
Image-based terrain
characterization for autonomous
vehicles, based on deep learning

Andreas Hagen

Thesis submitted for the degree of
Master in Electronics and Computer Technology

Program option: Cybernetics
30 credits

Department of Physics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2019

Image-based terrain
characterization for autonomous
vehicles, based on deep learning

Andreas Hagen

© 2019 Andreas Hagen

Image-based terrain characterization for autonomous vehicles, based on deep
learning

http://www.duo.uio.no/

http://www.duo.uio.no/

Abstract

For an autonomous vehicle to interpret and understand the scene in front of
itself, it relies on several types of different sensors. A camera may be one of these
sensors, and through implementing a convolutional neural network (CNN) it is
possible to extract all the necessary features from the images. In order to execute
a successful feature extraction the network needs ground truth for a lot of images
to train itself with a supervised learning method

This thesis investigates the opportunity to partly automate the process of
assign labels for all images in two datasets from a more rural environment.
To generate a label for a single image may take from two minutes to over an
hour depending on the scene and the total number of classes. This thesis
is considering two classes i.e. road and background. In this project, two
datasets without labeling containing 439 and 2040 images are applied. From
each dataset, 45 and 164 images are manually labeled, and these act as ground
truth for the training images in each dataset. The network’s mission is further
to predict the labeling for the remaining 2270 images automatically after it has
executed the training.

The residual network implemented in this thesis manages to some extent
to provide most of the images with approximately close to an accepted ground
truth. The exceptions are the most comprehensive scenes where unidentified
objects arrive in the scene. This problem may be solved by adding more classes
of the objects with the highest probability for arriving in the scene. The residual
network does therefore lack some robustness to predict accurate in all types of
scenes.

i

ii

Sammendrag

For at et autonomt kjøretøy skal kunne tolke og forstå miljøet foran seg selv,
trenger den informasjon fra ulike typer sensorer. Et kamera kan være en slik
sensor, og gjennom implementering av et konvolusjonelt nevralt nettverk er det
mulig å trekke ut alle nødvendige egenskaper fra bildene. For å trekke ut de
ønskede egenskapene, trenger nettverket fasiten fra utvalgte bilder, så det kan
trenes opp gjennom ledet læring.

Denne masteroppgaven undersøker muligheten til å delvis automatisere
prosessen med å generere fasiten for alle bildene fra oppgavens datasett i
et terrengbasert miljø. Å generere fasiten til ett enkelt bilde kan variere fra
to minutter til over en time avhengig av antall klasser og hvordan scenen er
utformet. Fasiten i denne oppgaven består av to klasser bestående av av vei
og bakgrunn. Det er benyttet to datasett uten fasit i denne oppgaven, hvor det
første inneholder 439 bilder og det andre 2040 bilder. Videre er det generert
fasit manuelt for 45 bilder fra det første datasettet og 164 bilder fra det andre
datasettet, hvor disse bildene er plassert ut i treningssettet. Nettverkets oppgave
er dermed å forutsi fasiten til de resterende 2270 bildene automatisk etter de
gjennomførte treningene.

Det nettverket med mest nøyaktig resultat i denne oppgaven, vil kunne
forutse en tolkning som kan aksepteres som en tilnærmet fasit til de fleste
bildene. Unntakene er de mest krevende miljøene hvor det forekommer
forskjellige objekter i scenen. Dette problemet kan løses ved å legge til flere
klasser av de objektene som har størst sannsynlighet for å dukke opp i scenen.
Det mest presise nettverket i oppgaven mangler dermed tilstrekkelig robusthet
for å kunne forutse fasiten til bildene i de mest utfordrene scenene.

iii

iv

Preface

This thesis is the end of a two years master degree in electronics and computer
technology, under the cybernetics program at University of Oslo. The work has
been carried out during the spring of 2019.

I would like to thank my supervisor Idar Dyrdal for his excellent guidance,
super-fast response time and his availability during the whole thesis period.

I would also like to thank my family and my girlfriend for all the help and
support I have received during this project. It has meant the world for me!

Lastly, I would thank all the fellow cybernetics students at Kjeller for making
such a great student environment during our degree, these are two years that I
will never forget.

Kjeller, May 27, 2019

Andreas Hagen

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem formulation . 1
1.3 Contribution and goals . 2
1.4 Thesis outline . 3

2 Theoretical background 5
2.1 Artificial intelligence . 5

2.1.1 Machine learning . 6
2.1.2 Deep learning . 6
2.1.3 Benefits using deep learning (DL) with CNN vs traditional

methods . 6
2.2 Computer vision . 7

2.2.1 Semantic segmentation . 7
2.2.2 Morphological operations . 7
2.2.3 Connected component analysis 8

2.3 Data preprocessing . 8
2.3.1 Data augmentation . 9

2.4 Artificial neural networks . 10
2.4.1 Single- and multi-layer neural network 10
2.4.2 The learning rule . 11
2.4.3 Bias . 12
2.4.4 Backpropagation in multi-layer neural networks 12
2.4.5 Gradient descent learning and momentum 13
2.4.6 Activation functions . 13
2.4.7 Loss and optimizers . 15
2.4.8 Regularization . 16
2.4.9 Convolutional neural networks 17
2.4.10 Pooling layer . 19

2.5 Generating the ground truth labels manually 20
2.6 Transfer learning . 21
2.7 Related work . 21

3 Method 23
3.1 Implementation . 23

3.1.1 Annotating the training set . 23
3.1.2 Keras . 24
3.1.3 The sequential network . 24

vii

3.1.4 The residual network . 26
3.1.5 Transfer learning . 29
3.1.6 Tensorboard . 30

3.2 Predictions . 32
3.2.1 Thresholding . 33
3.2.2 Morphological operations . 33
3.2.3 Connected component analysis 33
3.2.4 Binary hole filling . 34

3.3 Experiments . 34
3.3.1 Datasets . 34
3.3.2 Training . 37

4 Results 39
4.1 Accuracy and loss results from the training 39
4.2 Quantitative results . 46
4.3 Qualitative results . 48

5 Discussion of results 55
5.1 Quantitative results . 55
5.2 Qualitative results . 57
5.3 Transfer learning . 57
5.4 Challenging scenes . 57
5.5 The few manually annotated images from the Custom 1 and

Custom 2 datasets . 58
5.6 Generating the training and validation set 58

6 Conclusion 61

Appendices 67

A Image sequences from the predictions in each dataset 69
A.1 Predictions from the Custom 1 dataset 69
A.2 Predictions from the Custom 2 dataset 74

viii

List of Figures

1.1 The structure of the U-Net [27] . 2

2.1 A provisional timeline for AI, ML, and DL [14] 5

2.2 Classical artificial intelligence (AI) illustrated on the top and
machine learning (ML) illustrated on the bottom part of the image
[2] . 6

2.3 Random cropping [4] . 9

2.4 Illustrates the McCulloch & Pitts design of a simplified neuron . . . 10

2.5 Single-layer perceptron to the left, and multi-layer perceptron to
the right . 11

2.6 The forward pass in backpropagation [10] 12

2.7 The backward pass in backpropagation [10] 13

2.8 Gradient descent [10] . 14

2.9 Sigmoid activation function [16] . 14

2.10 ReLu activation function [16] . 15

2.11 Loss function [2] . 16

2.12 The visualization of an optimizer [2] 16

2.13 3D Convolution step by step [5] . 18

2.14 Max pooling [5] . 20

2.15 Labeling an image . 20

2.16 Dilated convolution illustrated with different dilation rates [18] . . . 21

2.17 The FCN process from input to pixelwise prediction [11] 22

3.1 The LabelMe graphical user interface (GUI) 24

3.2 The ground truth in its original form in fig. 3.2a, and superimposed
into original image in fig. 3.2b . 24

3.3 The U-Net architecture illustrated with skip connections [25] 28

3.4 The features extracted from different layers in CNN [2] 29

3.5 Accuracy and loss for both training and validation visualized in
Tensorboard . 30

3.6 Underfitting, perfect sampling and overfitting [24] 31

3.7 The sequential network architecture visualized in Tensorboard . . . 32

3.8 An image from the Freiburg Forest dataset 35

3.9 An image from the Custom 1 dataset 35

3.10 An image from the Custom 2 dataset 35

3.11 This thesis directory structure for the datasets 36

ix

4.1 The training and validation set results from the residual network,
trained on the Freiburg Forest dataset 40

4.2 The training and validation set results from the sequential net-
work, trained on the Freiburg Forest dataset 41

4.3 The training and validation set results from the residual network,
trained on the Custom 1 dataset . 42

4.4 The training and validation set results from the sequential net-
work, trained on the Custom 1 dataset 43

4.5 The training and validation set results from the residual network,
trained on the Custom 2 dataset . 44

4.6 The training and validation set results from the sequential net-
work, trained on the Custom 2 dataset 45

4.7 This thesis confusion matrix . 47
4.8 Two samples from the test set predictions on the Freiburg Forest

dataset . 49
4.9 Two samples from the test set predictions on the Custom 1 dataset . 50
4.10 Two samples from the test set predictions on the Custom 1 dataset.

Containing a car in the image . 51
4.11 Two samples from the test set predictions on the Custom 2 dataset

(The first test set with 1472 images) 52
4.12 Two samples from the test set predictions on the Custom 2 dataset

(The second test set with 404 images) 53
4.13 Two poor test set prediction from the Custom 2 dataset (The first

test set with 1472 images) . 54

x

List of Tables

3.1 Dataset structures . 34
3.2 System specifications . 37
3.3 The hyperparameters used in training 37

4.1 The test set result from the Freiburg Forest dataset 47
4.2 The test set result from the Custom 1 dataset 48
4.3 The test set result from the Custom 2 dataset 48
4.4 The second test set result from the Custom 2 dataset 48

xi

xii

Abbreviations

AI artificial intelligence

ANN artificial neural network

CNN convolutional neural network

CPU central processing unit

DL deep learning

FCN fully convolutional network

GPU graphics processing unit

GUI graphical user interface

IoU intersection over union

mIoU mean intersection over union

ML machine learning

RGB red, green, blue

UGV unmanned ground vehicle

xiii

xiv

Chapter 1

Introduction

This section will provide an introduction to the thesis starting with the motiva-
tion before covering the problem formulation and describing the goals of the
thesis. Lastly, the thesis outline is explained.

1.1 Motivation

An unmanned ground vehicle (UGV) needs several different sensor inputs to
understand the entire scene in front of the vehicle, and further provide its
software with the necessary information to make the right decisions regarding
drivable surfaces. One of these sensors can be in the form of a red, green, blue
(RGB)-camera mounted on the vehicle. A method for making the UGV interpret
the scene is applying a network that trains on the data from similar scenes or
alternative correlated scenes, making it able to predict the semantic scene pixel
by pixel. To be able to train on the scene, the network needs ground truth for the
images, and producing a label from an image manually is time consuming.

There exist multiple robust methods to perform semantic segmentation on
different types of data with high accuracy [18] [11] [26]. Most of the state-
of-the-art networks perform their training and inference on popular urban
environment datasets with ground truth, like for example Cityscapes [3] or KITTI
[20]. It is less common to find work where the datasets include scenes from a
more rural environment.

This thesis will take two unlabeled terrain datasets from a RGB-camera,
and investigate whether it is possible to automatically determine the ground
truth for the images by classifying each pixel in the image as either road or
background.

1.2 Problem formulation

Convolutional neural networks (as described in section 2.4.9 on page 17) are
today able to perform both object detection and semantic segmentation with
an accuracy similar to the human level [6]. Performing on that level, the CNN is
a robust choice of a network for image-based data. Most of the CNNs have the
same thing in common; They train with supervised learning on large datasets,
containing several images with ground truth. However, in some cases the

1

dataset at hand may only consist of unlabeled images. To automate the task
of producing ground truth for the images would save both time and costs. The
problem formulation in this thesis can be expressed as follows:

Will the use of CNNs provide useful test set predictions in a unlabeled
terrain-image dataset, given only a minor portion of manually

annotated images?

Two different CNNs will be implemented in order to automate the task of
labeling the datasets. This thesis will investigate if the predictions made by these
networks can be used as ground truth for the images in the datasets. Unlike in
most other datasets, this problem formulation seeks to only use a minor part
of manually labeled images in the training set. Even though most CNNs use
large datasets with many annotated images in the training set, François Chollet
argues in his book "Deep Learning with Python" that deep learning (DL) can be
applicable to fairly small datasets as well [2].

