
Addressing collinearity and class
imbalance in logistic regression
for statistical fraud detection

Eirik Lødøen Halsteinslid
Master’s Thesis, Spring 2019

This master’s thesis is submitted under the master’s programme Modelling
and Data Analysis, with programme option Finance, Insurance and Risk, at
the Department of Mathematics, University of Oslo. The scope of the thesis
is 60 credits.

The front page depicts a section of the root system of the exceptional
Lie group E8, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842–1899) to express symmetries in
differential equations and today they play a central role in various parts of
mathematics.

Abstract

We study how one can improve upon a logistic regression model for statis-
tical fraud detection. Fraud data are often characterized by uneven class
distributions as well as high dependence among covariates. With a focus on
recreating such dependence structures found in fraud data, we propose a
stochastic model from which we can generate data. The model utilizes copu-
las to create a highly flexible framework for generating dependent covariates.
This allows for a wide range of dependence structures among the covariates,
and does not put any restrictions on the marginal distributions for the
covariates themselves. We use this data generation scheme to conduct a
simulation study of which regularization methods for logistic regression are
best suited when covariates are highly dependent. We evaluate this in terms
of both prediction and variable selection. The second problem, namely an
uneven class distribution, introduces challenges as well. First, selection of
an appropriate measure of predictive performance is important. Secondly,
it has been demonstrated that some methods may struggle with poor pre-
dictive performance on the under-represented class. We study how such a
class imbalance affects the predictive performance and variable selection
capabilities of the penalized logistic regression methods. In the last part
of this thesis we model tax fraud on a real-life data set provided by The
Norwegian Tax Administration. Our results show that penalized logistic
regression can be a helpful tool for detecting tax fraud.

i

Acknowledgements

First and foremost, I want to thank my supervisors Ingrid Hobæk Haff and
Ingrid Kristine Glad for their guidance and assistance. I also want to thank
The Norwegian Computing Center and The Norwegian Tax Administration
for providing the data set used in this thesis. A big thank you should also
be given to Simon and Vegard for interesting discussions during my work on
this thesis. The latter also for letting me borrow his copy of The Elements
of Statistical Learning when needed. Lastly, I want to thank my family for
their help and support during my studies.

iii

Contents

1 Introduction 1

2 Statistical framework 5
2.1 Mathematical representation of data 5
2.2 Modeling probabilities . 6
2.3 The bias-variance trade-off 10
2.4 Model selection criteria . 10
2.5 Training and test set . 14
2.6 K-fold cross-validation . 14

3 Model regularization 17
3.1 Ridge regression . 17
3.2 Lasso regression . 20
3.3 Elastic net . 21
3.4 Adaptive lasso . 22
3.5 SCAD regression . 23
3.6 Oracle properties . 25
3.7 Summing up . 26

4 Data re-sampling 27
4.1 Under-sampling . 29
4.2 Over-sampling . 29

5 Generating data using copulas 33
5.1 Preliminary descriptive analysis of tax data 34
5.2 Copulas . 38
5.3 Generating a data set . 41

6 Simulation study: regularization methods 47
6.1 Experiment design . 47
6.2 Implementation and estimation 52

v

vi CONTENTS

6.3 Model evaluation criteria . 56
6.4 Results . 57
6.5 Summary . 64
6.6 A comment on the effects of increased collinearity 66

7 Simulation study: class imbalance 71
7.1 Adjusting class balance . 72
7.2 Experiment design . 74
7.3 Implementation and estimation 75
7.4 Results . 79
7.5 Summary . 84

8 Modeling VAT fraud 87
8.1 Data pre-processing . 87
8.2 Model training . 90
8.3 Results . 94
8.4 Modeling fraud over time . 97
8.5 Chosen covariates . 100
8.6 Summary . 103

9 Conclusion and discussion 107

Appendix A R-code 111
A.1 Chapter 2 . 111
A.2 Chapter 5 . 112
A.3 Chapter 6 . 114
A.4 Chapter 7 . 121

Bibliography 125

Chapter 1

Introduction

All businesses in Norway must report their Value Added Tax (VAT) paid
every two months. It can be an arduous process for a business to produce
such reports, since there are many laws and clauses one needs to be familiar
with if this is to be done correctly. Thus, errors are occasionally made, and it
is in The Norwegian Tax Administration’s best interest to find anomalies in
VAT reports. Besides detecting and correcting honest mistakes, one is also
interested in detecting fraud. The Norwegian Tax Administration routinely
carries out controls of VAT reports, and has for this purpose defined several
rules and filters which will tag a VAT report as possibly anomalous. This
gives the controllers a starting point of which reports to look further into,
but the issue with the current approach is that the number of tagged reports
far exceeds what one could hope to control. One does not have the time to go
through all tagged reports, since each control requires substantial amounts
of time and manpower. In this thesis we will focus on a particular data set
produced by The Norwegian Tax Administration containing information
on previous such VAT controls. For each control we are given a number of
attributes regarding both the specific control, and background information
about the business being controlled. The data set consists of 50255 actual
controls, such that the outcome of each control is known. Each of these
controls has a total number of 556 attributes of which 539 are numerical
and 17 are categorical. Using these historical data we can build statistical
models to gain insight into the underlying mechanisms making a business
either to make mistakes in their reporting, or consciously swindle on their
reports. Equally important is prediction. That is, we wish to apply our
statistical model to new cases in order to estimate their probability of being
anomalous. Such models can then be used to help controllers decide which
reports one should investigate in the future, thereby making the anomaly
detection procedure more effective. Thus our goal is not to perfectly predict

1

2 CHAPTER 1. INTRODUCTION

Predicted
Anomalous Not anomalous

Actual Anomalous gain loss1
Not anomalous loss2 0

Table 1.1: Table illustrating the loss or gain in the four possible outcomes
of a control.

which cases can be anomalous and which cases are not. The final decision
about whether or not to investigate a case should be made by controllers in
order to utilize their experience and expertise. As the basis for such decision
making, we have the four possible outcomes of any control, represented by
Table 1.1. The possible gain by uncovering an anomaly, or the potential
loss loss1 caused by not investigating an anomalous case, or loss2 if one
investigates a non-anomalous case will vary. Our goal is to provide a proba-
bility such that one can weigh the expected costs of either investigating, or
not investigating up against one another. In Chapter 2 we will present the
statistical framework necessary to produce such statistical models. We will
cover the logistic regression model, and discuss how one should estimate
and evaluate these models both generally and specific to the current problem.

If a given report is assigned a high probability of being anomalous, the
controllers are also interested in knowing why. This is because the controllers
want to be sure that a given case will be worthwhile investigating and feel
confident that the case at hand is worth spending valuable time and resources
on. However, the large degree of dependence between attributes can make it
difficult to provide such information. We essentially run into an ever-present
issue in statistical modeling; how one separates correlation from causality.
If two attributes A and B are correlated, it can be difficult to separate the
effects of A from the effects of B, and to draw a conclusion about which
of these attributes truly affect the probability of a report being anomalous.
The unfortunate effect on variable selection caused by high dependence
among attributes has previously been pointed out as a problem in fraud
detection in Løland et al. (2017). The problem of dependence among the
attributes in the VAT data set is illustrated in Figure 1.1. We see that the
four variables x2, x3, x4 and x5 are all highly correlated with the variable x1
(variables names are not provided due to anonymity). Uncovering a causal
relationship between these five variables and VAT fraud is difficult, and thus
we risk falsely identifying for instance x1 as a relevant factor for uncovering
VAT fraud, when in reality it may be any one (or more) of the other four

3

−2e+06 0e+00 2e+06 4e+06 6e+06 8e+06

0e
+
0
0

2
e
+
0
6

4e
+
0
6

6
e
+
0
6

8e
+
0
6

X1

X
2

−2e+06 0e+00 2e+06 4e+06 6e+06 8e+06

−
2
e+

06
0e
+
0
0

2e
+
0
6

4e
+
0
6

6
e
+
0
6

8
e
+
0
6

X1

X
3

−2e+06 0e+00 2e+06 4e+06 6e+06 8e+06

−
1e
+
06

1e
+
0
6

2
e
+
0
6

3
e
+
0
6

4
e
+
0
6

5e
+
0
6

X1

X
4

−2e+06 0e+00 2e+06 4e+06 6e+06 8e+06

−
1e
+
06

1e
+
0
6

3
e
+
0
6

5e
+
0
6

X1

X
5

Figure 1.1: Four plots illustrating the degree of dependence between the
covariates in the VAT data set.

variables. Methods for selecting attributes in the logistic regression model
will be discussed in Chapter 3.

One commonality of fraud data is the low rate at which fraud is perpe-
trated. This of course varies depending on the specific situation, but a ratio
of fraudulent to non-fraudulent incidents of 1 to 100 is not uncommon, and
may in some instances be much lower, Bolton and Hand (2002). This has
unfortunate effects both when estimating a statistical model and evaluating
predictive performance. So called re-sampling methods to remedy problems
related to model training in such situations have been proposed, and some
of the most used methods are presented in Chapter 4.

Before we study the methods from Chapters 3 and 4 on the real VAT
data set we will study these methods in a series of simulation experiments
in a controlled environment where we know the true model. We can thus
see which methods are best both in terms of prediction and selection of
attributes when the covariates are highly dependent and classes unbalanced.
The end goal of this is to extrapolate the knowledge we obtain from these
simulation experiments to the problem of VAT anomaly detection. How-

4 CHAPTER 1. INTRODUCTION

ever, it is necessary that the properties of the data sets we generate in our
simulations resemble those of the true data set. To this end, we perform
a preliminary analysis of the VAT data set, and based on these results
construct a stochastic model from which we can sample new observations in
Chapter 5. We focus particularly on recreating the dependence structure
found between the covariates in the VAT data set. One common restriction
when generating such dependent data is that the marginal distributions
must all be of the same family. By using copulas to model dependence
between covariates we effectively remove this restriction on the marginal
distributions. Additionally, such a construction allows for a wider range of
possible dependence structures among the covariates to be studied. We use
this data generation procedure to study the performance of regularization
methods in cases when attributes are highly dependent in Chapter 6. Using
much of the same framework, we study how uneven class distributions in
addition to highly dependent covariates affects both predictive performance
and variable selection for logistic regression in Chapter 7. In addition,
we study the effects of applying three re-sampling methods introduced in
Chapter 4 to see if these can improve either prediction or variable selection.

In the final chapter we look closer at the VAT data set. We apply the
insight gained from the simulations studies in Chapter 6 and Chapter 7 to
model VAT anomaly detection on a real data set. We will also discuss both
selection of attributes and the predictive performance of the final model.
Discussion and conclusions can be found in Chapter 9.

Chapter 2

Statistical framework

2.1 Mathematical representation of data
Before we begin defining our statistical model, we specify how one can rep-
resent the problem of VAT anomaly detection in a mathematical framework.
The problem at hand is essentially that of recognizing a given VAT control
as either anomalous or not anomalous. Other than this, there is no
further gradation of the controls. This amounts to a binary situation, and
we are thus faced with a binary classification problem. Let Yi represent
whether case number i is anomalous or not. We may then give Yi the binary
representation

Yi =

1 if case i was anomalous
0 if case i was not anomalous.

It was mentioned in the introduction that an anomaly may occur as the
result of an honest mistake, or fraud. However, for simplicity we will in
the remaining part of this thesis only refer to Yi = 1 as an indicator of
fraud rather than the more general term anomaly. We also introduce a
mathematical representation for the attributes belonging to each case. For
case number i, let attribute number 1 be given by xi,1, and attribute number
2 by xi,2, and so on. We introduce the vector xi = (xi,1, xi,2, . . . , xi,p)T which
contains all p attributes for case number i. Further, when we have n cases
in our data set we can set up a matrix notation for our data, given by

Y =


Y1
Y2
...
Yn

 , X =


x1,1 x1,2 · · · x1,p
x2,1 x2,2 · · · x2,p
...

xn,1 xn,2 · · · xn,p

 =


x1

T

x2
T

...
xn

T

 .

5

6 CHAPTER 2. STATISTICAL FRAMEWORK

However, in the following we will often add an additional 1 as the first
element of xi for all i = 1, . . . , n, and thus the matrix X becomes an
n× (p+ 1) matrix. Thus, each row represents the available information we
have on a specific case, and each column represents the different covariates.
We have now established the mathematical representation of our data set,
and can move on to describing how one can model such binary classification
problems.

2.2 Modeling probabilities
We assume that the outcome Yi of each case is binary, and that the probability
of fraud in a case given the attributes/covariates is Pi = P (Yi = 1|xi)
for case i. The question is now what parametric assumptions to make
on the probability Pi. The most common regression model is perhaps
linear regression, which has been applied successfully in many different
fields. However, modeling probabilities with a linear regression framework is
problematic. Assuming a linear regression model for Pi we have Pi = η(xi),
where η(xi) is the linear predictor defined as

η(xi) = β0 + β1x1,i + · · ·+ βpxp,i = xTi β,

with β = (β0, β1, . . . , βp)T . A problem with this model is that η(xi) is defined
not only on (0, 1), but on the whole of R. This means that our model may
predict probabilities outside the range (0, 1) making the interpretation
of these predictions problematic. One may then proceed by considering
transformations of η(xi) instead. Such transformations are called (inverse)
link functions in the Generalized Linear Model (GLM) framework. There
are several link functions one may consider. One option is the cumulative
distribution function Φ(·) of the standard normal distribution, which gives
us the model

P (Yi = 1|xi) = Φ(η(xi)),

which is commonly called probit regression. Another option is to apply
the complementary log-log link from the GLM framework (Jong and Heller,
2008), such that

P (Yi = 1|xi) = 1− exp(− exp(η(xi))).

