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Abstract. We identify a number of decidable and undecidable frag-
ments of first-order concatenation theory. We also give a purely universal
axiomatization which is complete for the fragments we identify. Further-
more, we prove some normal-form results.

1 Introduction

1.1 First-order Concatenation theory

First-order concatenation theory can be compared to first-order number theory,
e.g., Peano Arithmetic or Robinson Arithmetic. The universe of a standard struc-
ture for first-order number theory is the set of natural numbers. The universe
of a standard structure for first-order concatenation theory is a set of strings
over some alphabet. A first-order language for number theory normally contains
two binary functions symbols. In a standard structure these symbols will be
interpreted as addition and multiplication. A first-order language for concate-
nation theory normally contains just one binary function symbol. In a standard
structure this symbol will be interpreted as the operator that concatenates two
stings. A classical first-order language for concatenation theory contains no other
non-logical symbols apart from constant symbols.

In this paper we extend concatenation theory with a binary relation symbol and
introduce bounded quantifiers analogous to the bounded quantifiers (∀x ≤ t)φ
and (∃x ≤ t)φ we know from number theory. Before we go on and state our main
results, we will explain some notation and state a few basic definitions.

1.2 Notation and Basic Definitions

We will use 0 and 1 to denote respectively the bits zero and one, and we use
pretty standard notation when we work with bit strings: {0,1}∗ denotes the set
of all finite bit strings; (b)i denotes the ith bit of the bit string b; and 013021
denotes the bit string 0111001. The set {0,1}∗ contains the empty string which
we will denote ε.
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Let LBT denote the first-order language that consist of the constants symbols
e, 0, 1, the binary function symbol ◦ and the binary relation symbol v. We will
consider two LBT -structures named B and D.

The universe of B is the set {0,1}∗. The constant symbol 0 is interpreted as the
string containing nothing but the bit 0, and the constant symbol 1 is interpreted
as the string containing nothing but the bit 1, that is, 0B = 0 and 1B = 1. The
constant symbol e is interpreted as the empty string, that is, eB = ε. Moreover,
◦B is the function that concatenates two strings (e.g. 01 ◦B 000 = 01000 and
ε ◦B ε = ε). Finally, vB is the substring relation, that is, u vB v iff there exists
bit strings x, y such that xuy = v.

The structure D is the same structure as B with one exception: the relation
u vD v holds iff u is a prefix of v, that is, iff there exists a bit string x such
that ux = v. To improve the readability we will use the symbol � in place of
the symbol v when we are working in the structure D. Thus, u v v should be
read as “u is a substring of v”, whereas u � v should be read as “u is a prefix
of v”. When we do not have a particular structure in mind, e.g. when we deal
with syntactical matters, we will stick to the symbol v.

We introduce the bounded quantifiers (∃x v t)α and (∀x v t)α as syntactical
abbreviations for respectively (∃x)[x v t∧α] and (∀x)[x v t → α] (x is of course
not allowed to occur in the term t), and we define the Σ-formulas inductively by

– α and ¬α are Σ-formulas if α is of the form s v t or of the form s = t where
s and t are terms

– α ∨ β and α ∧ β are Σ-formulas if α and β are Σ-formulas
– (∃x v t)α and (∀x v t)α and (∃x)α are Σ-formulas if α is a Σ-formula.

We assume that the reader notes the similarities with first-order number theory.
The formulas that correspond to Σ-formulas in number theory are often called
Σ1-formulas or Σ0

1 -formulas. Next we introduce the biterals. The biterals corre-
spond to the numerals of first-order number theory. Let b be a bit string. We
define the biteral b by ε = e, b0 = b ◦ 0 and b1 = b ◦ 1.

A Σ-formula φ is called a Σn,m,k-formula if it contains n unbounded existential
quantifiers, m bounded existential quantifiers and k bounded universal quan-
tifiers. A sentence is a formula with no free variables. The fragment ΣB

n,m,k

(ΣD
n,m,k) is the set of Σn,m,k-sentences true in B (respectively, D).

To improve the readability we will skip the operator ◦ in first-order formulas
and simply write st in place of s ◦ t. Furthermore, we will occasionally contract
quantifiers and write, e.g., ∀w1, w2 v u[φ] in place of (∀w1 v u)(∀w2 v u)φ, and
for ∼∈{�,v,=}, we write s 6∼ t in place of ¬s ∼ t.

