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Abstract

Rotorcraft and fixed-wing aircraft are generally considered separate concepts,
each with inherent strengths and weaknesses. The last decade has seen an
increasing interest in hybrid unmanned aerial vehicles (UAV) that combine the
vertical take-off and landing (VTOL) capabilities of rotorcraft with the energy
efficient prolonged flight of a fixed-wing. In the work with airborne sensory
platforms the Norwegian Defence Research Establishment (FFI) has developed
a concept plane named Kestrel. Kestrel is a dual system convertiplane hybrid
UAV equipped with four upwards facing propellers for VTOL as well as a
full fixed-wing control system. This thesis is devoted towards enabling future
research on and with the Kestrel UAV.

Little systematic research exist concerning modelling, estimation and control
of the dual system convertiplane design through its complete flight envelope.
With basis in the design of the Kestrel a full six degrees of freedom dynamic
model considering the main forces and moments acting upon the aircraft was
developed.

The aircraft was simulated using different models during hovering and
longitudinal fixed-wing flight. Linear parameter-varying (LPV) multiple model
adaptive (MMA) methods were investigated as solution concepts estimation
and control of the UAV during vastly different flight conditions under large
uncertainties in the physical parameters. Linear state-observers were used for
state estimation, and infinite horizon linear-quadratic regulators (LQR) with
integral action, were used for control in both models.

In quadcopter mode the controller managed to track setpoints and follow
trajectories accurately. Within the limitations of the linearised system the MMA
algorithm was able to correctly identify the candidate model with parameters
most similar to the true parameters of the plant.

During longitudinal flight the aircraft managed level flight as well as tracking
trajectories in desired airspeed and altitude. The MMA algorithm was able to
identify the correct candidate model during flight close to the computed trim
state of the models. Flight conditions not encapsulated by the computation
of the trim conditions caused other factors than the unknown parameter to
determine the performance of the linearised systems, rendering the MMA
algorithm unable to identify the correct candidate model.
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An unsuccessful attempt was made at implementing the LPV architecture. The
method, however, is still considered a good candidate for enabling estimation,
parameter identification and control of the aircraft over a larger set of flight
conditions. This shows great promise towards ensuring stable transition flight
between quadcopter hovering and fixed-wing cruising.
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Sammendrag

Helikopter og fixed-wing fly anses vanligvis som separate konsepter, hver med
sine egne styrker og svakheter. De siste ti årene har det vært en økende
interesse rettet mot hybrid ubemannede luftfartøy (UAV) som forsøker å
kombinere vertikal take-off og landing (VTOL) fra helikoptre med flyenes mer
energieffektive egenskaper over lengre flyvninger. I forbindelse med forskning
på luftbårne sensorplatformer har Forsvarets Forskningsinstitutt (FFI) utviklet
et konseptfly kalt Kestrel. Kestrel er et dual propulsion hybrid UAV utstyrt
med fire propeller for VTOL i tillegg til et komplett kontrollsystem for fixed-
wing flyvning. Denne oppgaven er laget for å tilrettelegge for videre forskning
på og med Kestrel UAV.

Det eksisterer lite forskning som ser på methoder for modellering, estimering
og kontroll av dual propulsion fartøy. Med Kestrel som utgangspunkt har
en dynamisk modell over all seks frihetsgrader som tar for seg de viktikste
kreftene og rotasjonsmomentene blitt utviklet.

Et luftfartøy har blitt simulert ved bruk av ulike modeller under sveving og
langsgående fixed-wing flyinger. Lineær parameter-variende (LPV) multippel
modell adaptive (MMA) metoder ble undersøkt som potensielle løsningskon-
septer for estimering og kontroll av UAVen over vidt forskjellige flyforhold
mens det var store usikkerheter knyttet til flyets fysiske parametere. Lineære
metoder ble brukt for estimering, og en lineær kvadratisk regulator (LQR) ble
brukt for kontroll i begge flymoduser.

I quadcopter modus klarte kontrollalgoritmen å følge setpunkt. Så lenge
bevegelsen til UAVen var innen begrensningene til de lineære modellene klarte
MMA algoritmen å identifisere korrekt kandidatmodell.

For langsgående flyvning klarte flyet stabile flyvninger, samt å følge variasjoner
i setpunkt av ønsket høyde og lufthastighet. Under flyvninger nær lineariser-
ingspunktene klarte MMA algorithmen å identifisere korrekt kandidatmodell.
Da flyet beveget seg bort fra disse lineariseringspunktene var det andre faktorer
som ble avgjørende for kvaliteten på de ulike lineære modellene. Dette gjorde
MMA algoritmen ute av stand til å identifisere korrekt kandidatmodell.

En LPV akitektur ble forsøkt implementert uten hell. Til tross for dette er den
fortsatt ansett som en mulig løsningsmetode for å realisere stabil transisjon
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mellom svening i quadrocopter modus og flyvning i fixed-wing modus.
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Chapter 1

Introduction

1.1 Unmanned Aerial Vehicles In a Historical Perspective

One of the things that have fascinated mankind the most throughout history
is probably the ability to fly. The first known example of a self-propelled
unmanned aerial vehicle (UAV) was a mechanical bird attributed to Archytas
of Tarantas in 425 BC. In 1483 Da Vinci created an aircraft capable of performing
vertical flight. During the 18th century several designs appeared that resemble
the modern helicopter. In 1840 Horatio Phillips made a steam powered machine
capable of vertical flight. All of these were good ideas, but the technology was
still not at the level required to construct systems for practical use.

The first documented use of UAVs for war was in 1849 by the Austrian army
during their attack on Venice in Italy, where balloons were fitted with explosives
that was dropped onto the city. From there not much development happened
until world war 1, in 1916 when Britain and later USA started experimenting
with using unmanned fixed-wing vehicles armed with explosives intended to
shoot down German zeppelins. Development continued during the interwar
period and into the second world war, these were however for the most part
planes re-purposed into flying bombs. It is known, without too much detail,
that USA and USSR both had their own respective UAV programs during the
cold war, they were however for the most part perceived as expensive and
unreliable toys compared to their manned counterparts.

Practical use of rotorcrafts had a much slower start, even if many of the
ancient inventions featured helicopter-like designs. This is much due to the
inherent instability of multirotors which in the absence of computers demands
immense work from the pilot. The first takeoff experiments with rotorcrafts
were done with multirotor designs. In 1907 the French brothers Jacques and
Louis Breguet built and took off with their quadcopter Gyroplane No 1, it proved
to be unstable and impractical. In 1924 the Frenchman Étienne Oehmichen
made great progress by flying 1 km, but quadcopters lost the race against single
rotor helicopters which are inherently more stable and easier to craft. Several
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decades and, technological breakthroughs were required before quadcopters
would see practical use.

In 1982 during the Lebanon war Israel defeated the Syrian Air Force by using
UAVs alongside manned aircraft as decoys, jammers and reconnaissance units.
After this powerful demonstration of capabilities, research on UAVs really took
off, pun intended. With the improvements of computers and electronics, small
quadcopters also started to make their entry of practical use during the 90’s
offering a whole new range of capabilities that fixed-wing UAVs are not capable
of.

In the last couple of decades the world of UAVs has seen a tremendous
development. A huge increase can be seen in the use of UAVs for military
purpose such as surveillance and reconnaissance. Until the early 2000’s UAVs
were mostly considered for military use, but the last couple of decades the
civilian market has exploded and they are being used in situations ranging from
disaster relief and wildfires to racing and glorified selfie-sticks [18, 33].

1.2 Hybrid UAVs

In the UAV market there are generally two main types considered: fixed-wing,
and rotorcraft. Both with their own strengths and disadvantages. Fixed-wing
UAVs generally exhibit higher translational speed, payload capacity, range and
endurance. But they also require runways for takeoff and landing and are
required to stay above a certain flight speed to stay airborne. Rotorcrafts on
the other hand come in many different sizes and configurations, and generally
offer higher manoeuvrability where it can navigate confined spaces and do not
require specially designated takeoff and landing areas. However, lift is only
generated from the propellers which requires a lot of energy, and will greatly
impede the rotorcrafts ability on missions where endurance is required.

From these opposite concepts, a new type of UAVs that attempts to combine the
advantages of both types has emerged, called hybrid UAVs. Hybrid UAVs aim
at getting vertical take-off and landing (VTOL), and while in the air transition
to and from fixed-wing cruising. The idea of combining these two concepts is
by no means a novel idea. There has been several examples of manned aircraft
achieving this, with maybe the most well known being Bell-Boeing V-22 Osprey
which was the first tilt-rotor aircraft and is still in use today [9]. Only in the last
decade or so has it been possible to realise unmanned versions [41].

1.3 The Kestrel

The are many possible designs within the area of hybrid UAVs, and there exist
several examples of successful aircraft both in industry and research. There
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are several commercial options available for purchase, but they are often quite
expensive and come with limited options for modifications.

Due to these limitations a group of students in 2016 at the University of
Southampton together with The Norwegian Defence Research Establishment
(Forsvarets Forskningsinstitutt, FFI) developed the first generation of a concept
plane named Kestrel that be seen in Figure (1.1) [16].

The reason for FFI to develop something of its own was to be able to build
and modify everything in-house. That way it will be a lot cheaper to produce,
and make it open for any kind of modifications to functionality and even alter
the whole design concept. The ideas and concepts regarding Kestrel will be
reviewed in Chapter (2)

Figure 1.1: Kestrel Mk II

The Kestrel is a dual propulsion convertiplane capable of both VTOL and fixed-
wing flight. In essence a dual propulsion convertiplane is a fixed-wing UAV
and a quadcopter merged together. The idea is that the quadcopter propellers
will do the vertical take-off, and then the forward propeller for fixed-wing flight
accelerate the aircraft through a transition phase until it reaches stable flight
conditions for the fixed-wing mode. Quadcopters and fixed-wing UAVs are
both well documented in the literature, as well as inheriting a lot from research
on manned aircraft, rockets and helicopters. There exist several examples
of commercially available dual propulsion convertiplanes such as Arcturus
Jump or ALTI Transition [24, 25]. However, despite the relative simplicity in
design and short distance from well developed areas of control research there
is astonishingly little research done in analysing the complete system compared
to other types of hybrid system UAVs [41]. The small amount of research that
I was able to find is mostly concerned with concepts regarding the aircraft
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design, and implementing a proportional-integral-derivative(PID) controller
[13, 47].

1.4 Control of UAVs

The most widely used control algorithm around is the notorious proportional-
integral-derivative(PID) controller. Despite its simplicity it has proven itself
able to function fairly well in a wide range of applications by only comparing
the measured state of the system with the desired state and based on this
linearly compute an input which is sent to the plant in order to drive the system
to its desired setpoint. This is done without considering the dynamics of the
system [4]. This simplicity makes it a good starting point when designing a
controller, and makes it revered among hobbyists as well as professionals. In
the survey done by Saeed et. al.[41] they found that in the literature on hybrid
UAVs the most common control method is PID control despite the often strong
non-linearity of the system. There are several commercial autopilots available,
the two most common are Pixhawk [32] and ArduPilot [2]. Both of which, out
of the box, supports several different kinds of hybrid UAVs, including dual
propulsion convertiplanes, or QuadPlane VTOL as it is conveniently named.
The Pixhawk autopilot was also the basis for the control system used on the
Kestrel by Holm et. al.[16] during their master thesis, and they were able
to manually control their Mk I prototype through a transition from VTOL to
fixed-wing flight. So, "just" getting an aircraft like the Kestrel to fly, should be
feasible using either a Pixhawk or ArduPilot. These commercial autopilots are
made for hobbyists, and thus are made as simple as possible in the sense that
no advanced knowledge regarding modelling or control is needed in order to
make an UAV fly. These commercial autopilots are based on PID controllers.

Hand-tuning a PID controller can be quite tedious work. Several methods exist
that attempt to make guidelines in order to achieve control of the process with
good system behaviour. When good tuning of the controller is achieved, it is
only expected to behave nicely within reasonable ranges of flight conditions
around the point which it was linearised. There is also no way of proving or
guaranteeing stability of the system.

A fixed-wing UAV is a highly non-linear system, and the most common way of
designing controls for such an UAV is by linearising the model around certain
trim conditions. These trim conditions assume constant velocity, constant
turn rate, constant attitude etc. However, in general fixed-wing air crafts are
required to operate in a wide range of environments where the assumptions
of linearisations no longer hold, and thus the quality of the control will
quickly deteriorate. For this reason an extensive research was started up
during the 50’s on adaptive control for autopilot design for high-performance
aircraft [5]. Looking up any resource on adaptive control, there exist a myriad
of methods for adaptive control such as pole placement adaptive control, gain
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scheduling, model reference adaptive control and many more[23]. There is no
universally agreed upon definition of what adaptive control is, other than that
a feedback controller with constant gain parameters is not enough, there must
exist adjustable parameters and a mechanism for adjusting the parameters in
the controller.

For Kestrel, during hover the assumptions of symmetry might not apply as they
usually do for quadcopters. During the transition phase from VTOL to fixed-
wing, and back, as well as during fixed-wing flight, the flight conditions will
change quickly, and one single linearisation around a single trim state will not
be sufficient. The linear parameter-varying (LPV) paradigm[42] is one possible
way of dealing with these kinds of systems. LPV is a simple yet efficient
method for analysis and control of non-linear systems and has seen successful
application in a wide range of applications[11, 38, 44]. In addition, sudden
changes in the aircraft structure or parameters due to requirements of some
experiment with a new payload may occur. Instead of going through the steps
of redoing accurate modelling of the aircraft or fine-tuning a new controller,
applying an adaptive controller that would be able to dynamically adapt to
changes in process dynamics and parameter uncertainties is desirable. One
method is Multiple-Model Adaptive Estimation(MMAE) and Multiple-Model
Adaptive Control(MMAC), which were invented to cope with dynamic systems
with significant parameter uncertainties that could not be handled by standard
techniques[6]. In a nutshell multiple-model methods basically assume that the
unknown parameters lie within a fixed range of values, and that a finite set
of models each taking on a discrete value within the parameter range can be
designed. The idea is then that the algorithm shall correctly identify the model
and controller with parameter values that most closely resemble the parameter
values of the plant it attempts to estimate/control. MMA and LPV methods
has previously been successfully applied to both quadcopters and fixed-wing
aircraft for both estimation and control [26, 38, 39].

For controlling the aircraft in this thesis infinite horizon linear-quadratic
regulator (LQR) controllers will be used with added integral action [46]. The
LQR controller is still a linear controller in the same manner as the PID and
requires a linearisation of non-linear models, but can guarantee convergence
of the system. Computing the LQR feedback gain is based on the state-
space matrices of the model, and only requires tuning from the user is of the
model agnostic weighting matrices. This makes it possible to quickly compute
controller gains for several different models using the same behavioural
criterion defined in the weighting matrices. By constructing controllers for
the different models of the LPV and MMA methods and letting the controller
adapt together with these systems a multiple model linear parameter varying
controller can be achieved.
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1.5 Goals of this Thesis

With the development of an UAV there exists a myriad of problems to analyse
and approaches to take. Considering that there is little, if any at all, systematic
research targeted towards dual system convertiplanes, the main goal of this
thesis will be to create a solution concept for modelling, estimation and control
of a convertiplane. With special emphasis on the Kestrel UAV at FFI some of
the expected challenges that may occur during its future development will be
addressed. The thesis will offer possible solutions to these challenges as a step
towards enabling further research both on and with the Kestrel UAV.

In the literature there are many examples of both VTOL and fixed-wing aircraft,
but no examples that regard convertiplanes as a single system. In this thesis, the
general six degrees of freedom (DoF) dynamic and kinematic equations will
first be derived. Following, work will be conducted with relevant literature
in order to thoroughly describe the main forces and moments affecting the
dynamics of the convertiplane.

During hover and fixed-wing mode the dynamics of the aircraft are expected
to look vastly different, and the aircraft will utilise different parts of the
dual control system in order to maintain flight. There are many examples in
the literature concerning estimation and control of either of the two systems,
but none that describe a transition phase between two while ensuring stable
flight. This thesis aims to simulate the aircraft both as a quadcopter model,
as well as a fixed-wing aircraft model. A goal is then to develop a control
architecture which enable both hovering and fixed-wing mode of flight, that
can be extended to connect the two models during a transition phase. The
architecture should be able to estimate and control the UAV with large
uncertainties in the dynamic parameters of the UAV over a wide range of
flight conditions. The control architecture that will be utilised to achieve this
is a linear-quadratic regulator in combination with linear parameter-varying
multiple model adaptive methods.

1.6 Outline of Thesis

The outline of the thesis is as follows.

In Chapter 2 the Kestrel will be presented in further detail. Containing both
design philosophy and functionality.

Chapter 3 is the theory chapter. The kinematic and dynamics for an UAV are
developed resulting in the dynamic equations that describe the full six DoF
movement. After that the governing forces and moments that affect the Kestrel
are investigated. The second part of the chapter is a presentation of control and
estimation theory and describe the MMA and LPV algorithms.
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In Chapter 4 the processes of how the simulations models and controllers that
will be used in the various simulations are described.

Chapter 5 presents the achieved results from the various simulations.

Chapter 6 and 7 contain discussions, suggestions for further work and
concluding remarks.
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Chapter 2

The Kestrel UAV

The Kestrel UAV was not developed as part of this thesis, nor do any of
the simulations feature a model of Kestrel explicitly. The thesis is, however,
designed wholeheartedly towards analysing the flight properties of Kestrel and
similar UAVs. For this reason this chapter will give an introduction of the
Kestrel, specifications and design consideration, and compare this up against
other hybrid UAV concepts.

2.1 Hybrid UAV Platforms

As mentioned in the Introduction Kestrel can be categorised as a dual-
propulsion convertiplane hybrid UAV, this is by no means a strict naming
convention but may be one of the more descriptive and more accurate ways to
distinguish it from all the other types of aircraft capable of both vertical take-off
and landing and fixed-wing flight. Often if may be found named as QuadPlane
or VTOL-FW UAV. Following is a series of some of the more common designs
that are present in the realm of hybrid UAVs. On the most general level
hybrid UAVs can be distinguished by two main categories: Tailsitters and
Convertiplanes.

