaction. Depending on the situation, a lot of
potentials may be necessary to properly describe a given reaction.

Particles interact through four different forces: The electromagnetic force, the
weak force, the strong force and the gravitational force. Depending on the re-
action in question and the kinetic energy of the particles, the force dominating
will vary. In our experiment our particle has a high kinetic energy, such that
the strong force governed by the nucleus will dominate as the particle gets close.
In the analysis, all conservation laws specific to the the strong nuclear force are
applied, and the symmetry properties of space and time are also conserved.

2.1.2 Nuclear Reaction Mechanisms

The Compound Nucleus Mechanism

The compound nucleus mechanism was proposed by Niels Bohr in 1936 [19]. The
main assumption of a compound nucleus formation is that the entire kinetic en-
ergy of the incident particle gets distributed evenly and statistically between
many nucleons in the formed compound nucleus. It also assumes that the nuc-
lear reaction takes place in two independent stages. First, the incident particle
merges with the target nucleus. Then the incident particle transfers a signific-
ant amount of energy to the target nucleus, distributes it among the nucleons,
and excites the target nucleus to a higher energy state. The second stage has
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an excited nucleon, and the incident particle may be emitted through inelastic
scattering. Other situations may occur, as for example when more nucleons are
excited in the process, not just one.

If the incoming particle is a photon, one can assume that only one nucleon gets
excited. The photoabsorption cross section for incoming photons with energies
between 13 and 25 MeV is usually dominated by the giant dipole resonance
(GDR) [20], and is excited by the electromagnetic interactions between the re-
action partners.

The second stage in a nuclear reaction in this model, depends on the energy
and the emission threshold of the nucleons of the target. If the re-distributed
energy is higher than a threshold, some sort of particle emission can be the
result. This energy re-distribution takes a long time, ∼ 10−16s. The compound
nucleus ”forgets” how it was formed due to many reactions happening in this
relatively long period of time. Therefore the relative probability of the decay of
an excited compound nucleus is independent of its initial partition.

The disintegration of a compound system can be described by defining the
energy magnitude Γ(E) from the mean lifetime τ(E) as [21]:

Γ(E) =
~

τ(E)
(2.5)

where Γ will later be referred to as a total level width, and ~ = 6.582119×10−16eVs
is the reduced Planck constant. As a compound nucleus can decay into differ-
ent channels, this Γ as defined above is divided into decay rates over specific
channels:

Γ(E) =
∑
β

Γβ(E), (2.6)

with the sum
∑
β extended over all channels β which the compound nucleus

can decay into. Γβ is the specific decay rate, or the partial width for the decay
into channel β.

The nuclear excited state can be a bound state embedded in the continuum or
quasi-continuum (see section 2.2), and described by the resonant Breit-Wigner
distribution [22]:

P (E) =
Γ

2π(E − E0)2 + Γ2

4

(2.7)

where E0 and Γ are the energy centroid and distribution width. Excited com-
pound nucleus states are characterized by narrow energy distributions, and
widths in the range 0.066 eV - 0.6 keV [23] using Eq. (2.5). The total Γ
width of the Breit-Wigner distribution is the sum of the widths of all access-
ible partial distributions for different processes like elastic scattering, inelastic
scattering and γ-emission. The total decay width would be given as:

Γ = Γelastic + Γinelastic + Γγ . (2.8)

The probability of particle emission through the compound nucleus mechanism
is the same for the angles θ and π − θ, and so the differential cross section is
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symmetrical with respect to θ = 90◦, a result from the conservation of total par-
ity and angular momentum in nuclear interactions. Strong angular dependence
is often the result of a direct reaction, only involving a few of the particles in the
nucleus. The lack of such a strong dependence does indicate that the energy in
the reaction will be distributed among all particles in the nucleus. It therefore
in principle impossible to determine exactly how the compound nucleus was
initially formed, according to this model.

The Pre-equilibrium Mechanism

The pre-equilibrium mechanism assumes the incident particle interacts only with
a few of the nucleons in the target, not all. These processes have a lower level
of complexity than those in the compound nucleus mechanism, and takes place
in a shorter period of time (∼ 10−20 − 10−19 s). These intermediate nuclear
processes have excited states with a typical total width Γ = 6.6 - 66 keV [23],
by using Eq. (2.5).

Direct Reactions

Direct reactions are single-step reactions executed in a short time interval (∼
10−22− 10−21 s). These reactions have high particle emission probabilities, and
are called single particle resonances. They are characterized by the typical total
width 0.66 - 6.6 MeV [23], again by using Eq. (2.5).

Direct reactions represent reactions where the incident particle interacts in one
single, or very few, steps with the target nucleus. During each step one of the
compound system nucleons is in a virtual state, meaning it is in a quantum
mechanical state which will have such a short lifetime it can not be measured.
According to the shell model, the incident particle will most likely interact with
the surface target nucleons. For other interactions with lower-laying nucleons
to happen, one would need higher energies to excite the nucleon.

Stages of a Nuclear Reaction according to the Weisskopf-Feshbach
model

Figure 2.1 shows the unitary treatment of nuclear reactions proposed by Weis-
skopf and Feshbach [24], where any nuclear reaction is assumed to take place in
several stages. In the first stage, the particle beam scatters elastically by direct
interaction with the target nuclei, which by incoming particles is considered to
be a solid sphere. One particular type of elastic scattering is ”shape-elastic
scattering”, which in addition to conserving the quantum states in an elastic
collision, also conserves the relative orientation of the angular momentum.

The second stage involves a different range, where the incident particle and tar-
get interact through the strong interaction. This is where a compound system
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Figure 2.1: The Weisskopf-Feshbach model of the stages of a nuclear reaction.
Figure taken from Ref. [23], which is a reconstruction of an original figure from
Ref. [25].

is formed, and the number of interactions occurring will decide if the outgoing
particle is emitted directly, pre-equilibrium, or through a statistical bound state
embedded in the continuum. The third and final stage consists of the resulting
reaction partners after the collision, which are no longer interacting with each
other, and the scattering event is complete.

2.2 Nuclear Level Density

In the low energy regime the nuclear levels are well defined, but as the excit-
ation energy of a nucleus increases, the levels will be stacked closer and closer
together, as seen illustrated in Figure 2.2. Eventually they are bunched so close
that they are overlapping creating a continuum of energy levels. Between these
two regions of discrete levels and the continuum is the quasi-continuum region.
In the quasi-continuum, the level density is assumed to depend on how close the
isotope is to a closed shell where the single particle distance will increase. At
higher energies this difference will not be able to show through the vast amount
of available states.

16



Ex
ci

ta
tio

n 
en

er
gy

g

Gamma-strength function (log)

G
am

m
a 

en
er

gy

upbend

scissors

pygmy

Level density (log)

Sn+En

Figure 2.2: Illustration of the level density (left), the energy levels in a nucleus
(middle) and the shape of the γ-ray strength function (right). Figure taken
from Ref. [26].

The Nuclear Level Density (NLD) is defined as the number of levels per unit
excitation energy, the most common unit being MeV, and is a measure of avail-
able quantum levels at a given excitation energy. There are a variety of models
predicting level densities in the different energy regions. For the lower energy
levels, up to about 10 MeV, the Constant Temperature Model [27] is the most
commonly recommended model. Above this energy, the Fermi Gas Model [28]
is recommended after the so called phase transition from the Constant Temper-
ature region into a more gas-like chaotic region. The Fermi Gas Model is the
very first level density model, proposed in 1936. In the continuum, a suggested
model is the Generalized Superfluid Model (GSM) [29], considering supercon-
ductive pairing correlations when determining the level density. The two first
models will be further discussed as they are both very relevant, but the GSM
will be left at this note. There are several other models attempting to describe
the level density.

The NLD tells us about the number of energy levels a system of several particles
have at a given excitation energy. NLD is interesting as it can help us under-
stand the complex quantum mechanical system which is the atomic nucleus.
It is essential to calculate reaction cross sections, which will be explained in
Chapter 2.5, and therefore also crucial to our understanding of nucleosynthesis
processes in astrophysics. When the level density is found experimentally, it is
directly related to the density of states; the number of physical realizations of
the system at a given excitation energy.

To theoretically calculate the level density one can, in addition to using mod-
els, use numerical Monte Carlo shell-model calculations. These calculations are
usually quite precise for light nuclei, but as the number of nucleons increase,
experimental measurements to find a correct parametrization of the level dens-
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ity are needed. Large-scale shell model calculations by the Oslo group have
also been performed very recently in order to explore level densities [30]. How-
ever, as no model or simulation is as satisfying as data from the real world, the
group at OCL has been successful in experimentally extracting the level density
from primary γ-ray matrices under the neutron separation energy Sn, and the
method behind this will be discussed in Chapter 3.

2.2.1 The Back Shifted Fermi Gas model

The Fermi Gas Model was first proposed by Bethe [28], and is based on the
theory of Fermi statistics. The nucleus is modelled as a gas of non-interacting
fermions, and as a function of excitation energy Ex the level density ρ(Ex) is
described as

ρ(Ex) =

√
π

12

e2
√
aEx

a1/4E
5/4
x

, (2.9)

where the constant level density parameter a determines the single-particle level
density at the Fermi surface. This was later extended to The Back Shifted Fermi
Gas model [31], which will be denoted FG as the older Fermi Gas model will not
be used. This newer version is modified by treating the energy shift and level-
density as free parameters. The model is based on a lot more samples of nuclei
and their excitation energy, and expresses the level density by this formula:

ρ(Ex) =
e2
√
a(Ex−E0)

12
√

2σa1/4(Ex − E0)5/4
, (2.10)

where ρ still grows exponentially as e
√

2aE , as is characteristic for the Fermi Gas
model. E0 is the back-shift in excitation energy from the pairing gap, and σ is
the spin cutoff parameter estimated in Ref. [31] as:

σ2 = 0.0146A5/3 1 +
√

1 + 4a(Ex − E0)

2a
, (2.11)

where A is the mass number of the nucleus.

2.2.2 The Constant Temperature Model

In order to model the nuclear level density for all excitation energies, the FG
model is commonly paired with the Constant Temperature (CT) model. The
CT model, first proposed by Ericson [27, 32] in 1959, has been shown to work
well for lower excitation energies, where exact solutions are reproduced [33].
The formula for the CT level density ρ(Ex) is given by Ref. [34] as:

ρ(Ex) =
1

T
e(Ex−E0)/T , (2.12)

where Ex is the excitation energy, T is the temperature and E0 the back-shifted
energy. Both the temperature and energy back-shift are parameters fitted espe-
cially for this model. To estimate the constant temperature: look at the increase
in level densities, and determine the slope of this increase.

The parameter T , a kind of effective temperature, reaches its minimum at
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N = Z, or at neighboring odd nuclei [33]. It is kept constant within a wide range
of excitation energies Ex, which is the reason for the name Constant Temperat-
ure model. This effective temperature is introduced as an inverse coefficient of
the level density as a function of Ex. The parameter T in the level density is an
analog of the limiting Hagedorn temperature in particle physics [35]. The ther-
modynamic temperature Tt−d in the ground state is zero, and approaches the
value T as the excitation energy approaches 10 MeV or higher. This does not
mean the system is unable to reach higher temperatures, but in doing so, there
will be a transition to a chaotic stage of randomly interacting constituents. The
common interpretation of this transition, is a phase transition from superfluid
paired dynamics to a normal Fermi liquid phase. This however does not hold,
as the behavior persists if the standard attractive pairing interaction is removed
from the Hamiltonian. We seem to be dealing with a general stochastization of
dynamics as a typical feature of quantum many-body systems [33].

2.3 The γ-ray Strength Function

The γ-ray Strength Function (γSF) is a measure of the average, reduced γ-decay
probability, and it reveals information about the structure and dynamics of the
nucleus.

The γ-ray strength function is the distribution as a function of γ-ray energy, of
the average reduced width for transitions of a particular multipole type. Trans-
itions in multipole type are written as XL where X is E for electric or M for
magnetic transition, and L is the multipolarity of the transition. For transitions
of energy Eγ between Ei and Eγ (Ei < Eγ) the γSF fXL is presented as [36]:

fXL(Ei, Ji, πi, Eγ) =
〈ΓXL(Ei, Ji, πi, Eγ)〉

E
(2L+1)
γ

ρ(Ei, Ji, πi), (2.13)

where ΓXL(Ei, Ji, πi, Eγ) is the partial width of the γ-ray averaged for trans-
itions within an initial excitation energy bin Ei for levels with spin Ji and parity
πi around the energy Eγ . ρ(Ei, Ji, πi) is the average level density, and the en-
ergy dependence on L is included in the factor E2L+1

γ , a penetration factor. Just
like the NLD, the γSF is an average quantity. Therefore the regions where it
is appropriate to discuss level density over single levels, also makes it useful to
think in terms of a γSF over individual radiation widths. From inelastic scat-
tering or photoabsorption cross section measurements where a photon beam has
a large energy spread compared to the level spacing D(Ei, Ji, πi)) = 1

ρ(Ei,Ji,πi)

, one can obtain such average data [36].

The transmission coefficient TXL(Eγ) represents the escape probability for a
γ-ray stuck inside the nucleus [21]. In general, γ-rays try to escape many times
before they will finally be emitted, causing the probability of a transmission
to be much smaller than the probability of reflection. TXL(Eγ) characterizes
an exited state’s average electromagnetic properties, connecting it to photo-
absorption and radioactive decay processes. It can be defined in terms of the
γSF by the relation

TXL(Eγ) = 2πE2L+1
γ fXL(Eγ). (2.14)
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Following Fermi’s Golden Rule [37] [38], the γSF can be used to calculate
photo-absorption cross sections due to the principle of detailed balance [21].
The γSF represents the distribution of average, reduced partial γ-transition
widths. γ-decay is related to a ”downward” strength function, and to find
the ”upward” one can determine the average photo-absorption cross section
〈σXL(Eγ)〉 summed over all possible final state spin values [39]:

fXL(Ef , Jf , πf , Eγ) =
1

(2L+ 1)(π~c)2

〈σXL(Ef , Jf , πf , Eγ)〉
E

(2L−1)
γ

(2.15)

where Ef is the final energy bin after a photo-absorption reaction, and in the
excited levels Jf is the final spin and πf the final parity.

When calculating nuclear reaction rates and cross sections with the open-access
codes available, the extreme statistical model is used [36]. It assumes the
strength function to independent of spin and parity. This is valid if the wave
functions of the highly excited levels can take many configurations. The as-
sumption of detailed balance is also more reliable in the case of the extreme
statistical model.

2.3.1 E1 and M1 Resonances

In Figure 2.2 is a sketch of the shape of the γSF, mentioning the most import-
ant resonances that can be discovered in our results. The most important of
the resonance models are the Giant Electric Dipole Resonance (GDR), which is
believed to stem from harmonic vibrations where neutrons and protons oscillate
off-phase against each other. This is shown to strongly influence the strength
functions of most isotopes. Secondly, there is the Giant Magnetic Dipole Res-
onance (GMDR), referred to as M1, modelled by a spin-flip resonance model.
There is experimental evidence of other resonance structures in the γSF, which
are smaller in magnitude. Among these are the pygmy dipole resonance (PDR),
a debris of the higher energy GDR due to destructive inference. High energy
resolution experiments performed during the last decade reveal fine structure of
the PDR in many nuclei [40].

The γSF of a nucleus under about 3 MeV is expected to be dominated by
the receding tail of the GDR [41], so when the first measurements of a sizeable
low-energy enhancement in this region was discovered for 56,57Fe [42], scient-
ists were surprised. This enhancement is later referred to as the upbend, and
in the following years this was observed through the Oslo method, and other
methods, in a wide range of nuclei. What makes it even more interesting, is
the fact that the presence of such a low energy enhancement may also enhance
the r− process (n,γ) reaction rates by a factor of 10-100 [43]. Nevertheless, the
physical mechanism behind the upbend has been puzzling, and later after being
explored it seems to be dominantly of dipole nature [44]. Shell model calcula-
tions [45, 46] have shown very strong M1 transitions at these lower γ-energies,
but it has also been suggested that the upbend is caused by thermal excitations
in the continuum, causing lower energy E1-transitions [47].

The dominant part of the γSF is the E1 part, which can be described in its
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simplest form with a standard Lorentzian model, or with an enhanced general-
ized Lorentzian model. For the E1 resonance, the standard Lorentzian model
can be represented as

fSLOE1 (Eγ) = c · σtauEγΓ2
r

(E2
γ − E2

r )2 + E2
γΓ2

r)
(2.16)

where the conversion constant c = (3π2~2c2)−1 = 8.674·10−8mv−1MeV−2, σr is
the peak cross section, Er the energy centroid and Γr the width of the resonance.

The enhanced generalized Lorentzian, as described in [48], appears more com-
plicated, as it corrects for the widths dependence on temperature T and energy
E. It also includes a term for the the γ-ray strength function at Eγ = 0.

fEGLOE1
(Eγ) = c · σrΓr[

EγΓEn(Eγ , T )

(E2
γ − E2

r )2 + E2
γΓ2

En
(Eγ , T )

+ 0.7 · ΓEn(0, T )

E3
r

],

ΓEn(Eγ , T ) = [k0 + (1− k0)
(Eγ − ε0)

Er − ε0
]ΓK(Eγ , T ),

Γk(Eγ , T ) =
Γr
E2
r

(E2
Γ + 4π2T 2).

(2.17)

where k0 is the enhancement factor found to reproduce the reference strength
around the energy ε0 = 4.5 MeV. The Back Shifted Fermi Gas model gives

k0 =

{
1 for A <148

1 + 0.09(A− 148)2e−0.18(A−148) for A ≥ 148
(2.18)

where A is the nucleus mass number.

