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Abstract

The goal of this project was to determine time delays and the effects of

microlensing in gravitationally lensed quasars. We have studied two gravita-

tionally lensed quasars. The first is the sextuply cluster-lensed quasar SDSS

J2222+2745, and we have measured the time delays between the three bright-

est images A, B and C. With respect to image A, the measured time delays

are ∆tAB = −42.44+1.44
−1.36 days, and ∆tAC = 696.65+2.10

−2.00 days (95% confidence

interval). This provides a significant improvement to existing results and one

of the smallest fractional uncertainties measured for a time delay yet (in the

AD time delay). We also see strong evidence of gravitational microlensing in

both the B and C image, measured with A as a reference.

Secondly, the time delays in the quadruply lensed quasar PS1 J0147+4630

were measured for the first time. The time delays between the four im-

ages were found to be ∆tAB = −2.21+2.08
−2.16, ∆tAC = −5.28+2.16

−2.22 and ∆tAD =

−170.47 ± 7.61 days (95% confidence interval). We also found microlensing

effects in all the images, i.e. images BCD with respect to A. The longest

time delay is a good candidate for calculating the Hubble constant H0, and

by using the lens model from Shajib et al. (2019) and scaled uncertainties,

we found a Hubble constant H0 = 79.5 ± 7.95 km s−1 Mpc−1 based on the

itme delay measurement.
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Chapter 1

Introduction

1.1 A Brief History of Gravitational Lensing

The idea that gravity has the ability to bend light was first suggested as

early as 1704 by Isaac Newton himself. One hundred years later, von Soldner

(1804) was the first to calculate the deflection angle a star would experience

being deflected by the Sun. Another 100 years passed and Einstein (1911)

confirmed Soldner’s calculations using the equivalence principle. A few years

later, Einstein (1915) revisited this and applied the full field equations of his

new theory of General Relativity to the problem and found an angle twice

as large, due to the curvature of the metric. During the total solar eclipse

of May 1919, Eddington and Dyson launched an expedition to measure the

deflection angle of the stars close to the Sun, if any, and determine whether

light was influenced by gravity, either by Newtonian gravity or Einsteins

relativity, or had no effect at all (Dyson et al., 1920). They proved that the

deflection angle coincided well with Einstein’s predictions and it became an

immediate proof of General Relativity. The results was on the front pages

everywhere and made Einsteins theory world-famous. An illustration of the

deflection of star-light by the gravity of the Sun is shown in figure 1.1.
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Figure 1.1: Angular deflection of a star by the Sun (Fig.1 in Narayan and
Bartelmann (1996). )

Eddington (1920), Einstein (1936) and several other physicists had specu-

lated that light from a distant source might travel around the star along

multiple paths, and therefore appear as several images. Although they all

agreed this gravitational lensing was practically impossible to observe due

to the small angular separation between the images. Fritz Zwicky proposed

that galaxies (or nebulae as they were known) would be massive enough to

produce images at an observable angle, as well as act as a ”cosmic telescope”

and magnify distant sources (Zwicky, 1937a,b). The Norwegian astrophysi-

cist Sjur Refsdal was a pioneer in the field on gravitational lensing. He

suggested a practical application of the phenomenon by measuring the time

delays between the images of a variable source and using them to constrain

the expansion rate of the universe, i.e. the Hubble constant H0 (Refsdal,

1964a,b). This became a much more promising task with the discovery of

quasars (Schmidt, 1963), as they are very bright, point-like sources, and

visible at cosmological distances giving them a great chance of being gravi-

tationally lensed by foreground objects. Eventually, the first gravitationally

lensed quasar QSO 0957+561 was discovered by Walsh et al. (1979) 16 years

later. It can be seen as a double image formed by a massive foreground

galaxy, and is known as the ”Twin quasar”.

Gravitational lensing has evolved to become a powerful tool in astrophysics

and cosmology, Narayan and Bartelmann (1996) classify these applications

under three broad categories: 1) The ”cosmic telescope effect” magnifies dis-
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tant objects and allow us to observe objects that are normally too distant or

too faint to be within the resolution-limit of current telescopes. 2) It allows

us to study the growth and structure of mass condensations in the universe,

as it is independent of luminosity or composition and relies merely on the

projected, two-dimensional mass distribution of the lens. 3) Through gravi-

tational lensing and the time delays between quasar images, we can constrain

several cosmological parameters: the Hubble constant H0, the cosmological

constant Λ, and the density parameters Ω.

The Hubble constant describes the expansion rate of the universe today and

is an important parameter in cosmological models. It is defined through

Hubble’s law (see eq.(2.28)), which relates the recession velocity of distant

objects to their distances. To measure H0, an accurate method for determin-

ing cosmological distances is needed.

1.2 Background and Motivation

The applications of the time delay between multiple quasar images are of

particular interest, as they provide a direct way of calculating cosmological

distances and the Hubble constant (Refsdal, 1964b), and if we already know

H0 from other sources, we can constrain the mass density profile of the lensing

galaxy or cluster Refsdal (2004). For this to be useful, we need accurately

determined time delays with small fractional uncertainties. This requires

images with either very long (> 150 days) time delays, very active quasars

(i.e. highly variable), or a very having been monitored for a very long time

(decades).

There are currently about 200 quasars that are known to be gravitationally

lensed by galaxies (see https://www.ast.cam.ac.uk/ioa/research/lensedquasars/).

However, we only know of four that are lensed by galaxy clusters, proving

this is an remarkably rare phenomenon. The first two cases were SDSS

J1004+4112 (Inada et al., 2003) and SDSS J1029+2623 (Inada et al., 2006).

A third was discovered by Dahle et al. (2013); the sextuply lensed quasar
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SDSS J2222+2745. And a fourth, SDSS J0909+4449 with three images, was

newly discovered by Shu et al. (2018).

We will study two quasars in this project, that are being regularly monitored

by the Nordic Optical Telescope (NOT). The first is the sextuply cluster-

lensed quasar SDSS J2222+2745, mentioned above, where the three brightest

images have been monitored for almost a decade, and still have significant

uncertainties in their time delay estimates (Dahle et al., 2015). At least one of

the images has a very long time delay, and the quasar is assumed to be highly

variable. Meaning it provides an excellent candidate for a very accurate time

delay measurement. The other is a quadruply lensed quasar PS1 J0147+4630,

who’s time delays have never been measured. It was discovered only two

years ago by Berghea et al. (2017) and is the brightest multiply lensed quasar

known so far. Recent predictions for the time delays done by Shajib et al.

(2019) show that it should have at least one long time delay. The lens is

a single galaxy, meaning accurately determined time delays in this system

would provide an outstanding opportunity to measure the Hubble constant

with small uncertainties, once we have a good lens model.

1.3 Overview

In this work our goal is to produce accurate time delay measurements of the

two multiply imaged quasar systems SDSS J2222+2745 and PS1 J0147+4630,

by utilizing the Legendre polynomial method by Kochanek et al. (2006). This

technique models the intrinsic light curve of the quasar from photmetric data,

while simultaneously measuring the relative microlensing effects seen in the

individual images. Both our target quasars are estimated to have at least

one long time delay (> 150 days), which will result in time delay measure-

ments with small fractional uncertanties. Accurate time delays are crucial in

determining the Hubble constant using the method demonstrated by Refs-

dal (1964b), and for constraining the mass density profile of the lens (e.g.

Refsdal, 2004). Modeling the microlensing variations will both give us more
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precise time delay determination, as they can significantly affect the time

delays (Tie and Kochanek, 2018), and be used to estimate the mass of com-

pact objects, as well as well as constrain the fraction of dark matter made

up from these sources Press and Gunn (1973).

Chapter 2 describes the theoretical formalism of gravitational lensing, and

Chapter 3 summarizes the monitoring campaigns of the quasars, as well as

the photometric data reduction of the light curves. The results of the project

are presented in Chapter 5 with a discussion following in Chapter 6. The

conclusion and possible future prospects are given in Chapter 7.





Chapter 2

Theoretical Background

Gravitational lensing descibes a complicated physical system where the ef-

fect of general relativity merges with local perturbations. Lucky for us, we

can usually assume an overall geometry that is described by the Friedmann-

Lemâıtre-Robertson-Walker metric. The FLRW-metric is the solution to

Einstein’s field equations describing a universe adhering to the cosmological

principle, which states that the universe is homogeneous and isotropic every-

where on large scales; meaning there is no preferred place in the universe. A

light ray travels through unperturbed space and encounters an inhomogene-

ity local to the lens, after, it again follows an unperturbed path. Close to the

lens, we can assume a locally flat, Minkowski spacetime weakly perturbed

by a Newtonian gravitational potential caused by the mass distribution of

the lens. This is valid for a small Newtonian potential, Φ� c2, and a small

peculiar velocity of the lens, v � c. In almost all astrophysical cases of

interest, these conditions are satisfied.

This chapter offers some basics and formalism of gravitational lensing, the

formation of multiple images and their associated time delays. For more

thorough reviews see the works by Refsdal and Surdej (1994); Narayan and

Bartelmann (1996); Courbin et al. (2002) and Eigenbrod (2012). A discussion

on the Hubble constant based on the method introduced by Refsdal (1964a)

also follows.



8 | CHAPTER 2. THEORETICAL BACKGROUND

2.1 Gravitational Lens Theory

2.1.1 Geometry and the Lens Equation

Deflection Angle

A ray of light propagating through a gravitational potential can be described

in terms of a refractive index n (e.g. Schneider et al., 1992), given by

n = 1− 2

c2
Φ = 1 +

2

c2
|Φ| (2.1)

where Φ is the Newtonian potential, and c is the speed of light in vacuum.

A refractive index n > 1 results in a slower traveling time for light passing

through, just as with normal optics. The speed of light reduces to

v =
c

n
' c− 2

c
|Φ| (2.2)

The effects are similar to a ray of light traveling through a glass prism. The

reduced speed causes light rays to deflect, and will cause a delay in the

arrival time relative to light traveling free through vacuum. The resulting

gravitational time delay is given by the Shapiro delay (Shapiro, 1964),

∆t =

∫ observer

source

2

c3
|Φ|dl (2.3)

where we integrate over the light path from the source to the observer. We

get the deflection angle of the light rays when integrating over the path of

the gradient of n, perpendicular to the path of travel,

−→
α̂ = −

∫
~∇⊥n dl =

2

c2

∫
~∇⊥Φ dl. (2.4)

This deflection given by equation (2.4) is usually very small, hence we can use
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the small angle approximation. We can then integrate along an unperturbed

path instead of along the deflected ray; the unperturbed path is represented

by the dotted line, at ∠β, in figure 2.1.

Thin Screen Approximation

The lens itself is can also be considered thin, compared to the cosmological

distances of the total path between the observer and lens, and between the

lens and source. We can therefore project the mass distribution of the lens

along the line-of-sight, in a plane perpendicular to the observer’s line-of-sight

(Narayan and Bartelmann, 1996). This is commonly called the lens plane

and a visual representation can be seen in figure 2.1.

Figure 2.1: A light ray path that intersects the lens plane at ~ξ. The angle
β represents the unperturbed path, and ∠θ the source’s apparent position.
~̂α(~ξ) is the vector sum of deflection angles from point mass elements in the
plane (see Eq.(2.6)). Dd, Ds, and Dds are the angular diameter distances
between the observer and lens, the observer and source, and the lens and the
source, respectively. (Fig.11 from Bartelmann and Schneider, 2001)

The plane is a sheet of mass characterized by its surface mass density,
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Σ(~ξ) =

∫
ρ(~ξ, z)dz, (2.5)

where ~ξ is a two-dimensional vector representing the position where the light

ray is deflected, and ρ is the mass density of the lens within the plane.

In the thin screen approximation the lens is made up of an ensemble of point

masses with positions ~ξ′. The total deflection angle of the light ray at ~ξ is

the superposition of the deflection angles from all points,

−→
α̂ (~ξ) =

4G

c2

∫ (
~ξ − ~ξ′

)
Σ
(
~ξ′
)

∣∣∣~ξ − ~ξ′∣∣∣2 d2ξ′. (2.6)

For the general case the deflection angle is a two-component vector. However,

when considering the special case of a circularly symmetric lens, we consider

it as a one-dimensional problem (Narayan and Bartelmann, 1996):

α̂(ξ) =
4GM(ξ)

c2ξ
, (2.7)

where ξ is the distance to the center of symmetry and is called the impact

parameter. Note that we can use the Schwarzschild radius,

RS =
2GM

c2
, (2.8)

to express the deflection angle as twice the inverse of the impact parameter, in

units of the Schwarzschild radius (Narayan and Bartelmann, 1996). Equation

(2.7) is a good approximation when ξ � Rs, i.e. we are considering small

deflection angles α̂ � 1 rad. This is usually satisfied for astrophysical cases

where usually α̂ ∼ 1” = 10−6 rad (Eigenbrod, 2012).

The mass enclosed within the radius ξ is given by
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M(ξ) = 2π

∫ ξ

0

Σ (ξ′) ξ′dξ′. (2.9)

The Lens Equation

The geometry of a gravitational lens system is depicted in figure 2.2. Light

rays from a source at a distance Ds pass by a concentration of mass located

at Dd, crossing the lens plane at position ξ, and is deflected by the deflection

angle α̂. Using the small angle approximation, the angular position of this is

at sinθ ≈ θ = ξ/Dd, which is also the angle at which an image I is projected.

The true position of the source is given by η, and its corresponding angular

position β = η/Ds, represents the unperturbed path. Dds is the distance

from the source plane to the lens plane.

Figure 2.2: Geometry of a gravitational lens system. A light ray travels
from a source S, crosses a lensing mass at ξ and is deflected by an angle α̂.
The deflection corresponds to a change in apparent position by an angle α,
seen from the vantage point of O. β gives the angle between the observer
and the true position of the source, i.e. the unperturbed path, and θ gives
the angle of the apparent position of S, from O, at the image I. Ds, Dd, and
Dds are the angular diameter distances between the observer and the source,
the observer and the lens, and the lens and the source, respectively. (Fig.5
from Narayan and Bartelmann, 1996)
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For convenience we will introduce the reduced deflection angle

~α =
Dds

Ds

−→
α̂ . (2.10)

From figure 2.2 and the definitions above we get the lens equation

~β = ~θ − ~α(~θ), (2.11)

which relates the positions of the source and its image. In the general case

it is nonlinear, meaning we can have several images of the same source.

2.1.2 Multiple Images

Wavefronts

A more illustrative example of gravitational lensing and how multiple images

form can be given in terms of wavefronts. Figure 2.3 shows an illustration of

both the different regimes of lensing as well as light represented by propagat-

ing waves. They start out spherical and as they travel through a gravitational

lens, they get deformed and slow down due to the effects of curvature. An

observer will see an deformed image in the direction normal to the wavefront,

and if the lens is strong enough, the wavefront will fold in on itself produc-

ing multiple images with respective time delays. For variable sources, e.g.

quasars, these time delays are measurable with respect to each other and

will be proportional to the distances between the folds. This gravitational

time delay is the Shapiro delay seen in equation (2.3), and again in equation

(2.23).
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Figure 2.3: Illustration of wavefronts propagating from a background
source, and the different regimes of lensing. Lensing by quasars are rele-
vant in the strong regime, while lensed galaxies are important in the weak
(Fig.1.1 from Courbin et al., 2002)

The Einstein Radius

For a circularly symmetric lens, the lens equation is given by

β(θ) = θ − Dds

DdDs

4GM(θ)

c2θ
, (2.12)

where we have used equations (2.7) and (2.10). If we are considering a special

case where the observer and the source both lie perfectly on the optical axis,

i.e. β = 0, the rays would deflect symmetrically and produce a ring as seen

by the observer. Solving the lens equation gives the radius of the ring

θE =

(
4GM (θE)

c2

Dds

DdDs

)1/2

, (2.13)

which is referred to as the Einstein radius. This is a very useful angular

scale in other cases as well, as multiple images usually are seen at an angular
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radius on the order of θE. It also represents the boundary where sources are

multiply imaged or are only imaged once. From the Einstein radius we get

the critical surface mass density,

Σcr =
c2

4πG

Ds

DdDds

, (2.14)

and supercritical lenses, meaning they have a surface mass density Σ > Σcr,

are typically able to produce multiple images of the same source (Narayan

and Bartelmann, 1996).

Magnification

Another consequence of gravitational lensing is the magnification of images.

