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Abstract

The main objective of this thesis is to analyze the demographics of NRK’s
digital logged-in users, for which consumption behaviour data is also
available. In particular, we examine NRK’s reach across demographic
groups by comparing the logged-in user population to the Norwegian
population at large. In addition, we investigate the extent to which
user demographics can be predicted based on users’ digital content con-
sumption behaviour. This is addressed by building classification models
using known information on users and subsequently predicting on test
sets, where results are then used to evaluate classifier performance. We
examine in detail the quality of predictions made across classes as well as
seek to determine whether or not these improve with quantity of content
consumed.

Being able to predict user traits, such as gender and age, implies
that there is some understanding of viewing patterns across demographic
groups. For NRK this could mean for example, being able to identify and
analyze variation in consumption within the population beyond a broad
perspective.

We find that NRK has the most room for improvement in terms of
reach amongst youth. We show that while age classification is challenging
in a 6-class setting, improvements can be made by using instead 4 classes,
where we can outperform the baseline by 15.2%. For gender classification
we show that we can outperform the baseline by 17.3%. We also find
that prediction accuracy has the tendency to increase with the quantity
of unique contents consumed, for both age group and gender prediction.
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CHAPTER 1

Introduction

With the rise of digital technology there has been an emergence for the need
to understand digital consumers and the material they consume. This is par-
ticularly important for businesses and service providers who aim to facilitate
growth. Consuming products online such as music on Spotify, reading con-
tent on social media, and even buying physical merchandise from Amazon
allows providers to gather information for potential use. This presents the valu-
able opportunity to extract knowledge and gain insight on a wide array of topics.

A customer-product understanding based on evidence can support important
decision-making. For instance, the decision of what new product to develop
may hinge upon knowing who the relevant target group is. For some, this may
mean identifying a consumer group who has not yet been properly reached.
Collected data in such a scenario can be analyzed and interpreted to aid in the
company decision [15].

In another example, the wide use of social media has expanded the domain
of personality prediction [17, 22, 28]. Personality traits have been shown to be
indicative of retail relationships [31]. In this way, the ability to interpret and
understand personality information can be particularly useful for advertisers
aiming to make quality recommendations for aiding customers in identifying
their needs or requirements. Such uses of consumer data demonstrate the
importance of analyzing available information, and the broader impacts doing
so might have e.g. on markets and society.

This thesis aims to analyze user data in order to gain a better understanding
of consumer base. Two tasks we focus on is (1) assessing how user groups are
distributed, and (2) predicting user information based on patterns of behaviour.
Under this problem domain, we are primarily concerned with user demographics
and consumption behaviour. For user demographics in particular, we segment
users according to characteristics, such as age, gender, and geography, to obtain
population groups for studying. Using information on these demographic groups
(primarily population proportions and hence distribution) we form insight to aid
in answering questions of particular interest (cf. Section 1.2). This addresses
task (1). Task (2), on the other hand, is concerned with predicting the defined
user demographics from user consumption behaviour in order to evaluate the
ability to learn and extract patterns from our data.
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1. Introduction

Thus far, we have spoken about consumption in the broad sense of the
word and its function as a link between customer and provider. To further
expand on the notion for the context of this study, we refer to consumption
behaviour as actions taken by consumers when using a product or service. For
digital devices, this can entail accessing items, interacting with modules, mouse
movements etc. The idea with using data related to consumption behaviour is
that an individual’s preferences underly their actions and therefore consumption
behaviour is thought to reflect an aspect of a person’s identity.

1.1 NRK

NRK, the Norwegian Public Broadcaster, is able to gather consumption be-
haviour data through the services they provide. Among these include, radio
and TV services, as well as various types of content including news articles,
opinion, culture, and lifestyle related content. These are made available via the
internet across digital devices and platforms like web browsers and applications.
When users access NRK and interact with content, information such as the
type of content viewed and the time an event took place is logged. Since there
is an abundant amount of information gathered, there is also a necessity to
interpret the available material.

In addition to consumption data, NRK has a log-in service where users may
optionally provide information on birth, gender, and postcode, i.e. demographic
information. We refer to the users available on this service as logged-in users.
The idea is to use both types of information (consumption and demographics)
to aid in obtaining a deeper understanding of NRK’s user base, like for example,
determining what types of content different subgroups are interested in. Due to
the availability of demographics, we therefore place our primary focus on the
subset of users who are logged-in. In addition, the type of content consumption
data analyzed is restricted to the TV content accessible on devices through the
online streaming service, NRK TV.

As a non-commercial entity, NRK has the obligation to produce and dis-
tribute content for the Norwegian population. Once obtained, they can build
upon an awareness of details about user demographics and its synergy with
user behaviour to the benefit of this obligation. A key question that can be
answered concerns where improvement in distributing their content might occur.
To answer this, knowledge on which demographic groups NRK is reaching is
necessary. Once this is known, the user group which is not so well reached can
be identified, and thereby revealing where improvement can be made. This idea
underlies one of the main subtopics studied in this thesis.

In having a substantial amount of consumption data, it may be useful
for NRK to determine whether or not behaviour information can be used for
prediction purposes. In particular, they would like to know if content consump-
tion behaviour can be used to predict their users’ demographics. An idea is
that being able to do so successfully for logged-in users (i.e. those we have
demographic data on) may mean also being able to do so for non-logged-in
users. The ability to predict the demographics for the whole user base (as
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1.2. Research Questions

opposed to simply logged-in users) may imply gaining more knowledge about
user consumption, such as content interests for certain groups in the population.
Having the ability to effectively analyze variations in viewership in such a way
serves as a motivating factor for this thesis.

1.2 Research Questions

Having presented where the potential lies in analyzing NRK’s data, we now
introduce the scope of our research study. In particular, the main objective of
this thesis is to perform a demographic analysis of NRK’s logged-in users. We
accomplish this by seeking to answer three main questions:

Q1: Which parts and to what degree does NRK reach various demographic
groups of the Norwegian population, with respect to their logged-in user
base?

Q2: To what extent can user demographics be predicted using information on
content consumption behaviour?

Q3: Does the quality of predictions depend upon the quantity of consumed
content?

1.3 Related Work

There exists research studies prior to this thesis that have also sought to predict
user demographics based on user behaviour. Before proceeding further, we
discuss previous papers related to our prediction task as we have defined it.

Thomas Krismayer et al. [19, 20] produced two similar papers on predicting
user demographics from music listening information. In the first study the abil-
ity to substantially predict age, gender, and country is established – achieving a
regression error 33.7% below the baseline error. In addition to logistic regression,
other classifiers used for the research include support vector machines, decision
trees, and naive bayes. The study additionally finds that an increase in listening
events corresponds with an increase in classifier performance. The second paper
acts as an extension to the first by considering the same problem domain but
in addition, discovering that a similarity measure for the response can account
for error in predictions. In addition, they find that the user information that
can be derived from listening history can also help make better recommendations.

Different from media consumption, Hu et al.[12] describes a demographic
prediction setting in which web browsing behaviour is used to predict gender
and age. The results from modelling using support vector machines improve
on baseline performance by 30.4% and 50.3% for gender and age prediction
respectively. Kosinski et al. [17] uses user behaviour in the form of Facebook
Likes to predict private traits and attributes. In this study logistic and linear
regression are both used for predicting traits. The model used in one example,
could distinguish between Democrats and Republicans with an accuracy of 85%.
This study in particular discusses the implications of such predictive ability on
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1. Introduction

privacy.

There exists numerous other works which investigate problem domains
similar to ours and the ones previously listed. Our contributions with this
thesis include the following. Firstly, we consider the quality of predictions
across individual age groups and models by using recall, precision, and F1-
score. Secondly, we examine the effects of grouping age intervals differently
and how this might affect predictive ability. Thirdly, we use summary features
derived from contextual data, such as user type, mode of viewing, as well as
factor variables produced through Collaborative Filtering to supply information.
Fourth, we observe the performance of the more simplistic KNN model against
a more complex algorithm such as random forest. Finally, we determine if
regularization improves prediction accuracy.

1.4 Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the
methodology which lays the foundation for the prediction task. This includes a
discussion on classifiers, cross-validation, resampling and performance metrics.
Chapter 3 consists of an exploration of the datasets involved in performing
experiments and analyses. These consist of the previously described information
on demographics and content consumption behaviour. In Chapter 4 the analyses
are performed and reported. The final chapter, Chapter 5, discusses the research
study and the overall findings.

4



CHAPTER 2

Methodology

This chapter provides the theoretical foundation underlying the prediction
methodology we apply to our problem domain. We begin by presenting the
relevant classifiers for this thesis and the learning mechanisms behind them.
We then proceed with topics regarding model and data selection, such as
cross-validation and resampling. This is then followed by a presentation of the
performance metrics used to evaluate our classification results.

2.1 Classification

A main focus of this thesis is on the task of supervised learning, where for N
observations in a dataset, the mapping between a known outcome measure, Y ,
and p input variables, X = (X1, . . . , Xp), is learned or approximated using an
algorithm. That is, we seek to approximate f in,

Y = f(X).

Ultimately, the goal is to apply f on observations which are not used in learning
to obtain predictions, Ŷ , as accurately as possible. For this thesis, our target
outcomes (age group and gender) are of qualitative nature and hence Y is
characterized by K categories or classes. We therefore further define our task
as a classification problem, i.e. defining a prediction rule f which categorizes
observations into a group. In order to determine a particular prediction rule, we
use observed values (x, y) to learn from. This set of observations is referred to
as training data. The set of observations used to then test the accuracy of the
learned prediction rule is called test data. We now proceed with the algorithms
used in this study for learning from training data.

2.1.1 Multinomial Logistic Regression

The first classification method we describe is multinomial logistic regression.
Multinomial logistic regression is a linear method which models the probability
that an observation belongs to a particular class k provided linear functions of
x. Objects are classified into the class with the highest probability obtained by
the model. For the special case in which K = 2, binary logistic regression, the
object is classified into the class with probability greater than 0.5. Explicitly,
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2. Methodology

the model is defined as,

log Pr(Y = 1|x)
Pr(Y = K|x) = β1 · x

log Pr(Y = 2|x)
Pr(Y = K|x) = β2 · x

...

log Pr(Y = K − 1|x)
Pr(Y = K|x) = βK−1 · x,

(2.1)

where βk is the p+ 1 parameter vector associated with outcome k and x is a
p+ 1 vector consisting of p explanatory variables and a constant term. Here, all
K probabilities sum to one and each of K − 1 outcomes are expressed as logit
transformations against a last, arbitrary pivot class K. By transforming (2.1)
to obtain probability expressions, Pr(Y = k|x), k = 1, ...,K− 1, and using that
the probabilities sum to one, we may first arrive at the probability of class K
occurring. In particular,

Pr(Y = K|x) = 1−
K−1∑
k=1

Pr(Y = k|x)

= 1−
K−1∑
k=1

Pr(Y = K|x) expβk·x,

which gives,

Pr(Y = K|x) +
K−1∑
k=1

Pr(Y = K|x) expβk·x = 1

Pr(Y = K|x)
{

1 +
K−1∑
k=1

expβk·x

}
= 1.