1.3 Main Results and Related Work

We prove that the fragment ΣB
0,m,k is decidable (for any m, k ∈ N), and we

prove that ΣB
1,2,1 and ΣB

1,0,2 are undecidable. Furthermore, we prove that the
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The Axioms of B

1. ∀x[ x = ex ∧ x = xe ]
2. ∀xyz[ (xy)z = x(yz) ]
3. ∀xy[ (x 6= y)→ ( (x0 6= y0) ∧ (x1 6= y1) ) ]
4. ∀xy[ x0 6= y1 ]
5. ∀x[ x v e↔ x = e ]
6. ∀x[ x v 0↔ (x = e ∨ x = 0) ]
7. ∀x[ x v 1↔ (x = e ∨ x = 1) ]
8. ∀xy[ x v 0y0↔ (x = 0y0 ∨ x v 0y ∨ x v y0) ]
9. ∀xy[ x v 0y1↔ (x = 0y1 ∨ x v 0y ∨ x v y1) ]

10. ∀xy[ x v 1y0↔ (x = 1y0 ∨ x v 1y ∨ x v y0) ]
11. ∀xy[ x v 1y1↔ (x = 1y1 ∨ x v 1y ∨ x v y1) ]

Fig. 1. These are the axioms of the first-order theory B.

fragments ΣD
0,m,k and ΣD

n,m,0 are decidable (for any n,m, k ∈ N), and we prove

that ΣD
3,0,2 and ΣD

4,1,1 are undecidable. Our results on decidable fragments are
corollaries of theorems that have an interest in their own right: We prove the
existence of several normal forms, and we give a purely universal axiomatization
of concatenation theory which is Σ-complete.

Recent related work can be found in Halfon et al. [6], Day et al. [2], Ganesh
et al. [3], Karhumäki et al. [8] and several other places, see Section 6 of [3] for
further references.

The material in Section 8 of the textbook Leary & Kristiansen [10] is also re-
lated to the research presented in this paper. So is a series of papers that starts
with with Grzegorczyk [4] and includes Grzegorczyk & Zdanowski [5], Visser
[13] and Horihata [7]. These papers deal with the essential undecidability of
various first-order theories of concatenation. The relationship between the var-
ious axiomatizations of concatenation theory we find in these papers and the
axiomatization we give below has not yet been investigated.

The theory of concatenation seems to go back to work of Tarski and Quine, see
Visser [13] for a brief account of its history.

2 Σ-complete Axiomatizations

Theorem 1. Let B and D be the set of axioms given in respectively Figure 1
and Figure 2. For any Σ-sentence φ, we have

B |= φ ⇒ B ` φ and D |= φ ⇒ D ` φ

Proof. We give a brief sketch of the (very long) proof of B |= φ ⇒ B ` φ. The
proof of D |= φ ⇒ D ` φ is similar. Full proofs can found in Kristiansen &
Murwanashyaka [9].
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The Axioms of D

- the first four axioms are the same as the first four axioms of B
5. ∀x[ x � e↔ x = e ]
6. ∀xy[ x � y0↔ (x = y0 ∨ x � y) ]
7. ∀xy[ x � y1↔ (x = y1 ∨ x � y) ]

Fig. 2. These are the axioms of the first-order theory D.

Prove (by induction on the structure of t) that there for any variable-free LBT -
term t exists a biteral b such that

B |= t = b ⇒ B ` t = b . (1)

Prove (by induction on the structure of b2) that we for any biterals b1 and b2
have

B |= b1 6= b2 ⇒ B ` b1 6= b2 . (2)

Use B ` ∀x[x0 6= e∧ x1 6= e] when proving (2). Furthermore, prove (by induction
on the structure of b2) that we for any biterals b1 and b2 have

B |= b1 v b2 ⇒ B ` b1 v b2 and B |= b1 6v b2 ⇒ B ` b1 6v b2 . (3)

It follows from (1), (2) and (3) that we have

B |= φ ⇒ B ` φ . (4)

for any φ of one of the four forms t1 = t2, t1 6= t2, t1 v t2, and t1 6v t2 where t1
and t2 are variable-free terms.

Use induction on the structure of b to prove the following claim:

If φ(x) is an LBT -formula such that we have B |= φ(b) ⇒ B ` φ(b) for
any biteral b, then we also have

B |= (∀x v b)φ(x)⇒ B ` (∀x v b)φ(x)

for any biteral b.