1.3 Contribution and goals

The implementation of the the residual network in this thesis is inspired by
the contribution from Ronneberger, Fischer, and Brox in their invention of
the U-Net [26]. The U-Net was initially a CNN meant for biomedical image

Figure 1.1: The structure of the U-Net [27]

segmentation. The main features in the network consists of its "Skipping
connections" marked with grey arrows as "copy and crop" in fig. 1.1. Imagine
the "U-shape" being split at the shortest grey arrow in the bottom, the part to
the left would then be the contraction part, while the part to the right would be
the expansion part. The "Skipping connections" concatenates the features from
the contraction part with the corresponding up-convolutions in the expansion
part. The U-Net architecture makes it possible to gain accurate results based on
a few training samples, and that is exactly the type of feature this thesis aspire to
produce.

2

The goals and aims of this thesis are as follows:

1. Perform a literature review of existing CNNs and select a robust network
to implement

2. Implement a standard CNN as baseline

3. Investigate whether the CNNs predictions have the necessary accuracy to
be used as ground truth for the images in the custom-made datasets

4. Obtain a more generalized network with transfer learning from a similar
dataset

5. Testing the networks, then presenting and analyzing the results

1.4 Thesis outline

• Chapter 1:
Presents the thesis introduction including the addressed problems, the
contribution and the goals

• Chapter 2:
Covers the necessary background theory and the related work

• Chapter 3:
Describes the methods used and the experiments carried out

• Chapter 4:
Presents the training results, the quantitative results and the qualitative
results

• Chapter 5:
Covers the discussion of results

• Chapter 6:
Concludes the thesis and present suggestions for further work

3

4

Chapter 2

Theoretical background

This chapter will initially provide a short overview of the basics of AI, ML,
computer vision, and deep learning (DL). A DL framework is used for
implementing the network in the thesis, while a few computer vision techniques
is used for processing the images further after the predictions. The reasoning
behind choosing DL will be briefly discussed. Further is the necessary data
preprocessing described, before the basics of different artificial neural network
(ANN) is covered. Lastly, this section will go through the theory of manually
generating ground truth labels with a suitable program, transfer learning and
related work.

2.1 Artificial intelligence

AI is a field where machines are able to demonstrate intelligence through
mathematics, statistics and logic. AI has the ability to tackle many complex
problems, which are intellectually difficult or impossible to solve for a human
being (with natural intelligence). Even though AI could solve complex problems,
it still had a few challenges in the early days. Some intuitive tasks for humans,
such as recognizing a cat or a dog in an image, or the context of a written
text, proved to be a true challenge. A solution to these problems was allowing
computers to learn to approximate logical rules from experience, which is where
ML and DL comes into the picture [12].

Figure 2.1: A provisional timeline for AI, ML, and DL [14]

5

2.1.1 Machine learning

Figure 2.1 illustrates that ML is a subset from AI. The term is further well defined
by ML pioneer Tom M. Mitchell:

“Machine learning is the study of computer algorithms that allow computer pro-
grams to automatically improve through experience.” [15].

ML algorithms will explicitly be programmed to improve their performance on a
task. Humans would provide the data, along with the answers in order to search
for and produce the rules. This is visualized in fig. 2.2 [2].

Figure 2.2: Classical AI illustrated on the top and ML illustrated on the bottom
part of the image [2]

2.1.2 Deep learning

As visualized in fig. 2.1, DL is a subset of both AI and ML. The main difference
between traditional ML algorithms and DL is that DL is able to learn data
representations from datasets instead of manually extracting features. The
whole network is in other words able to solve the problem from start to end
without using external feature extraction methods as in ML. DL has its networks
(called ANN) slightly based on the same principle as the neuron system from a
human brain. This thesis will use DL as foundation for solving the task described
in section 1.2 on page 1.

Supervised learning

Supervised learning is the most commonly used technique in DL [2]. The word
supervised refers to known targets or annotations in the form of a labelled
dataset. With that knowledge a function can learn how to map input data to
the targets.

2.1.3 Benefits using DL with CNN vs traditional methods

DL has become increasingly more popular during the last few years. One of the
reasons for this increased popularity is DLs ability to provide higher accuracy
when trained with large amounts of data. Even though DL is usually known
for predicting good results from large datasets, it does also contain methods for
providing good results from networks trained with smaller datasets as well. As is

6

the case in this thesis. This benefit over traditional ML methods alone would be
enough to consider taking DL as preferred method.

Another argument for employing DL over traditional methods is the feature
extraction from images. While the traditional algorithms need to manually
implement different computer vision techniques in order to extract the desired
features before classification, this is not the case with DL. With the use of
convolution layers from CNN the features are extracted automatically from the
layers. The first layer will detect and learn small edges. Then the second
layer will learn larger patterns made from the features from the first layer,
and this concept will repeat itself in the further layers. The patterns learned
are translation invariant, which means it can recognize the learned pattern
if it appears anywhere else in the image. This advantage are exclusively for
the CNNs, and makes the networks able to generalize better with less training
samples compared to a densely-connected network [2].

2.2 Computer vision

Computer vision is a field whose main purpose is to make machines able
to interpret and understand features from images or video. In other words,
"Teaching computers how to see" [28]. This section will only go through a small
number of computer vision concepts, as they are used in the thesis.

2.2.1 Semantic segmentation

Segmentation is a concept where the input is in the form of an image, and
the output consists of regions and structures based on the input. Normal
segmentation will in most cases only provide a basic scene understanding.
If the goal is to understand what is in the image more thoroughly, semantic
segmentation is the next step. The idea behind semantic segmentation is that
instead of regions, every pixel in the image are classified. This means that it will
be possible to gain a broader scene understanding of the environment in the
image, making it easier to recognize different elements [32].

2.2.2 Morphological operations

A common binary image operation is called morphological operations, since
they change the shape of the underlying binary objects [19]. These operations
are typically used to clean up binary images. The two binary morphological op-
erations used in the thesis are:

• Erosion

• Dilation

Erosion thins the object and dilation thickens the object. Using these operations
in this specific order (erosion + dilation) results in opening. This operation tends
to smooth boundaries, while also removing some noise from the image. It is

7

common to experiment on how much iteration that should be implemented in
each the erosion and the dilation operation.

The structuring element used is normally a rectangular kernel of desired
size. It can also take the shape of an circle if necessary. This depends on what
the regions in the image looks like. Sometimes a circle shaped kernel may be a
better option to smooth the curves than the normal rectangular kernel.

2.2.3 Connected component analysis

The connected component analysis is a tool which can be used to filter out
noise from a binary image. It labels all the connected regions in the image
automatically in an iterative manner. This way makes it possible to mask out
every label which contains less pixels than a given threshold. If the region
after the noise filtering contain holes surrounded by a complete polygon, these
can be sealed with a binary object filler. If both operations are implemented
successfully, the improvement from the original prediction will be significantly
better.

2.3 Data preprocessing

This section will cover data processing from an image-based point of view.
Before the dataset can be fed into the network, it would in most cases be
inevitable to perform several preprocesses. This is necessary in order to make
the data prepared for training.

A common step with an image-based dataset is to resize the images to a
slightly lower resolution. This is especially necessary if the computer does
not have a state-of-art graphics processing unit (GPU), as the model otherwise
might be very slow. The down scaling will help the model to be more effective
and less time consuming, at the prize of losing some features from the original
resolution. It is therefore important to test different scales to find the perfect fit
between keeping enough key features and have an effective model.

A RGB image contains integer values in the range from 0-255 in each of
its three channels. Because the values of the weights in a neural network are
relatively small, it is common practice to normalize the image-array to values
between 0-1. Doing so will prevent slowing down the learning process, as the
values from the weights and the array now are in closer range. Casting the array
from int to float before normalizing would increase the accuracy even further.
This is due to the float division resulting in a more accurate number than int
division.

Another process is to check whether the dataset has the correct shape or
not. This is necessary because the network needs to know which input shape to
expect. The input layer in Keras is a tensor which is passed to the first hidden
layer. If that input layer does not correspond with the shape of each element in
the dataset, the network will not be able to execute. In the case where "Conv2D"
layers are used in a Keras framework, an input array needs to have the following
structure:

8

(height, width, channels)

Where height and width refer to the x- and y-coordinates in the image, and
channels refers to if the image is binary (channels=1) or RGB (channels=3).

2.3.1 Data augmentation

Data augmentation is a tool which helps increase the data distributions
variance, which in return could increases the network’s generalization. It is a
method for applying transformations to the training data. When the images are
pre-processed with the methods described in this section, the network learns
how to cope with slightly different images than the original training set. This is
the reason the model has a higher chance of predicting the test images (images
that the model never have seen before) with more accuracy. In addition to
potentially higher accuracy, the model also has lower risk of overfitting. This
sub-section will only cover the most used augmentation techniques.

Random cropping

A popular method in data augmentation is random cropping. Random cropping
is sampling a random chosen square box from the original image, and then
resize to the original size. As seen in fig. 2.3 the image focus on different areas

Figure 2.3: Random cropping [4]

from the original image, due to the random chosen box. This operation must
be included with the ground truth images. When an operation changes the
geometry in the image, the same operation must be done in the ground truth
image in order to still be a valid target.

Flipping images

Another method is to flip the images in either vertical or horizontal order. Even
when the images are flipped, are they recognizable for the model. The ground

9

truth must also go through the same operation in order to keep the correct
geometry in both images.

Color changes

The idea behind color changes is to make the model more robust and general-
ized for new unseen data. Since the geometry in the images are the same after
applying color changes, is it not necessary to do any operation on the ground
truth images.

2.4 Artificial neural networks

To provide the necessary understanding of how the networks implemented in
this thesis works, this section starts by explaining the fundamental pieces of
ANN before diving deeper into CNN in section 2.4.9. Most of the theory in
this section is based on the Stanford University course "CS231n: Convolutional
Neural Networks for Visual Recognition" [5], and from the course "INF4490 –
Biologically Inspired Computing" [9][10] at University of Oslo.

An ANN is a computing system which is vaguely based on the same principle
as biological neurons in a human brain. It has the ability to learn different tasks
and data representations. To fully understand the concept, the basics of a neural
network is divided into different parts and further described in this section.

2.4.1 Single- and multi-layer neural network

In 1943 McCulloch & Pitts designed a much simplified version of biological
neurons [33]. With their design, they are widely known as the inventors of the
first ANN. Their ideas of a threshold in the activation function and combining
many basic units in order to increase computational power are still being used
today. The illustration of the neuron and its activation function in fig. 2.4 can be

Figure 2.4: Illustrates the McCulloch & Pitts design of a simplified neuron

10

mathematically explained with eq. (2.1).

h =
n∑

i=1
xi ·wi , o =

{
1 h ≥ θ

0 h < θ
(2.1)

Where the neurons function (h) is denoted in the form of a dot product between
the inputs (xi) and the weights (wi). The neurons activation function "fires"
when the dot product of the input and its weight respectively are higher than
a given threshold θ. Meaning the output (o) becomes 1 when h is equal to or
higher than the threshold, and 0 when h is lower than the threshold value.

If many McCulloch & Pitts neurons are put together, the structure of a single-
layer neural network appears. A single-layer perceptron is able to learn linear
problems. When the task is to learn non-linear problems, the solution is to add
one or more hidden layers, as done in multi-layer perceptron. The difference

Figure 2.5: Single-layer perceptron to the left, and multi-layer perceptron to the
right

can be seen visually by fig. 2.5, where the single-layer perceptron only has an
input and an output layer, while the multi-layer perceptron includes at least one
hidden layer.

2.4.2 The learning rule

In order for the single-layer neural network to learn, it has to adjust the weights
accordingly. This is where the perceptron learning rule become relevant.

wi j ←− wi j +∆wi j (2.2)

Equation (2.2) shows how the weight (wi j) updates. The goal of the learning rule
is to minimize the error at the output, such that ∆wi j = 0. When the weights
reach that state, they are tuned correctly. The weights can be both positive and
negative, and how they adjust can be explained with the next equation.

∆wi j = η∗ (t j − y j)∗xi (2.3)

In eq. (2.3) η is referred to as the learning rate. It is a scalar which decide how
much the weight value in each iteration will change. Finding the right balance

11

in the choice of learning rate is therefore crucial. A high value (e.g. 1) can create
an unstable net. With a high learning rate will the weights change a lot every
time they update. Choosing a low value will make a stable network, but will
require much more learning time, because the weights uses more time to tune
into correct values.

η is further being multiplied with the error ((t j − y j), where t j is the target
output and y j is the actual output). Before finally being multiplied with the
inputs (xi). As stated above, the goal is to minimize this error. Which is done
during training where the weights are adjusted with eq. (2.3).

