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Abstract

We study how one can improve upon a logistic regression model for statis-
tical fraud detection. Fraud data are often characterized by uneven class
distributions as well as high dependence among covariates. With a focus on
recreating such dependence structures found in fraud data, we propose a
stochastic model from which we can generate data. The model utilizes copu-
las to create a highly flexible framework for generating dependent covariates.
This allows for a wide range of dependence structures among the covariates,
and does not put any restrictions on the marginal distributions for the
covariates themselves. We use this data generation scheme to conduct a
simulation study of which regularization methods for logistic regression are
best suited when covariates are highly dependent. We evaluate this in terms
of both prediction and variable selection. The second problem, namely an
uneven class distribution, introduces challenges as well. First, selection of
an appropriate measure of predictive performance is important. Secondly,
it has been demonstrated that some methods may struggle with poor pre-
dictive performance on the under-represented class. We study how such a
class imbalance affects the predictive performance and variable selection
capabilities of the penalized logistic regression methods. In the last part
of this thesis we model tax fraud on a real-life data set provided by The
Norwegian Tax Administration. Our results show that penalized logistic
regression can be a helpful tool for detecting tax fraud.
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Chapter 1

Introduction

All businesses in Norway must report their Value Added Tax (VAT) paid
every two months. It can be an arduous process for a business to produce
such reports, since there are many laws and clauses one needs to be familiar
with if this is to be done correctly. Thus, errors are occasionally made, and it
is in The Norwegian Tax Administration’s best interest to find anomalies in
VAT reports. Besides detecting and correcting honest mistakes, one is also
interested in detecting fraud. The Norwegian Tax Administration routinely
carries out controls of VAT reports, and has for this purpose defined several
rules and filters which will tag a VAT report as possibly anomalous. This
gives the controllers a starting point of which reports to look further into,
but the issue with the current approach is that the number of tagged reports
far exceeds what one could hope to control. One does not have the time to go
through all tagged reports, since each control requires substantial amounts
of time and manpower. In this thesis we will focus on a particular data set
produced by The Norwegian Tax Administration containing information
on previous such VAT controls. For each control we are given a number of
attributes regarding both the specific control, and background information
about the business being controlled. The data set consists of 50255 actual
controls, such that the outcome of each control is known. Each of these
controls has a total number of 556 attributes of which 539 are numerical
and 17 are categorical. Using these historical data we can build statistical
models to gain insight into the underlying mechanisms making a business
either to make mistakes in their reporting, or consciously swindle on their
reports. Equally important is prediction. That is, we wish to apply our
statistical model to new cases in order to estimate their probability of being
anomalous. Such models can then be used to help controllers decide which
reports one should investigate in the future, thereby making the anomaly
detection procedure more effective. Thus our goal is not to perfectly predict
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Predicted
‘ Anomalous Not anomalous
Anomalous gain loss;
Actual Not anomalous | losss 0

Table 1.1: Table illustrating the loss or gain in the four possible outcomes
of a control.

which cases can be anomalous and which cases are not. The final decision
about whether or not to investigate a case should be made by controllers in
order to utilize their experience and expertise. As the basis for such decision
making, we have the four possible outcomes of any control, represented by
Table The possible gain by uncovering an anomaly, or the potential
loss loss; caused by not investigating an anomalous case, or losss if one
investigates a non-anomalous case will vary. Our goal is to provide a proba-
bility such that one can weigh the expected costs of either investigating, or
not investigating up against one another. In Chapter [2] we will present the
statistical framework necessary to produce such statistical models. We will
cover the logistic regression model, and discuss how one should estimate
and evaluate these models both generally and specific to the current problem.

If a given report is assigned a high probability of being anomalous, the
controllers are also interested in knowing why. This is because the controllers
want to be sure that a given case will be worthwhile investigating and feel
confident that the case at hand is worth spending valuable time and resources
on. However, the large degree of dependence between attributes can make it
difficult to provide such information. We essentially run into an ever-present
issue in statistical modeling; how one separates correlation from causality.
If two attributes A and B are correlated, it can be difficult to separate the
effects of A from the effects of B, and to draw a conclusion about which
of these attributes truly affect the probability of a report being anomalous.
The unfortunate effect on variable selection caused by high dependence
among attributes has previously been pointed out as a problem in fraud
detection in Lgland et al. . The problem of dependence among the
attributes in the VAT data set is illustrated in Figure [[.I} We see that the
four variables x5, x3, %4 and x5 are all highly correlated with the variable x;
(variables names are not provided due to anonymity). Uncovering a causal
relationship between these five variables and VAT fraud is difficult, and thus
we risk falsely identifying for instance x; as a relevant factor for uncovering
VAT fraud, when in reality it may be any one (or more) of the other four
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Figure 1.1: Four plots illustrating the degree of dependence between the
covariates in the VAT data set.

variables. Methods for selecting attributes in the logistic regression model
will be discussed in Chapter

One commonality of fraud data is the low rate at which fraud is perpe-
trated. This of course varies depending on the specific situation, but a ratio
of fraudulent to non-fraudulent incidents of 1 to 100 is not uncommon, and
may in some instances be much lower, Bolton and Hand . This has
unfortunate effects both when estimating a statistical model and evaluating
predictive performance. So called re-sampling methods to remedy problems
related to model training in such situations have been proposed, and some
of the most used methods are presented in Chapter [4]