Hence,
Pr(Y = K|x) = 1

1 +
∑K−1
k=1 expβk·x

. (2.2)

Then using this result we subsequently arrive at the probabilities for k =
1, ...,K − 1 :

Pr(Y = k|x) = expβk·x

1 +
∑K−1
`=1 expβ`·x

, k = 1, . . . ,K − 1 (2.3)

To fit the model (2.2)-(2.3), the maximum likelihood method is typically
used [10], where regression coefficient values maximizing the probability of
observing a given dataset are computed. Using the multinomial distribution,
for a dataset containing N observations, with k being the class of observation i,
and class probabilities pk(xi;β), the log-likelihood is given by,

`(β) =
N∑
i=1

log pyi(xi;β). (2.4)

6



2.1. Classification

It is then maximized by finding the derivative, equating to zero, and solving
for β. This is accomplished via the Newton-Raphson algorithm which produces
equations updating obtained β-values through iteratively reweighted least squares
[10].

Regularized Multinomial Logistic Regression

Regularization seeks to reduce overfitting on training data by imposing penalty
terms in model fitting. For regularized multinomial logistic regression, the idea
is to shrink large coefficients towards zero and by doing so effectively minimizing
noise captured during training. The goal in mind is to obtain a model that
generalizes better on test observations not used during model training. This is
accomplished by penalizing complexity through a penalty term. The inclusion
of a penalty term results in an objective function of the following form:

max
β
{`(β)− λR(β)}, (2.5)

where R is a regularization term and λ is a complexity parameter controlling the
amount of coefficient shrinkage. Stated in this form, we see that for λ = 0, the
penalty term has no effect and fitting equates to ordinary multinomial logistic
regression as in (2.1)-(2.4). In general, as λ increases the degree of shrinkage
also increases so as to reduce model flexibility. The choice of λ, therefore, has
implications on the quality of model-fit and is chosen accordingly. The most
commonly used method to optimize the value of λ is cross-validation, later
discussed in Section 2.2. In our application, we use cross-validation to search
through a grid of λ-values producing the optimal solution.

Two common approaches [10] to the regularization term, R, are ridge and
lasso regularization. In ridge regression the regularization term is defined by
the L2 norm [11],

R(β) =
K−1∑
k=1
||βk||22 =

K−1∑
k=1

p∑
j=1

β2
kj , (2.6)

while for lasso regression the regularization term is given by the L1 norm [32],

R(β) =
K−1∑
k=1
||βk||1 =

K−1∑
k=1

p∑
j=1
|βkj |. (2.7)

In the case of lasso regression, the choice of sufficiently large λ will lead to
particular coefficients equaling to zero, leading to a type of subset selection.

2.1.2 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a non-parametric method using variable similar-
ities to define the prediction rule. The algorithm identifies the closest1 training
points to an observation in terms of input X and determines the majority
response, j, within this group. The number of data points from which to

1Measured in Euclidean distance with standardized variables[10].
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2. Methodology

evaluate the majority is specified by K. For KNN, the prediction rule for an
observation is then defined as,

Ŷ (x) = arg max
j

1
K

∑
i:xi∈NK (x)

I(yi = j), (2.8)

where NK is the K-nearest neighbors of x in the training set.

Here the parameter choice of K determines the level of model flexibility. For
example, K = 1 implies a highly flexible model, as observations are classified
according to the single nearest point. Alternatively, a large K leads to a less
flexible model as generalization is extended across more neighboring points.
KNN results in N/K neighborhoods, where each is fitted with a specific majority
class. This means that the effective degrees of freedom for a KNN model is
given by N/K. As with, the multinomial regression regularization term, the
choice of K is optimized through a cross-validated (cf. Section 2.2) grid search
of possible K-values.

2.1.3 Random Forests

The random forests classification algorithm is a method that constructs a
model consisting of a classification tree ensemble (or collection), where each
tree represents a vote for the final output class. In order to further detail the
mechanisms behind the algorithm, we continue this subsection by laying the
foundation upon which random forests is built on, namely the aforementioned
classification tree and a method known as bagging. After doing so we proceed
with further information on the random forests method.

Classification Trees

Classification trees produces a model with a tree-like structure consisting
of internal nodes, branches, and leaf nodes. For the set of input variables
X = (X1, ..., Xp), each internal node represents a variable, Xj , and a corre-
sponding split point s for that variable. Since each node includes a split, they
lead to regions or branches of the tree produced by the choice of split. A branch
can either lead to a subtree containing further splits or it can lead to a leaf node.
Leaf nodes represent regions of final classifications for an observation which has
fully traversed the tree. An example of such a tree is displayed in Figure 2.1.
The diagram represents in particular, a binary tree, where at each internal node a
split leads to two separate regions. In the figure, a split involving variable X1 at
cut point s1 leads to a partition of two regions: {X|X1 ≤ s1} and {X|X1 > s1}.

The produced regions can then be further partitioned by considering another
variable and split point combination. This is illustrated in Figure 2.1 by the
branches leading from the internal nodes at level two of the tree. The splitting
procedure is performed recursively, until some stopping criterion is reached. This
stopping criterion can be, for example, when a certain number of observations
are in each node. The final classification of an observation is then the mode of
the leaf defined by the region Rm, for which it ultimately falls into. This means
that for an object i that falls into leaf node m, the classification is determined

8



2.1. Classification

Figure 2.1: Classification tree with binary splits.

by the class k which satisfies k(m) = arg maxk p̂mk. Here p̂mk denotes the class
k proportions,

p̂mk = 1
Nm

∑
xi∈Rm

I(yi = k),

and Nm denotes the number of observations in that node.

Intuitively, choosing meaningful splits in partitioning the input space leads to
better model fit. Thus, the choice of variable Xj and cut point s at each internal
node have direct implications on prediction quality. The task then at each
node split is to satisfy some criterion, Qm(T ), when selecting a combination of
variable and cut point. This criterion can be thought of as a function minimizing
the loss associated with the node split. For classification, the Gini index is a
common criterion choice 2:

∑
k 6=k′

p̂mkp̂mk′ =
K∑
k=1

p̂mk(1− p̂mk).

Typically, the structure of the tree is generated through an approach known
as recursive binary splitting. It begins at the root node, where all observations
belong to a single region, and proceeds by searching through all variable and

2Other options include:
• Misclassification error: 1

Nm

∑
i∈Rm

I(yi 6= k(m)) = 1− p̂mk(m).

• Cross-entropy: −
∑K

k=1 p̂mk log p̂mk.
However, in practice Gini index and cross-entropy are often preferred over misclassification
error due to the applicability of numerical optimization.
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2. Methodology

cut point combinations to find the pair best satisfying the chosen criterion
Qm(T ). This is then successively performed, in a greedy manner – which means
only determining the best split at that current step – for each resulting region
further down the tree. The splitting ends when some stopping criterion is filled,
e.g. when each leaf node has reached a certain size.

The classification trees method has the advantage of having the ability to
capture complexities in training data, though for this reason it also often leads
to noise and overfitting [10]. They thus have the tendency to generalize poorly
on unseen test observations. To amend this, tree pruning is performed, where
a large tree T0 is fit to the data, followed by collapsing internal nodes in a
process called cost-complexity pruning, which will be described shortly. When
an internal node is collapsed, all branches coming from this node are elimnated
resulting in a leaf node. The goal of cost-complexity pruning is to yield a
subtree with improved test error rate.

To outline cost-complexity pruning we first let T denote a subtree of T0 that
has been pruned to have a corresponding number of leaf nodes |T |. The goal is
to then minimize the cost function,

Rα(T ) =
|T |∑
m=1

NmQm(T ) + α|T |, (2.9)

for each α, in order to obtain subtree Tα. Breiman et al. (1984) detail that
a unique Tα can indeed be found [4]. In (2.9), the first term consists of α, a
regularization parameter controlling the tree’s model fit and complexity, and
Qm(T ) reflecting error or accuracy. The cost function therefore expresses, for a
subtree, error across leaf nodes and a penalty term. For α = 0, the obtained
tree is simply the entire tree T0. As α increases, the size of Tα decreases. The
choice of α, like other tuning parameters mentioned thus far, is produced by
cross-validation.

Bagging

Bagging, which is short for bootstrap aggregation, is a technique that aggregates
over a collection of B models, to obtain a classifier Ŷbag(x) with reduced variance.
From a given training set, B random samples, called bootstrap samples, are drawn
with replacement and individually fit to form predictions f̂∗b(x), b = 1, 2, ..., B.
In the case of classification trees, the procedure results in B bootstrap trees
which differ in terms of chosen variables, number of nodes, and therefore differ
in structure.

If we consider a classification problem with K classes, where f̂bag(x) is a
vector of length K containing the proportion of predictions to class k among
the B trees, [p1(x), p2(x), ..., pK(x)], then the bagged classifier is defined as,

Ŷbag(x) = arg max
k

f̂bag(x).

In words, an observation is predicted into the majority class for which it is
classified among the collection of trees. The result is a reduction in variance for
methods with high variance and hence increased stability [10].

10
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Ensemble Learning in Random Forests

Random forests, like bagging constructs a classifier composed of an ensemble
of bootstrapped trees. However, it improves on the bagging method by de-
correlating the trees produced by the bootstrap samples [3]. This is achieved
by randomly selecting m ≤ p candidate variables for splitting in the process
of growing a tree, where p is the total number of input variables. For a given
observation, each tree from the ensemble votes for an output class k, and the
final classification is the mode class produced by the ensemble. For classification,
the random forest predictor is thus:

Ŷ Brf (x) = majority{Ŷb(x)}B1 ,

where Ŷb(x) is the classification for tree b.

The main idea is that by randomly selecting m ≤ p variables, a shrinkage
in correlation is achieved. A smaller m forces the tree algorithm to consider
different subsets of predictors at each split, hence producing different tree
structures in the ensemble. This then allows for aggregating over less correlated
trees, thus leading to improved variance. In addition, the inventors recommend
choosing m = b√pc, though this is typically treated as a tuning parameter
determined using out-of-bag estimates[10]. Out-of-bag estimates are, for an
observation, (xi, yi), the majority vote among bootstrap trees not using (xi, yi).

2.1.4 Baseline Predictor

A baseline predictor uses a simplistic method to obtain prediction results. In this
thesis it will be used as a reference point for comparing classifier performance.
Here, the baseline method identifies the most frequently occurring class and
predicts all test observations as belonging to that class.

2.2 Cross-Validation

The method most commonly used for evaluating model performance and param-
eter tuning is cross-validation [10]. It performs estimation by using a learned
method, f̂(X), for predicting on sample data independent of that used for
training. Essentially, this is accomplished by partitioning the available data into
a training set for model fitting and an independent set for testing prediction
performance.

We distinguish between two methods, the holdout method and K-fold cross-
validation. Both procedures create mutually exclusive subsets of data. However,
they differ in that the former splits the dataset into two parts while the latter
partitions into K folds.