2.4.3 Bias

In the case where all inputs are zero, the weights will have no effect since they
are multiplied with the inputs. The solution for that particular case is to have
an adjustable threshold, which can be applied with a bias node. The bias node
should be added to each neuron. Then eq. (2.1) will become eq. (2.4), where b is
the bias.

h =
n∑

i=1
xi wi +b , o =

{
1 h ≥ θ

0 h < θ
(2.4)

2.4.4 Backpropagation in multi-layer neural networks

When learning in a single-layer neural network, it is possible to gain knowledge
about which weight who contribute to reducing the loss. In multi-layer
perceptron there is at least one hidden layer between the input and the output.
Hence, it is impossible to know which weights are correct, and which activations
being correct for the neurons in the hidden layer. Without knowing which
weight or activation is correct, it is impossible to learn the weights or train
the network. The problem of not being able to train a multi-layer neural
network was solved in 1986 with an algorithm called backpropagation [22]. The

Figure 2.6: The forward pass in backpropagation [10]

backpropagation algorithm consists of two main steps. The first is the forward
pass, which has the following structure illustrated in fig. 2.6. After the input
layer has received its inputs, the activations of the hidden nodes in the middle

12

layer is calculated. Lastly the activations of the output nodes in the last layer are
calculated. The second step in the backpropagation is called the backward pass,

Figure 2.7: The backward pass in backpropagation [10]

and is illustrated in fig. 2.7. This step starts by calculating the output errors in
the last layer, before it updates the same layers weights. Then the error is being
propagated backwards, and the hidden weights in the middle layer are updated.
This process is repeated until the first layer is reached.

2.4.5 Gradient descent learning and momentum

When training the network with backpropagation, the goal is to minimize
the errors in the network. As described with the backward pass, after being
calculated, the errors from the output layer are propagated backwards in the
network. The tool used is a form of gradient descent.

E(w) = 1

2

∑
k

(tk − yk)2 = 1

2

∑
k

(tk −
∑

i
wi k xi)2

(2.5)

It differentiates the sum-of squares error in eq. (2.5), showed with the eq. (2.6).

∆wi k =−η δE

δwi k
(2.6)

Even though gradient descent algorithm is a good method for finding the
minimum value, it has a potential risk of getting stuck in a local minimum
as visualized in fig. 2.8. There are two alternatives to avoid being stuck in a
local minimum. The first one is to initialize the training several times with
random weights. The other method is to use momentum. If the gradient descent
algorithm reaches a local minimum, the momentum keeps the algorithm going
further uphill for a while, until the descending starts again and hopefully a global
minimum will be found instead. Momentum is described mathematically in
eq. (2.7).

wi j ←− wi j −η∆ j zi +α∆w t−1
i j (2.7)

2.4.6 Activation functions

The task of an activation function is to decide whether a neuron should "fire"
or not. In other words, the activation function takes a number and performs

13

Figure 2.8: Gradient descent [10]

a mathematically operation on it. There exist several activations functions, all
with different pros and cons. The ones being used in this thesis will be covered
here.

The sigmoid function

The sigmoid function was a historically often used activation function. It is
mathematically described with eq. (2.8).

σ(x) = 1

(1+e−x)
(2.8)

The function transforms the input numbers into a range between 0-1 as shown
in fig. 2.9. This means large negative numbers become 0, while large positive
numbers become 1. Today, the popularity of the sigmoid function has decreased

Figure 2.9: Sigmoid activation function [16]

due to the following drawbacks:

• Vanishing gradients at values close to 0 or 1

• The neurons can be saturated if the initial weights are too large

• The outputs are not zero-centered

14

The ReLu function

The ReLu function (Rectified Linear Unit) has become increasingly more
popular in the last few years. It is proven much faster than the sigmoid or tanh
(which is a scaled sigmoid function) functions in a paper, due to its linear, non-
saturating form [13].

f (x) = max(0, x) (2.9)

f (x) =
{

0 for x < 0

x for x ≥ 0
(2.10)

The ReLu function is described mathematically in two ways in this thesis, both
being illustrated in eq. (2.9) and eq. (2.10) for a better understanding of the
function.

Figure 2.10: ReLu activation function [16]

As illustrated in fig. 2.10 the ReLu activation is thresholded at zero. This
makes ReLu a favored choice over the sigmoid/tanh functions. It is a less
computationally expensive method, because it does not have the exponential
implementation. There is, however, one disadvantage using ReLu. The units can
be fragile during training and as much as 40% of the network may end up "dead".
This can happen if a large gradient is flowing through the ReLu neuron. It may
cause the neuron to update in such a way that the neuron never will activate on
a data point again and end up "dead". With a proper learning rate (not too high),
the problem tends to be avoided in most cases.

2.4.7 Loss and optimizers

The task of a loss function is to measure the distance between the predictions
being made by the network and the actual ground truth. In this manner there
can be computed a distance score, controlling how well the network did with its
prediction [2]. This is illustrated in figure fig. 2.11.

The loss score computed by the loss function, is further being used as a
feedback signal for adjusting the weights slightly. The weights are updated in a
direction which lower the loss score, in order to make better future predictions.
This is shown in fig. 2.12. The job of adjusting the weights is executed by what is

15

Figure 2.11: Loss function [2]

called an optimizer. The optimizer implements the backpropagation algorithm
earlier described in this section [2].

Figure 2.12: The visualization of an optimizer [2]

2.4.8 Regularization

To avoid overfitting (explained in page 95 & 96 [2]), the implementation of
regularization will be helpful. Regularization refers to regulating the weights,
by constraining them to only accept small values. It is implemented by adding
a cost to the loss function if it has too large weights. The cost comes in two
different forms:

• L1 regularization

• L2 regularization

Where L1 regularization adds the costs proportionally to the absolute value of
the weights coefficients, and L2 regularization adds the costs proportionally to
the square of the absolute value of the weights coefficients [2].

16

Another popular regularization method is dropout, developed by Hinton
and his students at the University of Toronto [8]. It consists of randomly zeroing
out (dropping out) a number of output features of the layer during training. The
term "dropout rate" refers to the fraction of the features which is being dropped
out, and is usually put to a number between 0.2-0.5. When the algorithm is ready
for testing, the output values are scaled down with a factor equal to the dropout
rate instead of being dropped out. This is done in order to balance for the
amount of more active units during testing. To use dropout as a regularization
method is both very common and efficient [2].

2.4.9 Convolutional neural networks

A CNN is a sub class of ANN. It is a type of network which automatically extracts
several types of features from images, and are further used for making different
sorts of predictions based on the given task. The main difference between a
CNN and an ordinary neural network is how the input is interpreted. In a CNN
the inputs are assumed to be images.

Unlike a CNN, an ordinary neural network with fully connected layers will
keep all parameters connected from the input until the output. The CNN, with
the use of convolutions, is able to reduce the numbers of parameters vastly
from each layer while keeping the key features. This difference makes CNN a
better tool for processing images, as images often contains a large number of
parameters.

The following example will demonstrate why it is necessary to reduce the
parameters when processing images. Imagine an ordinary neural network
with an image (width, height, depth) as an input. If the size of the input is
(224x224x3) this means the number of weights will become 224∗224∗3 = 150528
weights. Adding more similar neurons will escalate the number of parameters
considerably, which then will result in an unnecessary overfitting and a poor
network.

The characteristics of a CNN is described below, providing a general
understanding how the parameters are reduced and CNNs unique features.

Convolutional Layer

Being the core building block of a CNN, the convolutional layer does most of
the computationally expensive work necessary for the network to perform well.
It consists of learnable filters, which slides through the whole input image bit
by bit. Equation (2.11) illustrates the general expression of a 1D convolution.
Whereω is the filter being convolved with the input f (x, y), providing the output
g (x, y).

g (x, y) =ω∗ f (x, y) =
a∑

s=−a

b∑
t=−b

ω(s, t) f (x − s, y − t) (2.11)

To understand the process even better, the Stanford course "CS231n:
Convolutional Neural Networks for Visual Recognition" has provided an intuitive
visual model showing a 3D convolution explicitly in fig. 2.13. This illustration
consists of following parameters and configurations:

17

Figure 2.13: 3D Convolution step by step [5]

• Input volume = (7x7x3)

• Stride = 2

• Number of zero padding = 1

• Two weight filters = (3x3x3)

• Two biases = (1x1x1)

• Output volume = (3x3x2)

Where the first weight filter W0 is sliding over each part of the input in its three
channels. This gives the output volume O[:,:,0], while the convolving of weight
filter W1 provides O[:,:,1]. The stride is set equal to two, which means the filter
can slide in three positions both in x- and y-direction. This operation makes the
output dimension into width and height equals to 3. The last dimension in the
output volume is set by the number of filters (W0 and W1) convolving over the
input volume. The number of chosen filters is a hyperparameter and decides the
depth of the output. In this example there are two filters, which means the final
output volume becomes (3x3x2). The implementation of zero padding helps us
to control the spatial size of the output. It is also a hyperparameter, and in this
example it is set equal to one, which gives us the pad (marked in grey in fig. 2.13)
around the input volume filled with zeros.

The equation to compute the spatial size of the output volume is illustrated
in eq. (2.12)

O = (W −F +2P)

S
+1 (2.12)

18

Where O is the output volume. W is the input volume, F is the receptive field
(the weight filter), P being the amount of zero padding, and S for the number of
strides.

Parameter sharing and local connectivity

In contrary to ordinary neural networks, CNNs have neurons set up in three
dimensions:

• Width

• Height

• Depth

These neurons may have various levels of connectivity between the layers. The
two concepts controlling and reducing the number of connections between
the neurons are called parameter sharing and local connectivity. As earlier
described, one of the main reasons for the CNNs to out perform ordinary neural
networks (when processing images), are their properties to reduce the number
of parameters while keeping key features.

Parameter sharing means to share some weights and biases in order to
control the number of parameters. This can be done by assuming that if a
feature is useful to calculate at a specific spatial location (x1,y1), it should be
useful to compute it at a different location (x2,y2) as well. In practice that means
constraining the neurons in each depth dimension to use the same weights and
bias. Parameter sharing will greatly reduce the amount of total weights, and is
an important contribute to make an efficient CNN.

Local connectivity connects each neuron only to a small region of the
previous layers input, unlike connecting the neurons to all the neurons from
the previous layer as done in ordinary neural networks. This small region is a
hyperparameter, and is called the receptive field of the neuron. It is the same as
the weight filter from the example above. The depth slice in the weight filter is
always the same as the depth slice from the previous layers input. This means
that we have local connections along width and height, and full connection
along the depth of the input layer.

2.4.10 Pooling layer

Another method to reduce parameters is to add a max pool layer. Similarly to
the convolution layer it contains a filter (F) and stride (S).

But as seen in fig. 2.14, the filter takes the max value in each frame instead
of convolving through the input like the convolution layer does. The most
common values in the max pooling layer are F =2 or 3, and S = 2. Increasing
these values will result in a destructive layer. It is a common practice to
implement a max pool layer periodically between convolutional layers.

19

Figure 2.14: Max pooling [5]

2.5 Generating the ground truth labels manually

There exist several good programs for generating labels for datasets, all with
different benefits and shortcomings. The program used in this thesis is a free
program, which offer offline annotation. It is called "LabelMe", and it can be
installed directly from GitHub [31]. The program is easy to learn and contains
annotation examples in the GitHub folder. LabelMe has a clean programmed
GUI regarding the working space, which is illustrated in fig. 2.15a.

(a) Manually annotating an image with LabelMe

(b) The annotation superimposed on the original
image

Figure 2.15: Labeling an image

When the polygon is drawn, another script is executed from the LabelMe
directory, and the complete annotation ends up like in fig. 2.15b.

20

2.6 Transfer learning

Transfer learning applies already learned knowledge from saved weights and
applies it to a new problem with a new dataset. It is sometimes referred
to as using a pre-trained network. Using a pre-trained network is usually
a highly efficient way to gain better results when using small datasets. The
spatial features learned by the pre-trained network might prove useful for
the original problem the network was designed for, because it may transfer
essential knowledge from for example a well made dataset. The results of
implementing transfer learning will in most cases provide a much higher
accuracy to the original problem, in contrary to only train on a small dataset
[2]. The implementation of transfer learning is therefore used in this thesis due
to the very small number of annotated images available for the training set.

2.7 Related work

There are numerous examples where CNNs have been successfully used for
semantic segmentation problems, some of them will be mentioned and briefly
described in this section.