The deflection of light from gravitational lenses preserves surface brightness,

as a result of Liouville’s theorem, but the apparent solid angle of the source

changes. The amplification of the total flux recieved is defined as a ratio be-

tween the solid angles of the images and the source. Following the circularly

symmetric lens, the magnification can be written as

µ =
θ

β

dθ

dβ
. (2.15)

More formally, the general definition is the inverse Jacobian of the trans-

formation matrix between the source and the image or images. In the case

of multiple images, the total magnification is the sum of the magnifications

from all images (see e.g. Refsdal and Surdej, 1994; Eigenbrod, 2012).

Lensing by a Point Source

The point mass lens is a good representation of stellar sized lenses. For

a point mass lens, the lens equation (eq.(2.11) can be rewritten using the

Einstein radius (eq. (2.13))



2.1. GRAVITATIONAL LENS THEORY | 15

β = θ − θ2
E

θ
. (2.16)

Solving the lens equation produces the image positions, here we see that it

has two solutions

θ± =
1

2

(
β ±

√
β2 + 4θ2

E

)
. (2.17)

The result is that a point mass lens will always produce two images of a

background source, on either side of the lens. One image lies inside the

Einstein radius, and the outer outside. The magnification is given by

µ± =

[
1−

(
θE

θ±

)4
]−1

=
u2 + 2

2u
√
u2 + 4

± 1

2
, (2.18)

where u = β/θE is the angular separation. Where θ− < θE, µ− < 0, mean-

ing the magnification inside the ring is negative, while the image outside

is positively magnified. The net magnification is the sum of the two, and

is typically positive compared to the unlensed source (Narayan and Bartel-

mann, 1996). The angular separation of the two images is too small to resolve

given today’s optics, as predicted by Einstein (Einstein, 1936), but the total

magnification can still be detected. As a stellar sized lens moves in front of

a distant source, it results in a measurable variability, and is what we call

microlensing. This type of variability was first observed in a multiply im-

aged quasar, QSO 2237+0305, by Irwin et al. (1989), and has been used to

search for Massive Astrophysical Compact Halo Objects (MACHOs) (Paczyn-

ski, 1986) and determine the microlensing optical depth of the galactic bulge

(Paczynski, 1991). It has also been useful in constraining the fraction of dark

matter made up of compact masses. If present, they would produce easily

observable lensing events, and the lack of evidence for microlensing events

puts an upper limit on the matter fraction of compact objects (Press and

Gunn, 1973). The lensing by point masses can also significantly affect the



16 | CHAPTER 2. THEORETICAL BACKGROUND

time delay measurements of multiply imaged distant quasars (e.g. Tie and

Kochanek, 2018); we will discuss this in more detail in following chapters.

Lensing by a Singular Isothermal Sphere

Another common lens model is the singular isothermal sphere, which is a

good zeroth-order model for giant elliptical galaxies. It assumes the mass

components all behave like the particles in an ideal gas with a combined

gravitational potential. The Einstein Radius for an isothermal sphere is

given by

θE = 4π
σ2
v

c2

Dds

Ds

= α̂
Dds

Ds

= α, (2.19)

where σ2
v is the one-dimensional velocity dispersion of the stars in the sphere.

If the background source lies within the Einstein radius, i.e. β < θE, in

reference to the observers line-of-sight, we get multiple images. The equation

then has two solutions

θ± = β ± θE, (2.20)

where the source, the images and the lens, lie on a straight line. The magni-

fication of the images are given by

µ± =
θ±
β

= 1± θE

β
=

(
1∓ θE

θ±

)−1

. (2.21)

If β > θE, the source lies outside the Einstein ring and we only get one image

at θ = θ+ = β + θE.

Because the lens, in this model, has no ellipticity, it can not produce quads

(quadruple images). Adding some amount of ellipticity will solve this and

also reproduce other configurations we observe (Courbin et al., 2002).
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Refsdal (1964a) was the first to propose the method of measuring the time

delays between the split images of variable sources (e.g. quasars), and using

them to determine the Hubble constant in an independent way.

2.2 Time Delays and the Hubble Constant

2.2.1 The Time Delay Function

As light propagates through space, it travels at a finite velocity. The time it

takes to reach an observer depends on the path the ray follows, which will

differ depending on whether or not it has been gravitationally lensed. Cooke

and Kantowski (1975) derived the time delay expression between lensed and

unlensed sources and showed that this time delay is caused by two effects.

The first is the geometric time delay, ∆tgeom, which arises due to the fact

that a light ray that has been bent will be longer than an unbent ray, and

therefore travel farther. The delay is given by

c∆tgeom = (1 + zd)
DdDs

Dds

(θ − β)2, (2.22)

where zd is the redshift of the lens. The second effect is the gravitational

time delay, ∆tgrav, which is known as the Shapiro delay (seen in eq.(2.3)).

This is the effect caused by traveling through a gravitational potential and

a light ray experiences a general relativistic time dilation, given by

c∆tgrav = −(1 + zd) ψ̂(ξ) + constant. (2.23)

where ψ̂(ξ) is the deflection potential (see Eigenbrod, 2012) The total time

delay is then the sum of the two,

c∆t = (1 + zd)
DdDs

Dds

(
1

2
(θ − β)2 − ψ(θ)

)
+ constant. (2.24)
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where ψ(θ) is the scaled deflection potential. As equation (2.24) measures the

delay between source and image, it can not be measured because the source

is unobservable. We can instead measure the relative time delay between two

quasar images, A and B

∆tB−∆tA =
(1 + zd)

c

DdDs

Dds

(
1

2
(θB − β)2 1

2
(θA − β)2 − ψB(θ) + ψA(θ)

)
(2.25)

The equation depends on the angular diameter distances, which themselves

depend on the redshift of the source and the lens, zs and zd respectively, the

Hubble constant H0, and the assumed cosmology of the universe through the

relation (Fukugita et al., 1992),

D (zs, zd) =
c

Ho

1

(1 + zd)

∫ zd

zs

dz

[ΩM(1 + z)3 + ΩΛ]1/2
(2.26)

where the cosmological parameters are defined

ΩM0 ≡
8πGρ0

3H2
0

, ΩΛ0 ≡
Λc2

3H2
0

(2.27)

The most interesting relation is that the time delays in equation ?? are

directly proportional to H−1
0 and can therefore give us a direct measure of

the Hubble constant (Refsdal, 1964b).

2.2.2 Measuring the Hubble Constant

The expansion of the universe was first observed by Edwin Hubble (1929),

who demonstrated the relationship between the recession velocity vr of nearby

galaxies and their distances through the well-known Hubble’s law
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vr = dH0 (2.28)

where d is the distance to the galaxy and H0 is the Hubble constant, which

states the rate of expansion of the universe today. The Hubble constant

is a particularly valuable parameter as it directly relates to cosmological

distances. If we are able to determine an accurate H0, it would provide us

with a scale for the universe.

There is not any method that can accurately measure distances at all scales,

hence most measurements of cosmological distances make use of a distance

ladder. A distance ladder is a collection of methods that work progressively

on larger scales. Most are based on different distance indicators, usually

objects that can be used as ”standard candles”, which are bright objects of

known luminosities, e.g. cepheids and type Ia supernovae (SNIa). Cepheids

are bright, young and pulsating stars that have a specific period-luminosity

relation, where once we know the period, we can estimate the luminosity

distance. This works well for distances in our own galaxy and local galaxies.

Cepheids are also one of the few primary indicators, and set the zero-base

for the distance ladder (Eigenbrod, 2012).

SNIa are white dwarf supernova explosions, which all have a common initial

energy due to the Chandrasekhar mass, and hence, a known luminosity. This

means we can determine their respective luminosity distances and find H0

through Hubble’s law (eq.2.28). Type Ia supernovae can be seen and used as

a distance measure as far as z ∼ 2 (Eigenbrod, 2012). At larger scales, sev-

eral relations have been used to estimate luminosity distances, among these

are the Tully-Fisher relation (Tully and Fisher, 1977), the Faber-Jackson

relation (Faber and Jackson, 1976), and the surface brightness fluctuation

method (Tonry and Schneider, 1988). However, all these methods are sec-

ondary measurements that rely on calibration through primary indicators,

typically cepheids. This results in higher systematic errors as the uncertain-

ties of each distance indicator are added (Eigenbrod, 2012). To constrain

this, measurements of cepheids were made using the Hubble Space Telescope
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to create an accurate local distance scale (Freedman et al., 2001). Recent

results are given by Riess et al. (2019).

Other distance indicators are the ”standard rulers”, a length scale often mea-

sured by the baryon acoustic oscillations (BAO) in the early universe (Eisen-

stein, 2005). Measurements of the acoustic peak signature in the correlation

function as a characteristic angle gives us an angular diameter distance as

a function of redshift, which yields the Hubble parameter. Galaxy diame-

ters have also been proposed by Marinoni et al. (2008) as a standard ruler.

In addition, a single ”standard siren” method have been used as a distance

indicator, which is the measurement from the gravitational waves of binary

neutron stars (The LIGO Scientific Collaboration et al., 2017). Methods

that estimate the distances and the Hubble constant without using mea-

sured distance indicators include the measurements of the cosmic microwave

background (CMB) anisotropies to constrain the cosmological parameters in

the ΛCDM model (Planck Collaboration et al., 2018).

A direct way of measuring distances in the universe, and with it the Hubble

constant, is through strong gravitational lensing. As discussed above, multi-

ply imaged quasars experience a time delay ∆t when passing through a large

gravitational potential, which are directly proportional to the inverse Hubble

constant H−1
0 , as seen in equations (2.24) and (2.26). The method was first

proposed by Refsdal (1964b). In order to calculate H0, two requirements are

needed: 1) accurate time delay measurements between the images, which de-

mands observations over a long time span and at an adequate sample rate, 2)

an accurate model for the llensing mass distribution of the foreground galaxy,

or galaxy cluster causing the lensing. We should also take both microlens-

ing and line-of-sight structure into account, as they can both significantly

affect the time delays Tie and Kochanek (2018); Bar-Kana (1996). The mea-

surements may also weakly depend on the cosmological parameters, e.g. the

flatness and density parameters, as we see in equation (2.26) (where we as-

sumed a flat universe Ωk = 0). The estimation of the Hubble constant will

be further discussed in chapter 6.

There is a tension between the results of Planck and the ones found using
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other astrophysical methods, where there is a gap in the final estimates of

the Hubble constant. The newest report from Planck estimate the Hubble

constant to be H0 = 67.27±0.60 km s−1 Mpc−1, while recent distance ladder

estimates by Riess et al. (2019) give H0 = 74.03± 1.42 km s−1 Mpc−1 in the

local universe. The current difference between the Hubble constant measured

locally by astrophysical methods, and the one inferred by Planck CMB and

ΛCDM is 6.6 ± 1.5 km s−1 Mpc−1 (Riess et al., 2019). A figure showing

historical measurements of the Hubble constant can be seen in figure 2.4

Figure 2.4: Measurements of the Hubble constant over the past two
decades. (Credit: ESA and the Planck Collaboration)

Currently, the measurements from all these methods are constrained to the

point where there has not yet been found any systematic error than can

explain these discrepancies. This has led many to wonder whether we may

need to include some new physics in the standard cosmological model( i.e.

adding curvature or other dark energy models), for more on this see Planck

Collaboration et al. (2018); Rusu et al. (2019) and the references therein.





Chapter 3

Data

The results of this thesis is based on data acquired from monitoring cam-

paigns at the Nordic Optical Telescope (hereafter NOT). The projects aim to

monitor gravitationally lensed quasars with a high sampling rate over a long

time span to be able to measure the time delays between their multiple im-

ages. In this project we are interested in the two targets SDSS J2222+2745,

a cluster-lensed sextuple quasar, and PS1 J0147+4630, a quad lensed by a

massive elliptical galaxy. Both objects have at least one long (> 150 days)

time delay, and the time delays of the latter have never been measured before

now. This chapters covers the observation and the data reduction techniques

used to produce the light curves for our two targets. All data points can be

found in tables in Appendix A.

3.1 Observations

NOT is a 2.56 m optical telescope located at the summit of Roque de los

Muchachos, La Palma, Canarias, Spain. The observations are made using

the Andalucia Faint Object Spectograph and Camera (ALFOSC) instrument.

It has a 2048×2068 pixel CCD detector with 32 bit intensity resolution, and

a pixel scale of 0.′′2138 pixel−1. The ALFOSC detector was replaced in 2016,
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but the use of calibration stars in the reduction process should account for

any dissimilarity in the flux. In the following section, we will discuss the

observations of the two target quasars individually.

3.1.1 SDSS J2222+2745

The campaign to monitor SDSS J2222+2745 began in September 2012, after

it was discovered by Dahle et al. (2013) through the Sloan Giant Arcs Survey

(see Sharon et al., 2019, and references therein), which is based on public

data from the Sloan Digital Sky Survey Blanton et al. (2017). Observational

data from September 2012 up until January 2019 makes up the basis of

our results. The quasar is located at a redshift z = 2.8050 ± 0.0006 and

is split into six distinct images (confirmed so far by Dahle et al., 2013) by

a foreground galaxy cluster at z = 0.4897 ± 0.0032 (redshifts measured by

Sharon et al., 2017). The images have a maximum angular separation of

15.′′1, which is significantly larger than the typical < 10.′′ of quasars lensed

by single galaxies. An image of SDSS J2222+2745 from the Hubble Space

Telecope can be seen in figure 3.1, where the quasar images are marked with

arrows and their designated labels.

The three brightest images, A–C, are visible as blue stellar images sharing

a clustercentric radius with a giant arc (physically unrelated to the quasar)

south of the cluster. The central cluster galaxies are labeled G1–G3, and

appear red in the image. Close to the core galaxies we see the three fainter

quasar images, D–F. The latter images do not yet have sufficient data for

measuring time delays, as their their flux is superimposed to their core galaxy

companions and difficult to dissociate. Hence, in this thesis we will be using

the data from images A, B and C, as they are sufficiently bright to be observed

with ground-based telescopes.

The quasar is monitored in epochs with an average sampling frequency of one

every 16.15 days. At each epoch a set of 3× 600 second (sometimes 3× 300

sec) exposures are captured using the SDSS g-band. This wavelength band

is particularly useful for maximizing the signal-to-noise ratio of the blue



3.1. OBSERVATIONS | 25

quasar images, relative to the redder cluster galaxies, and helps identify the

signatures of the fainter D–F images within the superimposed flux. The

visibility period of SDSS J2222+2745, i.e. when the target is above the

horizon at night time, runs from late April to early January, leaving an

average season gap of ∼ 117 days for the 7 seasons we currently have.

Figure 3.1: HST image of SDSS J2222+2745, based on images obtained
with the F435W, F606W, and F814W filters of the ACS instrument. The
gravitationally lensed quasar images are labeled A–F and the cluster core
galaxies are labeled G1–G3. The quasar is at a measured redshift of z = 2.805
and the cluster at z = 0.4897. Other lensed objects can be seen in the field
but are not labeled, the most prominent one being the giant arc south of the
cluster core.
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In addition to the data from ALFOSC, 3 epochs of data points were captured

using the NOT instrument MOSaic CAmera (MOSCA), and 3 epochs by the

Gemini North Telescope using the GMOS instrument. Images from both

were acquired using the instruments’ respective g-band.

3.1.2 PS1 J0147+4630

Our second target is a quadruple quasar, PS1 J0147+4630, appropriately

nicknamed Andromeda’s parachute due to its configuration. A close-up i-

band image from the Hubble Space Telescope can be seen at the left-hand

of figure 3.2, where the quasar images are lettered A–D, and the lensing

galaxy G. A larger-field image from NOT is displayed on the right-hand side

outlining the system. Accurate spectroscopic redshifts were measured by

Lee (2017, 2018); the quasar is located at z = 2.341 ± 0.001 and the lens

at z = 0.5716± 0.0004. The maximum angular separation between the four

images is 3.′′8.