Alternatively, one may use the cumulative distribution function of a lo-
gistic distribution with mean 0 and variance π2/3 (Balakrishnan, 1991),

2.2. MODELING PROBABILITIES 7

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

P
(Y

=
1|

X
=

x)

Logit

Probit

Log−log

Figure 2.1: P (Yi = 1|xi) plotted using three different transformations of
η(xi).

corresponding to the logit link

P (Yi = 1|xi) = eη(xi)

1 + eη(xi)
, (2.1)

which results in logistic regression. All these transformation ensure that
P (Yi = 1|xi) ∈ (0, 1), though the third is the one most commonly used in
practice. Figure 2.1 shows P (Yi = 1|xi) as a function of xi for different link
functions, with β0 = 0 and β1 = 1. As can be seen from this figure, the
logistic regression model assigns more probability further out in the tails
of the distribution than does probit regression. We will in this and later
chapters assume the logit link function.

An interesting property for any classification method is its decision
boundary, which is briefly discussed here to illustrate the properties of
logistic regression. The decision boundary is a line (when p = 2) in the
predictor space where our model considers it equally likely for a given
prediction Ŷi being a 1 or a 0. In some cases, one would decide to predict
Ŷi = 1 when the predicted probability of fraud is greater than 0.5, in which
case the decision boundary would be defined by

P (Yi = 1|xi) = P (Yi = 0|xi)
P (Yi = 1|xi) = 1− P (Yi = 1|xi).

8 CHAPTER 2. STATISTICAL FRAMEWORK

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

4

x1

x 2

−3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

4

x1

x 2
Figure 2.2: Two different decision boundaries for a logistic regression model.
On the left: linear decision boundary. On the right: quadratic decision
boundary.

By inserting the expression for P (Yi = 1|xi) in the logistic regression model,
we find that the decision boundary satisfies

eη(xi)

1 + eη(xi)
= 1

1 + eη(xi)
⇒ η(xi) = 0.

Because η(xi) is a linear function of xi the decision boundary is also linear.
This may be considered a disadvantage of the logistic regression model if one
suspects the decision boundary to be non-linear. However, this can be taken
into account by introducing transformations of the individual elements in
xi, while still allowing η(xi) to be a linear function of xi, see Figure 2.2.
Another issue with logistic regression arises if one wishes to include interac-
tion terms in the model, which requires manual specification of the specific
interaction terms to be included. This can cause problems, especially in
situations where p already is large, as including all possible two-way interac-
tions leads to a drastic increase in the number of parameters to be estimated.

Assume that the outcome of the cases are independent of each other,
and that the outcome of any given case Yi given its attributes xi follows a
Bernoulli distribution where pi = P (Yi = 1|X = xi) is the probability of
case i being fraudulent, defined as in (2.1) for i = 1, . . . , n. The likelihood
function is then defined as

L(β) =
n∏
i=1

(
eη(xi)

1 + eη(xi)

)yi (1
1 + eη(xi)

)1−yi
=

n∏
i=1

eη(xi)yi

1 + eη(xi)
. (2.2)

2.2. MODELING PROBABILITIES 9

Because it is difficult to find parameters that maximize likelihoods such as
(2.2), one considers instead the log-likelihood. This has the advantage of
being both easier to work with analytically, but also more stable when opti-
mizing numerically. Importantly, the values that maximize a likelihood also
maximize the log-likelihood. The log-likelihood function `(β) = log(L(β))
is in this case given by

`(β) =
n∑
i=1

yiη(xi)− log
(
1 + eη(xi)

)
=

n∑
i=1

yixTi β − log
(
1 + exTi β

)
. (2.3)

The maximum likelihood estimator β̂ is obtained by maximizing (2.3) which
must be done using some numerical procedure. A common choice is the
Newton-Raphson algorithm. We will in this thesis not concern ourselves
with such numerical optimization problems, but use the built-in procedures
given in R. Fitting the logistic regression model using maximum likelihood
estimation has several advantages. This provides us with a number of already
established theoretical results we can use to make inference on β. One such
result of particular importance says that the estimator β̂ is approximately
unbiased and approximately normally distributed,

√
n(β̂ − β) ≈ N(0, I(β)−1),

where I(β) = −E
[
∂2

∂β2 `(β)
]
is known as the Fisher information. This allows

for construction of confidence intervals, and performing hypthesis testing
for the significance of the coefficients β1, . . . , βp.

Logistic regression suffers when the number of covariates p is large.
Including too many covaraites in our model may lead to a model which
is highly dependent on the randomness present in our data, rather than
the true underlying effects which we are interested in. The problem is
twofold: First, one wishes to identify which covariates actually contribute
to the distribution of the response Y . Second, one may wish to reduce
the effect a covariate has on the response if the corresponding parameter
estimate is riddled with variance. These issues are highly relevant within
fraud detection, where the number of explanatory variables may be in the
hundreds or even thousands, many of which may be highly correlated or
have little to no impact on the response. We will in the next chapter give
an overview of some of the common techniques and approaches for variable
selection and model regularization.

10 CHAPTER 2. STATISTICAL FRAMEWORK

2.3 The bias-variance trade-off
An important concept in most statistical modeling is that of bias-variance
trade-off. Parameter selection is part of this problem when constructing our
logistic regression model for fraud detection. Including all covariates in the
model would yield a model that is too variable w.r.t. the covariates and
thus it has low bias but high variance. On the other hand including only a
few significant covariates (assuming these could be identified) could lead to
a model that is not variable enough, i.e. it has a low variance but high bias.
Consider the linear regression setting, where Y = f(x) + ε for ε ∼ N(0, σ2).
The objective is to estimate f = f(x) by some function f̂ = f̂(x). It may
be shown that the expected squared loss can be written as

E
[
(Y − f̂)2

]
= Var(Y) + Var(f̂) + (f − E

[
f̂
]
)2. (2.4)

Hence, the expected loss may be considered as the sum of three components,
namely irreducible error Var(Y), variance of our prediction Var(f̂) and the
squared bias of our prediction (f − E

[
f̂
]
)2. This decomposition essentially

illustrates the problem: we wish to minimize (2.4) by reducing the two
latter components in the sum. However, minimizing both the variance and
bias simultaneously is usually not possible, and one must instead seek to
find an optimal relationship between the two. As stated in Hastie et al.
(2009), a similar relationship between bias and variance is present when
modeling probabilities. A common term in variable selection is that of model
complexity. Model complexity is related to the number of parameters in
our logistic regression model. A model with a high number of parameters is
considered to be more complex than one with only a few. A typical view
of how bias and variance are related to model complexity is provided in
Figure 2.3. This illustrates that as the model complexity increases, the bias
is reduced, but at the cost of increased variance.

2.4 Model selection criteria
The squared loss function was considered for the purpose of illustrating the
bias-variance trade-off. For binary classification there are other measures of
performance to consider. Deciding which one is most appropriate for a given
situation is not always straightforward. First, note that our primary objective
is prediction which should be kept in mind when choosing the performance
measure. One common way to assess model predictive performance is to
consider the accuracy of a model. Assume we have some model f̂(xi) that

2.4. MODEL SELECTION CRITERIA 11

Model complexity

E
rr

or

Total error

Variance Bias

Figure 2.3: An illustration of the tradeoff between bias and variance for the
squared loss function.

produces P̂ (Yi = 1|xi) for each xi, so that Ŷi = 1 if P̂ (Yi = 1|xi) ≥ c for
some constant c ∈ [0, 1], and Ŷi = 0 else. The accuracy is then given by

ACC = 1
n

n∑
i=1

I(Ŷi = Yi).

This measure is easy to interpret and seems a reasonable one if we are simply
interested in the predicted labels (i.e. fraud/not fraud), and not the corre-
sponding probabilities. However this is not the case in fraud detection and
accuracy is therefore not appropriate as a measure of predictive performance.
This measure does not take into account how certain we are that a given
claim is fraudulent. Whether the probability of a claim being fraudulent is
estimated to 0.5 or 0.99 is not relevant when using accuracy with c = 0.5
as a measure of predictive performance, because we will classify Ŷi = 1
in both cases. Additionally we do not want to classify each case as either
fraudulent or not, we wish to provide a probability of a case being fraudulent.

An alternative is the Brier score (Brier, 1950), which does take into
account how certain we are that a given claim is fraudulent. The Brier score
may be defined as

BS = 1
n

n∑
i=1

(
Yi − P̂ (Yi = 1|xi)

)2
.

Each term of the Brier score is maximized when Yi = 1 and P̂ (Yi = 1|xi) = 0,
or Yi = 0 and P̂ (Yi = 1|xi) = 1. In either case the corresponding term of

12 CHAPTER 2. STATISTICAL FRAMEWORK

the Brier score will be 1. Since each term may have a maximum value of 1
and there are n of these, the Brier score like the ACC takes on values be-
tween 0 and 1, where a lower value of Brier score indicates better predictive
performance.

One point of concern regarding both accuracy and Brier score as mea-
sures of predictive performance is their dependence on the ratio of number
of fraudulent cases to the number of non-fraudulent cases. Using these
measures as criteria for model selection in classification problems where
there is an unequal number of fraudulent and non-fraudulent observations
in the data set can result in sub-optimal models. For instance, in the VAT
data set the ratio of fraudulent to non-fraudulent cases is roughly 1 to
5. A model which classifies Ŷi = 0 for all observations thus obtains an
accuracy of 80%. However, such a model has no value if one is interested
in detecting fraud. It is therefore easy to be fooled by measures such as
accuracy when there is an unequal number of observations associated with
the two classes. This can be problematic if one is interested in keeping track
of the performance of a model over time. If there is substantial variation in
the number of fraudulent cases compared to non-fraudulent cases in different
time periods, then a measure such as accuracy will reflect this. One then
risks drawing the possibly erroneous conclusion that the performance of a
model has changed, simply due to a change in the frequency of anomalous
cases. In fraud detection generally one needs to update any predictive model
in order to adapt to the changing strategy of fraudsters, as pointed out by
Bolton and Hand (2002). It is therefore crucial to evaluate the predictive
performance of a model based on a measure that is independent of the
number of fraudulent to non-fraudulent observations in order to get a clear
picture of the true predictive performance of a model.

As an alternative, one could study how a model performs on predicting
the fraudulent and the non-fraudulent cases separately. Hence we may wish
to distinguish between which cases are correctly predicted as fraudulent,
known as true positives, and which cases are correctly predicted as not
fraudulent, known as true negatives. A model with good predictive abilities
should achieve a high rate of both true positives and true negatives. Such
statistics may be represented by constructing tables such as Table 2.1, com-
monly referred to as a confusion matrix. Observations correctly classified
are found on the diagonal, and the observations incorrectly classified on the
off-diagonal. The advantage of such a confusion matrix is that it gives us
a view of what types of errors our model makes. We can thus keep track
of how well our model is recognizing the fraudulent cases as well as the

2.4. MODEL SELECTION CRITERIA 13

Predicted

Fraud Not fraud

Actual Fraud True positives False negatives
Not fraud False positives True negatives

Table 2.1: Layout of a confusion matrix

non-fraudulent cases, instead of how well our model is at predicting all cases
in general. In the previous example where we constructed the model Ŷi = 0
∀i, the number of true negatives would be high, whereas the number of
true positives would be 0. Construction of such tables therefore gives a
more transparent view of the performance of our model. By adjusting the
threshold of predicting a claim as fraudulent, we can create several tables
such as Table 2.1 for different thresholds, however it is more common to
create a Reciever Operating Characteristic (ROC) curve (Swets, 1988). ROC
curves are much used as measures of predictive performance in classification.
A ROC curve visualizes how the true positive rate changes as the false
positive rate is increased. Partly what makes ROC attractive is that it
is based solely on the true positive rate and the false positive rate from
Table 2.1, and is thus independent of the underlying class frequencies in
the data set (Swets, 1988). This property of the ROC makes it particularly
relevant as a measure of predictive performance in fraud detection, since
the frequency of fraudulent observations tends to be much lower than that
of non-fraudulent observations (Bolton and Hand, 2002). It is important
to be aware of the possible shortcomings of ROC curves as measures of
performance. One of these is that a ROC curve does not indicate how well
the model fits the data. Additionally, if one is interested in training a model
which produces correct probabilities for a given event, using the ROC as
a measure of performance is inappropriate. However, as pointed out in
Chapter 1 we are not interested in the probabilities per se, but rather the
probabilities compared against one another. Our objective is to create an
ordering of which cases are more likely to be fraudulent, whose true purpose
is to separate the fraudulent cases from the non-fraudulent ones. For such
objectives, ROC curves are ideal as measures of performance (Fawcett, 2006)

Although a visual display of the ROC by plotting ROC curves may be
used to evaluate the predictive performance of a model, it is often desirable
to have quantitative means of evaluating the ROC. The typical approach is
to calculate the Area Under the (ROC) Curve (AUC). A model which is able
to perfectly predict all observations will have an AUC of 1, while randomly

14 CHAPTER 2. STATISTICAL FRAMEWORK

assigning labels as either 0 or 1 with equal probabilities will yield an AUC
of 0.5 in a binary classification problem. The AUC has a probabilistic
interpretation which helps understand when it is appropriate to use such a
measure. It equals the probability that a fraudulent case will be assigned a
higher probability of being fraudulent than a non-fraudulent case (Fawcett,
2006).