DeepLab [18] is a state-of-the-art network which provides high accuracy on
semantic segmentation problems. It uses dilated convolutions (illustrated in
fig. 2.16) as a tool to adjust the filter’s field-of view.

Figure 2.16: Dilated convolution illustrated with different dilation rates [18]

When the di l ati on r ate = 1 in fig. 2.16, this represents a normal convolu-
tion. If this dilation rate increases, the field-of-view increases accordingly and
the resolution will in this manner be controllable because an increase in the di-
lation rate will decrease the numbers of features computed.

Another widely known network is the Fully convolutional network (FCN)
[11]. This network could take an image input of arbitrary size, and provide the
same size as output. The authors behind FCN claimed to have one of the first
network which was trained end-to-end and had pixelwise prediction, meaning
the predictions were semantically annotated. When their paper was published
in 2014 they exceeded the state-of-art in semantic segmentation. Figure 2.17
illustrates the process from the input image to the output prediction.

This thesis loosely bases one of its network implemented on the U-Net
architecture [26]. The U-Net is already briefly covered in section 1.3, and will
be further explained in section 3.1.4. U-Net proved its qualities by winning the

21

Figure 2.17: The FCN process from input to pixelwise prediction [11]

ISBI cell tracking challenge 2015 [17], some of the network’s features is having
a short inference time and being able to receive accurate results on a relatively
few training samples.

For the networks to be able to make accurate predictions, they need datasets
made with high quality. Most of the networks nowadays which carries out
the training on road-based images does so in popular semantic segmentation
datasets like for example the Cityscapes [3] or the KITTI dataset [20]. These
datasets helps most of the networks providing accurate results when predicting
road and objects in urban city areas. In this thesis the datasets consists of images
from a more rural scene. Even though there is much less research provided in
prediction of images from rural environments, there exist an off-road dataset
called the Freiburg Forest dataset which is described in section 3.3.1 and in
section 3.1.5. This dataset is used for transfer learning in this project also
explained in section 3.1.5.

22

Chapter 3

Method

3.1 Implementation

This chapter will cover the implementation of the program in the thesis and
discuss the choices of methods. It will initially describe how the ground truth
from the training images is made. Then cover which framework is used, before
describing both implementations of CNN, with pros and cons. Furthermore
the advantage of using Tensorboard will be discussed. The mid section in this
chapter will cover predictions made from the network, and a few computer
vision techniques used in order to maintain a clean output with minimal noise.
The last part of this section will cover the experiments done in this thesis, in the
form of describing the structure of the datasets and the training configuration.

3.1.1 Annotating the training set

Before the work with the network can start, there must exist a prepared dataset.
As supervised learning is the applied method, some of the images needs ground
truth in order for the algorithm to maintain a reliable loss function. Only ten
percent of the images are manually annotated. This is due to the intention of
this thesis to automatically predict the test images ground truth with as little
manually annotated images in the training set as possible. The images picked
out for manual annotation starts from image number one in the dataset, and
continues in an iterative manner every tenth image. The following commands
is used in the annotating program LabelMe in order to start and convert the
annotation from .json to .png file format:

1 $ labelme <input_file.png> -O <output_file.json>
2 $ labelme_json_to_dataset <input_file.json> -o <output_folder>

When the first line is executed, the GUI for LabelMe shows up in an external
window. From there it is possible to start drawing the annotation by pressing
the "Create Polygons". Figure 3.1b illustrates a finished drawn polygon. After the
polygons are drawn and the save button is pressed, the second line is ready to be
executed. This command will take all the polygon positions saved in the .json file
and convert the ground truth into the final .png format. The second command
will also make a directory which consist of the original image, the ground truth
superimposed on the original image, and the ground truth image.

23

(a) The GUI for LabelMe (b) Drawing a polygon

Figure 3.1: The LabelMe GUI

(a) (b)

Figure 3.2: The ground truth in its original form in fig. 3.2a, and superimposed
into original image in fig. 3.2b

The finished ground truth for the image consists of two classes. Where class
0 is assigned to the background, and class 1 to the road. The program LabelMe
was chosen due to its quick setup, its possibility to annotate data offline, and a
clean GUI making it easy to draw polygons.

3.1.2 Keras

Keras is an user friendly DL library developed in Python. It was originally
made for researchers as a way to do quick experimentation, with an easy to
use implementation. Keras has quickly gained popularity among its users and
is one of the most popular frameworks in DL projects nowadays [2]. The main
reasons for the popularity is the user friendliness and that Keras can run with
the same code seamlessly on central processing unit (CPU) or GPU [2]. Both
implementations of CNNs in this thesis are done in Keras and it became the
chosen framework due to its easy implementation of networks and powerful
tools.

3.1.3 The sequential network

The sequential network implemented is made as a basic fully convolutional
network (FCN). This means the network is composed without using any
fully connected layers at all. The FCN has therefore learning filters placed
everywhere, even in the decision making layers at the end of the network. This

24

will save computation time and reduce the number of parameters compared to
using fully connected dense layers.

1 # Initializing
2 model = models.Sequential()
3

4 # Input layer
5 model.add(layers.Conv2D(16, 5, strides=(2, 2), padding='same', activation='relu',
6 input_shape=input_shape))
7

8 # Conv layers
9 model.add(layers.Conv2D(16, 5, strides=(2, 2), padding='same', activation='relu'))

10 model.add(layers.Conv2D(32, 5, strides=(2, 2), padding='same', activation='relu'))
11 model.add(layers.Conv2D(32, 5, strides=(2, 2), padding='same', activation='relu'))
12 model.add(layers.Conv2DTranspose(32, 5, strides=(2, 2), padding='same',
13 activation='relu'))
14 model.add(layers.Conv2DTranspose(32, 5, strides=(2, 2), padding='same',
15 activation='relu'))
16 model.add(layers.Conv2DTranspose(16, 5, strides=(2, 2), padding='same',
17 activation='relu'))
18 model.add(layers.Conv2DTranspose(16, 5, strides=(2, 2), padding='same',
19 activation='relu'))
20

21 # Output layer
22 model.add(layers.Conv2D(1, 1, strides=(1, 1), padding='same', activation='sigmoid'))
23

24 # Prints the network structure summary
25 model.summary()
26 # Adding loss and optimizer
27 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc'])

As seen in the code snippet above, this is the implementation of the
sequential network used in the thesis. The input tensor (which is (224x224x3))
goes from the input layer through each layer until the output layer is reached.
There is both a downsampling and an upsampling process in the network. In
the downsampling process consisting of four downsampling layers, the height
and width is reduced from (224x224) to (14x14). Each step in the following list
represents a layers downsampling and has the depth included:

• (112x112x16)

• (56x56x16)

• (28x28x32)

• (14x14x32)

Then the upsampling process also with four layers continues sampling from
(14x14) to (224x224) in the height- and width-size of the tensor. Every step in
the list represents a layers upsampling and the depth is included here as well:

• (28x28x32)

• (56x56x32)

• (112x112x16)

25

• (224x224x16)

The last layer is the output layer containing sigmoid activation. It has the shape
(224x224x1).

The sequential network is included as the baseline in the thesis. It is done
in order to benchmark it against the state-of-the-art based implementation of
the residual network (U-Net). In that way it will be possible to compare the
differences between a basic sequential and a state-of-the-art residual-network,
trained on the same data.

Loss

There are simple guidelines which can be used for choosing the right loss. If
there is a two-class classification problem, a loss called "binary_crossentropy"
will be a natural choice [2]. This is therefore the loss used in the sequential
network, and it is described mathematically in the eq. (3.1).

LBC E =−
C=2∑
i=1

ti log (f (si)) =−t1l og (f (s1))− (1− t1)log (1− f (s1)) (3.1)

f (si) = 1

1+e si
(3.2)

Where BC E is short for binary cross entropy. Ci is the classes, ti and si is
the target and the score respectively. The score goes first through a sigmoid
activation described in eq. (3.2), before the loss is further computed with a cross-
entropy loss.

3.1.4 The residual network

The residual network in this thesis is loosely based on the state-of-the-art U-
Net, which is further described in the paper [21]. The actual implementation
is as stated in the code, based on a tutorial from Kjetil Åmdal-Sævik [1], and is
illustrated in the following code snippet.

1 # U-Net model
2 # The implementation is based on:
3 # "https://www.kaggle.com/keegil/keras-u-net-starter-lb-0-277"
4

5 inputs = Input((int(config['data_processing']['x_pic']),
6 int(config['data_processing']['y_pic']), 3))
7

8 # Layers
9 conv_1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal',

10 padding='same')(inputs)
11 conv_1 = Dropout(0.1)(conv_1)
12 conv_1 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal',
13 padding='same')(conv_1)
14 pool_1 = MaxPooling2D((2, 2))(conv_1)
15 conv_2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal',
16 padding='same')(pool_1)
17 conv_2 = Dropout(0.1)(conv_2)

26

18 conv_2 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal',
19 padding='same')(conv_2)
20 pool_2 = MaxPooling2D((2, 2))(conv_2)
21

22 conv_3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal',
23 padding='same')(pool_2)
24 conv_3 = Dropout(0.2)(conv_3)
25 conv_3 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal',
26 padding='same')(conv_3)
27 pool_3 = MaxPooling2D((2, 2))(conv_3)
28

29 conv_4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal',
30 padding='same')(pool_3)
31 conv_4 = Dropout(0.2)(conv_4)
32 conv_4 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal',
33 padding='same')(conv_4)
34 pool_4 = MaxPooling2D(pool_size=(2, 2))(conv_4)
35

36 conv_5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal',
37 padding='same')(pool_4)
38 conv_5 = Dropout(0.3)(conv_5)
39 conv_5 = Conv2D(256, (3, 3), activation='relu', kernel_initializer='he_normal',
40 padding='same')(conv_5)
41

42 up_6 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv_5)
43 up_6 = concatenate([up_6, conv_4])
44 conv_6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal',
45 padding='same')(up_6)
46 conv_6 = Dropout(0.2)(conv_6)
47 conv_6 = Conv2D(128, (3, 3), activation='relu', kernel_initializer='he_normal',
48 padding='same')(conv_6)
49

50 up_7 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same') (conv_6)
51 up_7 = concatenate([up_7, conv_3])
52 conv_7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal',
53 padding='same')(up_7)
54 conv_7 = Dropout(0.2)(conv_7)
55 conv_7 = Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_normal',
56 padding='same')(conv_7)
57

58 up_8 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(conv_7)
59 up_8 = concatenate([up_8, conv_2])
60 conv_8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal',
61 padding='same')(up_8)
62 conv_8 = Dropout(0.1)(conv_8)
63 conv_8 = Conv2D(32, (3, 3), activation='relu', kernel_initializer='he_normal',
64 padding='same')(conv_8)
65

66 up_9 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same')(conv_8)
67 up_9 = concatenate([up_9, conv_1], axis=3)
68 conv_9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal',
69 padding='same')(up_9)
70 conv_9 = Dropout(0.1)(conv_9)
71 conv_9 = Conv2D(16, (3, 3), activation='relu', kernel_initializer='he_normal',
72 padding='same')(conv_9)
73

74 outputs = Conv2D(1, (1, 1), activation='sigmoid')(conv_9)
75

27

76 model = Model(inputs=[inputs], outputs=[outputs])
77 model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
78 model.summary()

When implementing the network, the choice of loss and optimizer are set to
be the same as for the sequential network. The implementation in this thesis is
as earlier described based on the U-Net. It will further be referenced to as the
residual network.

Figure 3.3: The U-Net architecture illustrated with skip connections [25]

When testing the performance in the residual network, it proved to be able to
provide quite accurate predictions from few training samples. Gaining accurate
predictions with few training images are the main priorities when implementing
the network architecture. Having it successfully implemented will save a lot
of time because it is sufficient to only manually annotate a few images. To
have accurate predictions means the network performs well and can be able to
provide better results in the form of good predictions.

An important difference between the sequential and the residual network,
is the residual networks capability to provide skipping connections. These
skipping connections transfers information from each downsampling layer,
directly to its upsampling layer respectively, as illustrated with the gray arrows
in fig. 3.3. The upsampling layers concatenates its existing information with
the information from the skipping connections. As seen in fig. 3.4, each layer
in a CNN extracts different types of features. When the U-Net architecture
concatenates the local information provided from the skipping connections,
with the global information from the upsampling layers; this results in an
improved and efficient feature extraction.

28

Figure 3.4: The features extracted from different layers in CNN [2]

3.1.5 Transfer learning

Before the transfer learning can start, the network needs to train on a dataset
and save the weights respectively. This is done by training on the Freiburg
Forest dataset [30]. The Freiburg Forest dataset is developed in the University
of Freiburg in Germany. It consists of images from off-road environments taken
from the Black Forest area in Schwarzwald. The reason why this dataset is such
an interesting choice to use, is its similarities to the custom-made datasets used
in this thesis. The custom-made datasets does also have images from an off-road
scene.