Finally, prove (by induction on the structure of φ) that we for any Σ-sentence
φ have B |= φ⇒ B ` φ. Use (4) in the base cases, that is, when φ is an atomic
sentence or a negated atomic sentence. Use the claim and (1) in the case φ is of
the form (∀x v t)ψ. The remaining cases are rather straightforward. ut

Corollary 2. The fragments ΣB
0,m,k and ΣD

0,m,k are decidable (for any m, k ∈
N).
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Proof. We prove that ΣB
0,m,k is decidable. Let φ be a Σ0,m,k-formula. The nega-

tion of a Σ0,m,k-formula is logically equivalent to a Σ0,k,m-formula (by De Mor-
gan’s laws). We can compute a Σ0,k,m-formula φ′ which is logically equivalent
to ¬φ. By Theorem 1, we have B ` φ if B |= φ, and we have B ` φ′ if B |= ¬φ.
The set of formulas derivable from the axioms of B is computably enumerable.
Hence it is decidable if φ is true in B. The proof that the fragment ΣD

0,m,k is
decidable is similar. ut

3 Normal Forms

A proof of the next lemma can be found several places, see e.g. Büchi & Senger
[1] or the proof of Theorem 6 in Karhumäki et al. [8]. The lemma is also proved
in [9].

Lemma 3. Let A ∈ {B,D}, and let s1, s2, t1, t2 be LBT -terms. There exist
LBT -terms s, t and variables v0, ..., vk such that

(1) A |= (s1 = t1 ∧ s2 = t2) ↔ s10s2s11s2 = t10t2t11t2
(2) A |= (s1 = t1 ∨ s2 = t2)↔ ∃v0 . . . vk[s = t]
(3) A |= (¬s1 = t1)↔ ∃v0 . . . vk[s = t].

Lemma 4. Let s1, t1 be LBT -terms. There exist LBT -terms s, t and variables
v1, . . . , vk such that

(1) D |= s1 � t1 ↔ ∃v1[s1v1 = t1] and (2) D |= (s1 6� t1)↔ ∃v1 . . . vk[s = t].

Proof. It is obvious that (1) holds. Furthermore, the formula s1 6� t1 is equivalent
in D to the formula

(t1 � s1 ∧ t1 6= s1) ∨ ∃xyz[(t1 = x0y ∧ s1 = x1z) ∨ (t1 = x1y ∧ s1 = x0z)] .

Thus, (2) follows by Lemma 3 and (1). ut

Comment: It is not known to us whether the bounded universal quantifier that
appears in clause (2) of the next lemma can be eliminated.

Lemma 5. Let s1, t1 be LBT -terms. There exist LBT -terms s, t and variables
v1, . . . , vk such that (1) B |= s1 v t1 ↔ ∃v1v2[t1 = v1s1v2] and

(2) B |= s1 6v t1 ↔ ∀v1 v t1∃v2 . . . vk[s = t].

Proof. Cause (1) is trivial. Furthermore, observe that s1 6v t1 is equivalent in B
to the formula (∀v v t1)α where α is

∃x[ t1x = vs1 ∧ x 6= e ] ∨ ∃xyz[ (t1 = x0y ∧ vs1 = x1z) ∨
(t1 = x1y ∧ vs1 = x0z) ] .

If we let vs1 � t1 abbreviate ∃x[vs1x = t], then α can be written as vs1 6� t1.
Thus, (2) follows by Lemma 3. ut
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Theorem 6 (Normal Form Theorem I). Any Σ-formula φ is equivalent in
D to a LBT -formula φ′ of the form

φ′ ≡ (Qt1
1 v1) . . . (Qtm

m vm)(s = t)

where t1, .., tm, s, t are LBT -terms and Q
tj
j vj ∈ {∃vj ,∃vj � tj ,∀vj � tj} for

j = 1, . . . ,m. Moreover, if φ does not contain bounded universal quantifiers,
then φ′ does not contain bounded universal quantifiers.

Proof. We proceed by induction on the structure of φ (throughout the proof we
reason in the structure D). Suppose φ is an atomic formula or the negation of
an atomic formula. If φ is of the form s = t, let φ′ be s = t. Use Lemma 3(3) if
φ is of the form s 6= t. Use Lemma 4 if φ is of one of the forms s � t and s 6� t.
Suppose φ is of the form α ∧ β. By our induction hypothesis, we have formulas

α′ ≡ (Qt1
1 x1) . . . (Qtk

k xk)(s1 = t1) and β′ ≡ (Qs1
1 y1) . . . (Qsm

m ym)(s2 = t2)

which are equivalent to respectively α and β. Thus, φ is equivalent to a formula of
the form (Qt1

1 x1) . . . (Qtk
k xk)(Qs1

1 y1) . . . (Qsm
m ym)(s1 = t1∧s2 = t2) . By Lemma

3(1), we have a formula φ′ of the desired form which is equivalent to φ. The case
when φ is of the form α ∨ β is similar. Use clause (2) of Lemma 3 in place of
clause (1).