Regardless of which of the above model selection criteria one uses, one
must be careful when using the same data set to both fit and evaluate
the predictive performance of a model. The reason for this being that the
model might become tailored to that particular data set. This is known
as overfitting. Overfitting occurs when a model has to a large degree been
fitted to the randomness present in the data. A typical cause of this is the
inclusion of too many parameters in a parametric model such as the logistic
regression model.

2.5 Training and test set
In an attempt to prevent over-fitting, one can split the original data set
into two disjoint subsets: a training set and a test set. The model is esti-
mated/trained on the training set and its predictive performance evaluated
on the test set. Because the test set is independent of the training set,
one thus obtains an appropriate measure of model performance. How large
the training and test sets should be must be evaluated for each individual
setting. If the test set is not sufficiently large, it might not be representative
of the underlying data thus providing poor basis for evaluation of model
error. However, choosing a large test set comes at the cost of a smaller
training set. This is unfortunate since the test set is not used at all to fit
the model, and we therefore in a sense lose data.

2.6 K-fold cross-validation
While for some methods it may be adequate to train a model on the training
set and evaluate the model on the test set, this is not always the case. For
some of the methods which we will discuss later we may wish to estimate
the predictive performance on the test set in order to tune our model. Such
an estimate can be obtained by dividing the original training set into K
approximately equally sized subsets {Y1,X1}, . . . , {YK ,XK} often referred
to as folds. One would then use {Y2,X2}, . . . , {YK ,XK} as the training set

2.6. K-FOLD CROSS-VALIDATION 15

and {Y1,X1} as the test set, independent of the training set. The next step
is to fit a model using {Y1,X1}, {Y3,X3}, . . . , {YK ,XK} as the training
set, and {Y2,X2} as the test set. This procedure is repeated for all the
K subsets, thus obtaining K estimates of model performance. Seeing that
our final model will be used in a predictive manner, this approach seems a
reasonable one since it to a certain degree mimics the situation in which the
final model will be used and evaluated. The independence between the test
and training set at each step of this method is important because it results
in unbiased estimates of model performance for each of the K models. The
K estimates are then averaged to get a final estimate of model performance.
We can use the Brier score to evaluate the model fit on each subset. The
average of these K Brier scores will be denoted

BSCV(K) = 1
K

K∑
k=1

BS(k),

where BS(k) is the Brier score based on the k’th subset. An alternative is
the cross-validated AUC given by

AUCCV(K) = 1
K

K∑
k=1

AUC(k).

There is great flexibility in the choice of K. As in variable selection, it is a
matter of balancing the bias-variance trade-off. Choosing K = 2 leads to a
situation close to that of dividing the data into just one training set and one
test set, resulting in high bias but low variance. On the other hand, setting
K = n (leave-one-out cross-validation) results in low bias but high variance.
Besides this, the computational demands increase with K, since models
must be fitted and their predictive performance estimated K times. The
effect K has on estimating model error was extensively studied in Kohavi
(1995), where it was concluded that K = 10 provides an optimal trade-
off between variance and bias. Further, it was recommended to perform
stratified K-fold cross validation as opposed to regular K-fold cross validation
to reduce bias in the estimate of model error. This means that the subsets
{Y1,X1}, . . . , {YK ,XK} should be constructed such that all subsets are
approximately equal w.r.t. the number of fraudulent and non-fraudulent
cases in each fold, rather than performing a completely random split of the
data.

16 CHAPTER 2. STATISTICAL FRAMEWORK

Algorithm 2.1 Stratified cross validation
Input: Y,K

1: I0 = which (Y == 0)
2: I1 = which (Y == 1)
3: n0 = length (I0)
4: n1 = length (I1)
5: foldSize0 = n0/K
6: foldSize1 = n1/K
7: labels = rep(0, n0 + n1)
8: labels0 = c (rep(1, foldSize0)% ∗%t(1 : K))
9: labels1 = c(rep(1, foldSize1)% ∗%t(1 : K))
10: labels [I0] = sample(labels0)
11: labels [I1] = sample(labels1)
12: Return labels

Algorithm 2.1 performs stratified cross validation. Note especially how
the sampling of positive and negative observations is done separately to
obtain an even number of both classes in all folds. This algorithm assumes
that the positive and negative observations can be divided evenly across all
folds, an assumption that needs not be taken into considerations with just
small modifications to the algorithm.

Chapter 3

Model regularization

Model regularization for regression problems is a wide subject which we can
not cover in its entirety in this thesis. However, we will present some of
the more common methods. Generally, regularization methods are applied
in order to reduce overfitting. This is done by reducing the number of
parameters, or shrinking the parameters in a model. Methods that are
intuitively quite clear and can in some cases perform reasonably well are
forward and backward selection. These methods can however often result in
sub-optimal models. Additionally, it has been observed that models trained
by such an approach tend to be highly variable (Breiman, 1996b). This is
because small changes in the training data set can cause substantial changes
to the final model. Alternatively, one can transform the data prior to model
training to reduce the dimension of the problem. For instance the n × p
matrix X can be transformed using a vector θ = (θ1, . . . , θp)T to produce
the n × p matrix Z = θX. One then proceeds by modeling the response
Y using only p∗ < p of the columns in Z. One common such method is
Principal component regression, Hastie et al. (2009).

The focus of this chapter will instead be methods that seek to optimize
(2.3) in a constrained manner. Many such methods have been proposed,
where the main difference between these lie in how one formulates the
imposed constraints.

3.1 Ridge regression
One of the first methods introduced for model regularization is ridge regres-
sion. The idea behind ridge regression is still to optimize our log-likelihood
w.r.t. β, but to do so under a variance reducing constraint. Let the log-
likelihood be defined as in (2.3), however instead of optimizing (2.3) one

17

18 CHAPTER 3. MODEL REGULARIZATION

now seeks to optimize (Le Cessie and Van Houwelingen, 1992)

n∑
i=1

yiη(xi)− log
(
1 + eη(xi)

)
− λ

p∑
j=1

β2
j , (3.1)

where the last term is a penalization term whose effect depends on λ, known
as a penalty parameter. If λ = 0, (3.1) becomes (2.3), and we are simply
left with maximum likelihood estimation. As λ increases, our model is
increasingly forced to reduce the sum ∑p

j=1 β
2
j in an optimal way. We

thereby introduce some bias to the estimates β̂1, . . . , β̂p in exchange for lower
variance and hopefully better predictive performance. We are in essence
exploring the possible gains in predictive performance by trading variance
for bias as depicted in Figure 2.3. When adding penalization terms such
as in (3.1), it is common to standardize all covariates so they have a mean
of zero, and a standard deviation of one. This ensures that the penalty
introduced by λ shrinks all coefficients equally, independent of the scale of
their respective covariates.

For the purposes of presenting some theoretical results, consider now a
linear regression model where one assumes

Y = β0 + Xβ + ε,

where X is an n × p matrix, so the first column containing 1′s has been
removed. Further, β = (β1, . . . , βp)T and ε = (ε1, . . . , εn)T is a vector
containing the residuals which are all assumed independent and identically
distributed according to N(0, σ2). In matrix notation, the objective function
to be minimized is now

(Y − β0 −Xβ)T (Y − β0 −Xβ) + λβTβ.

One may then show that the ridge estimator is

β̂0 = 1
n

n∑
i=1

yi

β̂ = (XTX + λI)−1XTY.

We can see that the ridge estimator β̂ differs from the regular least squares
estimator, as it includes an additional term that depends on λ. From this
result we see that increasing the value for λ shrinks β̂. While this result is
only valid for linear regression, the same behavior is present for the ridge
estimator in logistic regression (Le Cessie and Van Houwelingen, 1992).

3.1. RIDGE REGRESSION 19

−8 −6 −4 −2

−2

−1

0

1

2

log(λ)

β̂

Figure 3.1: Plot of β̂ coefficients resulting from fitting a logistic regression
model with a ridge penalty. True zero-coefficients shown in dashed lines,
non-zero coefficients in solid lines.

We consider an example to illustrate the effect λ has on the estimated
model coefficients. To do this, we will draw simulations of xi for i = 1, . . . , n
with n = 100. We will in this example draw 9 explanatory variables so that
xi = (1, xi,1, . . . , xi,9)T . All explanatory variables were drawn independently
from the standard normal distribution. The model was defined as

β = (3,−2.5, 2,−1.5, 1, 0, 0, 0, 0)T ,

with the intercept β0 = 0. The next step is to compute η(xi) = xTi β and
P (Yi = 1|xi) = eη(xi)/

(
1 + eη(xi)

)
, and draw Yi ∼ Bernoulli(P (Yi = 1|xi)).

We now have data which we can use to estimate a logistic regression model
with a ridge penalization term. This was done in R using the package
glmnet. The model was fit with 100 different values for λ ranging from
exp {−9} to exp {−1}. In Figure 3.1, we can see the behavior previously
discussed, where the estimated model coefficients shrink as λ increases. Note
especially how the estimated coefficients shrink; they approach 0 very slowly
and will in fact never be estimated to exactly 0. Hence, ridge is not able to
perform variable selection. For problems where the true model consists of
many variables with small coefficient values ridge regression may therefore
be appropriate. On the other hand ridge regression may struggle and result
in poor predictive performance when the sizes of the β coefficients are more
varied, i.e. both small and large coefficients in β (Breiman, 1996b). A
question that arises when such small parameter estimates are obtained is

20 CHAPTER 3. MODEL REGULARIZATION

whether these parameters truly are close to, but not equal to zero, or if they
truly are zero. The effect parameter estimates close to zero have on the
predicted values may not be that big, but the interpretation of the model
still remains questionable.

3.2 Lasso regression
Lasso regression is another widely used method for model regularization.
Again, the idea is to put restrictions on the model coefficients β1, . . . , βp
when performing model estimation. Let the log-likelihood be defined as in
(2.3). One now considers (Tibshirani, 1996)

n∑
i=1

yiη(xi)− log
(
1 + eη(xi)

)
− λ

p∑
j=1
|βj|, (3.2)

where again if λ = 0, (3.2) becomes (2.3), which leads to regular maximum
likelihood estimation. Lasso regression differs from ridge regression by re-
placing the l2 penalization term ∑

j β
2
j with an l1 penalization term ∑

j |βj|.
This leads to a harder penalty for small values of βj, j = 1, . . . , p. Using
lasso regression, one may therefore end up with coefficient estimates which
are exactly zero. Lasso as opposed to ridge thus performs variable selection.
More precisely, because the lasso penalty unlike the ridge penalty is singular
at 0 (its derivative is not defined), the lasso can perform variable selection
(Fan and Li, 2001).

Let us also here consider an example using simulated data, with the
procedure for generating data the same as before. Figure 3.2 shows the
result of fitting a logistic regression model with lasso penalty. As λ increases
the coefficients shrink, with some estimates even becoming exactly zero.
Thus, lasso regression also performs variable selection by excluding some
predictors from our model, simplifying its interpretation. This is considered a
particularly attractive property of lasso. However, Figure 3.2 also illustrates
that while lasso does shrink the zero-coefficients to zero, it introduces
potentially large bias to the remaining non-zero coefficients. By the time all
of the zero-coefficients have been correctly estimated as zero, the remaining
non-zero coefficients have been shrunk to only a fraction of their original
size. In fact, for a large coefficient βj it has been shown that lasso will
produce biased estimates. This is owed to the fact that the derivative
of |βj| does not equal zero when βj is large (Fan and Li, 2001), which is
considered a weakness of lasso. Further, in situations with grouped variables,
i.e. when groups of covariates are highly correlated lasso is likely to select

3.3. ELASTIC NET 21

−8 −6 −4 −2

−2

−1

0

1

2

3

log(λ)

β̂

Figure 3.2: Coefficient paths for varying values of λ using the lasso penalty.
Dashed lines for zero-coefficients, solid lines for the non-zero coefficients.

only one of these with little regards to which one it is (Zou and Hastie,
2005). Additionally, it has been observed that lasso may perform worse
in terms of prediction than for instance ridge when covariates are highly
correlated (Tibshirani, 1996). Alternative methods for regularization have
therefore been proposed. One such menthod which addresses particularly
the last two points is elastic net.