When the training is finished the weights are saved and the fine tuning can
begin after one last step. The last step is to change the training set to the original
dataset used in this thesis.

1 # Transfer learning
2 if config['train/test/debug'].getboolean('transfer') is True:
3 model = load_model('models/' + config['train/test/debug']['weights'])
4 for layer in model.layers[:int(config['train/test/debug']['layers'])]:
5 layer.trainable = False
6 # Train model
7 model.fit(x_train, y_train, batch_size=10,
8 epochs=int(config['train/test/debug']['epochs']),
9 shuffle=True, validation_data=(x_val, y_val),

10 callbacks=callbacks_model)

As seen in the code snippet above, the model retrieves the saved weights from
the training with the Freiburg Forest dataset in line three. Further it freezes all the
layers up the chosen networks last layers, which means when the training starts
again the weights from the frozen layers will not change. Then the network starts
training with the original dataset in line seven. Since all the layers up to the last
layers are frozen, only the layers after the frozen ones will change its weights
during this training. This is called fine tuning.

29

3.1.6 Tensorboard

A handy way to gain control over the training, in order to tweak parameters and
control the models accuracy, is to use Tensorboard. Tensorboard is a visual tool
developed by TensorFlow providing full overview of the training, while training.
It is easy to set up in the terminal. As illustrated in the code snippet below,
Tensorboard is up and running with the following command:

1 tensorboard --logdir=<log>

The "<log>" must be replaced with the address to the log folder the algorithm
provides.

When using Tensorboard with Keras, it is necessary to use callbacks in
the code. A callback can provide a view on the internal states and statistics
of the model, while training. Using callbacks, it is possible to decide which
information/process to include and when it should be executed during the
training process [29].

(a) Training accuracy and loss

(b) Validation accuracy and loss

Figure 3.5: Accuracy and loss for both training and validation visualized in
Tensorboard

Two standard graphs used to check the quality of the DL model is "accuracy"
and "loss", which are found under the tab "SCALARS". To have the opportunity
to visualize these graphs during training, is an advantage. This is due to the
possibility of easily spotting errors like overfitting or underfitting, and if the

30

Figure 3.6: Underfitting, perfect sampling and overfitting [24]

accuracy in the model is fulfilling user expectations. Examples of underfitting
from the left image, perfect sampling in the middle and overfitting in the right
image, can be seen in fig. 3.6. As seen in fig. 3.5 the accuracy and loss in both
training and validation fulfil expectations. By observing that the loss function
steadily decreases into a smooth curve indicates that there is neither overfitting
nor underfitting in the model.

Another tab in Tensorboard called "GRAPHS" shows the current networks
architecture. The architecture from the sequential network is visualized in
fig. 3.7. Being able to see all the layers and connections, helps the user see the
whole network in a visualized perspective. There is possible to rename each
layer in the model according to the user’s own preference.

31

Figure 3.7: The sequential network architecture visualized in Tensorboard

3.2 Predictions

A prediction in this context is when the networks in this thesis produce a
qualified guess of what value each pixel in the image shall be assigned, from
either one of the two classes. This is the basis for what will become the
automatically annotated images. After the network has updated its internal state
satisfactorily, the training can stop, and it is ready to be fed new images it has
never seen before. The network will then predict an output given the input of
the new data, which will use the finished trained internal state of the network
to predict. The predictions with sufficiently good results will in the end become
the automatically annotated images this thesis tries to produce. When all the
predictions are made, they will in the most cases contain some adverse features
like different types of noise or choppy edges in the classification. To avoid these

32

types of artifacts several techniques from computer vision can be applied.

3.2.1 Thresholding

The first method used on the predictions is called thresholding. It removed the
predicted pixels in the image which has a value below the given threshold. When
the networks predict pixel values, this happens in the range between 0-1. The
thresholding will convert that fuzzy logic to values which are either 0 or 1. Where
class 0 is background and class 1 is road.

1 # Filter out values with less certainty than 65 %
2 prediction = np.where(prediction > 0.65, np.ones_like(prediction),
3 np.zeros_like(prediction))

f (xi) =
{

1 xi > 0.65

0 xi ≤ 0.65
(3.3)

What the code snippet above does, is to filter all values where xi are the
predicted values and assign them to either 0 or 1. All values over 0.65 are
assigned to 1 and all values up to 0.65 are assigned to 0. This is described in
eq. (3.3). The thresholding will therefore remove some noise and assign values
up to the threshold as background instead of road.

3.2.2 Morphological operations

The next method uses is morphological operations. In this thesis it is applied on
the road class prediction. In the cases where the road is a bit spiky, erosion is
applied to trim down the edges slightly. The erosion operation is followed by a
dilation which fills the boundary slightly more smoothly than it was before the
morphological operations. The number of times erosion and dilation is applied
is chosen in iterations as illustrated in the code snippet below. In this thesis
every prediction gets three iterations of erosion followed by two iterations of
dilation.

1 # Processing with morphological operations
2 kernel = np.ones((3, 3), np.uint8)
3 prediction = cv2.erode(prediction, kernel, iterations=3)
4 prediction = cv2.dilate(prediction, kernel, iterations=2)

As a bonus to trimming down spiky edges, the three iterations of erosion may be
enough to remove very tiny bits of falsely classified road in the background, if it
exists at all in the prediction. The kernel size used in this thesis is a 3x3-square.

3.2.3 Connected component analysis

The next operation used in order to remove larger sections of noise predicted in
the image is called connected component analysis. When implemented in this
thesis it removes all sections in the images which contains less than 5000 pixels.
This means in the most cases that all of the remaining noise in the image will
be removed. The connected component analysis has one disadvantage which is

33

when the road predicted is less than the threshold value of 5000 pixels. Then the
whole prediction will consist of only background. This only happens in a very
limited number of the images. The reason for setting the pixel threshold to 5000
became clear after testing different values. Lower values did not remove all the
noise in the image, while much larger values could remove the correct predicted
road.

3.2.4 Binary hole filling

The last computer vision technique used in this thesis is to fill all holes
remaining in the prediction of the road. That operation is simply done by the
following line of code:

1 predictions = scipy.ndimage.morphology.binary_fill_holes(predictions)

The operation is described in the Scipy documentation [23], and briefly explains
that the algorithm uses binary dilations to find the boundary of the objects in the
image, and further fills the holes inside the object.

3.3 Experiments

This last part of the method chapter will cover the experiments done in
this thesis. In the form of describing the structure of the datasets, and the
choices made regarding choosing the number of images in the train, test and
validation sets. Further this last part of the section will go through the training
configurations chosen during training.

3.3.1 Datasets

This thesis uses three datasets. Two of them contains only unlabeled images,
while one of them has existing ground truth. The one with existing ground truth
is the Freiburg Forest dataset briefly described above. This is a public dataset
and suits this thesis due to its similar off-road environment.

As described in the website [7], this dataset was collected with a mobile
robot platform capturing multi-spectral and multi-modal images from several
cameras. The dataset contains images from three different days, providing
the dataset with various lighting conditions. The dataset consists of pixel-wise
ground truth for six classes, since this thesis wants to investigate a two-class
problem containing road and background, the classes other than road will be
masked as background. The second dataset is named Custom 1, and the last

Dataset Training- Testing- Validation-images
Freiburg Forest dataset 207 136 23
Custom 1 dataset 40 394 5
Custom 2 dataset 147 1472 + 404 17

Table 3.1: Dataset structures

is titled Custom 2. As earlier stated these are two datasets originally consisting

34

of only unlabeled images (no ground truth). This thesis wants to investigate
if there is an opportunity to automatically predict the annotations to these
images given only a small portion of manually annotated images. The task
of manually annotate lots of pictures is both time consuming and repetitive,
and having this task automated by a network would be an advantage. The few
images which are manually annotated in these two datasets are the ones in the
training and validation sets respectively. The dataset structure is illustrated in
table 3.1. In the table, it is possible to see explicitly the number of images in
each directory. One can notice from each datasets directory distribution that the
number of training images are significantly higher in the Freiburg forest dataset
than in both the custom-made datasets. This means there is a higher probability
that the Freiburg Forest dataset will provide a more generalized network than
any of the two custom-made datasets, even though the residual network is
known to provide good results with few training samples [26]. As discussed
earlier, this thesis investigates the possibility of retrieving many automatically
annotations from few training samples. The experimentation will consist of
using the more generalized features gained from the Freiburg Forest dataset
combined with the residual network implementation. This is done in order to
hopefully retrieve a certain percentage of automatically generated annotations,
with decent accuracy. The process is partly described above in the transfer
learning section in this chapter.

Figure 3.8: An image
from the Freiburg Forest
dataset

Figure 3.9: An image
from the Custom 1
dataset

Figure 3.10: An im-
age from the Custom 2
dataset

To get a visual understanding of which type of scene is included in each
dataset an example image from each dataset is provided in fig. 3.8, fig. 3.9,
and fig. 3.9. It is possible to see some similarities between all datasets, hence
understand why the Freiburg Forest dataset is used as the dataset for the transfer
learning. The Custom 1 dataset is an off-road dataset contains 439 images.
The scene consists of similar images like the one illustrated in fig. 3.9. The 45
manually annotated training and validation images are chosen as every tenth
image ranging from start to end in the dataset. This means that small fractions
from the full sequence may be included in the training set. This way of choosing
training images is not a normal method in DL, but is used since the goal of this
thesis is to mostly predict highly correlated data. The cost of choosing training
data like this may reduce some of the network’s generalization capability. The
hypothesis is that since the data is very correlated, the network will still be able
to predict the test images with satisfactorily high accuracy.

35

The last dataset used in the thesis is Custom 2. This dataset consists of 2040
images in total. It contains 164 manually annotated training and validation
images that are chosen every tenth image ranging from start until number 1636
in the dataset. An example image from Custom 2 is illustrated in fig. 3.10. The
difference from Custom 1 apart from having a slightly different type of scene,
consists of a second test set containing 404 images. This test set is taken from
the last sequence in the dataset and nothing of its sequence has been included
in either the training or the validation set. This is done in order to check if
the network is able to generalize well on completely new unseen data, which
in theory should be completely uncorrelated from the images in the training set.

The datasets need to be structured in order to gain control over which data to
use when training, or when testing. The structure used in this thesis is illustrated
in fig. 3.11. This structure is equal for all three datasets with one exception. The
Freiburg Forest dataset does also include ground truth images for the test set.

Figure 3.11: This thesis directory structure for the datasets

Note that from both custom-made datasets, the only images containing
ground truth are the training images. Optimally all the images included in these
datasets would have ground truth. In that way, the algorithm can be able to
measure accuracy and loss in predictions both during training and testing. The
reason why the ground truth only is included in the training set for both custom
datasets is as earlier described due to the high cost of manually labeling an
image. To check how good the predictions provided by the network are, this
can only be done visually by comparing the road predictions to where the road
actually is in the original image.

The training directory is further split into following list variables:

• x_train

• y_train

• x_val

• y_val

Where x_train and y_train refers to the training images and its ground truth
respectively. x_val refers to validation images, and y_val is the ground truth
for the validation images. The network will only train on the training set, then
check accuracy on the validate set and predict values on the testing set. The
validation and test set should on a general basis be data that the network never

36

has seen before. As described in the section above, only a few of the images
were manually annotated. This means the dataset only has a small number of
images to train on. Hence, the percentage of images split into the validation set
is put to ten percent. Optimally should this number be higher but being able
to train on most available images got a higher priority in this thesis. Another
reason for experimenting with a low percentage of training images is to check
how many images could be automatically annotated satisfactory with as few
manually annotated training images as possible.

3.3.2 Training

Specification Description
CPU i7-6700k
GPU GeForce GTX 1070
GPU-memory 8 GB
RAM 16 GB
Operating system Windows 10

Table 3.2: System specifications

The computer used for the training has the following system specifications
described in table 3.2. When the training is executed the different runs consists
of a set of common parameters which are described in table 3.3.

Description Value/Name
Loss Binary cross entropy
Optimizer adam
Resolution 224x224
Epochs 5000
Batch size 10
Activation function ReLu
Output layer activation Sigmoid

Table 3.3: The hyperparameters used in training

The experiment training cycles either utilize the sequential or the residual
network in order to compare the two different networks in the end. The first
two runs are with the Freiburg Forest dataset. After the training runs, the best
weights are saved as h5 files ready for transfer learning. The next step is to load
the weights and fine tune them for both the Custom 1 and Custom 2 dataset
respectively. After the fine tuning is finished, the final weights must be saved,
and the networks are prepared for the prediction of the unseen data.