Holdout Approach

The holdout approach is a special case of cross-validation that randomly splits
the dataset into two subsets, one used for model fitting (training set) and the
second for predicting on new observations (test/holdout set), those of which are
not included in the training process. The amount of data allocated to each set
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may vary, though a common choice is to designate 2/3 of the data for training
and to hold out the remaining 1/3 for testing [16].

Since the holdout method produces prediction results that vary according to
the splitting of training and test set (due to randomness), it is performed k times.
The overall performance is then evaluated based on an average of all k runs, a
long with standard deviation [16]. The holdout method is a candidate validation
technique when large datasets are involved due to time and computational costs
[35].

K-Fold Cross Validation

An approach that mimics the ideal scenario of training and testing multiple
times over to obtain an overall average is K-fold cross-validation. The first
step in this method involves dividing the data into K partitions or folds, of
roughly equal size. Then for k = 1, 2, ...,K, a model is fit using K − 1 folds and
validated on the remaining fold k, such that each fold is utilized once.

Since the choice of K controls partition sizes, it also determines the training
and validation set sizes. An increasingly large K decreases validation set size
while simultaneously increasing the training set. Since the number of folds
affects the training and validation set, it also influences bias and variance in
obtained estimates. More specifically, when K is large, we obtain approximately
unbiased estimates compared to small K, due to a larger training set. However,
this also implies that the fitted submodels are based on more correlated train-
ing sets (due to overlap in training points), and hence leading to higher variance.

The choice of K therefore depends on this trade-off and should be cho-
sen accordingly. Conventional values of K are five or ten as they have been
shown to do better in terms of model error and computation requirements [5, 16].

K-fold cross-validation is often used to tune hyperparameters [10]. Given a
parameter λ, a grid search is performed over a range of λ values. This is done
by estimating the cross-validation error corresponding to each λ, and selecting
that with the smallest error. The final model, however, is evaluated on a test
set that is not used during the selection of λ.

2.3 Class Imbalance and Resampling

A concern in the domain of classification that is known to cause suboptimal
results is the issue of class imbalance [24]. Class imbalance is the event in which
one or more classes have prominently more observations than others. This can,
for example, be a scenario in which the minority-majority class ratio is 1:1000.

The presence of class imbalance in a dataset results in biased predictions
towards the majority class since minority classes tend to be overpowered in the
learning process [8]. This issue can arise for example because there exists some
constraint in data collection, e.g. limitations on contacting certain groups for
surveys and questionnaires. This is in contrast to the instances when the imbal-
ance is a natural occurrence e.g. in fraud detection when there are normally
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more non-fraudulent occurrences than fraudulent [25].

There exists several techniques to counter the effects of class imbalance.
These include for example, cost-sensitive learning, algorithmic-specific adapta-
tions, and resampling [24]. In this thesis we adopt resampling – the process of
sampling from a given dataset in order to obtain balanced class distributions.
This is achieved by respectively adding or removing observations belonging to
the minority classes or majority classes. Common approaches include random
undersampling and random oversampling.

Random undersampling involves randomly selecting and eliminating obser-
vations from the most frequently occurring classes until all class sizes are equal
[14]. Conversely, random oversampling creates new instances of minority classes
by randomly selecting observations to replicate. Another proposed solution
is the SMOTE method, an algorithm that creates synthetic instances for the
minority class [7].

Several other techniques [1] have been developed cleverly to use available
information in the process of rebalancing. Nonetheless, this thesis uses random
undersampling as it has the advantage of simplicity, not requiring extensive
strategizing with respect to data handling and having minimal computational
costs.

2.4 Performance Metrics

In order to evaluate the extent to which predictions can be made by a given
classification model, we enlist performance metrics that provide measures for
prediction quality. These allow us to distinguish between poor performance and
good performance.

For the purpose of illustration, we begin with the simple two-class classifi-
cation problem that can be generalized to multi-class problems. We consider
the four possible outcomes in a two-class problem, namely: true positive (TP ),
false positive (FP ), false negative (FN), and true negative (TN). True positive
and true negative outcomes together make up the case in which the classifier
makes correct predictions. In particular, true positive outcomes are correct
classifications into the class for which the instance occurs (positive), while
true negatives are those correctly predicted as non-occurring instances of the
class (negative). Correspondingly, misclassifications can be subdivided into
two outcomes: those predicted to be positive but are actually negative (false
positive) and those predicted to be negative but are actually positive (false
negative). This is summarized in the confusion matrix illustrated in Table 2.1.

In a more general setting, such as a three-class problem displayed in Table
2.2, we use the one-versus-rest approach. This approach defines observations
belonging to a class as positives and the remaining observations as negatives [2].
Hence, the definitions of TP , FP , FN , and TN are relative to a given class i.
Specifically, TPi’s are those correctly predicted into a class i, FPi’s are those
predicted into class i but do not truly belong to class i, FNi’s are those truly
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Observed

P
re

di
ct

ed Positive Negative

Positive TP FP
Negative FN TN

Table 2.1: Confusion matrix for classification with two categories.

belonging to class i but not classified as such, and TNi’s are neither classified
into i nor truly belong to i.

Observed
A B C

P
re

di
ct

ed A 6 3 1
B 0 9 2
C 4 1 5

Table 2.2: Confusion matrix for classification with three categories.

In the following we describe standard metrics typically used to summarize
values in a confusion matrix.

Accuracy For a K-class problem with N observations to be classified, accu-
racy specifies the proportion of correctly classified predictions out of all
classifications made,

A =
∑K
i=1 TPi
N

.

Recall For class i, recall quantifies how many objects are detected out of the
actual total in that class,

Ri = TPi
TPi + FNi

.

Precision Out of the total predicted into a class i, precision gives the fraction
that are correct predictions,

Pi = TPi
TPi + FPi

.

This measures a classifiers ability to detect relevant instances.

F-score The F -score incorporates both precision and recall into one measure.
Formally, it is the harmonic mean [33] between the two and is defined as,

Fβi = (1 + β2)PiRi
Ri + β2Pi

.
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Here, β adjusts the weight of importance for recall and precision. When
both are of equal importance then β = 1, while a larger β value indicates
that recall is of greater importance than precision and a small β implies
the opposite. For this thesis we use the F -score with β = 1, as we are not
inclined to favour either recall or precision.

Precision, recall, and F -score provide a closer look at how effective and
exact a classifier is in terms of its ability to make correct predictions at the class
level. Overall measures for recall, precision, and F -score can be obtained in two
ways. The first method is called macro-averaging, which involves averaging the
obtained metric for all classes. For example, a macro-averaged recall, in a three
class problem would be obtained by summing R1, R1, and R3 then dividing by
three. The second method, micro-averaging, sums over the TPi’s, FNi’s and
FPi’s (depending on the relevant metric) for each individual class to obtain an
overall measure. As a concrete example, a micro-averaged recall for the matrix
in Table 2.2 is obtained by summing over all TPi’s and dividing by the sum of
all FNi’s and TPi’s:

R = TP1 + TP2 + TP3

TP1 + TP2 + TP3 + FN1 + FN2 + FN3

= 6 + 9 + 5
6 + 9 + 5 + 4 + 4 + 3 ≈ 0.65.

Micro-averaging therefore considers each classified observation per class and
is thus useful for obtaining overall recall, precision, and F -score in a class-
imbalanced scenario. The micro-averaged recall, precision, and F -score, however,
produce identical metric values as accuracy. We therefore only report one overall
measure, which we later refer to as ’overall accuracy’ in Chapter 4.
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CHAPTER 3

Dataset

In this chapter, a description along with an exploration of the NRK datasets
used during experimentation and analysis are provided. First, in Section 3.1
we describe content consumption data that characterizes viewer behaviour and
which will form the covariates for our prediction task. This is then followed by
an exploration of data containing demographic information of logged-in users in
Section 3.2.The demographic information provides the response variables that
will be used for our prediction task. In addition, we use it for analyzing NRK’s
reach.

3.1 Content Consumption Data

When a logged-in user views an episode from a series, or just a simple standalone
program, NRK logs information pertaining to that specific viewing event. In
this way, NRK is able to accumulate consumer data that directly characterizes
patterns in viewership. We use this section to describe such data and how it is
used to form the covariates for our prediction task. This data provided for us
was obtained in February 2018.

Before proceeding further in this section, we clarify that content, henceforth,
refers to series or programs available through NRK’s TV service. Furthermore,
we refer to interacting with such content as viewing events. This section goes on
to describe the type of information that is gathered on TV content consumption
by NRK’s system, which we use in the sections that follow. Section 3.1.1 provides
an overview of contextual data for viewing events, such as the concrete time a
program is viewed or on what type of device. In Section 3.1.2 and Section 3.1.3
we describe variables that aim to summarize an individual’s content preferences,
and finally, in Section 3.1.4 we describe how the tables are joined to form a
final working dataset that will later be used as the covariate matrix, X, in our
prediction task.

3.1.1 Contextual Data

We call the collected data describing the context of each viewing event con-
textual data, as it provides information involving the context for individual
viewing events that take place. Each distinct event has a corresponding user,
with context given by timestamp and device used. This dataset consists of
6,598,548 observations, where each row pertains to a distinct event with no
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missing values. There exists 35,402 distinct users which are uniquely identified
by an ID (userId). These user ID’s can also exist in other datasets (later
described) and are therefore use for joining datasets (also later described).

The raw contextual data is used to derive two variables summarizing how a
user consumes content. In this subsection we describe how the two variables
are formed and explore the information they produce. The first variable
characterizes user type by determining what devices events are performed on.
The second characterizes a user’s tendency of viewing time.

Defining User Type Based on Devices Used

The type of device (deviceCategory) used for a specific viewing is charac-
terized by the type of platform NRK is accessed on for that event. This can
be a desktop computer, a mobile device, a tablet computer, or a television
set. These are then further identified as running on an Apple TV, a web
application, an iOS application, or android application. Since, our prediction
task is concerned with classifying one individual into a demographic group, we
have chosen to omit entries corresponding to a television device (e.g. Apple
TV). This is due to TV’s often being used by multiple people (for example, in
a multi-member household), and therefore, may generally provide misleading or
invalid information regarding a user account.

From device information, we construct a categorical variable (userType)
describing a user in terms of what type of device they have used to access NRK.
In particular, we are interested in whether or not they are iOS, android, or web
users. This is done by producing, for each user ID, a vector of applications
previously used in viewing events. A user is labeled as a web user if they have
neither iOS nor android entries. To define an iOS user, we scan through all
entries determining if they have at least one iOS device logged and none for
android. If this is true, they are labeled as an iOS user. The converse rule
applies, if a user has at least one android device logged and none for iOS, then
they are categorized under android. For the case in which a user has both
android and iOS in its device vector, they are labeled under the category ’both’.
We underline that if a user has used both a web application and an iOS/android
device, we overrule web in favour of iOS or android as this distinction is thought
to be most important. The user type variable therefore consists of the labels:
’ios’, ’android’, ’both’, and ’web’.

Figure 3.1 displays the distribution of user types. We see that the majority
of users fall into the iOS category, with approximately 14000 users, followed by
android and web users with approximately 8000 and 4500, respectively. The
smallest category is ’both’ with size less than 2000 users.