2.1.0.1 Tail-sitters

Tail-sitters is a concept where UAV often look very much the same as a normal
fixed-wing UAV, but starts off by sitting on its tail. It can then take off vertically
by using its propeller(s) in the same manner as a rotorcraft, and then transition
to cruise by tilting the whole body into a "normal" fixed-wing attitude. The first
attempts at these kind of aircraft started in the 50’s and today there are several
successful examples, such as; The V-BAT which consist of a single ducted-fan
propeller, and VertiKUL which use four propellers aligned in a quadcopter-
like manned parallel with the fixed-wing airframe [3, 19]. Both of them can
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be seen in Figure (2.1). Tailsitters are common in both industry and research
applications. The disadvantages are that the transition manoeuvre is highly
complex, and during hover they are sensitive to cross winds.

Figure 2.1: a) The Vertical Bat tail-sitter UAV [3]. b) VertiKUL tailsitter UAV [19]

2.1.0.2 Convertiplanes

Convertiplanes can be classified into several different sub-types, the three main
being; tilt-rotor, tilt-wing and dual-system. The similarity between the types
is that they all maintain the "normal" attitude of the aircraft body through the
whole flight envelope, but they differ greatly in the mechanisms for transition
from hover to cruise flight.

Tilt-rotor: Tilt-rotor aircraft start with some or all of the propellers facing
upward for takeoff. After achieving vertical take-off the propellers are rotated
to gain forward thrust until the propellers are aligned with the aircraft body and
cruise speed is obtained. Even though the concept is common, and there exist
a lot of research regarding these types of aircraft there exist so incredibly many
different configurations and designs which make it difficult to get an overview.
The designs vary in how many propellers, how many can rotate, are any of
the propellers inserted as part of the ailerons or fuselage etc. Probably the first
tilt-rotor UAV was Bell Eagle Eye which was inspired by the Bell Boeing V-22
Osprey which featured two rotating propellers at the edges of the wings of a
more conventional aeroplane design [9, 10]. Another type is the TURAC UAV
which is a flying wing with four propellers. Two coaxial propellers inserted
as part of the fuselage assist with vertical thrust during hover, and two tilting
propellers in front that will rotate during transition and provide thrust during
cruising [31]. The Eagle Eye and the TURAC can be seen in Figure (2.2).
The main disadvantages with the tilt-rotor design is the design complexity.
Tilting of the rotors add additional actuators that complicate construction and
assembly, and make it more difficult to perform larger design alterations.

Tilt-Wing: Til-wings are in many ways similar to tilt-rotors, but here the
whole wing rotate along with the propellers when transitioning to and from
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Figure 2.2: a) TURAC tilt rotor UAV [31]. b) Bell Eagle Eye [10]

cruise. In general what makes tilt-wings different from tilt-rotors is greater
complexity in designs and larger sensitivity to cross-winds due to the tilted
wings. Which results in some quite marvellous designs the such as NASA GL-
10 Greased Lightning or the SAUVI [14, 29]. They can be seen in Figure (2.3)

Dual-Systems: The name dual-systems originates from the fact that these
aircraft utilise two different propulsion systems. One for generating upward
thrust and stabilise during take-off and landing, and one for generating forward
speed during transition to cruise and during cruise flight. It is pretty much the
expected result if a quadrotor was melted into a fixed-wing UAV. The main
features of the dual-systems are simplicity in design and conceptually simple
transition mechanism. The propulsion and control systems are however overly
redundant, where fixed-wing systems will be completely passive during hover
and vice versa for the quadcopter during cruising. As mentioned earlier, there
exist little to no systematic research done on dual-propulsion convertiplanes
despite several examples of commercial successes and many projects done by
hobbyists with open source autopilots.
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Figure 2.3: a) NASA GL-10 Greased Lightning [29]. b) SUAVI UAV [14].

2.2 Kestrel Design

There is a lot of research going towards structronics, which is a concept where
the carrying structure of the UAV is used as part of the electronics and sensory
system, instead of having the sensory mounted as an external payload. Kestrel
as a concept is planned to be used at FFI as a testbed and sensor platform
both in structronics research, and other fields of research where it might be
useful to have an airborne sensor. Possible fields of interest are surveillance,
reconnaissance, assistance during natural disasters, communication relays and
probably a lot more. With structronics the idea will be to create a sensor, and
then build an aircraft around it. This means that from design to design the
aircraft might change a lot in order to accommodate the new sensor structure.

The initial objectives when Kestrel was designed was to build a fixed-wing
vertical take-off and landing UAV for detection of electronic signals. It was
also desired from FFI’s side that the components were to be made of 3D
printed nylon whenever possible in order to make it possible for it to house
a sensory carrying structure in the future. In addition a set of requirements for
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functionality and design were defined

• Endurance of approximately 3 hours

• Modular - For ease of maintenance and replacement

• Robustness - Be able to handle rough handling, transport and environ-
mental conditions

• Portability - Transportable into the field with ease, and simple assembly.

• Low cost - To be able to have several UAVs simultaneously and cheap to
repair.

• Payload - Must be able to accommodate a payload

• VTOL - Versatility

• Automation

With all the specifications above taken into account and weighed against each
other it was the dual-system convertiplane concept that scored the highest
[16]. This is the conceptually simplest design, and the one deemed to be most
effective to accomplish the task. The design of Kestrel which can be seen in
Figure (2.4) was heavily influenced by the Latitude HQ [22].

Figure 2.4: Kestrel Mk II during hover.

The fuselage is relatively small, only 450 mm long and 200 mm wide. It is
3D printed and designed to only hold the motor of the forward propeller with
petrol tank, electronics including batteries for the four quadcopter propellers
and the payload.

The main lifting surface during fixed-wing flight is the wings which are moun-
ted onto the top of the fuselage. The aerofoil used is the National Advisory
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Committee for Aeronautics (NACA) 2412 which has been successfully em-
ployed for many low speed aircraft [16]. The wing span is 2.5 m and winglets
are mounted at the tips.

From the wings two parallel booms extend backwards towards the tail. The tail
is the main stabilising surface of an aircraft. The structure of the tail is an A-tail
design, and the aerofoil shape is NACA 0012. The A-tail shape means that the
elevator and rudder will not be decoupled, but the ruddervator of the A-tail
will have to perform both tasks simultaneously.

The fixed-wing forward level flight propeller is put in front of the vehicle and
driven by a petrol engine. Petroleum has a much higher energy density than
batteries which is needed in order to meet the requirement of prolonged flights.

The quadcopter propellers are mounted on parallel brooms that go from the
wings back to the tail. They are situated in an X-formation around the fuselage
of the aircraft. These, on the other hand, are electric meaning that there is an
additional need for batteries to power them. This is quite a big UAV, lifting it
solely by quadcopter thrust requires a lot of energy. With the weight inefficiency
of batteries, and having two separate propulsion systems means there is a
limitation to how long the UAV can maintain hovering. The initial Kestrel was
designed to be able to maintain hovering for 5 minutes.
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Chapter 3

Theory

In this chapter the theoretical basis used in this thesis are established. The first
section defines the rules for notation, and the state variables that will be used,
and their relation. Next the basics on rotation matrices and how to transform
between various coordinate frames is presented, before going through the
specific coordinate frames that will be used.

In the next section a detailed walk-through for modelling the Kestrel will
be presented. First the kinematics and general rigid body dynamics will be
derived before going through the most important external forces and moments
acting on the UAV.

Lastly the basic theory for estimation and control is outlined before a detailed
description of state feedback control as well as the MMA and LPV algorithms.

3.1 Mathematical Foundation

3.1.1 Notation

Scattered about in various literature are different conventions for notation.
How mathematically accurate a text presented is needed to be depends a lot
on what it is trying to do, and the usual conventions within that field of study.
When the complexity of the work increases a more rigorously defined notation
is required. The avoid confusion a quite detailed form of notation will be
outline here.

3.1.1.1 Subscript and Superscript Nomenclature

• Coordinate frames will be denotedF i or {i} to represent coordinate frame
i.
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• Vectors are represented as lowercase bold font letters: v. When
represented in a specific coordinate frame it will be denoted by a
superscript of the frame: vi.

• Coordinate axes unit vectors will be denoted by ii, ji, ki, with the same
meaning of superscript.

• For angular velocities there will be a subscript denoting the rotating frame
relative to a frame denoted in the first superscript. A second superscript
will be used to indicate the frame from which this is represented.
Example: frame F a rotating relative frame F b with angular velocity ω
represented in frame F c is denoted ωbc

a .

• Rotation matrices from coordinate frame a to b will be denoted Rb
a, when

rotating a specific angle there will also be parentheses indicating the angle
Rb

a(η).

• A hat over a vector will in most cases denote an estimate of the variable x̂

• Subscripts will be used in some occasions to specify either naming of a
vectors such as the airspeed which will be denoted Va, or when specifying
forces going along specific coordinate axes Fb

x where the subscript will
indicate which Carthesian coordinate axis the force is working along.

• Scalars are denoted with lower-case non-bold letters such as a.

3.1.1.2 Euler Angles and Rotation Matrices

The Euler angles is one of several different ways of describing the orientation
of a frame relative to another. The orientation of one Carthesian coordinate
with respect to another can always be described by three successive rotations
around the orthogonal coordinate axes, and these rotation angles are called the
Euler angles. The rotation matrices describing the rotation around each of the
coordinate axes are given by

Rx(φ) =

1 0 0
0 cφ −sφ

0 sφ cφ


Ry(θ) =

 cφ 0 sφ

0 1 0
−sφ 0 cφ


Ry(ψ) =

cφ −sφ 0
sφ cφ 0
0 0 1


where the subscripts x, y, z denote the coordinate axis the rotation was done
around, and c(·) = cos (·) and s(·) = sin (·). There are various conventions of
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which order to make the rotations depending on the specific field of science.
Probably the most used, and the ones used withing aerospace engineering are
the ZYX and XYZ Euler angles1. Those are the ones that will be used in this
thesis. This results in the rotation matrix from one coordinate frame {a} to
another {b} is given by

Rb
a = Rz(ψ)Ry(θ)Rx(φ) =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsφ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

 (3.1)

3.1.2 Coordinate Frames

In order to describe the motion of a moving body two things are required; forces
and moments acting on the body that cause movement, and a stated reference
frame from which the movement is viewed from. The various forces are often
more easily defined in different coordinate frames, and thus it is necessary to
have a complete understanding of the various coordinate frames, and how to
transform between them in order to represent the motions.

3.1.2.1 Inertial frame

An inertial frame is easily described by; a coordinate frame where Newton’s
laws of motion can be described in their most simple form. Strictly speaking, a
coordinate frame defined on earth’s surface will not be an inertial frame. When
operating within reasonably small ranges, assuming the earth as flat in a local
area, serves in most operations as a good approximation for an inertial frame.
Which is called the local tangent plane-approximation.

However, when flying long distances at a constant altitude, it will no longer be
sufficient to model the earth as flat. Due to earths curvature the trajectory of
the plane will have to be curved along with earths surface, and due to earths
rotation the plane’s movement relative to the earth surface would seem to rotate
due to the Coriolis effect. In these cases it would be necessary to use an earth
centred coordinate frame and take into account rotation and curvature of the
earth.

In this work it will be assumed that the UAV will travel short enough distances
that the local tangent plane located around the UAV serves the purpose as an
inertial frame. This frame is denoted {i}. It is aligned such that the ii-axis points
to the north, ji to the east and the ki-axis points downwards towards the earth’s
centre, this is also known as a North-East-Down(NED) frame.

1Fun fact: XYZ and ZYX rotation orders are actually part of what is called Tait-Bryan-angles.
This naming is rarely used, and in this thesis the Euler-angles name will be used to avoid
confusion.
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3.1.2.2 Vehicle Frame

The vehicle frame v is centred in the centre of mass(CM) of the UAV, and the axes
are aligned with the earth frame. It is most often used for defining navigation
equations relative to the earth-frame origin. The inertial frame and vehicle
frame is illustrated in Figure (3.1)

earth

(north)

(east)

(down)

(down)

(east)

(north)

Figure 3.1: The relationship between the local tangent plane inertial frame and
the vehicle frame centred at the CM of the UAV.

3.1.2.3 Vehicle-1 Frame

The vehicle-1({v1}) frame is the same as the vehicle frame, except that it is
rotated an angle ψ around the kv-axis such that the i1-axis points in the direction
on a compass the UAV is heading. The transformation from {v} to {v1} is given
by

rv1 =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1

 rv = Rv1
v rv (3.2)
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3.1.2.4 Vehicle-2 Frame

Again, the vehicle-2({v2}) frame is the same as the {v1}-frame except that it is
rotated a pitch angle θ around the jv1-axis. The transformation is given by

(north)

(east)

Figure 3.2: The step-wise rotations over the Euler-angles from the vehicle frame
to the body frame

rv2 =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 rv1 = Rv2
v1

rv1 (3.3)

3.1.2.5 Body Frame

The body frame is the frame which is centred at the CM of the UAV and aligned
with the orientation of the UAV. It is obtained by rotating a roll angle φ around
the iv2 axis. The transformation from the {v2}-frame is given by

rv1 =

1 0 0
0 cos(φ) sin(φ)
0 − sin(φ) cos(φ)

 rv = Rv1
v rv (3.4)

This is the frame most of the forces and motions will be defined from, and now
a nice transformation from the vehicle from to the body frame is available by
utilising the transformations presented above.
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Rb
v(φ, θ, ψ) = Rb

v2
Rv1

v2
Rv1

v =

 cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθspsi + cφcψ sφcθ

cφsθcpsi + sφsψ cφsθsψ − sφcpsi cφcθ

 (3.5)

Which is the transpose of the rotation matrix described in Equation(3.1). Trying
to solve the Euler angles rotation matrix for the respective roll, pitch and yaw
angles will reveal that there will be singularities for θ± 90 degrees, this is called
gimbal lock. As long as no aggressive manoeuvres or acrobatics is attempted
this will not be an issue. If needed, gimbal lock problems can be solved by using
quaternions instead.

3.1.2.6 Stability Frame

The aerodynamic effects are the results of the aircraft’s movement relative to the
surrounding air. This relative velocity between the aircraft and the air is named
the airspeed vector Va. Rotating the body frame an angle α about the jb-axis
give stability frame. α is called the angle of attack, and describes the pitch at
which the aircraft enters the wind. It is one of the more important parameters
for generating lift, and for most aerofoils it must be positive in for the aircraft
to generate lift upwards. The rotation matrix is given by

rs =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

 rb = Rs
brb (3.6)

3.1.2.7 Wind Frame

Finally, to obtain the wind frame which is aligned with the wind-vector the
stability-frame can be rotated an angle β around the ks-axis. The β angles
is more commonly referred to as the sideslip angle, and is important when
analysing the longitudinal and lateral aerodynamic forces and moments. The
rotation matrix is given by

rw =

 cos(β) sin(β) 0
− sin(β) cos(β) 0

0 0 1

 rs = Rw
s rs (3.7)

Putting the transformations together and inverting it gives the transformation
from the wind frame to the body frame

Rb
w(α, β) = (Rw

s Rs
b)

T =

cβcα −sβcα −sα

sβ cβ 0
cβsα −sβsα cα

 (3.8)
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Name Description
pn North position of UAV in inertial frame F i alongii

pe East position of UAV in inertial frame F i alongji

pd Down position of UAV in inertial frame F i alongki

u Linear velocity of UAV measured along ib in body frame F b

v Linear velocity of UAV measured alongjb in body frame F b

w Linear velocity of UAV measured alongkb in body frame F b

φ Roll angle around iv2 in vehicle-2 frame F v2

θ Pitch angle around jv1 in vehicle-2 frame F v1

ψ Yaw angle around kv in vehicle-2 frame F v

p Roll rate measuring around ib in body F b

q Pitch rate measuring around jb in body F b

r Yaw rate measuring around kb in body F b

Table 3.1: The state variables of the UAV defined in the respective frames they
are used.

3.1.3 State Variables

An UAV can move in any direction in 3D space. When deriving the equations
of motion twelve equations will be required, and thus twelve state variables. A
list of these can be seen in Table (3.1)

The position of the UAV is defined in the inertial frame F i and is denoted
pi = [pn, pe, pd]

T. Strictly speaking the variable should be denoted with an
{i} superscript, but it is omitted to have cleaner looking equations, if the letters
are represented in any other frame or context proper notation will be utilised.
Defining the altitude with down direction is not very intuitive since the altitude
would be negative for a position above ground. For that reason altitude is often
given by hi = −pd in plots etc.

The linear velocities vb = [u, v, w]T are given in the body frame. This is
because most of the forces affecting UAVs are more easily described in the body
frame. The transformation is instead done on the body-defined velocities to
inertial position rates, which will be seen when deriving the linear kinematics.
The naming convention used for the linear velocities is what is used in most
textbooks and superscripts are omitted to avoid unnecessary clutter, proper
notation will be used if needed to avoid confusion in certain settings.

The attitude of the UAV is described by the roll, pitch and yaw angles Θ =
[φ, θ, ψ]T. In reality these are presented in the intermediate frames during
the rotation from body-frame to the inertial frame. They are not given any
superscript since the variables will not be used for anything else than describing
the Euler angles, and a superscript would probably only create unnecessary
clutter.

The angular rates ωvb
b = [p, q, r] are also described in the body-frame for the
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same reason as the linear rates; the moment descriptions become easier. Same
argument for omitting superscripts apply here.

3.2 Kinematics and Dynamics

In order to be able to develop good control strategies for the Kestrel that can
be verified in simulation, an accurate dynamic model must be in place.What is
meant by an accurate dynamic model is that it contains the most relevant forces
and moments in the flight regime under analysis. Especially understanding
the aerodynamic effects, and the ability to model these are important when
designing and assessing the controller to ensure that the reality gap when
transitioning from simulation to the actual UAV is as small as possible.