The system marked the first published gravitational lens discovery from the

Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1,

hereafter PS1) images, by Berghea et al. (2017). PS1 is a wide-field imaging

system located at the summit of Haleakala on the island of Maui, Hawaii. The

first PS1 data were released in December 2016. The campaign to monitor

PS1 J0147+4630 at NOT had its first measurement in August 2017. Our

results are based on observations from then until March 2019, which marks

the end of the second season observed by NOT. It will again be visible at

the beginning of June, leaving us a seasonal gap of ∼ 75 days. Each epoch

consists of a set of 3 × 30 second exposures with an average sample rate of

one epoch every 7.8 days.
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Figure 3.2: Images of PS1 J0147+4630. The quasar images are labeled A–D
and the lensing galaxy is named G. The quasar is at a redshift z = 2.341
and the lens galaxy at z = 0.5716. Left: Close-up image captured by the
Hubble Space Telescope in September 2017, using the i-band (near infrared)
filter F814W. Right: Combined image from the photometric measurements
from the Nordic Optical Telescope, captured with the ALFOSC instrument
in the R-band filter.

3.2 Photometry and Data Reduction

Standard techniques for de-biasing and flat fielding were used on all the AL-

FOSC photometric data for both quasars, where the flat fields typically are

the median of a set of three exposures taken during twilight on the same night

as the quasar images. The ALFOSC instrument is cosmetically clean, hence

we are able to treat the three exposures from the same epoch as individual

measurements, rather than combining the set. In this section, the photomet-

ric methods used for each of the quasars will be discussed separately.

3.2.1 SDSS J2222+2745

The data reduction of SDSS J2222+2745 was done by H̊akon Dahle following

the desciption given in Dahle et al. (2015). The flux of the quasar images and

five reference stars were measured using a fixed circular aperture of diameter
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2.25”, and the uncertainties were determined by measuring the photometric

scatter within the exposure’s respective epoch, then fitting the result as a

function of signal-to-noise of the quasar images. Exposures where FWHM

seeing was worse than 1.′′2, or where there was a high level of background sky,

were excluded. The final sample has 116 epochs and 313 total exposures.

The magnitudes of the quasar images in each exposure were calibrated using

SDSS magnitudes of five comparison stars, chosen for their invariability and

color match to the quasar. The resulting light curves of images A, B and C

of quasar SDSS J2222+2745 can be seen in figure 3.3.

Figure 3.3: Photometric light curves for the three brightest components of
the sextuply lensed quasar SDSS J2222+2745. Image A is represented by
blue points, image B by green and image C by red. The errorbars show the
photometric uncertainties.

The light curves show a significant flux variability over the 7 year time span,

and an immediately apparent, time- and magnitude shifted, correlation. By

visual inspection, image C seems to be leading image A by approximately 700

days, while image A leads the B component with ∼ 40−50 days. During the
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first 3.5 years (from day 6000-7250 in MJD units) of observations, images A

and B are fading, while C is brightening to become the brightest component

of the three, while the others experience a minimum. After this images A

and B follow a similar trend to that component C had during the first half

of the time span, and reach a maximum in 2018 (MJD ∼ 8400 ) similar to

the one we saw in image C during the 2016 season (at MJD ∼ 7600 ).

3.2.2 PS1 J0147+4630

The quasar PS1 J0147+4630 contain four images that are located very close

together in the field. To be able to separate and measure these individu-

ally, we will use the DAOPHOT package in IRAF (see Massey and Davis,

1992) designed for stellar photometry in crowded fields and do a sophisticated

point-spread-function (PSF) fitting. Because quasars are bright, point-like

sources, they can be fitted well within the PSF profile of a star. The philos-

ophy and the basic algorithms of the DAOPHOT program can be found in

Stetson (1987), and a thorough step-by-step guide is given by Massey and

Davis (1992).

A few preparing steps were needed before our raw exposures were ready

for photometric reduction. The quasar was first centered in the frame of

each image using a technique by H̊akon Dahle, originally developed for weak

lensing photometry. The method uses a large number of reference stars

(typically 50-100) in the frame to exactly align the exposures with respect

to each other (using a second-order polynomial transformation in x and y,

using linear interpolation between pixels to assign flux to the pixels in the

new image, while preserving the original total flux and pixel size). Next, the

edges were cropped from each frame to avoid any distortions in our PSF that

may occur due to being far away from the optical axis. Lastly, we needed the

full-width at half-maximum (FWHM) of a star and its PSF fitting radius,

as well as the characteristics of the chip, e.g. read-noise and gain, as input

in the DAOPHOT parameter files. Using a combined image from all the

exposures, we utilized the IRAF command imexam to measure the FWHM of
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the brightest, unsaturated star in the field and its PSF radius, where nearly

all of the star’s flux should be included. Making this radius large enough is

necessary for fitting fainter stars to account for the wings of a neighboring

bright star. The radius should typically be close to 10 times larger than the

FWHM value. The chip characteristics should all be found in the FITS file

headers.

The function daofind produces a list of coordinates for most of the stars (in-

cluding the star-like quasar images) in the field plus an assigned ID number,

while phot performs a basic aperture photometry on the same stars. This

sets a zero-point for our PSF and determines the sky values. Next, a PSF

is constructed using the DAOPHOT psf function. It is an interactive rou-

tine that steps through the star list assembled by daofind, shows a surface

plot profile of the star and let us choose whether or not to accept it as a

”PSF star”. The stars chosen constitute the basis for the PSF and should be

relatively bright and isolated, hence the crowded quasar images make unfit

candidates. With a satisfying PSF (for more complicated fields, Massey and

Davis (1992) provides additional steps), we run the function allstar, which

will perform a PSF fitting to every identified star in the field. The output is

the final DAOPHOT photometry file, giving the measured magnitudes and

photometric uncertainties for each star, including our quasar images. This

last step is repeated for each individual exposure.

The photometry files need to be calibrated before we can combine them

to a single data set. We will use four stars in the field to calibrate the

magnitudes, where a calibration star should show very little variability and

have a color resembling the quasar images. First, be sure to note the ID

numbers, designated by DAOPHOT, of the calibration stars and the quasar

images (confirmed by their coordinates). For each exposure, the average

magnitude of the calibration stars are subtracted from all magnitudes and

a normalization average is added mN = 16.694, which will normalize all the

measured magnitudes to one collective average. The time of observation

are found in the fits file header of the respective exposure. The calibrated

magnitudes and their respective observation time is combined into a complete
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data set.

The photometric uncertainties calculated by DAOPHOT may be underesti-

mated, as all the exposures are treated individually, and not compared with

their respective epochs. To account for this, we compared the spread of

each epoch with the uncertainties measured by DAOPHOT, and found that

they were in good agreement below a threshold of σ ≥ 0.12 mag. For a

spread larger than this, DAOPHOT would systematically underestimate the

uncertainties. To give our data more conservative errors, we replaced the

photometric uncertainties σphot measured by DAOPHOT, with the standard

deviation in all cases where σ ≥ 0.12 mag and σ > σphot. For image A this

accounted for ∼ 5% of the uncertainties, while for image D, which is much

fainter it accounted for ∼ 40%. Finally, to remove outliers from our eval-

uation, we exclude measurements that have an uncertainty σi > 0.04 mag.

The resulting light curves of the four quasar images of PS1 J0147+4630 are

shown in figure 3.4.

From the light curves we see that the quasar images are bright but signifi-

cantly less variable than our other target, SDSS J2222+2745 (see figure 3.3).

However, some apparently correlated variation can be seen in the A–C light

curves, most noticeably a ”dip” around day ∼ 8350 (MJD), which corre-

spond to the second half of 2018. Image D might be experiencing the same

pattern towards the end of the observing period (∼ 8550 days). The time de-

lays of PS1 J0147+4630 have never before been measured, only predicted by

mass distribution models for the lens, where images A–C are expected have

relatively short time delays, of only a few days, while image D is expected

to follow the others by about 200 days (Berghea et al., 2017; Shajib et al.,

2019). From studying the figure and visually moving the light curves, they

do indeed seem to reflect this estimation. The results for our measurements

of the time delays are presented in chapter 5.
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Figure 3.4: Photometric light curves for the four quasar images A–D of
the gravitationally lensed quasar PS1 J0147+4630. Image A is seen in blue,
image B in green, image C in red and image D in yellow. The errorbars are
the uncertainties based on the photometric errors and the standard deviation
within each epoch. The measurements are calibrated with the magnitudes
of five comparison stars, and normalized to a common average. The image
D light curve is moved up on the y-axis by -1.2 mag.



Chapter 4

Methods

The luminosities of quasars are known to be variable in several bands of

wavelength and on a wide range of timescales. A quasar will typically vary

on the order of 10% on timescales of months to years (Vanden Berk et al.,

2004). The physical origin of these fluctuations is still unknown, but some

promising sources include accretion disc instabilities (e.g. Kawaguchi et al.

(1998); Pereyra et al. (2005)), starburst events (e.g. Aretxaga et al. (1997))

and gravitational microlensing of the quasar (e.g. Zackrisson et al. (2003)).

This section presents the methods used to utilize this property to measure

the quasar variability and the time delays of strongly gravitationally lensed

quasars that have been split into multiple images.

4.1 Structure function

We want to define the variability of a quasar in terms of a statistical measure

of the difference in magnitude at different epochs. One of the primary tools

to characterize this phenomenon is the structure function. It is closely related

to the autocorrelation function (see Simonetti et al., 1985; Hook et al., 1994)

and measures the variability as a function of the time between measurements,

i.e. the rest-frame time lag τ = tj − ti.
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The structure function is given by

S(τ) =

√
π

2

∑
i<j

| mj −mi |2 −σ2
j − σ2

i (4.1)

where mj specifies the magnitude measured at epoch tj with a measurement

uncertainty of σj. The scaling factor π/2 and the absolute value of the

magnitude difference is added to make it more robust against outliers in the

data (Vanden Berk et al., 2004; Bauer et al., 2009).

There are two common ways to parametrize the structure function and both

are fitted to a binned structure function, with bins ∆τ = τ + dτ . The first

is an asymptotic function, i.e. a constant minus an exponential (e.g. Hook

et al., 1994; Vanden Berk et al., 2004). The second is a power law

S(∆τ) = V0

(
∆τ

∆τ0

)γ
(4.2)

where V0 is the amplitude at ∆τ0 days. Both V0 and ∆τ are constant param-

eters that will be determined during the fit of the function. γ is the slope of

the structure function, and the fit will appear as a straight line in a log-log

plot with a steady rise (Vanden Berk et al., 2004; Fohlmeister et al., 2008).

The structure function has also been observed to flatten after long time-lags

typically larger than 5 years (Cristiani et al., 1996; Hook et al., 1994).

In this project we will be using the power law parametrization of the struc-

ture function as it is the most popular in the literature we will be using for

comparison, and usually the one that provides the best fit in all wavelength

bands based on χ2 fit statistics (Vanden Berk et al., 2004). The slope of the

power law is a measure of the variability of the quasar and will be compared

to both theoretical models (e.g. Kawaguchi et al., 1998; Aretxaga et al., 1997)

and large observational studies (e.g. Vanden Berk et al., 2004; de Vries et al.,

2005; Wilhite et al., 2007).
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4.2 Time Delays

The variability of quasars provides us with a powerful tool to measure the

time delays between different images of gravitationally lensed quasars. Every

quasar will have a unique light curve based on the intrinsic variations of the

quasar, and this will be represented in each duplicate image with a shift in

time and magnitude, and possibly an image-specific small-amplitude varia-

tion due to microlensing caused by stars along the path. There are several

methods for predicting the time delays of quasars, where two of the most

widely used have been simple χ2-minimization and the minimal dispersion

method (Pelt et al., 1994, 1996). However, these methods do not include

corrections for microlensing in the model (except as a static change between

seasons), which significantly can affect the time delay measurements (Tie

and Kochanek, 2018). This motivates us to apply a newer method that is

able to model both intrinsic variation and the uncorrelated microlensing in

its estimation of the time delays and its uncertainties for all images, resulting

in a model that will fit the data much better.

4.2.1 Polynomial Method

Our main approach of analyzing the quasar light curves and estimating the

time delays is based on the method by Kochanek et al. (2006) using Legen-

dre polynomials. Other notable examples of this method being used is by

Fohlmeister et al. (2007, 2013), Poindexter et al. (2007), and Vuissoz et al.

(2007, 2008). The advantage of this method is that it models the intrinsic

variation of the source as well as the microlensing experienced by the indi-

vidual images separately as two different Legendre series – one higher order

for the intrinsic magnitude, and one smoother curve representing the slow

photometric microlensing variations in each image.

We first assume that the intrinsic variability of the quasar is well represented

by the brightest quasar image. These variations are then approximated by a

Legendre series given by
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s(t) '
Nsrc∑
m=0

amPm

[
t− tc
δt

]
(4.3)

where s(t) represents the magnitude of the source as a function of time t.

Nsrc is the polynomial order of the fit, and am and Pm are the mth order

of coefficients and Legendre polynomials respectively. Legendre polynomials

are orthogonal and are only defined within the interval [−1, 1] and the time

series is normalized using the midpoint tc = (tN + t1)/2 and the half-width

δt = (tN − t1)/2 of the time series. The intrinsic variation of the source may

be represented by any of the images in the system; it should not affect the

time delay measurements. However, dimmer images typically have higher

photometric uncertainties and may be more affected by microlensing as the

intrinsic flux is weaker (Kochanek et al., 2006).

The microlensing variations are represented by a lower order Legendre series,

∆µ(t) =

Nµ∑
m=0

cmPm

[
t− tc
δt

]
(4.4)

where Nµ is the polynomial order of the series, cm and Pm are the mth order

of coefficients and Legendre polynomials, respectively. tc and δt are defined

as above. This lower order polynomial series (usually order 3 or less) models

slow and long-term microlensing, as the short-scale effects of microlensing

(on timescales of weeks) are not seen as a systematic effect, but rather as an

added source of noise (Vuissoz et al., 2007). Assuming the intrinsic variation

is well represented by s(t), this term incorporates both a static relative mag-

nification and the differential variations caused by microlensing. However,

this does not identify the microlensing specific to each image, as it is mea-

sured as the difference relative to the reference image. Any variety found in

image i may actually be a combination of the differential effects between the

reference image and image i. For our purpose this is not an issue though, as

the time delay measurements are affected by the total variation between the

image pair (Kochanek et al., 2006; Vuissoz et al., 2007)
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The light curve of all the images i is then approximated as a model consisting

of the two Legendre series given by

mi(tj) ' s(tj + ∆ti) + ∆µi(tj) (4.5)

where s(tj + ∆ti) is the intrinsic variability at time tj shifted by the time

delay ∆ti for image i. ∆µi combines the static shift in magnitude and the

differential microlensing variations of image i with respect to the reference

image.

The observations mij of image i at time tj are then fitted to the model using

by the ordinary fitting statistic,

χ2 =

Nim∑
i=1

Nobs∑
j=1

[
mij − s (tj + ∆ti)−∆µi (tj)

σij

]2

(4.6)

where Nim is the number of images, Nobs the number of observations, and

σij the photometric uncertainties for image i at time tj. The time delay ∆ti

between each image pair A− i (where A is representing the reference image

used in equation (4.3)) is one of the parameters of the fit, as well as the

variations in flux ratio ∆µi. The best model will be the one where we see no

significant positive change in the fit by increasing the number of parameters

in the model.

4.2.2 Model selection

The uncertainties in the time delays depend on the characteristics of the

interpolation of the light curves and are usually smaller than the true un-

certainties (Fohlmeister et al., 2013). We will therefore be comparing our

measured time delays to the previous measurements for SDSS J2222+2745

(Dahle et al., 2015), and the predicted values for PS1 J0147+4630 (Shajib

et al., 2019). Uncertainties may also be underestimated due to the restriction

of the final model, as the number of parameters in the source and microlens-
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ing models have a large effect on the time delay estimates (Poindexter et al.,

2007). Therefore we will be applying information criteria to our models to

better determine the number of parameters in our Legendre series and to

let us estimate an average confidence interval that includes several different

models.

Information Criteria

We will evaluate our polynomial models using the Akaike information crite-

rion (Akaike, 1974) and the Bayesian information criterion (Schwarz, 1978).

Their general definitions are given by

AIC ≡ −2 lnLmax + 2k (4.7)

BIC ≡ −2 lnLmax + k lnNobs (4.8)

where k = Ns + Nµ is the number of parameters in the model, Nobs is the

number of observations and lnLmax is the log-likelihood at its maximum

point defined as

lnLmax = ln(L(θ̂)) = −1

2
Nobs ln

(
σ̂2
)
− Nobs

2
ln(2π)− Nobs

2
(4.9)

where σ2 = RSS/Nobs are the maximum likelihood (ML) estimators and

RSS =
∑Nobs

i=1 ε̂2i is the residual sum of squares with ε̂ = yi − ŷi as the

estimated residuals. For a full statistical explanation, see Burnham and

Anderson (2002), and for an explanation tailored to astronomers see Takeuchi

(2000).