37

38

Chapter 4

Results

This chapter will cover the results provided by the two networks implemented.
Starting with the training results, before presenting the quantitative results
from the Freiburg Forest dataset, and an indication of how the quantitative
results could be in the Custom 1 and Custom 2 datasets. The last part of this
chapter presents the qualitative results for some predictions in the form of visual
presentation of the predicted images next to the original images.

4.1 Accuracy and loss results from the training

This section will provide the accuracy and loss results from both the training and
the validation set. The presentation of these training results will be divided into
three parts, covering each dataset separately. Each figure presented will show
through the accuracy on the y-axis in the left graph, and loss in the right graph.
The x-axis represents the number of epochs [34] in all graphs.

The two networks start training on the Freiburg Forest dataset. As presented
in table 3.1 this dataset consists of 230 images split into 207 training images
and 23 validation images. The training results from the residual network are
visualized in fig. 4.1. Where acc (accuracy) and loss in fig. 4.1a belongs to
the training images, and val_acc (validation accuracy) and val_loss (validation
loss) in the fig. 4.1b to the validation images. The rest of the training results is
presented in the same structure. The graphs in fig. 4.1a contains a high accuracy
and a low loss, which is desirable. The same can be said about the validation
accuracy and the validation loss in fig. 4.1b, which means the training did not do
any overfitting. Summarized is this a successful training for the residual network
from epoch 0 to epoch 50.

As illustrated in fig. 4.2 the sequential network follows almost the same
lines as the residual networks graph, meaning this training is also considered
successful. The epochs in this graph stretch from 0-160, and as seen in
the validation loss around epoch 100, the curve is starting to ascent. The
ascending indicates the start of possible overfitting because the training loss
starts descending on approximately the same time. Therefore the training must
be stopped, and the weights saved before that epoch.

The next dataset the two networks use in their training is the Custom 1
dataset. The table 3.1 shows that this dataset consists of 40 training images, five

39

(a) Training accuracy and loss

(b) Validation accuracy and loss

Figure 4.1: The training and validation set results from the residual network,
trained on the Freiburg Forest dataset

validation images, and 394 test images. Before each training starts, the weights
saved from the previous run on the Freiburg Forest dataset are loaded into the
current network. Then the most layers until the last few are frozen as described
under the transfer learning section, and the network starts the training by fine
tuning the weights of the last layers. As seen in fig. 4.3a this training provides an
accuracy which converges close to 100%, and a low loss converging close to zero
percent. The validation loss in fig. 4.3b is a little spiky but converge at around
ten percent. The training loss in fig. 4.3a converges as well at approximately zero
percent. In other words, this training does not look like potential overfitting.

The training results in fig. 4.4 are not as smooth as in fig. 4.3. The curves are
a little bit spikier in general in this particular training. Despite the tendency
to spiky graphs, no major overfitting is observed during this training of the
sequential network.

The residual network training with the Custom 2 dataset is also considered
successful. The graphs in fig. 4.5a and fig. 4.5b illustrates a high accuracy in
both training and validation images. The loss converges at around ten percent
in the training images, and approximately 15 % in the validation pictures and no
overfitting is observed. This training result is slightly worse than in the residual
network training with the Custom 1 dataset, but the Custom 2 dataset consists of
more images in both the training and the validation set.

40

(a) Training accuracy and loss

(b) Validation accuracy and loss

Figure 4.2: The training and validation set results from the sequential network,
trained on the Freiburg Forest dataset

The last training is the sequential network with the Custom 2 dataset,
illustrated in fig. 4.6. This training is quite similar to the previous one except
the accuracy is slightly lower, and the loss is barely higher.

41

(a) Training accuracy and loss

(b) Validation accuracy and loss

Figure 4.3: The training and validation set results from the residual network,
trained on the Custom 1 dataset

42

(a) Training accuracy and loss

(b) Validation accuracy and loss

Figure 4.4: The training and validation set results from the sequential network,
trained on the Custom 1 dataset

43

(a) Training accuracy and loss

(b) Validation accuracy and loss

Figure 4.5: The training and validation set results from the residual network,
trained on the Custom 2 dataset

44

(a) Training accuracy and loss

(b) Validation accuracy and loss

Figure 4.6: The training and validation set results from the sequential network,
trained on the Custom 2 dataset

45

4.2 Quantitative results

This section will provide quantitative results from the three datasets. The result
from the Freiburg Forest dataset provides the quantitative result from all of the
test images in the dataset. As earlier described, a test image is an image the
networks have never seen before. The results from the Custom 1 and the Custom
2 datasets will only be an indication of the quantitative results. The reason for
this is the lack of ground truth in the 2270 test images in total, coming from
the two datasets. To be able to make an indication, five uncorrelated images
from Custom 1 dataset, and ten uncorrelated images from Custom 2 dataset
are manually annotated. Then the accuracy, the intersection over union (IoU)
for both classes and the mean intersection over union (mIoU) are calculated
for each test set. The results are presented in table 4.1, table 4.2, table 4.3 and
table 4.4. The accuracy is described mathematically in eq. (4.1).

Accur ac y = T P +T N

T P +T N +F P +F N
(4.1)

Here T P , T N , F P and F N are true positive, true negative, false positive and
false negative respectively. This quantity has a potential weakness in some
segmentation problems. If for example one of the classes in a two-class problem,
is much larger than the other class, the accuracy might turn out to be higher
than it should be. The reason is that both classes are in the equation, and if the
much larger class does a useful classification while the other class does not, the
accuracy will still be high. To prevent this potential problem, the IoU metric is
included in the tables. The metric is given by eq. (4.2):

I oU = T P

T P +F P +F N
(4.2)

Opposite to the accuracy metric, the IoU only includes one of the two true
classifications in a two-class problem. Having only true positives (TP) in the
numerator means as briefly described above that this metric might describe
each class with a more accurate accuracy in segmentation problems. This is
especially applicable when one of the classes is much larger than the other.
Imagine the two-class problem in the thesis, where the classes predicted is
road and background. If the background is 90 % of the image and receives a
good classification while the road classification receives a bad classification, the
accuracy might end up incorrectly too high.

Con f usi on matr i x =
[

c11 c12

c21 c22

]
(4.3)

For a broader understanding on the eq. (4.2), this thesis confusion matrix is
introduced in fig. 4.7 and eq. (4.3). In this notation the non-road represents the
background, and the actual class is the ground truth. In eq. (4.3) the contents
of the matrix are substituted. Where c11 denote the true positive, c12 the false
positive, c21 is false negative and c22 the true negative. In this thesis, the true
positive of the confusion matrix is when both the prediction and the ground
truth agree that the pixel is the road. The true negative is when both the
prediction and the ground truth agrees that the pixel is the background. The

46

Figure 4.7: This thesis confusion matrix

correct classifications from the road and the background will be shown in the
diagonal of the matrix respectively (c11 and c22).

I oUr oad = c11

c11 + c12 + c21
(4.4)

I oUbackg r ound = c22

c22 + c21 + c12
(4.5)

Equation (4.4) and eq. (4.5) describes the IoU for each of the two classes
explicitly. These two equations are the ones that present the IoU in the following
tables. The equations consist of the notation substituted from the confusion
matrix.

mI oU = I oUr oad + I oUbackg r ound

2
(4.6)

The last metric used for presenting the quantitative results is the mIoU. As
described in eq. (4.6) it takes the mean of both the IoU classes.

Accuracy I oUr oad I oUbackg r ound mIoU
Residual network 98.2% 75.9 % 98 % 86.9 %
Sequential network 89.4 % 47% 89% 67.9%

Table 4.1: The test set result from the Freiburg Forest dataset

The first quantitative results presented in this thesis provide the results
from what the two networks managed to predict from the test images with the
Freiburg Forest dataset. The results are presented in table 4.1. As this is the only
quantitative results presented in this thesis which is not just an indication, these
results should be considered most accurate in showing the complete accuracy
of the dataset. As earlier mentioned Freiburg Forest dataset is the only one
that contains ground truth for the whole test set. As seen in table 4.1, the
residual network does an overall better performance compared to the sequential
network.

The next quantitative results presented are from the predictions on the
Custom 1 dataset. Since these measurements only come from five uncorrelated
images in the test set, the results can only be interpreted as an indication of

47

Accuracy I oUr oad I oUbackg r ound mIoU
Residual network 97.7% 92.5% 96.6% 94.5%
Sequential network 98% 93.6% 97.1% 95.3%

Table 4.2: The test set result from the Custom 1 dataset

what the actual quantitative result would be. In this indication, the sequential
network performs slightly better than the residual network. Both networks have
an overall high accuracy with its predictions on the Custom 1 dataset. Why the
sequential network had a slightly better performance metrics than the residual
network will be further discussed in chapter 5.

Accuracy I oUr oad I oUbackg r ound mIoU
Residual network 94.1% 77.7% 92.7% 85.3%
Sequential network 94% 77.4% 92.6% 85%

Table 4.3: The test set result from the Custom 2 dataset

Accuracy I oUr oad I oUbackg r ound mIoU
Residual network 90.5% 65.2% 88.6% 76.9%
Sequential network 91% 66.3% 89.3% 77.7%

Table 4.4: The second test set result from the Custom 2 dataset

The last indication of the quantitative results is presented in table 4.3 and
table 4.4, and consists of predictions from the Custom 2 dataset. The overall
results from these two tables are also considered a good result. This dataset has
combined 1876 test images, while the number of training and validation images
is 164. The first table shows slightly better results overall, but this is as expected
due to the last test set (404 images) being completely independent from the
training and validation images.

4.3 Qualitative results

This part will consist of a few qualitative results from both network predictions
on all datasets. The results presented in this section consist of some good and
some poor predictions, where most of the poor predictions comes from more
challenging scenes which includes different types of objects in the road. A more
extended image sequence from each dataset which can be used to observe the
results from the predictions can be found in the appendix. The extended image
sequence is added so the reader may get a better overview of the result from the
predictions.

The first qualitative result comes from the Freiburg Forest dataset, and is
illustrated in fig. 4.8. Comparing the two networks from fig. 4.8a and fig. 4.8b, the
residual network gives a more precise prediction of the road than the sequential
network. This single result corresponds to the metrics in table 4.1, where the
residual network did get better results overall as well.

48

(a) Residual network

(b) Sequential network

Figure 4.8: Two samples from the test set predictions on the Freiburg Forest
dataset

The next two predictions come from the Custom 1 dataset. Here, the residual
network provide a better prediction on the test set sample than the sequential
network. The sequential network stops at predicting the road before the residual
network does, in the tip of the road. A slight color change can be seen in that
small area, which might explain why. In the indication of the quantitative results
shown in table 4.2, the sequential network gave a slightly more accurate result
than the residual network, and as seen in fig. 4.9 this does not correspond to the
qualitative result were the residual prediction was better. Some theories about
this will be discussed in chapter 5.

Figure 4.10 illustrates two predictions with an object (car) placed in the road.
Both networks perform less than normal every time unknown objects arrive
in the scene, but the residual network makes a surprisingly good prediction in
fig. 4.10a compared to the sequential network. From other examples, it seems
like both networks finds it challenging at first when new objects arrive at the
scene before they quickly get back to good predictions. The residual network is
slightly faster and more robust than the sequential network when it comes to
resume good predictions after challenging scenes.

Figure 4.11 shows two examples of a challenging scene containing shadows,
where the networks predict rather well. The large shadow part in the bottom
of the images does not seem to concern any of the networks. The overall best
prediction in this example comes from the residual network.

49

(a) Residual network

(b) Sequential network

Figure 4.9: Two samples from the test set predictions on the Custom 1 dataset

Figure 4.12 illustrates a similar challenging scene as the example above in
fig. 4.11. The main difference between the two results is which test set they
come from. These samples are taken from the test set which only consists of
404 images and does not have any correlation to the training and validation
images at all. As earlier described, the training and validation images are chosen
iteratively from the start to the end of the dataset, meaning, for example, every
100’th in the dataset is chosen for training and validation. This method is
chosen due to the desire for automatically predicting the rest of the dataset as
annotation for the test images. Unlike the other two test sets, this test set has
been left alone and consists of an untouched sequence. Being able to predict a
good prediction on such an untouched scene as illustrated in these two images,
means the network is somewhat generalized and has the opportunity to predict
well on more completely unseen and uncorrelated data as well.