3.2.1 Assumptions

Below is a list of assumptions that will be taken into account when deriving
kinematic and dynamic models for the Kestrel UAV.

1. The UAV is a rigid body

2. The mass will remain constant

3. The UAV is symmetric about the ibkb-plane.

4. The quadcopter propellers have a fixed pitch relative to the body frame,
and the thrust vector from each propeller points parallel with the kb-axis
and in the opposite direction while hovering.

5. The forward propeller thrust vector is parallel with the ib-axis and in the
same direction.

6. Propellers with odd indices rotate counterclockwise and even index
propellers rotate clockwise.

3.2.2 Kinematics

Rigid-body kinematic modelling is the method of studying the movement of the
body independent of the external forces involved. Instead it takes in velocities
and relates them to positions. When regarding the translational motion the
position of the UAV is usually represented in the inertial frame by pi, while the
translational velocity vb usually is represented in the body frame. These two
are related by a differentiation and a rotation matrix

 ṗn
ṗe
ṗd

 = (Rb
v)

T

u
v
w

 (3.9)
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where (Rb
v)

T is given by Equation (3.5).

The same problem arises when considering rotational motions, where angular
rates ωvb

b =
[
p, q, r

]T are usually represented in the body system. Following
the derivations in Sections(3.1.2), the angular positions, or Euler angles are
all represented in the different coordinate frames. Using the transformations
between the various coordinate frames the body frame angular rates can be
represented by

p
q
r

 =

φ̇
0
0

+ Rb
v2(φ)

0
θ̇
0

+ Rb
v2Rv2

v1(θ)

0
0
ψ̇

 . (3.10)

Adding these terms together and inverting the total transformation matrix,
yields a relationship that expresses the time derivative of angular positions Θ

in terms of angular positions and body rates

φ
θ
ψ

 =

1 sφtθ cφtθ

0 cφ −sφ

0 sφ

cθ

cφ

cθ

p
q
r

 (3.11)

3.2.3 Rigid-Body Dynamics

In the subject of dynamics the goal is to explain how external forces acting
upon the body causes movement. Combining the equations derived earlier
a set of equations describing the full six degrees of freedom motion of rigid
aerospace vehicle will be arrived at. Looking up any source on rigid body
dynamics will show that any movement can be decomposed into rotational and
translational dynamics that can be treated separately. In these sections, first the
Euler equations for rotational motions are derived, and then the translational
equations of motion are derived. Later the most important forces and moments
acting upon the body will be explained.

3.2.4 Rotational Dynamics

Denote the angular momentum of a rigid body about its CM taken in an inertial
frame as h. Looking up any textbook on classical mechanics will give that the
time derivative of the angular momentum taken in the inertial frame is equal to
the sum of all vector moments M i = [Li, Mi, Ni] acting on the body.

M i = ḣii
CM (3.12)
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As described earlier, most moments affecting the UAV are more easily described
in the body frame. A mass element δm at position rb will have an angular
momentum about CM in the body frame

δhCM = rb × (vi
CM + ωib

b × rb) δm (3.13)

Choosing to use the body frame for integrating up Equation (3.13) it can be
shown that the resulting angular momentum vector becomes

hb
CM =

∫∫∫ (y2 + z2) −xy −xz
−xy (x2 + z2) −yz
−xz −yz (x2 + y2)

 dmωib
b (3.14)

=

 Jxx −Jxy −Jxz
−Jxy Jyy −Jyz
−Jxz −Jyz Jzz

ωib
b = Jbωib

b (3.15)

In reality Jb is dependent on the reference frame, but no other case than
the inertia being calculated in the body-frame will be considered, thus the
superscript will be omitted. Under the assumptions stated earlier in this section
the inertia matrix J is constant. This however is a truth with modifications as
the mass of the Kestrel will change as fuel is burned, and any bending of the
wings during flight will effectively change the mass distribution and the inertia
matrix. For a typical UAV, and what is also the case for the Kestrel is that
the UAV is symmetric about the ibkb-plane. This will result in all off-diagonal
elements in the inertia matrix that are integrals over the jb-axis will become
zero.

Inserting Equation (3.14) into Equation (3.12) and noting the difference in
reference frames yields

Mb = ḣii
b =ḣib

b + ωi
b × ḣib

b (3.16)

=Jbω̇ib
b + S(ωib

b )Jbωib
b (3.17)

Where S(ωib
b ) is the skew-symmetric matrix denoting (ωib

b ×). This can be
written out to give the complete representation of the rotational dynamics of
the UAV

Lb =Jxx ṗ + (Jzz − Jyy) + Jxz(ṙ + pq) (3.18)

Mb =Jyyq̇ + (Jxx − Jzz) + Jxz(r2 − p2) (3.19)

Nb =Jzzṙ + (Jxx − Jyy) + Jxz( ṗ + qr) (3.20)
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Solving this for the body angular rates [ ṗ, q̇, ṙ] gives

ṗ =
1
Γ

Jxz[Jxx − Jyy + Jzz]pq− [Jzz(Jzz − Jyy) + J2
xz]qr

+ JzzLb + JxzNb

q̇ =
1

Jyy
([Jzz − Jxx]rp− Jxz[p2 − r2] + Mb)

ṙ =
1
Γ
(−Jxz[Jxx − Jyy + Jzz]qr + [Jxx(Jxx − Jyy) + J2

xz]pq

+ Jxx Nb + JxzLb)

(3.21)

where Γ = Jxx Jzz − J2
xz. A typical quadrotor helicopter will also have a plane

of symmetry about the ybzb-plane thus resulting in Jxz = 0 and the inertia
matrix becomes diagonal. This make it possible to simplify Equation (3.21) even
further

ṗ =
Jyy − Jzz

Jxx
qr +

Lb

Jxx

q̇ =
Jzz − Jxx

Jyy
qr +

Mb

Jyy

ṙ =
Jxx − Jyy

Jzz
qr +

Nb

Jzz

(3.22)

3.2.5 Translational Dynamics

In the same manner as with the rotational dynamics Newton’s second law
states, with a small addition, that the time derivative of the linear momentum
in an inertial frame of a rigid body will equal the sum of external forces acting
upon the body.

F i = mv̇i
CM (3.23)

Depending on what desired to achieve, this equation can be transformed
into various coordinate systems to make mathematics or representations more
understandable. In this thesis the body system is chosen, and all forces acting
upon the body will have to be transformed to that reference frame. Using
differentiation of vectors in different frames and the fact that differentiating
angular rates is independent of the choice of reference frame gives the dynamic
equations for a rigid body moving in an inertial frame, represented in the body
frame

Fb = m
(

v̇b
b + ωib

b × vb
b

)
(3.24)
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Expanding the cross product yields

Fb
x =m(u̇ + qw− rv)

Fb
y =m(v̇ + ru− pw)

Fb
z =m(ẇ + pv− qu)

(3.25)

This can be rewritten into a representation more suitable for mathematical
modeling

u̇ =(rv− qv) +
Fb

x
m

v̇ =(pw− ru) +
Fb

y

m

ẇ =(qu− pv) +
Fb

z
m

(3.26)

3.2.6 Forces and Moments

The full 6 degrees of freedom equations of motion above only describe the
motions as they would be affected by external forces and moments without
specifying any details regarding the actual forces that interact with the UAV.
In this section the largest forces and moments acting upon Kestrel will be
investigated and how they vary with the state of the system. There are quite
big differences in what to consider when modelling a fixed-wing aircraft versus
a quadrotor. The largest difference in the consideration of aerodynamic forces;
quadrotor models usually neglect it, while the functionality of fixed-wing
aircraft are founded on the very concept. There will also be considerations
regarding effects that may arise during the transition phase.

3.2.6.1 Gravitational Force

Assuming that the altitude the UAV operates in is within reasonable altitude
the magnitude of gravitational pull can be assumed constant. Represented in
the body fixed frame it is given by

Fb
g = Rb

i

 0
0

mg

 = mg

 − sin θ
sin φ cos θ
cos θ cos φ

 (3.27)
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3.2.6.2 Propulsion Forces

With this dual propulsion system that is in the Kestrel UAV it is important
to have a good understanding of how the forces and moments generated
through the various propellers affect the dynamics of the UAV. To get a
complete understanding of how the rotation of the propellers generate forces
and moments is nigh impossible

Front Propeller Force and Momentum In the Kestrel and in general most
fixed-wing UAV the propulsion system will generate a collective force that will
go through the UAV CM and along the xb-axis. There will not be a detailed
examination of the deeper mechanics of the propeller here. One approach is
to say that the total force from the propeller is the pressure difference of the
air upstream of the propeller and downstream of the propeller multiplied by
the area of the propeller. Using Bernoulli’s principle the pressures will depend
on the airspeed before and after the propeller. The upstream air velocity is the
airspeed, and the downstream velocity will depend on the angular velocity of
the propeller. Which gives

Vexit = kmotorδt, (3.28)

if it is assumed that there is a linear relationship between the throttle command
δt and the angular velocity through a motor constant kmotor. Putting all of this
together yields an expression of the propeller linear force

Fp =
1
2

ρSpropCprop

(kmotorδt)2 −V2
a

0
0

 (3.29)

where ρ is the air density, Cprop is a rotor specific aerodynamic constant and
Sprop is the propeller area. It can also be assumed that the angular velocity of the
propeller is so high that the effects of spiralling slipstream can be neglected. The
effects of gyroscopic moments arising from angular movement of the rotating
propeller will not be considered. It may however become an important effect
especially with larger propellers [34, 35].

Quadcopter Propellers The same assumptions that were made regarding the
forward facing propeller can be done with the quadcopter propellers. But
instead of regarding the resulting force and reaction torque as a function of the
thrust command, they will be expressed as functions of the propeller constants
CTq and CMq for force and moment respectively and the angular speed ωi
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Fi = CTqω2
i

Mi = CMqω2
i .

(3.30)

Later when discussing the controllers they will output desired roll, pitch and
yaw commands, and the angular velocities of each propeller can be resolved
from these. There has been made a distinction in the equations between the
two to not cause confusion and also emphasise the importance of the actual
angular velocities and their directions on the various moment commands.

Propeller 1 Propeller 2

Propeller 3Propeller 4

Figure 3.3: The geometry and rotation directions of the quadcopter propellers.

Looking at Figure (3.3) gives an understanding of the configuration of the
quadcopter propellers and their rotation directions. It can be seen that
propellers 1 and 3 rotates counterclockwise while 2 and 4 rotate clockwise, and
they are all a distance d from the CM and the angle between the line out to each
propeller and the ib-axis is η.

Still using the rigid body assumptions means that any bending of the rods
going to the quadcopter propellers will not be considered. This means that
it is assumed that all thrust forces of the quadcopter propellers will be parallel
to the kb-axis. The total thrust produced by the propellers are given by the sum
of all the force generated by the propellers. The roll and pitching moments
are given by the difference between forces applied by the propellers across the
respective axes. Lastly the yaw moment is given by the difference in reaction
torques generated by the opposite rotating propellers
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
Fb

Tq
τroll
τpitch
τyaw

 =


CTq(ω

2
1 + ω2

2 + ω2
3 + ω2

4)
CTq cos(η)(ω2

1 −ω2
2 −ω2

3 + ω2
4)

CTq sin(η)(ω2
1 + ω2

2 −ω2
3 −ω2

4)
CMq(ω

2
1 −ω2

2 + ω2
3 −ω2

4).

 (3.31)

3.2.6.3 Aerodynamic Forces and Moments

Aerodynamics is at its core quite simple. An aerofoil goes through the air, and
due to asymmetries of the airflow above and below the aerofoil there will be
varying pressures on the aerofoil surface. When summed up, these pressure
differences give a resulting force acting upon the aerofoil. The simplicity
however goes downhill from there. There is almost no limit to how detailed
descriptions of the aerodynamics can become. In this thesis things will be
kept sufficiently detailed to get a good understanding of relevant forces and
moments, but no more than that. It is common to decompose the aerodynamic
forces into lateral and longitudinal forces and moments.

Longitudinal Aerodynamic Forces: Longitudinal aerodynamic forces are
probably the first people think of when mentioning aerodynamics. These are
the lift, drag and pitching moments that cause movement in the ibkb-plane.
Holding up a flat surface up against the wind it can be confirmed that the most
important elements to the forces is the air speed across the surface, the angle of
attack against the wind and the surface area. In addition these forces will also
depend on the density of the air ρ, the pitch rate q and the elevator deflection
δe.

Flift =
1
2

ρV2
a SCL(α, q, δe)

Fdrag =
1
2

ρV2
a SCD(α, q, δe)

M =
1
2

ρV2
a ScCM(α, q, δe)

(3.32)

where CL,CD,CM are non-dimensional aerodynamic coefficients that depend
upon said parameters, S is the aerodynamic surface area, and c is the mean
chord of the aerofoil.

In general, these equations are nonlinear. However, as long as the flow
around the surface remains laminar(i.e. small angles of attack) these forces and
moments can up to a certain degree be modelled using linear approximations.
A first order Taylor expansion of the equations can be written as
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Fs
lift =

1
2

ρV2
a S(CL0 + CLα α + CLq

c
2Va

q + CLδe
δe)

Fs
drag =

1
2

ρV2
a S(CD0 + CDα α + CDq

c
2Va

q + CDδe
δe)

Mb =
1
2

ρV2
a Sc(CM0 + CMα α + CMq

c
2Va

q + CMδe
δe)

(3.33)

The parameters CLα and CLq are commonly referred to as stability derivatives
while CLδe

is called the control derivative. The naming derivative arise from
the fact that the coefficients come from the partial derivatives of the Taylor
expansion. Cli f t0 is the value of Cli f t when q = α = δe = 0. The lift and drag
forces in Equation (3.33) are expressed in the stability frame. They are given in
the body frame by a rotational transformation

[
Fb

x
Fb

z

]
=

[
cos(α) − sin(α)
sin(α) cos(α)

] [−Fs
drag

−Fs
lift

]
. (3.34)

It must again be emphasised that these linear approximations are only valid
within a quite small angle of attack when the airflow over the wings is laminar.
In this thesis it is will be assumed that these assumptions hold. Details
regarding approaches to take when these assumptions do not hold can be found
in more rigorous works on UAV aerodynamics [35, 46].

Lateral Aerodynamic Forces: The lateral aerodynamic forces are less intuitive
ones for a layman. They are the ones that cause movement along the yb-
direction as well as cause rolling and yawing movements. As would expected
the most important factor for these forces and moments is the sideslip angle β.
Sideslip is the angle at which the wind hits the aircraft. But, in addition they will
also depend on the deflections of the ailerons and ruddervator, as well as the
roll and yaw rates. In the same manner as the longitudinal forces and moments
a general expressions can be made for the lateral forces and moments.

Fb
y =

1
2

ρVaSCy(β, p, q, r, δa, δr)

Lb =
1
2

ρVaSbCl(β, p, q, r, δa, δr)

Nb =
1
2

ρVaSbCN(β, p, q, r, δa, δr).

(3.35)

Here Cy, Cl and CN are non-dimensional aerodynamic coefficients. b is the
wingspan. Also here it will be assumed that the UAV will not stray too far
from nominal flight conditions such that a linear approximation will yield
and acceptable accuracy. Thus with a first order Taylor expansion a linear
expression can be achieved for the lateral forces and moments
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Fb
y =

1
2

ρV2
a S(Cy0 + Cyβ

β + Cyp

b
2Va

p + Cyr

b
2Va

r + Cyδa
δa + Cyδr

δr)

Lb =
1
2

ρV2
a Sb(Cl0 + Clβ

β + Clp

b
2Va

p + Clr
b

2Va
r + Clδa

δa + Clδr
δr)

Nb =
1
2

ρV2
a Sb(CN0 + CNβ

β + CNp

b
2Va

p + CNr

b
2Va

r + CNδa
δa + CNδr

δr).

(3.36)

The parameters in these equations are again the results of partially differen-
tiating the coefficients with respect to their respective parameters denoted in
the subscript. It should be noted that the parameters Clat0 , CL0 and CN0 will in
general be zero for a symmetric aircraft.

Propeller Aerodynamics Most often the propellers of a quadcopter are
assumed to be rigid bodies, and that the thrust generated by each propeller
is only dependent on the voltage applied to the motor and thus the angular
velocity of the blade. There are mainly two effects that occur due to motion
of the UAV relative the surrounding air that may be especially relevant for an
aircraft such as the Kestrel. These can severely effect the generated thrust from
the propellers [20].

The first effect is due to how the effectively generated thrust from the propellers
are affected by the airspeed Va across the blades and the angle of attack α. The
ideal thrust T generated by a power input P is given by

T =
P

Va sin α + Vi
(3.37)

where Vi is the change in airspeed induced by the rotor blades with respect
to the airspeed Va. It is clear when analysing the equation that during slow
translational movements and low angles of attack the effect on the total thrust is
small. During the transition phase of the Kestrel to ensure that the aircraft does
not loose too much altitude the quadcopter propellers will have to assist with
generating lift and stabilising the aircraft until the fixed-wing aerodynamics
and control can take over. This will require the quadcopter propellers to operate
at quite substantial translation velocities. During this phase the effective power
required to maintain a constant thrust will, according to Equation(3.37), be
heavily influenced by the forward speed and angle of attack.

The second effect is what is called blade flapping. The propellers are aerodynamic
surfaces, and the total lift generated by the aerodynamic surface depends
on its velocity relative to the surrounding air. During horizontal movement
the advancing part of the propeller will see a larger velocity relative the
surrounding air than the retracting part of the propeller. This means that the
two sides will generate different lift, and cause a flapping of the rotors once per
rotation. The maximal upward and downward displacements of the rotors will
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happen at forward and backward position respectively relative the horizontal
velocity. This effect will be equal on all propellers such that any induced torques
on a single propeller will effectively be cancelled out by the other propellers. If
the blade flapping cause an effective tilting of the propeller blades by an angle µ,
the propellers will generate a longitudinal thrust Fb

Tq sin(µ). Also the effective
thrust in the kb-direction will be reduced to Fb

Tq cos(µ) [20, 27, 34].