Determining Mode of Viewing Time

For each viewing event, time context for when the event took place is also
logged. This takes the form of a date variable (date) and two timestamps each
specifying:
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Figure 3.1: Distribution users in each user type category

(1) When a user began the event, i.e. began using the NRK platform
(visitStartTime).

(2) The number of milliseconds after event start that the content is viewed
(timeOffset).

Combined, they provide an exact timestamp for the start of a particular viewing
event.

From date and time, we extract the particular day of the week and period
of time in the day that an event occurred. This is then used to help us define a
variable generalizing when a user most often views content. From the timestamp,
we determine the hour of the day and categorize this as either, ’night’, ’morning’,
’daytime’, ’afternoon’, or ’evening’. The definitions of the categories are provided
by NRK and are given as such:

Night: 03.00 - 06.00

Morning: 06.00 - 10.00

Daytime: 10.00 - 15.00

Afternoon: 15.00 - 19.00

Evening: 19.00 - 03.00.

The day of the week (Monday-Sunday) is then extracted from the given date
and this is then categorized as either a ’weekday’ (Monday-Friday) or ’weekend’
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(Saturday-Sunday). The final time category (timeCat) corresponding to each
event is then a combination of the day of the week and time of day for which
the event occurs. For example, a viewing event that took place on a Monday
at 12.00 is categorized as ’weekday + daytime’. The time category variable,
thereby, has 10 possible categories: ’weekday + night’, ’weekday + morning’,
’weekday + daytime’, ’weekday + afternoon’, ’weekday + evening’, ’weekend
+ night’, ’weekend + morning’, ’weekend + daytime’, ’weekend + afternoon’,
’weekend + evening’.

Finally, an event-time vector is constructed for each user, where an entry
corresponds to the time category for which an event occurred. The mode of
the entries in the vector is then found for each user, to provide the day and
time combination that a user most often views content (timeCat). For the
multimodal case a category, ’multiple’, exists specifying that the user has two
or more modes of viewing time.

Figure 3.2 displays how mode of viewing time is distributed across users. It
reveals that the majority of users (approximately 14,000) most often consume
content on weekday evenings. Conversely, the least amount of users consume
content on weekend nights (and weekday nights), constituting only a fraction
of users (fewer than 1,000 in each case). The second largest time category is
weekend evenings, followed by weekday afternoons. This suggests that users
tend to be more active later in the day compared to early mornings. Lastly, we
see that a moderate amount fall into the category ’multiple’.

Figure 3.2: Distribution of user’s viewing mode in terms of time of day and
week.
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3.1.2 Collaborative Filtering Factor Variables

Along with information on viewing context, NRK has provided a set of factor
variables profiling the content preferences of logged-in users. The dataset con-
sists of 193,625 rows of distinct logged-in users, one column with the number of
unique contents seen by each user, and 20 numerical columns uniquely summa-
rizing each individual’s viewing preference patterns. We call these 20 columns
factor variables. They describe interactions between users and items. These 20
columns define what we refer to as factor variables.

The factor variables are a product of a method called Collaborative Filtering.
The goal of Collaborative Filtering is to predict items of potential interest for a
user. It bases its predictions on collective user preferences. The premise is that
a person is likely to choose an item that users with similar tastes prefer. To
analyze the concept of taste, user preferences are represented in a matrix A of
dimension U × I, where rows represent users and columns represent items. The
element in row u and column i hence expresses user u’s taste for item i.

Preferences are expressed as feedback provided by the user. Conventionally,
the feedback collected is either explicit or implicit. Explicit feedback constitutes
direct reactions to items as expressed by the users. An example of such is the
option to give a thumbs up or a thumbs down on a YouTube video. Implicit
feedback consists of user actions such as, browsing history or the number of
clicks on an item. In this way, a user reveals preference by how much they inter-
act with an item, i.e. more interaction implies more interest. NRK specifically,
uses implicit feedback based on how a user interacts with TV programs. In
this case then, A ∈ 0, 1U×I is a binary 0-1 matrix where entry aui = 1 if a user
has interacted with item i, and 0 otherwise. In addition, R ∈ RR×I is a matrix
where element rui quantifies how much interaction user u has had with item i.

The Collaborative Filtering approach that NRK uses decomposes the prefer-
ence matrix A into two lower dimension matrices Q ∈ RU×f and W T ∈ Rf×I
such that,

A ≈ QW T . (3.1)

An important goal of this matrix factorization is dimension reduction by
identifying necessary latent factors. The basic idea is that preference can be
described by essential features, i.e. latent factors – as opposed to using the
entire matrix A. A user’s preference for a program is rooted in how much they
like its defining features, for example language, origin, etc. Thus in (3.1), Q
is a user-factor matrix where each row specifies a user’s interest in the set of
latent factors, while the item-factor matrix W specifies each item’s possession
of those factors. If we consider user and item row vectors qu ∈ Rf and wi ∈ Rf ,
from Q and W , respectively, an interpretation of their inner product, qTuwi,
is then a measure of suitability between user and item based on latent factors.
Once the latent factors are determined, qTuwi estimates a user-item preference
entry, aui, in A.

For the weighted regularized matrix factorization method of Hu et al. [13]
that NRK uses, finding the latent factors involves minimizing some loss function
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of the form,

loss(Q,W ) =
∑
u,i

c(rui)(aui − qTuwi)2 + λ(||qu||2 + ||wi||2),

where c(rui) = 1 + αrui is a function that expresses the confidence we have in
that aui expresses whether user u has a preference for item i or not, with α
being a tuning parameter. Both α and λ, are regularization terms controlling
for overfitting, are tuned via cross-validation.

NRK uses the Spark implementation 1 to identify the latent factors. For
our classification task we use the obtained user-factor matrix Q. Since the
user-factor matrix reflects interest in certain item features and hence provides
a description of content preferences, we hypothesize that they can be used to
predict demographic groups.

In addition to the factor variables, the dataset acquired includes the quantity
of unique contents viewed by each user (uniqueContents). This variable is not
used as a covariate for model building, but instead used to group predictions
by how much a user has seen (cf. Chapter 4). The quantities range from 0 to
13,748 unique contents viewed with a median of 40.

3.1.3 Content Genre Variables

NRK has also provided a dataset constituting of, what we refer to as, content
genre variables. The dataset consists of 49,981 observations, each pertaining
to a distinct user and it’s corresponding content genre variables. The content
genre variables are comprised of three columns, which together summarize the
genre of content consumed by each individual. The variables are roughly such
that variable1 places the viewed content on a scale from entertaining to edu-
cational, variable2 on a scale from emotional to fact-driven, and variable3
on a scale from traditional to contemporary.

The three variables are constructed by manually giving each program or
series a score {-2, -1, 1, 2} for variable 1 and variable 2; and {-1,0,1} for variable
3. The final scores for each user and variable is then obtained by taking the
average score of that variable of all content viewed by the user. We note that
this method in particular is developed by NRK and is thus far considered
experimental.

3.1.4 Design Matrix

Using the content consumption datasets provided for us, we construct a design
matrix consisting of the input variables to be used in our prediction task. The
design matrix is produced by merging the relevant input variables described in
Sections 3.1.1 to 3.1.3. These include, user type, viewing time mode, the 20
factor variables, and the content genre variables. The merging is performed
such that the resulting dataset contains only the logged-in users with existing
information across all input variables. Since these input variables uniquely

1https://spark.apache.org/docs/latest/mllib-collaborative-filtering.html
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describe each user, all observations in the dataset are distinct.

The categorical input (user type and viewing time mode) are coded using
dummy variables. More specifically, the labels corresponding to a categorical
input are each converted to its own binary (1-0) variable except for one reference
category. For example, from user type, we obtain three new binary variables:
ios, both, and web (implying that android is the reference category). An iOS
user will then have the value 1 registered under ios and 0 for the rest, while an
android user will have 0 for all 3 variables. Viewing time mode is analogously
coded with reference category set to ’multiple’.

Additionally, the design matrix is further reduced to the subset of logged-in
users that exist on the demographic dataset (discussed in Section 3.2). This is
due to the fact that the demographic dataset provides the response variables
for our classification task. Ultimately, we are left with a dataset consisting of
27,571 observations, where each row represents a distinct user characterized by
unique content consumption behaviour.

3.2 Demographic Data

We now proceed with describing the dataset containing NRK’s demographic
information on logged-in users. Like the content consumption data, the de-
mographic data set was obtained in February 2018 and was gathered through
NRK’s log-in service where users have the option to create personal accounts.
These are accessible across various digital devices such as mobile phones, tablets,
desktop computers, and television sets. Through the log-in service, users are
provided with the option to register the following information2: birthdate,
gender, and postal code.

Initially, the gathered data consists of 62,943 observations, each correspond-
ing to a registered user with three features: birthdate, gender, and postal code.
For the birthdate variable we obtain dates ranging from the year 1895 to 2017.
These are converted to years in age for each user, resulting in an age variable
ranging from 0 to 123 years old, with a median of 51.

For gender, the user may specify one of three values: ’male’, ’female’ or
’other’. The acquired totals (38,610, 24,124, and 209, respectively) for each
category reveal a larger proportion of male users than female users and a small
fraction having chosen ’other’.

In the post code field, users may input any four digits pertaining to their
area of residence. The dataset reveals 4,048 different input variations including
the case in which the field is left entirely blank. Overall, we have missing values
for 547 users, while the top 21 most popular postal codes have approximately
100+ registered users. This is in contrast to the nearly 1000 post codes having
just 1 registered user and the remaining post codes which have users varying
between 1 and 100.

2The data obtained has been anonymized for the purpose of privacy protection.
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For the obtained range of values in the variables, we encounter observations
for which the information provided is not useful for our problem domain. For
the age variable, this means excluding data outside the trusted range of 12 to
100 years old. Furthermore, we consider the gender category Other as having
too few observations relative to the Male and Female categories, therefore this
category is omitted from further study. In addition, we omit instances where
the registered area code is left blank or invalid (e.g. area code registered as
’+450’). After filtering, we ultimately remain with 61,933 observations in the
demographic dataset.

Having filtered the collected data, the variables are then categorized into
their respective groups. For age group we initially3 consider the age intervals
defined by 12-17, 18-24, 25-29, 30-49, 50-66, and 67+. That is, each observa-
tion is assigned a corresponding age group for which they belong to. For the
geographical variable, each postal code is mapped to what is considered either
an ’urban’ area or a ’rural’ area. Specifically, we define an urban area to refer
to one of the four largest cities in Norway with densely populated surrounding
areas included – while the term rural refers to all other areas.

The geographical grouping was achieved by using both postal code listings
obtained from Posten4 and information made available by Statistics Norway
(SSB) on geography5. Particularly, the post codes are grouped by their as-
sociated municipalities, e.g. all post codes associating to the Oslo region are
grouped as one, while those associated to Bergen are grouped as another. To
define ’a densely populated surrounding area’ we consider SSB’s standards
for listing populations6. For example, Oslo and surrounding areas consists
of the municipalities: Oslo, Ski, Oppegård, Bærum, Asker, Sørum, Rælingen,
Lørenskog, Skedsmo, Nittedal, Lier and Røyken.