Several models attempt to quantify the γSF. The dominating radiation types
involved in γ-emission being from the GDR and GMDR, the total strength
function can be be decomposed to the different contributions from E1 and M1.

ftot = fE1 + fM1 (2.19)

However, there are other resonances also relevant to include as contributors for
the total strength function in some cases, like the pygmy dipole resonance fpyg,
and the upbend fupb. These can be added in in a similar way, leaving us with
the complete strength function

ftot = fE1 + fM1 + fpyg + fupb (2.20)

2.4 The Brink Hypothesis

The Brink hypothesis [49] is an essential assumption behind the method that will
be introduced in Chapter 3: The Oslo Method. This hypothesis proposes that
the γSF only depends on the γ-ray energy Eγ , and not the temperature of the
final state. It claims that similarly to the ground state, excited states also have
an electric giant dipole resonance built on them, only shifted towards higher
energies by the energy leap from the ground state to the excited state. The
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probability of γ-decay from excited states will depend on the density of states
in the decay region, and also how similar the resulting nucleus is to the original.
Looking at the energy distribution of only the first γ-rays in the cascades of γ’s,
a first generation spectrum is acquired, which can tell us about both these two
qualities. This can be formulated mathematically as

P (Ei, Eγ) ∝ τ(Eγ)ρ(Ei − Eγ), (2.21)

where Ei is the initial excitation energy, P(Ei, Eγ) is the experimental, nor-
malized first generation matrix, τ is the γ-ray transmission coefficient, and ρ
is the level density. The proportionality to ρ(Ei − Eγ) is in accordance with
Fermi’s golden rule [37] [38]. By utilizing our γ-particle coincidence data, one
may extract both of these.

2.5 Cross Sections and Reaction Rates

When attempting to understand the nucleosynthesis, reaction probabilities are
key pieces of information in the puzzle. A reaction cross section σ is a much
used measure of this probability. Another is the reaction rate, which is often
used in astrophysics.

The velocity v of the particles in a stellar environment govern the temperat-
ure T , which governs the cross section σ. The reaction rate r01 between the
two species, projectile (0) and target (1) in a reaction 0 + 1 → 2 + 3 can be
expressed as [4]:

r01 = N0N1

∫ ∞
0

vP (v)σ(v)dv ≡ N0N1〈σv〉01, (2.22)

with N0, N1 being the number density of the different particle species and 〈σv〉01

is the reaction rate per particle pair. P (v)dv is the normalized probability that
the relative velocity of the species in the interaction are in the interval [v, v+dv].

Stellar plasma is non-degenerate, with velocities well below the relativistic re-
gion. Therefore, in most cases, the velocities can be described by a Maxwell-
Boltzmann distribution as the reaction initiated by the motion are thermonuc-
lear reactions:

P (v)dv = (
m01

2πkT
)3/2e−m01v

2/(2kT )4πv2dv, (2.23)

where k is the Boltzmann constant k = 8.6173 × 10−5eV/K, and m01 is the
reduced mass m01 = m0m1/(m0 +m1).

For neutron-induced reactions (like (n, γ)) the reaction rate is often expressed
by the Maxwellian-Averaged Cross Section NA〈σ〉T [4]

NA〈σ〉T ≡
NA〈σv〉
vT

=
1

vT
NA

∫ ∞
0

vP (v)σn(v)dv =

4√
π

Na
v2
T

∫ ∞
0

vσn(v)(
v

vT
)2e−(v/vT )2dv

(2.24)

with the thermal velocity vT =
√

2kT/m01, which is the maximum of the
velocity distribution.
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Chapter 3

Experimental details and
data analysis of the
68Zn(p,p′γ) measurement

3.1 Experimental setup at OCL

At the Oslo Cyclotron Laboratory (OCL), we are using a cyclotron to acceler-
ate light beam particles, namely protons, deuterons, 3He and 4He. When using
protons, they can be accelerated to energies from 2 - 35 MeV. In the case of
this experiment, we accelerated protons to an energy of 16 MeV. The acceler-
ated particle beam is directed into the experimental hall (see Figure 3.1), where
OSCAR, the γ-detector array, and SiRi, the particle telescope, are placed, see
Figure 3.2. In the middle of this setup, we placed a target foil of 68Zn, and bom-
barded it with our beam. We studied the inelastic scattering reaction 68Zn(p,p′),
where the nuclei are excited by the incoming beam, and sends out a γ-ray (or
several in a cascade: average multiplicity of 2.5 - 3) as a result of de-excitation.
Coincidences between detected outgoing protons and γ-rays were measured, to
be sure that the γ-rays are truly resulting from the reaction in question.

At OCL, the cyclotron being used is an MC-35 Scanditronix cyclotron. This is
connected to target stations via beam lines as seen in Figure 3.2.

The beam line consists of air-tight pipes, where the ion beam can travel from the
cyclotron to the target station while being in vacuum and hence not collide with
air molecules on the way. To focus and guide the particles through the pipes, a
magnetic fields ~B is induced by applying a Lorentz force onto the particle given
as

~F = m~a = q~v × ~B. (3.1)

In order to direct and focus the beam, both dipole ”D” and quadrupole ”Q”
magnets are applied along the beam line, as shown in Figure 3.1. A switching
magnet is used to select a beam line. Since a particle species defined by its mass
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Figure 3.1: The experimental setup at the Oslo Cyclotron Laboratory. (Taken
from the OCL website, Ref. [50].) CACTUS is now replaced by OSCAR.

m and its charge q, and the energy of the particle is related by

Ekin =
1

2
mv2. (3.2)

The magnetic field described by Eq. (3.1) will deflect a given particle type of
a given energy into the beam line. An analyzing magnet is used to remove any
beam contamination and ensure the desired energy is achieved, and also to de-
flect the beam 90◦ into the experimental hall towards the OSCAR/SiRi target
station.
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Figure 3.2: Schematic drawing of the detector setup of the 68Zn(p,p′) experiment
at the Oslo Cyclotron Laboratory (not to scale).

3.1.1 Cyclotron

Invented in 1932 by Lawrence and Livingston [51], the cyclotron has become
one of the most useful particle accelerators in both nuclear and particle physics.
A cyclotron induces a nearly homogeneous magnetic field ~B between two par-
allel magnetic poles. If a charged particle is introduced to this magnetic field
with some velocity, it will gain an acceleration according to Eq. (3.1). This
acceleration will be perpendicular to the radial distance, as the force F is al-
ways pointing towards the centre of the magnetic field, and get an acceleration

a = v2

r , and a corresponding frequency ω as shown in Figure 3.3. A sketch of
a cyclotron is shown in Figure 3.4, where two ”D”-shaped ”dees” are alternat-
ing the voltage applied to the beam at a high frequency. The OCL cyclotron
consists of four such dees. Two of the dees are connected to oscillators, and
connected to each other in such a way that they can be run either in phase
or anti-phase depending on particle type and desired energy. These modes are
called ”push-push” and ”push-pull”, respectively. The other dees are connected
to earth ground.
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Figure 3.3: At first order, the speed of a particle in a cyclotron is independent
of radius or energy, and rotates at constant frequency ω. Figure taken from Ref.
[52].

Figure 3.4: Acceleration of ions using a cyclotron as illustrated by the inventors
E. Lawrence and M. Livingston. Figure taken from Ref. [51].
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The magnetic field has an angular dependency that enables focusing of the
beam, to correct for the relativistic increase in mass. The field increases as the
radius r from the center of the cyclotron to the particle position increases. To
create such a magnetic field, more magnetic dipoles are necessary. Correction
coils are used to purposefully create such a slightly in-homogenous magnetic
field, with a slightly stronger field at the outer edge to compensate for relativ-
istic mass effects. We need to take such relativistic effects into account when
the accelerated particles are moving at velocities higher than 0.1c, where c is
the speed of light.

The resulting beam from the cyclotron has some energy spread, so that the
beam straight from the cyclotron can be used for experiments where the energy
precision is not of importance and high intensity is advantageous. Such ex-
periments are for instance isotope production for medical application research.
For this experiment however, we need to send the beam through the analyzing
magnet, which bends the beam using a magnetic field to select particles of a
given energy. The beam will be sent through a slit of width s. The precision p
of the beam momentum, and relative spread of its momentum is then given as

∆p

p
=
s

r
(3.3)

where r is the bending radius of the particle path moving through the analyzing
magnet, and for our setup this spread is about 0.1 %. After our beam has been
given a more narrow energy range, several quadrupole magnets are used to focus
it, see Fig. (3.1). Lastly, it travels towards the area where the target is located
along with the γ-detectors OSCAR and the particle telescope SiRi.

3.1.2 Target Foils

The target was a 68Zn metal foil from Trace Sciences International. It is 99.23
% enriched, and weighs 10.01 mg. The area density is 3.5 mg/cm2, and the
dimensions are 1.3 cm × 2.2 cm. The target was carefully picked up using
tweezers and glued to the target holder, and additional screws were used to
make sure it stayed put. Alongside the zink, a target of natural Si was used for
calibration purposes, as this target has well known γ-lines which can be easily
identified. The target holder was then placed inside the target chamber in
the middle of OSCAR. The incoming protons that undergo inelastic scattering
when reaching the target, will be emitted at an angle while leaving a target
nucleus excited. The target then undergoes emission of one or several γ-ray’s.
We are therefore interested in measuring both the outgoing proton using SiRi,
and the outgoing γ-rays using OSCAR, and use the information of the two
together to extract the level density and the γ-ray strength function of 68Zn.
The experiment was successfully run for two days, with help from the OCL
group to take shifts. This allowed us enough time to gather good statistics,
with over 13 million proton-γ coincidences.
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Figure 3.5: OSCAR, the new scintillation array at OCL. A number of LaBr3:Ce
detectors are mounted spherically around the target to count γ-rays. Figure
acquired from Ref. [53].

3.1.3 γ-ray Detector Array: OSCAR

Before a very recent upgrade at the OCL, similar experiments were performed
using CACTUS, a NaI(Tl)-detector array. In 2001 an alternative crystal scin-
tillator was developed, as LaBr3:Ce- crystals were produced and proved to have
an improved energy resolution, fast timing properties and high detection effi-
ciency also for high-energy γ-rays [54]. One potential problem is that lanthanum
contains radioactive 138La, and lanthanum is also chemically similar to 227Ac,
which can be mined together with it and has a long half life. A radioactive
background will therefore always be present, and must be accounted for. It also
sets limitations on detection of low levels of radiation.

The γ-ray detector array OSCAR was a new addition to the Oslo Cyclotron
Laboratory, with partial implementation, in the fall of 2017, with 21 detect-
ors in place. The 68Zn experiment was run in January 2018, being one of the
first new experiments using this array. OSCAR consists of LaBr3:Ce-detectors
positioned spherically around the target (see Figure 3.5) to be able to capture
outgoing γ-rays at all angles. Since what we are studying is compound reac-
tions, the de-excitation γ-rays will be sent out in all of the 4π solid angles. The
scintillation material emits electromagnetic radiation (light) with wavelengths
in the visible and ultraviolet spectrum, when the γ-rays interact with the crystal.
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Each of the detectors are mounted to a photomultiplier tube (PMT), specific-
ally a Hamamatsu R10233-100, to make the signal from the γ quant detectable
electronically. This is done by converting the photons into electrons, and then
amplifying the signal by scattering them onto a chain of dynodes, where the
electron’s kinetic energy is converted into several electrons with lower kinetic
energy. This is shown in Fig. (3.6). After the amplification in the PMT is com-
plete, the electron current, which is proportional to the energy of the incoming
γ-ray, is measured.

The LaBr3:Ce-detectors are large volume 3.5 inches × 8 inches detectors. They
can be placed in three distances from the target: 16, 22 and 35 cm. For this
experiment we used the 22 cm target-detector distance, and the efficiency of
OSCAR for different energies at this distance is presented in Figure 3.7. Active
voltage dividers were used to reduce non-linearities. The PMTs get saturated
because of the high light yield of the LaBr3:Ce crystals, which causes this non-
linearity. A LaBrPro box from Milan is used as a shaper and amplifier of the
signal.

Figure 3.6: Schematic of a photomultipler tube (PMT): photons strike pho-
tocathode at one end; a sequence of dynodes lead toward an anode at the other
end. Figure taken from Ref. [55].
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Figure 3.7: Efficiency of OSCAR at 22 cm target distance. Figure taken from
Ref. [56].

3.1.4 Particle Telescope: SiRi

SiRi, the beautiful instrument pictured in Figure 3.8, consists of eight silicon
particle telescopes. In this experiment, we placed them in backward angles at
126-140◦ with respect to the incoming direction of the beam, and at a 5 cm
distance away from the target. Each telescope consists of a 130 µm thick front
counter: the ∆E-detector, and a 1550µm thick back counter: the E-detector.
The main purpose of SiRi is to measure the particle energy, while in addition,
the front and back detector allow us to identify the type of charged particle we
are looking at. Therefore, SiRi enables us to produce ∆E/E plots resembling
”bananas” (often called banana plots). There is also a 10.5 µm thick aluminum
foil in front of the ∆E in order to reduce the amount of δ-electrons entering the
detector. The complete detector setup with the target and SiRi at forward
angles is illustrated in Fig. 3.9. In Fig. 3.10 the layout of the segmented front
detectors is shown.
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Figure 3.8: SiRi: Silicon particle telescope modules mounted on a supporting
structure. Picture taken from Ref. [57].

Target	ladder	with	3	targets

Figure 3.9: A ∆E/E detector module shown at θ = 47◦ with respect to the
beam direction of motion. To reduce δ-electrons, aluminum foil with thickness
10.5 µm is placed in front of the detectors. Figure taken from Ref. [57], and
slightly modified with a target ladder with three target holders.
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Figure 3.10: Layout of the front ∆ E detector, with curved pads for specific
angles. Figure taken from Ref. [57].

Charged particles of different mass deposit a corresponding different energy in
∆E. The higher the charge, the more energy is deposited in the material. A light
particle of low charge, like protons, would be depositing a velocity dependent
amount of energy. The energy loss dE of a particle passing a distance dx through
a medium is given by the Bethe Block formula [58],

−dE
dx

= 2πNar
2
emec

2ρ
Z

A

z2

β2
[ln(

2meγ
2c2v2Wmax

I2
− 2β2)], (3.4)

where Na is Avogadros number, me the electron mass, re the classical electron
radius, c the speed of light in vacuum. For a given material that the particle is
passing through: ρ is the density, Z the atomic number, and A the mass num-
ber. The charge is denoted as z, in units of e, β = v/c and the Lorentz factor
γ = 1√

1−β2
, I is the mean potential of excitation, and Wmax the maximum

energy transfer in a collision, as the charged particle is decelerated by giving off
energy to the electrons in the detector medium through Coulomb interactions.

By combining energy measurements of the ∆E and E-detectors we get a higher
energy resolution than by looking at these detectors separately. The total en-
ergy of the particle can be defined, and also which type it is based on whether
the energy was deposited in the ∆E or E detector. The range travelled through
the detector material, as a function of energy, is defined as R(E):

R(E) = E(a1 + a2E) +
a3

(E + a4)
, (3.5)

where E is the kinetic energy of the particles, and the a’s are free parameters.
Based on the spectrum of R(E) the relation of total distance passed vs the
distance passed in the E-detector is:

R(∆E + E)−R(E) = dfront (3.6)

to define the thickness spectrum. The thickness is defined as dfront. In Figure
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Figure 3.11: A ∆E/E plot for θ = 50◦. In ROOT called b1f5. Figure taken
from [57], where the 112Cd + 3He reaction with SiRi in forward angles (40-54◦)
is studied.

3.11 a plot of deposited energy in the front counter as a function of energy
deposited in the back counter is displayed. The different particle types are
distinguished by the positioning of the bananas: the lowest charged particles in
the lowest bananas. In this case, the protons p with charge q = 1 are in the
lowest curve, and the He particles with q = 2 in the uppermost curve. The
program Qkinz [60] can calculate the position and shape of the banana for a
given charged particle, coming out at the corresponding ejectile angle.

3.1.5 Signal Processing

The signals from SiRi are processed by pre-amplifiers of the type Mesytec MPR-
16. Four pre-amplifiers handle 16 ∆E strips each, for the 64 ∆E detector strips.
Another pre-amplifier handles the eight E-detectors. The output is differen-
tial signals, which get transmitted to Mesytec STM-16 modules which contain
timing- and spectroscopy filter amplifiers, and also a leading-edge discriminator
[57].

A logic circuit filters out irrelevant signals to minimize the waste of server space.
The discriminator outputs the logical ”OR” signal of the ∆E-detectors, provid-
ing the master gate of the data aquisition, which is about 2 µs long. As a
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detection is made in one of the LaBr3:Ce-detectors in OSCAR, a STOP signal
is sent. These events in reality happen in coincidence, but the stop signal is
delayed by ≈ 350 ns to allow a small time frame where measurements are made.
A sorting of true coincidences will be performed offline. The analog signal from
the shapers is converted to a digital signal, using ADC’s from CAEN (mod.
785) and Mesytec (MADC-32). The time to digital signals are converted by a
CAEN (mod.755) TDC. The data aquisition is placed in a VME module rack,
and being controlled by software running on a CES8062 CPU. Using a CAEN
VME USB module (mod. 1718), the data is transferred to a Linux computer
[57].

3.2 Calibration of (p,p′)-data

Both the detector material and the electronics used can be sources of error
propagation. Calibration is therefore a crucial step in making measured data
aligned with what it in reality represents. The calibration is performed using
the software ROOT [59].

3.2.1 SiRi calibration

The response of the SiRi detectors is linear, and the energy of the particle in
our measured spectrum will follow

E(x) = a+ b · x, (3.7)

where x is the channel number, a is the shift and b the energy dispersion per
channel. Our goal is to determine a and b such that the peaks in the energy
distribution E(x) match the theoretical peaks estimated by Qkinz [60] for both
the ∆E and E axis.