These aerodynamic effects on the quadcopter propellers will not be investigated
in further detail here, but it is important to mention their existence. Usually
when considering quadcopters they can be neglected due to the low horizontal
velocities. During transitional manoeuvres of the Kestrel the effects may
become prevalent, and if the quadcopter propellers used to generate lift during
this phase, the effective force generated from the propellers might be severely
impeded and may cause degradation of the stability of the aircraft.

3.3 Summary of the Dynamic Modelling of the Hybrid
UAV

This section summarises the equations obtained from the dynamic modelling in
the previous sections for modelling a dual system convertiplane. The resulting
system is in essence a fixed-wing aircraft with the added capabilities from the
quadcopter propellers.

3.3.1 Dynamic Model

Without considering the specifics of the external forces the six degrees of
freedom 12-state dynamic model for a general rigid body can be expressed as

 ṗn
ṗe
ṗd

 =

cθcpsi sphisθcψ − cφsψ cphisθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

−sθ sφcθ cφcθ

u
v
w

 (3.38)

 u̇
v̇
ẇ

 =

rv− qw
pw− ru
qu− pv

+
1
m

Fb
x

Fb
y

Fb
z

 (3.39)

φ̇
θ̇
ψ̇

 =

1 sφtθ cφtθ

0 cφ −sφ

0 sφ

cθ

cφ

cθ

p
q
r

 (3.40)
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 ṗ
q̇
ṙ

 =



1
Γ (Jxz(Jxx − Jyy + Jzz)pq− [Jzz(Jzz − Jyy) + J2

xz]qr
+JzzL + JxzN)

1
Jyy
((Jzz − Jxx)rp− Jxz(p2 − r2) + M)

1
Γ (−Jxz(Jxx − Jyy + Jzz)qr + [Jxx(Jxx − Jyy) + J2

xz]pq
+Jxx N + JxzL)

 (3.41)

3.3.2 External Forces and Moments

The external forces can be summarised as:

Fb
x

Fb
y

Fb
z

 =

 −mg sin θ
mg cos θ sin φ
mg cos θ cos φ


+

1
2

ρV2
a S

 Cx(α) + Cxq
c

2Va
q + CXδe

(α)δe

Cy0 + Cyβ
β + Cyp

b
2Va

p + Cyr
b

2Va
r + Cyδa

δa + Cyδr
δr

Cz(α) + Czq(α)
c

2Va
q + Czδe

(α)δe


+

1
2

ρSpropCprop

(kmotorδt)2 −V2
a

0
0

+

 0
0
−Fb

Tq


(3.42)

where

Cx(α) = −CD(α) cos α + CL(α) sin α

Cxq(α) = −CDq cos α + CLq sin α

Cxδe
(α) = −CDδe

cos α + CLδe
sin α

Cz(α) = −CD(α) cos α− CL(α) sin α

Czq(α) = −CDq cos α− CLq(α) sin α

Czδe
(α) = −CDδe

cos α− CLδe
sin α

CD(α) = CD0 + CDα α

CL(α) = CL0 + CLα α

(3.43)

and the external moments are given by
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 Lb

Mb

Nb

 =
1
2

ρV2
a S

 b(Cl0 + Clβ
β + Clp

b
2V a p + Clr

b
2V a r + Clδa

δa + Clδr
δr)

c(CM0 + CMα α + CMq
c

2V a q + CMδe
δe)

b(CN0 + CNβ
β + CNp

b
2V a p + CNr

b
2V a r + CNδa

δa + CNδr
δr)


+

 τroll
τpitch
τyaw


(3.44)

where the forces and moments generated by the quadcopter propellers are
given by


Fb

Tq
τroll
τpitch
τyaw

 =


CTq (1 1 1 1)

CTq cos(η) (1 −1 −1 1)
CTq sin(η) (1 1 −1 −1)

CMq (1 −1 1 −1)




ω2
1

ω2
2

ω2
3

ω2
4

 (3.45)

3.4 Estimation and Control

In this section first the state-space equation will be presented, then the
definitions of observability and controllability are described. Then methods for
creating observers that try to estimate the state of the system, and controllers
that attempts to control the system towards a setpoint are explained. The
section finishes off with describing the methods of multiple model estimation
and control.

3.4.1 The State-Space Equation

In control engineering the state-space representation is a way of describing the
dynamics of a system using a set of input, output and state variables that are
related through first-order differential or difference equations on the form

ẋ(t) = A(t)x(t) + B(t)u(t) + L(t)ξ(t)
y(t) = C(t)x + D(t)u(t) + θ(t)

(3.46)

for continuous systems and

xt+1 =A(t)xt + B(t)utL(k)ξt

yt =C(t)xt + D(k)ut + θt
(3.47)

for discrete systems where x ∈ Rn is the state of the system, u ∈ Rm is the
control input, y ∈ Rp is the output. ξ ∈ Rr is the process noise and θ ∈ Rq is the
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measurement noise, and none of the noise terms can be measured. A(t) ∈ Rn×n

is called the state matrix, B(t) ∈ Rn×m the input matrix, C(t) ∈ Rp×n is the
output or measurement matrix and D(t) ∈ Rp×m is the direct transition matrix.
In many cases, and for all systems that will be presented in this thesis D will be
a zero matrix, and will be omitted from the equations. Knowledge regarding
the process noise and measurement noise are given by the symmetric positive
definite matrices Q ∈ Rq×q and R ∈ Rr×r respectively [1].

In general the system matrices are time-variant, but in many cases they can be
assumed to time-invariant such that the process becomes

xk+1 = Axk + Buk + Lξk (3.48)
yk = Cxk + θk (3.49)

and is now called a linear time-invariant(LTI) system.

3.4.2 Controllability

An LTI system is said to be controllable if and only if the controllability matrix

C = [B, AB, ...., An−1B] ∈ Rn×mn (3.50)

has full row rank [1], i.e. rank C = n. This is implies that some control input
u(t) exist which will take the system from an initial state x0 to some other state
x1 within finite time. It says nothing about the time the transfer will take place,
nor which trajectory it will follow. This means the control input need not be
unique, it is only known that it exist. Control methods can then be designed
utilising the controllability property in order to ensure that the system reaches
its desired state.

3.4.3 Observability

Often the internal state of a system may be required in an application, but it may
not be directly accessible. The question is then if it is possible to reconstruct the
state of the system x(t0) by measuring the inputs and outputs of the system at
current and future times. The answer is yes, if the system is observable. A system
is called observable if the observability matrix

O = [CT, ATCT, ..., (AT)n−1CT] ∈ Rn×pn (3.51)

has full row rank, i.e. rankO = n [1].
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3.4.4 Full State Feedback Control

Given a LTI system on the form ẋ = Ax + Bu we wish to design a controller by
feeding back the state x multiplied by a gain matrix K in such a way that it will
drive the system from an initial state x(t0) to zero by

u = −Kx (3.52)

Inserted back into the system equation yields:

ẋ = (A− BK)x (3.53)

This differential equation has solution

ẋ = e(A−BK)tx(t0) (3.54)

which will asymptotically go to zero as long as all eigenvalues of the matrix
(A− BK) lie in the left half plane [15]. Thus the problem becomes deciding the
feedback gain matrix K such that this holds. It can be proven that the closed
loop poles of the system can be chosen arbitrarily by an appropriate choice
of K as long as the pair (A, B) is completely controllable. This means that in
theory the closed loop response of the system can be chosen to follow some
predefined design criterion. For lower order systems this has been investigated
quite rigorously, however it becomes more and more difficult with increasing
system complexity.

3.4.5 Observer Design

In the full state feedback control presented above it is assumed that the full
state of the system is available for feedback to make up the controller. This is
most often not possible due to practical reasons, because it may not be feasible
to have sensors which measure every element of the state. Then it would be
nice if it was possible to make an estimate of the part of the state that is not
measured directly. A full state observer is given by [1]

˙̂x = Ax̂ + Bu + L(y− Cx̂) (3.55)

where x̂ is the estimate of the system state x. The observer design procedure is
then the process of determining the observer gain matrix L in such a way that
the estimation error e(t) = x− x̂ asymptotically goes to zero, i.e. e(t) → 0 as
t→ ∞. Taking the time derivative of the error and substituting yields
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ė =ẋ− ˙̂x
=Ax + Bu− (Ax̂ + Bu + L(y− Cx̂))
=(A− LC)e

(3.56)

For the observant reader this looks oddly familiar to the equation obtained
when making the state feedback controller, and it is. The observer gain matrix L
can guarantee that the estimation tracking error will asymptotically go to zero
as long as the eigenvalues of the matrix (A− LC) all are in the left half-plane.
The matrix L can be used to arbitrarily determine these eigenvalues as long as
the pair (A, C) is completely observable.

3.4.6 State Compensator

Combining the methods of state estimation through a full state observer, and a
full state feedback controller the resulting systems is called a state compensator
[15]. Using the estimate in the feedback controller u = −Kx̂ into the system
equation gives

ẋ =Ax + Bu
=Ax− BKx̂
=(A− BK)x + BKe

(3.57)

Combining this with the differential equation derived for the observer tracking
error yields

Figure 3.4: Diagram of the control loop with state estimator and linear full state
feedback control.

[
ẋ
e

]
=

[
A− BK, BK

0, A− LC

] [
x
e

]
(3.58)
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From this it can be derived that the system state x(t) asymptotically will go to
zero and that the observer tracing error tracking will go to zero as long as the
eigenvalues of the matrix in Equation (3.58) are in the left half-plane. This is
ensured by the methods outlined earlier even if the feedback gain and observer
gain were derived independent of each other. Figure (3.4) shows a diagram
illustrating the usual control loop when combining state estimation with linear
full state feedback control.

3.4.7 LQR Control

Optimal control is a part of control theory which concerns itself with finding
a control for a given system in order to minimize a specified optimality
criterion(cost function). Within optimal control there is a subspace of methods
concerned with finding the optimal state feedback control law of the form
u = Kx for a linear system given a quadratic cost function. This is called a
linear quadratic regulator (LQR) [1, 46]. A brief outline of how to obtain the
infinite horizon control law (the feedback gain is constant) for a discrete LTI
system will be outline here.

Given an LTI system of the form of Equation (3.48) we wish to determine the
control sequence u∗k , k ≥ 0 which minimises the quadratic cost function

J(u) =
∞

∑
k
[xT

k QLQRxk + uT
k RLQRuk] (3.59)

for any initial state x0, where the weighting matrices QLQR and RLQR are real,
symmetric and positive definite.

Assuming that the LTI state-space system is controllable and observable it can
be shown that the solution to the LQR problem is given by the linear state-
feedback control law

u∗k = Kxk = −[R + BTP∗c B]−1BTP∗c Axk (3.60)

where P∗c is the solution to the algebraic Riccati equation

Pc = ATPc A− ATPcB[R + BTPcB]−1BTPc A + Q (3.61)

Deriving the infinite horizon LQR control for a continuous time time-invariant
system can be done in an analogous way. Derivations for time-variant systems
and finite-time solutions can be found in the abundant literature regarding
optimal control and LQR control available.
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3.4.8 Integral Action

A state feedback controller is only ensured to reach the desired reference
point xd(t) as long as the plant which is going to be controlled is perfectly
modelled. If there are uncertainties in the process parameters, disturbances
or unmodelled dynamics there may be steady state errors that the linear state
feedback controller is not able to eliminate on its own. The regular state
feedback controller only applies a gain based on the error state at the current
time. It will not be able to identify and correct errors that have accumulated
over time in the system, or dynamics that have not been modelled.

The basic approach to solving this is to augment the controller with an integral
state z(t) =

∫
(xd(t) − x(t)) dt whose dynamics are determined by ż =

xd(t) − x(t). One method is to extend the control state feedback controller to
u = −K(x − xd) + KIz, where KI is a hand-tuned integral gain. With this,
however, the optimality properties obtained by the LQR controller is lost.

In order to maintain the optimality properties, another approach is to include
the integral state in the LQR gain computation. Extending the state vector
with the integral state, and augmenting the state-space matrices yields and
augmented state-space system given by

x̃ =

[
x
z

]
, Ã =

[
A 0
−I 0

]
B̃ =

[
B
0

]
, C̃ =

[
C 0

]
.

(3.62)

This augmented state-space system can then be used to compute the state
feedback LQR controller gain in the usual manner [28].

3.4.9 Adaptive Estimation and Control

The following sections will describe how to construct adaptive estimators
and controllers based on multiple model adaptive (MMA) theory, and linear
parameter-varying (LPV) theory utilising the state-space concepts described in
the previous sections.

3.4.10 Multiple Model Adaptive Estimation

To make a state observer for a dynamical system, exact parameter values for
the plant is required in order to ensure good performance. These parameter
values may be difficult to determine, and bad estimates may lead to poor or
even fatal performance. In order to cope with these uncertainties a wide array
of methods have been developed in order to make a system that is able to adapt
to changes or uncertainties. One of these methods is Multiple Model Adaptive
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Estimation (MMAE). In short MMAE creates several proposed models using
various values of the uncertain parameters. Estimation filters are then set up
for each proposed model, and conditional probabilities are created for each
estimated value by use of some performance metric compared to the real
measured values [6, 17]. Figure (3.5) shows a diagram illustrating the general
setup of the MMAE algorithm.

The initial research done using MMAE made use of the Kalman filter for the
local state estimates. In this thesis the method of using steady-state Krener
observers together with a minimum energy criterion developed by Hassini et.
al. [17] will be used instead.

Consider a multiple-input-multiple-output LTI plant of the form

xt+1 =A(κ)xt + B(κ)ut + G(κ)ξt

yt =C(κ)xt + θt
(3.63)

Figure 3.5: Diagram of the multiple model adaptive estimation algorithm.

where ξt and θt are unknown deterministic plant and measurement noises
respectively. κ ∈ Rl are the uncertain parameters in the plant. Consider now
creating a set of N candidate models using various possible realisations κi of the
uncertain value κ. For each of these local models a local state estimate based on
the Krener observer can be designed
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x̂κi
t+1 =Aκi x̂

κi
t + Bκi ut + Hκi(yt − Cκi x̂

κi
t )

ŷκi
t =Cκi x̂

κi
t

Hκi =Σκi C
T
κi
[Cκi Σκi C

T
κi
+ Θ]−1

(3.64)

where Σκi is the solution of the steady-state discrete Riccati equation

0 = −Σκi + Aκi Σκi A
T
κi
+ Gκi ΓGT

κi

− AT
κi

Σκi C
T
κi
[Cκi Σκi C

T
κi
+ Θ]−1Cκi Σκi Aκi .

(3.65)

Where the subscript κi denotes a realisation of the model using that specific
candidate parameter value for κ. It is assumed that the pairs [Aκi , Bκi ] and
[Aκi , Cκi ] are completely controllable and observable, respectively. Γ and Θ
are symmetric positive definite weighting matrices that contain information
regarding the process and measurement noise. A state estimate can thus be
given by

x̂t =
N

∑
i=1

pi
t x̂

κi
t

ŷt =
N

∑
i=1

pi
tŷ

κi
t

(3.66)

where pi
t are dynamic weights that weight the various models against each

other. It is given by

pi
t+1 =

βie−wi
t

∑N
j=1 β je−wj

t

pi
t (3.67)

where βi is a positive constant weighting and wi
t is an error measuring function or

goodness measure that maps the real measured signal and the estimated output
of the system to a real positive value. The goodness measure and weights that
were used in this thesis are given by

wi
t =

1
2
‖rκi

t ‖2
S−1

κi
, βi =

1√
|Sκi |

(3.68)

where rκi
t = yt − ŷκi

t , and ‖x‖S =
√

xTSx. Sκi are weighting matrices given by

Sκi = Cκi Σκi C
T
κi
+ Θ, (3.69)

which is important in order to scale the estimation errors for them to be
comparable.
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It will not be explained in detail here, but it can be proved that if the initial
conditions of the dynamic weights satisfy pi

0 ∈ (0, 1) and ∑ pi
0 = 1, they will be

restricted to be within the interval [0, 1] and satisfy ∑ pi
t = 1 for all t ≥ 0. The

dynamic weights can then more intuitively be viewed as the probability that
a given candidate model is the correct one. Furthermore it can be proven that
the MMAE method will converge towards the candidate model which results
in the least output error measure wi

t, i.e. the system will converge towards the
model with parameter value κi? that is the most similar to the true parameter
value.

3.4.11 Multiple Model Adaptive Control

In the control side of things there exist similar methods with the use of
multiple models in order to control the system, named Multiple-Model
Adaptive Control(MMAC). In the realm of MMAE the objective is only to
correctly identify the candidate model with parameter values closest to the
true parameter values of the plant given some similarity criterion by passively
observing the outputs of the system, and giving out the optimal estimate of the
state of the system. Controllers on the other hand will also have to be able to
ensure the stability of the system while simultaneously switching between the
different models.

The design of multiple model adaptive controllers, and how to switch between
models while also ensuring that the control error tends to zero. The general
gist of things is that the system contains N identification models denoted
{Ij} operating in parallel. Each identification model has a corresponding
parameterized controller Cj of parameters ζ j which are chosen such that Cj
achieves the control objectives of Ij. At every time instant, each identification
model produces an output yj and the corresponding controller produces a
control input uj. The task of the MMAC algorithm is then at each time step
to dictate which control input to use for controlling the plant [6, 30].

Both the identification model Ij and corresponding controller Cj might be either
linear, non-linear, static or adaptive. The general idea when deciding on which
model and controller to use is to determine the performance of each model
according to some performance cost index Jj(t) and choose the one with the
lowest cost index. In the work by Narendra et. al. [30] several techniques
are outlined describing how stability can be proved of both adaptive and fixed
models even while running the risk of selecting a controller that might render
the system unstable.

In this thesis a simpler approach will be taken based on some of the earlier work
on multiple-model adaptive control such as [7]. Instead of explicitly choosing
and switching between the proposed candidate models at each time step, the
performance cost index will be used to directly compute a convex combination
of the control input form each of the candidate models to compute the resulting
control input to send to the plant.