Before we study the methods from Chapters [3| and [4] on the real VAT
data set we will study these methods in a series of simulation experiments
in a controlled environment where we know the true model. We can thus
see which methods are best both in terms of prediction and selection of
attributes when the covariates are highly dependent and classes unbalanced.
The end goal of this is to extrapolate the knowledge we obtain from these
simulation experiments to the problem of VAT anomaly detection. How-
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ever, it is necessary that the properties of the data sets we generate in our
simulations resemble those of the true data set. To this end, we perform
a preliminary analysis of the VAT data set, and based on these results
construct a stochastic model from which we can sample new observations in
Chapter ol We focus particularly on recreating the dependence structure
found between the covariates in the VAT data set. One common restriction
when generating such dependent data is that the marginal distributions
must all be of the same family. By using copulas to model dependence
between covariates we effectively remove this restriction on the marginal
distributions. Additionally, such a construction allows for a wider range of
possible dependence structures among the covariates to be studied. We use
this data generation procedure to study the performance of regularization
methods in cases when attributes are highly dependent in Chapter [6 Using
much of the same framework, we study how uneven class distributions in
addition to highly dependent covariates affects both predictive performance
and variable selection for logistic regression in Chapter [7] In addition,
we study the effects of applying three re-sampling methods introduced in
Chapter [4] to see if these can improve either prediction or variable selection.

In the final chapter we look closer at the VAT data set. We apply the
insight gained from the simulations studies in Chapter [6] and Chapter [7] to
model VAT anomaly detection on a real data set. We will also discuss both
selection of attributes and the predictive performance of the final model.
Discussion and conclusions can be found in Chapter [9]



Chapter 2

Statistical framework

2.1 Mathematical representation of data

Before we begin defining our statistical model, we specify how one can rep-
resent the problem of VAT anomaly detection in a mathematical framework.
The problem at hand is essentially that of recognizing a given VAT control
as either anomalous or not anomalous. Other than this, there is no
further gradation of the controls. This amounts to a binary situation, and
we are thus faced with a binary classification problem. Let Y; represent
whether case number ¢ is anomalous or not. We may then give Y; the binary
representation

1 if case 7 was anomalous
i = ) )
0 if case 7 was not anomalous.

It was mentioned in the introduction that an anomaly may occur as the
result of an honest mistake, or fraud. However, for simplicity we will in
the remaining part of this thesis only refer to ¥; = 1 as an indicator of
fraud rather than the more general term anomaly. We also introduce a
mathematical representation for the attributes belonging to each case. For
case number ¢, let attribute number 1 be given by x; ;, and attribute number
2 by X; 2, and so on. We introduce the vector x; = (X;1,X;2, . .., X;,)" which
contains all p attributes for case number i. Further, when we have n cases
in our data set we can set up a matrix notation for our data, given by

T
Y, X110 X12 o Xip X1
T
Y, X21 X292 -+ Xop X2
Y = . s X_ = . . . =
T
Yn Xn,1 Xn,2 0 Xpp Xn
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However, in the following we will often add an additional 1 as the first
element of x; for all ¢ = 1,...,n, and thus the matrix X becomes an
n x (p+ 1) matrix. Thus, each row represents the available information we
have on a specific case, and each column represents the different covariates.
We have now established the mathematical representation of our data set,
and can move on to describing how one can model such binary classification
problems.

2.2 Modeling probabilities

We assume that the outcome Y; of each case is binary, and that the probability
of fraud in a case given the attributes/covariates is P, = P(Y; = 1]x;)
for case i. The question is now what parametric assumptions to make
on the probability P;. The most common regression model is perhaps
linear regression, which has been applied successfully in many different
fields. However, modeling probabilities with a linear regression framework is
problematic. Assuming a linear regression model for P; we have P; = n(x;),
where 7(x;) is the linear predictor defined as

H(Xi) = 0o+ Bixii+ -+ BpXpi = X?ﬁa

with 8 = (B, 81, ..., 8,)". A problem with this model is that n(x;) is defined
not only on (0,1), but on the whole of R. This means that our model may
predict probabilities outside the range (0,1) making the interpretation
of these predictions problematic. One may then proceed by considering
transformations of 7(x;) instead. Such transformations are called (inverse)
link functions in the Generalized Linear Model (GLM) framework. There
are several link functions one may consider. One option is the cumulative
distribution function ®(-) of the standard normal distribution, which gives
us the model

P(Yi = 11x;) = ®(n(xy)),

which is commonly called probit regression. Another option is to apply
the complementary log-log link from the GLM framework (Jong and Heller,

2008)), such that
P(Yi = 1]x1) = 1 — exp(—exp((x3))).

Alternatively, one may use the cumulative distribution function of a lo-
gistic distribution with mean 0 and variance 7?/3 (Balakrishnan, 1991,
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Figure 2.1: P(Y; = 1]x;) plotted using three different transformations of
n(xi)-

corresponding to the logit link

en(xi)

PO = 1) = T

(2.1)

which results in logistic regression. All these transformation ensure that
P(Y; = 1]x;) € (0, 1), though the third is the one most commonly used in
practice. Figure [2.1|shows P(Y; = 1|x;) as a function of x; for different link
functions, with Sy = 0 and $; = 1. As can be seen from this figure, the
logistic regression model assigns more probability further out in the tails
of the distribution than does probit regression. We will in this and later
chapters assume the logit link function.

An interesting property for any classification method is its decision
boundary, which is briefly discussed here to illustrate the properties of
logistic regression. The decision boundary is a line (when p = 2) in the
predictor space where our model considers it equally likely for a given
prediction Y; being a 1 or a 0. In some cases, one would decide to predict
V; = 1 when the predicted probability of fraud is greater than 0.5, in which
case the decision boundary would be defined by

PY; = 1|x;) = 1 — P(Y; = 1|x,).
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Figure 2.2: Two different decision boundaries for a logistic regression model.
On the left: linear decision boundary. On the right: quadratic decision
boundary.