In the calibration I used the program Qkinz [60] to simulate experimental runs
at OCL. The program takes inputs like the beam type and energy, target type
and thickness, and allows you to choose backward or forward angled SiRi po-
sitioning. After applying these presets, the program can be used to determine
the energy deposited in the different SiRi strips. The calculation is based on
the Bethe Block formula (3.4).

With eight back counters, and eight front counters, this results in 64 back-
front combinations having to be calibrated. A few spread out energy states
must be used to make sure I not only calibrate the one point of the spectrum,
but correct for a gain and shift from the detectors across the spectrum, from
low states to high energy states. The ground state in 68Zn was used, as well as
the fourth excited state in 28Si. Using these two well known states, I compared
the position of the blobs in the ∆E / E plots to the actual value for the energy
(theoretical value calculated by Qkinz). This correction gave us a shift and gain
to calibrate the particle spectra for each ∆E − E combination.
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The fourth excited state of 28Si was chosen as the high calibration point as it
is a higher energy state with a good amount of counts in the experimental data
(see Fig. (3.13)). From this figure, it may seem like the fifth excited state has
even better counts, however when looking at the Qkinz-plot and energy values
in Fig. (3.14), one can see that the 5th, 6th and 7th excited state are very close
to each other in the area of the peak in the experimental result, which makes
none of them a good calibration point as I do not know the population of each
state. The same overlap occurs for most higher states, as it is a general feature
of the nucleus that the higher the excited energy state is, the closer the levels
will generally be to others. Looking at the fourth excited state in Figure 3.14,
this seems to have a distance larger than the energy resolution to other states,
and therefore it is a good choice for calibration. By applying this technique,
the calibrated ∆E/E plot for one ∆E-E combination seen in Fig. 3.12 was
determined.

Figure 3.12: 68Zn data, calibrated to correct theoretical energy peaks. The plot
shows the energy deposited in the front counter ∆E, for the angle θ = 140◦

versus the energy deposited in the back counter E of SiRi in the first strip of
the first back detector: b0f0 in ROOT. The lower banana is protons, and the
small banana above is deuterons. The lower right, brightest peak is the ground
state, and is used in the calibration.
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Figure 3.13: 28Si data collected in the first strip for the angle θ = 140◦(front
detector) of the first back detector. A plot of the energy deposited in the front
counters ∆E, versus the energy deposited in the back counters E of SiRi. The
fourth excited state is inside the black square, and was used for calibration.
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Figure 3.14: 28Si Qkinz-calculations for the in the first SiRi strip (front detector)
of the first SiRi back detector, using 16 MeV protons and 4 mg/cm2 thick target
in backward angles. The fourth excited state is under the arrow, and was used
for calibration.
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Ejectile Gating

Since I am interested in a specific reaction channel with a certain outgoing
particle type, I wished to exclude the upper ∆E/E curve in Figure 3.12 that is
due to outgoing deuterons, so that I only extracted the data for protons. The
thickness of the ∆E detectors was calculated using the Bethe Block equation,
see Eq. (3.4), and the range curve for protons in the Si material, using data from
the experiment, Eq. (3.5) and Eq. (3.6). This resulted in a normal distribution
around 130 µm, see Figure 3.15. The smaller peak implies a lower apparent
thickness, but this is due to electrons. The small peak at around 210 µm is due
to deuterons. In order to avoid these ejectiles, I gated on the proton-peak and
used only coincident γ-rays to these measurements as our valid reaction data.

3.2.2 OSCAR calibration

γ-energy Calibration

In order to calibrate the energy spectrum of the γ-ray detectors, I compared the
experimental peaks in our data to known theoretical values of energy levels for
68Zn [61] and 28Si [62] for the excitation energy Ex in the target material and
γ-ray energies Eγ resulting from the de-exitation. The peak mean values were
found by estimating a Gaussian curve to the experimental peaks and extracting
the mean value. Using a peak in the lower region and more peaks in the higher
region allowed us to adjust the whole spectrum correctly, not just correctly
for one region. This process was done for each individual detector for every
calibration peak. The resulting spectrum after a linear calibration is shown in
Figure 3.16, and has nicely aligned energy peaks for all detectors, and the peaks
are corresponding to actual experimental values. Slight variations occur, and
are visible in Figure 3.16, especially in the high energy-regions, and a tendency
towards non-linearity can be seen due to saturation of the PM-tubes. However,
the variations will still be within the detector resolution uncertainty, and the
calibration is found to be satisfactory for data-analysis. Seeing as the centroids
can be quite precisely determined, it is therefore a good idea to in the future
explore quadratic or other non-linear calibration techniques for OSCAR. This
is currently being looked at by scientists in the Oslo group.
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Figure 3.15: Apparent thickness of the ∆E detector for protons, based on cal-
culations from the data, using the range curve of protons in Si.
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Figure 3.16: γ-detector alignment after calibration for detector 6 and 7 of the
68Zn run (As an example pair to demonstrate, all other detectors have similar
profiles). The peaks are well calibrated, yet better for lower energies than higher
energies.
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γ-time Correction

The time spectrum is dependent on energy due to the threshold, which decides
what is noise and what is valid data. Using Leading Edge discriminators for this
set threshold will cause a phenomenon is called walk, and it manifests itself in
our data such that signals of low amplitude will appear to be happening after
a simultaneous signal of higher amplitude. This is unfortunate when looking at
coincident events. Due to a favorable trait of the new LaBr3:Ce detectors and
the fact that the ∆E detectors were used to generate the start signal, the timing
was already very good. However I still needed to apply a slight adjustment to
the lower energies (see Figure 3.17). By doing a polynomial fit to the curved
shape shown in Figure 3.17, using the function [57]

t(x) = 200 + a+ b/(x+ c) + d · x, (3.8)

where t is the time channel and x the energy channel. 200 is an arbitrary
number representing the position of the prompt time peak, while a, b, c, d are
coefficients determined by fitting the polynomial to the curve. Finding these
coefficients can take several fits, until a straighter time spectrum is achieved,
see Figure 3.17. In Figure 3.18, small peaks around our time peak are visible,
which are due to neighbouring beam bursts with a spacing of the cyclotron
frequency. By gating on a single small peak by the same interval (here we set
the peak to be within 194 and 206 as shown in Figure 3.18), I subtracted the
corresponding spectrum.
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Figure 3.17: The uncorrected time spectrum (left), where one can see a slight
bend at low energies, which must be aligned with the rest of the data. and
corrected, straightened time spectrum (right), using a polynomial fit to the
curve of the original time spectrum. Small peaks are still present around our
time peak, which are due to random coincidences of background radiation.
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Figure 3.18: The corrected time spectrum, projected onto the y-axis. The gates
set at 194 and 206 for the background correction are shown.
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3.2.3 Finished Calibration

Now that I had trustworthy coincidences to work with, I produced a coincidence
matrix which expresses how the γ-ray energies Eγ relate to the excitation energy
Ex of the nucleus. Since the energy of the incoming proton and also the energy
of the outgoing proton is known, I could calculate this excitation energy that
the nucleus obtains during a collision. The resulting matrix is represented in
Figure 3.19, and this is the data representation I worked with as input into the
process of the Oslo Method.

Figure 3.19: The coincidence matrix of excitation energy vs γ-energy after fin-
ished calibration, which will be unfolded using the Oslo Method. The peaks at
around Eγ = 4.439 MeV and 6.130 MeV are traces of carbon and oxygen, which
were useful to check our calibration.

3.3 The Oslo Method

The Oslo Method uses data from a light-ion reaction: usually (p,p′γ) or similar,
to extract the nuclear level density and γ-strength function for the residual
nuclei. This is useful input when calculating reaction cross sections and reaction
rates to better understand heavy-element nucleosynthesis. One of the most
important assumptions made in the Oslo Method is that the Brink hypothesis
[49] holds, see Section 2.4. The Oslo Method Software [63] was used to perform
the data treatment, and the mentioned programs (like MAMA) can be found in
this repository.

3.3.1 The iterative unfolding method

In Ref. [64] the iterative unfolding method is thoroughly discussed, but I will
give a brief explanation of it here. As the OSCAR detectors have a finite
volume, a signal disturbance will occur from reactions within the detector ma-
terial. My data must be filtered through an unfolding process to achieve a true
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full energy γ-ray spectrum. I need to find the response function describing the
way the detector distorts the incoming γ-ray, as our data will be tweaked by
its resolution and efficiency. A variety of processes manifest themselves in our
observed spectra: these include Compton-scattering, photoelectric effect, pair
production, annihilation and backscattering- γ-rays. Which of the processes
will dominate is highly energy dependent, as the cross section for the various
interactions change as a function of energy. It also depends on the detector
material.

In order to perform this unfolding and estimate the correctly shaped spec-
trum, I used the iterative folding method. By normalizing and smoothing the
results, the detector response was subtracted from the true full energy γ-ray
spectrum. I used it on a LaBr3:Ce-detector data set, but it can also be used
for other detectors like NaI, Ge, BGO, CsI or other materials given that the
response functions are known. The iterative unfolding method used in the Oslo
method works by “guessing” a correct unfolded spectrum (by initially guessing
our RAW-spectrum as the correct one), and thereafter iteratively folding it. The
method itself is assumed to be very safe, even if fluctuations may occur from
one channel to the next. The action of folding is quite fast and simple, so doing
it many times is not a daunting task for a modern computer to handle. One
will need to have a very precise determination of the response matrix R, which
can be found by using spectra from isotopes with well known mono-energetic
outgoing γ-rays, and/or from simulations.

After having measured spectra of monoenergetic γ-lines for the LaBr3:Ce de-
tectors, an interpolation between these measured points is necessary as there is
only a limited amount of well known mono-energetic sources. I separated the
Compton background from the rest of the reactions/peaks in the spectra, and
interpolated between the peaks by assuming a Gaussian distribution is smooth-
ing each peak. For the Compton background, I interpolated between channels
corresponding to the same scattering angle θ. I also made sure the probability
of every process in each channel was normalized to 1.

Rij is defined as the response in channel i when γ-rays hit the detector with
an energy corresponding to channel j. Each response function is normalized:∑
iRij = 1. The folding can be expressed in general as

f = Ru, (3.9)

where f is the folded spectrum, and u is the unfolded spectrum. I initially used
our raw-spectrum r as a guess for the unfolded spectrum u0, which is the normal
assumption (which will not be true), but the procedure is not sensitive to the
choice of starting trial function. One performs typically 20 iterations of this op-
eration from there gradually approaching a better guess. The first guess results
in the back-folded spectra f0 = Ru0. The next guess will be u1 = u0 + (r− f0),
which will be giving us f1 = Ru1, and continue, until f ≈ r, which is typically
achieved after 4-5 iterations.

The resulting and final u-spectrum is used to remove background disturbance
from Compton scattering and pair production, in what is called the Compton
subtraction method. The resulting u-spectrum from the unfolding contains
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large fluctuations from one channel to the next (even for few iterations, but
these fluctuations will increase with the number of iterations). One solution
would be to smooth out the noise, but this could lead to loosing information
about true states as if they were noisy resonances. Therefore the Compton sub-
traction method [64] was developed to subtract counts from the solution based
on physical arguments about the detector response. This way, the counts corres-
ponding to Compton scattering, annihilation and single and double escape are
distributed back into the full energy peak. Thereafter, the smoothed Compton
contribution is estimated to the folded spectrum, before being subtracted from
the original unfolded spectrum. This results in a new spectrum

v(i) = pf (i)u0(i) + w(i) (3.10)

where pfu0 is the full energy contribution, and w is the sum of single escape
(us), double escape (ud) and annihilation (ua):

w(i) = us + ud + ua, (3.11)

A Compton spectrum, including only the contribution from Compton scattering
can be defined as the spectrum with no Compton contribution at all (v(i)), and
subtract it from the experimental raw spectrum r(i) as c(i) = r(i)− v(i). This
Compton spectrum will contain strong oscillations, as it depends on the unfolded
spectrum u0 from Eq. (3.10). According to the method presented in [64], c(i)
should be a slowly varying function of energy, and therefore this Compton spec-
trum can be smoothed without loosing important information. After smoothing
c(i), we can subtract all the disturbances from the raw spectrum in the following
manner:

u(i) = [r(i)− c(i)− w(i)]/pf (i), (3.12)

with pf being the probability of the full-energy peak. Lastly the γ-ray energies
varying efficiency (see Figure 3.7) are corrected for: U(i) = u(i)/εtot(i), leaving
us the final unfolded spectrum U . This method converges rapidly, and main-
tains the original shape of the spectrum.

As input for the unfolding I sent in the coincidence matrix (see Figure 3.19),
which is the raw matrix. I also used MAMA to create a response matrix us-
ing the known response function for OSCAR, but during our unfolding I made
response functions with 10 times less FWHM than experimentally known, to
avoid negative resonances around the full energy peak [65].

The unfolding was performed using MAMA. For high energy γ-rays above 2
MeV, I set the lower limit at 500 keV. Below, the limit is 1/4 of the full-energy.
Full-energy is taken from the upper unfolding limit. The iterations terminated
when the folding of the unfolded spectrum is equal to the raw spectrum, and
the result is plotted in Figure 3.20.

45



Figure 3.20: The unfolded particle-γ matrix for 68Zn. The number of counts
are expressed by a color spectrum from few counts (blue) to most counts (red).

3.3.2 Troubles in the Unfolding Method

To study how well the unfolding works, we look for the familiar energy lines in
the spectrum and expect a lot of counts in those areas, and little in the oth-
ers. We also have to look carefully whethere too many negative counts were
removed, as this can destroy valuable information. This can be corrected for by
isolating areas affected by such treatment, if it is obvious that this is a fault due
to the unfolding and subtraction. However, the less corrections of this manner
made is better to keep the true information from the experiment as it origin-
ally was. As seen in the coincidence matrix even after it has been processed in
the unfolding, counts are visible between the first excited state and the ground
state, as though there is a state being populated in this area. Since this is
already present in the raw-matrix, we wanted to compare the raw spectrum to
a simulated spectrum to see if maybe the simulations of the detector response
could be to blame. The simulations were performed by G.M. Tveten. Another
thing would be contaminants causing the state to be present, but such contam-
ination is usually by neighbouring isotopes. Checking for 64,66,67,69,70 Zn there
is none having a significant state in the area of 500 keV. There is also a known
carbon/oxygen-contamination which will not contribute to this effect as they
have way higher (4000 keV and above) states only. What we concluded was
that even when the unfolding process is believed to correct for the background
leaving us with the true value in the full energy peak, we see in both the raw,
the unfolded, the first generation and the simulation spectra, that there is a
significant contribution of 511 keV single-escape γ-rays both from the detector
material itself and neighbouring detectors sending this out. See Figure 3.21 and
3.22. This problem has probably been present earlier even if we did not see it,
but due to OSCARS higher energy resolution of than our previous detector ar-
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Figure 3.21: A simulated spectrum of the high energy γ-rays from 68Zn for two
energies, one around 7000 and one around 9000 keV. We see that the 511 keV
disturbance affects both of these states, and this has to be the unwanted counts
we see between the diagonals in the unfolded coincidence matrix as well. The
first high peak on low energy also shows the amount of 511keV photons we are
dealing with is significant. Figure acquired from Ref. [53].

ray CACTUS, it is probably now easier t spot this fault. There is an issue in the
unfolding method, causing the contribution of the 511 keV photons to remain as
actual states, and since it is exactly halfway between the ground state and the
first excited 1077 keV state, the unfolding is probably tricked even more than
normal to believe that this could be a possible path for the γ-rays to cascade.

Luckily the contribution from these 511 keV photons will not alter the level
density or the strength function in a visible way, which as shown in chapter 5
ended up being decent calculations. The level density is still very smooth, and
we can still trust the method to be working quite well. Nevertheless, it is worth
taking note of, and being aware of this.
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Figure 3.22: A simulated and unfolded spectrum of the high energy γ-rays
from 68Zn for two energies, one around 7000 and one around 9000 keV. We see
that the 511 keV disturbance affects both of these states, and this has to be
the unwanted counts we see between the diagonals in the unfolded coincidence
matrix as well. Figure acquired from Ref. [53]

48



3.3.3 The First-Generation Method

After the unfolding, the next step is to filter out the first γ-rays sent out of the
excited nucleus. It is impossible to separate these directly from our original,
total γ-ray spectrum as the timing of the detector and the data acquisition is
simply not good enough. To get around this, we use the iterative first-generation
method, which extracts a first generation matrix from our data [66]. The method
is also well explained in [67].

Let FG(Eγ)Ex , the distribution of γ-ray decay intensity from a given excit-
ation energy Ex, as a function of γ-ray energy Eγ , denote the first generation
γ-ray spectrum. In general the nucleus will decay from Ex and down to the
ground state, maybe involving several states, through a cascade of γ-rays which
makes up the total γ-ray spectrum AG(Eγ)Ex :

AG(Eγ)Ex = FG(Eγ)Ex +
∑

E′
x<Ex

n(E′x)Exw(E′x)ExAG(Eγ)E′
x
, (3.13)

which shows that AG(Eγ)Ex can be viewed as a superposition of the weighted
sum of all-generation spectra of lower excitation energy, and the first-generation
spectrum FG(Eγ)Ex . w(E′x)Ex is applied as a weighting factor, encoding the
probability of a decay from Ex to E′x, given as

w(E′x)Ex =
FG(Ex − E′x)Ex∑

E
′
γ

FG(E′γ)Ex , (3.14)

which is basically the normalized first-generation spectrum for the given excit-
ation energy Ex. The normalization factor of Eq. (3.13) n(E′x)Ex corrects for
cross section variation populating the E′x bins, and is estimated as:

n(E′x)Ex =
M(E′x)N(Ex)

M(Ex)N(E′x)
, (3.15)

where M(Ex) and N(Ex) denote the average γ-ray multiplicity and total counts
at the given excitation energy Ex. M(Ex) can be estimated from the spectrum
as

M(Ex) =
Ex
〈Eγ〉

, (3.16)

where 〈Eγ〉 is the weighted average at excitation energy Ex. We can now rewrite
Eq. (3.13) as

FG(Eγ)Ex = AG(Eγ)Ex −
∑

E′
x<Ex

n(E′x)Ex
FG(Ex − E′x)Ex∑

E′
γ
FG(E′γ)Ex

AG(Eγ)E′
x

(3.17)

These set of equations are solved by an iterative procedure, where the starting
trial functions are FG(Eγ)Ex , and we iterate until convergence. We start out
with constant functions as trial functions, where the γ-ray energy Eγ is the
same value for all functions. Tests of the convergence properties of the proced-
ure have shown that excellent agreement is achieved between the exact solution
(from simulated spectra) and the trial function FG(Eγ)Ex already after three
iterations [66].
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Figure 3.23: The first generation matrix for 68Zn. The number of counts are
expressed by a color spectrum from few counts (blue) to most counts (red).