The best fit is the one that minimizes the information criteria; negative num-

bers are preferred. The left-hand term - the log-likelihood - rewards a good

fit, and will generally improve as more parameters are added. The second

term penalizes more parameters in the model, i.e. it grows for an increasing
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number of parameters. The AIC/BIC will decrease as the fit improves, but

start to increase again when the model adds too many parameters without

being able to improve the fit significantly. The BIC treats new parameters

more harshly than the more liberal AIC, and will usually choose a model

of fewer parameters. The total size of the AIC and BIC values themselves

give us little information as they are all strongly dependent on sample size

and only comparable to the other AIC/BIC values for models on the same

data set. However, they will give us a useful ranking system for the different

models fitted to each light curve, i.e. the different set of parameters used in

equations (4.3) and (4.4).

A more informative value are the relative AIC- and BIC-differences,

∆i,AIC = AICi − AICmin (4.10)

∆i,BIC = BICi −BICmin (4.11)

which allows us to compare the quality of models on different sets of data.

The model estimated to be best has ∆i ≡ 0 and models with ∆i > 10 will

generally have little support (Burnham and Anderson, 2002). However, these

limits often chooses a model that has too few parameters for our purpose, as

we need to capture the intrinsic variations of the quasar light curves through

a higher order polynomial (eq.(4.3)). This and the process of choosing an

acceptable model will be further discussed in chapters 5 and 6.

Relative Likelihood

When we have an idea of the best models for each light curve, we use that

information to evaluate each time delay fit. The relative likelihood of a model

evaluates each model given the data set and is proportional to the probability

that one time delay is a better fit than the previous one,
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L(yi|∆t,m) ∝ exp(−1

2
∆χ2) (4.12)

The best model has a probability L = 1. A possible issue with choosing just

one model is that it may underestimate the uncertainties. The time delay

and its uncertainties can be significantly affected by the choice of model

parameters, either by the intrinsic model or by the choice of microlensing

variation (Tie and Kochanek, 2018). We will evaluate the relative likelihood

of different models and discuss confidence intervals on an averaged time delay

estimate (e.g. Poindexter et al., 2007; Fohlmeister et al., 2013) in chapter 6.



Chapter 5

Results

5.1 Structure function

To get a measure of the intrinsic variability of the source quasar we used

the combined light curve from images A, B and C, where B and C have

been shifted according to their time delays and magnitudes with respect to

A, to calculate the structure function given by equation (4.1). The time

delays used in this calculation are the ones found by Dahle et al. (2015),

∆tB = 43.3 days and ∆tC = 702.2 days, and the static magnitude shifts

∆mB = 0.343 mag and ∆mC = 0.494 mag. Microlensing is not included as

it is not expected to have a significant effect on the structure function; the

variation in magnitude caused by microlensing is very small compared to the

intrinsic variations of the source (Fohlmeister et al., 2008). We confirm this

by measuring the microlensing variations, see section 5.2.3.

The combined data set includes time-lags spanning from ∼ 0.01 days to

∼ 3200 days between the first and last epochs. The shortest rest-frame time

lags τ are cut out (τ < 2 days) because in this range the amplitude of the

intrinsic variability is smaller than the noise, resulting in a ’flat’ structure

function (Bauer et al., 2009). Higher time lags (τ > τmax/2) were also cut

out since our three light curves do not overlap at larger intervals, hence may
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not represent the intrinsic variability of the source completely. The final

sample of rest-frame time lags and corresponding magnitude difference is

257 961 elements. The data was sorted with respect to increasing rest-frame

time lag and binned into intervals with an approximately equal length in

logarithmic scale ∆τ = ln(τ) +d(ln(τ)). The number of bins is chosen so we

have a relatively large sample of measurements in each bin. The number of

measurements in each bin ranges from 293 in the shortest time lag interval

to 79 916 in the longest. Multiple bin sizes and interval-lengths were tested,

which overall only had a very small effect on the result of the structure

function slope.

Figure 5.1: The binned structure function of quasar J2222+2745 in the
gSDSS-band against rest-frame time lag, plotted on double logaritmic axes.
The structure function is calculated from the combined observations of the
ABC images, corrected for time lag and static shift in magnitude. The power-
law slope is fitted using least squares and have a slope γ = 0.548 ± 0.0415.
The errorbars represent the standard deviation from the mean in each bin.

The power-law slope is calculated using the parametrization given in equation

(4.2) and fitted using least squares optimization. The uncertainty in the slope

comes from the standard deviation errors on the parametrization. For SDSS
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J2222+2745 I found a slope γ = 0.548 ± 0.0415, which can be seen plotted

in figure 5.1. In table 5.1 we see the results of this paper compared with the

structure function slopes from several other studies, based on large sample

observational surveys and theoretical models.

Structure function slope

γ Object
0.548± 0.0415 SDSS J2222+2745

Comparison with observational results
γ Reference Sample size
0.239± 0.030 Vanden Berk et al. (2004) ∼ 25, 000
0.153± 0.004 de Vries et al. (2005) ∼ 35, 000
0.479± 0.010 Wilhite et al. (2007) ∼ 8, 000
0.432± 0.024 Bauer et al. (2009) ∼ 23, 000

Comparison with theoretical results
γ Reference Model
0.44± 0.03 Kawaguchi et al. (1998) Disk Instability
0.83± 0.08 Kawaguchi et al. (1998) Starburst

Table 5.1: Structure function slopes for the results of this paper and com-
pared with both large observational surveys and theoretical models.

This shows that SDSS J2222+2745 has a higher variability than the average,

which ranges from γ = 0.153±0.04 (de Vries et al., 2005) to γ = 0.479±0.01

(Vanden Berk et al., 2004). However, de Vries et al. (2005) does argue that

their quasar sample is heavily affected by measurement noise, which in turn

lowers the structure function (de Vries et al., 2003). When they remove the

”white noise” they get a slope of γ = 0.30 ± 0.01. The theoretical models

derived by Kawaguchi et al. (1998) have the slopes: γ = 0.44± 0.03 for the

disc instability model, and γ = 0.83 ± 0.08 for the starburst model. The

results from SDSS J2222+2745 lie somewhere in between that, and does not

seem to suggest that either model would be a better explanation for the

variability of the quasar.

5.2 Time Delays and Microlensing

The time delays are calculated using the polynomial methods of Kochanek

et al. (2006) discussed in chapter 4.2. The method measures the time de-

lays between lensed quasar images by making a fit to the light curves and
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minimizing the distance between them.

The model light curve is created using Legendre polynomial series – one high

order that models the intrinsic variations of the source (eq. (4.3)), and one

low order that models the differential variations in the curves and with it

the microlensing of each image (eq. (4.4)) – which are added together to

form a smooth light curve (eq. (4.5)). The high order polynomial will be

on the order of Nsrc = 5 − 30 and the low order series at Nµ = 0 − 5. The

implementation of the polynomial method requires four steps.

5.2.1 Light curve model

We start by choosing the image that should act as a reference to the source

variability, this is usually the brightest image in the set, but could be any of

them. For both our quasars, SDSS J2222+2745 and PS1 J0147+4630, we are

using image A (the brightest) as the reference. In figure 5.2 we see the light

curves of the A-images for both quasars. They are both fitted with a high

order Legendre polynomial series given in equation (4.3). Simultaneously, the

variations due to microlensing are modeled as a lower order Legendre series

given by equation (4.4), and fitted to the data. The static shift is represented

by the 0’th order polynomial. The total model is given by equation (4.5) and

is fitted to the data after a time delay has been added. The coefficients of

the Legendre series are fitted to the data using the polynomial.legendre

functions in the python package numpy, which uses least-square methods to

optimize the parameters (Oliphant, 2015). The modeled light curves are

often split up between the multiple seasons of observing (e.g. Vuissoz et al.,

2007; Fohlmeister et al., 2013; Tsvetkova et al., 2016). This was tested but

produced results of higher uncertainties, especially for PS J0147+4630 as it

has very low amplitudes of variability. The seasonal gaps for both our quasars

are relatively short (130 and 73 days for SDSS J2222 and PS J0147+4630,

respectively) and the rest of the curve has a high sampling rate over a long

time span, which manages to produce a good model of the light curve even

crossing the seasonal gaps.
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Figure 5.2: The measured magnitudes for the A-images for the quasars
SDSS J2222+2745 (left) and PS1 J0147+4630 (right), along with the fitted
model representing the intrinsic variations of the source. Th errorbars rep-
resent the measurement errors. The polynomial fitted to SDSS J2222+2745
have Nsrc = 19 (in eq.(4.3)), representing the polynomial orders used for
fitting image B and C. For PS1 J0147+4630 the polynomial is also of the
order Nsrc = 19, which proved to be a good model for fitting all three images,
BCD.

Before fitting the model we need an array of time delays ∆t for the code to

step through. From the light curves seen in figures 3.3 and 3.4 it is possible

to visually estimate approximately what the time delays should be. For

SDSS J2222+2745 image B should be about 45 days behind image A, while

image C is leading with about 700 days. This is also confirmed by previous

estimations by Dahle et al. (2015), see table 5.2. Several were tested but the

final series of time-delays spans from -100 to 0 days for image B, and from

650-750 days for image C. PS1 J0147+4630 is much less variable than J2222,

and the data is from a much shorter time span, as it was discovered as recently

as 2017. The variations are not as obvious as in J2222 but there is still some

structure. It seems images ABC are within only a few days of each other,

i.e. ±10 days and image D is about 170-180 days behind image A. These

rough estimations also coincides with the time delays predicted through lens

modeling by Berghea et al. (2017) and Shajib et al. (2019), listed in table

5.2. For images B and C, the time delay array is therefore covering delays

of ±10 days, and for image D from -200 to -100 days. Each array covers

1000 steps. Several other step lengths were tested, but this was an overall
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good value with respect to accurate predictions as well as computation time.

This does result in different step-lengths for time delay series for the different

images (ranging from 0.02 to 0.1), but they will all be short enough to get

an accurate estimation of the time delay and its uncertainties.

SDSS J2222+2745 measurements
∆tAB (days) ∆tCA (days) Data Reference

42.0+1.1
−0.1 717.4± 0.5 NOT, Gemini Dahle et al. (2015) (χ2)

47.7± 6 722± 24 NOT, Gemini Dahle et al. (2015) (Dispersion)

PS1 J0147+4630 predictions
∆tAB ∆tAC ∆tAD Reference
0.1 1.7 226.2 Berghea et al. (2017)
−2.1± 0.3 −7± 1 −193± 18 Shajib et al. (2019)

Table 5.2: Previously measured time delays for SDSS J2222+2745, and time
delays predicted by different lens modeling techniques for PS1 J0147+4630.

5.2.2 Model selection

The best model is the one that minimizes the χ2 (eq.(4.6)) between the

data and the model. However, in our case, models with too few parameters

in Nsrc will not be able to capture the details of the intrinsic variation of

the light curves, and models with too many parameters in either Nsrc or

Nµ will produce oscillations that do not accurately reflect the light curve.

We generally see an overly smooth model for orders Nsrc . 15 in the light

curves for all our different images for both of our quasars. We also frequently

get unacceptable oscillations for models with either Nsrc & 30 or Nµ > 3.

As mentioned in section 4.2, the microlensing variation represented by Nµ

is a slow photometric effect and realistically will not be a higher than a

3rd order polynomial as any variations happening on short time scales are

considered an additional source of noise. These behaviors help guide us to

selecting an acceptable model. In addition, the curves are analyzed using

two statistical information criteria; the Akaike Information Criterion (AIC)

and the Bayesian Information Criterion (BIC), a description can be found in

section 4.2.2. The AIC and BIC are given by equations (4.7) and (4.8), and

their differences, ∆AIC and ∆BIC, by equations (4.10) and (4.11). Their

advantage compared to standard χ2 statistics, is that in addition to rewarding
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a goodness-of-fit, they both penalize an increasing number of parameters.

They are both minimized when adding more parameters fail to significantly

improve the fit. We will be using the AIC- and BIC-differences to compare

the possible models available for each quasar image light curve. They are

calculated for each time delay model in addition to the standard χ2, and the

minimum value for ∆AIC and ∆BIC from every time-delay series ∆ti are

plotted against their respective intrinsic model parameters Nsrc, for every

order of microlensing Nµ tested. The shapes of the plots are very similar for

each of the separate images. However, the Bayesian criterion typically gives

a harder penalty for adding new parameters and therefore favors smaller

models, while the Akaike criterion is more liberal. The plots can be seen in

figures 5.3 and 5.4 for SDSS J2222+2745 and PS1 J0147+4630, respectively.

Figure 5.3: ∆ AIC and ∆ BIC plots for SDSS J2222+2745.

Studying the information criteria plots for SDSS J2222+2745, image B, we

see that the best models are probably at Nsrc = 15, 18, 19. As mentioned,
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the models with Nsrc < 15 are too smooth to represent the light curve details

accurately, even though they statistically have good fits (compared to number

of parameters). It is also apparent that microlensing models of orders Nµ ≥ 2

are preferred, and even though the 0th and 1st order compares to the others

at Nsrc = 19, we can see from the χ2-statistics that Nµ = 2 still greatly

improves the fit (where for Nsrc = 19, χ2 = 3338 for Nµ = 1 and χ2 = 2158

for Nµ = 2). Models of higher orders does not significantly improve the fit or

the criteria. This implies that image B shows high microlensing variation in

the 2nd order, hence we will be using Nµ = 2 for our final model. For image

C, the same applies to the lower order models for the intrinsic variation as

for image B, and the best models seem to be in the range Nsrc = 19 − 24.

After this the value continues to rise steadily as new parameters are added

without improving the goodness-of-fit. We will be using Nsrc = 19 for both

image B and image C in our final estimations. As for microlensing in image

C, the higher order polynomials seem to produce the best models, however,

they also produce an unrealistic amount of oscillations in between the data

points, as well as shape the curve into a new form. Looking at the χ2-values

from our tests, adding the 2nd order polynomial gives the best fit (where we

have χ2 = 1293 for Nµ = 1 and χ2 = 1196 for Nµ = 2, given Nsrc = 19).

For our second quasar, PS1 J0147+4630, the information criteria plots are

seen in figure 5.4. All images have really low values at Nsrc < 15, but again,

these light curves are all overly smooth and do not capture the observed

light curve. The values for PS1 J0147+4630 are especially low as the quasar

has very low amplitude variation, and resembles a straight line more than

the highly variable SDSS J2222+2745 (as seen in section 5.1). Image B and

image C both have minima at Nsrc = 17, 19 that suggests good models. For

both images, Nsrc = 19 has the best χ2-statistic so we will be using that for

our final models. Microlensing in image B does not seem to be particularly

strong, all models are fairly consistent. However, adding a first order model

does improve χ2 significantly, from χ2 = 423 for Nµ = 0 to χ2 = 297 for

Nµ = 1, given Nsrc = 19, so we will adopt a linear model for image B.

For image C, the ∆AIC/∆BIC plots show a more obvious improvement
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Figure 5.4: ∆ AIC and ∆ BIC plots for PS1 J0147+4630.

from Nµ = 0 to Nµ = 1. Higher orders of microlensing do not improve the

fit, neither for the ∆AIC/∆BIC values nor the χ2 values, hence we will

be using a liner model for image C as well. Image D suggests relatively

good models Nsrc < 27. However, the higher order models produce large

oscillations in the data, meaning it adds amplitude variations that are not

real to our intrinsic light curve. By studying both statistics, we conclude that
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Nsrc = 19 is a good model. This means Nsrc = 19 is a good polynomial order

for all of our light curves. The microlensing in image D is pretty consistent

when looking at the ∆AIC/∆BIC plots, but shows an improvement for both

first and second order microlensing in the χ2 fit. The third order polynomial

provide even better values, but when plotting it shows that the curve has

been exaggerated to fit the data, and does not represent a realistic change.

We will therefore use Nµ = 2 for our last image.

In summary, the best models are chosen using the following guidelines: 1)

Find the models with minimized AIC/BIC values. 2) Choose a subset of

these models with not too few parameters (smooting does not capture de-

tail) or too many (oscillations create fake amplitudes), this gives us lower

and upper limits. 3) If the AIC/BIC between two microlensing models are

∼equal, check the chi-squared value and see whether adding an extra param-

eter offers a significant improvement in the fit. If not, use the model with

fewer parameters.