By inserting the expression for P(Y; = 1]x;) in the logistic regression model,
we find that the decision boundary satisfies

e"(xi) 1

1+ en(xi) - 1 4 en(xi) =

Because 7(x;) is a linear function of x; the decision boundary is also linear.
This may be considered a disadvantage of the logistic regression model if one
suspects the decision boundary to be non-linear. However, this can be taken
into account by introducing transformations of the individual elements in
x;, while still allowing 7(x;) to be a linear function of x;, see Figure
Another issue with logistic regression arises if one wishes to include interac-
tion terms in the model, which requires manual specification of the specific
interaction terms to be included. This can cause problems, especially in
situations where p already is large, as including all possible two-way interac-
tions leads to a drastic increase in the number of parameters to be estimated.

Assume that the outcome of the cases are independent of each other,
and that the outcome of any given case Y; given its attributes x; follows a
Bernoulli distribution where p; = P(Y; = 1|X = x;) is the probability of
case ¢ being fraudulent, defined as in for i =1,...,n. The likelihood

function is then defined as

n en(xi) i 1 1—y; n o on(xi)yi
E(’B) - H 1 4 enlxs) (1 + en(Xi)> - Z:r[l 14+ entx)” (2'2)

i=1
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Because it is difficult to find parameters that maximize likelihoods such as
, one considers instead the log-likelihood. This has the advantage of
being both easier to work with analytically, but also more stable when opti-
mizing numerically. Importantly, the values that maximize a likelihood also
maximize the log-likelihood. The log-likelihood function ¢(8) = log(L(B))

is in this case given by
(B) = Zym(xi) — log (1 + 677(?(1'))
i=1
=2 (B~ log (1+ 7). (2.3)
i=1

The maximum likelihood estimator B is obtained by maximizing which
must be done using some numerical procedure. A common choice is the
Newton-Raphson algorithm. We will in this thesis not concern ourselves
with such numerical optimization problems, but use the built-in procedures
given in R. Fitting the logistic regression model using maximum likelihood
estimation has several advantages. This provides us with a number of already
established theoretical results we can use to make inference on 8. One such
result of particular importance says that the estimator B is approximately
unbiased and approximately normally distributed,

V(B —B) =~ N(0,Z(8)™),

where Z(B) = —F t[;;ﬁ(,@)} is known as the Fisher information. This allows
for construction of confidence intervals, and performing hypthesis testing

for the significance of the coefficients 5, .., 5,.

Logistic regression suffers when the number of covariates p is large.
Including too many covaraites in our model may lead to a model which
is highly dependent on the randomness present in our data, rather than
the true underlying effects which we are interested in. The problem is
twofold: First, one wishes to identify which covariates actually contribute
to the distribution of the response Y. Second, one may wish to reduce
the effect a covariate has on the response if the corresponding parameter
estimate is riddled with variance. These issues are highly relevant within
fraud detection, where the number of explanatory variables may be in the
hundreds or even thousands, many of which may be highly correlated or
have little to no impact on the response. We will in the next chapter give
an overview of some of the common techniques and approaches for variable
selection and model regularization.
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2.3 The bias-variance trade-off

An important concept in most statistical modeling is that of bias-variance
trade-off. Parameter selection is part of this problem when constructing our
logistic regression model for fraud detection. Including all covariates in the
model would yield a model that is too variable w.r.t. the covariates and
thus it has low bias but high variance. On the other hand including only a
few significant covariates (assuming these could be identified) could lead to
a model that is not variable enough, i.e. it has a low variance but high bias.
Consider the linear regression setting, where Y = f(x) + € for € ~ N(0, o).
The objective is to estimate f = f(x) by some function f=7 (x). It may
be shown that the expected squared loss can be written as

E[(Y = f)?| = Var(Y) + Var(f) + (f = E[f])* (2.4)

Hence, the expected loss may be considered as the sum of three components,

A

namely irreducible error Var(Y'), variance of our prediction Var(f) and the
squared bias of our prediction (f — E { ﬂ )2. This decomposition essentially
illustrates the problem: we wish to minimize by reducing the two
latter components in the sum. However, minimizing both the variance and
bias simultaneously is usually not possible, and one must instead seek to
find an optimal relationship between the two. As stated in Hastie et al.
, a similar relationship between bias and variance is present when
modeling probabilities. A common term in variable selection is that of model
complexity. Model complexity is related to the number of parameters in
our logistic regression model. A model with a high number of parameters is
considered to be more complex than one with only a few. A typical view
of how bias and variance are related to model complexity is provided in
Figure [2.3] This illustrates that as the model complexity increases, the bias
is reduced, but at the cost of increased variance.

2.4 Model selection criteria

The squared loss function was considered for the purpose of illustrating the
bias-variance trade-off. For binary classification there are other measures of
performance to consider. Deciding which one is most appropriate for a given
situation is not always straightforward. First, note that our primary objective
is prediction which should be kept in mind when choosing the performance
measure. One common way to assess model predictive performance is to
consider the accuracy of a model. Assume we have some model f (x;) that
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Total error

Error

Variance

Model complexity

Figure 2.3: An illustration of the tradeoff between bias and variance for the
squared loss function.

produces P(Y; = 1|x;) for each x;, so that ¥; = 1 if P(Y; = 1]x;) > ¢ for
some constant ¢ € [0,1], and Y; = 0 else. The accuracy is then given by

1& N
ACC = =3 I(Y; = Y)).
i=1

This measure is easy to interpret and seems a reasonable one if we are simply
interested in the predicted labels (i.e. fraud/not fraud), and not the corre-
sponding probabilities. However this is not the case in fraud detection and
accuracy is therefore not appropriate as a measure of predictive performance.
This measure does not take into account how certain we are that a given
claim is fraudulent. Whether the probability of a claim being fraudulent is
estimated to 0.5 or 0.99 is not relevant when using accuracy with ¢ = 0.5
as a measure of predictive performance, because we will classify V=1
in both cases. Additionally we do not want to classify each case as either
fraudulent or not, we wish to provide a probability of a case being fraudulent.