These two predictions illustrated in fig. 4.13 are examples of a challenging
scene for the networks. The scene is from a U-turn made by the vehicle, and
there is not a structured line in the road as it consists of frequently small areas
with grass. The accuracy of the prediction in these particular scenes is, therefore,
more reduced than in the rest of the datasets. The difference between the
residual and the sequential network is also here noticeable. Once again, the
residual network shows slightly better results.

50

(a) Residual network

(b) Sequential network

Figure 4.10: Two samples from the test set predictions on the Custom 1 dataset.
Containing a car in the image

51

(a) Residual network

(b) Sequential network

Figure 4.11: Two samples from the test set predictions on the Custom 2 dataset
(The first test set with 1472 images)

52

(a) Residual network

(b) Sequential network

Figure 4.12: Two samples from the test set predictions on the Custom 2 dataset
(The second test set with 404 images)

53

(a) Residual network

(b) Sequential network

Figure 4.13: Two poor test set prediction from the Custom 2 dataset (The first
test set with 1472 images)

54

Chapter 5

Discussion of results

This chapter will first examine the quantitative and then the qualitative results
presented in the thesis. The next section will provide an analysis of the use
of transfer learning and discuss challenging scenes from the images. Then
the next part will discuss the quality of the manually annotated images and
the generation of the training and the validation sets. Lastly, this chapter will
conclude the thesis and provide suggestions for further work.

The chapter will answer the goals which not yet has been answered in
chapter 3 on page 23. The goals which also are described in the introduction
are as follows:

1. Perform a literature review of existing CNNs and select a robust network
to implement

2. Implement a standard CNN as baseline

3. Investigate whether the CNNs predictions have the necessary accuracy to
be used as ground truth for the images in the custom-made datasets

4. Obtain a more generalized network with transfer learning from a similar
dataset

5. Testing the networks, then presenting and analyzing the results

5.1 Quantitative results

It is necessary to have ground truth for all of the test images to calculate the
quantitative results. The only dataset with ground truth for all test images is as
earlier described the dataset from the University of Freiburg. Consequently, the
Freiburg Forest dataset is the only one that gets the actual quantitative results
from the networks in this task, and therefore should these quantitative results
be emphasized most. The results were presented in section 4.2 on page 46 from
table 4.1 on page 47. As seen in table 4.1 on page 47, the residual outperforms
the sequential network in all metrics, as expected. The scene in the Freiburg
Forest dataset contains several challenging areas to predict, like for example
narrow roads, sunlit areas, and much grass in the path. These challenging
scenes appear more often in the Freiburg Forest dataset than in the Custom 1

55

and Custom 2 dataset and may be one of the reasons for the residual networks
greater performance.

As earlier mentioned, the results in section 4.2 on page 46 from the Custom
1 and the Custom 2 dataset will only be an indication of the quantitative result.
The reason for only providing an indication is due to the time cost of producing
manually labeled images, as none are included in the test set. Five uncorrelated
images are chosen from the test set to receive ground truth, and the metrics are
then calculated in a small script. The results presented in table 4.2 on page 48
describes the two networks quantitative results from the test images in the
Custom 1 dataset. Compared to the Custom 2 with its 2040 images, the Custom
1 dataset has only 439 images in total. The quantitative result from table 4.2 on
page 48 shows an overall high accuracy from both networks. The high accuracy
from both networks is the desired result. As seen in table 4.2 on page 48,
the sequential network has overall slightly higher accuracy than the residual
network, and this is not as excepted since the residual network should be the
better one. A reason for the slightly better accuracy in the sequential network
may be that the images selected from the test set contained the best predictions
from the sequential network, while the best from the residual network was
not included. Another theory can be that the F P and the F N values vary
between the networks. Low F P and high F N values from the first network,
and opposite values in the form of correlated high F P and low F N values in
the second network might provide similar IoU accuracy. F P is the predictions
where the network falsely think it is road, and F N is the predictions where
the network falsely think it is the background. The most unwanted scenario
is where the F P values are too high because it is not desired to have a falsely
predicted road where it is no road. The residual network had F P = 156 pi xel s
and F N = 994 pi xel s, while the sequential network had F P = 534 pi xel s and
F N = 439 pi xel s in the Custom 1 dataset. The mean values from the actual
road are T P = 14828 pi xel s, while the mean actual background values are
T N = 34215 pi xel s. Put in context, the values from F P are low compared to T P ,
which means there is only a tiny fraction of the image, which is falsely predicted
as the road. Since the F P values from the residual network are lower than
from the sequential network, it may indicate that the results from the residual
network are better, despite the slightly higher accuracy in table 4.2 from the
sequential network.

The two last indications of quantitative results are presented in table 4.3
on page 48 and table 4.4 on page 48, and comes from two different test set in
the Custom 2 dataset. The metrics are calculated from ten manually annotated
images in the first test set, and five manually labeled images from the second
test set, all images without correlation to each other. The results in table 4.3 on
page 48 and table 4.4 on page 48 are slightly lower than in table 4.2 on page 48,
but this is as expected since the Custom 2 dataset consists of totally 2040 images
with occasionally a more challenging scene.

As seen in the quantitative results from table 4.1 on page 47, the residual
network was better than the sequential network. If it had been ground truth for
all test images in the Custom 1 and the Custom 2 dataset, may the likelihood
exist for seeing the same pattern in the networks quantitative results from these
datasets as well. The reason to anticipate this outcome is supported further

56

in the qualitative results presented, where it is illustrated that the predictions
from the sequential network are poorer than the residual network’s predictions
in more challenging scenes.

5.2 Qualitative results

The most expedient results to interpret in this thesis are the qualitative results
since they provide a clear, explicit illustration of the quality of the predictions
from the networks. As there may be several reasons for the quantitative results
to provide falsely high accuracy in some occasions, the qualitative results
presented as images with predicted ground truth gives a better understanding if
the prediction fulfills the users’ requirements. As illustrated in fig. 4.9 on page 50,
the residual network makes overall better predictions than the sequential
network, and similar examples of the same outcome will be illustrated in the
appendix under section A.1 on page 69. Providing overall better predictions than
the sequential network, the residual network is the most robust network in this
thesis. Its predictions have high accuracy in the most scenes in the Custom 1
and Custom 2 datasets testing images.

5.3 Transfer learning

Before implementing the transfer learning from the networks training on
the Freiburg Forest dataset, the predictions from both networks were a little
inadequate on the two custom datasets. These predictions missed a little bit
more of the road areas close to the trenches. The features the two networks
learned from the Freiburg Forest datasets 207 training images from a similar
environment as in the Custom 1 and Custom 2 dataset, helped improved the
overall accuracy in the predictions. For that reason, transfer learning from a
similar dataset may be considered a good idea, and it proved to give slightly
more generalized networks in this thesis.

5.4 Challenging scenes

The Custom 1 and Custom 2 dataset contains several images with a challenging
scene for the semantic segmentation problem in this thesis. The first one is
presented in fig. 4.10 on page 51, where a car arrives at the top left position in
the image. Since this thesis only handles a two-class problem, it was uncertain
how the networks would react to a car in the scene. Figure 4.10 on page 51 shows
that the residual network managed to get a good prediction, while the sequential
network predicted the image with slightly lower accuracy.

Another comprehensive scene is presented in fig. 4.11 on page 52, where
the road consists of shadows. In traditional ML problems, a scene like this
may cause a poorer prediction due to the color change from the shadows, but
both the residual and the sequential network managed to predict a reasonably
good ground truth for the image. The residual network also has a slightly more
accurate prediction in this case.

57

The last type of challenging scene which was presented in the result chapter
was fig. 4.13 on page 54. The image illustrates a U-turn made by the vehicle
were the road is partly filled with grass. This type of environment proved to be
the most comprehensive for both networks. Even though the residual network
had the best prediction of the two networks, was this not a particularly accurate
road prediction. Some of the reasons for this poor prediction may be the lack
of either a similar image, including ground truth in the training set or the weak
lines in the road due to the grass in the scene.

Even though the result chapter illustrates some images from challenging
scenes with variable accuracy on the predictions, did the two networks provide
overall good results in the most predictions as will be illustrated in chapter A
on page 69. These examples show that the residual network is slightly more
robust than the sequential network in both the more challenging scenes and the
ordinary scenes. A method which may increase the robustness and accuracy in
all scenes even more, is implementing several classes. If there would be classes
for the most common objects which arrive in the dataset’s scene, this could help
the networks considerably to predict more accurate when these objects arrive.
It will require more work on the manual annotation part in the images from the
training and validation set, but it is likely to result in better predictions in scenes
with these objects.

5.5 The few manually annotated images from the Custom
1 and Custom 2 datasets

As illustrated in table 3.1 on page 34 the Custom 1 dataset consists of 45
manually annotated images from the training and validation set, while the
Custom 2 dataset consists of 164 images. That makes the total number of
manually labeled images used for training and validation, 209 images. These
are the images that are used to train the two networks, and further potentially
automatically produce ground truth for up to 2270 test images from the two
datasets. To have these manually annotated images labeled correctly is therefore
essential to have the highest chance of successful predictions. The average
time spent on manually label each of these training and validation images is
around two minutes, which implies that some of the annotations might have
the opportunity for improvement. Since the result from the residual network’s
predictions has decent accuracy, it suggests that the manually labeled images
are to some extent accurate enough.

5.6 Generating the training and validation set

Since the two custom datasets only contain unlabeled images initially, each
dataset needs to be split into a training, a validation and a test set. The dataset
structure is briefly described in section 3.3.1 on page 34, and the training set is
the first one which is generated. Depending on the networks goals, it is several
ways to generate the training set. In this thesis, the goal is to make the networks
predict the ground truth for the test images. Therefore, an uniform sampling
of the training images approximates the entire test set. This is why every tenth

58

image ranges from the beginning to the end of the dataset (in the Custom 1 and
the Custom 2 datasets) is chosen as training images. The remaining images in
both datasets are chosen to be in the test set. The validation set is generated
by taking ten percent of the images from the training set. Having a training
set which is slightly correlated to the test images may increase the chances for
better predictions in the two custom datasets. Figure 4.9 on page 50, fig. 4.10
on page 51, fig. 4.11 on page 52 and fig. 4.13 on page 54 are examples of
predictions from test sets which is slightly correlated to the training set. All
these result with the exception of the image in fig. 4.13 on page 54 are considered
decent predictions from the residual network, and slightly poorer but still okay
predictions from the sequential network. These results indicate that generating
a training set this way works if the goal is to find the ground truth in a test set
with slightly correlated images to the training set.

There is created a second test set in the Custom 2 dataset consisting of 404
images, which are split from the dataset before the training set was created.
Having the second test set split before the training set was made means it may be
completely uncorrelated from the training images. The reason this second test
set is created is to check if the networks are generalized and can perform well on
completely uncorrelated data. A result from this test set is presented in fig. 4.12
on page 53 and the prediction from the residual network is surprisingly decent,
considering that the test set is entirely uncorrelated with the training set.

59

60

Chapter 6

Conclusion

CNNs with supervised learning is a powerful tool for gaining desired features
from images. When applying supervised learning to a semantic segmentation
problem, the dataset should include ground truth for the images. Providing
ground truth is normally a time consuming task, so many datasets consists only
of unlabeled images. This project applies two unlabeled datasets with images
from a rural scene, and seeks to partly automate the task of assigning the ground
truth for most of these images. The idea is to manually label a minor portion of
the unlabeled images which further is used to fine tune the networks features
learned from the Freiburg Forest dataset, and then assign the remaining labels
for the unlabeled images.

In this thesis, two networks are implemented which purpose is to make the
road and background predictions from the test images in such a detailed level
that it can be used as ground truth for the images. The benefits of successfully
providing such accurate predictions, is a potentially enormous amount of time
saved instead of manually annotating all the images in the dataset.

After testing the two networks and presenting some of the prediction results
in chapter 4 on page 39 and chapter A on page 69, the conclusion is that most
of the residual network’s predictions can be used as ground truth for the test
images, which answers the problem addressed in the section 1.2 on page 1.
However, there is potential for further improvements on the predictions for
achieving a more accurate result. A small portion of the images from the most
comprehensive scenes gave predictions which was not sufficient for further use
as ground truth. In general the residual network performed consistently better
compared to the sequential network, thus it was implemented as a baseline.
Even though the sequential network delivered similar or slightly better results
with respect to the indicated quantitative performance, the qualitative results
revealed that the residual network was more accurate and robust. The result
from this thesis will hopefully be useful for other institutions/projects which
seek to automate the task of producing ground truth for the images in their
unlabeled dataset.