5.2.3 Final light curve for SDSS J2222+2745

In figure 5.7 we see the superimposed light curve for quasar SDSS J2222+2745,

where the best-fitting time delays have been added, and the differential mi-

crolensing models have been subtracted from the BC images. The final light

curve models have the parameters Nsrc = 19 and Nµ = 2 for both images.

Our final time delay estimates for SDSS J2222+2745 are

∆tAB = −42.44+1.44
−1.36 (+3.4%

−3.2%) days

∆tAC = 696.65+2.10
−2.00 (±0.3%) days

which means image C leads A, and image A leads B. The uncertainties cor-

respond to their 95% confidence intervals. The delays are close to their

expected values and produces a good fit for the curve.
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Figure 5.5: The final light curve for the three quasar images of SDSS
J2222+2745. Image B and C have been shifted by their respective best-
fitting time delays and flux ratios, and the differential microlensing model
have been subtracted. The blue dots correspond to image A, the green to
image B and the red to image C. The axes are given relative to image A.

The differential microlensing light curves are seen in figure 5.6. Their corre-

sponding microlensing models ∆µi (eq.(4.4)) are given by

∆µB(t) = 0.353 · P0 + 0.032 · P1 + 0.074 · P2

∆µC(t) = 0.515 · P0 − 0.035 · P1 + 0.095 · P2

which is a Legendre polynomial series where Pm are the Legendre polynomials

of order m. The coefficients have all been optimized by least-square methods

of the fit. The first term correspond to the 0’th order flux ratio. The un-

certainties are given by the root-mean-square error, RMSE =
√
RSS/Nobs,

where RSS is the residual sum-of-squares from the fit. They represent the
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Figure 5.6: Microlensing variability in SDSS J2222+2745. The plot shows
the residuals left after subtracting the intrinsic model s(t) from our data and
represent the microlensing variability, with respect to image A. The fitted
curves are the differential light curve models, ∆µ. We have only included
the parts of images B and C that overlap with image A. The blue dots
correspond to image A, the green to image B and the red to image C. Image
C has been shifted 0.3 mag down (in positive direction) on the y-axis to avoid
clutter.

differences between the model and the data. For SDSS J2222+2745, the un-

certainties are RMSEB = ±0.045 and RMSEC = ±0.050 for the coefficients

in ∆µ. The microlensing curves show some short-term intrinsic patterns that

were not included in the source model. If we were to account for this we would

need a higher order polynomial for the fit of the light curves, which would

also have resulted in ”fake” oscillations in amplitude being added. Image A

shows a constant trend, as this is the reference image, and image B and C

display a clear quadratic variation. This is a typical microlensing pattern

where an image have been magnified in the span of a few years as a lensing

object has crossed their path. Since we see the same trend in both B and C
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images, it could suggest that the microlensing is actually happening to image

A as the curves only show the differential patterns with respect to A.

5.2.4 Final light curve for PS1 J0147+4630

The final light curve for quasar PS1 J0147+4630 is shown in figure 5.7.

Images B, C and D have been shifted in time by their time delays relative

to image A, and the microlensing variations have been subtracted from the

curve. We have used the parameters Nsrc = 19 and Nµ = 1 for images B and

C, and Nsrc = 19 and Nµ = 2 for image D. The final time delays are

∆tAB = −2.21+2.08
−2.16 (+94.1%

−97.7%) days

∆tAC = −5.28+2.16
−2.22 (+40.9%

−42.1%) days

∆tAD = −170.47± 7.61 (4.5%) days

where image A leads, and the others follow in the order BCD. The uncer-

tainties correspond to their 95% confidence intervals. Images ABC are very

close together, while image D experiences a much stronger time delay. This

is expected from the geometry as image D appears much closer to the lens

galaxy and will be more affected by the gravitational effects. All these delays

match well both with our own initial estimates, as well as previous predic-

tions (see table 5.2). In the figure, the left-end tail of the image D light

curve trails down because we have subtracted the microlensing effects from

the whole curve, even though this part of the curve was not included in the

fitting (due to no overlap).

The differential light curve is plotted in figure 5.8, where the best-fit models

have been subtracted from the data set without taking microlensing into

account. The curves have been shifted with their estimated time delays, and

only the observations overlapping with image A are included. The residuals

are also fitted with their respective microlensing model curve,
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Figure 5.7: The final R-band light curve for the four quasar images of PS1
J0147+4630. Images B, C and D have been shifted in time by their best-
fit estimated time delays, and the differential magnitude variation, which
includes the effects of microlensing, has been subtracted. Image A is shown
in blue, image B in green, image C in red and image D in yellow. The axes are
given relative to image A. Observations with measurement errors higher than
0.04 mag have been cut from the evaluation to prevent noisy light curves.
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∆µB(t) = 0.252 · P0 + 0.005 · P1

∆µC(t) = 0.635 · P0 − 0.050 · P1

∆µD(t) = 2.243 · P0 − 0.092 · P1 − 0.072 · P2

where Pm are the Legendre polynomials of order m. The coefficients have

the uncertainties RMSEB = ±0.016, RMSEC = ±0.019 and RMSED =

±0.029, representing the root-mean-square errors. Again, image A is the

reference image and therefore has a constant fit. Image B shows a weak

linear fading over the observational time-span, while image C experiences a

relatively strong linear magnification. This seems to be a clear indication

of microlensing effects. Image D is linearly magnified as well, this increases

about half way in our measurements resulting in a second order fit. The

curves all show some amplitude variations that are intrinsic effects that are

happening on time-scales too short to be included in the polynomial fit to

the reference light curve.
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Figure 5.8: Microlensing variability in PS1 J0147+4630. The best-fit in-
trinsic models have been subtracted from the measurements and the curves
have been shifted in time using their respective time delays. Only measure-
ments that overlap with the reference image A are included in the plot. The
differential light curves are superimposed as a fit to the residuals. Image A is
represented by blue points, image B by green, image C by red and image D
by yellow. The much fainter image D was shifted −1.2 mag up on the y-axis.



Chapter 6

Discussion

The respective time delays of the three brightest quasar images of SDSS

J2222+2745 were measured to be ∆tAB = −42.44+1.44
−1.36 (+3.4%

−3.2%) days, and

∆tAC = 696.65+2.10
−2.00 (±0.3%) days at 95% confidence, using the polynomial

method by Kochanek et al. (2006). They have fractionally small uncertain-

ties, especially the AC time delay, which might be the smalles measured

uncertainty for a time delay yet. The time delays have also greatly improved

the results by Dahle et al. (2015). The small fractional uncertainty is a result

of a close to decade-long data set and a particularly variable source. Due

to the extended observing time, the A and C light curves now share a large

overlapping area, compared to the 2015 results. The structure function was

also measured for this quasar, showing it is indeed more variable than the

average value of a quasar (see Section 5.1). The AB time delay have a higher

fractional uncertainty, mostly due to a shorter time delay, but still offers a

great improvement to the previous results. Both the B and C light curve in

SDSS J2222+2745 show signs of a second order microlensing event (see figure

5.6). Because the quasar is further from the critical line (meaning it will be

less magnified) than what is often seen in quasars lensed by single galaxies,

we can also expect a slower microlensing variation Diego et al. (2018). The

observed microlensing in the B and C curves show signs of being temporarily

magnified on the scale of several years (> 4 years). Note that the microlens-
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ing curves seen in figure 5.6 are differential with respect to image A, meaning

it may actually be image A that experiences a microlensing event. This might

be likely due to B and C following a similar trend. However, it is most likely

a combination of all.

The final time delays of PS1 J0147+4630 are ∆tAB = −2.21+2.08
−2.16 (+94.1%

−97.7%),

∆tAC = −5.28+2.16
−2.22 (+40.9%

−42.1%) and ∆tAD = −170.47± 7.61 (4.5%) days, at 95%

confidence. This marks the first time these time delays have been measured,

as previously they were only estimated through lens model predictions. The

first prediction was done with a simple lens model by Berghea et al. (2017),

and the second by a more complicated model by Shajib et al. (2019). We

have confirmed that images A, B and C lie very close in time, with a total

time delay between them < 10 days. The short A-C time delays produce

very large fractional uncertainties. Time delay effects from microlensing is

an absolute error, rather than fractional, and can therefore be very significant

in small time delays. This effect is especially common in four-image systems,

because they have a high degree of symmetry (Tie and Kochanek, 2018).

To be able to reduce the fractional uncertainties on the time delays, we will

need to monitor the images for a very long time (∼ decades), if not we would

need a much more variable quasar (Eigenbrod et al., 2005). The AD time

delay, however, is significantly longer. This was expected from the image

configurations, as image D lies much closer to the lens galaxy on the optical

axis, meaning it will be the most affected by the relativistic time dilation

effects. This long delay also produces much smaller fractional uncertainties

than the others, which makes it (along with the relatively simple lens model)

an excellent candidate for estimating the Hubble constant.

As mentioned in chapter 4, a possible issue with limiting the final estimate to

a single model is that the uncertainties may be underestimated (Poindexter

et al., 2007). Microlensing variations especially, might have a substantial

effect on the time delay measurements (e.g. Tie and Kochanek, 2018). To

evaluate this, we study the effects of the time delay model parameters using

relative likelihoods (see eq (4.12) and discussion in section 4.2.2).

For SDSS J2222+2745, the relative likelihoods for some of the statistically



| 59

best light curve models (following the discussion in section 5.2.2) are plotted

in figure 6.2. In the left-hand figure, we see the relative likelihood plots

for image B, for models with the polynomial orders Nsrc = 18, 19 and for

different degrees of microlensing Nµ = 0−2 (as discussed, higher orders than

this are not useful). We see from studying the plot that image B is a good

example on time delays varying with the model parameters. The confidence

interval estimated for our results does not cover the gap in model discrepancy.

However, the models are not all statistically equal, and this plot reflect our

discussion in section 5.2.2 well. The models (Nsrc, Nµ) = (18, 0), (18,1) and

(19,0) give poor fits to the data, ruling our zero orders of microlensing, and

possibly a linear model. As we see from the plot, these are the models furthest

from our final estimate. (18,2) is a relatively good model, as we have seen that

the differential light curve indeed show signs of a second order microlensing

term (see figure 5.6). (19,1) seems to provide a relatively good model, but a

linear microlensing trend is ruled out in favour of a quadratic by the data.

Figure 6.1: Relative likelihood plots for each time delay in SDSS
J2222+2745, for different parameter sets in the light curve model. Left-
hand side shows the time delays between image A and B, while the right
hand side show the AC time delay. The errorbars indicate the uncertainties
estimated in this work as well as the one meaured by Dahle et al. (2015).

Image C in SDSS J2222+2745 is a very long time delay, hence it will be

much more robust against microlensing effects (Tie and Kochanek, 2018).

This becomes apparent from the right-hand plot of figure 6.2, where the

relative likelihood in image C is plotted for a few models. The light curve
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for image C is relatively stable, and depends more on the choice of intrinsic

model Nsrc rather than microlensing. In section 5.2.2, we argued that a model

with Nsrc = 16 might be overly smooth, meaning it includes less detail of

intrinsic variations in the light curve. This can also make it less accurate by

smooting over important details needed for precise fitting, which might be an

explanation for the small discrepancy seen between the intrinsic models. The

quasar is also highly variable, as shown by the structure function, making

the intrinsic variations easier to measure between the curves. The long time

delay of image C and the high variability of the quasar, combined with a

long term monitoring campaign produce relatively consistent results for all

models image C.

For PS1 J0147+4630 the relative likelihooda are plotted in figure 6.2. On

the left-hand side we have image B, where the short time delays give us a

large fractional error. The estimated uncertainty in the predictions by Shajib

et al. (2019) are secondary errors from the lens model parameters, where small

fractional uncertainties translate to very small errors in the cases of short time

delays. The same thing happens with the predicted uncertainty in image C,

seen in the right-hand panel. For our measured results, we see that the

estimated time delay in image C is mostly affected the choice of microlensing

parameter Nµ. In figure 5.8 we see that image C experiences a clear linear

magnification over time, evidently indicating a microlensing event. Both first

and second order polynomials in microlensing provide relatively good fits for

the image C time delays, in the intrinsic models seem to match the data

well. The least favored models are clearly the ones where no microlensing is

present, i.e. Nµ = 0, and they are also strongly ruled out by the data.

In the bottom panel, image D shows an opposite effect due to the much

longer time delay. The uncertainties in the predicted time delays are much

more conservative, due to a similar fractional uncertainty as in images B

and C, while having a much larger time delay. For our results, the time

delay measurement for image D show a clear relation between microlensing

model and time delay. Adding a first or second order term for microlensing

is clearly improving the fit (see discussion in section 5.2.2), while a model
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Figure 6.2: Relative likelihood plots for the time delays of PS1 0147+4630.

with no microlensing have no support in the data.

The analysis of the relative likelihood curves show that the measured un-

certainties in the time delays should be interpreted conservatively, due to

the fact that they are evaluated based only on one final model. However,

some models are clearly statistically better than others and we should keep

in mind the discussion from Section 5.2.2. To do a more conservative esti-

mation of the uncertainties, one could add the information criteria described

in Section 4.2.2 to the time delay likelihoods to be used as weights, and then

estimate an average time delay, based on multiple models (e.g. Poindexter

et al., 2007). However, the final result may not give the best measurements

of the time delay. The statistical criteria tend to penalize a higher number

of parameters harshly, and for the purpose of modeling intrinsic light curves

and measuring time delays, often provides models too smooth to capture the

intricate details in the source variability.
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Measuring accurate time delays of gravitationally lensed quasars have been

of high interest, as the time delay is directly, inversely proportional to the

Hubble constant ∆t ∝ H−1
0 . They are also useful in determining the mass

profiles of the lens, if we already have an accurate Hubble constant measured

from other sources. The long image D time delay of PS1 J0147+4630 is a

particularly good candidate for estimating the Hubble constant, given a good

lens model. For the purpose of comparing our results, we can use the lens

model results from Shajib et al. (2019) to find a scale factor we can use to

estimate uncertainties. Shajib et al. (2019) are assuming a Hubble constant

H0 = 70 km s−1 Mpc−1, and have an estimated time delay for image D

∆tAD = −193 ± 18 days. Transforming the uncertainties of our measured

time delay to this scale, we get ∆tAD = −170.47 ± 15.8 days. Combining

this implied lens uncertainty with our observed, σ =
√
σ2
lens + σ2

obs, we get

a time delay with scaled uncertainties ∆tAD = −170.47± 17.53 days. Using

this scale, we can find an estimated Hubble constant of H0 = 79.5± 7.95 km

s−1 Mpc−1. This crude, but interesting, estimation lies within the range of

today’s best measurements by astrophysical methods (see the discussion in

Section 2.2.2).



Chapter 7

Conclusion

The aim of this thesis has been to measure the time delays between multiply

imaged gravitationally lensed quasars, while simultaneously determining the

degree of microlensing events affecting the individual images, and as a result

their time delays. The motivation behind getting accurate time delay estima-

tions, with a small fractional uncertainty, is their usefulness in constraining

the mass density profiles of lens galaxies and clusters, and providing a direct

measure of the Hubble constant, independent of other techniques.

The time delays of the three brigtest images, ABC, in the sextuply cluster-

lensed quasar SDSS J2222+2745 have been measured and significantly im-

proved previous results. The delays between the images, with respect to

image A are ∆tAB = −42.44+1.44
−1.36 days, and ∆tAC = 696.65+2.10

−2.00 days (95%

confidence interval). A slow (> 4 years), second order microlensing effect was

measured in both image B and image C, as a differential curve with respect

to A. The fractional uncertainties in the longest time delay, AC, is at 0.3%,

which is one of the most accurately determined time delays yet. This is a

combined result of a decade-long data set, and a highly variable quasar. In

addition to having taken microlensing into account. We also proved the high

variability of the quasar by measuring the structure function (Vanden Berk

et al., 2004).
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Secondly, the time delays in the quadruply lensed quasar PS1 J0147+4630

were measured for the first time. The time delays between the four im-

ages were found to be ∆tAB = −2.21+2.08
−2.16, ∆tAC = −5.28+2.16

−2.22 and ∆tAD =

−170.47± 7.61 days (95% confidence interval). The three brightest images,

ABC, are very close together in time (< 10 days), while the fainter image

D has a much longer time delay. The long time delay is good for getting

a small fractional uncertainty (4.5%) despite the short observation span,

which is very desirable for astrophysical applications. By using the lens

model from Shajib et al. (2019) and scaled uncertainties, we found a Hubble

constant H0 = 79.5 ± 7.95 km s−1 Mpc−1. The effects of microlensing were

measured in all all three images B, C and D, with respect to A, in varying

degree. Image B had a very weak increase in magnitude over the span of

the observation period of two years, while images C and D both experienced

a relatively strong brightening. The configuration of the four images have

a very small maximum angular separation (3.′′8), but accurate magnitudes

were found using crowded field photometry with the DAOPHOT program in

IRAF.