To make the first-generation matrix in MAMA, I used the unfolded spectrum
from the iterative unfolding method as input. After iterating through the
method, and filling and removing negative counts, I ended up with the first-
generation matrix plotted in Figure 3.23.

3.3.4 Extracting the Level Density and γ-Strength Func-
tion

When the FG(Eγ)Ex trial functions have converged, they are combined and
normalized into a decay probability matrix P (E,Eγ). When assuming, as the
Compound Nucleus model states, that the excitation energy in a compound
nucleus will be shared among a large number of nucleons, the nucleon forgets
its way of formation (see section 2.1.2). The decay probability P (E,Eγ) of
a γ-ray with energy Eγ , decaying from energy E is therefore proportional to
the transmission coefficient T (Eγ), and the level density ρ(Ef ), at the final
excitation energy Ef = E − Eγ :

P (E,Eγ) ∝ T (Eγ)ρ(Ef ). (3.18)

T (Eγ) is independent of excitation energy, and therefore also independent of
the nuclear temperature, according to the Brink hypothesis [49] which states
that collective excitation modes built on excited states have the same proper-
ties as those built on the ground state. For higher temperatures up towards the
GDR, the hypothesis is violated, but since the experiments relevant to the Oslo
method have low temperatures and spin values these dependencies are assumed
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to be negligible.

To extract the level density and γ-ray transmission coefficient, another iterative
procedure is applied to minimize χ2 as

χ2 =
1

Nfree

Emax∑
E=Emin

E∑
Eγ=Eminγ

(
Pth(E,Eγ)− P (E,Eγ)

∆P (E,Eγ)
)2, (3.19)

where Nfree is the degrees of freedom and ∆P (E,Eγ) the uncertainty in the first
generation matrix. This is used to normalize the first-generation γ-ray matrix
to be within the minimum values E = Emin, and maximum values E = Emax,
so that for every excitation-energy bin E the bin is unity. Then the output
first-generation γ-ray matrix is theoretically determined to be

Pth(E,Eγ) =
ρ(E − Eγ)T (Eγ)∑E

Eγ=Eγmin
ρ(E − Eγ)T (Eγ)

. (3.20)

Emin and Emax are chosen to be values that ensure that the data we utilize
are from the statistical region of the excitation energy, including no disturbing
γ-lines that may still remain after the first-generation method due to incorrect
subtraction. Each point of the functions ρ and T are assumed to be independ-
ent variables, and so the reduced χ2 in Eq. (3.19) is minimized for E and E−Eγ .

The data points being globally fitted in this way gives us the shape of the
level density and the γ-ray transmission coefficient. To perform this process of
finding the shape of T and ρ of 68Zn from the data from the in-elastic scattering
experiment, we use the program Rhosigchi with input limits of interest for our
lower Eγ = 2.36 MeV and lower and upper excitation energy Eex,l = 3.0 MeV
and Eex,u = 11.1 MeV.

We can still have an infinite number of solutions if the analysis is left at this.
The three parameters: A, B and α must be determined, in order to solve the
following equations [68]:

ρ̃(E − Eγ) = Aeα(E−Eγ)ρ(E − Eγ), (3.21)

and
T̃ (Eγ) = BeαEγT (Eγ) (3.22)

and allow only one correct solution, representing the true level density and γ-ray
transition strength.
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3.3.5 Normalization of the Level Density

To determine α, the slope of T and ρ, and A which is the absolute value of the
level density, ρ had to fit the number of known discrete levels at low excitation
energy, while at the same time match neutron (or proton) resonance data at
high excitation energy. From Ref. [68], the starting point are the equations:

ρ(U, J) =

√
π

12

e2
√
aU

a1/4U5/4

(2J + 1)e−(J+1/2)2/2σ2

2
√

2πσ3
, (3.23)

and

ρ(U) =

√
π

12

e2
√
aU

a1/4U5/4

1√
2πσ

. (3.24)

Here ρ(U, J) is the level density at a given spin J , while ρ(U) is the level density
for all spins. a is the level-density parameter, and σ the spin cutoff parameter.
In a neutron resonance experiment, if I is set to be the target spin, then the
neutron resonance spacing for s-wave neutrons D0, with a spin/parity of 1/2+

can be expressed as

1

D0
=

1

2
[ρ(Sn, J = I + 1/2) + ρ(Sn, J = I − 1/2)]. (3.25)

We can do so, since all levels of spin J = I ± 1/2 are accessible in a neutron
resonance experiment, and both parities are assumed to contribute equally to
the level density at the neutron binding energy Sn. This results in a total level
density at the binding energy, with σ calculated at Sn as:

ρ(Sn) =
2σ2

D0

1

(I + 1)e−(I+1)2/(2σ2) + e−I2/2σ2 . (3.26)

I used the program Robin to calculate the level density and spin cut-off para-
meter at ρ(Sn). For spin cut-off formula I used the rigid moment of iner-
tia formula (RMI)(E&B2006) [31]. I then chose the level density parameter
a=8.42(26) MeV−1 and total backshift parameter E1=1.14(30) MeV from the
Constant Temperature formula (CT)(E&B2009) [70]. The neutron separation
energy S(n)= 10.198 MeV was provided to calculate the spin distribution for
our spin cut-off parameter, giving σ = 4.26 ± 0.43. Since the data itself does not
reach excitation energies around Sn, I made an interpolation between the Oslo
data and ρ(Sn) using the Constant Temperature model [33]. To do this, I used
D2RHO to calculate level density ρ from the level spacing D0 at the neutron
and proton separation energy, or excitation energy. I provided the resonance
capture levels formed by, in our case, s-wave neutron capture (l=0), since my
target is in its ground state and has zero spin in the (n,γ) reaction. The neutron
resonance spacing parameter D0 = 367 ± 19 eV was found through registered
info from earlier experiments [72]. σ was calculated by Robin, plus a standard
deviation of ≈ 0.1σ.
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3.3.6 Calculating the γ-Strength Function

The normalization is also important for the γ-strength function, due to the same
issue of infinite solutions, as one still has to find the remaining constant B in Eq.
3.22. This is done by using the experimentally measured average total radiative
width Γ at the neutron separation energy through the formula from Ref. [69]:

〈Γγ(E, I, π)〉 =
1

2πρ(E, I, π)

∑
XL

∑
If ,πf

∫ E

Eγ=0

dEγTXL(Eγ)ρ(E − Eγ , If , πf ),

(3.27)
where 〈Γγ(E, I, π)〉 is the average total radiative width of levels of energy E,
spin I and parity π. Then integrate over all states that are accessible through
γ-ray transitions with energy Eγ , and add up over all final levels with final spin
If , final parity πf , electromagnetic character X and multipolarity L.

The relationship between the γ-ray strength-function f(Eγ) and the γ-ray trans-
mission coefficient T (Eγ) is given in Eq. (2.14). Assuming that the main contri-
bution of γ-ray transmissions are of dipole character (l=1), it can be expressed
as

BT (Eγ) = B
∑
XL

TXL(Eγ) ≈ B[TE1(Eγ) + TM1(Eγ)], (3.28)

and the experimental γ-ray strength function can be found as

f(Eγ) =
1

2πE3
γ

BT (Eγ). (3.29)

Assuming that any excitation energy and spin has equally many accessible levels
with positive and negative parity, the level density ρ is given as

ρ(E − Eγ , If ,±πf ) =
1

2
ρ(E − Eγ , If ). (3.30)

Combining Eq. 3.27, 3.28 and 3.30, the total average radiative width of an
s-wave neutron capture resonance with spins It± 1/2 can be expressed in terms
of the transmission coefficient T and the experimental level density ρ(Sn −Eγ)
as

〈Γγ(Sn, It ± 1/2, πt)〉 =
B

4πρ(Sn, It ± 1/2, πt)

∫ Sn

Eγ=0

dEγTXL(Eγ)

×ρ(Sn − Eγ)

1∑
J=−1

g(Sn − Eγ ,It ± 1/2+J),

(3.31)

where It is the spin of the target nucleus in the reaction, π is the parity of
the target. We also have that B

4πρ(Sn,It±1/2,πt)
= D0, the neutron resonance

spacing. The spin distribution g(E, I) of the level density is given by [34]:

g(E, I) =
2I + 1

2σ2
e−(I+1/2)2/2σ2), (3.32)

and then g is normalized over all I to be unity. By applying an experimental
value for 〈Γγ〉 at Sn, the weighted sum of the widths of all the levels of spin
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It ± 1/2 is found by using Eq. 3.31. From this B can be determined. For the
analysis, I used the program Normalization to normalize the γSF. I used the
previously mentioned neutron resonance spacing D0 from [72] and the average
total radiative resonance width Γ = 440 ±MeV, also found in [72]. However, the
method suffers in the extraction of the first-generation γ-ray matrix for energies
Eγ < Eminγ . In addition, the data for the higher γ-energies up towards Sn is
suffering from low statistics. I extrapolated T with an exponential function to
overcome this difficulty.

3.4 Comparison of the Constant Temperature-
and Fermi Gas Model

There are several different models discussed in the Oslo Method, and the two
most used are the Fermi Gas model and the Constant Temperature model. In
this energy range under 10 MeV, the Constant Temperature model is often
recommended, as discussed in the theory section. However, it is good practise
to check what really works for the data. I therefore looked at the resulting
calculations using both of these models before proceeding. The resulting level
densities (see Figure 3.24) show a typical Constant Temperature profile, but
very minimal differences, making the choice of model quite arbitrary based on
this result. Other results had to be studied as well to see if they are better at
indicating the winning model.

For the calculated transmission coefficient, see Figure 3.25, there is a slight
difference in modelled shape at lower energies. This is a hint that something in
the models is going to affect the resulting γ-ray strength function. From this,
it was not really easy to determine which is better, so I continued looking. By
comparing the two models resulting γ-ray strength function, the main differ-
ence in the result was the effect on the upbend and how precisely the model
followed the data. I trust our data in the low energy area, and see a very
constant-temperature tendency to the level density as well. The Fermi Gas is
very similar, but seems to underestimate the upbend slope compared to the
data. The Constant Temperature follows the data better, as shown in Figure
3.26, which also resounds what the assumption was beforehand: that CT is bet-
ter for this energy region. I therefore chose to use the Constant Temperature
model for the data analysis.
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Figure 3.24: The calculated nuclear level density from the Oslo method, using
the Fermi Gas model to the left, and the Constant Temperature model to the
right.

Figure 3.25: The calculated transmission coefficient from the Oslo method, using
the Fermi Gas model to the left, and the Constant Temperature model to the
right.
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Figure 3.26: The calculated γ-ray strength function from the Oslo method, using
the Fermi Gas model to the left, and the Constant Temperature model to the
right.
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Chapter 4

Experimental details and
data analysis of the
68Zn(γ,n) measurement

To cover another energy domain in the γ-strength function, which will help
normalize the Oslo data and get a broader understanding of the shape and
nature of the γ-strength behavior of this nucleus, we went to Japan!

4.1 Experimental Setup at NewSUBARU

4.1.1 The NewSUBARU Facility

The NewSUBARU Synchrotron Radiation Facility is constructed at SPring-8 in
Hyogo, Japan. SPring-8 (Super Photon ring with electron energies of 8 GeV)
is a large synchrotron radiation facility managed by RIKEN, with JASRI in
charge of usage. The facility accelerates electron beams to close to the speed
of light, and applies a magnetic field to force the beam into a curved path. As
an effect, electromagnetic radiation beams are created. This radiation is the
highest brilliance synchrotron radiation in the world [73], with photon energies
in the range 300eV to 300keV. The facility also produces γ-rays of up to 3 GeV,
and infrared radiation. NewSUBARU recieves electron beam from the linear
accelerator at this site, as shown in Figure 4.1. This smaller facility generates
complementary spectral regions, and consists mainly of a 1 GeV electron stor-
age ring operated by the Laboratory of Advanced Science and Technology for
Industry at University of Hyogo (LASTI), made for using synchrotron radiation
in the soft X-ray to UV regime of energies. The ring is a racetrack type, and
is 119 m long in total. The electrons in this ring are delivered directly from
the linear accelerator, with energies of around 1 GeV. The storage ring can ac-
celerate or decelerate electrons on its own, and has the capability of adjusting
the electron energy. This is useful as we in this experiment will collide a laser
beam with the accelerated electrons in a reverse Compton scattering collision,
which will be discussed in detail later. If the laser alone was to decide the en-
ergy, then we would need to change its wavelength, which is hard to control and
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Linear	Accelerator

Figure 4.1: View of the SPring-8 accelerator complex. The complex is composed
of a 1 GeV linac, 8 GeV booster synchrotron, 1 GeV NewSUBARU storage ring
and 8 GeV SPring-8 storage ring. Figure taken from [74].

implement experimentally. As shown in Figure 4.2: On one side of the storage
ring is a 12 m long straight path, at which the BL01 beamline is located. The
BL01 beamline is used for research and develops new light sources for different
applications. This is one of two long straight sections, with an optical klystron
installed on it. The optical klystron consists of two undulators sepated by a
dispersive section, where the electron energy decides the transit time [75]. The
two main applications of the optical klystron are: used as a light amplifier in a
Free Electron Laser (FEL), or as a source of coherent synchrotron radiation, in
which bunching of the electron beam enhances the emission.
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Figure 4.2: Layout of NewSUBARU electron storage ring. The ring consists of
12 bending magnets, 6 inverse bending magnets, multipole magnets and steering
magnets. BL01 (Laser Compton scattering γ-ray) is located at the lower long
straight path of this illustration. Figure taken from [76].

4.1.2 Laser Compton Scattering

We will be using only the downstream side of this beamline: BL01A. Currently it
is used to generate 1-40 MeV laser-Compton γ-rays by inverse Compton scatter-
ing [77], see Figure 4.3. This is done by making external laser photons scatter
on to the NewSUBARU relativistic electrons. The Laser Compton scattered
γ-ray’s have an energy Eγ described in [76] as

Eγ =
4γ2EL

1 + γ2θ2 + 4γEL
mec2

(4.1)

where γ = Ee
mec2

, EL is the laser photon energy, γ is the lorentz factor from
dealing with relativistic electrons and Ee is the electron kinetic energy. θ is the
angle between the direction of the outgoing γ-ray and the incident electron, me

is the electron rest mass and c the speed of light. The formula in Eq. (4.1) can to
some be recognizable as not too different from the original Compton scattering
energy relation. If the collision electrons did not have relativistic speed, this
equation would be of the original compton form [78]:

Eγ =
EL

1 + (Eγ/mec2) + (1− cosθ)
. (4.2)

The introduction of the Lorentz factor γ is necessary to take the relativistic
energy of the electrons into account. To find the final energy of the photon, one
must perform two Lorentz transformations, as the standard Compton equations
are valid only from the electron’s rest frame. The frequencies and angles of the
photon as seen by the moving electron are not the same as the ones measured
in the lab frame, so one must transform into the electron frame of reference,
and back out again. This process therefore converts a low-energy photon to a
high-energy one by a factor of order γ2 [78]. By also assuming ultrarelativistic
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Figure 4.3: Laser Compton Scattering: Collision between laser photons and
accelerated electron. The process is also called Inverse Compton Scattering,
and it gives the resulting collisional energy to the photon, as illustrated by [79].
Only the backscattered (about 180◦ scattered) photons (γ-rays) are used.

electrons, and that the photon is most likely scattered into a cone with opening
angle along the direction of the incident electron of 2/γ ≈ 1 mrad for 1 GeV
electrons, one can assume θ << 1, γ >> 1 and β ≈ 1. Then Eq. (4.2) reduces
to Eq. (4.1).

The energy of the outgoing γ-ray can be changed by either changing the elec-
tron energy in the storage ring, or adjusting the laser wavelength. The resulting
γ-ray has the unique characteristics of tuneable energy and polarization, as well
as being well directed and quasi-monoenergetic. These qualities are useful in
various fields of study, including CT-imaging, nuclear transmutation, electron
pair creation and photo-nuclear reactions.

4.1.3 The Experimental Hutch

In the experimental hall the lasers are introduced by mirrors into NewSUBARU.
The electrons in the ring will collide head on with the incoming laser beam at
positions shown in Figure 4.4. The lasers used are Nd:YVO4 with a wavelength
of 1 µm and 0.5 m, and CO2 with a wavelength of 10.6 µm. The resulting
γ-rays from this collision are used for various detection purposes. For perform-
ing measurements we used a NaI scintillation counter, a LaBr3:Ce detector and
neutron counters. An MCA was used for analog to digital conversion of the
detector signals.