Even though the residual network managed to provide many useful predic-
tions, there is always room for further improvement. The first suggestion for
improving the predictions and making the networks more robust would be to
include more classes in the annotated images. As earlier described, including

61

other classes, which have a high probability for appearing in the scene, can con-
tribute to making the networks more robust in these challenging scenes. It will
take increased time to annotate each image used for training manually but the
benefit may be worth the extra time. Spending slightly more time in general
on each manual annotation can also be beneficial, and by that make sure the
ground truth for the training images is more accurate.

Another task would be to perform more tweaking of the hyperparameters
such as the number of epochs during training, the momentum, resizing
the images, test other optimizers than adam, the learning rate, and the
regularization. Testing different hyperparameters can be a repetitive task, but
may provide increasingly better results instantaneously, which is rewarding.
Experimenting with different types of kernels in the morphological operations
on the predictions could also be another hyperparameter which would possible
provide better results. The square morphological kernel used in this thesis could
for example be replaced by a circle.

The most central suggestion for future improvements is to test if the
implementation of an active learning algorithm would be able to improve the
results further. The idea would be to use the stream based selective sampling
method. This method takes each unlabeled image and predicts each one at a
time, while the algorithm evaluates the informativeness of each image against
their query parameter. Further, the user can decide whether to keep or reject
the predictions and rerun the process with the accepted predictions added to
the training set as ground truth. The networks would then have more images at
each run for training, which hopefully could improve the accuracy even further
on the next predictions.

62

Bibliography

[1] Kjetil Åmdal-Sævik. Keras U-Net starter - LB 0.277. URL: https : //www.
kaggle.com/keegil/keras-u-net-starter-lb-0-277 (visited on 04/30/2019).

[2] François Chollet. Deep Learning with Python. Manning Publications,
2017. ISBN: 9781617294433.

[3] Cityscapes dataset. URL: https://www.cityscapes-dataset.com/ (visited on
05/23/2019).

[4] Color Images SteganalysisUsing RGB Channel Geometric Transformation
Measures. URL: https://www.researchgate.net/publication/293043690_
Color _ images _ steganalysis _ using _ rgb _ channel _ geometric _
transformation_measures (visited on 04/22/2019).

[5] Convolutional Neural Networks: Architectures, Convolution / Pooling Lay-
ers. URL: http ://cs231n .github . io/convolutional - networks/ (visited on
04/04/2019).

[6] Deep Networks Can Resemble Human Feed-forward Vision in Invariant
Object Recognition. URL: https://www.nature.com/articles/srep32672.pdf
(visited on 05/14/2019).

[7] DeepScene. URL: http : / / deepscene . cs . uni - freiburg . de/ (visited on
05/09/2019).

[8] Dropout: A Simple Way to Prevent Neural Networks from Overfitting. URL:
http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf
(visited on 04/22/2019).

[9] Kai Olav Ellefsen. Intro to machine learning and single-layer neural
networks. URL: https://www.uio.no/studier/emner/matnat/ifi/INF3490/
h18/timeplan/slides/lecture5-6pp.pdf (visited on 04/08/2019).

[10] Kai Olav Ellefsen. Multi-Layer Neural Networks. URL: https://www.uio.
no/studier/emner/matnat/ifi/INF3490/h18/timeplan/slides/lecture6-
6pp.pdf (visited on 04/08/2019).

[11] Fully Convolutional Networks for Semantic Segmentation. URL: https://
people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf (visited on
05/22/2019).

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

63

https://www.kaggle.com/keegil/keras-u-net-starter-lb-0-277
https://www.kaggle.com/keegil/keras-u-net-starter-lb-0-277
https://www.cityscapes-dataset.com/
https://www.researchgate.net/publication/293043690_Color_images_steganalysis_using_rgb_channel_geometric_transformation_measures
https://www.researchgate.net/publication/293043690_Color_images_steganalysis_using_rgb_channel_geometric_transformation_measures
https://www.researchgate.net/publication/293043690_Color_images_steganalysis_using_rgb_channel_geometric_transformation_measures
http://cs231n.github.io/convolutional-networks/
https://www.nature.com/articles/srep32672.pdf
http://deepscene.cs.uni-freiburg.de/
http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF3490/h18/timeplan/slides/lecture5-6pp.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF3490/h18/timeplan/slides/lecture5-6pp.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF3490/h18/timeplan/slides/lecture6-6pp.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF3490/h18/timeplan/slides/lecture6-6pp.pdf
https://www.uio.no/studier/emner/matnat/ifi/INF3490/h18/timeplan/slides/lecture6-6pp.pdf
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
http://www.deeplearningbook.org
http://www.deeplearningbook.org

[13] ImageNet Classification with Deep Convolutional Neural Networks. URL:
http : / /www . cs . toronto . edu /~fritz / absps / imagenet . pdf (visited on
04/16/2019).

[14] Nikola Latinovic. The significant difference between AI, ML and Deep
Learning. Feb. 2018. URL: https : / / www . usoft . com / blog / difference -
between-ai-ml-and-deep-learning.

[15] Tom Mitchell and McGraw Hill. Machine Learning. http://www.cs.cmu.
edu / afs / cs . cmu . edu / user / mitchell / ftp / mlbook . html. 1997. ISBN:
0070428077.

[16] Neural Networks Part 1: Setting up the Architecture. URL: http://cs231n.
github.io/neural-networks-1/ (visited on 04/15/2019).

[17] Our U-net wins two Challenges at ISBI 2015. URL: https://lmb.informatik.
uni-freiburg.de/people/ronneber/isbi2015/ (visited on 05/23/2019).

[18] Rethinking Atrous Convolution for Semantic Image Segmentation. URL:
https://arxiv.org/pdf/1706.05587.pdf (visited on 05/22/2019).

[19] G. X. Ritter and J. N. Wilson. Handbook of Computer Vision Algorithms in
Image Algebra. CRC Press, Boca Raton, 2nd edition, 2000.

[20] Road/Lane Detection Evaluation 2013. URL: http : / / www . cvlibs . net /
datasets/kitti/eval_road.php (visited on 05/23/2019).

[21] O. Ronneberger, P.Fischer, and T. Brox. “U-Net: Convolutional Networks
for Biomedical Image Segmentation.” In: Medical Image Computing and
Computer-Assisted Intervention (MICCAI). Vol. 9351. LNCS. (available on
arXiv:1505.04597 [cs.CV]). Springer, 2015, pp. 234–241. URL: http://lmb.
informatik.uni-freiburg.de/Publications/2015/RFB15a.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol. 1.” In:
ed. by David E. Rumelhart, James L. McClelland, and CORPORATE PDP
Research Group. Cambridge, MA, USA: MIT Press, 1986. Chap. Learning
Internal Representations by Error Propagation, pp. 318–362. ISBN: 0-262-
68053-X. URL: http://dl.acm.org/citation.cfm?id=104279.104293.

[23] scipy.ndimage.morphology.binary_fill_holes. 2015. URL: https : / / docs .
scipy . org / doc / scipy - 0 . 16 . 1 / reference / generated / scipy . ndimage .
morphology.binary_fill_holes.html (visited on 05/02/2019).

[24] Underfitting vs. Overfitting. URL: https://scikit- learn.org/stable/auto_
examples/model_selection/plot_underfitting_overfitting.html (visited
on 03/29/2019).

[25] U-Net. URL: http://www.deeplearning.net/tutorial/unet.html (visited on
05/01/2019).

[26] U-Net: Convolutional Networks for Biomedical Image Segmentation. URL:
https://arxiv.org/pdf/1505.04597.pdf (visited on 05/06/2019).

[27] U-Net: Convolutional Networks for Biomedical Image Segmentation. URL:
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ (visited
on 04/21/2019).

64

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
https://www.usoft.com/blog/difference-between-ai-ml-and-deep-learning
https://www.usoft.com/blog/difference-between-ai-ml-and-deep-learning
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/mlbook.html
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
https://lmb.informatik.uni-freiburg.de/people/ronneber/isbi2015/
https://lmb.informatik.uni-freiburg.de/people/ronneber/isbi2015/
https://arxiv.org/pdf/1706.05587.pdf
http://www.cvlibs.net/datasets/kitti/eval_road.php
http://www.cvlibs.net/datasets/kitti/eval_road.php
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a
http://dl.acm.org/citation.cfm?id=104279.104293
https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.ndimage.morphology.binary_fill_holes.html
https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.ndimage.morphology.binary_fill_holes.html
https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.ndimage.morphology.binary_fill_holes.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html
http://www.deeplearning.net/tutorial/unet.html
https://arxiv.org/pdf/1505.04597.pdf
https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

[28] UNIK 4690 – Maskinsyn, Introduction. Jan. 2018. URL: https://www.uio.
no/studier/emner/matnat/ its/UNIK4690/v18/ lectures/ lecture_00/
lecture_0_introduction.pdf (visited on 03/14/2019).

[29] Usage of callbacks. URL: https://keras.io/callbacks/#tensorboard (visited
on 03/20/2019).

[30] Abhinav Valada et al. “Deep Multispectral Semantic Scene Understanding
of Forested Environments using Multimodal Fusion.” In: International
Symposium on Experimental Robotics (ISER). 2016.

[31] Kentaro Wada. Image Polygonal Annotation with Python (polygon, rect-
angle, circle, line, point and image-level flag annotation). URL: https ://
github.com/wkentaro/labelme (visited on 04/03/2019).

[32] Tingwu Wang. Semantic Segmentation. URL: http://www.cs.toronto.edu/
~tingwuwang/semantic_segmentation.pdf (visited on 04/22/2019).

[33] Walter H. Pitts Warren S. McCulloch. “A Logical Calculus of the Ideas
Immanent in Nervous Activity.” In: Bulletin of Mathematical Biophysics,
Vol. 5, 115-133 (1943).

[34] What is an epoch in deep learning? URL: https://www.quora.com/What-
is-an-epoch-in-deep-learning (visited on 05/11/2019).

65

https://www.uio.no/studier/emner/matnat/its/UNIK4690/v18/lectures/lecture_00/lecture_0_introduction.pdf
https://www.uio.no/studier/emner/matnat/its/UNIK4690/v18/lectures/lecture_00/lecture_0_introduction.pdf
https://www.uio.no/studier/emner/matnat/its/UNIK4690/v18/lectures/lecture_00/lecture_0_introduction.pdf
https://keras.io/callbacks/#tensorboard
https://github.com/wkentaro/labelme
https://github.com/wkentaro/labelme
http://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf
http://www.cs.toronto.edu/~tingwuwang/semantic_segmentation.pdf
https://www.quora.com/What-is-an-epoch-in-deep-learning
https://www.quora.com/What-is-an-epoch-in-deep-learning

66

Appendices

67

Appendix A

Image sequences from the
predictions in each dataset

A.1 Predictions from the Custom 1 dataset

This section presents 15 original images with their corresponding auto-
annotated image to the left, uniformly sampled across the Custom 1 dataset.

69

70

71

72

73

A.2 Predictions from the Custom 2 dataset

This section presents 15 original images with their corresponding auto-
annotated image to the left, uniformly sampled across the Custom 2 dataset.

74

75

76

77

78

	Introduction
	Motivation
	Problem formulation
	Contribution and goals
	Thesis outline

	Theoretical background
	Artificial intelligence
	Machine learning
	Deep learning
	Benefits using DL with CNN vs traditional methods

	Computer vision
	Semantic segmentation
	Morphological operations
	Connected component analysis

	Data preprocessing
	Data augmentation

	Artificial neural networks
	Single- and multi-layer neural network
	The learning rule
	Bias
	Backpropagation in multi-layer neural networks
	Gradient descent learning and momentum
	Activation functions
	Loss and optimizers
	Regularization
	Convolutional neural networks
	Pooling layer

	Generating the ground truth labels manually
	Transfer learning
	Related work

	Method
	Implementation
	Annotating the training set
	Keras
	The sequential network
	The residual network
	Transfer learning
	Tensorboard

	Predictions
	Thresholding
	Morphological operations
	Connected component analysis
	Binary hole filling

	Experiments
	Datasets
	Training

	Results
	Accuracy and loss results from the training
	Quantitative results
	Qualitative results

	Discussion of results
	Quantitative results
	Qualitative results
	Transfer learning
	Challenging scenes
	The few manually annotated images from the Custom 1 and Custom 2 datasets
	Generating the training and validation set

	Conclusion
	Appendices
	Image sequences from the predictions in each dataset
	Predictions from the Custom 1 dataset
	Predictions from the Custom 2 dataset