An alternative is the Brier score (Brier, [1950), which does take into
account how certain we are that a given claim is fraudulent. The Brier score
may be defined as

1 & A 2
BS = — Y, — P(Y; =1|x;)) .
o2 (Y= P =1)
Each term of the Brier score is maximized when Y; = 1 and P (Y =1|x;) =0,
or Y; =0 and P(Y; = 1|x;) = 1. In either case the corresponding term of
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the Brier score will be 1. Since each term may have a maximum value of 1
and there are n of these, the Brier score like the ACC takes on values be-
tween 0 and 1, where a lower value of Brier score indicates better predictive
performance.

One point of concern regarding both accuracy and Brier score as mea-
sures of predictive performance is their dependence on the ratio of number
of fraudulent cases to the number of non-fraudulent cases. Using these
measures as criteria for model selection in classification problems where
there is an unequal number of fraudulent and non-fraudulent observations
in the data set can result in sub-optimal models. For instance, in the VAT
data set the ratio of fraudulent to non-fraudulent cases is roughly 1 to
5. A model which classifies EA/; = 0 for all observations thus obtains an
accuracy of 80%. However, such a model has no value if one is interested
in detecting fraud. It is therefore easy to be fooled by measures such as
accuracy when there is an unequal number of observations associated with
the two classes. This can be problematic if one is interested in keeping track
of the performance of a model over time. If there is substantial variation in
the number of fraudulent cases compared to non-fraudulent cases in different
time periods, then a measure such as accuracy will reflect this. One then
risks drawing the possibly erroneous conclusion that the performance of a
model has changed, simply due to a change in the frequency of anomalous
cases. In fraud detection generally one needs to update any predictive model
in order to adapt to the changing strategy of fraudsters, as pointed out by
Bolton and Hand . It is therefore crucial to evaluate the predictive
performance of a model based on a measure that is independent of the
number of fraudulent to non-fraudulent observations in order to get a clear
picture of the true predictive performance of a model.

As an alternative, one could study how a model performs on predicting
the fraudulent and the non-fraudulent cases separately. Hence we may wish
to distinguish between which cases are correctly predicted as fraudulent,
known as true positives, and which cases are correctly predicted as not
fraudulent, known as true negatives. A model with good predictive abilities
should achieve a high rate of both true positives and true negatives. Such
statistics may be represented by constructing tables such as Table com-
monly referred to as a confusion matrix. Observations correctly classified
are found on the diagonal, and the observations incorrectly classified on the
off-diagonal. The advantage of such a confusion matrix is that it gives us
a view of what types of errors our model makes. We can thus keep track
of how well our model is recognizing the fraudulent cases as well as the



2.4. MODEL SELECTION CRITERIA 13

Predicted
‘ Fraud Not fraud
Fraud True positives  False negatives

Actual

Not fraud | False positives True negatives

Table 2.1: Layout of a confusion matrix

non-fraudulent cases, instead of how well our model is at predicting all cases
in general. In the previous example where we constructed the model }A/; =0
Vi, the number of true negatives would be high, whereas the number of
true positives would be 0. Construction of such tables therefore gives a
more transparent view of the performance of our model. By adjusting the
threshold of predicting a claim as fraudulent, we can create several tables
such as Table 2.]] for different thresholds, however it is more common to
create a Reciever Operating Characteristic (ROC) curve (Swets, [1988). ROC
curves are much used as measures of predictive performance in classification.
A ROC curve visualizes how the true positive rate changes as the false
positive rate is increased. Partly what makes ROC attractive is that it
is based solely on the true positive rate and the false positive rate from
Table 2.1] and is thus independent of the underlying class frequencies in
the data set (Swets, [1988). This property of the ROC makes it particularly
relevant as a measure of predictive performance in fraud detection, since
the frequency of fraudulent observations tends to be much lower than that
of non-fraudulent observations (Bolton and Hand, . It is important
to be aware of the possible shortcomings of ROC curves as measures of
performance. One of these is that a ROC curve does not indicate how well
the model fits the data. Additionally, if one is interested in training a model
which produces correct probabilities for a given event, using the ROC as
a measure of performance is inappropriate. However, as pointed out in
Chapter [T[] we are not interested in the probabilities per se, but rather the
probabilities compared against one another. Our objective is to create an
ordering of which cases are more likely to be fraudulent, whose true purpose
is to separate the fraudulent cases from the non-fraudulent ones. For such
objectives, ROC curves are ideal as measures of performance (Fawcett,

Although a visual display of the ROC by plotting ROC curves may be
used to evaluate the predictive performance of a model, it is often desirable
to have quantitative means of evaluating the ROC. The typical approach is
to calculate the Area Under the (ROC) Curve (AUC). A model which is able
to perfectly predict all observations will have an AUC of 1, while randomly
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assigning labels as either 0 or 1 with equal probabilities will yield an AUC
of 0.5 in a binary classification problem. The AUC has a probabilistic
interpretation which helps understand when it is appropriate to use such a
measure. It equals the probability that a fraudulent case will be assigned a
higher probability of being fraudulent than a non-fraudulent case (Fawcett,

2006).

Regardless of which of the above model selection criteria one uses, one
must be careful when using the same data set to both fit and evaluate
the predictive performance of a model. The reason for this being that the
model might become tailored to that particular data set. This is known
as overfitting. Overfitting occurs when a model has to a large degree been
fitted to the randomness present in the data. A typical cause of this is the
inclusion of too many parameters in a parametric model such as the logistic
regression model.