42



Figure 3.6: Diagram of the MMA algorithm extended with full feedback control
gains for each of the candidate models

Given the candidate models of Equation (3.63) a corresponding LQR controller
gain Kκj can be compute for each of them given by Equation (3.60) as illustrated
in Figure (3.6). Utilising the model goodness measure of Equation (3.68) as the
performance cost index, the dynamic weighting of each model can be computed
using Equation (3.67). Thus utilising the properties of the dynamic weights
({∑ pj = 1, pj ∈ [0, 1] ∀ pj}) a linear combination of the control inputs can be
computed to give the resulting control input

ut =
N

∑
i

pi
tu

i
t (3.70)

3.4.12 Linear Parameter Varying Systems

Linear parameter-varying(LPV) systems are linear dynamical systems whose
state-space representation depend on exogenous non-stationary parameters
υ(k) [12, 42]. Here LPV systems on forms similar to the state-space systems
of Equation (3.47) will be considered, such as

xt+1 = A(υ(k))xt + B(υ(t))utG(υ(t))ξt

yt = C(υ(t))xt + θt
(3.71)

The parameters υ(t) are generally assumed to be bounded and able to take
values within some convex polytope(e.g. hyper-rectangle) ∆υ, and they
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are measured or readily available at run-time. If the LPV system is to be
used as an approximation of a non-linear system a common approach is to
capture the non-linearities in the state variables and use υ(t) as a scheduling
parameter in order to imitate linearity. It is then called a quasi-linear parameter-
varying(qLPV) system.

An LPV system is called polytopic if the dependence of the state-space matrices
in Equation (3.71) on υ(k) is affine, and the values of υ(t) ranges over the
polytope ∆υ [37]. Thus, the polytopic LPV system can be described as a convex
sum of L constant vertex systems (Aj, Bj, Cj, Gj)

(A(υ(t)), B(υ(t)), C(υ(t), G(υ(t)) =
L

∑
j=1

hj(υ(k))(Aj, Bj, Cj, Gj) (3.72)

where the non-negative coefficients hj(υ(t)) have the following properties

L

∑
j=1

hj(υ(t)) = 1, hj(υ(t)) ∈ [0, 1], ∀υ ∈ ∆υ (3.73)

3.4.12.1 LPV State Estimation

Given a polytopic LPV system on the form of Equation (3.71) a state estimator
can be obtained through the LPV Kalman filter [43]:

x̂t =
L

∑
j=1

x̂j
t

ŷt =C(υ(t))x̂t

(3.74)

where the estimates x̂t are obtained by

x̂j
t = (I − H jCj)x̂−j

t + K jhj(υ(t))yt

x̂−j
t+1 = Aj x̂j

t + hj(υ(t))Bjut.
(3.75)

The superscript (−) indicates predictions made by the state estimator before
the measurement is taken into account. The Kalman filter gain H j of vertex
system j is given by

H j = Pj(Cj)T(CjPj(Cj)T + R)−1, (3.76)

where Pj is the solution of the discrete Riccati equation

Pj = AjPj(Aj)T − AjH jCjPj(Aj)T + GjQ(Gj)T. (3.77)
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3.4.13 Multiple Model Linear Parameter Varying Adaptive
Estimation and Control

Combining the ideas of the multiple models techniques together with the linear
parameter-varying methods an architecture designed for analysis and control
of non-linear systems (LPV part) while simultaneously adapt to parameter
uncertainties in the plant (MMAE part) is arrived at [36].

From the basis of the theory stated earlier the method is pretty straight forward.
Assuming that there are uncertain parameters κ in the plant a set of N candidate
models are constructed based on a discrete set of realisations κi of the uncertain
parameters κ. For a non-linear plant each candidate model can be brought to
a quasi-LPV form where the parameters υ(t) depend on the state, input and
outputs of the system. Assuming that the state-space matrices for each of the
candidate models are polytopic local state estimates can be obtained for each
candidate model from the LPV Kalman filter:

x̂t =
N

∑
i=1

pi
t x̂

j
t(κi)

ŷt =
N

∑
i=1

pi
tŷ

j
t(κi)

x̂j
t(κi) =

L

∑
j=1

ŷj
t(κi)

ŷt(κi) =Cj
κi(υ(t))x̂j

t(κi)

(3.78)

where each of the local Kalman filter estimates are given by

x̂j
t(κi) = (I − H j

κi C
j
κi)x̂−j

t (κi) + K j
κi h

j
κi(υ(t))yt

x̂−j
t+1(κi) = Aj

κi x̂
j
t(κi) + hj

κi(υ(t))Bj
κi ut

(3.79)

with Kalman filter gain

H j
κi = Pj

κi(C
j
κi)

T(Cj
κi P

j
κi(C

j
κi)

T + R)−1 (3.80)

and Pj
κi given by the solutions to the discrete Riccati equation

Pj
κi = Aj

κi P
j
κi(Aj

κi)
T − Aj

κi H
j
κi C

j
κi P

j
κi(Aj

κi)
T + Gj

κi Q(Gj
κi)

T. (3.81)

The dynamic weights pi
t are given in the same way as in Equation(3.67). The

error measuring function ωi
t and matrix weighting βi

t will now be given by
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wi
t =

1
2
‖rκi

t ‖2
S−1

κi ()υ(t), βi =
1√

|Sκi(υ(t))|
(3.82)

with rκi
t = yt − ŷt(κi) and Sκi(υ(t) chosen to be

Sκi(υ(t) =
L

∑
j=1

hj(υ(t))Sj
κi

Sj
κi =Cj

κi P
j
κi(C

j
κi)

T + R.

(3.83)

3.4.13.1 LPV Multiple Model Adaptive Control

Given that the LPV systems for all the candidate models are polytopic each of
the vertex systems will be time-invariant. The proposed method for controlling
the system is then to design an LQR controller gain K j

κi for each of the vertex
systems and setting the resulting control input arising from the candidate
model as the linear combination of the control input from the vertex systems
weighted by the coefficients hj(υ(t))

ut =
N

∑
i

pi
tut(κi)

ut(κi) =
L

∑
j

hj(υ(t))uj
t(κi) = −

L

∑
j

hj(υ(t))K j
κi x̂t.

(3.84)
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Chapter 4

Simulation

This chapter contains descriptions of the models that were utilised for
simulations based on theory described in the previous chapter. Approaches
for model linearisations and controller design will also be described. For all
simulations the plant was a direct implementation of the differential equations
of the dynamics and solved by explicit Euler integration. The matrices in the
state-space systems used for observer design and controllers were obtained by
Euler discretisation.

4.1 Single Axis Simulation

In order to verify the functionality of the MAA algorithm and the code, the
first simulations were performed on a simplified model inspired by the models
presented in [21]. It was chosen to use the model for pitch and x dynamics
(Equation 12) from that paper.


ẋ1
ẋ2
ẋ3
ẋ4

 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




x1
x2
x3
x4

+


0
ε
0
1

 u (4.1)

This is the system after a coordinate transformation x = [x, ẋ,−gθ,−gθ̇]T,
u = −gτpitch/Iyy and ε = −Iyy/mgL where L is a system parameter for
this model. This is the linearised model for a type of ducted fan tailsitter
UAV. This model was chosen since it is single-input-single-output and is still
within the UAV genre, and a bit more interesting than the linearised quadcopter
model. For the simulations it was assumed that the parameter ε was unknown
and needed to be determined through MMAE. The same linearised model in
Equation (4.1) with ε = 0.45 was used as the plant model. 5 candidate observer
models were used it was assumed that ε was within the range [0.05, 1]. A
full state feedback controller u = −K(x̂ − xd) was used, where xd denotes a
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desired set-point. The feedback gain K = [k1, k2, k3, k4] was manually tuned to
values that gave a satisfactory system response. According to [21] the system
is stable as independent of the specific value of ε as long as k2 and k3 are large
enough compared to εk1. With this, the feedback gain was K = [5, 25, 50, 50].
The simulations were done without any added process or measurement noise.
The initial state was x0 = [0, 0, 0.3, 0]T, and the system was set to hover around
a desired position xd = [1 + 0.1sin(0.1t), 0, 0, 0]T. The sine wave was put into
the system to ensure persistent excitation and avoid information death [5]. The
dynamic weights were capped at 0.95, and the residue was distributed among
the other weights in order to maintain ∑ pi = 1. This was done in order to
ensure that the system was able to swap between which estimates it chose to
use. If the dynamic weight of any of the candidate models go to zero it can
easily be seen from Equation (3.67) that the system would never have been able
to increase it again in order to change model.

4.2 Simulation of Six DoF Quadcopter Model

The next step was to simulate a quadcopter during hover while using the full
six degrees of freedom kinematic and dynamic models.

4.2.1 Nonlinear Simulation Model

The plant was modelled as a quadcopter, and no aerodynamic effects were
considered. This means that the only external forces and moments were gravity
and the control moments from the propellers, resulting in the external forces
being represented by.

Fb
x

Fb
y

Fb
z

 =

 −g sin(θ)
g sin(φ) cos(θ)
g cos(φ) cos(θ)

+
1
m

 0
0
FT

 (4.2)

and the external moments in Equation (3.44) became the control commands

 Lb

Mb

Nb

 =

 τroll
τpitch
τyaw

 (4.3)

Without any specific model to adhere to the quadcopter was modelled as a
1m × 1m × 0.2m box. The box was set to weigh 10kg with a uniform weight
distribution. This resulted in a diagonal inertia matrix Jbox for the quadcopter
body. Fixed-wing aircraft on the other hand do not have a symmetric shape
along the xb-axis and uniform weight distribution. In addition, a new payload
might be fitted onto the Kestrel. To simulate this, an additional point mass
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was added to the aircraft at a position [xb
p, yb

p, zb
p] relative to the UAV CM. This

resulted in an addition Jpoint to the inertia matrix given by Equation(3.14) and
the total inertia matrix can be found by superposition of the two contributions
Jtot = Jbox + Jpoint.

4.2.2 Linearising the Model

Equations (3.38-3.41) with external forces and moments given by Equations
(4.2,4.3) will be used to simulate the full six DoF movement of the quadcopter.
However those equations are highly coupled and non-linear and are not well
suited for linear observer and controller design. It is therefore customary to
linearise the equations around the desired operating condition [8, 40].

If it is assumed that the roll φ and pitch θ will be small Equation (3.40) can be
simplified as

φ̇
θ̇
ψ̇

 =

p
q
r

 (4.4)

Similarly, assuming that the angular rates [p, q, r] are small the body angular
accelerations of Equation (3.41) can be simplified to

 ṗ
q̇
ṙ

 =

 Jzz
Γ 0 Jxz

Γ
0 1

Γ 0
Jxz
Γ 0 Jxx

Γ

 Lb

Mb

Nb

 (4.5)

The linear dynamics might however be a bit trickier to linearise. Depending
on the goals for the control designs and the movement of the UAV different
approaches might be taken. Also, in the case of other external forces
than gravity and quadcopter propeller thrust, some of the simplifications
encountered in various other literature might not be applicable. However, for
the most part it may be assumed that the roll φ and pitch θ angles are small,
and that the angular velocities and accelerations are small. This means that the
Coriolis forces in Equation (3.39) can be neglected resulting in

 u̇
v̇
ẇ

 =
1
m

Fb
x

Fb
y

Fb
z

 (4.6)

assuming that it is sufficient for the aircraft to take off vertically and keep its
heading angle fixed (ψ = 0).
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4.2.3 Controlling the Quadcopter

To control the quadcopter an infinite horizon LQR controller was used with
and additional integral term on altitude control in order to deal with the offset
generated by gravity. Due to the model specific nature of the LQR controller
each candidate model had its own feedback gain and the resulting control input
became a linear combination of all the control inputs from each of the N models
and the dynamic weights of each model

uk =
N

∑
j

pj
kKj(xd,k − x̂j

k) + KI xI,k (4.7)

with KI = [100, 10] and xI,k = ∑k
t=0(xd,k − x̂j

k)∆t

To create the LQR gains weighting matrices

QLQR =



10 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 10 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 100 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1



(4.8)

and

RLQR =


0.01 0 0 0

0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

 (4.9)

were used.

4.3 Longitudinal Aerodynamic Simulation

The full 12 non-linear full six DoF dynamic equations for the full UAV is
difficult to design controllers for. In aircraft control it is therefore normal
to decouple the linearised equations of motion into two systems that are
individually more tractable for controller design [35]. These two systems are
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the altitude-longitudinal system and the lateral system. The longitudinal will
concern itself with the forces and moments along the longitudinal movement
of the UAV that is xb, zb and θ. The lateral system will then concern itself
with forces and moments along yb, φ and ψ. The linearisations will be withing
parameter ranges where the coupling effects can be assumed to be small and
can be handled by disturbance rejection in the controller. In this thesis only a
simulation and control of the longitudinal system will be considered. During
the transition phase from quadcopter to fixed-wing mode the UAV will in most
cases go in a straight line from a standstill state with no aerodynamic lift, up to
trim velocity where all lift is generated from the wings.

4.3.1 Simulation Model

Considering a movement purely in the xbzb-plane, and assuming that roll φ and
yaw ψ will be zero, Equation (3.38) becomes

 ṗn
ṗe
ṗd

 =

 cθ 0 sθ

0 1 0
−sθ 0 cθ

u
v
w

 (4.10)

Next, assuming that there will no forces and thus movement in the lateral
direction i.e. setting velocity v in the yb-direction to zero, as well as assuming
that roll moment p and yaw moment r will be zero, then Equation (3.39)
becomes

 u̇
v̇
ẇ

 =

−qw
0

qu

+
1
m

Fx
0
Fz

 (4.11)

Using the same assumptions as above Equation (3.40) becomes

φ̇
θ̇
ψ̇

 =

1 0 tθ

0 1 0
0 0 1

cθ

p
q
r

 (4.12)

and with no lateral moments Equation (3.41) turns into

 ṗ
q̇
ṙ

 =

 0
1

Jyy
M

0

 (4.13)

Considering only the components of lateral movement yields a system state
described by x = [pn, pd, u, w, θ, q]T
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ṗn =cθ pn + sθ pd

ṗn =− sθ pn + cθ pd

u̇ =− qw +
1
m

Fx

ẇ =qu +
1
m

Fz

θ̇ =q

q̇ =
1

Jyy
M

(4.14)

The forces and moments [Fx, Fz, M] can be substituted from Equations (3.42)
and (3.44). Using β = φ = r = p = v = 0 yield

Fx =−mg sin(θ) +
1
2

ρV2
a S[CX(α) +

c
2Va

CXq q + CXδe
(α)δe] + FTr

Fz =mg cos θ +
1
2

ρV2
a S[CZ(α) +

c
2Va

CZq q + CZδe
(α)δe] + FT

M =
1
2

ρV2
a cS[CM0 + CMα α + CMq q] + τpitch

(4.15)

4.3.2 Aircraft Model

With no complete list of aerodynamic coefficients for the Kestrel UAV it was
decided to use the parameters for the Aerosonde UAV [35]. Aerosonde is a
13.5 kg and 2.8956 m wingspan fixed-wing UAV. The biggest difference from
the Kestrel design-wise is that the forward thrust propeller is mounted at the
read of the fuselage instead of in front. The necessary parameters required for
modelling of the longitudinal flight are given in Table (4.1).
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Name Value

m 13.5kg

Jyy 1.135kg/m2

ρ 1.2682 kg/m3

c 0.18994m

S 0.55m2

Sprop 0.2027m2

Cprop 1.0

kmotor 80

CL0 0.28

CD0 0.03

CM0 -0.02338

CLα 3.45

CDα 0.30

CMα -0.38

CLq 0.0

CDq 0.0

CMq -3.6

CLδe
-0.36

CDδe
0.0

CMδe
-0.5

Table 4.1: Aerodynamic parameters for the Aerosone UAV required for
simulation of longitudinal flight [35].

4.3.3 State-Space Observer and Controller Design

In this section, methods for generating state-space systems for the longitudinal
equations of motion for a fixed-wing aircraft will be outlined.

4.3.3.1 Trim Conditions

It is comparatively difficult to create LTI state-space systems on the form of
Equation (3.47) for a fixed-wing aircraft versus a quadcopter. The quadcopter
in this case was only required to hover and perform small movements and thus
a relatively good linearised model could be achieved by linearising the model
around 0 for Euler-angles and angular rates. Fixed-wing aircraft on the other
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hand require quite a substantial airspeed Va across the wings and a positive
angle-of-attack α in order to generate lift.

A non-linear system can be described in the short form ẋ = f (x, u), where x is
the system state and u is the input vector. The system is in equilibrium at the
state x∗ and input u∗ when f (x∗, u∗) = 0. During steady flight a subset of states
of the UAV will be in equilibrium. Often this will be the altitude pn, body frame
velocities [u, v, w], Euler angles [φ, θ, ψ] and body angular rates [p, q, r]. When
this occurs the UAV is in trim [35].

4.3.3.2 Model Linearisation

Now, given that a set of trim conditions x∗, u∗ have been found, a linearised
model can be found by linearising the system around the obtained trim point.
The deviation from the trim state can be expressed by x̄ = x = x∗, and its
dynamics given by

˙̄x =ẋ− ẋ∗

= f (x, u)− f (x∗, u∗)
= f (x∗ + x̄, u∗ + ū)− f (x∗, u∗)

(4.16)

Approximating this by the Taylor expansion around the trim point to the first
order gives

˙̄x = f (x∗, u∗) +
∂ f (x∗, u∗)

∂xT x̄ +
∂ f (x∗, u∗)

∂uT ū + H.O.T.− f (x∗, u∗)

≈∂ f (x∗, u∗)
∂xT x̄ +

∂ f (x∗, u∗)
∂uT ū

(4.17)

Thus a linearised model for the fixed-wing UAV can be obtained by computing
the Jacobians ∂ f

∂xT and ∂ f
∂uT . Calculating the Jacobians for the longitudinal

dynamics expressed in Equation (4.14) yields a state-space system given by


˙̄pd
˙̄u
˙̄w
˙̄θ
˙̄q

 =


0 − sin θ∗ cos θ∗ −u∗ cos θ∗ − w∗ sin θ∗ 0
0 Xu Xw −g cos θ∗ Xq
0 Zu Zw −g sin θ∗ Zq
0 0 0 0 1
0 Mu Mw 0 Mq




p̄d
ū
w̄
θ̄
q̄



+


0 0

Xδe Xδt

Zδe 0
0 0

Mδe 0


[

δ̄e
δ̄t

]
(4.18)
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The coefficients are given in Table (4.2). The thrust and pitch from the
quadcopter part has not been included here.