3.3 Elastic net
Proposed by Zou and Hastie (2005), the elastic net combines the penalties
used in lasso and ridge, giving the objective function

n∑
i=1

yiη(xi)− log
(
1 + eη(xi)

)
− λ

α p∑
j=1
|βj|+ (1− α)

p∑
j=1

β2
j

 . (3.3)

This combination of ridge and lasso introduces an additional parameter α
to be optimized. This parameter controls how much emphasis should be
put on either the ridge or lasso penalization terms. Nonetheless, as long as
α > 0 elastic net like lasso performs variable selection due to the singularity
at 0 inherited from the lasso penalty. The elastic net was proposed as
an improvement on lasso, with the motivation being that the lasso may
struggle in terms of both predictive performance and variable selection
when variables are highly correlated. The elastic net does not suffer from

22 CHAPTER 3. MODEL REGULARIZATION

this to the same degree, which has been illustrated both theoretically and
empirically in Zou and Hastie (2005). Simulation studies conducted in the
same paper illustrated that the elastic net performs better than lasso in
terms of prediction when collinearity is present.

Note that we will in this thesis focus on the so-called naive elastic net
in the original paper by Zou and Hastie (2005). Other works have focused
exclusively on this version of elastic net (Friedman et al., 2010), so we will
do the same in this thesis. Additionally, in the glmnet package in R which
has Trevor Hastie as its maintainer, only the naive elastic net has been
implemented.

Another alternative to lasso, the adaptive lasso, has been proposed to
address the problem of biased estimation of large β coefficients.

3.4 Adaptive lasso
Being largely similar to the lasso the adaptive lasso proposes an individual
penalty for each coefficient βj , resulting in the objective function (Zou, 2006)

n∑
i=1

yiη(xi)− log
(
1 + eη(xi)

)
− λ

p∑
j=1

wj|βj|. (3.4)

The question is then how the weights wj should be chosen. It is shown in
Zou (2006) that if the weights wj are determined from the data then some
of the theoretical shortcomings of lasso can be fixed. These weights may
be estimated by ŵj = 1/|β̂∗j |γ, with γ > 0 and where β̂∗j for j = 1, . . . , p
are the maximum likelihood estimators. Alternatively one can compute the
weights using the ridge estimates. The latter is recommended particularly
when collinearity is present in the data because of the greater stability of
ridge over ML estimators in such situations. Thus the penalty applied to
coefficient j is adjusted based on the initial estimate β̂∗j , where a lower initial
estimate results in a greater penalty for the respective coefficient in (3.4).
Heuristically, the advantage of adaptive lasso over lasso is because the initial
estimates β̂∗j used to compute the weights will tend to 0 for the coefficients
that are truly zero, as n increases. The inclusion of the weights wj gives
adaptive lasso the so-called oracle properties, a set of properties which we
will later discuss.

3.5. SCAD REGRESSION 23

−4 −2 0 2 4

0
1

2
3

4
5

β

P
en

al
ty

Figure 3.3: Penalty as a function of βj for SCAD and lasso. a = 3.7 and
λ = 1 in both cases. Solid line is the SCAD penalty; dashed line is the lasso
penalty.

3.5 SCAD regression
Lastly, the Smoothly Clipped Absolute Deviation (or SCAD in short) penalty
may be used, resulting in the objective function (Fan and Li, 2001)

n∑
i=1

yiη(xi)− log
(
1 + eη(xi)

)
−

p∑
j=1

pλ(βj; a), (3.5)

where for a > 2 and λ > 0

pλ(βj; a) =


λ|βj| if |βj| ≤ λ

2aλ|βj |−β2
j−λ

2

2(a−1) if λ < |βj| ≤ aλ

(a+ 1)λ2/2 if |βj| > aλ.

(3.6)

Hence the penalization term applied to coefficient j depends on the size of
βj. To illustrate the difference between the penalization terms used in lasso
and SCAD regression, the penalties from (3.2) and (3.6) have been plotted
together for values of β ranging from −5 to 5. From Figure 3.3 we can see
that SCAD penalizes similarly to lasso up to a certain point, where it slowly
flattens out, eventually becoming constant. So SCAD differs from lasso in
that it gives a smaller penalty for greater values of β̂j for j = 1, . . . , p.

Again, let us look at an example using simulated data. The procedure
is the same as before, but with the penalization term now as in (3.6). The

24 CHAPTER 3. MODEL REGULARIZATION

−5.0 −4.5 −4.0 −3.5 −3.0 −2.5 −2.0

−2

−1

0

1

2

3

log(λ)

β̂

Figure 3.4: Trace plot of the coefficient values β̂j as a function of λ.

package ncvreg was used to fit the model using the SCAD penalty. Figure
3.4 shows that the behavior of the estimated coefficients β̂j differs from that
in Figures 3.1 and 3.2. For this specific situation at least, it appears that the
SCAD penalty is more reluctant at shrinking the large non-zero coefficient up
to a certain point while simultaneously shrinking the zero-coefficients to zero.
Further insight into the behavior of SCAD may be found by differentiating
(3.6) w.r.t. βj , to obtain the rate at which the penalization changes with βj ;

p′λ(βj; a) =


βj
|βj |λ if |βj| ≤ λ

βj
|βj |

(
aλ−|βj |
(a−1)

)
if λ < |βj| ≤ aλ

0 if |βj| > aλ.

for j = 1, . . . , p (3.7)

Hence, the penalty increases by a constant factor when |βj| ≤ λ, and then
becomes an increasing function of βj when λ < |βj| ≤ aλ. When |βj| > aλ
the penalty does not increase, and hence remains constant. We see that
for coefficients that satisfy |β̂j| > aλ the penalty does not change as β̂j
decreases, so shrinking β̂j to a value that still satisfies |β̂j| > aλ has no
impact on the penalization term. This ensures unbiased estimation of large
coefficients (Fan and Li, 2001), a property which we mentioned earlier is
lacking for lasso. Further, in the case when λ < |β̂j| ≤ aλ, and β̂j > 0 the
penalty changes by

aλ− |β̂j|
(a− 1) <

aλ− λ
(a− 1) = λ.

3.6. ORACLE PROPERTIES 25

Thus, if the penalization term is to be reduced in the most optimal way it
would be most beneficial to shrink the parameters that satisfy β̂j ≤ λ since
the rate at which the penalty for these parameters changes is the greatest.
Like adaptive lasso, SCAD possesses the oracle properties which we will now
present briefly.

3.6 Oracle properties
The oracle properties of an estimator were mentioned in both SCAD and
adaptive lasso. We will in this section look at what this means. The
explanation of the term oracle property varies somewhat in the literature,
but the essence of it is that an estimator possessing the oracle property will
correctly identify the non-zero coefficients in β with probability tending to
1. In addition, the estimator of the non-zero coefficients is asymptotically
normally distributed and unbiased. In mathematical terms, give the β
vector the representation β = (β1,β2), where β1 = (β1, . . . , βpn) contains
all non-zero coefficients, and β2 = (0, . . . , 0) is a vector of zeroes. Then, one
property that an oracle estimator has is

P (β̂2 = 0) = 1 as n→∞.

In other words, this means that the zero-coefficients in β2 can be identified
simultaneously with a probability that tends to 1 as the number of observa-
tions n→∞. The second property that an oracle estimator must possess is
that

√
n(β̂1 − β1) d≈ N(0,Σ) as n→∞,

for some covariance matrix Σ. For the necessary assumptions and technical-
ities regarding the oracle property, as well as the proofs that the SCAD and
adaptive lasso indeed possess this property, i refer to Fan and Li (2001) and
Zou (2006). These results combined means that an oracle estimator is able
to recognize which βj’s are non-zero, and provide unbiased estimates for
these βj’s as n→∞. Applied to our current objective of fraud detection,
this means that as n→∞ the SCAD and adaptive lasso estimators are able
to identify which of the predictors truly have effect in modeling of fraud
detection, and which predictors that are only correlated to those that do.
From an applied point of view, it is particularly interesting to study how well
these properties of the SCAD and adaptive lasso estimators hold when the
number of observations n does not tend towards infinity, which is something
we can not achieve in practice. Leeb and Pötscher (2008) argued that the

26 CHAPTER 3. MODEL REGULARIZATION

presence of oracle properties does not guarantee good performance in the
finite sample size setting. They further illustrated their point with several
simulation studies in the linear regression setting, in which the SCAD estima-
tor performed worse than the ordinary least squares estimator. Additionally,
increasing the sample size did not lead to an increase in performance of the
SCAD estimator in comparison to the OLS estimator, but actually worsened.
These results do not contradict the oracle properties, but they illustrate that
one should not focus too much on the oracle properties when evaluating an
estimator. Especially because these are asymptotic properties whose validity
it is difficult to ascertain in the finite setting.

3.7 Summing up
We have now discussed some methods for model regularization, where all
methods have their strengths and weaknesses. Ridge does not perform
variable selection, and thus may be inappropriate when the number of
covariates is large. Lasso does perform variable selection by being able to
estimate β̂j ’s as exactly zero. However, lasso may struggle when explanatory
variables are highly correlated, since it tends to select too few variables in
such situations. Thus, combining the strengths of lasso and ridge, the elastic
net was discussed. Finally, we also looked at the adaptive lasso and the
SCAD, both of which possess the seemingly attractive oracle property. The
first two methods, namely lasso and ridge are often viewed as the classical
methods. Both have proven to be useful in many situations. The strength
of these models lie, among other things, in their apparent simplicity. They
both benefit from the fact that one needs only optimize over one parameter
λ. This makes the methods intuitively easy to understand and, perhaps
more importantly, makes them quite easy to implement in software such as
R. Additionally, since one need only optimize over one parameter, fitting
such models can be less computationally expensive.

Chapter 4

Data re-sampling

The second issue that this thesis will discuss is the issue of unbalanced
data sets in binary classification problems and how to potentially remedy
problems which may arise for such data. A data set is said to be unbalanced
if there is a large difference in the number of observations between two
classes. The degree of unbalance varies from problem to problem, and there
is no single threshold for when a data set is said to be unbalanced. We
already discussed potential issues regarding model evaluation in terms of
measuring predictive performance in such situations in Section 2.4. How-
ever, we did not discuss how an unbalanced training set affects the model
training procedure itself, which is the topic of this chapter. In this and
and subsequent chapters, we will use the term majority class to denote the
class of which there is a majority of observations in the data set. For our
application, this means that the non-fraudulent class is our majority class.
Similarly, the term minority class is used to denote the class of which there
are few observations in the data set, i.e. the fraudulent class.

One example of an unbalanced data set is given in Solberg and Solberg
(1996) where one was interested in detecting whether an image depicted
an oil spill or only a look-alike of an oil spill. Only 2% of the observations
were images of oil spills, and 98% were look-alikes. Several other data sets
were presented in Ling and Li (1998), which focuses on the issue of direct
marketing. Here the data sets were again highly unbalanced with only 1.2%,
7% and 1% of positive samples in the three data sets given there. Examples
of data imbalance in credit card fraud can be found in Chan et al. (1999),
who worked with two separate data sets where 15% and 20% of transactions
were fraudulent. It was noted in this paper that these figures were most
likely artificially high. A review of statistical modeling in many different
forms of fraud detection given in Bolton and Hand (2002) states that in the

27

28 CHAPTER 4. DATA RE-SAMPLING

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

x1

x 2

−3 −2 −1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

x1

x 2
Figure 4.1: Left: Unbalanced data set. Right: balanced data set. Blue +
means Yi = 1, black dots means Yi = 0.

domain of money laundering, as little as 0.05% to 0.1% of all transactions
may be involved in money laundering. The problem with unbalanced data
sets such as those mentioned above is that a model estimated from them
can be lacking in terms of predictive ability with respect to the minority
class (Kubat and Matwin, 1997).

A data set of one thousand observations was generated to visualize
the problem. Two covariates x1 and x2 were both sampled from normal
distributions with the model β = (β0, β1, β2) = (−5.5, 2,−2). Simulated
instances of Y were then drawn as in Chapter 3. With the β vector given
above, the resulting data set was unbalanced with 5% positive samples. In
the right plot of Figure 4.1, only a subset of the negative samples were
kept in order to create a situation where the number of negative samples
equals the number of positive samples. The plot on the left is thought to
reflect a data set one may encounter in situations mentioned in the above
examples. Here all negative samples have been included so the data set is
highly unbalanced. Remedies for problems stemming from unbalanced data
sets such as these may be algorithmic or re-sampling. We will now discuss
some of the most commonly used techniques within the latter.

4.1. UNDER-SAMPLING 29

4.1 Under-sampling
A first approach in re-sampling is to under-sample the majority class. This
means that we in some way remove a certain number of majority class ob-
servations. There are generally two ways of under-sampling a data set. The
first, and easiest approach is to remove data points from the majority class
with uniform probabilities until some desired majority class size is reached.
This is sometimes referred to as random under-sampling. As an alternative
to random under-sampling, one can selectively remove majority class ob-
servations in order to obtain the desired majority class size. Both random
under-sampling and selective under-sampling were tested and compared in
Japkowicz (2000). Selective under-sampling was performed by removing
only those majority class observations that were far away from the minority
class observations. Among the concluding remarks were that random under-
sampling could improve the predictive performance of a method, and that
selective under-sampling seemed to offer little improvement over random
under-sampling. Besides possibly improving the predictive performance of
a classification method, under-sampling has one clear advantage in that it
reduces the size of the training set to a possibly quite large extent. Say a
data set consisting of one million rows with a minority frequency of 1% is
under-sampled to contain an equal amount of positive and negative samples;
the resulting data set would consist of only twenty thousand observations,
thus substantially reducing the computational burden.