Outlook

Looking at the results from SDSS J2222+2745, the highly accurate time de-

lays provide an excellent opportunity for determining the cluster mass profile

(Refsdal, 2004). This can be achieved by combining them with mass con-

straints from the positions and redshift of additional lensed, unrelated objects

in the system measured by Sharon et al. (2017). If we got accurate photom-

etry of the much fainter D-F images, which are partially hidden behind the

central galaxies in the cluster, their time delays could be measured and pro-

vide an additional constraint on the mass density profile of the cluster. Even

further constraints on the lens parameters may come from future observa-

tions by the European Extremely Large Telescope and the James Webb Space

Telescope. With an accurate lens model, the time delays might even be able

to provide a measure of the Hubble constant. This would provide a very

interesting results as clusters are in a regime of dark matter, which would
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provide a different set of systematic uncertainties.

With the long time delay measured in PS1 J0147+4630, the system pro-

vides an extraordinary candidate for calculating the Hubble constant inde-

pendently of other methods, through the technique first described by Refsdal

(1964b). An important future task would be to constrain the mass profile

of the lensing galaxy, as well as possible line-of-sight perturbations to be

able to measure an accurate H0, with small fractional uncertainties. This

would be a valuable contribution to the discrepancy between the measure-

ments of the HUbble constant from the CMB and from local distance scales

(e.g. Cepheids), which is a topic of high tension in the community today.

Both methods are so precise that they are currently unable to explain the

discrepancy, this means there may be some systematic error that have yet

to be accounted for, or we need to add some new physics to the standard

cosmological model (e.g. dark energy models or decaying dark matter, see

e.g. Planck Collaboration et al. (2018); Rusu et al. (2019) and the references

therein).

To reduce the uncertainties in the time delays of PS1 J0147+4630, however,

a longer time span of data sets are needed. Because, as we have shown, the

three brightest images, ABC, are so close together in time, and their flux is

dominating the system, a good strategy would be to get the combined light

curve from integrated light of public surveys (e.g. Zwicky Transient Facility).

They could be monitored with a high cadence (∼ 3 days) and a high S/N,

but with poor spatial resolution. Then we could do intensive monitoring of

the fainter D image whenever a raid change in magnitude is predicted.
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Appendix A

Photometry

Table A.1

g-band Photometry of the Three Brightest Images in SDSS J2222+2745

MJD Image A Image B Image C

6182.963 21.092± 0.009 21.441± 0.009 22.111± 0.009

6185.985 21.094± 0.009 21.465± 0.009 22.111± 0.009

6240.930 21.144± 0.016 21.490± 0.023 22.034± 0.031

6240.934 21.166± 0.015 21.481± 0.020 22.034± 0.030

6244.907 21.170± 0.014 21.473± 0.017 22.145± 0.030

6244.911 21.145± 0.014 21.520± 0.014 22.080± 0.019

6244.915 21.155± 0.014 21.507± 0.014 22.100± 0.021

6250.908 21.190± 0.021 21.540± 0.029 22.101± 0.023

6250.912 21.224± 0.021 21.490± 0.027 22.080± 0.022

6250.916 21.197± 0.022 21.515± 0.030 22.025± 0.027

6266.907 21.187± 0.014 21.509± 0.015 22.122± 0.021

6266.911 21.214± 0.014 21.513± 0.015 22.089± 0.020

6266.914 21.203± 0.015 21.508± 0.019 22.070± 0.020

6270.830 21.218± 0.015 21.529± 0.014 22.168± 0.028

6270.834 21.213± 0.015 21.518± 0.014 22.201± 0.024

6270.838 21.224± 0.015 21.499± 0.014 22.189± 0.019

6291.815 21.242± 0.015 21.516± 0.017 22.243± 0.019

6291.819 21.288± 0.014 21.568± 0.015 22.198± 0.019

6294.893 21.229± 0.019 21.501± 0.025 22.191± 0.028

6294.897 21.264± 0.023 21.547± 0.029 22.160± 0.031

6294.901 21.288± 0.024 21.506± 0.028 22.111± 0.025

6430.182 21.396± 0.015 21.792± 0.015 22.234± 0.026

6430.189 21.441± 0.015 21.815± 0.015 22.261± 0.026

6430.197 21.413± 0.015 21.741± 0.014 22.233± 0.025

6446.168 21.363± 0.015 21.683± 0.020 22.254± 0.015

6446.175 21.362± 0.016 21.814± 0.024 22.260± 0.016

Continued on next page
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Table A.1 – Continued from previous page

MJD Image A Image B Image C

6446.182 21.327± 0.014 21.655± 0.018 22.260± 0.016

6454.178 21.430± 0.014 21.821± 0.019 22.207± 0.019

6454.182 21.443± 0.015 21.763± 0.018 22.251± 0.018

6454.186 21.382± 0.014 21.764± 0.018 22.295± 0.018

6457.183 21.388± 0.007 21.767± 0.014 22.220± 0.016

6457.190 21.401± 0.011 21.800± 0.014 22.249± 0.016

6457.198 21.373± 0.011 21.778± 0.014 22.227± 0.016

6477.090 21.452± 0.015 21.765± 0.014 22.289± 0.030

6477.097 21.455± 0.014 21.749± 0.014 22.265± 0.030

6477.105 21.463± 0.014 21.767± 0.014 22.283± 0.030

6488.130 21.444± 0.010 21.721± 0.015 22.288± 0.020

6488.137 21.472± 0.010 21.728± 0.015 22.302± 0.018

6488.145 21.443± 0.010 21.719± 0.015 22.281± 0.017

6507.150 21.470± 0.016 21.781± 0.021 22.213± 0.017

6507.158 21.455± 0.016 21.757± 0.021 22.262± 0.018

6507.165 21.445± 0.015 21.751± 0.020 22.235± 0.019

6518.141 21.451± 0.015 21.761± 0.015 22.285± 0.021

6518.148 21.471± 0.014 21.808± 0.014 22.212± 0.020

6518.156 21.459± 0.013 21.789± 0.014 22.208± 0.019

6533.039 21.475± 0.014 21.812± 0.014 22.187± 0.019

6533.050 21.502± 0.015 21.824± 0.015 22.220± 0.023

6533.058 21.507± 0.015 21.820± 0.015 22.197± 0.023

6533.065 21.466± 0.014 21.837± 0.015 22.137± 0.022

6543.103 21.497± 0.014 21.799± 0.015 22.172± 0.024

6543.110 21.496± 0.014 21.830± 0.015 22.169± 0.014

6543.118 21.501± 0.014 21.788± 0.015 22.251± 0.015

6549.054 21.461± 0.014 21.815± 0.017 22.137± 0.014

6557.850 21.555± 0.014 21.811± 0.017 22.162± 0.014

6557.854 21.552± 0.014 21.853± 0.017 22.170± 0.014

6557.858 21.523± 0.015 21.826± 0.018 22.088± 0.031

6565.970 21.573± 0.012 21.800± 0.015 22.078± 0.031

6565.977 21.559± 0.013 21.829± 0.014 22.149± 0.027

6565.985 21.531± 0.011 21.811± 0.015 21.984± 0.032

6573.944 21.579± 0.010 21.810± 0.015 22.077± 0.032

6573.951 21.560± 0.010 21.806± 0.015 22.034± 0.027

6573.958 21.579± 0.009 21.853± 0.015 22.135± 0.015

6578.051 21.520± 0.018 21.737± 0.023 22.160± 0.018

6578.055 21.542± 0.020 21.806± 0.025 22.156± 0.014

6578.059 21.577± 0.017 21.841± 0.022 22.179± 0.018

6602.891 21.634± 0.015 21.868± 0.014 22.163± 0.017

6602.899 21.621± 0.014 21.889± 0.015 22.139± 0.020

6602.906 21.585± 0.011 21.862± 0.015 22.074± 0.031

6618.884 21.650± 0.014 21.956± 0.015 22.211± 0.031

6618.888 21.638± 0.014 21.880± 0.015 22.082± 0.032

6618.891 21.602± 0.014 21.903± 0.016 22.165± 0.029

6646.872 21.651± 0.021 21.958± 0.031 22.098± 0.029

6773.210 21.622± 0.019 21.862± 0.031 22.132± 0.035
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6773.217 21.591± 0.019 21.921± 0.027 22.062± 0.034

6777.215 21.666± 0.026 21.988± 0.027 22.118± 0.031

6788.186 21.572± 0.015 21.983± 0.028 22.111± 0.033

6788.193 21.597± 0.015 21.916± 0.019 22.160± 0.022

6788.201 21.566± 0.018 22.003± 0.020 22.133± 0.022

6802.187 21.551± 0.015 21.977± 0.028 22.077± 0.027

6802.195 21.592± 0.016 21.900± 0.021 22.154± 0.024

6802.202 21.547± 0.016 21.932± 0.023 22.170± 0.025

6815.173 21.556± 0.015 21.937± 0.024 22.146± 0.026

6815.181 21.570± 0.015 21.942± 0.015 22.113± 0.016

6815.188 21.565± 0.015 21.960± 0.015 22.112± 0.016

6835.176 21.614± 0.014 21.942± 0.015 22.101± 0.016

6835.184 21.584± 0.015 21.927± 0.014 22.076± 0.015

6835.191 21.571± 0.015 21.914± 0.014 22.080± 0.015

6847.162 21.584± 0.014 21.924± 0.015 22.117± 0.016

6847.169 21.574± 0.014 21.901± 0.015 22.022± 0.016

6847.179 21.589± 0.014 21.916± 0.015 22.062± 0.016

6864.105 21.584± 0.015 21.908± 0.016 22.060± 0.016

6864.112 21.601± 0.014 21.959± 0.015 22.017± 0.015

6864.120 21.608± 0.014 21.890± 0.015 21.979± 0.015

6874.056 21.610± 0.014 21.892± 0.015 22.022± 0.016

6874.063 21.612± 0.015 21.914± 0.015 21.950± 0.015

6874.070 21.588± 0.015 21.934± 0.014 21.952± 0.014

6894.020 21.610± 0.012 21.916± 0.015 21.926± 0.014

6894.028 21.592± 0.014 21.937± 0.014 21.963± 0.014

6894.035 21.599± 0.015 21.902± 0.014 21.903± 0.014

6918.088 21.576± 0.014 21.892± 0.014 21.943± 0.014

6918.096 21.565± 0.014 21.909± 0.018 21.951± 0.017

6918.103 21.563± 0.015 21.956± 0.018 21.915± 0.017

6928.011 21.619± 0.015 21.938± 0.019 21.953± 0.018

6928.019 21.620± 0.014 21.952± 0.014 21.956± 0.014

6928.026 21.625± 0.013 21.987± 0.015 21.944± 0.015

6944.979 21.600± 0.014 21.942± 0.014 21.959± 0.014

6944.986 21.628± 0.015 21.933± 0.015 21.923± 0.014

6944.993 21.625± 0.014 21.973± 0.014 21.960± 0.014

6973.943 21.683± 0.018 21.933± 0.015 21.900± 0.015

6973.950 21.627± 0.018 21.931± 0.024 21.699± 0.019

6973.958 21.524± 0.019 21.920± 0.024 21.726± 0.019

6986.896 21.643± 0.015 21.952± 0.027 21.709± 0.021

6986.903 21.642± 0.014 21.883± 0.018 21.654± 0.015

6986.911 21.623± 0.014 21.920± 0.017 21.683± 0.014

7007.822 21.707± 0.016 21.918± 0.017 21.668± 0.014

7137.209 21.680± 0.031 21.892± 0.019 21.680± 0.016

7137.213 21.635± 0.030 21.925± 0.022 21.681± 0.016

7137.217 21.663± 0.031 21.952± 0.021 21.672± 0.016

7141.226 21.651± 0.031 22.023± 0.032 21.741± 0.031

7142.194 21.667± 0.023 22.118± 0.033 21.772± 0.032
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7142.198 21.700± 0.024 22.019± 0.030 21.788± 0.034

7142.202 21.677± 0.022 22.050± 0.030 21.743± 0.024

7143.207 21.696± 0.024 22.067± 0.027 21.744± 0.025

7143.211 21.744± 0.020 21.966± 0.026 21.782± 0.024

7143.214 21.696± 0.018 21.955± 0.035 21.772± 0.024

7158.197 21.795± 0.030 21.986± 0.016 21.809± 0.022

7158.204 21.750± 0.035 22.061± 0.015 21.742± 0.019

7169.188 21.750± 0.014 22.014± 0.017 21.734± 0.029

7169.195 21.775± 0.014 22.044± 0.015 21.747± 0.035

7169.203 21.800± 0.014 22.029± 0.016 21.822± 0.014

7191.154 21.771± 0.014 21.996± 0.016 21.824± 0.014

7191.161 21.777± 0.014 22.052± 0.014 21.826± 0.014

7191.168 21.783± 0.014 22.039± 0.015 21.818± 0.014

7196.183 21.784± 0.015 22.059± 0.015 21.822± 0.014

7196.190 21.809± 0.014 22.110± 0.022 21.857± 0.014

7196.197 21.807± 0.014 22.034± 0.025 21.828± 0.014

7218.080 21.794± 0.016 22.071± 0.023 21.817± 0.014

7218.087 21.763± 0.016 22.099± 0.025 21.819± 0.014

7218.094 21.777± 0.019 22.057± 0.025 21.740± 0.015

7225.041 21.764± 0.017 22.066± 0.016 21.731± 0.016

7225.048 21.760± 0.018 22.079± 0.014 21.767± 0.019

7225.055 21.778± 0.018 22.121± 0.015 21.767± 0.017

7256.088 21.687± 0.014 22.066± 0.015 21.744± 0.017

7258.077 21.725± 0.014 22.087± 0.017 21.794± 0.018

7258.084 21.697± 0.015 22.081± 0.021 21.748± 0.014

7258.091 21.696± 0.015 22.069± 0.024 21.746± 0.014

7260.148 21.691± 0.014 22.047± 0.015 21.723± 0.015

7260.155 21.687± 0.015 22.034± 0.022 21.733± 0.015

7260.162 21.670± 0.016 22.072± 0.023 21.763± 0.014

7270.997 21.675± 0.015 22.098± 0.022 21.749± 0.015

7278.155 21.670± 0.015 22.006± 0.016 21.748± 0.016

7278.162 21.670± 0.015 22.026± 0.017 21.753± 0.015

7278.169 21.646± 0.015 21.995± 0.017 21.756± 0.016

7302.085 21.680± 0.014 21.955± 0.014 21.766± 0.016

7302.092 21.700± 0.014 22.015± 0.015 21.722± 0.015

7302.099 21.671± 0.014 22.036± 0.016 21.726± 0.014

7330.022 21.727± 0.015 21.967± 0.018 21.719± 0.014

7330.030 21.708± 0.014 22.001± 0.014 21.674± 0.014

7330.037 21.684± 0.014 21.981± 0.014 21.545± 0.014

7331.963 21.693± 0.014 21.984± 0.015 21.552± 0.015

7333.897 21.736± 0.015 22.106± 0.019 21.577± 0.015

7333.904 21.705± 0.015 22.063± 0.018 21.534± 0.014

7333.911 21.670± 0.014 22.039± 0.019 21.525± 0.013

7397.827 21.701± 0.014 21.935± 0.023 21.515± 0.013

7397.834 21.696± 0.014 21.926± 0.025 21.518± 0.015

7397.842 21.718± 0.015 21.968± 0.021 21.281± 0.016

7513.177 21.637± 0.016 21.855± 0.024 21.306± 0.018
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7513.184 21.656± 0.018 21.857± 0.028 21.173± 0.015