Xu
u∗ρS

m (CX(α
∗) + CZδe

δ∗e )−
w∗ρSCXα

2m

+
u∗q∗ρScCXq

4mV∗a
− u∗ρSpropCprop

m

Xw −q∗ w∗ρS
m (CX(α

∗) + CXδe
δ∗e ) +

w∗ρSCXα
2m

+
w∗q∗ρScCXq

4mV∗a
− w∗ρSpropCprop

m

Xq −w∗ +
ρScV∗a CXq

4m

Xδe

ρSV∗2a CXδe
2m

Xδt

ρSpropCpropk2
motorδ∗t

m

Zu q∗ + u∗ρS
m (CZ(α) + CZδe

δ∗e )−
w∗ρSCZα

2m

u∗q∗ρScCZq
4mV∗a

Zw
w∗ρS

m (CZ(α) + CZδe
δ∗e ) +

u∗ρSCZα
2m

w∗q∗ρScCZq
4mV∗a

Zq u∗ +
ρScV∗a CZq

4m

Zδe

ρSV∗2a CZδe
2m

Mu
u∗ρSc

Jyy
(CM0 + CMα + CMδe

δ∗e )−
w∗ρScCMα

2Jyy

u∗ρSc2CMq
4JyyV∗a

Mq
ρSc2V∗a CMq

4Jyy

Mδe

ρScV∗2a CMδe
2Jyy

Table 4.2: Coefficients for the linearised state-space system of the longitudinal
fixed-wing UAV dynamics. CX(α

∗), CZ(α
∗) are given in Equation(3.43)

4.3.3.3 Non-Linear Observer Design

Under the assumption of small angles of attack, and considering lateral
movements as negligible Equation (4.14) describe the three degrees of freedom
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non-linear longitudinal dynamics of a fixed-wing UAV. Following the approach
of [39] Equation (4.14) can be brought to a continuous time quasi-LPV form by
embedding the non-linearities into the parameters in the following way:

ẋ = A(u, w, θ, q)x + B(u, w)u + d(θ) (4.19)

with the state given by x = [pd, u, w, θ, q]T and control input u = [δe, δt]T. The
matrices A, B and d are given by

A(u, w, θ, q) =


0 a12 a13 0 0
0 a22 a23 0 a25
0 a32 a33 0 a35
0 0 0 0 1
0 a52 a53 0 a55



B(u, w) =


0 0

b21 b22
b31 0
0 0

b51 0

 , d(θ) =


0

−g sin θ
g cos θ

0
0


(4.20)

where the matrix parameters are listed in Table (4.3)
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a12 − sin θ

a13 cos θ

a22
uρS
2m (CX(α)−

SpropCprop
S )

a23
wρS
2m (CX(α)−

SpropCprop
S )

a25 −w + ρScVa
4m CXq)(α)

a32
uρS
2m (CZ(α))

a33
wρS
2m (CZ(α))

a35 u + ρScVa
4m CZq)(α)

a52
uρSc
2Jyy

(CM0 + CMα)

a53
wρSc
2Jyy

(CM0 + CMα)

a55
ρSc2Va

4Jyy

b21
ρSV2

a
2m CXδe

b22
ρSpropCprop

2m k2
motor

b31
ρSV2

a
2m CZδe

b51
ρScV2

a
2Jyy

CMδe

Table 4.3: Coefficients for the state-space system of the longitudinal fixed-wing
UAV dynamics with non-linearities embedded in the system matrices. CX(α

∗),
CZ(α

∗) are given in Equation (3.43)

4.3.4 Longitudinal Autopilot Design

Utilising the linearised state-space system described in Equation (4.18) it is
possible to design an autopilot for the longitudinal system in order drive the
aircraft to a desired altitude pd

d and airspeed Vd
a using LQR control with integral

action [45]1. Following the approach in Section (3.4.8) to construct a system to
control attitude and airspeed, the integral state is given by

1Web-page by authors of [35], the controller is given in a currently unpublished supplement
to the book
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xI =

[∫
(pd − pd

d) dt∫
(Va −Vd

a ) dt

]
=
∫ [

Hlonx−
[

pd
d

Vd
a

]]
,

(4.21)

where

Hlon =

[
1 0 0 0 0
0 u∗

V∗a
w∗
V∗a

0 0

]
. (4.22)

It is then possible to express the state-space matrices for the augmented system
by

Ā =

[
A 0

Hlon 0

]
, B̄ =

[
B
0

]
(4.23)

which can then be used for computing the LQR feedback gain in the usual
manner. The specific weighting matrices used were

QLQR =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1000 0 0 0
0 0 0 0 1000 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1



RLQR =

[
1000 0

0 10000

]
(4.24)

For clarification, the specific control input ui
t used is given by

ui
t = u∗i − K

([
x̂i

t
xi

I,t

]
−
[

x∗i

02×1

])
+

[
0

0.01 sin 8t

]
. (4.25)

u∗i and x∗i are the trim conditions for model i with the first term in x∗i replaced
with the desired altitude pd

d. x̂i
t is the model-specific estimate from Equation

(3.75). The sine wave is added to ensure persistent excitation.
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Chapter 5

Results

5.1 Single Axis Simulation

Figure 5.1: The system states of a simulation of Equation (4.1) using the multiple
model adaptive estimation and control algorithm.

Figure (5.1) shows the estimated state values for a simulation based on the
tailsitter model. The controller is able to drive the system towards the desired
setpoint. In addition, the MMA algorithm is able to correctly identify the
candidate model with ε = 0.525 which is the one closest to the real value of ε =
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Figure 5.2: The dynamic weights for each of the candidate models from
simulation of the model in Equation (4.1). The labels on the left are the value of
the unknown parameter ε in each of the candidate models. The true parameter
value in the plant was ε = 0.45

0.45, even if it initially decided on the wrong model. The dynamic weighting of
the different candidate models is shown in Figure (5.2).

5.2 Quadcopter 6DoF Non-linear Plant Simulation

The non-linear dynamic model given by Equations (3.38-3.41) with external
forces as described in Section (4.2.1) was used as the system plant. The
quadcopter was modelled as a 1m × 1m × 0.2m box. The non-symmetry in
the mass and inertia was modelled as a point mass at position [xb, yb, zb]

T =
[−1.5, 0.2, 0]T relative to the CM of the quadcopter box. For the different
candidate models for the multiple-model algorithm the value of the point mass
was set as the unknown parameter. For each of the simulations five candidate
models were set up in the range mpoint ∈ [0.5, 5]. A few different approaches for
simulations were investigated in order to analyse the behaviour of the multiple-
model algorithm as well as the response of the controller.

5.2.1 Hovering

In the first simulation the quadcopter initial position was x0 = 012×1. It was
set to hover at two different heights. The the inertial positions can be seen
in Figure (5.3), the Euler-angle positions can be seen in Figure (5.4). It might
seem overly redundant to include all 6 positions when the only visible actions
happen in the altitude. This is to keep consistency with the figures that will
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appear in the following sections as well as showing that the quadcopter is stable
for all degrees of freedom and stays within the limits of the linearisation. The
true value of the parameter in the plant was set to mpoint = 2.0, and Figure
(5.5) shows the dynamic weights of each of the 5 candidate models for the
simulation. The MMA algorithm instantly choose the candidate model with
mpoint = 1.6, which is the candidate model with the parameter value most
similar to the plant parameter value.

Figure 5.3: Inertial positions from simulation when quadcopter was set to
hover. a) pn-position, b) pe-position and c) altitude −pd
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Figure 5.4: The Euler-angle positions when the quadcopter was set to hover. a)
φ-angle, b) θ-angle and c) the ψ-angle

Figure 5.5: Dynamic weighting of each of the candidate models, with the
parameter value of each model indicated by the mpoint-value to the left of each
plot.
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5.2.2 Step Changes in Setpoint

Figures (5.6) and (5.8) show the inertial and Euler-angle positions from a
simulation the quadcopter was set to track varying step changes in desired
setpoint values in all inertial directions. The quadcopter was set to initial
position x0 = [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T. For this simulation the plant value of
the mpoint = 2.0 was used. Figure (5.7) shows the dynamic weights for each of
the candidate models with the parameter value of the respective models given
on the left in the figure.

Figure 5.6: Inertial positions from a simulation when quadcopter was set to
track step changes in desired setpoint values. a) pn-position, b) pe-position and
c) altitude −pd
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Figure 5.7: Dynamic weighting of the candidate models when the quadcopter
tracked step changes in setpoint values. The parameter value of each model
indicated by the mpoint-value to the left of each plot.

Figure 5.8: The Euler-angle positions when the quadcopter was set to track step
changes in desired setpoint values. a) shows φ-angle, b) θ-angle and c) the ψ-
angle
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5.2.3 Trajectory Tracking

Figures (5.9) and (5.10) show the inertial and angular positions of the
quadcopter set to follow a circular trajectory in the pn pe-plane as well as
two step changes in desired altitude. The initial position was set to x0 =
[3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T, the plant parameter was the same mpoint = 2 and
five candidate models were used. Figure (5.11) shows the dynamic weights for
each of the candidate models with the parameter value of the respective models
given on the left in the figure. Figure (5.10) shows the Euler-angle positions for
the simulation.

Figure 5.9: Inertial positions when the quadcopter was set to track a trajectory
in pn pe-direction as well as step changes in height −pd. a) pn-position, b) pe-
position and c) altitude −pd
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Figure 5.10: Euler angle positions when the quadcopter was set to track a
trajectory in pn pe-direction as well as step changes in height h. a) shows φ-
angle, b) θ-angle and c) the ψ-angle

Figure 5.11: The dynamic weighting of each of the candidate models when
the quadcopter was set to to track a trajectory in pn pe-direction as well as step
changes in altitude setpoint. The parameter value of each model indicated by
the mpoint-value to the left of each plot. The true parameter value was mpoint =
2.0
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5.2.4 Variable Weight

In this section the quadcopter was set to follow the same trajectory as in
Section(5.2.3) with the same initial position x0. But, instead of having the
plant parameter mpoint set to a constant value it was instead changed at regular
intervals. Figure (5.15) illustrate how the value of the parameter in the plant
started off at mpoint = 0.1, well below the lowest value of the candidate models,
and increase by 1 every 10 seconds. The dashed lines in the figure indicate
the parameter value for each of the candidate models. Figure (5.14) shows the
dynamic weight of each of the candidate models.

Figure 5.12: Inertial positions when the quadcopter was set to track a trajectory
in the pn pe-directions as well as step changes in altitude −pd while the plant
parameter value mpoint changed. a) shows pn-position, b) pe-position and c)
altitude −pd
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Figure 5.13: Euler angle positions when the quadcopter was set to track a
trajectory in the pn pe-directions as well as step changes in altitude while the
plant parameter value mpoint changed. a) φ-angle, b) θ-angle and c) ψ-angle
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Figure 5.14: Dynamics weighting for each of the candidate models when the
quadcopter tracked trajectory while the plant parameter value mpoint changed.
The parameter value of each model is indicated by the mpoint-value to the left
of each plot. The true parameter value was initially set to mpoint = 0.1, and
incremented with 1 every 10 seconds, as illustrated in in Figure (5.15)

Figure 5.15: Plot illustrating how the plant parameter value mpoint changed
throughout the simulation. Blue line shows the parameter value. The black
dotted lines show the parameter values for each of the candidate models.
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5.3 Fixed-Wing Longitudinal Flight Simulation

The longitudinal simulation model for the fixed-wing aircraft was implemented
as described in Section (4.3). A program was implemented in MATLAB and
Simulink with inspiration from [35]. The user could insert desired airspeed Va
and desired flight path angle γ for the aircraft. The program would find the
corresponding trim conditions x∗ = [−, u∗, w∗, θ∗, q∗]T and u = [δ∗e , δ∗t ]

T for
that specific airspeed and flight angle. The − in the trim state means that the pd
position was assumed a free variable when computing the trim conditions since
the altitude is irrelevant for maintaining stable flight, under the assumption
of altitude ranges of constant air density. Computation of the trim conditions
for the longitudinal state was done while only considering the longitudinal
dynamics from Section (4.3.1). This did not affect the longitudinal state trim
conditions considerably and was done under the assumption that the lateral
dynamics could be considered a small disturbance.

For a given set of trim conditions a state estimator was designed by embedding
the non-linearities as described in Section (4.3.3.3). With the same trim
conditions a corresponding LQR controller was designed by computing the
linearised state-space system as given in Section (4.3.3.2). This corresponds to a
single model within the MMA LPV paradigm.

The trim conditions for simulations of the fixed-wing aircraft were all computed
according to a desired airspeed V∗a = 25m/s and flight path angle γ∗ = 0. The
initial conditions for the simulations were x0 = [0, 25, 0.1, 0.1, 0]T.

5.3.1 Single Model Simulation

The first simulation was designed in order to verify that the controller was able
to maintain stable flight in accordance with the specified trim conditions, as
well as follow a trajectory in altitude and airspeed. To create a reference point
for future simulations. These simulations were done using only a single model
with parameters corresponding to the true parameters of the aircraft, and only
a single LPV model was considered. Figure (5.16) shows a plot of the estimated,
measured and desired altitude (−pd). Figure (5.17) shows the same for the
airspeed. Figure (5.18) shows the attitude of the aircraft during level flight.
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Figure 5.16: The estimated, measured and desired altitude −pd when the
aircraft was set to maintain steady level flight with a single model.

Figure 5.17: The estimated, measured and desired airspeed Va when the aircraft
was set to maintain a constant airspeed equal to the trim point airspeed with a
single model.

In the next simulation with only a single model the aircraft was set to follow
a desired trajectory in airspeed and altitude. Figure (5.19) shows the altitude
of the aircraft together with the desired altitude trajectory, and Figure (5.20)
shows the same for the airspeed trajectory. Figure (5.21) shows the estimated
and measured attitude.
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Figure 5.18: a) The measured and estimated pitch θ. b) The measured and
estimated pitch rate q. Both plots are from the simulation when the aircraft
was set to maintain a constant level flight.

Figure 5.19: The estimated, measured and desired altitude −pd when the
aircraft was set to follow a trajectory with a single model.
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Figure 5.20: The estimated, measured and desired airspeed Va when the aircraft
was set to follow a trajectory in desired airspeed with a single model.

Figure 5.21: a) The measured and estimated pitch θ. b) The measured and
estimated pitch rate q. The plots were obtained in a simulation when the aircraft
was set to follow a trajectory in desired altitude and desired airspeed with a
single model.

73



5.3.2 Fixed-wing Multiple Model Adaptive Estimation and Control

The next step in the simulations was to implement the multiple model adaptive
estimation and control algorithm. In these simulations it was assumed that the
aerodynamic coefficient CLα in Equation (4.15) was unknown. With the true
value of CLα = 3.45, five candidate models were constructed with parameter
values uniformly distributed within the range CLα ∈ [2.55, 4.55]. Estimators
and controllers were constructed for each candidate model in the same manner
as for the single model simulations and the trim points were all calculated
according to airspeed V∗a = 25m/s and flight path angle γ∗ = 0. The initial
conditions were x0 = [0, 25, 0.1, 0.1, 0]T. Figure (5.22) shows the altitude for a
simulation where the aircraft was set to maintain level flight, and Figure (5.23)
the airspeed. Figure (5.24) shows the pitch angle and pitch rate. The true value
of CLα = 3.45 was used in the plant, Figure (5.25) shows the dynamic weight for
each of the candidate models with the parameter value of each model given on
the left in the figure.

Figure 5.22: The estimated, measured and desired altitude −pd when the
aircraft was set to maintain steady level flight using the MMA algorithm with
five candidate models.
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Figure 5.23: The estimated, measured and desired airspeed Va when the aircraft
was set to maintain a constant airspeed equal to the trim point airspeed. The
MMA algorithm was used with five candidate models.

Figure 5.24: a) The estimated and measured pitch θ. b) The estimated and
measured pitch rate q. Both plots were obtained for the simulation were the
aircraft was set to maintain constant level flight while using five candidate
models to estimate and control the system.

In the next simulations the aircraft was set to follow the same trajectory in
airspeed and altitude as the single model simulation, but now with the value
of CLα in the plant assumed unknown. Figures (5.26) and (5.27) show the
estimated, measured and desired altitude and airspeed respectively. Figure
(5.28) shows the pitch angle and pitch rate. Figure (5.30) shows a zoomed-in
plot of the pitch angle which will be discussed in the next chapter. Figure (5.29)
shows the dynamic weights of the candidate models.
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Figure 5.25: Dynamic weight for the simulation where the aircraft was set
to maintain level flight. Label on the left indicates the CLα value for the
corresponding candidate model. A true value of CLα = 3.45 was used for the
plant.

Figure 5.26: The estimated, measured and desired altitude −pd when the
aircraft was set to follow a trajectory using multiple model adaptive estimation
and control with five candidate models
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Figure 5.27: The estimated, measured and desired airspeed Va when the aircraft
was set to follow a trajectory in desired airspeed. This was done while using
five candidate models.

Figure 5.28: a) The estimated and measured pitch θ. b) The estimated and
measured pitch rate q. Both plots were obtained when the aircraft was set to
follow a trajectory in desired altitude and desired airspeed while using five
candidate models to estimate and control the system.
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Figure 5.29: Dynamic weights for the candidate models when the aircraft was
set to follow a trajectory of desired airspeed and desired altitude. Label on the
left indicates the CLα value for the corresponding candidate model. A true value
of CLα = 3.45 was used for the plant.