Using under-sampling methods either in a random or selective manner
may lead to loss of information about the majority class, as was mentioned
in Ling and Li (1998). In order to prevent, or at least reduce the loss
of information, an alternative re-sampling method is to over-sample the
minority class.

4.2 Over-sampling
Over-sampling the minority class may be used either as an alternative to, or
together with under-sampling of the majority class. As with under-sampling,
this can be done either in a random or selective/synthetic manner. The
random over-sampling approach samples uniformly from the observations
in the minority class with replacement until a desired minority class size is
reached.

Randomly over-sampling the majority class has been criticized for causing

30 CHAPTER 4. DATA RE-SAMPLING

X1

X
2

Figure 4.2: An illustration of how synthetic observations are created. Syn-
thetic observations (squares) are added between the minority class observa-
tion (dot) and its nearest neighbors (triangles).

overfitting, particularly for tree-based methods (Chawla et al., 2002). A
more sophisticated over-sampling method has therefore been proposed in
order to prevent over-fitting from occurring and thus increase the predictive
performance of a model.

4.2.1 Synthetic minority over-sampling technique
Synthetic minority over-sampling technique (SMOTE) (Chawla et al., 2002)
seeks to create new, synthetic minority class observations as opposed to
simply sampling with replacement from the ones already in the data set.
Over-sampling is done by identifying the k nearest minority class neigh-
bors of a minority class observation which will be chosen to create m new,
synthetic observations. One then computes the differences between the
minority class observation and its k nearest neighbors. These differences are
represented by vectors of length p for a p-dimensional classification problem.
Each of these vectors are then multiplied by a uniformly drawn number in
[0, 1] and added to the original minority class observation, creating m new
synthetic minority class observations. A more illustrative explanation is that
one draws lines between the minority class sample in question and the k
nearest neighbors, placingm new samples uniformly along these lines. Figure
4.2 illustrates how synthetic minority class observations are created using
the approach described above. The dot is the minority class observation,

4.2. OVER-SAMPLING 31

−2 −1 0 1 2

−
2

−
1

0
1

2

X1

X
2

Figure 4.3: Over-sampling using the SMOTE algorithm with k=10. Red
triangles are synthetic observations.

with the triangles being the m observations chosen to create new synthetic
observations. The vectors of differences are then computed (lines), and one
synthetic observation (squares) is generated uniformly along each of these
lines. Modifying the training set by introducing new synthetic observations
may seem troublesome. However, there are some justifications as to why
one would wish to do this. One necessary assumption is that samples close
to one another possess approximately the same properties, meaning that
samples close to one another in predictor space will be likely to have the
same class label. The SMOTE algorithm can thus be thought of a way of
filling regions in which the data about the minority class are sparse.

The method SMOTE from the R package DMwR can be used to run the
SMOTE algorithm. This has been done for the data shown in Figure 4.1
with k = 10, and oversampling has been performed until Ȳ = 0.5. The
results are given in Figure 4.3. We can see from Figure 4.3 that the result
is a more distinct region of positive class observations. The effect k has
on the creation of synthetic samples is shown in Figure 4.4. For k = 1,
SMOTE creates synthetic samples between a minority sample and only its
nearest neighbor, resulting in some possibly undesirable structure in the
data (Figure 4.4 right). If k = 10, neighbors that are further away are
also considered when constructing synthetic samples. What the optimal
value of k is in a given situation is not obvious, but using k = 5 has been
recommended in Chawla et al. (2002).

32 CHAPTER 4. DATA RE-SAMPLING

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

X1

X
2

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−
1.

0
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

X1

X
2

Figure 4.4: A zoomed in view of over-sampling using the SMOTE algorithm
with k = 10 (left), k = 1 (right) and m=2. Red triangles are synthetic
observations.

SMOTE was combined with under-sampling in Chawla et al. (2002) and
was found to provide better predictive performance in terms of AUC in the
vast majority of data sets used. The combination of SMOTE and under-
sampling also proved to give better performance than if only under-sampling
was used.

Chapter 5

Generating data using copulas

Studying only one data set does not serve as a good basis for learning
about the methods discussed in Chapter 3 and Chapter 4. Peculiarities
about the data can produce results that are not representative for other
situations, and thus do not generalize to other applications. Seeing that
our objective is to gain just such a general overview and insight it would
be in our interest to study several data sets to see which methods (if any)
stand out as best in any given situation. Therefore, the purpose of this
chapter is to demonstrate how data sets may be generated in order to
carry out such studies in a controlled environment where we know the
true model. This makes comparing and contrasting the performance of
our model selection and re-sampling methods easier. However, for such an
analysis to have any value it is crucial that the generated data set holds
to an as large degree as possible the same properties as those found in a
real life fraud detection data set. This means that the data sets in our
simulations should have a number of properties: a large number of covariates
(though still p < n), both categorical and numerical covariates, and lastly
that the covariates may be highly dependent. Dependence between both
numerical and categorical covariates should be taken into consideration. The
requirement of dependence between numerical and categorical variables is
of some concern. This is because there are are no multivariate probability
distributions with both continuous and discrete variables, most distributions
are either discrete or continuous. A solution to this problem is to generate
the data using a copula approach.

33

34 CHAPTER 5. GENERATING DATA USING COPULAS

5.1 Preliminary descriptive analysis of tax
data

To ensure that our generated data sets are to some degree representative
of real fraud detection data sets we will first analyze the VAT data set we
introduced in Chapter 1. The focus of this analysis will primarily be on the
dependence structure, and the strength of dependence between the covari-
ates. We will then apply our findings from the VAT data set to producing
simulated data.

Upon analyzing the covariates in the VAT data set it became appar-
ent that dependence indeed is present to a large degree, and that some
covariates seemed to be quite highly dependent. For instance, one set of
covariates could all be highly dependent, with some of the covariates in
this set being dependent with second set of covariates. The covariates
making up this second set of covariates would again be highly dependent
with each other. There appeared to be a certain structure in the data with
regard to dependence. There may be several reasons why such structures
in the covariates can occur. They may well be a result of covariates where
dependence naturally occurs. For instance revenue and number of employees
can be one such pair of dependent covariates. Dependent covariates may
also be the result of feature engineering, in which one tries to construct new
covariates in order to extract more information from a data set. Examples
of feature engineered variables are the ratio of two existing covariates, which
then may be highly correlated with any of the two covariates in that ratio.
This motivated a group interpretation of the dependence structure between
the covariates. We can then see if such groups of covariates can in fact be
found in the VAT data set. In order to do this we must first give some
definition of such groups of covariates. We define a group of covariates
to be a set of one or more covariates where the dependence between all
covariates is greater than some threshold τ in absolute value. In addition,
the dependence between all covariates within one group must have the same
sign. The definition for what constitutes a group can of course be discussed,
and the definition will have an impact in the results obtained. Another
important part which will undoubtedly have a large impact on the results is
how one chooses to measure dependence. We have in this section chosen
to consider only the linear correlation measure. Additionally, we consider
only the correlation between numerical covariates of the VAT data set in
this preliminary descriptive analysis.

5.1. PRELIMINARY DESCRIPTIVE ANALYSIS OF TAX DATA 35

Identifying such groups for this particular data set is not as straight
forward as one might first think. This is due to the presence of missing
values in the data. In fact, in the VAT data set there are no observations
without any missing values for all covariates, and the number of observations
is more than halved if we demand that only the first ten covariates should
contain no missing values. Computing a correlation matrix for all 500 covari-
ates is thus not possible, and a sequential approach must be taken instead.
Algorithm 5.1 was used to find groups of variables. The algorithm starts

Algorithm 5.1 Pseudocode for finding groups.
1: candidates = 1:ncol(X)#vector of covariate indexes
2: groups = list() # object of type ’list’
3: indexgroup = 1
4: For i in 1:ncol(X) do
5: If i in candidates Then
6: Add variable nr. i to groups[indexgroup]
7: For j in candidates, and j!=i do
8: If Cor(X[, i],X[, j]) > τ Then
9: Add variable j to groups at indexgroup

10: End If
11: End For
12: corMat = Cor(X[, groups[indexgroup]]) # corr. matrix.
13: If any elements in corMat < τ Then
14: Remove from groups[indexgroup] s.t.

all correlations are >= τ
15: End If
16: End If
17: remove variables in groups[indexgroup] from candidates
18: indexgroup = indexgroup + 1
19: End For
20: Return groups

with the first covariate, adds the second covariate and checks if all elements
in their correlation matrix are of the same sign, and that the correlations in
absolute value are greater than τ . If this is the case, the covariate is kept,
and if not the covariate is thrown away. We then add the next covariate
to the correlation matrix and repeat the process. By iterating through all
the remaining covariates we have thus found our first group. The second
iteration starts with the first variable which was not included in the first
group, and repeats the procedure of computing correlation matrices and
checking the conditions. Note that Algorithm 5.1 is just a pseudocode, but

36 CHAPTER 5. GENERATING DATA USING COPULAS

the overall logic is consistent with that of the real implementation. The only
difference is in several conditions that need to be checked. For instance the
pseudocode assumes no missing values, but the exact details of the algorithm
are not of primary interest. Algorithm 5.1 does not seek to find the absolute
best group compositions (however measured), but simply generates one set
of possible groups. This is however not a large concern, since the problem
at hand is to see whether placing covariates in groups of variables is at all a
reasonable interpretation of the covariate structure.

The results of applying Algorithm 5.1 to the tax data set are shown in
Table 5.1. Group sizes are given in the top row, with the number of groups
for three different values of τ in the rows below.

Group size
τ 1 2 3 4 5 6 7 8 9 11 18
0.5 197 62 21 8 6 5 1 1 2 1 1
0.7 252 67 15 5 2 4 1 1 1 1 1
0.9 360 55 7 3 3 2 0 1 0 0 0

Table 5.1: Number of groups of different sizes for three lower correlation
thresholds τ : 0.5, 0.7 and 0.9.

For a threshold of τ = 0.5 the largest group found was of size 18, with 1
group of size 11 and 2 groups of size 9, in addition to many smaller groups.
Note that only 197, less than half of the covariates could not be placed in
a group. By increasing τ to 0.7 the groups generally decrease in both size
and numbers. The largest group is still of size 18 as before, but there is
only 1 group of size 9, and fewer groups of sizes 6 through 3. The number
of variables not placed in a group has increased from 197 to 252. Lastly,
increasing τ to 0.9 reduces the largest group size from 18 to 8, with a total
of 360 variables that could not be placed in a group. In addition to finding
such groups, we would also like to estimate the correlation both within, and
between such groups of covariates. Presenting the correlations between all
variables in all groups is not only impratical due to the sheer size of the
resulting matrix, but is not very informative either. For these reasons we will
instead compute the average correlation between two groups of covariates.
For presentation purposes let the 10 largest groups of covariates be indexed
according to the group size in descending order. Thus for τ = 0.5, group
1 is the group with 18 covariates, group 2 with 11 covariates, and so on.
Define the index set Ij containing the indexes of the variables contained in

5.1. PRELIMINARY DESCRIPTIVE ANALYSIS OF TAX DATA 37

group j. The matrix containing the average group correlations between the
10 groups is then given by

ρgroup =



ρ̄1,1 ρ̄1,2 ρ̄1,3 · · · ρ̄1,10
ρ̄2,1 ρ̄2,2 ρ̄2,3 · · · ρ̄2,10
ρ̄3,1 ρ̄3,2 ρ̄3,3 · · · ρ̄3,10
...

ρ̄10,1 ρ̄10,2 ρ̄10,3 · · · ρ̄10,10

 ,

with ρ̄i,j defined as

ρ̄i,j = 1
N

∑
i∗∈Ii

∑
j∗∈Ij :j∗ 6=i∗

Cor(xi∗ , xj∗),

for i, j = 1, . . . , 10, where N is the number of elements in this double sum
making ρ̄i,j an average. Consider first the scenario when the lower correlation
threshold is τ = 0.5. Computing the group average correlations yields the
matrix

ρ̂group =



0.95 0.07 0.02 0.02 0.01 0.01 −0.95 0.02 0.01 −0.01
0.79 0.02 0.12 0.03 0.05 −0.1 −0.01 −0.01 0.01

0.88 0.01 0.00 0.00 −0.03 0.00 0.00 0.00
0.87 0.00 0.00 −0.04 −0.02 0.00 0.00

0.81 −0.03 −0.02 0.00 −0.01 0.00
0.87 −0.03 0.00 0.00 0.00

0.93 0.00 0.00 0.01
0.70 0.00 0.01

0.93 0.00
0.96


.

The lower triangle of ρ̂group is not shown, and elements greater than or equal
to 0.1 are highlighted to improve readability. The first row contains average
group correlations between group 1 and all other groups, row 2 contains
average group correlations between group 2 and all other groups, and so on.
We can see that average within-group correlations are generally quite large,
with all of them being 0.7 or greater. With a lower correlation threshold of
τ = 0.5, inter-group dependence is not present to a very large degree. We
run the same computations again, but now with a correlation threshold of
τ = 0.9. The groups are still indexed in descending order according to their
size, as given in Table 5.1. The average group correlations are now given by

ρ̂group =



0.96 0.05 0.00 0.00 0.00 −0.01 0.00 −0.02 −0.04 0.00
0.96 0.01 0.01 −0.01 0.86 −0.88 −0.01 0.01 0.00

0.93 0.00 0.00 0.02 −0.03 0.00 0.03 0.00
0.95 0.00 0.01 0.00 0.00 −0.01 0.00

0.99 0.00 0.00 0.00 0.00 0.00
1.00 −0.93 0.08 0.20 0.00

0.93 −0.06 −0.10 0.00
0.97 0.21 0.00

0.94 0.00
0.99


.