7513.191 21.650± 0.015 21.892± 0.028 21.183± 0.014

7525.179 21.630± 0.018 21.959± 0.020 21.199± 0.014

7525.186 21.647± 0.021 21.930± 0.017 21.224± 0.014

7525.194 21.615± 0.020 21.912± 0.018 21.251± 0.014

7546.124 21.586± 0.015 21.939± 0.015 21.226± 0.014

7546.131 21.600± 0.014 21.934± 0.016 21.192± 0.014

7546.138 21.597± 0.014 21.964± 0.018 21.186± 0.014

7550.186 21.599± 0.014 21.936± 0.014 21.191± 0.015

7550.193 21.583± 0.014 21.954± 0.014 21.184± 0.014

7550.200 21.575± 0.014 21.931± 0.014 21.195± 0.015

7573.135 21.448± 0.008 21.956± 0.017 21.122± 0.014

7573.142 21.468± 0.008 21.925± 0.022 21.086± 0.014

7573.149 21.449± 0.009 21.894± 0.014 21.100± 0.012

7585.208 21.437± 0.015 21.900± 0.015 21.093± 0.008

7585.215 21.399± 0.015 21.871± 0.015 21.106± 0.013

7585.223 21.413± 0.027 21.851± 0.015 21.151± 0.008

7599.085 21.454± 0.014 21.852± 0.016 21.131± 0.008

7599.092 21.425± 0.014 21.867± 0.016 21.154± 0.008

7611.104 21.501± 0.015 21.769± 0.015 21.105± 0.009

7611.111 21.480± 0.014 21.774± 0.014 21.080± 0.014

7611.118 21.494± 0.014 21.758± 0.014 21.108± 0.021

7627.999 21.446± 0.015 21.768± 0.015 21.055± 0.008

7628.007 21.457± 0.015 21.781± 0.015 21.050± 0.008

7628.014 21.448± 0.014 21.769± 0.018 21.053± 0.008

7640.059 21.451± 0.008 21.785± 0.026 21.003± 0.008

7640.066 21.460± 0.008 21.813± 0.014 21.019± 0.008

7640.073 21.434± 0.008 21.792± 0.014 21.026± 0.008

7651.927 21.407± 0.015 21.785± 0.015 20.989± 0.008

7651.934 21.355± 0.014 21.784± 0.015 20.994± 0.008

7651.941 21.394± 0.017 21.778± 0.015 20.970± 0.008

7658.989 21.327± 0.008 21.791± 0.014 20.903± 0.008

7658.997 21.321± 0.008 21.833± 0.014 20.906± 0.008

7659.004 21.319± 0.008 21.618± 0.016 20.932± 0.008

7662.028 21.311± 0.014 21.782± 0.017 20.907± 0.012

7662.035 21.306± 0.014 21.565± 0.019 20.923± 0.014

7662.042 21.303± 0.013 21.578± 0.016 20.946± 0.008

7670.047 21.230± 0.008 21.568± 0.014 20.946± 0.008

7670.061 21.216± 0.008 21.576± 0.030 20.950± 0.008

7691.958 21.205± 0.014 21.602± 0.019 20.963± 0.008

7691.965 21.213± 0.015 21.615± 0.017 20.944± 0.008

7691.973 21.202± 0.015 21.592± 0.020 20.935± 0.008

7720.842 21.248± 0.015 21.586± 0.019 20.941± 0.008

7720.849 21.243± 0.014 21.615± 0.016 20.956± 0.008

7720.856 21.261± 0.014 21.595± 0.014 20.986± 0.008

7770.823 21.273± 0.022 21.639± 0.014 20.984± 0.010

7770.831 21.254± 0.014 21.617± 0.014 20.979± 0.011
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7770.838 21.246± 0.014 21.640± 0.014 21.104± 0.014

7867.199 21.295± 0.015 21.619± 0.014 21.105± 0.015

7867.206 21.285± 0.015 21.635± 0.014 21.106± 0.010

7867.213 21.297± 0.014 21.619± 0.014 21.164± 0.015

7879.181 21.338± 0.014 21.634± 0.014 21.164± 0.017

7879.188 21.336± 0.015 21.642± 0.014 21.172± 0.017

7879.195 21.301± 0.015 21.650± 0.014 21.311± 0.022

7897.173 21.323± 0.013 21.652± 0.014 21.323± 0.015

7897.180 21.331± 0.013 21.666± 0.014 21.319± 0.014

7897.188 21.322± 0.012 21.693± 0.014 21.038± 0.014

7904.156 21.304± 0.013 21.677± 0.014 21.022± 0.014

7924.098 21.256± 0.010 21.675± 0.014 21.027± 0.015

7924.105 21.265± 0.011 21.650± 0.014 21.080± 0.014

7924.112 21.261± 0.008 21.646± 0.014 21.039± 0.012

7931.152 21.302± 0.014 21.649± 0.014 21.058± 0.008

7931.159 21.293± 0.013 21.651± 0.014 21.047± 0.008

7931.167 21.284± 0.013 21.610± 0.014 21.054± 0.008

7937.136 21.280± 0.013 21.592± 0.014 21.074± 0.008

7937.143 21.293± 0.013 21.601± 0.014 21.075± 0.008

7937.151 21.285± 0.013 21.639± 0.018 21.187± 0.008

7953.083 21.236± 0.012 21.656± 0.018 21.215± 0.008

7953.091 21.274± 0.014 21.603± 0.016 21.189± 0.008

7953.098 21.261± 0.014 21.605± 0.015 21.231± 0.012

7963.172 21.264± 0.009 21.632± 0.015 21.231± 0.011

7963.179 21.266± 0.011 21.607± 0.015 21.273± 0.012

7963.186 21.252± 0.014 21.595± 0.018 21.247± 0.011

7985.966 21.238± 0.014 21.617± 0.017 21.274± 0.011

7985.973 21.250± 0.014 21.617± 0.017 21.299± 0.013

7985.980 21.227± 0.014 21.608± 0.015 21.289± 0.014

8015.883 21.156± 0.015 21.595± 0.015 21.298± 0.014

8015.890 21.142± 0.015 21.601± 0.014 21.332± 0.010

8015.897 21.155± 0.014 21.578± 0.014 21.307± 0.012

8024.990 21.103± 0.014 21.552± 0.014 21.343± 0.014

8024.997 21.116± 0.014 21.563± 0.014 21.371± 0.014

8025.004 21.104± 0.014 21.585± 0.014 21.373± 0.014

8026.885 21.098± 0.029 21.409± 0.017 21.396± 0.014

8026.892 21.119± 0.029 21.436± 0.018 21.400± 0.014

8026.900 21.113± 0.028 21.352± 0.022 21.390± 0.014

8043.987 20.936± 0.008 21.333± 0.018 21.428± 0.015

8043.994 20.955± 0.008 21.327± 0.020 21.464± 0.015

8044.001 20.955± 0.008 21.371± 0.032 21.479± 0.015

8051.955 20.948± 0.008 21.318± 0.032 21.366± 0.034

8051.962 20.945± 0.008 21.256± 0.019 21.488± 0.034

8051.969 20.956± 0.008 21.182± 0.027 21.507± 0.014

8073.927 20.761± 0.014 21.117± 0.015 21.476± 0.015

8073.934 20.757± 0.014 21.120± 0.014 21.500± 0.015

8073.942 20.689± 0.030 21.121± 0.014 21.557± 0.014
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8079.980 20.706± 0.014 21.085± 0.014 21.513± 0.014

8079.987 20.728± 0.014 21.095± 0.015 21.512± 0.014

8079.994 20.707± 0.015 21.038± 0.019 21.526± 0.014

8093.894 20.692± 0.015 21.032± 0.019 21.574± 0.017

8110.832 20.706± 0.016 21.172± 0.014 21.565± 0.017

8122.838 20.708± 0.015 21.196± 0.014 21.603± 0.022

8122.845 20.702± 0.014 21.183± 0.016 21.554± 0.017

8122.852 20.686± 0.014 21.085± 0.015 21.566± 0.019

8130.847 20.741± 0.008 21.133± 0.014 21.504± 0.033

8136.845 20.723± 0.014 21.120± 0.015 21.536± 0.034

8136.852 20.705± 0.014 21.043± 0.011 21.573± 0.019

8234.226 20.636± 0.015 21.049± 0.012 21.533± 0.026

8249.201 20.583± 0.008 21.052± 0.010 21.502± 0.032

8249.208 20.575± 0.008 20.996± 0.015 21.669± 0.032

8262.179 20.607± 0.008 20.968± 0.014 21.612± 0.031

8262.186 20.595± 0.008 20.977± 0.013 21.586± 0.030

8262.193 20.607± 0.008 20.979± 0.014 21.670± 0.020

8281.142 20.606± 0.013 21.003± 0.014 21.668± 0.018

8281.150 20.623± 0.014 21.026± 0.014 21.630± 0.018

8318.180 20.495± 0.008 21.022± 0.014 21.685± 0.015

8318.187 20.466± 0.008 21.019± 0.008 21.683± 0.015

8318.194 20.485± 0.008 21.037± 0.008 21.709± 0.016

8323.162 20.468± 0.008 21.022± 0.008 21.666± 0.026

8323.170 20.472± 0.008 20.953± 0.008 21.734± 0.027

8323.177 20.460± 0.008 20.906± 0.008 21.762± 0.017

8341.179 20.375± 0.008 20.919± 0.008 21.781± 0.024

8341.186 20.364± 0.008 20.866± 0.008 21.802± 0.017

8341.193 20.378± 0.008 20.862± 0.008 21.779± 0.019

8349.126 20.412± 0.008 20.881± 0.008 21.828± 0.025

8349.133 20.390± 0.008 20.827± 0.015 21.796± 0.029

8349.140 20.401± 0.008 20.818± 0.015 21.739± 0.030

8366.065 20.421± 0.008 20.817± 0.015 21.720± 0.030

8366.072 20.429± 0.008 20.825± 0.008 21.802± 0.015

8366.079 20.435± 0.008 20.804± 0.012 21.824± 0.015

8391.083 20.492± 0.015 20.824± 0.013 21.815± 0.015

8391.090 20.465± 0.014 20.811± 0.008 21.811± 0.023

8408.031 20.527± 0.008 20.818± 0.008 21.823± 0.021

8408.039 20.521± 0.008 20.807± 0.008 21.806± 0.023

8408.046 20.536± 0.008 20.912± 0.008 21.659± 0.015

8426.963 20.636± 0.008 20.915± 0.008 21.664± 0.015

8426.970 20.615± 0.008 20.925± 0.008 21.666± 0.016

8426.978 20.613± 0.008 20.931± 0.008 21.663± 0.017

8452.895 20.770± 0.008 21.054± 0.008 21.628± 0.017

8452.902 20.742± 0.008 21.052± 0.008 21.658± 0.017

8452.909 20.734± 0.008 21.041± 0.008 21.629± 0.014

8454.900 20.762± 0.008 21.068± 0.021 21.618± 0.014

8454.908 20.776± 0.008 21.076± 0.021 21.661± 0.014
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8454.915 20.765± 0.008 21.076± 0.020 21.623± 0.014

Note. The Modern Julian Days (MJD) column gives the date of observation relative to MJD = 50 000.

Table A.2

R-band Photometry of the Four Images in PS1 J0147+4630

MJD Image A Image B Image C Image D

7985.157 15.959± 0.005 16.199± 0.006 16.629± 0.007 18.227± 0.013

7985.157 15.964± 0.006 16.204± 0.006 16.623± 0.007 18.233± 0.008

7985.158 15.968± 0.005 16.201± 0.005 16.638± 0.006 18.206± 0.010

7997.166 15.979± 0.012 16.183± 0.016 16.657± 0.020 18.222± 0.068

7997.167 15.979± 0.008 16.228± 0.009 16.649± 0.011 18.290± 0.026

7997.167 15.956± 0.007 16.208± 0.008 16.639± 0.011 18.231± 0.027

7997.169 15.955± 0.007 16.221± 0.008 16.637± 0.009 18.282± 0.022

7997.170 15.960± 0.010 16.179± 0.012 16.624± 0.019 18.147± 0.040

7997.170 15.948± 0.012 16.182± 0.012 16.595± 0.018 18.067± 0.041

7998.199 15.940± 0.004 16.212± 0.004 16.665± 0.005 18.208± 0.008

7998.200 15.939± 0.006 16.193± 0.007 16.620± 0.008 18.219± 0.014

7998.201 15.943± 0.004 16.190± 0.005 16.631± 0.005 18.197± 0.008

8007.161 15.967± 0.006 16.210± 0.007 16.650± 0.007 18.236± 0.011

8007.161 15.963± 0.005 16.204± 0.006 16.631± 0.006 18.258± 0.010

8007.162 15.957± 0.006 16.207± 0.007 16.628± 0.007 18.217± 0.012

8013.142 15.962± 0.006 16.207± 0.006 16.623± 0.006 18.230± 0.008

8013.143 15.952± 0.006 16.205± 0.007 16.628± 0.006 18.210± 0.010

8013.144 15.963± 0.005 16.193± 0.005 16.630± 0.005 18.224± 0.010

8018.064 15.962± 0.003 16.205± 0.003 16.641± 0.005 18.219± 0.008

8018.065 15.963± 0.005 16.218± 0.003 16.625± 0.005 18.207± 0.010

8018.066 15.959± 0.005 16.202± 0.006 16.617± 0.006 18.210± 0.009

8018.066 15.959± 0.005 16.202± 0.006 16.617± 0.006 18.210± 0.009

8024.939 15.948± 0.006 16.211± 0.006 16.625± 0.006 18.241± 0.011

8024.939 15.958± 0.006 16.211± 0.006 16.624± 0.007 18.232± 0.011

8024.940 15.963± 0.007 16.205± 0.005 16.639± 0.009 18.226± 0.013

8044.009 15.963± 0.008 16.215± 0.011 16.653± 0.010 18.242± 0.011

8044.009 15.957± 0.010 16.185± 0.012 16.636± 0.010 18.231± 0.015

8044.010 15.960± 0.006 16.221± 0.007 16.646± 0.007 18.223± 0.010

8052.130 15.952± 0.007 16.212± 0.008 16.610± 0.010 18.209± 0.017

8052.131 15.952± 0.006 16.207± 0.008 16.634± 0.009 18.197± 0.016

8052.132 15.961± 0.007 16.230± 0.007 16.681± 0.010 18.230± 0.021

8055.948 15.972± 0.011 16.216± 0.013 16.636± 0.012 18.219± 0.017

8055.949 15.967± 0.007 16.213± 0.007 16.646± 0.008 18.252± 0.013

8055.949 15.958± 0.009 16.220± 0.009 16.630± 0.009 18.240± 0.011

8074.948 15.950± 0.005 16.209± 0.007 16.619± 0.005 18.230± 0.010

8074.948 15.932± 0.004 16.210± 0.005 16.618± 0.005 18.202± 0.009

8074.949 15.956± 0.004 16.206± 0.006 16.631± 0.007 18.226± 0.010
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8092.872 15.934± 0.008 16.191± 0.008 16.597± 0.010 18.269± 0.014