In the vacuum tube a mirror is used to introduce laser beams into the beam
tube. Generated γ-rays pass through the mirror and window, into the shielding
hutch. The energy of Compton γ-rays depend on the angle of which it exits the
scattering. We end up with quasi-monoenergetic γ-rays by using a collimator
to select outgoing γ-rays with a minimal angle distribution. The collimator is
made of lead, and has 6 or 3 mm diameter hole for rays to pass through. The
spectra of the γ ray represent the convolution of the detector response function
with the γ ray energy distribution. This can be measured by the LaBr3:Ce
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Figure 4.4: Setup of Laser Compton scattering γ-ray beamline. Figure taken
from [80].

detector using the MCA, with corrections by simulations to obtain the original
energy distribution.

Finally at the end station, the shielding hutch can release the produced and
transported γ ray for use, see Figure 4.4. The γ-ray irradiation hutch GACKO
is installed at BL01A, and is a collaboration with Konan University. When the
electrons have 1 GeV energies, the current is 250 mA, and the laser power of the
Nd 1 µm laser is 4W, a γ flux of 6× 106 photons/s with energies of 6-17 MeV
is generated. Without any collimation, the γ ray beam size in the hutch is 10
mm, 19 m from the collision point. Targets for sampling are placed inside the
hutch and irradiated by the γ-rays while the hutch door is thoroughly closed.
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Figure 4.5: The entrance for the γ-rays through the shutter into the enclosed
experiment hutch. To the left is the LaBr3:Ce detector placed aside when it
was not used for gathering the single photon spectra. Gloves are used to avoid
led contamination from the isolating led pieces around the slightly radioactive
LaBr3:Ce detector.

Figure 4.6: Inside the hutch: Setup for detecting single photon spectra with the
LaBr3:Ce detector, which is later removed from the line of the beam letting it
interact with the target through a hole in the plastic cube. The He3 detectors
are located in three rings of different radii around the target to detect outgoing
neutrons. The NaI detector detects all the incoming γ-rays.
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4.1.4 Experimental Procedure during Measurements

For every data point we collected, we had to explore a different energy for a
different isotope. The energy of the γ-rays for our experiment is determined by
the energy of the electrons in the storage ring, so that for every new γ-energy
the electron energy was adjusted by the operators. This chain of reactions is
sensitive to error as it goes through several processes: the storage ring energy
adjustment itself and also the laser collision. Each time we changed the beam
energy, we repeated a cycle of tests which ends up being quite time consuming.
First we did a simple check of the new beam by removing the mirror that
redirects the synchrotron light radiation away from our experiment. Letting
the light pass through, we checked using transparent barriers if the incoming
beam hit both the entrance of the tunnel in which the target (pictured in Figure
4.7) was later positioned, and also that the light comes through to the end of
this tunnel without being disturbed. It is important to irradiate only the target
material in order for the calculation of number of atoms which can interact with
the γ-ray to reflect the actual occurring process/reactions. Once we knew this
was fulfilled, the LaBr3:Ce-detector was placed in front of the target tunnel and
we did another test to see if the beam hit this detector as well.

Figure 4.7: The Zn-targets we did measurements for in this experiment. My
favorite is to the very left.
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4.1.5 LaBr3:Ce-detector γ-ray Spectra

When the alignment was done, we were now ready to do runs for all our targets
that require this beam energy. We collected data for a short time of 180 seconds,
with a low intensity on the laser beam (0.5%), low enough to know we only
register one photon at a time, using continuous wave. This spectrum is essential
when analyzing multiple photon spectra, to know how many photons were really
detected.

4.1.6 NaI-detector γ-ray Spectra

After performing the singles spectrum measurement, we moved this detector
out of the beam line. The internal gain was adjusted to be about 12-14%,
and a single photon spectra measured was measured using the NaI detector
as well, for a short time of 180 seconds. This together with the LaBr3:Ce
spectra tells us about the identity of the single photon spectrum. Now we could
finally insert the targets and start measuring. We proceeded to collect multiple
photon spectra (ON) and background spectra (OFF) until a significant neutron
count (preferably 10000) was reached for each target. This could take from
a few minutes to several hours, depending on which energy the beam was, if
it was approaching the lower boundary of the neutron separation energy, and
also on the intensity of the beam. The intensity was constantly sinking until we
needed a re-injection to be able to count any neutrons. After all relevant targets
had been measured, we did a couple of last safety checks to see if everything
was still normal and our measurements still valid throughout the whole target
selection. We performed short single photon and LaBr3:Ce runs, just like the
ones performed before the long runs. If something had gone wrong during the
measurements, these extra-safety spectra can help us discover this.

4.1.7 Counting Neutrons

Inside the hutch, the γ ray will be used to knock neutrons out of our target.
The targets used in this experiment are 64Zn, 66Zn, 68Zn, 182W, 183W, 184W
and 60Ni, but I will only be discussing and analyzing 68Zn. Using a constant
laser beam with a given wavelength, we need to change the electron energy in
the storage ring to change the energy of the γ ray. Therefore it was useful to
do all relevant targets spectra for each energy before changing it. The target,
pictured in Figure 4.7, is placed in the very center of a cube of plastic, which
acts as a neutron moderator. Around the target, long cylindrical tubes of 3He
were placed in three rings at different radial distances away from the target in
the center, see Figure 4.8 and 4.9. These are also called proportional counters
because the signal is proportional with the energy deposited by the particle
(different types of particles give rise to different signal curves), and they are
detecting the neutrons that are knocked out of the target.

The reaction involved in this detection is 3He →3H + p + Q, where Q =
730 keV is the energy threshold needed to be registered by the detector for us
to know a neutron detection occurred. It is the kinetic energy of the ions that
ionizes the gas and provides an signal. The wire providing high voltage to the
3He counters makes sure that the signal is transferred as well. The same box
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Figure 4.8: A plastic cube with an empty tunnel through the middle where the
target sylinders are placed. Surrounding the target is three rings of neutron-
detecting 3He detectors, where the inner blue ring is R1, the middle green ring
is R2 and the outer light blue ring is R3.

giving the high voltage is also a discriminator. A threshold is chosen in order
to filter our energy signals of a lower energy, so that they do not result in a
logic pulse out. Every 3He counter is wired to a channel in this discriminator
(and power supply) and on to a scaler which counts the number of logic pulses.
The pipes are connected in such a way that the separate ring neutron count
signals are added together, and displayed as neutron counts in ring R1, R2 and
R3. Each ring also registers neutron counts dR1, dR2, dR3, which were not
in coincidence with a γ-detection, and therefore these neutrons are background
noise in the corresponding ring.

When collecting data, one has to make sure that the relationship between the
neutron counts and the error-counts is quite large, and also that the neutron
count was high enough to give significant and good statistics (ideally 10000
neutron counts in a ring). Getting enough neutron counts was sometimes diffi-
cult and time consuming, due to several factors. Firstly, for low energies relative
to the neutron separation energy of the target isotopes, the neutron count per
time was also low. Secondly, the beam intensity was dropping off significantly
as time since the last new beam injection passed. When starting out with a
fresh beam injection, a lot of neutron counts ticked in. The intensity however
decreased as time went on, and every 5-6 hours a beam injection was required
to get more intensity. But while at the end of the beams life, more counts could
be acquired by turning up the laser intensity to reinforce more energy into the
Compton collision. However, the laser interaction with the electron beam will
increase the entropy of the electron beam and that will result in a broader energy
spectrum.

65



Figure 4.9: A plastic cube with an empty tunnel through the middle where the
target sylinders are placed. Surrounding the target is three rings of neutron-
detecting 3He detectors, sending electrical signals to neutron counters for the
three rings.

4.2 Data Analysis

After performing a (γ,n) experiment, by counting neutrons and counting γ-rays,
the (γ,n) cross section for the experiment reaction can be calculated.

4.2.1 γ,n - Cross Section

In order to find the neutron cross section for a (γ, n) reaction the formula

σ =
Nn

Nt ·Nγ
, (4.3)

is used, where Nn is the number of neutrons counted by the 3He-detectors, Nt
is the number of atoms in the target, and Nγ is the number of γ-rays registered
by the NaI-detector. We do get a spread in energy due to the scattering angle
of the photons θ, so we have to take this energy spread into account. This is
done by writing ∫ Emin

Sn

n(Eγ)σ(Eγ)dEγ =
Nn

Nt ·Nγ
, (4.4)

where Eγ is the energy of the gamma coming out of the collision, Emax would
be the energy of a photon coming straight back the in same direction after the
collision, as it had approaching the collision. Emin is the energy of the largest
scattering angle that is able to enter through the collimators and hit the target,
and Sn is the neutron separation energy. This equation contains several values
which I need to extract from experimental data, to be able to calculate the final
cross section.
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For the data analysis of the (γ,n)-data, I had to both analyze the neutron
detector results, the counts in the three rings, find the shape of the reaction
cross section, and also attempt to filter out how many photons were actually
impinging onto the target. For the γ-rays we have recorded a singles spectrum
with a LaBr3:Ce-detector to identify what the profile of an incoming photon
does look like. But for the NaI-detectors we detected many photons at once,
and the challenge is trying to separate this pileup spectrum into the real amount
of photons. Such a pileup and singles spectrum for one run is shown in Fig-
ure 4.10. I also subtracted the background spectrum of γ-rays radiating from
everywhere else, which is also disturbing the true count/distribution.

In order to determine the average energy of the counted neutrons, the ring ra-
tio technique [81] was used. This average energy will affect the efficiency of
the neutron detector. Using a 252Cf source, the efficiency was measured, and
the energy dependence was found using Monte Carlo simulations, by simulating
mono energetic, isotropically distributed neutrons. The efficiency profile from
the ring ratio method is shown in Figure 4.11.

This analysis was mainly performed using Matlab. To begin with, I subtracted
the background from both the singles and pileup spectrum. After that, I set
a threshold around a separated γ-ray in the pileup spectrum in Figure 4.10. I
did this by visually plotting and comparing the two for all the corresponding
runs. Then the number of photons were calculated using the pileup method.
In order to calculate the maximum γ-energy, I used previously calibrated coef-
ficients, the electron energies used in the runs and the laser wavelength used
in ( ELaser = ~c2π

λ ). For energies above 974 MeV I used a polynomial from
T.Shima. Otherwise, Aksel-coefficients [82], [83] are used.

For the neutron analysis, the number of registered neutrons Nn were collected
in one file manually, and used directly as Nn in Eq. (4.4). This is the equa-
tion used in order to calculate the naive monochromatic cross section, which I
later had to unfold for the spread in energy occurring. But first, let me show
you what the cross section looks like if I assume all γ-rays had the maximum
energy calculated (as would be the result of a direct Compton back-scatter).
This result is plotted in Figure 4.12. The incoming beam unfortunately is not
monochromatic, which I corrected for using an unfolding procedure to repro-
duce the original photon spectrum. There are several tried and tested ways of
going about this, and I will here briefly compare two well established proced-
ures: Firstly the Matrix method, and next the Bayesian Monte Carlo Markov
Chain method.

After this naive calculation, the first step to improve it was by correcting for the
g-factor (the fraction of γ-rays which are above the neutron separation energy
and therefore actually candidates for the reaction) and the attenuation of the
beam as it goes through the materials. I did this by altering the ideal Eq. (4.4):

σEmaxexp =

∫ Emin

Sn

n(Eγ)σ(Eγ)dEγ =
Nn

Nt ·Nγξεng
, (4.5)
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Figure 4.10: The photon pile-up spectrum plotted together with the single
photon spectrum, with appropriate thresholds set for the single photon to in-
dicate the actual photon profile.

where ε = (1− eµt)/(µt) gives a correction for the self-attenuation in the target
and g is the g-factor. εn represents the neutron detection efficiency. As men-
tioned above the efficiency is energy dependent and calculated using the ring
ratio method [81]. After these corrections I went on to attempt an unfolding for
a spread in outgoing scattering angles and energy.
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Figure 4.11: The efficiency as a function of neutron energy as calculated using
the Ring Ratio method. [81]

Figure 4.12: The calculated monochromatic cross section for the 68Zn(γ,n)67Zn
reaction.
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4.3 Unfolding the γ-spectrum

Using GEANT4 simulations of the beams at each energy, one can learn about
the true energy profiles, see Figure 4.13. These will be cut off at the neut-
ron separation energy, as those contributions will not be relevant, as shown in
Figure 4.13. The calculated mono chromatic cross section (see Figure 4.12) ap-
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Figure 4.13: The simulated γ-profiles for all the electron energies. To the right, a
normalization have been applied to correct for varying run-times of simulations
and similar. We also look only at the energies above Sn as these are the only
contributing γ-rays for our reaction.

pears very smooth, and shows a clear Giant Dipole Resonance shape. However,
the (γ,n)-data proved to be very sensitive throughout the analysis, showing a
resonant behavior. Previous data [84], [85], seem conflicted on whether or not
to expect such resonances after the unfolding procedure. I therefore wanted to
try different unfolding techniques, in case our first attempt to do the regular
unfolding is flawed and too sensitive. First a quick introduction to the two
methods:

4.3.1 The Iterative Method

In a similar fashion to the Oslo method [64], the iterative method is based on
finding a solution to the equation

σi+1
f = Dσi+1 ≈ σexp (4.6)

where σexp is the monochromatic cross section calculated from the experimental
data, D is the response matrix, consisting of our simulated response functions
in a N × M matrix, M being the number of channels in the simulations, and the
length of the response function files, and N is the number of measured points
(runs).

As a starting point, a constant trial function σ0 is chosen for the 0th itera-
tion. By multiplying this vector by D, we get the 0th folded vector σ0

f=Dσ0.
The next trial function is established by adding the difference of the experi-
mentally measured spectrum σexp, and σ0

f , to σ0. An interpolation is applied
so that the vectors are of equal dimensions. The next input vector will be
σ = σ0 +(σexp−σ0

f ). These steps are iterated i times, as expressed in Eq. (4.6),
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until convergence is achieved. This usually takes about four iterations.

After unfolding, an energy-dependent smoothing was applied to obtain the real
cross section. The filter width is set to the FWHM of the photon spectrum to
avoid finer disturbing structures. In order to estimate the uncertainty of the
unfolded cross section, an upper and lower limit of monochromatic cross section
calculations are constructed by adding and subtracting the errors of the meas-
ured cross section values. These upper and lower limit monochromatic cross
sections were separately unfolded.

4.3.2 Fully Bayesian MCMC

This method is well described in Ref. [71], but I will give a brief explanation
of how it is done. The Fully Bayesian unfolding can be expressed analytically
through Bayes’ theorem:

pposterior(σunfold|σexp) =
L(σexp|σunfold)pprior(σunfold)

pmarginal(σexp)
∼ L(σexp|σunfold)pprior(σunfold),

(4.7)
which allows calculation of the probability density of the unfolded cross section
pposterior(σunfold|σexp) from the likelihood function L, the marginal distribution
pmarginal(σexp) and the prior distribution pprior(σunfold) which is known ahead
of the experiment.

The first step is choosing pprior, which can be chosen such that smooth and
consistent behaviour is favored. Next for finding pposterior, Monte Carlo Markov
Chain algorithms are used in order to generate a large number of starting
samples. Then their average value and error bands are calculated. The prior
distributions of the form

pprior(σunfold) = e−τS(σunfold), (4.8)

is convenient to use. Here τ > 0 is the regularization parameter, and (σunfold)
is a function that is large when large fluctuations occur. S can be chosen to be
several different functions, for instance the sum of squares S(σ) =

∑
σ2
i of the

sum of squared differences: S(σ) =
∑
i(σi+1 − σi)2. Larger values of τ impose

stronger fluctuation limitations of the unfolded cross sections.
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4.3.3 Unfolding Comparison

I first used an iterative matrix-unfolding method in matlab, and I also attempted
a similar implementation in python (which yielded similar results, see Figure
4.15). Since both of these had a tendency to be intimidatingly resonant, I
tried another method using Monte Carlo Markov Chains and a randomized,
less biased approach [71]. This method allows for more intense smoothing,
and as shown in Figure 4.16 this could have a prominent effect. As even this
approach ended up displaying a similar shape to what I saw in our iterative
matrix method, I now have increased confidence that the matrix method works
well, and shows true resonances in 68Zn. Similar results was also found for
the other Zn-isotopes we collected data for in Japan. However, these are not
published yet to be referenced. Another reality check is comparing our results
with previous experimental results. Such a comparison is presented in Chapter
5.

Figure 4.14: The calculated unfolded cross section. The original CS spectrum
in red is corrected for both g-factor and attenuation. One can recognize the
monochromatic spectrum results as the folded spectrum.
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Figure 4.15: The calculated unfolded cross section from both the unfolding in
matlab and python for comparison. They produce comparable results.
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Figure 4.16: The calculated unfolded cross section using the mcmc-method,
using a low τ (low resonance supression) to the left and a high τ to the right.
To the left, clear resonances are visible, and to the right the spectrum is much
smoother. This plot is an illustration of the recognizable shape of the resonances
in the other methods (it is not normalized to the same values, and plotted by
energy bins, not the genuine energy).
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Chapter 5

Results and Application in
TALYS

5.1 Results from the Oslo Method

The experimental nuclear level density ρ(Ex), the transmission coefficient T (Eγ)
and the normalized γ-ray strength function fXL(Eγ) resulting from the Oslo
Method are plotted in Figure 5.1, together with the estimation of the spin
cutoff parameter σ(Ex) which I used in the calculations. The level density
model chosen to extrapolate from our last data point, up towards the (γ,n)-
data was the Constant Temperature model, and the normalization coefficients
D0 and 〈Γγ0〉 were found in Ref. [72]. For the NLD the known levels from the
discrete level scheme seems to be complete up to about Ex ≈ 3.5 MeV, as they
follow the same trend as the experimentally calculated level density up to this
point. The NLD shows no significant large-scale structures, an even exponen-
tial growth which is typical according to the Constant Temperature model is
observable.