38 CHAPTER 5. GENERATING DATA USING COPULAS

We see that the average within-group correlation has increased when the
lower correlation threshold was increased to τ = 0.9. Perhaps more interest-
ing is that inter-group correlation now is present to a larger degree. The
reason for this is that the increase in the lower correlation threshold creates
splits in several groups. These are groups of variables which may be highly
correlated, but the correlation is not high enough to form a single group.
We see from Table 5.1 that increasing the lower correlation from 0.7 to 0.9
caused a split of the groups of size 18 and 11 into smaller groups. The
resulting smaller groups will then have a large inter-group correlation, which
is seen in these results.

We have in this section studied the dynamics of the dependence structure
in the covariates of the VAT data set from Chapter 1. Our simple descriptive
analysis indicates that dependence between covariates should be taken into
account when generating data for a fraud detection scenario. Further, it
appears that structuring the covariates into groups based on their inward
correlation is a good idea. Lastly, we observed that such groups of variables
are not only inwardly correlated, but we also observed inter-group correlation.
We will in the following sections define a stochastic model from which we can
sample new data with such characteristics as those we have just observed.
However, in order to do this, we first need to introduce the concept of a
copula.

5.2 Copulas

A copula C1,...,d(u1, . . . , ud) is a d-dimensional cumulative distribution func-
tion where the marginals u1, . . . , ud are themselves uniformly distributed
on (0, 1). An interesting property illustrating the versatility of copulas is
given by Sklars theorem (Sklar, 1959). It states that any d-dimensional
cumulative distribution function F1,...,d(z1, . . . , zd) with marginal cumulative
distribution functions Fi(zi) for i = 1, . . . , d can be expressed as

F1,...,d(z1, . . . , zd) = C1,...,d(F1(z1), . . . , Fd(zd)).

Further, if z1, . . . , zd are all continuous, then C1,...,d(·) is unique. Many
different models for C1,...,d(u1, . . . , ud) exist, but perhaps the most used,
which will also be used in this chapter, is the Gaussian copula.

5.2. COPULAS 39

5.2.1 The Gaussian copula
The Gaussian copula is an elliptical copula, and thus has a symmetric
dependence structure. The dependence is described by a d × d correlation
matrix ρ. Being an implicit copula, it has no explicit expression for the
copula function C1,...,d(u1, . . . , ud). However, if ρ is positive definite its
density exists and is given by

c1,...,d(u1, . . . , ud) =
exp{−1

2zTρ−1z}
|ρ| 12 exp {−1

2
∑d
i=1 z

2
i }
, (5.1)

where z = (z1, . . . , zd)T = (Φ−1(u1), . . . ,Φ−1(ud))T , and Φ(z) is the cumula-
tive distribution function for the standard normal distribution.

The d-dimensional Gaussian copula with a correlation matrix ρ is the de-
pendence structure of a d-dimensional Gaussian distribution with correlation
matrix ρ. A possible sampling strategy for a Gaussian copula is therefore to
sample z = (z1, . . . , zd)T from a d-dimensional Gaussian distribution, and
then transform these into uniforms via Φ(zi) = ui for i = 1, . . . , d. This
approach may therefore be seen as the opposite of inversion sampling, a quite
general and common sampling method given by Algorithm 5.2. In inversion
sampling we draw uniforms u = (u1, . . . , ud)T , and then apply the inverse
cumulative distribution function F−1(·) to obtain the desired variable z. In
Algorithm 5.4 we instead sample z, in this case from a Gaussian distribution,
and convert these data into uniforms u.

Algorithm 5.2 Inversion sampling for a continuous distribution with inverse
cumulative distribution function F−1(U)
1: Draw U ∼ Uniform(0, 1)
2: Z = F−1(U)
3: Return Z

Algorithm 5.3 Inversion sampling for Bernoulli(p) distribution
1: Draw U ∼ Uniform(0, 1)
2: If U< 1− p Then
3: Z = 0
4: Else
5: Z = 1
6: End If
7: Return Z

40 CHAPTER 5. GENERATING DATA USING COPULAS

Algorithm 5.4 Sampling from a Gaussian copula
1: Draw z ∼ N(0d,ρd×d)
2: Set ui = Φ(zi) for i = 1, . . . , d
3: Return u = (u1, . . . , ud)T

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ = 0.5

u1

u 2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ = 0.9

u1

u 2

Figure 5.1: Data sampled from a bivariate Gaussian copula.

Once the d correlated uniforms u are obtained via Algorithm 5.4 we
can then apply continuous marginal distributions from different families of
distributions as in inversion sampling, i.e. Algorithm 5.2. For Bernoulli
random variables the algorithm must be modified resulting in Algorithm
5.3. When generating our data set we will not sample from any other
discrete distribution than the Bernoulli distribution. The reason for this
being that any discrete variable with m levels will be converted into m− 1
indicator (i.e. binary) variables when regression is performed anyways.
Further, dependence between such multi-level discrete random variables can
be represented via dependence between the indicator variables modeled via
a copula. Figure 5.1 was created by sampling from a bivariate Gaussian
copula via Algorithm 5.4, with ρ = 0.5 and 0.9 in the left and right plot,
respectively. We can see a clearer structure as ρ increases from 0.5 to
0.9, illustrating the increase in dependence between u1 and u2. Applying
inverse cumulative distribution functions F−1

i (·) to ui yields new variables
xj = F−1

j (uj) for j = 1, 2. We are free to apply whatever CDF’s F1 and F2
we like, making this a versatile setup for generating dependent data. This
has been done for two different sets of distributions in Figure 5.2. Figure
5.2 shows scatterplots of data sampled with x1 normally distributed and x2
Gamma distributed (top), and x1 normally distributed but x2 following a

5.3. GENERATING A DATA SET 41

−3 −2 −1 0 1 2 3

0
2

4
6

8
10

12

ρ = 0.5

x1

x 2

−3 −2 −1 0 1 2 3

0
2

4
6

8
10

ρ = 0.9

x1

x 2

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ = 0.5

x1

x 2

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ρ = 0.9

x1

x 2

Figure 5.2: Data sampled via a bivariate Gaussian copula, applying different
distributions to u1 and u2 in the generation of x1 and x2.

Bernoulli distribution (bottom). A bivariate Gaussian copula with ρ = 0.5
(first column) and ρ = 0.9 (second column) models the dependence (as in
Figure 5.1) between x1 and x2. Note that the correlation matrix of our
copula, ρ, is in general not preserved under such transformations. For
example, though the correlation between u1 and u2 is ρ = 0.9 in the top
right plot of Figure 5.2, the correlation between x1 and x2 is not.

5.3 Generating a data set
Using the copula construction outlined in Section 5.2.1 we can generate data
sets with similar properties as the VAT data set we analyzed in Section 5.1.
This process can be split up in four main parts as illustrated by Figure 5.3.

Draw ui Generate xi Compute P (Yi = 1|xi) Draw Yi

Figure 5.3: Schematic illustratic the steps in generating a data set.

As we see from this setup, each part of the data generation procedure

42 CHAPTER 5. GENERATING DATA USING COPULAS

is done independently of the others, so changing for instance the copula
from which we draw u, or the marginals for xi can be done with ease. In
this and subsequent sections the notation of the copula will be given in p
dimensions, not d. This is because the goal is to generate covariates for
a p-dimensional classification problem. We thus make the notation more
situation specific. We begin with a closer look at the first box in Figure
5.3, namely drawing the uniforms ui = (ui,1, . . . , ui,p). This requires that we
first define the correlation matrix ρ for our copula.

5.3.1 Defining the correlation matrix
Defining the correlation matrix requires some thought regarding the structure
and properties we would like our data set to represent. A starting point is
to set Cor(ui,j, ui,k) = ρ, ∀j 6= k, leading to the correlation matrix

ρ =



1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ
ρ ρ 1 · · · ρ
...
ρ ρ ρ · · · 1

 .

However, this may not give us the desired dependence structure as all
ui,1, . . . , ui,p will now have an equal correlation. To produce an appropriate
dependence structure we look to Section 5.1. We observed that one possible
interpretation of the collinearity in our data is that the covariates can appear
in groups. Further, we observed that such covariates were highly correlated
with covariates in the same group. Our correlation matrix may then be
given the block matrix representation

ρ =


ρ1,1 ρ1,2 · · · ρ1,ng
ρ2,1 ρ2,2 · · · ρ2,ng...
ρng ,1 ρng ,2 · · · ρng ,ng

 , (5.2)

where the matrices ρi,j are of dimension pg × pg for i, j = 1, . . . , ng. By
introducing this structure for the correlation matrix ρ we make the sim-
plifying assumption that all groups of covariates are of the same size pg.
Additionally, let us consider only three possibilities for ρi,j, that is, three
kinds of matrixes: ρh,ρm and ρl. These will be referred to as high level,

5.3. GENERATING A DATA SET 43

medium level and low level dependence matrices defined as

ρh =


1 ρh · · · ρh
ρh 1 · · · ρh
...
ρh ρh · · · 1

 ,ρm =


ρm ρm · · · ρm
ρm ρm · · · ρm
...
ρm ρm · · · ρm

 ,

ρl =


ρl ρl · · · ρl
ρl ρl · · · ρl
...
ρl ρl · · · ρl

 ,

respectively. The high level dependence matrix ρh has 1 in its diagonal and
thus models dependence within one group of variables. The other matrices,
the medium and low level dependence matrices ρm,ρl will be used to model
dependence between groups of variables. This gives us a structured, yet
flexible model consistent with our observations made from real data. We
can now let ρ take the form

ρi,j =


ρh if |i− j| = 0
ρm if |i− j| = 1
ρl if |i− j| = 2
0pg×pg if |i− j| > 2.

So within-group dependence is defined by the matrix ρh, groups with a
difference in indexes of 1 have a correlation given by ρm, groups with a
difference in indexes of 2 have a correlation matrix given by ρl. For groups
of variables where the difference in indexes is greater than 2 the correlation
is 0. It is perhaps easier with a visual display of our final correlation matrix
ρ, which would be

ρ =



ρh ρm ρl 0 0 · · · 0 0 0
ρm ρh ρm ρl 0 · · · 0 0 0
ρl ρm ρh ρm ρl · · · 0 0 0
0 ρl ρm ρh ρm · · · 0 0 0
0 0 ρl ρm ρh · · · 0 0 0
...
0 0 0 0 0 · · · ρh ρm ρl
0 0 0 0 0 · · · ρm ρh ρm
0 0 0 0 0 · · · ρl ρm ρh


.

44 CHAPTER 5. GENERATING DATA USING COPULAS

Group 1 Group 2 Group 3 Group 4 Group 5

ρm

ρl

ρm

ρl

ρm

ρl

ρm

ρh ρh ρh ρh ρh

Figure 5.4: A Schematic illustrating the dependence structure in a 5-group
scenario. Arrows imply dependence.

Such a construction allows for a dynamic in ui = (ui,1, . . . , ui,p), so that the
variables within a group are highly correlated, a lower correlation with vari-
ables within other groups, even allowing for independence between groups
of variables. This is in accordance with the description of our data set in
section 5.1. We illustrate the dependence structure by an example. Con-
sider a scenario with 5 groups of covariates. The dependence structure is
represented by Figure 5.4. For instance, we may omit the between-group
dependence for groups with a distance of 2 by setting ρl = 0, or omitting
the between-group dependence altogether by setting ρm = ρl = 0.

One downside with the current definition of ρ is that the correlation
between variables in the same group is identical. This seems unrealistic,
however we change this by adding weights exp{−ω(|i − j| − 1)} to the
off-diagonal elements of ρh. Let all off-diagonal elements in ρh take the form

ρh exp{−ω(|i− j| − 1)},

with the constraint

ρh exp{−ω(|i− j| − 1)} > c

for all i, j = 1, . . . , pg, which ensures that all correlations in a high level
block are still greater than the some constant c ≥ ρm. Solving the above
inequality yields

ω <
log(ρh/c)
pg − 2 , (5.3)

since the maximum of |i− j| − 1 is pg − 2. The strength of dependence is
thus affected by the distance (in indexes) between two variables within the
same group. This does create quite a symmetric and structured dependence

5.3. GENERATING A DATA SET 45

structure which again may seem strange. However, one should emphasize
this too much, since one can simply shuffle the covariates around, and the
symmetry in ρ would disappear.

From our analysis of the VAT data set in Section 5.1 we can see that
several variables were not placed in a group. Though this does not mean that
variables which were not included in a group are completely independent
of all other covariates, we make this simplifying assumption here. We will
therefore introduce what we will denote independence groups which are
groups where all covariates within this group are independent of each other
and independent all other groups of covariates. For instance, by letting
group number j be an independence group, we get

ρj,i = ρi,j = 0pg×pg for i = 1, . . . , ng, i 6= j,

ρj,j = Ipg×pg .