Figure 5.30: A zoomed-in version of Figure (5.28 a).
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5.3.3 Fixed-wing LPV Control

Linear parameter varying methods are expected to be a good solution to the
problems that occurred when the aircraft followed trajectories in airspeed and
altitude. However, no positive results were acquired. Following will be a
description on the approach that was attempted using only LPV estimation and
control without considering multiple models. The parameters of the estimation
model was set to be equal to the plant.

Seeing that the variations in airspeed and angle of attack caused problems
for the MMA algorithm without the LPV methods it was chosen to use the
airspeed Va =

√
u2 + w2 and the flight path angle γ = arcsin ḣ/Va, with ḣ =

u sin θ − w cos θ, as the scheduling parameters υ(t). These were conveniently
the same parameters used as inputs to the program that calculated the trim
conditions. This made it easy to compute estimation matrices and controllers
for each of the vertex models in the LPV system.

The scheduling parameters were assumed to be within the ranges Va ∈
[Vmin

a , Vmax
a ] and γ ∈ [γmin, γmax]. The vertex models were set to correspond

to each of the possible combinations of extremal values for the scheduling
parameters. Corresponding estimators and controllers were computed for each
of the vertex models.

It was proposed to use the measured airspeed Va and flight angle γ by to
compute the weighting coefficients h(υ(t)) by

h1 = (
Vmax

a −Va
Vmax

a −Vmin
a

)(
γmax − γ

γmax − γmin ), for model from (Vmin
a , γmin)

h2 = (
Vmax

a −Va
Vmax

a −Vmin
a

)(
γ− γmin

γmax − γmin ), for model from (Vmin
a , γmax)

h3 = (
Va −Vamin

Vmax
a −Vmin

a
)(

γmax − γ

γmax − γmin ), for model from (Vmax
a , γmin)

h4 = (
Va −Vamin

Vmax
a −Vmin

a
)(

γ− γmin

γmax − γmin ), for model from (Vmax
a , γmax).

(5.1)

This methodology applied directly with the LPV system did not work as
expected. It was also attempted to alter the estimation algorithm to

x̂j
t = (I − H jCj)x̂−j

t + K jyt

x̂−j
t+1 = Aj x̂j

t + Bjut

(5.2)

by removing the weighting within computation of the estimates for each vertex
models. The weighting was instead added when computing the estimate from
the LPV system:
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x̂t =
L

∑
j=1

h(υ(t))x̂j
t. (5.3)

The proposed control algorithm remained the same. This did however not yield
any positive results either.
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Chapter 6

Discussion

6.1 Modelling

In the thesis a foundation has been made towards modelling and simulating
a hybrid system convertiplane. Section (3.2) states that in order to verify the
control strategies in simulation it is required to have accurate descriptions of
the forces and moments working on the aircraft. In the following sections
the most important forces and moments on the aircraft were described. The
resulting model is essentially a fixed-wing aircraft with the added capability
of generating lift force and rolling, pitching and yawing moments from the
quadcopter propellers. This in many ways what would be expected to arrive
at. However, there are many potential contributions that ought to be described
that may affect the performance of the aircraft and controller that impacts
the validity of the simulations. Many of these effects are well described
in the literature both for fixed-wing aircraft and quadcopter aircraft. For
conservative flight envelopes these effects can be neglected without much loss
of performance.

During the transition phase from hovering to fixed-wing and back flight
conditions are well beyond the normal scopes of the regular models. The
airspeed is below stall speed for the aircraft and simply not high enough in
order to generate the required lift to keep the aircraft in stable flight. At that
point the quadcopter propellers will have to assist with generating lift and
controlling the aircraft. Even if the airspeed is below stall velocity for the
fixed-wing, it is still well above the normal working conditions of a quadcopter
of this size. It was briefly mentioned in the paragraph regarding propeller
aerodynamics that it is be expected to see a degradation in the effective thrust
generated from the upward-facing quadcopter propellers, as well as blade-
flapping effects becoming a considerable factor for large translational velocities.
The analysis that was done with the STARMAC [20] is quite specific for that
aircraft. Analysing similar effects on the Kestrel is probably a thesis on its own
and well beyond the scope of this thesis. Another contribution that might affect
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the aircraft during a transition mode might be the disruption of the airflow
across the aerofoils from the quadcopter propellers. This will cause a loss of
lifting force generated by the wings. None of these effects were investigated
any further in this thesis, but might be of interest to analyse further in future
work in order to create realistic simulation environments and develop more
robust controllers.

6.2 Simulations

6.2.1 Noise

It was chosen to perform all simulations in this thesis in a deterministic setting,
and not consider any process or measurement noise. The reason for this choice
was to focus on the proposed solution method of using MMA and LPV methods
for handling uncertainties in plant parameters and handling variations in flight
conditions for the given systems. The advantage of using a deterministic setting
is that it is easier to directly investigate the inherent robustness of the method,
and made it possible to directly observe the effects of using linearised state-
space systems for estimation and linear controllers. To include noise is be
perfectly valid and the convergence proof given in [17] will still hold.

6.2.2 Quadcopter Simulations

In the simulations done for hovering with the quadcopter the full six degrees
of freedom dynamic models were used as the system plant. Gravity and the
forces and moments generated from the control inputs were the external forces
considered.The control inputs were assumed to be direct force inputs affecting
the UAV without going through computing the actual rotational velocities
of each individual propeller, take into account their physical properties and
then compute the effective forces and moments the propellers generate. This
assumes that each pair of opposite facing propellers when generating roll, pitch
and yaw moments will have to generate perfectly opposing thrusts for roll and
pitch, while there has to be differences in the total angular velocities in order to
generate yawing moments. This is not a realistic scenario.

In reality angular velocities will be unbalanced and there will also be a resulting
yawing moment and linear forces arising from these asymmetries. It was
assumed that these contributions were small and without a realistic physical
model to work out from, creating physical models for the respective propellers
would be an educated guess at best.
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6.2.2.1 Hovering

Looking at Figure (5.3 c)) the quadcopter responds quickly and is able to
track the sepoints accurately. A larger overshoot can be observed when the
quadcopter attempts to track the second step change in the setpoint value at
t =30, this is due to the integral term in the controller being smaller and not
stabilised for the first setpoint change than the second thus creating a smaller
overshoot. Without the integral term the controller was not able to handle the
constant gravitational force and it resulted in a constant offset in the altitude pd
and vertical velocity w.

6.2.2.2 Setpoint Tracking

As seen in Figure (5.6) a) and b) the quadcopter is able to accurately track
step responses in pn and pe directions with the overshoots seeming to be
proportional to the magnitude of the step change. Figure (5.6) c) shows that
the controller is able to stabilise the quadcopter at the desired setpoints. Some
oscillations can be observed at points that corresponds to moments when there
were changes in setpoints in the pn and pe directions. This is due to the
quadcopter tilting to move to the new setpoint, which cause a loss in vertical
lift thus a small loss in altitude and causing the quadcopter to have to stabilise
in altitude once more. Figure( 5.8) shows the Euler-angle positions and it can
be seen that the controller is able to stabilise the quadcopter.

Figure (5.7) shows the dynamic weighting of each of the candidate models. The
MMAE algorithm correctly identifies the candidate model with the parameter
value most similar to the true parameter value in the plant. However, there
are points at which the algorithm goes through a series of quick alternations
between the different candidate models before stabilising again. Thes timing of
these alternations correspond to the points when there are changes in setpoints
in the pn and pe directions. These changes seem to occur instantly, but in fact
the algorithm uses 20-30 iterations (0.2-0.3 seconds) going through continuous
transitions. When the step changes in setpoint happen the quadcopter is
forced away from its steady hovering state. It has to rotate and move, and
those velocities can become quite substantial. When this occurs the nonlinear
coupling parts of Equation(3.39) become prevalent, since these terms are not
modelled into the linear observers it becomes difficult for the observers to
correctly estimate the system state. Thus, leading to the algorithm making
wrong decisions regarding which candidate model is the correct one since
the specific value of the unknown parameter is less important for the system
dynamics.
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6.2.2.3 Trajectory Tracking

When set to follow continuous trajectories in pn and pe directions the controller
manages to track the step transitions in altitude accurately in the same manner
as the previous simulations. In Figures (5.9) a) and b) it can be seen that the
controller is able to make the quadcopter track the desired trajectory correctly,
but delayed by 1-2 seconds compared to the desired trajectory. One way
of minimising this delay could have been to increase the weighting of the
inertial positions in the LQR state weighting matrix QLQR, this did not yield
substantially improved results. Too large weighting parameters resulted in
general degradation of the controller performance.

In Figure (5.10) the controller is able to stabilise the Euler-angles satisfactorily.
When following a slowly varying trajectory the quadcopter does not perform
sharp manoeuvres which means the assumptions of small linear and angular
velocities still hold for the linear observers. This can be confirmed by observing
the dynamic weights in Figure (5.11) where the MMAE algorithm is able to
correctly identify the candidate model with the mpoint parameter value most
resembling the true value in the plant, while the quadcopter is following a
continuous trajectory.

6.2.2.4 Trajectory Tracking With Varying Weight

Figures (5.12 - 5.14) shows how the MMAE algorithm is able to precisely
and correctly change between the candidate models during the simulation
while the true value of mpoint in the plant changes, even while the quadcopter
is following a continuous trajectory. Thus confirming that it is indeed the
unknown parameter that decides the candidate model of the MMA algorithm.

6.2.3 Aircraft Simulation

When simulating the longitudinal model of the aircraft it was chosen not
to consider wind. This degrades the results validity compared to a realistic
scenario. The choice was made in order to be able to focus on the performance
of the controller and the MMA algorithm.

6.2.3.1 Single Model Simulation

By investigating Figures (5.16 - 5.18) it can be confirmed that the estimation is
performing well and the controller is capable of maintaining level flight.

When the aircraft was set to follow desired trajectories in altitude and airspeed
Figures (5.19 - 5.19) show that it tracked the trajectories accurately. The altitude
plot shows some overshoot when switching between climb/descent and level
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flight, and minor deviations during changes in the airspeed. The aircraft
follows the desired airspeed trajectory accurately. When the aircraft changes
flight path (altitude changes) small oscillations in the airspeed occur which it
manages to stabilise from.

6.2.3.2 Multiple Model Simulation

Figures (5.22 - 5.22) show that the aircraft is controlled correctly while
employing multiple models, and portray similar behaviour as when only
considering a single model. As seen in Figure (5.25) the MMA algorithm
correctly identifies the candidate model with CLα = 3.55 which is the model
with parameter value closest to the true parameter value CLα = 3.45 in the
plant.

Figure (5.26) shows the altitude and Figure (5.27) the airspeed when the
aircraft was set to follow a trajectory. It behaves similarly to the single model
simulation. However, looking at Figure (5.29) the dynamic weights are a mess.
For time 0 until∼30 the aircraft is climbing and the MMA algorithm chooses the
model with CLα = 2.55. From time ∼50 to ∼75, the plane is changing airspeed,
and during that period it oscillate between different candidate models. From
time 75 until 175 the aircraft flies at constant altitude while maintaining an
airspeed Va = 30m/s and the MMA algorithm chooses the model with CLα =
4.55. From time 175 until 210 the aircraft changes altitude and desired airspeed,
and the MMA algorithm jumps between different candidate models and briefly
settles on the candidate model with CLα = 4.55. First after time 250 when
airspeed has stabilised on the desired airspeed and the plane flies at a stable
altitude the MMA algorithm correctly identifies the correct model with CLα =
3.55 which is the one closest to the true value of the plant which is CLα = 3.45.

This seeming inability for the MMA algorithm to decide on the correct
candidate model is most likely a result of the process of designing estimators
and controllers. Each of the estimators and corresponding controllers were
designed based on the calculated trim conditions for the various candidate
models. Trim conditions for each candidate model were computed to follow
the same airspeed and constant altitude. Comparing the computed the trim
state for the candidate model with the lowest and highest CLα -values; the
trim state for the candidate model corresponding to the lowest CLα = 2.55
is x∗ = [0, 24.85, 2.69, 0.1077, 0], and the candidate model with the largest
CLα = 4.55 is x∗ = [0, 24.95, 1.59, 0.06, 0], the other candidate models had trim
states with values that were distributed between these two extremes.

During ascent the aircraft will require to increase its pitch angles, and effectively
angle of attack. For descent it will have to decrease its pitch angle. This can
be confirmed in Figure(5.30). Based on this it is reasonable to assume that the
estimator which is computed for the candidate model with the largest trim pitch
angle will perform better during ascent, and that the controller which controls
the attitude towards the larges pitch will perform better during ascent. This

85



is exactly what happens from time 0 to 30 where the aircraft is climbing and
the MMA algorithm chooses the candidate model with the largest trim pitch
angle. The same argument can be used for time 200 to 220 where the aircraft
is descending and the MMA algorithm chooses the model with the lowest trim
pitch angle. For time 75 to 175 where the aircraft is set to maintain a higher
airspeed and constant altitude. In order to maintain a higher airspeed and at
constant altitude the aircraft will have to decrease pitch angle, which can be
seen in Figure (5.30). Thus the MMA algorithm chooses the model with the
lowest trim pitch angle.

For the multiple model adaptive estimation and control simulations of the
fixed-wing aircraft it was chosen to use CLα as the unknown parameter instead
of adding an unknown weight in a similar manner done for the quadcopter
simulations. The same effects of the trim conditions effectively being the
deciding factor between the candidate models could be seen when applying
an unknown weight. However, this effect was more pronounced when varying
CLα than varying the weight since variations in CLα had larger impact on the
computed trim state pitch angle θ∗.

6.2.3.3 LPV Implementation

As explained previously it is expected that LPV estimation and control could
have been a good method for fixing the issues that arose when applying
the MMA algorithm to the fixed-wing aircraft. An attempt was made at
implementing an LPV architecture onto the MMA method for the fixed-wing
aircraft. This did not yield any positive results. Section (5.3.3) describes the
approach taken towards constructing the LPV system. The approach taken was
heavily influenced by [38].

The system can be described at any point of the state x = [−, u, w, θ, q] using the
non-linear embedding of the parameters approach described in Section (4.3.3.3).
It was attempted without success to construct an LQR controller based on these
state-space systems. Utilising the method of system augmentation in Section
(4.3.4) by adding integral states directly on this state-space system yielded an
uncontrollable system.

As a workaround it was chosen to instead use the linearised state-space model
from Section (4.3.3.2) for which the integral action LQR controller was initially
designed [45]1. However, this requires the computation of trim conditions on
which to base the linearisation method. There are infinitely many ways of
computing trim conditions based on what is desired to achieve. In this thesis
a method was created which computed the trim conditions given a desired
airspeed and flight path angle. This seemed like a valid approach based
on the desire to follow trajectories in altitude and airspeed. The calculated
trim conditions were then used to compute the state-space matrices used for

1The web-page by the authors of [35] which contains an unpublished supplement to the book.
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LPV estimation, thus local observers and corresponding linear controllers were
obtained to work as vertices in the LPV system. It should be noted that each of
the these vertex systems were capable of controlling the aircraft during stable
flight around its trim state.

Since the trim conditions for each of the vertex systems were computed for a
given airspeed and flight path angle they were deemed a natural choice for
computing the weighting between the vertex systems based on the estimated
states of the aircraft. This could have been a valid choice, however not with the
proposed method for computing the weighting coefficients in Equation (5.1).
This approach assumes a linear relationship between the vertex systems. Using
the same approach for computing the weights with only a single scheduling
parameter the two weights h1 and h2 would be related by h1 = 1− h2. Looking
at how the vertex systems are added together to create the polytopic LPV
system in Equation (3.72), the same dependence on the scheduling parameter
and relationship between the weighting coefficients would be expected to see
between the matrices of the vertex systems. Looking at Table (4.3) such a linear
relationship is clearly not applicable.

The problem outline above regarding the proposed LPV architecture might not
be the complete explanation for the failure to implement an LPV system. It does
however reveal clear issues with the attempted approach, and contradictions
with the required assumptions for regarding the LPV system as polytopic over
the scheduling parameters. Given the restricted time nature of the thesis this
flaw was discovered too late to come up with and implement an alternative
approach.

6.3 Control Methodology

Utilising a linear controller to control a non-linear plant is inherently limited by
its linearity. Wander too far off from the linearisation point and the robustness
of the controller quickly deteriorates. Throughout the thesis the LQR controller
was used for both the quadcopter and the fixed-wing aircraft, and for the
given settings in the thesis it performed well. Its ease of implementation made
it possible to quickly employ it to a wide range of different systems while
simultaneously guaranteeing optimality for the given state-space system and
weighting matrices. With the added integral states the controller was able to
track the desired setpoints and trajectories in a sufficient manner.

Given that the LQR controller worked this well for both controlling the
quadcopter and fixed-wing systems it should be expected that the same
approach should be applicable to a transition phase between the two stages. A
proposed method would be to extend the control algorithm of the longitudinal
fixed-wing flight to include vertical thrust and pitching moment coming from
the quadcopter propellers in order to assist lifting and control until stable fixed-
wing flight is achievable.
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In this thesis the controllers of the MMA systems were all designed in the same
manner. With the control input being computed as the linear combination of
all the control inputs from the various candidate models weighted by their
dynamic weights, it was always assumed that essentially any of the controllers
of the candidate models should be able to control the system and that choosing
the wrong candidate model would not cause fatal outcomes. As described
in [6], multiple model adaptive control can be utilised for vastly different
controllers under varying flight conditions. However, then a mechanism must
be in place in order to ensure that when switching to a new candidate model the
controller will be able to control the system in a sufficient manner. If a complete
estimation and control suite using the MMA algorithm were to be used for the
whole flight envelope of the hybrid UAV system, secure switching mechanisms
would have to be employed during the transition phases.

6.4 MMA and LPV Methods

A huge advantage of using the MMA and LPV paradigms is the ability of
estimating and controlling a highly nonlinear system given limited knowledge
of the model parameters and possibility of highly varying flight conditions.