2.5 Training and test set

In an attempt to prevent over-fitting, one can split the original data set
into two disjoint subsets: a training set and a test set. The model is esti-
mated/trained on the training set and its predictive performance evaluated
on the test set. Because the test set is independent of the training set,
one thus obtains an appropriate measure of model performance. How large
the training and test sets should be must be evaluated for each individual
setting. If the test set is not sufficiently large, it might not be representative
of the underlying data thus providing poor basis for evaluation of model
error. However, choosing a large test set comes at the cost of a smaller
training set. This is unfortunate since the test set is not used at all to fit
the model, and we therefore in a sense lose data.

2.6 K-fold cross-validation

While for some methods it may be adequate to train a model on the training
set and evaluate the model on the test set, this is not always the case. For
some of the methods which we will discuss later we may wish to estimate
the predictive performance on the test set in order to tune our model. Such
an estimate can be obtained by dividing the original training set into K
approximately equally sized subsets {Y1,X;},...,{Yx, Xk} often referred
to as folds. One would then use {Yq, Xo}, ..., { Yk, Xk} as the training set
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and {Y1,X;} as the test set, independent of the training set. The next step
is to fit a model using {Y1, X1}, {Y3, X3}, ..., {Yk, Xk} as the training
set, and {Y9, X5} as the test set. This procedure is repeated for all the
K subsets, thus obtaining K estimates of model performance. Seeing that
our final model will be used in a predictive manner, this approach seems a
reasonable one since it to a certain degree mimics the situation in which the
final model will be used and evaluated. The independence between the test
and training set at each step of this method is important because it results
in unbiased estimates of model performance for each of the K models. The
K estimates are then averaged to get a final estimate of model performance.
We can use the Brier score to evaluate the model fit on each subset. The
average of these K Brier scores will be denoted

1 K
BScvx) = e > BS(k),
k=1

where BS(k) is the Brier score based on the k’th subset. An alternative is
the cross-validated AUC given by

1 K
k=1

There is great flexibility in the choice of K. As in variable selection, it is a
matter of balancing the bias-variance trade-off. Choosing K = 2 leads to a
situation close to that of dividing the data into just one training set and one
test set, resulting in high bias but low variance. On the other hand, setting
K = n (leave-one-out cross-validation) results in low bias but high variance.
Besides this, the computational demands increase with K, since models
must be fitted and their predictive performance estimated K times. The
effect K has on estimating model error was extensively studied in Kohavi
(1995), where it was concluded that K = 10 provides an optimal trade-
off between variance and bias. Further, it was recommended to perform
stratified K-fold cross validation as opposed to regular K-fold cross validation
to reduce bias in the estimate of model error. This means that the subsets
{Y1,X1},...,{Yxk, Xk} should be constructed such that all subsets are
approximately equal w.r.t. the number of fraudulent and non-fraudulent
cases in each fold, rather than performing a completely random split of the
data.
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Algorithm 2.1 Stratified cross validation
Input: Y K

7Ty = which (Y == 0)

T, = which (Y == 1)

no = length (Zp)

ny = length (Z;)

fOldSiZGO = no/K

foldSize; = ny /K

labels = rep(0, ng + ny)

labelsy = ¢ (rep(1, foldSizeq) % * %t (1 : K))
labels; = c(rep(1, foldSize; )% * %t(1 : K))
labels [Zo] = sample(labelsy)

labels [Z;] = sample(labels; )

: Return labels

— = =
=2

Algorithm performs stratified cross validation. Note especially how
the sampling of positive and negative observations is done separately to
obtain an even number of both classes in all folds. This algorithm assumes
that the positive and negative observations can be divided evenly across all
folds, an assumption that needs not be taken into considerations with just
small modifications to the algorithm.



Chapter 3

Model regularization

Model regularization for regression problems is a wide subject which we can
not cover in its entirety in this thesis. However, we will present some of
the more common methods. Generally, regularization methods are applied
in order to reduce overfitting. This is done by reducing the number of
parameters, or shrinking the parameters in a model. Methods that are
intuitively quite clear and can in some cases perform reasonably well are
forward and backward selection. These methods can however often result in
sub-optimal models. Additionally, it has been observed that models trained
by such an approach tend to be highly variable (Breiman, . This is
because small changes in the training data set can cause substantial changes
to the final model. Alternatively, one can transform the data prior to model
training to reduce the dimension of the problem. For instance the n x p
matrix X can be transformed using a vector § = (6y,...,6,)T to produce
the n x p matrix Z = #X. One then proceeds by modeling the response
Y using only p* < p of the columns in Z. One common such method is
Principal component regression, Hastie et al. .

The focus of this chapter will instead be methods that seek to optimize
in a constrained manner. Many such methods have been proposed,
where the main difference between these lie in how one formulates the
imposed constraints.

3.1 Ridge regression

One of the first methods introduced for model regularization is ridge regres-
sion. The idea behind ridge regression is still to optimize our log-likelihood
w.r.t. B, but to do so under a variance reducing constraint. Let the log-
likelihood be defined as in , however instead of optimizing one

17
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now seeks to optimize (Le Cessie and Van Houwelingen, [1992))

p

iym(xi) —log (1 + 6”(’“)) — A Z 6]2, (3.1)
i=1

i=1

where the last term is a penalization term whose effect depends on A\, known
as a penalty parameter. If A = 0, becomes , and we are simply
left with maximum likelihood estimation. As \ increases, our model is
increasingly forced to reduce the sum Z§:1 BJQ in an optimal way. We

thereby introduce some bias to the estimates Bl, e Bp in exchange for lower
variance and hopefully better predictive performance. We are in essence
exploring the possible gains in predictive performance by trading variance
for bias as depicted in Figure When adding penalization terms such
as in , it is common to standardize all covariates so they have a mean
of zero, and a standard deviation of one. This ensures that the penalty
introduced by A shrinks all coefficients equally, independent of the scale of
their respective covariates.