In Figures 3.3 and 3.5 we display the gender and age distribution in the
demographic data. Figure 3.3 shows greater representation across users in
the mid-30’s to 70’s range. For the previously defined 6 age categories this
corresponds to a considerable imbalance among the groups. This is illustrated
in Figure 3.4 wherein roughly 85% of users in this dataset fall into the 3 oldest
age categories, while the remaining are categorized into the 3 younger groups.
Similarly, Figure 3.5 displays a significantly greater proportion amongst male
users (61.64%) compared to female users (38.36%).

3We later work with alternative groupings in age group (cf. Section 4.4 and Section 4.5)
to the effect that some observations are assigned an alternative age group instead of the initial
assignment.

4Posten Norge AS. Postnummer i Norge. Accessed March 2018. url: https://data.norge.
no/data/posten-norge/postnummer-i-norge.

5Statistisk Sentralbyrå. Befolkning. Tabell 11727 via SSB API. Accessed March 2018.
2017. url: https://www.ssb.no/befolkning/statistikker/folkemengde/aar-per-1-januar#scroll.

6Statistisk Sentralbyrå. Tettsteders befolkning og areal. Accessed March 2018. 2017. url:
https://www.ssb.no/beftett.
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Figure 3.3: Age distribution of logged-in NRK users
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Figure 3.4: Age group distribution of logged-in NRK users, for the 6-class
setting.

Figure 3.5: Proportions of of female and male logged-in users.
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CHAPTER 4

Analysis

In the remainder of this thesis we examine and discuss results of our study. This
chapter, in particular, is structured such that the first part (Section 4.1) focuses
on assessing NRK’s demographic reach within Norway while the second part
(Section 4.3 - Section 4.6) is centered around examining the obtained results for
predicting user demographics from content consumption behaviour.

The first part addresses Q1 in Section 1.2 by comparing NRK’s demographic
distribution for logged-in users to Norway’s demographics at large. The sec-
ond part addresses Q2 and Q3 by performing classification experiments using
the previously described demographic and content consumption datasets. In
doing so, we use demographic groups (age and gender) as response variables
and content consumption variables as covariates (cf. Section 3.1.4). Classifier
performance is then reported in terms of evaluation metrics previously discussed
in Section 2.4. In addition, we group prediction results by the number of unique
contents viewed in order to investigate if consuming more unique contents is
positively related to prediction accuracy.

In age group classification we initially consider 6 age categories, as previously
described. Additionally, however, we choose to further investigate the effects of
modifying age categories on prediction quality, since it is not obvious what the
best way to categorize age is. We hence try two alternative ways of grouping
age. The first consists of 4 classes while the second consists of two. Ultimately
we obtain three sets of age prediction results which we use to compare and
contrast metrics.

4.1 Assessing NRK’s Demographic Reach

In order to assess NRK’s demographic reach across Norway, we require relevant
population values for Norway as a whole, namely, the number of inhabitants
within a given region, for males and females and for each age category. These
we obtain from SSB’s API service1, to get an overview of totals such as the one
displayed in Table 4.1.

In obtaining known population values for Norway, we may assess, based
on NRK’s demographic data on digital users, NRK’s reach for logged-in users

1https://www.ssb.no/en/omssb/tjenester-og-verktoy/api
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Female Male
12-17 184,059 193,825
18-24 228,852 245,404
25-29 182,022 189,553
30-49 702,065 741,387
50-66 536,721 554,249
67+ 428,040 358,319

Table 4.1: Norway’s population totals for given age groups

Female Male
12-17 734 478
18-24 1703 1646
25-29 1399 1412
30-49 8235 12965
50-66 7929 13891
67+ 3747 7800

Table 4.2: NRK’s sample totals for given age groups

across age group, sex, and geography. To achieve this we compare the sample
data at hand to the known values for the Norwegian population, determining
the degree to which the computed sample proportions and the population
proportions exhibit similar characteristics.

First, we examine the age group proportions for each gender separately
for both NRK and Norway. This is visualized in Figure 4.1 in the form of
pie graphs. The top panel displays the proportions of female and male NRK
users by age group, while the bottom panel correspondingly shows the known
population proportions for Norway as a whole.

A brief examination between the two sets of data shows that the sample
audience, to some extent, reflects the Norwegian population distribution across
the six different age categories for both males and females. This is particularly
evident in that the proportion of NRK users is greatest amongst the older
age groups, while less so for the younger groups, which is generally consistent
with the Norwegian population distribution in the lower panel. This suggests a
certain congruity between the sample data presented and the population at large.

Closer comparison of the proportions between NRK users and the Norwegian
population reveals that the age group 30-49 in both the female and male cases
are relatively well represented. That is to say that the compared proportions
lie close to one another, deviating by less than 5% in both cases. For instance,
for female users 34.75% are within this age category, comparable to the 31.04%
for the Norwegian female population. The values for the male case are similar,
with a ratio of 34.08 to 32.48. Examining the differences in proportions for the
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Figure 4.1: Proportions by age group for NRK users (top) and Norway (bottom).

age group 67+, we see that more or less the same applies, however the female
counterpart is slightly underrepresented in the NRK sample, while the converse
is true for males. For the age group 50-66 we see that the NRK user proportion
is well above that of the Norwegian population proportion for both males and
females (33.35% to 23.73% for females and 36.30% to 24.28% for males).

Moreover, we see rather prominently that the proportion of male NRK users
in the youngest age group 12-17 is well below that of Norway’s population
proportion (1.28% to 8.49%). Generally, we see a tendency for the younger age
groups to be underrepresented in roughly the same manner. This is the case
for the male age groups 18-24 and 25-29. It is also further exemplified in the
female case where 3.09% of the NRK users are in the age group 12-17, while
the proportion for Norway is more than twice that at 8.14%. The differences
are less apparent for females in the age categories 18-24 and 25-29, however the
underrepresentation is still present.

Subgrouping the data geographically into urban and rural users in Figures
4.2 and 4.3, we see a general reflection of the previous findings, whereby the
older age groups have a tendency to be better represented than the younger.
Here however we also see, by comparing the relative proportion sizes, a subtle
difference revealed in that the urban female in age category 67+ is perhaps bet-
ter represented than the rural female in this age group. That is, the proportion
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of urban females 67+ constituting NRK users (16.47%) is relatively close to the
corresponding Norwegian population proportion for that demographic (15.89%)
in comparison to that of the rural counterpart (15.13% to 20.54%).

Figure 4.2: Proportions by age category for NRK users, subdivided into an
urban and rural group.

Overall, although we see a certain congruity between the NRK sample
distribution and the Norwegian population as a whole – and in this way a
certain representativeness – we also see an important deviation characterized
by an underrepresentation among younger age groups. This in turn seems to
be compensated by the older age groups. Moreover, the data suggests that
room for improvement in reach for logged-in users is greatest amongst younger
males (urban and rural), young females in the age group 12-17, as well as rural
females in the age group 67+. These findings can also be summarized by the
bar graphs shown in Figure 4.4.

Though the differences in distribution between the NRK sample and Nor-
way’s population are perhaps clearly distinguishable on the pie graphs, we may
also quantify the notion of representativeness or similarity using a goodness
of fit test. To this end, we use the chi-square goodness of fit test where the
hypotheses are as follows,
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Figure 4.3: Proportions by age category for Norway, subdivided into urban and
rural regions.

H0 : the sample data (NRK’s demographic data) fits the specified distribution
(here Norway’s population distribution).

Ha : the sample data does not fit the specified distribution.

Performing the test procedure for the joint distribution of gender and age
group, we obtain, p-value < 2.2e-16. This indicates strong evidence for
rejecting the null hypothesis in favour of the alternative hypothesis. This
verifies that there is indeed a statistically significant difference between the two
distributions, as suspected. Repeating the same procedure for the case in which
the urban and rural population distributions are also considered yields similar
results.

4.2 Preparing Training and Test Sets

Before presenting the results of predicting demographics from content consump-
tion behaviour, we describe in this section the use of training and test sets, and
in particular how they were constructed for the classification models.

First, we describe the technicalities involved in the process of building the
models. The classifiers used in both age group prediction and gender prediction
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Figure 4.4: (Top) Proportions of NRK users: urban, rural and general. (Bottom)
Norway’s population proportions: urban, rural and as a whole.

are regression methods (logistic for binary response, multinomial for multiclass
response), regularizations of the relevant regression method (both ridge and
lasso), KNN, and random forest. Each of these classifiers are trained and evalu-
ated using the holdout method with a total of K = 10 runs. Final conclusions
for each classifier’s performance are then drawn based on an average of the 10
runs.

For each of the k = 1, ..., 10 runs the following is performed. Model-fitting
begins by randomly splitting the dataset into a training sample and test sample.
The training set, in particular is selected such that the output variable (age
group or gender) is completely balanced. This is to avoid having the minority
classes overpowered by the majority class – which in our case is of special concern
due to the significant class imbalance (Section 3.2). The test set, in contrast,
is balanced according to the proportions of the original dataset with the as-
sumption that the sample we have obtained is representative of NRK’s user base.

To obtain a balanced training sample for each of the k = 1, ..., 10 runs, we
first identify the smallest class size, ni, in the entire working dataset. The
sizes of each class in the training sample is then chosen to be 80% of ni, the
identified smallest class. This then, through random sampling, generates the
training set for a given run k. The corresponding test set is generated using
the remainder of the data that does not appear in the training set. This is
done by identifying the class sizes in the remaining data and adjusting them
such that the class proportions equate to that of the original dataset. For the
adjusted test classes this is also achieved through random selection. Together
these define the training and test sets for a given run k.
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For predicting age group, which in our case initially consists of 6 classes:
12-17, 18-24, 25-29, 30-49, 50-66, and 67+, the full dataset has class sizes and
proportions that are displayed in Table 4.3.

12-17 18-24 25-29 30-49 50-66 67+
Class size 749 1886 1604 10304 8733 4295

Class proportion 0.03 0.07 0.06 0.37 0.32 0.16

Table 4.3: Initial class distribution for predicting age group in our 6-class
setting.

The process of selecting training and test sets for each run results in class
sizes as displayed in Table 4.4. Each training sample is a balanced set with
749·0.8 ≈ 599 observations for each age category and a total of 3,594 observations.
The test sets consist of 5,520 sampled observations independent of training set
and with age categories that follow the proportions of the original dataset.

12-17 18-24 25-29 30-49 50-66 67+
Training set 599 599 599 599 599 599
Test set 150 377 321 2,063 1,749 860

Table 4.4: Training and test set class sizes for the 6 class age-group prediction
problem.

For gender prediction, the minority group is females with 10,487 observations
in the entire working dataset. Table 4.5 displays the class sizes and proportions
in the gender classification setting. Following the same procedures for selecting
training and test sets, we arrive at class sizes as shown in Table 4.6. Balancing
the class sizes results in training sets with 8,390 observations in both groups
to constitute a total of 16,780. Corresponding test sets then consist of 5,513
observations in total, with 2,097 in the female group and 3,416 in the male
group.

Female Male
Class size 10,487 17,084

Class proportion 0.38 0.62

Table 4.5: Initial class distribution in gender prediction.