The MMA algorithm has shown its ability to correctly identify the optimal
candidate model given a system with large uncertainties in predetermined
plant parameters. Utilising linear observers and linear controllers the algorithm
worked well as long as the unmodelled dynamics did not become too
dominant. The problems with identifying the correct model when the fixed-
wing aircraft was set to track a trajectory were more likely due to the
methodology for estimator and controller design than the MMA method. Parts
of that problem could have been alleviated with a successful implementation of
the LPV methodology.

Even though the attempt at implementing LPV estimation and control was
unsuccessful it is still considered a strong candidate towards ensuring stable
flight through the complete flight envelope of Kestrel. The features of
the method are considered well suited towards handling the challenges of
transition and fixed-wing flight, and the methodology fits well together with
the MMA method.

The multiple model algorithm is a simple yet effective way of working with
a dynamical system operating under large parameter uncertainties. In theory
the concept could be extended to concern a large set of parameters in the plant
while having the algorithm sort things out by finding the optimal parameter set.
However, as the number of unknown parameters increase, the computational
complexity of the algorithm grows exponentially. With the approach taken in
this thesis by using N fixed candidate models for each unknown parameter,
with M unknown parameters the algorithm is required to compute estimates
and weighting of NM models at each iteration. Adding the LPV system with L
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vertex systems for each model the number of models to compute increases to
L · NM. With the often limited computing power found on board a UAV, and
the hard real-time requirement of an autopilot working at high frequencies it is
safe to say that the capabilities are limited. One solution could be to optimise
the unknown parameters in succession in order to relieve the computational
requirement at each iteration. On top of everything comes the ever present
problem in optimisation of local extrema.

6.5 Further Work

It is expected that the development of the Kestrel concept will continue at FFI.

In this thesis the dual system convertiplane hybrid UAV concept has for the first
time been investigated as a complete system in an organised manner. A solution
concept of modelling, estimation, parameter identification and control has been
presented. Due to the inherent complexity of the problem and the limitations
of the thesis every segment of the solution concept are open for improvement.

The most direct points of continuation on the work in this thesis would
be to improve on the shortcomings of the achieved results. A successful
implementation of the LPV system would make it possible to further analyse
the validity of using the MMA algorithm together with the proposed methods
for estimation and control of the fixed-wing aircraft. Extending the simulations
of the fixed-wing aircraft to include the full 6 DoF dynamics of the aircraft and
design a controller for the lateral dynamics is required in order to achieve flight
of the complete aircraft. Introducing noise and wind to the simulations would
further work towards confirming the validity of the methods.

The biggest issue that was not addressed directly in this thesis is the transition
phases between quadcopter and fixed-wing mode. Investigating the dynamics
of the aircraft during this phase, and specifically for the Kestrel, would make it
possible to build a more realistic simulation environment and provide valuable
information regarding the possible challenges when designing more robust
controllers. With the presented solution concept of MMA LPV estimation
and control having good track records for controlling both fixed-wing and
quadcopter aircraft, it would be interesting to see a successful implementation
of the LPV methodology and extend these concepts into the transition regime
by combining the capabilities of the quadcopter with the fixed-wing flight. Of
special interest would be to see how the quadcopter control interacts with the
fixed-wing dynamics.

Implementing the methods outlined in this thesis in the physical Kestrel are not
straightforward either. As described earlier, it is not feasible to implement the
MMA algorithm for all the parameters of the aircraft and let the algorithm sort
things out on its own. The MMA algorithm is best employed to a few selected
parameters that happen to change on the spot or throughout an experiment
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that are not easily determined without a more careful examination, or other
factors that are not easily determined. A series of measurements must be
performed in order to determine the physical parameters of the aircraft which
are needed for estimators and controllers as well as for building a robust
simulation environment.
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Chapter 7

Conclusion

In this thesis modelling, estimation and control of a dual system convertiplane
has been investigated.

A mathematical model for a dual system convertiplane has been developed
based on the concept plane Kestrel. The model consist of twelve equations
constituting the full six degrees of freedom dynamic model for the aircraft. It
includes propulsion forces and actuator deflections from both the fixed-wing
aircraft and the quadcopter propellers. The external forces and moments that
are expected to have the largest contributions on the aircraft dynamics have
been investigated and been included in the model.

The system is highly non-linear and the controller will have to be able to handle
a plethora of different flight conditions. Everything from hovering using the
quadcopter propellers, maintaining steady flight through a transition phase to
fixed-wing flight, maintaining stable fixed-wing flight and the transition back to
quadcopter mode. All of this while also considering possibly large uncertainties
in the parameters of the aircraft model. A linear parameter varying multiple
model adaptive architecture was suggested as a possible solution method.

Two simulation models were constructed. One of a quadcopter during hover,
and the other of the longitudinal flight of a fixed-wing aircraft. The models
were constructed with predefined unknown parameters. Linearised systems
for estimation and control were obtained for both systems. The MMA algorithm
together with and infinite horizon LQR controller with integral action was
employed in order to estimate and control the systems while simultaneously
identify the unknown parameters.

The quadcopter was successfully controlled in a series of simulations following
various trajectories and changes in desired setpoints while an unknown mass
was attached to it which changes its dynamics. The multiple model algorithm
was able to dynamically correctly identify the candidate model which had
the value of the weight which most closely resembled the true weight on the
quadcopter. This worked well as long as state of the quadcopter remained
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close to the linearisation point for the linearised state-space system and
corresponding controller. With too large deviations from the linearisation point
the multiple model algorithm struggled with identifying the correct model, but
was able to correct itself once stability was regained.

The Longitudinal flight of a fixed-wing aircraft was simulated. Successful flight
while following a trajectory in altitude and desired airspeed was achieved.
This was done with an state estimator using embedding of the non-linearities
at a calculated trim point, and LQR controller with integral action obtained
by using the linearised state-space matrices calculated at the same trim point.
With uncertainties in the CLα aerodynamic parameter the multiple model
algorithm was able to correctly identify the candidate model with the suggested
parameter value which most closely resembled the true parameter value of the
aircraft while maintaining stable flight at the trim point. While following a
trajectory in altitude and desired airspeed the multiple model algorithm was
not able to identify the correct model during flight conditions that deviated too
far from the conditions the trim point was calculated for. During these regimes
other factors of estimator and controller design seemed to determine the quality
of the models.

Implementation of a linear parameter varying method was attempted without
success. Despite this, the linear parameter varying methodology is still
considered a strong candidate towards handling the huge variations in flight
conditions the Kestrel is expected to meet. Implementation of the linear
parameter varying architecture and a more robust controllers are considered
the best approaches for further work.

The work done in this thesis is an important step in enabling further
development of the Kestrel as a platform and concept.
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Vertical Take-off and Landing Fixed-Wing UAV’. In: IFAC-PapersOnLine.
14th IFAC Symposium on Control in Transportation SystemsCTS 2016
49.3 (1st Jan. 2016), pp. 267–272. ISSN: 2405-8963. DOI: 10.1016/j . ifacol .
2016 . 07 . 045. URL: http : / /www . sciencedirect . com/ science / article / pii /
S2405896316302415 (visited on 08/01/2019).

[14] E. Cetinsoy et al. ‘Design and Construction of a Novel Quad Tilt-
Wing UAV’. In: Mechatronics. Special Issue on Intelligent Mechatronics
(LSMS2010 & ICSEE2010) 22.6 (1st Sept. 2012), pp. 723–745. ISSN: 0957-
4158. DOI: 10 . 1016 / j . mechatronics . 2012 . 03 . 003. URL: http : / / www .
sciencedirect . com / science / article / pii / S095741581200044X (visited on
04/05/2019).

[15] Richard C. Dorf and Robert H. Bishop. Modern Control Systems. 12 edition.
Prentice Hall: Pearson, 29th July 2010. 1104 pp. ISBN: 978-0-13-602458-3.

[16] William Ellis et al. ‘Design, Build and Test of the VTOL UAV-’Kestrel’’.
Mastes Thesis. University of Southampton.

[17] V. Hassani et al. ‘Multiple Model Adaptive Estimation and Model Iden-
tification Usign a Minimum Energy Criterion’. In: 2009 American Control
Conference. 2009 American Control Conference. June 2009, pp. 518–523.
DOI: 10.1109/ACC.2009.5160446.

[18] History of Quadcopters and Multirotors. URL: https://www.krossblade.com/
history-of-quadcopters-and-multirotors (visited on 04/05/2019).

[19] Menno Hochstenbach et al. ‘Design and Control of an Unmanned Aerial
Vehicle for Autonomous Parcel Delivery with Transition from Vertical
Take-off to Forward Flight – VertiKUL, a Quadcopter Tailsitter’. In:
International Journal of Micro Air Vehicles 7.4 (1st Dec. 2015), pp. 395–405.
ISSN: 1756-8293. DOI: 10.1260/1756-8293.7.4.395. URL: https://doi.org/10.
1260/1756-8293.7.4.395 (visited on 04/05/2019).

[20] Gabriel Hoffmann et al. ‘Quadrotor Helicopter Flight Dynamics and
Control: Theory and Experiment’. In: AIAA Guidance, Navigation and
Control Conference and Exhibit. AIAA Guidance, Navigation and Control
Conference and Exhibit. Hilton Head, South Carolina: American Institute
of Aeronautics and Astronautics, 20th Aug. 2007. ISBN: 978-1-62410-015-
4. DOI: 10.2514/6.2007-6461. URL: http://arc.aiaa.org/doi/10.2514/6.2007-
6461 (visited on 23/01/2019).

[21] M. Hua et al. ‘Introduction to Feedback Control of Underactuated
VTOLvehicles: A Review of Basic Control Design Ideas and Principles’.
In: IEEE Control Systems Magazine 33.1 (Feb. 2013), pp. 61–75. ISSN: 1066-
033X. DOI: 10.1109/MCS.2012.2225931.

94



[22] Hybrid Quadrotor - Hybrid Quadcopter - VTOL UAV - Autonomous Takeoff -
Autonomous Landing. URL: https://www.latitudeengineering.com/products/
hq/ (visited on 24/05/2019).

[23] Petros A. Ioannou and Jing Sun. Robust Adaptive Control. Courier Corpor-
ation, 19th Dec. 2012. 850 pp. ISBN: 978-0-486-49817-1.

[24] JUMP 20 | Arcturus UAV. URL: https://arcturus-uav.com/product/jump-20
(visited on 04/05/2019).

[25] king-theme.com. Transition. 1st Nov. 2017. URL: https://www.altiuas.com/
transition/ (visited on 04/05/2019).

[26] Francisco Ronay López-Estrada et al. ‘LPV Model-Based Tracking Con-
trol and Robust Sensor Fault Diagnosis for a Quadrotor UAV’. In: Journal
of Intelligent & Robotic Systems 84.1 (1st Dec. 2016), pp. 163–177. ISSN: 1573-
0409. DOI: 10.1007/s10846- 015- 0295- y. URL: https://doi .org/10.1007/
s10846-015-0295-y (visited on 25/05/2019).

[27] R. Mahony, V. Kumar and P. Corke. ‘Multirotor Aerial Vehicles: Model-
ing, Estimation, and Control of Quadrotor’. In: IEEE Robotics Automation
Magazine 19.3 (Sept. 2012), pp. 20–32. ISSN: 1070-9932. DOI: 10.1109/MRA.
2012.2206474.

[28] Hanmant G. Malkapure and M. Chidambaram. ‘Comparison of Two
Methods of Incorporating an Integral Action in Linear Quadratic Regu-
lator’. In: IFAC Proceedings Volumes. 3rd International Conference on Ad-
vances in Control and Optimization of Dynamical Systems (2014) 47.1
(1st Jan. 2014), pp. 55–61. ISSN: 1474-6670. DOI: 10 . 3182 / 20140313 - 3 -
IN- 3024.00105. URL: http ://www.sciencedirect .com/science/article/pii/
S1474667016326350 (visited on 26/05/2019).

[29] Robert G McSwain, Louis J Glaab and Colin R Theodore. ‘Greased
Lightning (GL-10) Performance Flight Research – Flight Data Report’. In:
(), p. 79.

[30] K. S. Narendra and J. Balakrishnan. ‘Adaptive Control Using Multiple
Models’. In: IEEE Transactions on Automatic Control 42.2 (Feb. 1997),
pp. 171–187. ISSN: 0018-9286. DOI: 10.1109/9.554398.

[31] Ugur Ozdemir et al. ‘Design of a Commercial Hybrid VTOL UAV
System’. In: Journal of Intelligent & Robotic Systems 74.1-2 (Apr. 2014),
pp. 371–393. ISSN: 0921-0296, 1573-0409. DOI: 10.1007/s10846-013-9900-0.
URL: http :// link . springer . com/10.1007/s10846- 013- 9900- 0 (visited on
04/05/2019).

[32] PixhawkAdmin. Home Page. URL: http : / / pixhawk . org/ (visited on
04/05/2019).

[33] Vasile Prisacariu. ‘THE HISTORY AND THE EVOLUTION OF UAVs
FROM THE BEGINNING TILL THE 70s’. In: Journal of Defense Resources
Management (JoDRM) 8.1 (2017), pp. 181–189. ISSN: 2068-9403. URL: https:
//www.ceeol.com/search/article-detail?id=544698 (visited on 04/05/2019).

[34] Quan Quan. Introduction to Multicopter Design and Control. Singapore:
Springer Singapore, 2017. ISBN: 978-981-10-3381-0 978-981-10-3382-7. DOI:
10.1007/978-981-10-3382-7. URL: http://link.springer.com/10.1007/978-
981-10-3382-7 (visited on 06/05/2019).

95



[35] Randal W. Beard and Timothy W. McLain. Small Unmanned Aircraft:
Theory and Practice. Princeton, N.J: Princeton University Press, 2012.
xiii+300. ISBN: 978-0-691-14921-9.

[36] D. Rotondo, V. Hassani and A. Cristofaro. ‘A Multiple Model Adaptive
Architecture for the State Estimation in Discrete-Time Uncertain LPV
Systems’. In: 2017 American Control Conference (ACC). 2017 American
Control Conference (ACC). May 2017, pp. 2393–2398. DOI: 10.23919/ACC.
2017.7963311.

[37] Damiano Rotondo et al. ‘Automated Generation and Comparison of
Takagi–Sugeno and Polytopic Quasi-LPV Models’. In: Fuzzy Sets and
Systems. Theme: Fuzzy Systems 277 (15th Oct. 2015), pp. 44–64. ISSN:
0165-0114. DOI: 10.1016/j.fss.2015.02.002. URL: http://www.sciencedirect.
com/science/article/pii/S0165011415000652 (visited on 25/05/2019).

[38] Damiano Rotondo et al. ‘Icing Diagnosis in Unmanned Aerial Vehicles
Using an LPV Multiple Model Estimator’. In: IFAC-PapersOnLine. 20th
IFAC World Congress 50.1 (1st July 2017), pp. 5238–5243. ISSN: 2405-8963.
DOI: 10.1016/j. ifacol .2017.08.462. URL: http://www.sciencedirect.com/
science/article/pii/S2405896317308248 (visited on 27/05/2019).

[39] Damiano Rotondo et al. ‘LPV Model Reference Control for Fixed-Wing
UAVs’. In: IFAC-PapersOnLine. 20th IFAC World Congress 50.1 (1st July
2017), pp. 11559–11564. ISSN: 2405-8963. DOI: 10 . 1016 / j . ifacol . 2017 .
08 . 1640. URL: http : / / www . sciencedirect . com / science / article / pii /
S2405896317322413 (visited on 08/01/2019).

[40] Francesco Sabatino. Quadrotor Control: Modeling, Nonlinearcontrol Design,
and Simulation. 2015. URL: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:
diva-175380 (visited on 25/05/2019).

[41] Adnan S. Saeed et al. ‘A Survey of Hybrid Unmanned Aerial Vehicles’.
In: Progress in Aerospace Sciences 98 (1st Apr. 2018), pp. 91–105. ISSN: 0376-
0421. DOI: 10.1016/j.paerosci.2018.03.007. URL: http://www.sciencedirect.
com/science/article/pii/S0376042117302233 (visited on 04/05/2019).

[42] Jeff S. Shamma. ‘An Overview of LPV Systems’. In: Control of Linear Para-
meter Varying Systems with Applications. Ed. by Javad Mohammadpour
and Carsten W. Scherer. Boston, MA: Springer US, 2012, pp. 3–26. ISBN:
978-1-4614-1833-7. DOI: 10.1007/978-1-4614-1833-7_1. URL: https://doi.
org/10.1007/978-1-4614-1833-7_1 (visited on 25/05/2019).

[43] Dan Simon. ‘Kalman Filtering for Fuzzy Discrete Time Dynamic Sys-
tems’. In: Applied Soft Computing 3.3 (1st Nov. 2003), pp. 191–207. ISSN:
1568-4946. DOI: 10 . 1016 / S1568 - 4946(03 ) 00034 - 6. URL: http : / / www .
sciencedirect . com / science / article / pii / S1568494603000346 (visited on
25/05/2019).

[44] C. Sloth, T. Esbensen and J. Stoustrup. ‘Active and Passive Fault-Tolerant
LPV Control of Wind Turbines’. In: Proceedings of the 2010 American Control
Conference. Proceedings of the 2010 American Control Conference. June
2010, pp. 4640–4646. DOI: 10.1109/ACC.2010.5531061.

[45] Start | Small Unmanned Aircraft: Theory and Practice. URL: http://uavbook.
byu.edu/doku.php (visited on 25/05/2019).

96



[46] Brian L. Stevens, Frank L. Lewis and Eric N. Johnson. Aircraft Control
and Simulation: Dynamics, Controls Design, and Autonomous Systems. John
Wiley & Sons, 2nd Nov. 2015. 768 pp. ISBN: 978-1-118-87098-3.

[47] Seunghee Yu and Yongjin Kwon. ‘Development of VTOL Drone for Stable
Transit Flight’. In: Journal of Computer and Communications 05 (9th May
2017), p. 36. DOI: 10 . 4236 / jcc . 2017 . 57004. URL: https : / / www . scirp .
org/journal/PaperInformation.aspx?PaperID=76198&#abstract (visited on
04/05/2019).

97