The γSF from the Oslo Method shows a slight tilt up towards the GDR, which
is as expected, as the goal is to construct a total solution to the γSF by fitting
this data to the (γ, n) data, by using models (See Chapter 2.3.1) of the E1 and
M1 components of strength function. An interesting artifact which is visible in
this lower region of the γSF, is the characteristic low energy enhancement or
so called upbend in the Eγ < 4 MeV region. The same feature has also been
reported in a number of other light- and medium mass nuclei [86]. As discussed
in Chapter 2, the origin of this enhancement is debated. It is seemingly of a
dipole nature, but the electric or magnetic character remains an open question.
However, as I move along with fitting the γSF, an assumption will be made to
include it in the M1 part of the function, as it seems to be the most popular
theory at this point. It does not really matter for the fit what the enhancement
is included in, as long as it is being accounted for. A direct measurement of
the polarization is the crucial missing piece of information, which would tell us
about the true nature of the low-energy enhancement [86].
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In Figure 5.1, and this is a general comment for all the calculated results from
the Oslo Method, the uncertainty for high energies rapidly explodes, and this is
a natural consequence of how few counts are present in the high energy region
of the extracted coincidence matrix, see Figure 3.19. With low statistics, the
data is not trustworthy and therefore I have chosen to put pointers on the lower
regions of the transmission coefficient spectrum, as shown in Figure 5.1. These
arrows are set to define the limits for which data points are fixed to match
the level density of discrete states. By doing this the data yielded reasonable
results, and the strength function moves nicely towards higher energies to meet
the GDR-data from the (n,γ) experiment.

Figure 5.1: Upper left: The calculated NLD, Upper right: The spin-cutoff para-
meter, Lower left: The transmission coefficient and Lower right: The calculated
and estimated GSF.
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5.2 (γ,n) Results

The resulting photonuclear reaction cross section for 68Zn(γ,n) is presented in
Figure 5.2. This cross section was found from experimental neutron and γ-ray
measurements, using Eq. (4.4) and unfolded by applying the unfolded iterat-
ive method typically used by the Oslo group. In this part of the cross section,
one can definitely see some interesting resonances, which have previously been
discussed and could come from the unfolding, but after comparing with other
unfolding methods these seem to be manifestations of actual structural reson-
ances. These resonances may be due to interaction of dipole states with more
complicated collective states, and I will get back to this shortly.

When comparing this result with previous experimental measurements, as shown
in Figure 5.2, B. S. Ishkanov [85] have measured similar resonances as well. Sim-
ilar resonances are shown to appear for the isotopes 58,60Ni in Ref. [87] from
1969, and the same writer of this paper, A. M. Goryachev, over 10 years later
in 1982 [84] ends up with a remarkably smooth cross section. It also looks
somewhat similar to the unfolded, monochromatic spectrum of our experiment
as shown in Figure 5.2. His results also look similar to my attempt of using
MCMC-unfolding with a very strict smoothing factor, as shown in Figure 4.16,
where I suspect may have been suppressing actual resonances. In the ’69 art-
icle however, Goryachev discusses particle-hole coupling as an explanation, and
states that ”The quadrupole surface oscillations are not the only collective de-
gree of freedom whose interaction gives rise to the intermediate structure of the
giant resonance. Calculations have shown that for magic nuclei an important
role in the formation of the structure and the width of the giant resonance is
played by collective states of higher multipolarity (3− and 5−)” [87]. Explaining
the width and the structure of the giant dipole resonance still remains an open
question, but something interesting is definitely going on in this area.

The cross section is a useful result by itself, and is great for comparison with
previous data. But our goal is to use this cross section to calculate the γ-ray
strength function for higher energies, and fuse it together with the Oslo-data at
lower energies. By multiplying by the factor 8.674e-8, and dividing the unfolded
cross section by the maximum γ-energy, the resulting γ-ray strength function is
plotted in Figure 5.3. Again, the resonances in the GDR region are reflected in
the γSF as well.
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Figure 5.2: The calculated unfolded cross section from the 68Zn(γ,n)-data, com-
pared with previous experimental data from Ref. [84] and [85], and the previ-
ously calculated monochromatic cross section.

Figure 5.3: The calculated γ-strength function from the 68Zn(γ,n)-data.
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5.3 Interpolating the γ-ray Strength Functions

I have experimentally and analytically determined the γ-ray strength function
of 68Zn from the (γ, n) and (p, p′)-experiments, in the energy regions where the
experimental data is valid and trustworthy. Due to experimental limitations
around the neutron separation energy Sn there is a gap in our knowledge in this
area. As the goal is to have a broader understanding of this nucleus behavior,
I estimated as best I could the shape the γSF will take in this mid region, con-
nection the lower energy region of data from Oslo to the higher energy region
of data from Japan. In order to understand the physics behind the γ-strength
function, it is important to understand the systematics of the different resonance
models we will use to do so. In section 2.3 the theoretical foundation behind
this section is covered.

5.3.1 E1-Strength Function Fit

A simple estimation for the γSF was found by doing a fit of the E1 component of
the γSF, which should reflect the main shape of the function. To do this, I chose
a two-component generalized Lorentzian in order to estimate the shape of the
GDR-resonance, which we know for certain is present. The extra component
is needed to account for slight deformations, and deviations from a spherical
nucleus. In Figure 5.4 the fit of only an E1 two-component generalized lorentzian
is plotted along with the data sets. The fit desperately needs an upbend, when
comparing with the Oslo Method prediction of the strength function shape for
lower energies. 68Zn has through the analysis proven to look quite resonant.
Both the strength function from (γ,n)-data, and the (p,p’)-data have interesting
bumps, which makes the very straight line between the two data sets rather
suspicious-looking. This is why I decided, that as a pygmy has been measured
to exist in Ref. [88], this should be implemented as well in the space between
them. However, in all honesty, I can only guess what is going on in the blank
space between 8 and 12 MeV.

5.3.2 E1 + M1 Component Strength Function Fit

To estimate the M1-component, I applied resonances that are likely to exist,
like the low-energy enhancement. This was modelled as a standard lorentzian
with an M1 spin flip. An extra component representing the pygmy-resonance
was added by applying the knowledge from experimental data in Ref. [88]. A
plot from this reference of the pygmy is shown in Figure 5.5. This gives an
interesting, but fitting pygmy-bump in the unknown region. But since the data
from Ref. [88] only tells us about the region where it appears, and not about
the amplitude of the resonance, it is hard to tell if this is strictly correct. But
all in all, the fit looks good and both data sets are complementing each other
in this new representation of the γ-strength function of 68Zn (see Figure 5.6).

The parameters used for making the fits were found by starting out with the
formulas in Eq.(2.17), and with the parameters set to an educated guess from
previous experience, before applying the fit to experimental data. Using the Fit
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Figure 5.4: The E1-interpolation of the γ-ray strength function, from the lower
energy OCL data, towards the higher energy NewSUBARU data.

Figure 5.5: Figure taken from Ref. [88], where a pygmy resonance structure
was measured at around 9 and 7 MeV. I used a simplified average of these as a
pygmy resonance in our M1-component.
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Figure 5.6: The complete interpolation of the γ-ray strength function, from the
lower energy OCL data, towards the higher energy NewSUBARU data. In the
middle energy region, a pygmy resonance (probably caused by E1, but included
in the M1), gently guides the function up towards the resonant higher energy
data.

method implemented in ROOT our data was made into histograms of classes
TH1, fitting the data programmatically. The pygmy-parameters were set to
be fixed values to reproduce the enhancement from Ref. [88]. The temperat-
ure parameter was a fixed constant temperature, but will differ given what the
assumptions were in the method. This means that a change in the normaliz-
ation parameters for instance, will affect this fixed parameter. The rest of the
parameters concerning the E1 resonance will be set as free values. The upbend-
parameter ηupb had to be limited to the maximum value 1.00, as to reproduce
the predictions from the Oslo Method, which I deem reasonable to trust. The
resulting parameters are given in table 5.1 and the resulting interpolation is
shown to fit quite well in 5.6.

The uncertainties in this fit do not reflect the statistical uncertainty, and to
explore the sensitivity of our data, a comparison of the most extreme values
of the normalization parameters D0 and Γγ0 is shown in Table 5.2. Here it is
displayed that changing these parameters within the statistical uncertainty that
lies behind the estimation will vary the parameter results of this fit. The GEDR
E and Γ-parameters, seem to vary around ± 0.1-0.3 MeV. For the temperat-
ure T , the variation is about 0.1. It therefore does not seem like the systems
calculated energy and temperature is too sensitive to the statistical errors in
these parameters. However, it is good to keep in mind that these variations
could be hiding in the background, adding to the total uncertainty of our fit.
The upbend constant cupb on the other hand, shows a sensitivity of ±1 · 10−8,
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which is relatively significant for such low energies. It seems like the upbend
parameter might be the most sensitive and must therefore be carefully adjusted.

The resulting γSF in Figure 5.6 reflects all the resonances I believe to be present,
and these estimations of the E1 and M1 component can be now used in TALYS
to calculate the neutron capture reaction rate for the energy interval represented
in the fitted function.

Er1(MeV ) Γr1(MeV ) σr1(mb) Er2(MeV ) Γr2(MeV ) σr2(mb)
15.76 3.30 125.78 11.65 1.51 9.61

T (MeV) Epyg(MeV ) Γpyg(MeV ) σpyg(mb) cupb ηupb
1.18 9.10 2.00 1.13 4.87·10−8 1.00

Table 5.1: The numerically fitted parameters for the GEDR (r1 and r2) and
GMDR (featuring the pygmy resonance), and the upbend constants. Here we
used the middle D0 and Γγ0 as given in [72].

Parameter D0 + σD0
D0 − σD0

Γγ0 + σΓγ0 Γγ0 − σΓγ0

Er1 (MeV) 15.82 15.91 15.97 15.74
Γr1 (MeV) 3.41 3.58 3.66 3.25
σr1 (mb) 126.44 127.61 128.9 125.6

Er2 (MeV) 11.58 11.50 11.47 11.68
Γr2 (MeV) 1.46 1.42 1.52 1.53
σr2 (mb) 8.92 7.92 7.33 9.87
T (MeV) 1.21 1.25 1.28 1.17
cupb 5.05 ·10−8 5.33 ·10−8 5.57 ·10−8 4.80 ·10−8

ηupb 1.00 1.00 1.00 1.00

Table 5.2: A sensitivity analysis of the input normalization parameters from
[72], varying them one by one to the possible maximum and minimum value as
given by the uncertainty σ. These are the numerically fitted parameters for the
GEDR (r1 and r2) and the upbend constants. The pygmy-parameters are fixed
to reflect [88] and therefore not sensitive to changes in D0 and Γγ0.
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5.4 TALYS-Calculations

5.4.1 About TALYS

Today experimental data covers only a small fraction of the necessary inform-
ation we need for performing calculations for nuclear physics applications, like
nuclear astrophysics, reactor physics, medical physics and the production of ra-
dioisotopes etc. Even if we came around and measured and fully understood
stable isotopes, which we still do not, there are still many reactions of interest
involving unstable or even exotic nuclei. For these, little experimental data ex-
ist. Another limit on our experimental data is the energy range which we have
available in our experimental setups. To fill these gaps, we need theoretical
predictions. We can simulate nuclear reactions using TALYS [15], a software
including many theoretical models covering all relevant reaction mechanisms
met in light particle-induced nuclear reactions. The energy span that is most
well defined is between 1 keV to 200 MeV, and target nuclei can have mass
numbers between 12 and 339. Reaction channels and observables are described,
and the simulations account for all types of compound, direct or pre-equilibrium
mechanisms. Experimental information measured on mass, deformation, level
densities etc., is considered by the algorithm if available. If no such experimental
measurements are found, models will take its place representing theoretical prop-
erties of structure, potentials, level densities etc.

TALYS is designed to calculate cross sections, energy spectra, angular dis-
tributions and astrophysical reaction rates evaluated by the Hauser-Feschbach
model [89]. This model relies of the fundamental Bohr hypothesis [19] of cap-
ture occurring as an intermediary production of a compound system which can
reach a state of thermodynamic equilibrium (the pre-equilibrium[90]). When we
look at compound nucleus reactions, exit channel is independent of the input
channel, which makes it possible to implement such a statistical model as the
H.F., as the decay of the compound nucleus only depends on its properties [91].
The model gives the energy averaged cross sections, while conserving relevant
quantum numbers and its energy. TALYS is limited by this Hauser-Feshbach
requirement of conservation, as this may not be fulfilled. If other decays than
compound decay happen, like a pre-equillibrium decay where similar wave func-
tions are factored, the theory does not allow it. This happens for instance in
elastic channel reactions, where entrance and exit channels have the same trans-
mission coefficient. To avoid this happening, a correction of width fluctuation
correction should be introduced. Another weak spot of TALYS is the areas of
nuclear physics where less experimental data causes the code to extrapolate in-
put values like mass, half life and so on. This of course adds to the uncertainty
of the end product, as we can not know if these guesses are correct. [91]
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5.4.2 TALYS Results

After performing the interpolation, I created a suitable output of the E1 and
M1 component: into files which are of the format TALYS wants (see Appendix
B and C). Running the TALYS calculations I wanted to study the Reaction
Rate and the Maxwellian-average Cross Sections (MACS) (see section 2.5), and
compare the two to known values, and take a look at how the neutron strength
function compares to the normalization data.

To run a standard TALYS calculation, in order to compare with what it cal-
culates for currently existing data and integrated models, I started out with a
simple inputfile:

projectile n

ejectiles g

element Zn

mass 67

energy energies.txt

Ntop 30 68 47

gnorm 1.

outlevels y

outdensity y

outgamma y

astro y

TALYS has access to available experimental data and does produce semi-believable
results for the more stable isotopes, so I want to study whether this new data
can enhance the credibility of the calculated reaction rates. One of the first
ways one can improve the standard, is by adjusting only a couple parameters
in the Constant Temperature model, using the parameters for temperature T
= 1.14 and energy shift E0 = -1.319544, which I found in the Oslo Method to
reduce the χ2 error the most. The commands I used to make this adjustment
are the following:

T 30 68 1.14

E0 30 68 -1.319544

Exmatch 30 68 11

Here the last command Exmatch sets the matching energy between the constant
temperature and Fermi gas region. I set it quite high (11 MeV), to make sure it
did not affect the data as I have seen no apparent shift to a Fermi-gas region. In
Figure 5.7 a comparison of the standard TALYS representation (see appendix A
to see what models choices are standard) of the level density of 68Zn is presented,
together with an attempt of improving these standard models by inputting new
T and E0 parameters. Seemingly, these new parameters do make the level
density match the Oslo Method data better, which is what we want in order to
apply this level density to further calculations later and know that it is truly
a representative estimation of our data. Now that I had improved the TALYS
models with level density data giving the Constant Temperature model more
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Figure 5.7: Showing that by editing the parameters T and E0 in TALYS (tem-
perature and energy shift), we achieve a representation of the level density close
to our Oslo Method results. This is ideal to use for further enhancement of the
Reaction Rate calculations.

fitting parameters, I wanted to use the γ-ray strength function as an input as
well. This can be done using the commands E1file and M1file, reading in the
estimated E1 and M1 components separately.

Strength 3

E1file 30 68 E1_gsf_68Zn_middle.txt

M1file 30 68 M1_gsf_68Zn_middle.txt

This is how you read in E1/M1 files in TALYS, with a filename of your choosing.
The Strength 3 command was necessary in order to be able read the E1-file cor-
rectly, due to a bug which is hopefully soon dealt with. But for now, in TALYS
1.9, that command is a must. In Appendix B and C are attatched the exact
files I used as input E1 and M1 files for TALYS. The format of these input files
is very important, so these two can serve as an example.

One of the main goals, if not the main goal of this thesis, was to calculate
the Reaction Rate of the 67Zn(n,γ)68Zn reaction. This was quite easily done in
TALYS (although a bit time consuming) using the astro y command. This will
output the Reaction Rate and the Maxwellian Average cross section (MACS,
which we will get back to) as a function of temperature T (GK) (see section
2.5 for the theoretical details of these calculations). By doing TALYS calcula-
tions for the TALYS Standard (see Appendix A) reaction rate, the level density
improved reaction rate and lastly the γ-strength function + level density im-
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Figure 5.8: The calculated reaction rate for the neutron capture reaction
67Zn(n,γ)68Zn. Shown is the calculation TALYS standard, see Appendix A,
would calculate from previously featured measurements and implemented mod-
els, versus what it looks like if we correct for our level density extracted by the
Oslo Method, and also for an additional input of the E1/M1-component from
the experimentally extracted γ-ray strength function.

proved reaction rate, in Figure 5.8 it looks like the new measurements push the
rates higher and closer to the experimental data. This seems to be fitting, but
to check if this is really an improvement of the TALYS standard model calcu-
lations, comparisons with other experimental data sets are necessary. I chose
to compare our results with data found on KaDoNiS [92]. This database con-
tains calculated neutron cross sections performed in Ref. [93] from various data
sources and experiments. In our case, Ref. [94] have performed high-resolution
measurements on the neutron capture cross sections using the neutron time of
flight technique at the pulsed Oak Ridge Electron Linear Accelerator in 1992.
The MACS calculated in Ref. [93] from these data is plotted as blue stars in
Figure 5.9. In the same figure ”This work”, the complete improved calculation
with all corrections from our experiment, is plotted, and it looks like it fits
the expected MACS much better than the TALYS standard calculation. I now
have further reason to believe my results are trustworthy. In Figure 5.10 the
uncertainty given at 30 keV approaches our resulting value, even with this being
the seemingly worst estimated point. It is stated at the KaDoNis website [92]
that the relative uncertainty for the other points will be of the same magnitude
as the one given at 30 keV, so we seem to be well within this uncertainty overall.
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Figure 5.9: The Maxwellian averaged Cross Section for the neutron capture re-
action on 67Zn, with TALYS Standard (A) input compared to our enhancement
using level density and γ-ray strength function data as input. For reference the
only data available is the MACS from KaDoNiS [92], which goes well with the
new fit.