Female Male
Training 8,390 8,390
Test 2,097 3,416

Table 4.6: Training and test set class sizes for gender classification.

After training and test sets are selected, models are fitted to the data in
the training sets. For the methods involving tuning parameters, 10-fold cross-
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validation is implemented in each training run to obtain tailored parameter
values for each of the 10 holdout sets.

4.3 Classification with Six Age Groups

We now go on to present results for the prediction study. We begin here with
predicting logged-in users into one age category out of six (as previously defined:
12-17, 18-24, 25-29, 30-49, 50-66, 67+), before proceeding with a 4-class and
binary class setting in the sections that follow.

Tables 4.7 - 4.12 provide details on overall classifier performance in the
6-class prediction case. Table 4.7 shows the overall baseline accuracy along with
the overall accuracies achieved by the individual methods. Tables 4.8 - 4.12
each report the resulting recall, precision, and F1-score values by age group for
each classifier.

From Table 4.7, we see that all five methods perform worse than the baseline
reference method in terms of accuracy. Among the five classifiers the highest
accuracy obtained is by multinomial regression at 33.7%. A confusion matrix
corresponding to this classifier can be found in Appendix A. The regularization
methods follow after, performing identically with 33.3% for ridge and 33.4%
for lasso. Random forest performs slightly worse with an accuracy of 33.0%,
while KNN has the lowest value at 24.2%. For random forest, lasso, ridge, and
multinomial regression the accuracies across the 10 runs are similarly dispersed
with standard deviations of approximately 0.01. KNN obtains slightly less
spread values with a standard deviation of 0.004.

In terms of precision, recall, and F1-score, we see similar patterns across the
five classifiers. More specifically, recall is generally highest for age groups 12-17
and 67+, while lower for the remaining four age groups. This indicates that the
classifiers are able to identify a larger proportion of the youngest and oldest age
groups compared to the remaining four. We obtain the highest recall for age
group 12-17, with values ranging from 0.487 (KNN) to 0.612 (lasso). Age group
30-49 has the lowest recall for the regression methods and KNN, and second
lowest for random forest. The recall values for this age group range from 0.192
(KNN) to 0.259 (multinomial regression).

For precision, age group 30-49 is consistently highest across all methods
with values ranging from 0.432 (KNN) to 0.537 (lasso). This seems consistent
with the trade-off nature between recall and precision [6]. Since the classifiers
identify a lower amount of 30-49 users, it is relatively easier to obtain a higher
proportion of relevant predictions within this class. Furthermore, this tells us
that, in terms of exactness, approximately 50% of classifications into this class
are valid.

The lowest precision we obtain is for age group 12-17 with a range of 0.070
(KNN) - 0.125 (multinomial regression). We also see that the groups 18-24 and
25-29 have similarly low precision, while 67+ and 50-66 have more moderate
values. For 50-66 we obtain a range of 0.412 (KNN) to 0.485 (multinomial
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regression) and for 67+ we obtain a range of 0.310 (KNN) to 0.360 (multinomial
regression). This tells us that, for the older age groups we tend to obtain more
valid predictions, and hence better exactness, compared to the younger.

Examining F1-score we see a similar occurrence where the quality of pre-
dictions seem to be better for the older age groups than for the younger. In
particular, the 25-29 group consistently has the lowest range of score (0.119
(KNN) - 0.173 (lasso and multinomial regression)), and conversely 67+ consis-
tently has the highest range (0.355 (KNN) - 0.434 (multinomial regression)).
This means that when recall and precision are combined – with equal importance
– into one measure, the classification performance for the group 67+ surpasses
that of 25-29.

Classifier Accuracy (SD)
Multinomial regression 0.337 (0.010)

Ridge regression 0.333 (0.011)
Lasso regression 0.334 (0.010)

KNN 0.242 (0.004)
Random forest 0.330 (0.007)

Baseline 0.374

Table 4.7: Overall accuracies for predicting age group with 6 classes.

Multinomial Regression
Age group Recall (SD) Precision (SD) F1 (SD)

12-17 0.600 (0.036) 0.125 (0.008) 0.206 (0.012)
18-24 0.271 (0.013) 0.172 (0.009) 0.211 (0.008)
25-29 0.277 (0.026) 0.126 (0.013) 0.173 (0.017)
30-49 0.259 (0.025) 0.532 (0.015) 0.347 (0.024)
50-66 0.328 (0.024) 0.485 (0.013) 0.391 (0.018)
67+ 0.547 (0.029) 0.360 (0.011) 0.434 (0.012)

Table 4.8: Recall, precision, and F1-score for predicting age group with 6 classes
using multinomial regression.

The results of grouping prediction performance by the number of unique
contents viewed by users is displayed in Table 4.13 and Figure 4.5. The quantity
of unique contents is defined in 10 intervals (e.g. users who have viewed 3-8
unique contents belong in one group, those who have viewed 9-15 belong in
another, etc.) and chosen such that all intervals contain the same amount of
users. This is achieved by identifying the cut points in the range of unique
contents viewed that divide the users into 10 equal groups. In Table 4.13 and
Figure 4.5 we report the intervals of quantity viewed along with the obtained
overall accuracy pertaining to each group. To get the reported values, we
apply the best performing classifier in terms of accuracy – which in this case is
multinomial regression. We also note that in the sections that follow (Sections
4.4-4.6), the same procedures are applied to obtain analogous results for group-
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Ridge Regression
Age group Recall (SD) Precision (SD) F1 (SD)

12-17 0.609 (0.043) 0.120 (0.008) 0.201 (0.013)
18-24 0.265 (0.016) 0.173 (0.012) 0.209 (0.012)
25-29 0.270 (0.022) 0.126 (0.011) 0.171 (0.015)
30-49 0.252 (0.027) 0.531 (0.016) 0.341 (0.027)
50-66 0.329 (0.024) 0.484 (0.014) 0.391 (0.017)
67+ 0.543 (0.029) 0.353 (0.009) 0.428 (0.010)

Table 4.9: Recall, precision, and F1-score for predicting age group with 6 classes
using ridge regression.

Lasso Regression
Age group Recall (SD) Precision (SD) F1 (SD)

12-17 0.612 (0.040) 0.122 (0.008) 0.204 (0.012)
18-24 0.259 (0.014) 0.170 (0.012) 0.205 (0.012)
25-29 0.273 (0.020) 0.127 (0.012) 0.173 (0.015)
30-49 0.253 (0.024) 0.537 (0.014) 0.344 (0.023)
50-66 0.327 (0.024) 0.480 (0.011) 0.389 (0.017)
67+ 0.548 (0.025) 0.353 (0.009) 0.429 (0.009)

Table 4.10: Recall, precision, and F1-score for predicting age group with 6
classes using lasso regression.

KNN
Age group Recall (SD) Precision (SD) F1 (SD)

12-17 0.487 (0.045) 0.070 (0.006) 0.123 (0.010)
18-24 0.223 (0.020) 0.112 (0.008) 0.149 (0.010)
25-29 0.206 (0.027) 0.084 (0.008) 0.119 (0.012)
30-49 0.192 (0.013) 0.432 (0.014) 0.266 (0.014)
50-66 0.206 (0.017) 0.412 (0.019) 0.274 (0.015)
67+ 0.415 (0.013) 0.310 (0.010) 0.355 (0.008)

Table 4.11: Recall, precision, and F1-score for predicting age group with 6
classes using KNN.

ing predictions in terms of unique contents.

Overall we see a trend of increase in accuracy as the quantity of unique
contents increases. Here, we obtain the lowest accuracy when the user has only
seen between 3 to 8 unique contents and in contrast, the highest accuracy for
the interval 617+. Moreover, we see that in order to achieve accuracy greater
than the baseline accuracy of 0.375, users generally have to have viewed 171 or
more unique contents, which seems to be quite a lot of content. The multinomial
regression classifier also seems to perform better for the subset of users who
have viewed 104+ compared to the multinomial regression result obtained in
Table 4.7.
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Random Forest
Age group Recall (SD) Precision (SD) F1 (SD)

12-17 0.565 (0.037) 0.128 (0.008) 0.208 (0.013)
18-24 0.248 (0.010) 0.164 (0.010) 0.197 (0.009)
25-29 0.274 (0.031) 0.118 (0.006) 0.165 (0.011)
30-49 0.253 (0.022) 0.517 (0.021) 0.339 (0.022)
50-66 0.336 (0.017) 0.472 (0.010) 0.392 (0.012)
67+ 0.519 (0.026) 0.347 (0.009) 0.416 (0.012)

Table 4.12: Recall, precision, and F1-score for predicting age group with 6
classes using random forest.

Nr. of unique contents Accuracy
3-8 0.225
9-15 0.318
16-25 0.280
26-41 0.297
42-64 0.305
65-103 0.304
104-170 0.361
171-311 0.383
312-616 0.435
617+ 0.469

Table 4.13: Binning results for age classification with 6 groups

4.4 Classification with Four Age Groups

We investigate the effects of an alternative age grouping, as it is difficult to
know how good the initially defined categorization is. To this end, we consider
the results of merging the three youngest age groups to obtain four classification
labels, namely, 12-29, 30-49, 50-66, and 67+. This gives us the advantage of
having more data in the merged group compared to having three individual
groups.

Table 4.14 displays the overall accuracy obtained by each method. We see
from this table that the regression classifiers along with random forest perform
identically, having obtained accuracies of 0.431, with standard deviations of
0.005. All three outperform the baseline method by 15.2% which has an accu-
racy of 0.374. This is contrast to KNN which underperforms (0.363) relative to
the baseline.

The multinomial regression results for recall, precision, and F1-score are dis-
played in Table 4.15. A confusion matrix corresponding to this classifier can be
found in Appendix A.2. The remaining tables for the other regression methods
and random forest, which perform similarly, can be found in Appendix A.2,
along with KNN, which generally performs worse.
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Figure 4.5: Binning results for age classification with 6 groups

From Table 4.15, we see that age group 12-29 and 67+ yield the highest
recall values (0.701 and 0.568 respectively). Particularly for the class 67+, we
see an improvement from 0.547 in Table 4.8, when using 6 age groups, to 0.568
in recall. We also see a slight increase for age group 50-66 from 0.328 to 0.332.
An even larger improvement takes place for age group 30-49, which previously
had a recall of 0.259, and increases here to 0.345. These improvements suggest
that the classifiers capture more instances of these classes when using 4 age
groups compared to 6 age groups.

For precision, age groups 30-49 and 50-66 yield higher values (0.535 and
0.481 respectively) than the youngest and oldest age groups, 12-29 and 67+
(0.369 and 0.357 respectively). This indicates that we are able to obtain more
exact predictions for the two middle age groups compared to the youngest and
oldest groups. For the two oldest age groups (50-66 and 67+), precision values
have gone down slightly from Table 4.8 to Table 4.15 (0.485 and 0.360 to 0.481
and 0.357 respectively).