For the purposes of presenting some theoretical results, consider now a
linear regression model where one assumes

Y:BO_I_X/B_I_Ga

where X is an n X p matrix, so the first column containing 1’s has been
removed. Further, 8 = (B,...,5,)" and € = (e1,...,€,)" is a vector
containing the residuals which are all assumed independent and identically
distributed according to N(0,¢?). In matrix notation, the objective function
to be minimized is now

(Y = 6o = XB)' (Y = 6 — XB) + \8"B.
One may then show that the ridge estimator is
30 = Zyz
=1

B = (XTX + A1) IXTY.

S

We can see that the ridge estimator ,3 differs from the regular least squares
estimator, as it includes an additional term that depends on A. From this
result we see that increasing the value for A shrinks B . While this result is
only valid for linear regression, the same behavior is present for the ridge
estimator in logistic regression (Le Cessie and Van Houwelingen, [1992).
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-2

log(A)

Figure 3.1: Plot of B coefficients resulting from fitting a logistic regression
model with a ridge penalty. True zero-coefficients shown in dashed lines,
non-zero coefficients in solid lines.

We consider an example to illustrate the effect A has on the estimated
model coefficients. To do this, we will draw simulations of x; fori=1,...,n
with n = 100. We will in this example draw 9 explanatory variables so that
x; = (1,2;1,...,79)". All explanatory variables were drawn independently
from the standard normal distribution. The model was defined as

B =(3,-252-15,1,0,0,0,0),

with the intercept 3y = 0. The next step is to compute 7(x;) = x; 8 and
P(Y; = 1|x;) = enxi)/ (1 + e"(xi)>, and draw Y; ~ Bernoulli(P(Y; = 1|x;)).
We now have data which we can use to estimate a logistic regression model
with a ridge penalization term. This was done in R using the package
glmnet. The model was fit with 100 different values for A ranging from
exp {—9} to exp {—1}. In Figure 3.1} we can see the behavior previously
discussed, where the estimated model coefficients shrink as A increases. Note
especially how the estimated coefficients shrink; they approach 0 very slowly
and will in fact never be estimated to exactly 0. Hence, ridge is not able to
perform variable selection. For problems where the true model consists of
many variables with small coefficient values ridge regression may therefore
be appropriate. On the other hand ridge regression may struggle and result
in poor predictive performance when the sizes of the 8 coefficients are more
varied, i.e. both small and large coefficients in 8 (Breiman, [1996b). A
question that arises when such small parameter estimates are obtained is
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whether these parameters truly are close to, but not equal to zero, or if they
truly are zero. The effect parameter estimates close to zero have on the
predicted values may not be that big, but the interpretation of the model
still remains questionable.

3.2 Lasso regression

Lasso regression is another widely used method for model regularization.
Again, the idea is to put restrictions on the model coefficients 3y, ..., 3,
when performing model estimation. Let the log-likelihood be defined as in

(2.3). One now considers (Tibshirani, [1996))
n p
Z yin(x;) — log (1 + e"(x")> - A Z 181, (3.2)
i=1 j=1

where again if A =0, becomes , which leads to regular maximum
likelihood estimation. Lasso regression differs from ridge regression by re-
placing the [* penalization term >-; 37 with an [* penalization term 3, |6;].
This leads to a harder penalty for small values of 8, 7 = 1,...,p. Using
lasso regression, one may therefore end up with coefficient estimates which
are exactly zero. Lasso as opposed to ridge thus performs variable selection.
More precisely, because the lasso penalty unlike the ridge penalty is singular
at 0 (its derivative is not defined), the lasso can perform variable selection

(Fan and Li, 2001).

Let us also here consider an example using simulated data, with the
procedure for generating data the same as before. Figure [3.2] shows the
result of fitting a logistic regression model with lasso penalty. As A increases
the coefficients shrink, with some estimates even becoming exactly zero.
Thus, lasso regression also performs variable selection by excluding some
predictors from our model, simplifying its interpretation. This is considered a
particularly attractive property of lasso. However, Figure [3.2] also illustrates
that while lasso does shrink the zero-coefficients to zero, it introduces
potentially large bias to the remaining non-zero coefficients. By the time all
of the zero-coefficients have been correctly estimated as zero, the remaining
non-zero coefficients have been shrunk to only a fraction of their original
size. In fact, for a large coefficient [3; it has been shown that lasso will
produce biased estimates. This is owed to the fact that the derivative
of |3;] does not equal zero when f; is large (Fan and Li, [2001)), which is
considered a weakness of lasso. Further, in situations with grouped variables,
i.e. when groups of covariates are highly correlated lasso is likely to select
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Figure 3.2: Coefficient paths for varying values of A\ using the lasso penalty.
Dashed lines for zero-coefficients, solid lines for the non-zero coefficients.

only one of these with little regards to which one it is (Zou and Hastie,
2005). Additionally, it has been observed that lasso may perform worse
in terms of prediction than for instance ridge when covariates are highly
correlated (Tibshirani, [1996). Alternative methods for regularization have
therefore been proposed. One such menthod which addresses particularly
the last two points is elastic net.