The theorem follows trivially from the induction hypothesis when φ is of one of
the forms (∃v)α, (∀v � t)α and (∃v � t)α. ut

Theorem 7 (Normal Form Theorem II). Any Σ-formula φ is equivalent in
B to a LBT -formula φ′ of one of the forms

φ′ ≡ (Qt1
1 v1) . . . (Qtm

m vm) (s = t) or φ′ ≡ (∃v)(Qt1
1 v1) . . . (Qtm

m vm) (s = t)

where t1, .., tm, s, t are LBT -terms and Q
tj
j vj ∈ {∃vj v tj ,∀vj v tj} for j =

1, . . . ,m.

Proof. Proceed by induction on the structure of φ. This proof is similar to the
proof of Theorem 6. A formula of the form (∀x v t)(∃y)α is equivalent (in B) to
one of the form (∃z)(∀x v t)(∃y v z)α, a formula of the form (∃x v t)(∃y)α is
equivalent to one of the form (∃y)(∃x v t)α, and a formula of the form (∃x)(∃y)α
is equivalent to one of the form (∃z)(∃x v z)(∃y v z)α. Thus, the resulting
normal form will contain maximum one unbounded existential quantifier. ut

Corollary 8. The fragment ΣD
n,m,0 is decidable (for any n,m ∈ N).

Proof. By Theorem 6, any Σn,m,0-sentence is equivalent in D to a sentence of the
normal form (∃v1) . . . (∃vk)(s = t) (regard the bounded existential quantifiers as
unbounded) . The transformation of a Σn,m,0-formula into an equivalent formula
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(in D) of normal form is constructive. Makanin [11] has proved that it is decidable
whether an equation on the form

anxn . . . a1x1a0 = bmym . . . b1y1b0

where a1, ..., an, b1, ..., bm ∈ {0,1}∗, has a solution in {0,1}∗. It follows that the
fragment ΣD

n,m,0 is decidable. ut

We have not been able to prove that any Σn,m,0-sentence is equivalent in B to a
sentence of the form (∃v1) . . . (∃vk)(s = t). See the comment immediately before
Lemma 5. Thus, we cannot use Makanin’s [11] result to prove that the fragment
ΣB

n,m,0 is decidable.

Open Problem: Is the fragment ΣB
n,m,0 decidable (for any n,m ∈ N)?

4 Undecidable Fragments

Definition 9. Post’s Correspondence Problem, henceforth PCP, is given by

– Instance: a list of pairs 〈b1, b′1〉, . . . , 〈bn, b′n〉 where bi, b
′
i ∈ {0,1}∗

– Solution: a finite nonempty sequence i1, ..., im of indexes such that

bi1bi2 . . . bim = b′i1b
′
i2 . . . b

′
im .

We define the map N : {0,1}∗ → {0,1}∗ by N(ε) = ε, N(0) = 010, N(1) =
0120, N(b0) = N(b)N(0) and N(b1) = N(b)N(1).

It is proved in Post [12] that PCP is undecidable. The proof of the next lemma
is left to the reader.

Lemma 10. The instance 〈b1, b′1〉, . . . , 〈bn, b′n〉 of PCP has a solution iff the in-
stance 〈N(b1), N(b′1)〉, . . . , 〈N(bn), N(b′n)〉 has a solution.

We will now explain the ideas behind our proofs of the next few theorems. Given
the lemma above, it is not very hard to see that an instance 〈g1, g′1〉, . . . , 〈gn, g′n〉
of PCP has a solution iff there exists a bit string of the form

0150N(a1)0140N(b1)0150 . . . N(am)0140N(bm)0150 (*)

where

(A) N(am) = N(bm)
(B) N(a1) = gj and N(b1) = g′j for some 1 ≤ j ≤ n
(C) N(ak+1) = N(ak)N(gj) and N(bk+1) = N(bk)N(g′j) for some 1 ≤ j ≤ n.
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We also see that an instance 〈g1, g′1〉, . . . , 〈gn, g′n〉 of PCP has a solution iff there
exists a bit string s of the form (*) that satisfies

(a) there is j ∈ {1, . . . , n} such that 0150N(gj)0140N(g′j)0150 is an initial
segment of s

(b) if

0150N(a)0140N(b)0150

is a substring of s, then either N(a) = N(b), or there is j ∈ {1, . . . , n} such
that

0150N(a)N(gj)0140N(b)N(g′j)0150

is a substring of s.