Considering both recall and precision combined, the lowest achieved F1-score
belongs to the group 50-66 (0.393), while the highest is achieved by 12-29 (0.483).
We also see a general improvement in values for the 3 oldest classes, compared
to Table 4.8. The improvement is not as substantial for 50-66 and 67+, however
the age group 30-49 has improved from 0.347 to 0.419. The improvement from
the 6-class case suggests the strongest improvement of prediction quality is for
age-group 30-49. We also observe that the quality of predictions across age
groups are not too spread apart, all four being in the 0.4 range. Furthermore, it
is worth noting that standard deviations have also generally decreased compared
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to Section 4.3, indicating less dispersion and more stable results.

Classifier Accuracy (SD)
Multinomial regression 0.431 (0.005)

Ridge regression 0.431 (0.005)
Lasso regression 0.431 (0.005)

KNN 0.363 (0.006)
Random forest 0.431 (0.005)

Baseline 0.374

Table 4.14: Overall accuracies for predicting age group with 4 classes.

Multinomial regression
Age group Recall (SD) Precision (SD) F1 (SD)

12-29 0.701 (0.017) 0.369 (0.010) 0.483 (0.012)
30-49 0.345 (0.010) 0.535 (0.013) 0.419 (0.009)
50-66 0.332 (0.015) 0.481 (0.009) 0.393 (0.012)
67+ 0.568 (0.013) 0.357 (0.008) 0.439 (0.009)

Table 4.15: Recall, precision, and F1-score for predicting age group with 4
classes using multinomial regression.

The results of grouping predictions by quantity of unique contents viewed
for the 4-class problem is displayed in Table 4.16 and Figure 4.6. The method
used to obtain the results was multinomial regression. As in Section 4.3, we
see a relatively steady increase in accuracy with the number of unique contents
viewed by users. The lowest accuracy (0.299) is observed with the lowest
interval of unique contents (3-8), while the highest (0.567) is achieved at the
interval 617+. Table 4.16 shows that in the case of 4 age groups, the baseline
accuracy is surpassed after approximately 26-41 unique contents viewed. This
is a substantial improvement from the 6-class results which required 171-311
unique contents. Furthermore we observe that, in order to achieve better
classification results than the overall results in Table 4.14, unique contents
viewed should be in the interval 104-170 or higher.

4.5 Binary Age Group Classification

In addition to predicting with 6 and 4 age groups, it is also interesting for NRK
to see how well prediction works in a binary age group setting, namely with
the class labels 12-39 and 40+. In this section, we thus present the results of
classification given these two age groups as the response categories.

Table 4.17 displays the obtained overall accuracy values for the different
classifiers. Similar to the examined results in Section 4.4 and Section 4.3, KNN
also performs worst out of all five methods with overall accuracy at 63.7%. Un-
like previously seen, however, random forest performs best with overall accuracy
of 71.9%. A confusion matrix corresponding to this classifier can be found in
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Nr. of unique contents Accuracy
3-8 0.328
9-15 0.413
16-25 0.361
26-41 0.395
42-64 0.427
65-103 0.419
104-170 0.446
171-311 0.472
312-616 0.494
617+ 0.563

Table 4.16: Binning results for age classification with 4 groups.

Figure 4.6: Binning results for age classification with 4 groups.

Appendix A.3. Though all three regression models perform only slightly worse
with identical values of 71.2%. We also see that using regression and random
forest we can obtain slightly more accurate results than simply classifying to
the most frequently occurring class (baseline accuracy: 69.7%). Particularly for
random forest we see a 3.2% improvement from the baseline accuracy. KNN,
on the contrary, does not outperform the baseline method.

Having obtained the highest overall accuracy and knowing that the other
models generally performed worse, we present the recall, precision and F1-
score for random forest in Table 4.18, while the remaining tables are found
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in Appendix A.3. For age groups 12-39 and 40+ we obtain recall values of
0.737 and 0.712 respectively, indicating a better ability to capture instances of
12-39 users than 40+. In terms of precision, age group 40+ achieves a higher
proportion than 12-39 (0.862 and 0.526 respectively). This suggests more exact
classifications for the former class compared to the latter.

The F1-score shows a higher value of 0.780 for predictions in the 40+ age
group than the 12-39 age group, which obtained a value of 0.614. This means
that when recall and precision are combined and given equal importance, classi-
fication performance is generally favourable for the 40+ age group compared to
the 12-39 age group. In addition, the standard deviation values displayed in both
Tables 4.17 and 4.18 suggest low dispersion among the 10 runs, as in Section 4.4.

Classifier Accuracy (SD)
Logistic regression 0.712 (0.005)
Ridge regression 0.712 (0.006)
Lasso regression 0.712 (0.005)

KNN 0.637 (0.007)
Random forest 0.719 (0.005)

Baseline 0.697

Table 4.17: Overall accuracies for binary age group prediction.

Random Forest
Age group Recall (SD) Precision (SD) F1 (SD)

12-39 0.737 (0.009) 0.526 (0.007) 0.614 (0.005)
40+ 0.712 (0.008) 0.862 (0.004) 0.780 (0.005)

Table 4.18: Recall, precision, and F1-score for binary age group prediction using
random forest.

Table 4.19 shows prediction accuracy by intervals of unique contents viewed,
achieved by random forest. The lowest accuracy is 0.659 when the number of
unique contents is in the interval 3-8. The highest accuracy obtained is 0.771
for the interval 104-170. An overall positive relationship is not as prominent in
this case as in the 6- and 4- class problems. As Figure 4.7 illustrates, accuracy
seems to fluctuate throughout the quantity intervals. To some degree, accuracy
increases up to the 104-170 interval, after which it begins to decline. We also
observe that most intervals achieve an accuracy greater than that of the baseline
of 0.697, except for a few (3-8, 26-41, and 617+).

4.6 Gender Classification

In this section, we present the results of classifying test users by gender. Like
in previous sections, we display overall accuracy for all methods, along with
recall, precision, and F1-score for the best performing classifier (random forest).
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Nr. of unique contents Accuracy
3-8 0.659
9-15 0.713
16-25 0.700
26-41 0.690
42-64 0.723
65-103 0.731
104-170 0.771
171-311 0.755
312-616 0.721
617+ 0.685

Table 4.19: Binary age classification accuracy by quantity of unique contents
viewed.

Figure 4.7: Binary age classification with predictions grouped by quantity of
unique contents viewed.

These can be seen in Tables 4.20 and 4.21. Logistic regression, ridge, lasso, and
KNN follow similar patterns in terms of recall, precision and F1-score and can
therefore be found in Appendix A.4. Also found in Appendix A.4 is a confusion
matrix corresponding to the random forest classifier.

Examining accuracy in Table 4.20, we see that not unlike the previous classi-
fications, KNN performs the poorest at 62.8% accuracy. Nonetheless, it is able
to achieve higher accuracy than the baseline, which is at 62.0%. The regression
classifiers and random forest all perform similarly, achieving approximately 73%
accuracy. Similar to Section 4.5, we obtain the highest overall accuracy for
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random forest (72.7%), followed closely by logistic regression (72.6%). Further,
we see that random forest is able to outperform the baseline by 17.3%.

In terms of recall, the random forest classifier detects male and female users
with similar accuracy, though it detects females with a slightly higher accuracy.
This is shown in Table 4.21 where under recall the male category has a value of
0.725, while the female counterpart has 0.730.

Conversely, random forest predicts with greater validity for males than
females, as reflected by the male group achieving a higher precision (0.814 vs.
0.619). The overall quality of predictions, based on both recall and precision is
better for the male category than the female category. This is reflected in the
F1-scores which is 0.767 for males and 0.670 for females.

Classifier Accuracy (SD)
Logistic regression 0.726 (0.004)
Ridge regression 0.723 (0.003)
Lasso regression 0.725 (0.004)

KNN 0.628 (0.004)
Random forest 0.727 (0.003)

Baseline 0.620

Table 4.20: Overall accuracies for gender prediction.

Random Forest
Gender Recall (SD) Precision (SD) F1 (SD)
Male 0.725 (0.005) 0.814 (0.003) 0.767 (0.003)
Female 0.730 (0.006) 0.619 (0.004) 0.670 (0.004)

Table 4.21: Recall, precision, and F1-score for gender prediction using random
forest.

Table 4.22 and Figure 4.8 display, for gender classification with random
forest, the results of grouping predictions based on number of unique contents
viewed by users. Examining these results, we see a tendency for accuracy
to increase with unique contents viewed. The lowest accuracy obtained is
0.644, which corresponds to the lowest interval of unique contents viewed, 3-8.
Conversely, the highest accuracy (0.809) belongs to the interval with largest
quantity of unique contents (617+). We observe that even with only 3-8 unique
contents viewed, we are able to outperform the baseline accuracy of 0.620. We
also see that after 42-64 unique contents, the accuracy generally surpasses the
achieved values in Table 4.20.
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4. Analysis

Nr. of unique contents Accuracy
3-8 0.644
9-15 0.657
16-25 0.728
26-41 0.749
42-64 0.727
65-103 0.751
104-170 0.760
171-311 0.771
312-616 0.753
617+ 0.809

Table 4.22: Gender classification accuracy by quantity of unique contents
viewed.

Figure 4.8: Gender classification with predictions grouped by quantity of unique
contents viewed.
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CHAPTER 5

Discussion and Conclusion

The main objective of this thesis has been to analyze the demographics of
NRK’s logged-in user base. In light of this, we sought out to answer three
research questions (cf. Section 1.2). The first question, Q1, examines NRK’s
demographic reach among the Norwegian population. The remaining two ques-
tions, Q2 and Q3, explore the degree to which prediction methodology can be
applied to the NRK data.

Q1 was addressed by comparing differences and similarities in NRK’s sample
demographics to that of Norway’s as a whole. This allowed us to evaluate
whether or not the logged-in users are representative of the Norwegian popu-
lation, with respect to age group, gender, and rural/urban living. Evaluating
representativeness then helped us to determine where there is potential room
for improvement in users. Our findings suggest two main key points. The first
is that, there are clearly underrepresented demographic groups as evidenced by
the larger disparities between the Norwegian population proportions and NRK’s
sample proportions. The second point is that, despite the obvious differences
between the two sets, there also exist congruencies in the general form of the
data. This was, for example, seen in how the older age groups constituted the
largest fraction for both NRK and Norway as a whole, while the younger formed
only small fractions.

Moreover, our findings about which demographic groups are underrepre-
sented and which are well represented give NRK insight as to where reach might
be improved. Through comparison we established that, in general, younger age
groups, both male and female, are potential groups for improvement in terms
of reach.

A limitation on the assertions we make about NRK’s reach lies in our inabil-
ity to verify the available data. In particular, there is no way to verify whether
or not the logged-in user dataset is truly representative of NRK’s user base as
a whole. In this regard, our assertions are relative to those who have chosen to
provide information, and groups who may be more skeptical to doing so are
likely not represented. This may be a reflection of the small portion of young
users compared to the older.