Note that when constructing the correlation matrix ρ we are subject to
the constraints following (5.1), namely that ρ must be positive definite.

5.3.2 Generating X
Now that we have defined our correlation matrix ρ, we can draw the
uniforms ui using Algorithm 5.4. The next step is to transform these into
our covariates xi. We will use the sampling techniques described at the end
of the previous section for this, i.e. Algorithm 5.2 and 5.3. This allows for
correlated explanatory variables, with a degree of dependence we can decide
ourselves. It also means we can produce data sets with a combination of
correlated discrete and continuous explanatory variables, as illustrated in
the previous section. In mathematical terms, this translates to

ui ∼ C1,...,p(ui,1, . . . , ui,p)
xi =

(
F−1

1 (ui,1), . . . , F−1
p (ui,p)

)
,

where C1,...,p(·) is the Gaussian copula. By combining Algorithm 5.4, 5.2
and 5.3 we get an algorithm for generating X.

5.3.3 Generating Y
Before we can generate the response variable Yi we first need to specify a
model for P (Yi = 1|xi). Because this thesis focuses on logistic regression,

46 CHAPTER 5. GENERATING DATA USING COPULAS

we will here use the model

P (Yi = 1|xi) = exp{xTi β}
1 + exp{xTi β}

.

This is then used to sample Yi from a Bernoulli distribution with probability
of success given by P (Yi = 1|xi). Thus, a prerequisite for generating Yi
is a proper choice of β. We can decide to let β have many, but small
coefficients, or only a few but rather large and important coefficients. Given
our dependence structure for our covariates discussed earlier, it is also
important which elements in β are set to non-zero. Setting only elements
that are adjacent to each other to non-zero will result in a model where most
covariates with non-zero coefficients are highly correlated. Alternatively, one
could set the coefficients in β such that the covariates whose β-coefficients
are non-zero are placed in different groups. This would give less correlation
between the covariates with non-zero coefficients. Arguably, it would make
for a more realistic model, since it is rarely the case that all explanatory
variables in a data set are highly correlated. Lastly, one could place the
non-zero coefficients in β so far apart that their associated predictors become
independent.

Chapter 6

Simulation study:
regularization methods

In this chapter we study the behavior of the regularization methods from
Chapter 3 in situations where covariates are highly dependent. This will be
done by adopting the framework of the stochastic model outlined in Chapter
5. Parameters in the data generation model will be varied across simulations
to recreate a range of different dependence structures between the covariates.

6.1 Experiment design
Generating a data set with a large degree of dependence requires some initial
considerations to be made. This is partly due to the inherent flexibility in
the model introduced in Chapter 5. For instance, the true model from which
we generate data can be changed by both varying β or ρ, and keeping in
mind the combined effects of these parameters is important. In the following
subsections, we will give the details of our different simulation experiments.
There are however some parameters that will not change throughout these
simulations. The number of covariates will be set to p = 1000, of which 100
will have β- coefficients not equal zero. The value of the intercept β0 is not
of primary interest here, since no shrinkage is applied to it by any of the
regularization methods we have discussed. However, the value of β0 does
impact the balance of our data set, and choosing an appropriate value for β0
prevents any issues regarding class imbalance, which is a separate problem
we will deal with later. Recall the logistic regression model

P (Yi = 1|xi) = exp{β0 + xi,1β1 + · · ·+ xi,pβp}
1 + exp{β0 + xi,1β1 + · · ·+ xi,pβp}

,

47

48
CHAPTER 6. SIMULATION STUDY: REGULARIZATION METHODS

and observe that if β0 + xi,1β1 + · · ·+ xi,pβp = 0, then P (Yi = 1|xi) = 0.5.
We can then set β0 such that E[β0 + xi,1β1 + · · ·+ xi,pβp] = 0, which gives
β0 = −∑p

j=1 E[xi,j]βj . By using this value of β0 we can ensure that our data
sets are not unnecessarily unbalanced to consist of a majority of either 1’s
or 0’s. This also ensures consistency between different simulation scenarios,
since class imbalance will not be a contributing factor in our simulation
results. If we did not ensure this, we could have ended up with values of
β0 that made our data sets be slightly skewed to contain more 0’s in one
scenario, and more 1’s in another. While such a skew may not have been
big, it could certainly have impacted the model estimation procedure and
thus contributed to a distortion of our final results and conclusions. The
correlation matrix ρ of the Gaussian copula C1,...,p(u1, . . . , up) will be set as
a block matrix as discussed in Chapter 5. The parameter values for ρh, ρm, ρl
and ω will vary between different simulations, the details of which we will
now provide.

6.1.1 Simulation 1: within-group dependence
In this first set of simulations, the number of observations n will be set to
3000. The group size pg will be set to 10, such that the number of groups
ng is 100. We will in this scenario consider a model where the explanatory
variables have a within-group dependence structure, but no inter-group
dependence. Further, the within-group dependence will be constant. The
values defining the correlation matrix are set to

ρh = 0.9, ρm = 0, ρl = 0, ω = 0.

As we mentioned in Chapter 5, some groups of covariates should be set
independent of all other covariates, the so called independence groups. We
define the last 10 groups of covariates to be just such independence groups.
After u1, . . . , u1000 have been drawn, we will transform these as described in
Chapter 5. The first 3 variables in each group will be standard normally
distributed, the next 3 will be Gamma(1,1) distributed and the last 4 of
each group will be Bernoulli distributed with probability of success p = 0.5.
Thus, in group j = 1, . . . , ng we have

Xi,pg(j−1)+k ∼ N(0, 1) for k = 1, 2, 3
Xi,pg(j−1)+k ∼ Gamma(1, 1) for k = 4, 5, 6
Xi,pg(j−1)+k ∼ Bernoulli(0.5) for k = 7, 8, 9, 10.

6.1. EXPERIMENT DESIGN 49

β2 β4 β6 β8β8 β10β1 β3 β5 β7 β9

β12 β14 β16 β18β18 β20β11 β13 β15 β17 β19

Group 1

Group 2

... ...

Group 15

Group 16

Group 17

Group 18

β142 β144 β146 β148 β150β141 β143 β145 β147 β149

β152 β154 β156 β158 β160β151 β153 β155 β157 β159

β161 β162 β163 β164 β165 β166 β167 β168 β169 β170

β171 β172 β173 β174 β175 β176 β177 β178 β179 β180

... ...

Group 95

Group 96

Group 97

Group 98

Group 99

Group 100

β941 β942 β943 β944 β945 β946 β947 β948 β949 β950

β951 β952 β953 β954 β955 β956 β957 β958 β959 β960

β962 β964 β966 β968 β970β961 β963 β965 β967 β969

β972 β974 β976 β978 β980β971 β973 β975 β977 β979

β982 β984 β986 β988 β990β981 β983 β985 β987 β989

β992 β994 β996 β998 β1000β991 β993 β995 β997 β999

Figure 6.1: Illustration of β-coefficients. Grey color indicates non-zero value
for the relevant coefficient.

Since explanatory variables in all groups are transformed this way, we will
have a data set where 60% of the explanatory variables are continuous, and
40% are binary.

We will define our β such that there are 5 non-zero coefficients for
selected groups of variables. Every 1st, 3rd, 5th, 7th and 9th β-values in
these groups will be set to 0.05. These groups are the first 16, and the last 4.
In mathematical terms βpg(j−1)+k = 0.05, for j = 1, . . . , 16, 97, . . . , 100 and
k = 1, 3, 5, 7, 9. Thus we have 16 groups where 5 of the covariates in each

50
CHAPTER 6. SIMULATION STUDY: REGULARIZATION METHODS

group have non-zero coefficients in β. In addition to this, we set 5 covariates
in each of the 4 independence groups to have non-zero coefficients in β. See
Figure 6.1 for an illustration of which β coefficients are set as non-zero.

6.1.2 Simulation 2: varying the within-group
dependence

We now change the dependence structure of our correlation matrix ρ such
that the degree of within-group dependence depends on the distance between
two covariates in the same group, as explained in Chapter 5. To ensure our
results in this subsection will be comparable to those in the next subsections,
we must consider what the value of ω should be. The value for ω is set
such that the lowest level of within-group dependence would be 0.7, if the
group size was 20. The reason for this is that we will in later simulation
experiments increase the group sizes from 10 to 20. By setting such a value
for now, ω we ensure that the dependence structure is identical for the first
10 covariates, independent of group size. Keeping in mind the constraint
given in (5.3), the parameters defining ρ are now

ρh = 0.9, ρm = 0, ρl = 0, ω = 0.99log(0.7/ρh)
18 .

With these values, the lowest level of within group dependence is approxi-
mately 0.8. The β-vector is defined as in Section 6.1.1.

6.1.3 Simulation 3: adding inter-group dependence
The third set of simulations rely on the setup from Section 6.1.2, with the
only difference being that we add inter-group dependence. We observed such
inter-group dependence between the groups of covariates in the VAT data
set in Chapter 5.1, and we now wish to recreate this. Thus, the parameters
defining ρ are now set to

ρh = 0.9, ρm = 0.4, ρl = 0.2, ω = 0.99log(0.7/ρh)
18 .

6.1.4 Simulation 4: spreading non-zero coefficients
in β

In the previous scenarios we have altered only the correlation matrix of
our Gaussian copula. The difference now is in the β-vector, which is
defined such that every other group has covariates with non-zero coefficients

6.1. EXPERIMENT DESIGN 51

in β. Again, more mathematically we have βpg(j−1)+k = 0.05, for j =
1, 3, 5, 7, . . . , 31, 97, . . . , 100 and k = 1, 3, 5, 7, 9. An interpretation for this
setup is that we assume that groups of variables that do not contribute
to the response are to a greater extent correlated with groups that have
covariates that do impact the response. For the sake of an example, consider
the covariate groups in Section 5.1. The scenarios in Sections 6.1.1,6.1.2
and 6.1.3 correspond to assuming that group number 2 and 5 in the second
ρ̂group matrix of Section 5.1 both contribute to the response. We imagine
now in this scenario that the correlation matrix is just as before, but group
5 no longer truly contributes to the response. Instead, say group 2 and
6, which have a lower inter-group correlation truly have an effect on the
response. Groups 2 and 5 are still highly correlated, but no true effects on
the response can be ascribed to group 5.

6.1.5 Simulation 5: change β coefficients
We continue to alter β in this scenario as we did in Section 6.1.4. As opposed
to Section 6.1.4 we will not change the indexes of which β-coefficients are
non-zero but change their values. In order to introduce some variation in the
β vector, we set the first 5 non-zero elements of β to 0.5, the next 5 non-zero
elements to 0.1. We also introduce some larger coefficients, but spread
these out such that they do not appear in the same groups of covariates.
Specifically, we set the 20’th and 40’th non-zero β-coefficients equal to 1,
and the 60’th and 80’th non-zero β-coefficients equal to 2. The remaining 85
non-zero β-coefficients are set to 0.025. Down-scaling some of the coefficients
is necessary in order to keep the signal to noise ratio at a reasonable level.

6.1.6 Simulation 6: increase group size to 20
Looking at the groups we obtained from the VAT data set in Section 5.1,
we see that the largest group size was 18, while we so far in our simulation
study have only considered groups of size 10. We wish to study impact of
larger group sizes is this section, and thus we increase the group size pg
from 10 to 20, reducing the number of groups ng to 50. The independence
groups will now be set as the last 5 groups of covariates, to keep the total
number of independent covariates the same as before. For the same reason
that we had to be careful when defining ω in section 6.1.2, we now too must
be careful in how we generate the groups of size 20. Given the correlation
matrix, sampling from the Gaussian copula is done as before. However, it
is important that the properties of the linear predictor η(xi) are the same.

52
CHAPTER 6. SIMULATION STUDY: REGULARIZATION METHODS

The marginal distributions will therefore be defined as

Xi,pg(j−1)+k ∼ N(0, 1) for k = 1, . . . , 9
Xi,pg(j−1)+k ∼ Gamma(1, 1) for k = 10, 11, 12
Xi,pg(j−1)+k ∼ Bernoulli(0.5) for k = 13, . . . , 20.

If we let the non-zero elements be the 7th, 9th, 11th, 13th and 15th covariates
in each group, the properties of η(xi) have not changed from section 6.1.2.
Thus, the true model is exactly the same as before, but we have made the
groups of variables larger, in the sense of adding more highly correlated
"noisy" covariates.

6.1.7 Simulation 7: increase n
Finally in the last set of simulations we wish to study the impact of a larger
data set. This is partly due to the observation that the VAT data set has
50255 observations. Another reason is that we wish to see if the oracle
properties of SCAD and adaptive lasso make these methods benefit more
from an increase in sample size. The sample size n will thus be increased by
a factor of 10, from 3000 to 30000. All other details regarding the model
from which we sample data are exactly as in Section 6.1.6.

6.2 Implementation and estimation
Setting up simulation experiments such as those described requires program-
ming, in this case in R. The pseudocode for running these simulations is
given in Algorithm 6.1.