8092.872 15.942± 0.007 16.196± 0.008 16.594± 0.008 18.216± 0.013

8092.873 15.953± 0.005 16.174± 0.007 16.614± 0.008 18.232± 0.015

8094.051 15.940± 0.006 16.204± 0.005 16.604± 0.007 18.199± 0.013

8094.052 15.936± 0.004 16.201± 0.006 16.616± 0.006 18.221± 0.012

8094.053 15.946± 0.005 16.177± 0.005 16.631± 0.007 18.211± 0.011

8116.953 15.983± 0.017 16.208± 0.024 16.622± 0.032 18.143± 0.085

8116.953 15.929± 0.021 16.119± 0.018 16.611± 0.040 18.349± 0.175

8116.954 16.032± 0.042 16.112± 0.042 16.767± 0.087 17.600± 0.158

8131.833 15.956± 0.005 16.231± 0.005 16.645± 0.005 18.206± 0.009

8131.833 15.968± 0.004 16.207± 0.004 16.629± 0.005 18.230± 0.010

8131.834 15.972± 0.005 16.230± 0.005 16.633± 0.005 18.226± 0.012

8137.927 15.980± 0.006 16.225± 0.006 16.642± 0.007 18.227± 0.011

8137.928 15.968± 0.005 16.233± 0.005 16.640± 0.005 18.229± 0.011

8137.928 15.973± 0.004 16.239± 0.004 16.640± 0.005 18.205± 0.008

8161.842 15.992± 0.007 16.269± 0.010 16.621± 0.010 18.192± 0.021

8161.843 15.990± 0.007 16.215± 0.007 16.616± 0.008 18.260± 0.021

8161.843 16.015± 0.005 16.240± 0.007 16.656± 0.006 18.325± 0.021

8196.840 15.961± 0.011 16.228± 0.010 16.797± 0.020 18.419± 0.070

8196.841 16.021± 0.010 16.349± 0.020 16.542± 0.016 18.108± 0.056

8196.841 15.967± 0.008 16.259± 0.010 16.740± 0.021 17.980± 0.035

8197.838 16.008± 0.008 16.252± 0.011 16.679± 0.019 18.427± 0.058

8197.839 16.023± 0.009 16.320± 0.012 16.742± 0.017 18.393± 0.053

8197.840 16.068± 0.007 16.290± 0.007 16.692± 0.010 18.439± 0.035

8270.199 16.014± 0.005 16.275± 0.005 16.632± 0.008 18.227± 0.020

8270.200 15.999± 0.005 16.256± 0.005 16.643± 0.006 18.156± 0.014

8270.201 16.019± 0.008 16.262± 0.008 16.645± 0.013 18.273± 0.017

8274.184 16.023± 0.007 16.305± 0.007 16.650± 0.009 18.258± 0.014

8274.184 15.999± 0.008 16.277± 0.008 16.625± 0.010 18.207± 0.013

8274.185 16.011± 0.006 16.255± 0.006 16.681± 0.013 18.266± 0.014

8274.191 16.004± 0.007 16.271± 0.009 16.681± 0.009 18.236± 0.014

8274.192 15.990± 0.007 16.261± 0.011 16.626± 0.008 18.199± 0.016

8274.192 15.986± 0.008 16.273± 0.010 16.666± 0.010 18.245± 0.015

8278.204 16.013± 0.005 16.252± 0.005 16.654± 0.005 18.229± 0.011

8278.205 16.018± 0.005 16.264± 0.006 16.657± 0.006 18.219± 0.011

8278.205 16.027± 0.005 16.259± 0.006 16.651± 0.007 18.262± 0.011

8279.204 16.003± 0.005 16.270± 0.005 16.640± 0.007 18.238± 0.015

8296.204 15.997± 0.008 16.246± 0.008 16.627± 0.009 18.202± 0.018

8296.204 15.990± 0.007 16.248± 0.007 16.606± 0.009 18.253± 0.017

8296.205 15.985± 0.006 16.236± 0.007 16.608± 0.008 18.203± 0.021

8304.186 15.995± 0.005 16.236± 0.006 16.631± 0.008 18.221± 0.022

8304.187 15.988± 0.007 16.239± 0.008 16.616± 0.009 18.247± 0.020

8304.187 15.992± 0.006 16.228± 0.008 16.625± 0.008 18.246± 0.024

8305.191 16.009± 0.005 16.269± 0.006 16.635± 0.006 18.254± 0.011

8305.191 15.997± 0.006 16.253± 0.006 16.625± 0.007 18.222± 0.014

8305.192 16.012± 0.006 16.235± 0.007 16.624± 0.012 18.335± 0.026

8307.145 16.005± 0.007 16.253± 0.007 16.588± 0.008 18.219± 0.014
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8307.145 15.990± 0.008 16.246± 0.008 16.622± 0.009 18.299± 0.014

8307.146 16.003± 0.006 16.252± 0.007 16.610± 0.010 18.292± 0.015

8312.158 16.008± 0.008 16.259± 0.011 16.606± 0.010 18.275± 0.013

8312.158 15.996± 0.007 16.243± 0.007 16.587± 0.007 18.235± 0.012

8312.159 15.971± 0.009 16.240± 0.008 16.677± 0.014 18.267± 0.019

8317.169 15.978± 0.006 16.204± 0.006 16.611± 0.008 18.272± 0.011

8317.170 15.982± 0.007 16.222± 0.008 16.601± 0.010 18.215± 0.013

8317.170 15.987± 0.006 16.208± 0.006 16.599± 0.010 18.239± 0.012

8319.189 15.974± 0.007 16.222± 0.007 16.592± 0.009 18.231± 0.012

8319.189 15.984± 0.005 16.224± 0.004 16.597± 0.006 18.247± 0.010

8319.190 15.990± 0.004 16.225± 0.004 16.606± 0.005 18.274± 0.009

8323.217 15.988± 0.006 16.227± 0.006 16.611± 0.008 18.304± 0.011

8323.218 15.988± 0.007 16.221± 0.006 16.608± 0.007 18.280± 0.013

8323.218 15.983± 0.004 16.234± 0.004 16.596± 0.005 18.283± 0.009

8325.198 15.997± 0.005 16.229± 0.005 16.631± 0.007 18.294± 0.020

8325.199 15.986± 0.005 16.230± 0.005 16.659± 0.009 18.330± 0.024

8325.199 16.004± 0.003 16.229± 0.004 16.602± 0.006 18.277± 0.015

8334.173 15.997± 0.008 16.246± 0.008 16.613± 0.008 18.313± 0.013

8334.174 15.987± 0.011 16.233± 0.010 16.611± 0.013 18.308± 0.019

8334.175 15.994± 0.011 16.243± 0.010 16.602± 0.011 18.291± 0.014

8340.187 16.003± 0.013 16.248± 0.013 16.617± 0.014 18.332± 0.015

8340.188 16.006± 0.010 16.243± 0.009 16.625± 0.011 18.322± 0.016

8340.188 15.974± 0.011 16.214± 0.012 16.609± 0.010 18.308± 0.014

8349.168 16.031± 0.011 16.282± 0.011 16.691± 0.015 18.347± 0.015

8349.169 15.998± 0.008 16.248± 0.008 16.627± 0.009 18.296± 0.013

8349.170 16.011± 0.007 16.257± 0.006 16.662± 0.008 18.329± 0.011

8356.127 15.993± 0.011 16.244± 0.010 16.634± 0.013 18.300± 0.022

8356.127 15.998± 0.013 16.239± 0.012 16.623± 0.014 18.331± 0.021

8356.128 16.012± 0.012 16.239± 0.011 16.642± 0.015 18.364± 0.024

8366.216 16.000± 0.009 16.261± 0.009 16.630± 0.009 18.317± 0.012

8366.216 15.985± 0.008 16.264± 0.008 16.617± 0.008 18.293± 0.010

8366.217 15.987± 0.005 16.232± 0.005 16.630± 0.008 18.329± 0.010

8369.112 15.999± 0.011 16.224± 0.014 16.632± 0.012 18.305± 0.015

8369.113 16.007± 0.014 16.235± 0.014 16.613± 0.012 18.304± 0.012

8369.113 15.996± 0.012 16.229± 0.012 16.638± 0.014 18.326± 0.014

8373.209 15.990± 0.009 16.243± 0.010 16.619± 0.010 18.316± 0.011

8373.209 15.969± 0.008 16.221± 0.012 16.655± 0.008 18.330± 0.011

8373.210 15.998± 0.009 16.225± 0.009 16.638± 0.012 18.325± 0.015

8379.177 15.964± 0.015 16.252± 0.015 16.596± 0.018 18.305± 0.015

8379.178 15.969± 0.009 16.218± 0.010 16.599± 0.011 18.306± 0.012

8379.178 15.962± 0.010 16.228± 0.013 16.615± 0.015 18.297± 0.015

8384.077 15.952± 0.006 16.228± 0.006 16.602± 0.008 18.299± 0.017

8384.078 15.951± 0.005 16.239± 0.005 16.618± 0.008 18.337± 0.018

8384.078 15.973± 0.007 16.322± 0.009 16.470± 0.008 18.324± 0.023

8391.129 15.948± 0.008 16.198± 0.010 16.587± 0.008 18.342± 0.014

8391.130 15.963± 0.005 16.217± 0.005 16.576± 0.006 18.332± 0.011

8391.130 15.957± 0.008 16.215± 0.009 16.559± 0.010 18.322± 0.015
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8395.109 15.996± 0.021 16.250± 0.020 16.625± 0.018 18.335± 0.021

8395.110 15.991± 0.015 16.217± 0.018 16.579± 0.016 18.239± 0.022

8395.110 15.980± 0.018 16.232± 0.022 16.608± 0.015 18.309± 0.022

8396.927 15.991± 0.014 16.255± 0.015 16.633± 0.018 18.278± 0.016

8396.927 15.963± 0.007 16.200± 0.005 16.608± 0.009 18.316± 0.011

8408.140 15.975± 0.008 16.230± 0.008 16.577± 0.010 18.310± 0.012

8408.141 15.954± 0.006 16.225± 0.008 16.571± 0.007 18.338± 0.015

8408.142 15.991± 0.007 16.237± 0.008 16.594± 0.007 18.338± 0.012

8410.129 15.926± 0.008 16.246± 0.010 16.501± 0.012 18.339± 0.033

8410.129 19.013± 0.180 15.637± 0.014 16.035± 0.011 18.292± 0.055

8410.130 15.919± 0.013 16.382± 0.017 16.359± 0.014 18.683± 0.089

8427.005 15.939± 0.007 16.197± 0.007 16.553± 0.008 18.292± 0.012

8427.007 15.934± 0.009 16.196± 0.010 16.317± 0.030 18.194± 0.010

8429.099 15.961± 0.012 16.188± 0.012 16.564± 0.011 18.305± 0.010

8429.099 15.951± 0.009 16.197± 0.009 16.563± 0.008 18.318± 0.013

8429.100 15.960± 0.006 16.207± 0.006 16.562± 0.008 18.336± 0.010

8452.887 15.955± 0.006 16.197± 0.006 16.564± 0.006 18.268± 0.010

8452.888 15.944± 0.006 16.195± 0.006 16.567± 0.007 18.267± 0.011

8452.888 15.949± 0.009 16.194± 0.008 16.561± 0.009 18.287± 0.012

8454.979 15.931± 0.004 16.196± 0.006 16.546± 0.006 18.235± 0.011

8454.980 15.923± 0.005 16.213± 0.005 16.547± 0.005 18.246± 0.009

8454.981 15.927± 0.005 16.198± 0.007 16.543± 0.006 18.237± 0.010

8458.906 15.833± 0.091 16.230± 0.110 17.057± 0.317 17.235± 0.385

8463.860 15.947± 0.008 16.195± 0.008 16.551± 0.008 18.262± 0.013

8463.861 15.956± 0.009 16.213± 0.008 16.561± 0.008 18.252± 0.013

8463.862 15.948± 0.008 16.217± 0.010 16.567± 0.007 18.272± 0.010

8463.867 15.959± 0.006 16.208± 0.006 16.559± 0.007 18.288± 0.010

8463.867 15.947± 0.011 16.196± 0.012 16.557± 0.011 18.252± 0.014

8463.868 15.950± 0.009 16.215± 0.010 16.567± 0.010 18.277± 0.012

8480.869 15.882± 0.006 16.314± 0.007 16.469± 0.008 18.226± 0.020

8480.870 15.937± 0.004 16.223± 0.005 16.505± 0.006 18.271± 0.010

8480.871 15.933± 0.003 16.201± 0.004 16.552± 0.004 18.268± 0.010

8480.872 15.924± 0.004 16.180± 0.004 16.628± 0.005 18.250± 0.013

8480.872 15.938± 0.005 16.201± 0.006 16.534± 0.005 18.253± 0.012

8481.905 15.957± 0.012 16.213± 0.013 16.538± 0.011 18.257± 0.015

8481.906 15.954± 0.011 16.208± 0.014 16.553± 0.010 18.242± 0.014

8481.906 15.972± 0.013 16.204± 0.014 16.559± 0.012 18.283± 0.014

8484.880 15.943± 0.006 16.198± 0.005 16.531± 0.006 18.257± 0.009

8484.880 15.926± 0.004 16.203± 0.005 16.510± 0.006 18.225± 0.008

8484.881 15.942± 0.004 16.179± 0.005 16.536± 0.005 18.263± 0.007

8489.917 15.907± 0.021 16.176± 0.023 16.608± 0.038 17.982± 0.084

8489.918 15.990± 0.025 16.104± 0.032 16.687± 0.065 18.646± 0.246

8489.918 15.917± 0.024 16.201± 0.029 16.515± 0.044 17.971± 0.120

8495.834 15.929± 0.004 16.194± 0.005 16.519± 0.006 18.260± 0.012

8495.834 15.936± 0.005 16.187± 0.006 16.547± 0.007 18.243± 0.014

8495.835 15.932± 0.005 16.197± 0.006 16.532± 0.006 18.241± 0.010

8497.840 15.930± 0.004 16.189± 0.004 16.532± 0.006 18.260± 0.009
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8497.841 15.903± 0.004 16.250± 0.005 16.482± 0.006 18.187± 0.014

8497.842 15.914± 0.005 16.191± 0.005 16.542± 0.006 18.260± 0.011

8502.855 15.934± 0.009 16.203± 0.010 16.537± 0.009 18.231± 0.016

8502.856 15.945± 0.006 16.204± 0.006 16.523± 0.008 18.262± 0.014

8502.857 15.948± 0.006 16.186± 0.006 16.528± 0.006 18.245± 0.016

8506.874 15.920± 0.004 16.176± 0.005 16.501± 0.005 18.207± 0.011

8506.874 15.916± 0.003 16.174± 0.004 16.501± 0.003 18.192± 0.008

8506.876 15.925± 0.007 16.187± 0.008 16.496± 0.007 18.233± 0.011

8508.915 15.939± 0.003 16.191± 0.003 16.526± 0.005 18.268± 0.008

8508.915 15.931± 0.005 16.188± 0.005 16.514± 0.004 18.262± 0.007

8508.916 15.936± 0.004 16.198± 0.004 16.525± 0.004 18.254± 0.007

8518.847 15.855± 0.005 16.260± 0.007 16.552± 0.009 18.208± 0.018

8518.848 15.971± 0.007 16.211± 0.008 16.477± 0.009 18.242± 0.020

8518.848 15.912± 0.005 16.191± 0.006 16.545± 0.009 18.222± 0.017

8520.833 15.968± 0.003 16.226± 0.004 16.509± 0.006 18.239± 0.012

8520.834 15.937± 0.005 16.196± 0.006 16.521± 0.008 18.257± 0.014

8520.834 15.900± 0.007 16.110± 0.007 16.630± 0.011 18.245± 0.023

8525.846 15.948± 0.014 16.212± 0.015 16.531± 0.013 18.228± 0.017

8525.847 15.956± 0.007 16.209± 0.008 16.527± 0.007 18.230± 0.012

8525.848 15.991± 0.014 16.255± 0.014 16.541± 0.013 18.223± 0.016

8537.850 15.926± 0.004 16.199± 0.005 16.559± 0.006 18.218± 0.010

8537.851 15.944± 0.005 16.173± 0.004 16.555± 0.006 18.238± 0.012

8537.852 15.957± 0.003 16.191± 0.005 16.518± 0.005 18.269± 0.009

8541.880 15.948± 0.007 16.175± 0.007 16.509± 0.009 18.206± 0.018

8541.880 15.915± 0.005 16.190± 0.006 16.508± 0.007 18.199± 0.018

8541.881 15.925± 0.004 16.184± 0.003 16.514± 0.005 18.221± 0.013

8547.856 15.955± 0.005 16.202± 0.007 16.557± 0.009 18.209± 0.018

8547.857 15.964± 0.006 16.233± 0.007 16.506± 0.008 18.197± 0.018

8547.857 15.955± 0.005 16.198± 0.006 16.552± 0.005 18.236± 0.012

8556.849 15.943± 0.017 16.393± 0.031 16.295± 0.018 18.458± 0.092

8556.850 15.941± 0.008 16.182± 0.010 16.453± 0.012 18.196± 0.046

8556.851 15.956± 0.007 16.193± 0.007 16.521± 0.010 18.212± 0.027

8564.842 15.942± 0.011 16.203± 0.012 16.523± 0.012 18.227± 0.035

8564.843 15.965± 0.006 16.203± 0.008 16.534± 0.011 18.357± 0.033

8564.843 15.952± 0.009 16.204± 0.009 16.520± 0.010 18.164± 0.024

Note. The Modern Julian Days (MJD) column gives the date of observation relative to MJD = 50 000.