To answer Q2 and Q3, we used learning methods to model demographics as
functions of content consumption variables. The models were fitted to training
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5. Discussion and Conclusion

data and then used to predict the demographics of test users, namely age group
and gender. Predicting gender was somewhat successful as the classifiers were
able to outperform the baseline in terms accuracy and quality of predictions.
Random forests in particular was able to achieve an overall accuracy 17.3%
higher than the baseline. Predicting age group for the 6-class setting proved to
be more challenging, where the highest overall accuracy achieved was approxi-
mately 34%, compared to a baseline accuracy of 37%. Predicting with 4-age
groups, however, proved to show an improvement, yielding an overall accuracy
that was 15.2% better than the baseline. In general however, classification with
4 and 2 classes, were more successful as both were able to obtain accuracies
above the baseline for most methods. Furthermore, results by age group varied
considerably, with some obtaining lower F1-scores than others. This was partic-
ularly evident in the 6 age group case and slightly less so for predicting gender,
and age group with 4 and 2 classes.

Among other findings, we saw that KNN consistently performed the worst
compared to the other classifiers. This can possibly be attributed to the number
of features (36) in our design matrix, as KNN tends to suffer in higher dimen-
sions [18]. We also saw that both ridge and lasso achieved nearly identical, if
not lower, values than multinomial regression. This suggests that overfitting
was not necessarily a problem, and hence the effects of regularization may be
negligible. In addition we found that random forest and multinomial regression
had the tendency to perform the best.

Q3, specifically, was answered by grouping predictions based on the number
of unique contents viewed by the logged-in user and determining the fraction
of correctly classified users within those groups. In three out of the four
classifications that were performed, we saw a tendency for the accuracy to
improve with the quantity of unique contents viewed. The exception case
occurred in the binary age classification, where instead of a positive relationship,
we saw fluctuations in accuracy. For the case of 6-age groups, the baseline
accuracy was exceeded at the interval of 171-311 unique contents, while for the
4-age groups case this was 26-41. In gender classification, the lowest interval,
3-8, was able to produce a higher accuracy than the baseline.

5.1 Prediction Challenges

Our classification study reveals that in practice, obtaining accurate prediction
results can be rather challenging, most especially for a multi-class problem. The
accuracies achieved by the models reflects the necessity to improve on certain
modelling aspects.

Recalling from Chapter 2 that our methodological approach involved bal-
ancing our training data through random undersampling, it is a possibility that
our methods suffered the loss of important data points. Since implementing
random undersampling involves discarding random training observations to
obtain all classes of equivalent size, this meant for us discarding a substantial
amount of available data due to the significant imbalance. Despite having
several thousand rows of observations to begin with, we ultimately use only a
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fraction of these (cf. Section 4.2 and Chapter 3). Applying other, more clever
techniques to avoid losing useful information in the process of balancing could
have resulted in having a greater number of training instances and perhaps
improved classification accuracy.

The ability to predict the demographics of users may be particularly depen-
dent on how the response variable is categorized. This is especially relevant for
the age group classification problem and less so for gender classification, as the
defining characteristics of each category may not be as clear-cut. As an example,
the low accuracy obtained from classifying with 6 age groups could stem from
strong similarities between the younger age groups. If, for instance, users in the
18-24 category exhibit similar viewing behaviour as those in 25-29, the learning
algorithms may have the tendency to confuse whether a test observation belongs
in one or the other. In order to obtain better predictive ability, an option
may be to choose more meaningful age intervals that are easier to distinguish
between. This is not as straight forward as it may seem, as it raises the question
of how one might go about choosing a cutoff.

The inherent nature of the content consumption data may also be a di-
rect limitation on prediction quality. The Collaborative Filtering variables,
for example, are based on implicit feedback – which is, by nature, noisy [13].
This means that the Collaborative Filtering run that produced our data could
have a particularly low signal-to-noise ratio. Ultimately this makes modelling
the complexity of viewing preference more challenging in practice than theory,
as possibly reflected in our inability to substantially outperform the baseline
method.

A specific source of uncertainty is the premise that the information extracted
about user behaviour actually reflects the individual who maintains the NRK
account, as opposed to several people. There is a certain level of ambiguity
in terms of who is actually watching an episode or program, which in itself is
difficult to assess. In light of this fact, we took the measure of removing TV
device entries (cf. Chapter 3). This however does not completely eliminate the
possibility that individuals may still share other devices. This is an issue that
is difficult to verify. One option to address it may be to repeat a similar study
limited to mobile devices, as these are largely more personal.

5.2 Conclusion

After analyzing NRK’s demographic data and performing classification on their
logged-in user base we now arrive at our final conclusions. These conclusions
answer the research questions raised in the beginning of this thesis.

Our demographic analysis of the logged-in users suggests that NRK gen-
erally reaches age groups 30 and above quite well with respect to gender and
geographic location. This is in contrast to the younger group at ages 12-29,
which tend to be underrepresented, and therefore reveals where there might be
room for improvement in terms of reach.
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5. Discussion and Conclusion

Predicting demographics is challenging, particularly for the 6-category age
classification setting, but more achievable for gender classification and the 4- and
binary category age classification cases. This is to the extent that we can out-
perform a trivial baseline in terms of accuracy, though not by a massive amount.

Our classification study lastly suggests that the accuracy of predictions
tend to increase with the quantity of unique contents consumed. The study
demonstrated that after a certain number of unique contents viewed, the
accuracies could exceed the baseline and improve further with more views. For
gender prediction however, the results were better than the baseline results for
all quantities of unique contents.
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APPENDIX A

Appendix A

A.1 Age Group Classification with 6 Classes

Observed
12-17 18-24 25-29 30-49 50-66 67+

12-17 91 112 67 264 115 51

P
re

di
ct

ed

18-24 21 96 62 238 102 26
25-29 18 82 82 352 118 39
30-49 15 42 59 606 328 83
50-66 2 22 23 329 551 174
67+ 3 23 28 274 535 487

Table A.1: Confusion matrix for age classification with 6 age groups, obtained
from multinomial regression.

A.2 Age Group Classification with 4 Classes

Observed
12-29 30-49 50-66 67+

P
re

di
ct

ed

12-29 595 667 235 98
30-49 138 712 342 85
50-66 60 418 633 203
67+ 55 264 537 473

Table A.2: Confusion matrix for age classification with 4 age groups, obtained
from multinomial regression.
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Ridge Regression
Age group Recall (SD) Precision (SD) F1 (SD)

12-29 0.705 (0.020) 0.367 (0.010) 0.483 (0.012)
30-49 0.342 (0.010) 0.540 (0.012) 0.419 (0.009)
50-66 0.334 (0.013) 0.485 (0.009) 0.396 (0.010)
67+ 0.570 (0.016) 0.356 (0.008) 0.438 (0.010)

Table A.3: Recall, precision, and F1-score for prediction with 4 age groups using
ridge regression.

Lasso Regression
Age group Recall (SD) Precision (SD) F1 (SD)

12-29 0.702 (0.018) 0.369 (0.010) 0.484 (0.012)
30-49 0.344 (0.009) 0.535 (0.014) 0.419 (0.010)
50-66 0.333 (0.015) 0.482 (0.009) 0.394 (0.012)
67+ 0.570 (0.016) 0.358 (0.008) 0.440 (0.010)

Table A.4: Recall, precision, and F1-score for prediction with 4 age groups using
lasso regression.

KNN
Age group Recall (SD) Precision (SD) F1 (SD)

12-29 0.570 (0.023) 0.294 (0.010) 0.388 (0.013)
30-49 0.306 (0.011) 0.465 (0.013) 0.369 (0.011)
50-66 0.270 (0.007) 0.409 (0.011) 0.325 (0.007)
67+ 0.485 (0.017) 0.307 (0.009) 0.376 (0.011)

Table A.5: Recall, precision, and F1-score for prediction with 4 age groups using
KNN.

Random Forest
Age group Recall (SD) Precision (SD) F1 (SD)

12-29 0.644 (0.011) 0.377 (0.008) 0.475 (0.009)
30-49 0.362 (0.011) 0.525 (0.009) 0.428 (0.010)
50-66 0.357 (0.009) 0.467 (0.007) 0.405 (0.007)
67+ 0.541 (0.012) 0.354 (0.010) 0.428 (0.011)

Table A.6: Recall, precision, and F1-score for prediction with 4 age groups using
random forest.
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A.3. Binary Age Group Classification

A.3 Binary Age Group Classification

Observed

P
re

di
ct

ed 12-39 40+
12-39 1213 1052
40+ 456 2792

Table A.7: Confusion matrix for binary age classification, obtained from random
forest.

Logistic Regression
Age group Recall (SD) Precision (SD) F1 (SD)

12-39 0.756 (0.006) 0.517 (0.006) 0.614 (0.004)
40+ 0.693 (0.009) 0.868 (0.002) 0.771 (0.006)

Table A.8: Recall, precision, and F1-score for binary age group prediction using
logistic regression.

Ridge Regression
Age group Recall (SD) Precision (SD) F1 (SD)

12-39 0.755 (0.007) 0.517 (0.007) 0.614 (0.005)
40+ 0.693 (0.010) 0.867 (0.003) 0.770 (0.006)

Table A.9: Recall, precision, and F1-score for binary age group prediction using
ridge regression.

Lasso Regression
Age group Recall (SD) Precision (SD) F1 (SD)

12-39 0.756 (0.006) 0.516 (0.006) 0.614 (0.004)
40+ 0.693 (0.009) 0.867 (0.002) 0.770 (0.005)

Table A.10: Recall, precision, and F1-score for binary age group prediction
using lasso regression.
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KNN
Age group Recall (SD) Precision (SD) F1 (SD)

12-39 0.714 (0.013) 0.439 (0.007) 0.544 (0.008)
40+ 0.604 (0.007) 0.829 (0.007) 0.699 (0.006)

Table A.11: Recall, precision, and F1-score for binary age group prediction
using KNN.

A.4 Gender Classification

Observed
P

re
di

ct
ed Male Female

Male 2495 558
Female 921 1539

Table A.12: Confusion matrix for gender classification, obtained from random
forest.

Logistic Regression
Gender Recall (SD) Precision (SD) F1 (SD)
Male 0.707 (0.007) 0.825 (0.003) 0.761 (0.004)
Female 0.756 (0.006) 0.613 (0.005) 0.677 (0.004)

Table A.13: Recall, precision, and F1-score for gender prediction using logistic
regression.

Ridge Regression
Gender Recall (SD) Precision (SD) F1 (SD)
Male 0.703 (0.006) 0.825 (0.003) 0.759 (0.003)
Female 0.756 (0.007) 0.610 (0.004) 0.675 (0.003)

Table A.14: Recall, precision, and F1-score for gender prediction using ridge
regression.

Lasso Regression
Gender Recall (SD) Precision (SD) F1 (SD)
Male 0.706 (0.007) 0.825 (0.004) 0.761 (0.004)
Female 0.756 (0.007) 0.612 (0.005) 0.677 (0.004)

Table A.15: Recall, precision, and F1-score for gender prediction using lasso
regression.
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A.4. Gender Classification

KNN
Gender Recall (SD) Precision (SD) F1 (SD)
Male 0.616 (0.005) 0.740 (0.005) 0.672 (0.003)
Female 0.647 (0.009) 0.508 (0.004) 0.570 (0.005)

Table A.16: Recall, precision, and F1-score for gender prediction using KNN.
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