3.3 Elastic net

Proposed by Zou and Hastie (2005)), the elastic net combines the penalties
used in lasso and ridge, giving the objective function

n

> _yin(xi) —log (1 + €n(xi)> —A (Oéf: 1651 + (1 — ) iﬁ?) : (3.3)

i=1

This combination of ridge and lasso introduces an additional parameter «
to be optimized. This parameter controls how much emphasis should be
put on either the ridge or lasso penalization terms. Nonetheless, as long as
a > 0 elastic net like lasso performs variable selection due to the singularity
at 0 inherited from the lasso penalty. The elastic net was proposed as
an improvement on lasso, with the motivation being that the lasso may
struggle in terms of both predictive performance and variable selection
when variables are highly correlated. The elastic net does not suffer from
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this to the same degree, which has been illustrated both theoretically and
empirically in Zou and Hastie (2005)). Simulation studies conducted in the
same paper illustrated that the elastic net performs better than lasso in
terms of prediction when collinearity is present.

Note that we will in this thesis focus on the so-called naive elastic net
in the original paper by Zou and Hastie (2005)). Other works have focused
exclusively on this version of elastic net (Friedman et al., , so we will
do the same in this thesis. Additionally, in the glmnet package in R which
has Trevor Hastie as its maintainer, only the naive elastic net has been
implemented.

Another alternative to lasso, the adaptive lasso, has been proposed to
address the problem of biased estimation of large 8 coefficients.

3.4 Adaptive lasso

Being largely similar to the lasso the adaptive lasso proposes an individual
penalty for each coeflicient (;, resulting in the objective function (Zou, 2006))

n p
Zym(xi) —log (1 + e"(xi)> - A ij|6j|. (3.4)
=1 =1

The question is then how the weights w; should be chosen. It is shown in
Zou that if the weights w; are determined from the data then some
of the theoretical shortcomings of lasso can be fixed. These weights may
be estimated by W, = 1/|B;|”’, with v > 0 and where BAJ* forj=1,...,p
are the maximum likelihood estimators. Alternatively one can compute the
weights using the ridge estimates. The latter is recommended particularly
when collinearity is present in the data because of the greater stability of
ridge over ML estimators in such situations. Thus the penalty applied to
coefficient j is adjusted based on the initial estimate Bj, where a lower initial
estimate results in a greater penalty for the respective coefficient in .
Heuristically, the advantage of adaptive lasso over lasso is because the initial
estimates 3; used to compute the weights will tend to 0 for the coefficients
that are truly zero, as n increases. The inclusion of the weights w; gives
adaptive lasso the so-called oracle properties, a set of properties which we
will later discuss.
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Penalty

Figure 3.3: Penalty as a function of ; for SCAD and lasso. a = 3.7 and
A =1 in both cases. Solid line is the SCAD penalty; dashed line is the lasso
penalty.

3.5 SCAD regression

Lastly, the Smoothly Clipped Absolute Deviation (or SCAD in short) penalty
may be used, resulting in the objective function (Fan and Li, |2001))

n

> yin(x;) — log (1 + e"(xi)) — ﬁ:p,\(ﬁj; a), (3.5)

i=1

where for a > 2 and A > 0

AlBjl if [8;] <A
pa(Bja) = § ABATE iy < 18,] < a (3.6)

(a+1)A\%/2 if [8;] > aA.

Hence the penalization term applied to coefficient j depends on the size of
B;. To illustrate the difference between the penalization terms used in lasso
and SCAD regression, the penalties from and have been plotted
together for values of § ranging from —5 to 5. From Figure [3.3| we can see
that SCAD penalizes similarly to lasso up to a certain point, where it slowly
flattens out, eventually becoming constant. So SCAD differs from lasso in
that it gives a smaller penalty for greater values of Bj fory=1,....p.
Again, let us look at an example using simulated data. The procedure
is the same as before, but with the penalization term now as in . The
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Figure 3.4: Trace plot of the coefficient values Bj as a function of \.

package ncvreg was used to fit the model using the SCAD penalty. Figure
shows that the behavior of the estimated coefficients Bj differs from that
in Figures[3.1]and [3.2] For this specific situation at least, it appears that the
SCAD penalty is more reluctant at shrinking the large non-zero coefficient up
to a certain point while simultaneously shrinking the zero-coefficients to zero.
Further insight into the behavior of SCAD may be found by differentiating
w.r.t. 3;, to obtain the rate at which the penalization changes with 3;;

|§j A if |5J| <A
Ph(Bia) = (G2E)  iA<|Bl<ar forj=1....p (37
0 if ;] > a\.

Hence, the penalty increases by a constant factor when |5;| < A, and then
becomes an increasing function of 5; when A < |3;| < aX. When |3;| > aX
the penalty does not increase, and hence remains constant. We see that
for coefficients that Satlsfy ]BJ\ > a) the penalty does not change as B]
decreases, so shrinking ﬁj to a value that still satisfies ]6]\ > a) has no
impact on the penalization term. This ensures unbiased estimation of large
coefficients (Fan and Li, [2001]), a property which we mentioned earlier is
lacking for lasso. Further, in the case when A\ < | B]] < a), and Bj > 0 the
penalty changes by

—16;]  ax—A
(a—1) ~(a—1)

=\
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Thus, if the penalization term is to be reduced in the most optimal way it
would be most beneficial to shrink the parameters that satisfy Bj < ) since
the rate at which the penalty for these parameters changes is the greatest.
Like adaptive lasso, SCAD possesses the oracle properties which we will now
present briefly.

3.6 Oracle properties

The oracle properties of an estimator were mentioned in both SCAD and
adaptive lasso. We will in this section look at what this means. The
explanation of the term oracle property varies somewhat in the literature,
but the essence of it is that an estimator possessing the oracle property will
correctly identify the non-zero coefficients in 8 with probability tending to
1. In addition, the estimator of the non-zero coefficients is asymptotically
normally distributed and unbiased. In mathematical terms, give the 3
vector the representation 8 = (84, B,), where 8, = (f1,..., p,) contains
all non-zero coefficients, and 8, = (0,...,0) is a vector of zeroes. Then, one
property that an oracle estimator has is

P(B,=0)=1asn — oco.