For the S-process, which is assumed to work in the energy region from 10-100
keV, the data from KaDoNis fit very closely to our calculations. The KaDoNis
data is currently what is being used for S-process reaction network calculations,
so seeing how similar our constrained calculations come out, it is reasonable to
assume that using this exact result as an input in a reaction network calculation
of the S-process is not going to affect the resulting solar system abundances in
a significant way.

In Figure 5.11 the calculation of the experimentally constrained reaction rate
is compared to the standard TALYS calculation as it is today, and also the
JINA-Reaclib [95] estimated reaction rate. In the energy region 102-103, the
r-process is assumed to dominate the production of heavy elements as a result
of neutron capture. This region is not covered by previously measured data in
KaDoNiS [92], and for r-process reaction network calculations, the JINA-Reaclib
[95] database is currently used as input. Reaclib uses a variety of references and
models, and in this case they actually suggested the KaDoNiS V0.3 refit 2017
[92] as the recommended choice. In contrary to the previous KaDoNiS data
set, which are experimentally measured, these are just a fit to those data using
many parameters. What can be seen is that my constrained TALYS-calculation
of the reaction rate in this region relevant to the r-process, fits very well to the
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Figure 5.10: The Maxwellian averaged Cross Section for the neutron capture
reaction on 67Zn, with TALYS Standard (see Appendix A) input compared to
our enhancement using level density and γ-ray strength function data as input.
For reference the only data available is the MACS from KaDoNiS [92], which
goes well with the new fit. The uncertainty at 30 keV is in given in [92], and it
is stated that all other uncertainties will have a similar relative uncertainty to
this point.
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Figure 5.11: The calculated reaction rate for the neutron capture reaction on
67Zn, with TALYS standard (see Appendix A) input compared to TALYS calcu-
lation using our new constraints on the nuclear level density and γ-ray strength
function. For reference the r-process reaction network calculations use the JINA-
Reaclib data [95], which goes well with the new fit. Our data seem to confirm
these theoretically modelled points the r-process calculations usually assume.

numbers already in the JINA-Reaclib. So the data works well as a confirmation
that this library is a good estimate still for this isotope. Seemingly, however,
this data set as an input in r-process reaction rate networks will not affect the
final distribution of the elements in the solar system, compared to the calcula-
tions being done already using modelled data from JINA. It shows that for this
reaction, the database is trustworthy.

Lastly to compare our results, I looked at the neutron strength function para-
meter S0. From ATLAS of Neutron Resonances [72] S0= 1.98 ·10−4, while the
output from TALYS states a theoretical S-wave strength S0 = 13.20208 ·10−4.
Ideally, adjustments to make these two match better should be done, but to
do so is a long process of performing simulations and fitting models, which is
unfortunately not doable in the time frame of this thesis. Some scientists may
prefer to tweak parameters in the existing analysis to make this fit better, but
this is a dangerous game to play as it may cause other aspects of the analysis to
get severely flawed. Seeing as this is almost within order of magnitude correct,
it is better for now to let this parameter be. In the future however, a better fit
of the neutron strength could provide an improvement to these results.
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Chapter 6

Conclusions and Outlook

In this work, experimental measurements were made in order to estimate the
γ-ray strength function as well as the nuclear level density for 68Zn. For lower
energies both of these were extracted from (p,p’)-data from the Oslo Cyclo-
tron lab. For higher energies, the γ-ray strength function was determined using
(γ, n)-data from the NewSUBARU facility. Normalization parameters used were
found in ATLAS of Neutron Resonances [72]. The resulting level density shows
a constant temperature tendency, see Figure 3.24, and the constant temperature
model is used throughout the Oslo Method as it better fits trusted data points,
see Figure 3.26. Both iterative matrix unfolding and Monte Carlo randomized
unfolding were used to unfold the (γ,n) data, as previous measurements showed
a disagreement between whether this isotopes strength function should contain
resonances or not. The structure of 68Zn unfolded by us definitely recognizes
some of the structures from a previous experiment by Ishkanov [85], yet it looks
like his data or method has been even more sensitive to the resonances. I also
tried applied an extensive amount of smoothing, and ended up with a result
resembling the non-resonant data set from Goryachev [84], so I believe that
maybe some structures have been lost due to over smoothing in this case. My
experimental data shows that there may indeed be interesting structures to this
isotope.

The brand new detector array OSCAR has proven to be a great improvement to
its predecessor CACTUS, in the sense that the energy resolution is now much
better, and the timing gives us ns-precision. However, this being one of the first
experiments to utilize this new instrument, new challenges were found. The
energy resolution now makes it clear that for OSCAR, when calibrating the
LaBr3:Ce-detectors, a linear calibration may not always be satisfactory. In the
case of our data, the results from the Oslo Method shows that our calibration
works fine for energies in this range. But a tendency of non-linear effects to-
wards higher energies is definitely something to be aware of and to learn to
work around in the future. Another potential issue now manifesting itself in
the data, is an interpretation on 511 keV single-escape γ-rays as states in the
nucleus. This is a problem in the Oslo method unfolding which will have to be
resolved in the future for better results. A conclusive remark is that OSCAR is
a definite improvement to the OCL, but also surprised the team with effects we
did not expect to be dealing with.
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Nevertheless, the data analysis still went decently, providing a meaningful data
set for the cause of better understanding the neutron capture processes by gath-
ering better data. Combining the two data sets, and performing a fit of E1
and M1 components to the experimental strength function data and previously
measured data [88], I extracted the final γ-strength function as shown in Fig-
ure 5.6. The strength function shows a low energy enhancement, as well as a
distinct GDR profile. A potential pygmy-resonance from a previous study [88]
is included as well. A sensitivity analysis of the parameters used in the fit was
performed, and is shown in Tables 5.1 and 5.2. The low energy enhancement
region seems to be the most sensitive to slight parameter changes within the
uncertainty limits stated in [72]. The sensitivity the upbend-region shows in this
analysis, may also be reflected in the comparison between the Constant Temper-
ature and Fermi Gas level density models, see Figure 3.26, where the Constant
Temperature model is chosen due to its better fit in this particular area. This
was the only area showing a significant sensitivity to the choice between those
two level density models.

The experimentally constrained results of the Maxwellian-averaged cross sec-
tion calculated at 30 keV: <σ>(n,γ) = 168.359 is close to being within the
uncertainty of experimental values available at KaDoNiS [92], <σ>n,γ = 153 ±
15 mb. This energy is the value which is the least agreeable to the KaDoNis
data, as seen in Figure 5.10. This figure also shows the experimental constraints
effect on the TALYS standard as is today, and it is definitely an improvement
to the standard models of TALYS. However, s-process reaction network calcula-
tions are currently using KaDoNis data as input, so I can now confirm that by
producing similar results to KaDoNiS, that the calculations are already using
good values. Results in the r-process neutron energy region are compared with
models from JINA-Reaclib [95], and shown to be in agreement as well, as shown
in Figure 5.11. The measurements and calculations of 67Zn(n,γ)68Zn acquired
in this experiment therefore acts as a confirmation that the reaction rates used
in both the current s-process and r-process simulations of neutron reaction net-
work calculations should be considered trustworthy. Therefore, I can at least
rule out the reaction rate of this reaction as a large cause of error for calcula-
tions of the abundance of elements in the solar system. And by ruling out one
potential source of error, we are one step closer to finding the real downfalls and
correcting them.
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Appendix A

TALYS standard

TALYS-1.9 (Version: December 21, 2017)

Copyright (C) 2017 A.J. Koning, S. Hilaire and S. Goriely

IAEA CEA ULB

Dimensions - Cross sections: mb, Energies: MeV, Angles: degrees

########## USER INPUT ##########

USER INPUT FILE

#

# talys input file, 67zn(n,g)68zn

#

# hfb08, mughabghab d0 = 367 ev, <gg> = 440 mev

projectile n

ejectiles g

element zn

mass 67

energy energies.txt

equidistant y

ntop 30 68 47

preequilibrium y

outspectra y

fileresidual y

outbasic y

gnorm 1.

localomp n
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outlevels y

outdensity y

outgamma y

astro y

USER INPUT FILE + DEFAULTS

Keyword Value Variable Explanation

#

# Four main keywords

#

projectile n ptype0 type of incident particle

element Zn Starget symbol of target nucleus

mass 67 mass mass number of target nucleus

energy energies.txt energyfile file with incident energies

#

# Basic physical and numerical parameters

#

ejectiles g outtype outgoing particles

maxz 12 maxZ maximal number of protons away

from the initial compound nucleus

maxn 32 maxN maximal number of neutrons away

from the initial compound nucleus

bins 40 nbins number of continuum excitation energy bins

equidistant y flagequi flag to use equidistant excitation bins

instead of logarithmic bins

popmev n flagpopmev flag to use initial population per MeV

instead of histograms

segment 1 segment number of segments to divide emission

energy grid

maxlevelstar 30 nlevmax maximum number of included discrete

levels for target

maxlevelsres 10 nlevmaxres maximum number of included discrete

levels for residual nucleus

maxlevelsbin g 10 nlevbin maximum number of included discrete

levels for gamma channel

maxlevelsbin n 30 nlevbin maximum number of included discrete

levels for neutron channel
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maxlevelsbin p 10 nlevbin maximum number of included discrete

levels for proton channel

maxlevelsbin d 5 nlevbin maximum number of included discrete

levels for deuteron channel

maxlevelsbin t 5 nlevbin maximum number of included discrete

levels for triton channel

maxlevelsbin h 5 nlevbin maximum number of included discrete

levels for helium-3 channel

maxlevelsbin a 10 nlevbin maximum number of included discrete

levels for alpha channel

ltarget 0 ltarget excited level of target

isomer 1.00E+00 isomer definition of isomer in seconds

transpower 15 transpower power for transmission coefficient

limit

transeps 1.00E-15 transeps limit for transmission coefficient

xseps 1.00E-25 xseps limit for cross sections

popeps 1.00E-25 popeps limit for population cross section

per nucleus

Rfiseps 1.00E-06 Rfiseps ratio for limit for fission cross

section per nucleus

elow 1.00E-06 elow minimal incident energy for nuclear

model calculations

angles 90 nangle number of angles

anglescont 18 nanglecont number of angles for continuum

anglesrec 1 nanglerec number of recoil angles

maxenrec 20 maxenrec number of recoil energies

channels n flagchannels flag for exclusive channels calculation

maxchannel 4 maxchannel maximal number of outgoing particles in

individual channel description

micro n flagmicro flag for completely microscopic

Talys calculation
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best n flagbest flag to use best set of adjusted

parameters

bestbranch y flagbestbr flag to use flag to use only best

set of branching ratios

bestend n flagbestend flag to put best set of parameters

at end of input file

relativistic y flagrel flag for relativistic kinematics

recoil n flagrecoil flag for calculation of recoils

labddx n flaglabddx flag for calculation of DDX in

LAB system

recoilaverage n flagrecoilav flag for average velocity in

recoil calculation

channelenergy n flagEchannel flag for channel energy for

emission spectrum

reaction y flagreaction flag for calculation of nuclear

reactions

astro y flagastro flag for calculation of astrophysics

reaction rate

astrogs n flagastrogs flag for calculation of astrophysics

reaction rate with target in ground

state only

astroex n flagastroex flag for calculation of astrophysics

reaction rate to long-lived

excited states

nonthermlev -1 nonthermlev excited level non-thermalized in the

calculation of astrophysics rate

massmodel 2 massmodel model for theoretical nuclear mass

expmass y flagexpmass flag for using experimental nuclear

mass if available

disctable 1 disctable table with discrete levels

production n flagprod flag for isotope production

outfy n flagoutfy flag for output detailed fission
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yield calculation

gefran 50000 gefran number of random events for GEF

calculation

Estop 1000.000 Estop incident energy above which TALYS

stops

rpevap n flagrpevap flag for evaporation of residual

products at high incident energies

maxZrp 12 maxZrp maximal number of protons away from

the initial compound nucleus before

residual evaporation

maxNrp 32 maxNrp maximal number of neutons away from

the initial compound nucleus before

residual evaporation

#

# Optical model

#

localomp n flaglocalomp flag for local (y) or global (n)

optical model

dispersion n flagdisp flag for dispersive optical model

jlmomp n flagjlm flag for using semi-microscopic

JLM OMP

optmodall n flagompall flag for new optical model

calculation for all residual nuclei

incadjust y flagincadj flag for OMP adjustment on incident

channel also

omponly n flagomponly flag to execute ONLY an optical

model calculation

autorot n flagautorot flag for automatic rotational coupled

channels calculations for A > 150

spherical n flagspher flag to force spherical optical model

coulomb y flagcoulomb flag for Coulomb excitation

calculation with ECIS

statepot n flagstate flag for optical model potential

for each excited state

maxband 0 maxband highest vibrational band added
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to rotational model

maxrot 2 maxrot number of included excited

rotational levels

sysreaction sysreaction particles with reaction cross

section from systematics

rotational n rotational particles with possible rotational

optical model

core -1 core even-even core for weakcoupling

(-1 or 1)

ecissave n flagecissave flag for saving ECIS input and

output files

eciscalc y flageciscalc flag for new ECIS calculation for

outgoing particles and energy grid

inccalc y flaginccalc flag for new ECIS calculation for

incident channel

endfecis y flagendfecis flag for new ECIS calculation for

ENDF-6 files

radialmodel 2 radialmodel model for radial matter densities

(JLM OMP only)

jlmmode 0 jlmmode option for JLM imaginary potential

normalization

alphaomp 6 alphaomp alpha OMP (1=normal,

2= McFadden-Satchler, 3-5= folding potential,

6,8= Avrigeanu, 7=Nolte)

deuteronomp 1 deuteronomp deuteron OMP (1=normal, 2=Daehnick,

3=Bojowald, 4=Han-Shi-Shen, 5=An-Cai)

#

# Compound nucleus

#

widthfluc 7.052 ewfc off-set incident energy for width

fluctuation calculation

widthmode 1 wmode designator for width fluctuation model

compound y flagcomp flag for compound nucleus model

fullhf n flagfullhf flag for full spin dependence of

transmission coefficients
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eciscompound n flageciscomp flag for compound nucleus calculation

by ECIS

cpang n flagcpang flag for compound angular distribution

calculation for incident charged particles

urr n flagurr flag for URR calculation

urrnjoy n flagurrnjoy flag for normalization of URR parameters

with NJOY method

lurr 2 lurr maximal orbital angular momentum for URR

#

# Gamma emission

#

gammax 2 gammax number of l-values for gamma multipolarity

strength 1 strength model for E1 gamma-ray strength function

strengthM1 2 strengthM1 model for M1 gamma-ray strength function

electronconv y flagelectron flag for application of electron

conversion coefficient

racap n flagracap flag for radiative capture model

ldmodelracap 1 ldmodelracap level density model for direct radiative

capture

#

# Pre-equilibrium

#

preequilibrium y flagpreeq flag for pre-equilibrium calculation

preeqmode 2 preeqmode designator for pre-equilibrium model

multipreeq 20.000 emulpre on-set incident energy for multiple

preequilibrium

mpreeqmode 2 mpreeqmode designator for multiple

pre-equilibrium model

breakupmodel 1 breakupmodel model for break-up reaction:

1. Kalbach 2. Avrigeanu

phmodel 1 phmodel particle-hole state density model

pairmodel 2 pairmodel designator for pre-equilibrium

pairing model
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preeqspin 1 pespinmodel model for pre-equilibrium spin

distribution

giantresonance y flaggiant flag for collective contribution

from giant resonances

preeqsurface y flagsurface flag for surface effects in

exciton model

preeqcomplex y flagpecomp flag for Kalbach complex particle

emission model

twocomponent y flag2comp flag for two-component

pre-equilibrium model

ecisdwba y flagecisdwba flag for new ECIS calculation

for DWBA for MSD

onestep n flagonestep flag for continuum one-step direct only

#

# Level densities

#

ldmodel 1 ldmodelall level density model

shellmodel 1 shellmodel model for shell correction energies

kvibmodel 2 kvibmodel model for vibrational enhancement

spincutmodel 1 spincutmodel model for spin cutoff factor for

ground state

asys n flagasys flag for all level density

parameters a from systematics

parity n flagparity flag for non-equal parity distribution

colenhance n flagcolall flag for collective enahncement of

level density for all nuclides

ctmglobal n flagctmglob flag for global CTM model

(no discrete level info)

gshell n flaggshell flag for energy dependence of single

particle level density parameter g

#

# Fission

#

fission n flagfission flag for fission

fismodel 1 fismodel fission model
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fismodelalt 4 fismodelalt alternative fission model for

default barriers

hbstate y flaghbstate flag for head band states in fission

class2 y flagclass2 flag for class2 states in fission

massdis n flagmassdis flag for calculation of fission

fragment mass yields

ffevaporation y flagffevap flag for calculation of particle

evaporation from fission fragment

mass yields

fisfeed n flagfisfeed flag for output of fission per

excitation bin

fymodel 2 fymodel fission yield model, 1: Brosa 2: GEF

ffspin n flagffspin flag to use spin distribution in

initial FF population

#

# Output

#

outmain y flagmain flag for main output

outbasic y flagbasic flag for output of basic

information and results

outpopulation y flagpop flag for output of population

outcheck y flagcheck flag for output of numerical checks

outlevels y flaglevels flag for output of discrete

level information

outdensity y flagdensity flag for output of level densities

outomp y flagoutomp flag for output of optical

model parameters

outdirect y flagdirect flag for output of direct

reaction results

outinverse y flaginverse flag for output of transmission

coefficients and inverse reaction

cross sections

outtransenergy y flagtransen flag for output of transmission
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coefficients per energy

outecis n flagoutecis flag for output of ECIS results

outgamma y flaggamma flag for output of gamma-ray

information

outpreequilibrium n flagpeout flag for output of pre-equilibrium

results

outfission n flagfisout flag for output of fission

information

outdiscrete y flagdisc flag for output of discrete

state cross sections

outspectra y flagspec flag for output of

double-differential cross sections

outbinspectra n flagbinspec flag for output of emission

spectrum per excitation bin

resonance n flagres flag for output of low energy

resonance cross sections

group n flaggroup flag for output of low energy

groupwise cross sections

addiscrete y flagadd flag for addition of

discrete states to spectra

addelastic y flagaddel flag for addition of

elastic peak to spectra

outangle n flagang flag for output of angular

distributions

outlegendre n flaglegendre flag for output of

Legendre coefficients

ddxmode 0 ddxmode mode for double-differential

cross sections

outdwba n flagoutdwba flag for output of

DWBA cross sections for MSD

outgamdis n flaggamdis flag for output of

discrete gamma-ray intensities

outexcitation y flagexc flag for output of
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excitation functions

components n flagcompo flag for output of

cross section components

endf n flagendf flag for information for ENDF-6 file

endfdetail y flagendfdet flag for detailed ENDF-6

information per channel

sacs n flagsacs flag for statistical analysis

of cross sections

partable n flagpartable flag for output of model parameters

on separate file

########## BASIC REACTION PARAMETERS ##########

Projectile : neutron Mass in a.m.u. : 1.008665

Target : 67Zn Mass in a.m.u. : 66.927127
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Appendix B