In the proof of Theorem 11 we give a formula which is true in D iff there exists
a string of the form (*) that satisfies (A), (B) and (C). In the proof of Theorem
12 we give formulas which are true in B iff there exists a string of the form (*)
that satisfies (a) and (b). In order to improve the readability of our formulas,

we will write # in place of the biteral 0150 and ! in place of the biteral 0140.

Theorem 11. The fragment ΣD
3,0,2 is undecidable.

Proof. Let ψ(x) ≡ (∀z � x)(z14 6� x). Observe that ψ contains one bounded
universal quantifier. Observe that ψ(b) is true in D iff the bit string b does not
contain 4 consecutive ones. Furthermore, let φn(x1, ..., xn, y1, ..., yn) ≡

(∃u)
(  n∨

j=1

#xj!yj# � u

 ∧

(∀v � u)
[
v# 6� u ∨ v# = u ∨ (∃w1, w2)

{
v#w1!w2# � u ∧

ψ(w1w2) ∧

 w1 = w2 ∨

 n∨
j=1

v#w1!w2#w1xj!w2yj# � u

} ] ) .
Let 〈g1, g′1〉, . . . , 〈gn, g′n〉 be an instance of PCP. We have

D |= φn(N(g1), . . . , N(gn), N(g′1), . . . , N(g′n))

iff there exists a bit sting of the form (*) that satisfies (A), (B) and (C) iff the
instance 〈g1, g′1〉, . . . , 〈gn, g′n〉 has a solution. Furthermore φn is a Σ3,0,2-formula.
It follows that the fragment ΣD

3,0,2 is undecidable. ut

Theorem 12. The fragments ΣB
1,2,1 and ΣB

1,0,2 are undecidable.
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Proof. Let ~x = x1, . . . , xn, let ~y = y1, . . . , yn and let

α(~x, ~y, z) ≡

 n∨
j=1

#xj!yj# v z ∧ 0#xj!yj# 6v z ∧ 1#xj!yj# 6v z

 .

Consider the Σ1,2,1-formula ψn(~x, ~y) ≡

(∃u)
(
α(~x, ~y, u) ∧

(∀v v u)
[

#v# 6v u ∨ 15 v v ∨ (∃w1, w2 v v)
{
v = w1!w2

∧ 14 6v w1 ∧ 14 6v w2 ∧

w1 = w2 ∨

 n∨
j=1

#w1xj!w2yj# v u

 } ] )

and consider the Σ1,0,2
1 -formula γn(~x, ~y) ≡

(∃u)
(
α(~x, ~y, u) ∧ (∀w1, w2 v u)

{
#w1!w2# 6v u ∨ 14 v w1w2

∨ w1 = w2 ∨

 n∨
j=1

#w1xj!w2yj# v u

 } )
.

Let 〈g1, g′1〉, . . . , 〈gn, g′n〉 be an instance of PCP. We have

B |= ψn(N(g1), . . . , N(gn), N(g′1), . . . , N(g′n))

iff

B |= γn(N(g1), . . . , N(gn), N(g′1), . . . , N(g′n))

iff there exists a bit sting of the form (*) that satisfies (a) and (b) iff the instance
〈g1, g′1〉, . . . , 〈gn, g′n〉 has a solution. It follows that the fragments ΣB

1,2,1 and ΣB
1,0,2

are undecidable. ut

The proof of the next theorem is based on the following idea: The instance
〈g1, g′1〉, . . . , 〈gn, g′n〉 of PCP has a solution iff there exists a bit string of the form

0150N(a1)0140N(b1)0160N(a2)0140N(b2)0170 . . .

. . .015+m−10N(am)0140N(bm)015+m0

with the properties (A), (B) and (C) given above.

Theorem 13. The fragment ΣD
4,1,1 is undecidable.
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Proof. Let !k ≡ 01k0. The Σ4,1,1-formula

(∃u)
(  n∨

j=1

!5xj!
4yj!

6 � u

 ∧ (∀v � u)
[
v150 6� u ∨ v = 0 ∨

(∃w1, w2, y)(∃z � v)
{
v = z0y150w1!

4w201y ∧ 1y = y1 ∧ w1 = w2 ∨

 n∨
j=1

v150w1xj!
4w2yj011y150 � u

} ] )
yields the desired statement. Note that y is a solution of the equation 1y = y1
iff y ∈ {1}∗. ut
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