In other words, this means that the zero-coefficients in 3, can be identified
simultaneously with a probability that tends to 1 as the number of observa-
tions n — oo. The second property that an oracle estimator must possess is
that

Vi(B, — B)) & N(0,%) as n — oo,

for some covariance matrix 3. For the necessary assumptions and technical-
ities regarding the oracle property, as well as the proofs that the SCAD and
adaptive lasso indeed possess this property, i refer to Fan and Li and
Zou (2006). These results combined means that an oracle estimator is able
to recognize which (;’s are non-zero, and provide unbiased estimates for
these 3;’s as n — oo. Applied to our current objective of fraud detection,
this means that as n — oo the SCAD and adaptive lasso estimators are able
to identify which of the predictors truly have effect in modeling of fraud
detection, and which predictors that are only correlated to those that do.
From an applied point of view, it is particularly interesting to study how well
these properties of the SCAD and adaptive lasso estimators hold when the
number of observations n does not tend towards infinity, which is something
we can not achieve in practice. Leeb and Potscher argued that the
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presence of oracle properties does not guarantee good performance in the
finite sample size setting. They further illustrated their point with several
simulation studies in the linear regression setting, in which the SCAD estima-
tor performed worse than the ordinary least squares estimator. Additionally,
increasing the sample size did not lead to an increase in performance of the
SCAD estimator in comparison to the OLS estimator, but actually worsened.
These results do not contradict the oracle properties, but they illustrate that
one should not focus too much on the oracle properties when evaluating an
estimator. Especially because these are asymptotic properties whose validity
it is difficult to ascertain in the finite setting.

3.7 Summing up

We have now discussed some methods for model regularization, where all
methods have their strengths and weaknesses. Ridge does not perform
variable selection, and thus may be inappropriate when the number of
covariates is large. Lasso does perform variable selection by being able to
estimate [g’j’s as exactly zero. However, lasso may struggle when explanatory
variables are highly correlated, since it tends to select too few variables in
such situations. Thus, combining the strengths of lasso and ridge, the elastic
net was discussed. Finally, we also looked at the adaptive lasso and the
SCAD, both of which possess the seemingly attractive oracle property. The
first two methods, namely lasso and ridge are often viewed as the classical
methods. Both have proven to be useful in many situations. The strength
of these models lie, among other things, in their apparent simplicity. They
both benefit from the fact that one needs only optimize over one parameter
A. This makes the methods intuitively easy to understand and, perhaps
more importantly, makes them quite easy to implement in software such as
R. Additionally, since one need only optimize over one parameter, fitting
such models can be less computationally expensive.



Chapter 4

Data re-sampling

The second issue that this thesis will discuss is the issue of unbalanced
data sets in binary classification problems and how to potentially remedy
problems which may arise for such data. A data set is said to be unbalanced
if there is a large difference in the number of observations between two
classes. The degree of unbalance varies from problem to problem, and there
is no single threshold for when a data set is said to be unbalanced. We
already discussed potential issues regarding model evaluation in terms of
measuring predictive performance in such situations in Section [2.4] How-
ever, we did not discuss how an unbalanced training set affects the model
training procedure itself, which is the topic of this chapter. In this and
and subsequent chapters, we will use the term majority class to denote the
class of which there is a majority of observations in the data set. For our
application, this means that the non-fraudulent class is our majority class.
Similarly, the term minority class is used to denote the class of which there
are few observations in the data set, i.e. the fraudulent class.

One example of an unbalanced data set is given in Solberg and Solberg
(1996]) where one was interested in detecting whether an image depicted
an oil spill or only a look-alike of an oil spill. Only 2% of the observations
were images of oil spills, and 98% were look-alikes. Several other data sets
were presented in Ling and Li (1998), which focuses on the issue of direct
marketing. Here the data sets were again highly unbalanced with only 1.2%,
7% and 1% of positive samples in the three data sets given there. Examples
of data imbalance in credit card fraud can be found in Chan et al. (1999),
who worked with two separate data sets where 15% and 20% of transactions
were fraudulent. It was noted in this paper that these figures were most
likely artificially high. A review of statistical modeling in many different
forms of fraud detection given in Bolton and Hand states that in the
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Figure 4.1: Left: Unbalanced data set. Right: balanced data set. Blue +
means Y; = 1, black dots means Y; = 0.

domain of money laundering, as little as 0.05% to 0.1% of all transactions
may be involved in money laundering. The problem with unbalanced data
sets such as those mentioned above is that a model estimated from them
can be lacking in terms of predictive ability with respect to the minority
class (Kubat and Matwin, [1997).

A data set of one thousand observations was generated to visualize
the problem. Two covariates x; and x, were both sampled from normal
distributions with the model 8 = (5, 1, 32) = (—5.5,2,—2). Simulated
instances of Y were then drawn as in Chapter 3| With the 8 vector given
above, the resulting data set was unbalanced with 5% positive samples. In
the right plot of Figure only a subset of the negative samples were
kept in order to create a situation where the number of negative samples
equals the number of positive samples. The plot on the left is thought to
reflect a data set one may encounter in situations mentioned in the above
examples. Here all negative samples have been included so the data set is
highly unbalanced. Remedies for problems stemming from unbalanced data
sets such as these may be algorithmic or re-sampling. We will now discuss
some of the most commonly used techniques within the latter.
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4.1 Under-sampling

A first approach in re-sampling is to under-sample the majority class. This
means that we in some way remove a certain number of majority class ob-
servations. There are generally two ways of under-sampling a data set. The
first, and easiest approach is to remove data points from the