TALYS input file: E1

Z= 30 A= 68

U[MeV] fM1[mb/MeV]

0.100 5.885E-02

0.200 5.939E-02

0.300 5.993E-02

0.400 6.048E-02

0.500 6.103E-02

0.600 6.158E-02

0.700 6.214E-02

0.800 6.271E-02

0.900 6.328E-02

1.000 6.386E-02

1.100 6.445E-02

1.200 6.505E-02

1.300 6.566E-02

1.400 6.628E-02

1.500 6.692E-02

1.600 6.757E-02

1.700 6.823E-02

1.800 6.891E-02

1.900 6.961E-02

2.000 7.032E-02

2.100 7.106E-02

2.200 7.181E-02

2.300 7.259E-02

2.400 7.339E-02

2.500 7.421E-02

2.600 7.506E-02

2.700 7.594E-02

2.800 7.684E-02

2.900 7.778E-02

3.000 7.874E-02

3.100 7.974E-02

3.200 8.078E-02
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3.300 8.185E-02

3.400 8.296E-02

3.500 8.411E-02

3.600 8.530E-02

3.700 8.654E-02

3.800 8.782E-02

3.900 8.915E-02

4.000 9.053E-02

4.100 9.197E-02

4.200 9.346E-02

4.300 9.501E-02

4.400 9.663E-02

4.500 9.831E-02

4.600 1.001E-01

4.700 1.019E-01

4.800 1.038E-01

4.900 1.057E-01

5.000 1.078E-01

5.100 1.099E-01

5.200 1.121E-01

5.300 1.145E-01

5.400 1.169E-01

5.500 1.194E-01

5.600 1.221E-01

5.700 1.248E-01

5.800 1.277E-01

5.900 1.307E-01

6.000 1.338E-01

6.100 1.371E-01

6.200 1.405E-01

6.300 1.441E-01

6.400 1.479E-01

6.500 1.518E-01

6.600 1.560E-01

6.700 1.603E-01

6.800 1.648E-01

6.900 1.695E-01

7.000 1.745E-01

7.100 1.798E-01

7.200 1.853E-01

7.300 1.910E-01

7.400 1.971E-01

7.500 2.035E-01

7.600 2.103E-01

7.700 2.174E-01

7.800 2.249E-01

7.900 2.328E-01

8.000 2.411E-01

8.100 2.500E-01

8.200 2.594E-01
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8.300 2.693E-01

8.400 2.798E-01

8.500 2.910E-01

8.600 3.029E-01

8.700 3.155E-01

8.800 3.290E-01

8.900 3.434E-01

9.000 3.588E-01

9.100 3.753E-01

9.200 3.931E-01

9.300 4.121E-01

9.400 4.326E-01

9.500 4.548E-01

9.600 4.788E-01

9.700 5.048E-01

9.800 5.330E-01

9.900 5.638E-01

10.000 5.974E-01

10.100 6.341E-01

10.200 6.743E-01

10.300 7.183E-01

10.400 7.664E-01

10.500 8.190E-01

10.600 8.763E-01

10.700 9.383E-01

10.800 1.005E+00

10.900 1.075E+00

11.000 1.148E+00

11.100 1.221E+00

11.200 1.294E+00

11.300 1.362E+00

11.400 1.425E+00

11.500 1.480E+00

11.600 1.527E+00

11.700 1.566E+00

11.800 1.600E+00

11.900 1.631E+00

12.000 1.661E+00

12.100 1.694E+00

12.200 1.732E+00

12.300 1.776E+00

12.400 1.827E+00

12.500 1.887E+00

12.600 1.956E+00

12.700 2.034E+00

12.800 2.123E+00

12.900 2.222E+00

13.000 2.333E+00

13.100 2.454E+00

13.200 2.588E+00
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13.300 2.733E+00

13.400 2.891E+00

13.500 3.061E+00

13.600 3.244E+00

13.700 3.440E+00

13.800 3.648E+00

13.900 3.868E+00

14.000 4.099E+00

14.100 4.339E+00

14.200 4.588E+00

14.300 4.842E+00

14.400 5.098E+00

14.500 5.353E+00

14.600 5.603E+00

14.700 5.842E+00

14.800 6.065E+00

14.900 6.268E+00

15.000 6.445E+00

15.100 6.592E+00

15.200 6.704E+00

15.300 6.779E+00

15.400 6.816E+00

15.500 6.813E+00

15.600 6.773E+00

15.700 6.697E+00

15.800 6.590E+00

15.900 6.454E+00

16.000 6.295E+00

16.100 6.117E+00

16.200 5.925E+00

16.300 5.722E+00

16.400 5.514E+00

16.500 5.302E+00

16.600 5.091E+00

16.700 4.882E+00

16.800 4.676E+00

16.900 4.477E+00

17.000 4.284E+00

17.100 4.099E+00

17.200 3.921E+00

17.300 3.751E+00

17.400 3.590E+00

17.500 3.436E+00

17.600 3.290E+00

17.700 3.153E+00

17.800 3.022E+00

17.900 2.899E+00

18.000 2.782E+00

18.100 2.672E+00

18.200 2.568E+00
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18.300 2.470E+00

18.400 2.377E+00

18.500 2.289E+00

18.600 2.206E+00

18.700 2.127E+00

18.800 2.053E+00

18.900 1.983E+00

19.000 1.916E+00

19.100 1.853E+00

19.200 1.793E+00

19.300 1.736E+00

19.400 1.682E+00

19.500 1.631E+00

19.600 1.582E+00

19.700 1.536E+00

19.800 1.492E+00

19.900 1.449E+00

20.000 1.409E+00

20.100 1.371E+00

20.200 1.334E+00

20.300 1.300E+00

20.400 1.266E+00

20.500 1.234E+00

20.600 1.204E+00

20.700 1.174E+00

20.800 1.146E+00

20.900 1.120E+00

21.000 1.094E+00

21.100 1.069E+00

21.200 1.045E+00

21.300 1.022E+00

21.400 1.000E+00

21.500 9.793E-01

21.600 9.590E-01

21.700 9.394E-01

21.800 9.206E-01

21.900 9.024E-01

22.000 8.849E-01

22.100 8.680E-01

22.200 8.516E-01

22.300 8.359E-01

22.400 8.207E-01

22.500 8.060E-01

22.600 7.917E-01

22.700 7.780E-01

22.800 7.647E-01

22.900 7.518E-01

23.000 7.393E-01

23.100 7.272E-01

23.200 7.155E-01
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23.300 7.041E-01

23.400 6.931E-01

23.500 6.824E-01

23.600 6.720E-01

23.700 6.619E-01

23.800 6.521E-01

23.900 6.426E-01

24.000 6.334E-01

24.100 6.244E-01

24.200 6.157E-01

24.300 6.072E-01

24.400 5.989E-01

24.500 5.908E-01

24.600 5.830E-01

24.700 5.753E-01

24.800 5.679E-01

24.900 5.607E-01

25.000 5.536E-01

25.100 5.467E-01

25.200 5.400E-01

25.300 5.334E-01

25.400 5.270E-01

25.500 5.208E-01

25.600 5.147E-01

25.700 5.087E-01

25.800 5.029E-01

25.900 4.972E-01

26.000 4.917E-01

26.100 4.863E-01

26.200 4.810E-01

26.300 4.758E-01

26.400 4.707E-01

26.500 4.658E-01

26.600 4.609E-01

26.700 4.562E-01

26.800 4.515E-01

26.900 4.470E-01

27.000 4.425E-01

27.100 4.381E-01

27.200 4.339E-01

27.300 4.297E-01

27.400 4.256E-01

27.500 4.216E-01

27.600 4.176E-01

27.700 4.137E-01

27.800 4.100E-01

27.900 4.062E-01

28.000 4.026E-01

28.100 3.990E-01

28.200 3.955E-01
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28.300 3.921E-01

28.400 3.887E-01

28.500 3.854E-01

28.600 3.821E-01

28.700 3.789E-01

28.800 3.758E-01

28.900 3.727E-01

29.000 3.696E-01

29.100 3.667E-01

29.200 3.637E-01

29.300 3.608E-01

29.400 3.580E-01

29.500 3.552E-01

29.600 3.525E-01

29.700 3.498E-01

29.800 3.472E-01

29.900 3.446E-01

30.000 3.420E-01
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Appendix C

TALYS input file: M1

Z= 30 A= 68

U[MeV] fM1[mb/MeV]

0.100 5.077E-01

0.200 4.594E-01

0.300 4.158E-01

0.400 3.763E-01

0.500 3.406E-01

0.600 3.083E-01

0.700 2.791E-01

0.800 2.526E-01

0.900 2.287E-01

1.000 2.071E-01

1.100 1.875E-01

1.200 1.698E-01

1.300 1.538E-01

1.400 1.393E-01

1.500 1.262E-01

1.600 1.144E-01

1.700 1.037E-01

1.800 9.402E-02

1.900 8.527E-02

2.000 7.738E-02

2.100 7.024E-02

2.200 6.379E-02

2.300 5.797E-02

2.400 5.271E-02

2.500 4.797E-02

2.600 4.369E-02

2.700 3.983E-02

2.800 3.635E-02

2.900 3.322E-02

3.000 3.040E-02

3.100 2.787E-02

3.200 2.559E-02
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3.300 2.355E-02

3.400 2.172E-02

3.500 2.009E-02

3.600 1.863E-02

3.700 1.733E-02

3.800 1.618E-02

3.900 1.516E-02

4.000 1.427E-02

4.100 1.349E-02

4.200 1.281E-02

4.300 1.223E-02

4.400 1.173E-02

4.500 1.132E-02

4.600 1.099E-02

4.700 1.073E-02

4.800 1.054E-02

4.900 1.041E-02

5.000 1.035E-02

5.100 1.034E-02

5.200 1.040E-02

5.300 1.051E-02

5.400 1.068E-02

5.500 1.091E-02

5.600 1.120E-02

5.700 1.155E-02

5.800 1.197E-02

5.900 1.245E-02

6.000 1.300E-02

6.100 1.363E-02

6.200 1.434E-02

6.300 1.514E-02

6.400 1.604E-02

6.500 1.704E-02

6.600 1.816E-02

6.700 1.941E-02

6.800 2.081E-02

6.900 2.238E-02

7.000 2.414E-02

7.100 2.611E-02

7.200 2.832E-02

7.300 3.080E-02

7.400 3.360E-02

7.500 3.674E-02

7.600 4.029E-02

7.700 4.429E-02

7.800 4.879E-02

7.900 5.384E-02

8.000 5.948E-02

8.100 6.575E-02

8.200 7.263E-02
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8.300 8.007E-02

8.400 8.795E-02

8.500 9.604E-02

8.600 1.040E-01

8.700 1.113E-01

8.800 1.176E-01

8.900 1.220E-01

9.000 1.244E-01

9.100 1.242E-01

9.200 1.217E-01

9.300 1.170E-01

9.400 1.106E-01

9.500 1.032E-01

9.600 9.518E-02

9.700 8.709E-02

9.800 7.924E-02

9.900 7.184E-02

10.000 6.501E-02

10.100 5.880E-02

10.200 5.320E-02

10.300 4.820E-02

10.400 4.373E-02

10.500 3.976E-02

10.600 3.624E-02

10.700 3.310E-02

10.800 3.031E-02

10.900 2.782E-02

11.000 2.560E-02

11.100 2.362E-02

11.200 2.184E-02

11.300 2.023E-02

11.400 1.879E-02

11.500 1.749E-02

11.600 1.631E-02

11.700 1.523E-02

11.800 1.426E-02

11.900 1.337E-02

12.000 1.256E-02

12.100 1.181E-02

12.200 1.113E-02

12.300 1.050E-02

12.400 9.924E-03

12.500 9.390E-03

12.600 8.896E-03

12.700 8.438E-03

12.800 8.013E-03

12.900 7.619E-03

13.000 7.251E-03

13.100 6.909E-03

13.200 6.589E-03
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13.300 6.290E-03

13.400 6.010E-03

13.500 5.748E-03

13.600 5.502E-03

13.700 5.270E-03

13.800 5.053E-03

13.900 4.848E-03

14.000 4.655E-03

14.100 4.472E-03

14.200 4.300E-03

14.300 4.137E-03

14.400 3.983E-03

14.500 3.837E-03

14.600 3.698E-03

14.700 3.567E-03

14.800 3.442E-03

14.900 3.323E-03

15.000 3.211E-03

15.100 3.103E-03

15.200 3.001E-03

15.300 2.903E-03

15.400 2.810E-03

15.500 2.721E-03

15.600 2.636E-03

15.700 2.555E-03

15.800 2.477E-03

15.900 2.403E-03

16.000 2.331E-03

16.100 2.263E-03

16.200 2.198E-03

16.300 2.135E-03

16.400 2.075E-03

16.500 2.017E-03

16.600 1.961E-03

16.700 1.908E-03

16.800 1.857E-03

16.900 1.807E-03

17.000 1.760E-03

17.100 1.714E-03

17.200 1.670E-03

17.300 1.627E-03

17.400 1.586E-03

17.500 1.546E-03

17.600 1.508E-03

17.700 1.471E-03

17.800 1.436E-03

17.900 1.401E-03

18.000 1.368E-03

18.100 1.336E-03

18.200 1.305E-03
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18.300 1.275E-03

18.400 1.246E-03

18.500 1.218E-03

18.600 1.190E-03

18.700 1.164E-03

18.800 1.138E-03

18.900 1.113E-03

19.000 1.089E-03

19.100 1.066E-03

19.200 1.043E-03

19.300 1.021E-03

19.400 1.000E-03

19.500 9.794E-04

19.600 9.593E-04

19.700 9.398E-04

19.800 9.208E-04

19.900 9.024E-04

20.000 8.844E-04

20.100 8.670E-04

20.200 8.500E-04

20.300 8.336E-04

20.400 8.175E-04

20.500 8.019E-04

20.600 7.867E-04

20.700 7.719E-04

20.800 7.575E-04

20.900 7.434E-04

21.000 7.298E-04

21.100 7.164E-04

21.200 7.035E-04

21.300 6.908E-04

21.400 6.784E-04

21.500 6.664E-04

21.600 6.547E-04

21.700 6.432E-04

21.800 6.320E-04

21.900 6.211E-04

22.000 6.105E-04

22.100 6.001E-04

22.200 5.899E-04

22.300 5.800E-04

22.400 5.703E-04

22.500 5.608E-04

22.600 5.516E-04

22.700 5.426E-04

22.800 5.337E-04

22.900 5.251E-04

23.000 5.167E-04

23.100 5.084E-04

23.200 5.004E-04
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23.300 4.925E-04

23.400 4.848E-04

23.500 4.772E-04

23.600 4.698E-04

23.700 4.626E-04

23.800 4.555E-04

23.900 4.486E-04

24.000 4.418E-04

24.100 4.351E-04

24.200 4.286E-04

24.300 4.223E-04

24.400 4.160E-04

24.500 4.099E-04

24.600 4.039E-04

24.700 3.981E-04

24.800 3.923E-04

24.900 3.867E-04

25.000 3.811E-04

25.100 3.757E-04

25.200 3.704E-04

25.300 3.652E-04

25.400 3.601E-04

25.500 3.551E-04

25.600 3.502E-04

25.700 3.453E-04

25.800 3.406E-04

25.900 3.360E-04

26.000 3.314E-04

26.100 3.270E-04

26.200 3.226E-04

26.300 3.183E-04

26.400 3.140E-04

26.500 3.099E-04

26.600 3.058E-04

26.700 3.018E-04

26.800 2.979E-04

26.900 2.940E-04

27.000 2.902E-04

27.100 2.865E-04

27.200 2.828E-04

27.300 2.793E-04

27.400 2.757E-04

27.500 2.723E-04

27.600 2.688E-04

27.700 2.655E-04

27.800 2.622E-04

27.900 2.590E-04

28.000 2.558E-04

28.100 2.526E-04

28.200 2.496E-04
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28.300 2.465E-04

28.400 2.436E-04

28.500 2.406E-04

28.600 2.377E-04

28.700 2.349E-04

28.800 2.321E-04

28.900 2.294E-04

29.000 2.267E-04

29.100 2.240E-04

29.200 2.214E-04

29.300 2.189E-04

29.400 2.163E-04

29.500 2.138E-04

29.600 2.114E-04

29.700 2.090E-04

29.800 2.066E-04

29.900 2.043E-04

30.000 2.020E-04
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