Algorithm 6.1 Pseudocode for simlation experiments
Input: method,m,

1: Results = 1:m*0
2: For i in 1:m do
3: Generate training data T1 # Algorithms 5.4,5.2,5.3
4: Generate test data T2
5: Train model on T1
6: Create test summaries for model, based on T2#AUC,BS etc.
7: Results[i] = test summaries #Based on step 6
8: End For
9: Return Results

6.2. IMPLEMENTATION AND ESTIMATION 53

The inputs of Algorithm 6.1 are the number of simulations m and the
parameter method which denotes which of the estimation methods presented
in Chapter 3 should be used for these simulations.

We wish to run each of our simulations 200 times for each scenario in
order to get reliable results. However, for this to be possible in practice, we
need our R code to be optimized. Of particular concern initially was the
long execution times of generating the data set in steps 3 and 4 in Algorithm
6.1. This was much due to the fact that the R code was written to a large
degree using for-loops, with little regards to optimization of execution times,
but rather making the code intuitive and easy to understand and work with.
Some time was therefore spent on trying to vectorize this particular part,
which made a substantial impact on execution times. After the R-script
had been improved with regards to computational efficiency, the runtime
was substantially reduced. For instance, generating n = 3000 observations
took about 25 minutes prior to vectorization, and roughly 15 seconds after
vectorization. However, running these simulations would still take a long
time. The next step was therefore to run the R script in parallel. More
specifically, the for-loop in Algorithm 6.1 was implemented in parallel, rather
than running it sequentially. Parallelizing in such situations is typically
beneficial since each iteration runs independently of all the other iterations.
Total execution time should therefore reduce in a linear fashion when the
number of workers increases, which is considered to be an ideal situation
in parallel programming. The package doParallel was used to run the
for-loop in Algorithm 6.1 in R. A prerequisite for improvements in execution
times when doing parallelized computing is adequate hardware. To overcome
this potential limitation, the simulations were run on the Abacus machine
at the University of Oslo which has a total of 48 cores.

Cross validation
All of the methods introduced in Chapter 3 require optimization over one or
more parameters (hyper-parameters), with the exception of the maximum
likelihood estimator. This will be done by 10-fold cross validation. More
specifically, we will use a stratified cross validation approach, which we com-
mented on in Chapter 2. We will use the AUC computed on the hold-out set
as the measurement of model performance in our cross validation procedure.
The value of the hyper-parameters that maximize the mean AUC across all
folds is then chosen as the final hyper-parameter. Figure 6.2 shows AUC
estimated by cross validation for different values of λ using lasso with logistic
regression.

54
CHAPTER 6. SIMULATION STUDY: REGULARIZATION METHODS

−6.5 −6.0 −5.5 −5.0 −4.5 −4.0 −3.5 −3.0

0.
56

0.
58

0.
60

0.
62

0.
64

log(λ)

A
U

C

600 500 400 300 200 100 0
Number of variables selected

Figure 6.2: Mean cross validated AUC plus/minus one standard deviation.

For the elastic net and adaptive lasso the cross validation procedures
are somewhat more complicated. Elastic net requires that we run the cross
validation procedure as described above for a set of selected α values. Thus,
if we wish to optimize the elastic net over α = 0.1, 0.5, 0.9, we would run one
cross validation procedure for each of these values of α, and record the best
pair of (λ, α) to be used for our final model. The same procedure is used
when optimizing over (λ, γ) for the adaptive lasso. However, there is one
key aspect in which a cross validation procedure differs for adaptive lasso
compared to elastic net. When optimizing the adaptive lasso over (λ, γ) we
must be careful not to cause the model to overfit. This will occur if one
computes weights ŵj for j = 1, . . . , p based on all training data prior to
the cross validation procedure, and then use these pre-estimated weights
in all cross-validation folds. By doing this we first use all the training
data to create the weights. We thus help the cross validation procedure
somewhat, by providing weights that were computed on all training data.
This will cause inclusion of too many parameters, and a bias in the estimated
predictive performance of our model. The correct way is to compute the
weights separately in each cross validation iteration to prevent over-fitting
from occurring. This is however more computationally intensive.

6.2. IMPLEMENTATION AND ESTIMATION 55

Lasso and ridge

Both lasso and ridge can be fitted by cross-validation using the glmnet
package. We will used Algorithm 2.1 to generate the cross validation folds.

Elastic net

As noted above, training the elastic net requires optimizing the parameters
(α, λ). One option would be to set α as a fixed value, say 0.5, and then
only optimize over λ. However, this is not a very flexible approach. We
will instead run cross-validation over a grid of α and λ values as in Zou
and Hastie (2005). This approach does have the disadvantage of increased
computational cost. Thus, we will optimize over a grid that is not too
high-resolution. Seeing that if α = 0 we have the ridge penalty, and if α = 1
we have the lasso penalty, we would like our α grid not to cover these values,
since these penalty terms are tested separately. The grid of α values will be
set to (0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99). We focus on the values
close to 0 and 1 because the elastic net tends to have its optimal solution
close to either a ridge (α = 0) or lasso solution (α = 1) as noted in Zou and
Hastie, 2005.

Adaptive lasso

The adaptive lasso relies on a clever choice of the weights ŵj. We will
obtain the weights by ŵj = 1/β̂∗j for j = 1, . . . , p, where β̂∗j is the ridge
estimator. Using the ridge estimator to compute the initial weights has been
recommended in situations where collinearity is present, since it tends to be
more stable than the maximum likelihood estimator in this case (Zou, 2006).
To reduce computational cost, we will perform 5-fold cross validation for
computing the ridge estimators to be used in the weights. Concerning the
additional hyper-parameter γ, we will not run any cross validation over this
parameter, but set it equal to γ = 1 for all runs. Initially, we tried running
a two-dimensional cross-validation over the values γ = 0.5, 1, 2 as in Zou
(2006), but the computational costs were far too great to run this for all
scenarios. Additionally, when running these simulations on a smaller scale
the values γ = 0.5 and γ = 1 tended to be selected most of the time, and
thus we run only for γ = 1. Even with these simplifications to the training
of the adaptive lasso, it still takes by far the most time to estimate.

56
CHAPTER 6. SIMULATION STUDY: REGULARIZATION METHODS

SCAD
Fitting the logistic regression model with the SCAD penalization term in
R can be done through the package ncvreg. A model can be fit for a
specified value of λ, or one can optimize λ using the built-in cross validation
procedures for this package. In the case of binary classification, the ncvreg
package supports only binomial deviance computed on the hold-out set in
cross validation as the measurement of model performance, so if we wish
to use AUC as a performance measure we have to program such a routine.
Regarding the a parameter, both empirical and theoretical arguments have
been given to show that the SCAD penalty estimator is optimal around
a = 3.7, Fan and Li (2001). We will therefore set a = 3.7 in the following
simulations.

6.3 Model evaluation criteria
We are now in a setting where we know the true model for P (Yi = 1|xi),
and this brings with it some advantages when it comes to contrasting and
comparing our methods for model regularization. We want to consider the
number of non-zero elements Nβ̂ 6=0 in β̂, given by

Nβ̂ 6=0 =
p∑
j=1

I(β̂j 6= 0).

In addition to this, we wish to know how often our estimated model correctly
recognizes zero and non-zero coefficients in β. Define the proportion of
non-zero coefficients in β that were correctly estimated to non-zero Pβ̂ 6=0
and the proportion of zero-coefficients in β that were correctly estimated
zero Pβ̂=0 as

Pβ̂ 6=0 =
∑
j:βj 6=0 I(β̂j 6= 0)∑p
j=1 I(βj 6= 0)

Pβ̂=0 =
∑
j:βj=0 I(β̂j = 0)∑p
j=1 I(βj = 0) ,

respectively. A method which perfectly identifies both zero and non-zero
coefficients therefore has Pβ̂=0 = Pβ̂ 6=0 = 1. To supplement these two
measures we also consider the proportion of non-zero coefficients in β̂ that
are actually non-zero, i.e. the corresponding coefficient in β is non-zero,

ACCβ =
∑
j:β̂j 6=0 I(βj 6= 0)∑p
j=1 I(β̂j 6= 0)

.

6.4. RESULTS 57

This can be considered a measure of the accuracy of the chosen covariates
of a method. Due to this interpretation we will denote this by ACCβ. This
can be equally informative as Pβ̂ 6=0 and Pβ̂=0 when considering the different
estimation methods.

For evaluation of predictive performance we will report the AUC. We will
also report the Brier score because the AUC has its limitations, as commented
in Chapter 2. An optimal method in terms of predictive performance
therefore scores the best in terms of both AUC and Brier score. Note that
since we are optimizing our models w.r.t. AUC, the Brier score will serve as
a secondary measure, since these models have not been fitted to optimize
Brier score. The results would very likely have been different if we were to
optimize with respect to Brier score, and report the AUC as a secondary
predictive performance measure. These measures of predictive performance
will be computed on an independent test set. This test set will be of size
n = 3000 in all the following simulations.

6.4 Results

6.4.1 Simulation 1: within-group dependence

Penalty Nβ̂ 6=0 Pβ̂=0 Pβ̂ 6=0 ACCβ AUC BS
No 1000 0 1 0.1 0.586 0.336
Ridge 1000 0 1 0.1 0.660 0.238
Lasso 74.2 (20.8) 0.953 0.315 0.425 0.661 0.231
SCAD 65.9 (21.9) 0.954 0.247 0.374 0.657 0.232
Elnet (0.03) 261.4 (75.9) 0.799 0.800 0.306 0.670 0.234
Alasso 110.5 (69.6) 0.918 0.365 0.330 0.654 0.233

Table 6.1: Simulation results for only within-group dependence (simulation
1), with m = 200 runs for each method.

The results from the simulation setup in Section 6.1.1 are given in Table
6.1. The penalty is given in the leftmost column, with "No" meaning no
penalty was applied, and thus shows the results for a model fitted using
maximum likelihood. The second column shows the average number of
covariates estimated as non-zero (with standard deviation in parenthesis).

58
CHAPTER 6. SIMULATION STUDY: REGULARIZATION METHODS

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99

α

F
re

qu
en

cy

0
50

10
0

15
0

Figure 6.3: Distribution of α for elastic net in Simulation 1.

The maximum likelihood estimator as well as ridge does not perform variable
selection, so this will always be 1000 for these methods. Of those methods
that perform variable selection, elastic net by far keeps the largest number
of variables with an average 261.4. This can partly be explained by the
fact that the average α value was 0.03, which is close to a ridge penalty.
Figure 6.3 shows how the α values are distributed in the simulations using
elastic net. As we can see, the majority of α values are 0.01. The elastic net
kept more than twice as many covariates as adaptive lasso, which averaged
110.5 non-zero coefficients. Both elastic net and adaptive lasso have quite
large variability in the number of variables selected. The SCAD penalty
seems to be the most conservative of the methods with an average of 65.9
variables selected. The lasso, with an average of 74.2 variables selected, is
higher than SCAD, though fewer than adaptive lasso and elastic net. The
second column contains values of Pβ̂=0, representing the proportion of zero
coefficients that were correctly estimated as zero. These values must be seen
in relation with Pβ̂ 6=0, which tends to mirror Pβ̂=0 since a large value of the
former usually means a low value for the latter. To supplement these, we
also provide the probability that a coefficient that has been estimated to be
non-zero is actually non-zero, which we called the accuracy ACCβ. We see
that lasso performs better than SCAD in terms of variable selection accuracy,

6.4. RESULTS 59

with both higher values of Pβ̂ 6=0 and ACCβ, and performing similarly with
respect to Pβ̂=0. The adaptive lasso selects more variables, and does succeed
in finding more of the truly non-zero coefficients than the lasso, which can
be seen by a larger Pβ̂ 6=0. However, the adaptive lasso also erroneously
selects many variables, giving it a lower ACCβ than lasso. Elastic net gives
a quite different solution than any of the other methods, as can be seen by
a substantially larger Pβ̂ 6=0. It includes roughly 80 % of all variables with
non-zero coefficients. However, as with adaptive lasso, elastic net erroneously
includes many covariates, resulting in a lower ACCβ than lasso.

In terms of predictive performance, elastic net performs best of all the
methods, with an average AUC of 0.67. Ridge and lasso perform similarly,
with AUC’s of 0.660 and 0.661, respectively. SCAD and adaptive lasso
perform slightly worse with AUC’s of 0.657 and 0.654. We also see that all
of the regularization methods perform better than the maximum likelihood
fit, which achieves an AUC of 0.586, slightly better than chance. The ML fit
performs worst of all models in terms of Brier score as well. Lasso performs
best in this regard, though not by much when compared to most of the
other regularization methods.

6.4.2 Simulation 2: varying the within-group
dependence

Penalty Nβ̂ 6=0 Pβ̂=0 Pβ̂ 6=0 ACCβ AUC BS
No 1000 0 1 0.1 0.579 0.338
Ridge 1000 0 1 0.1 0.658 0.238
Lasso 74.9 (30.4) 0.952 0.321 0.429 0.659 0.232
SCAD 65.3 (23.3) 0.955 0.248 0.380 0.653 0.233
Elnet (0.04) 266.9 (77.5) 0.793 0.802 0.300 0.667 0.234
Alasso 113.9 (88.6) 0.915 0.374 0.329 0.650 0.235

Table 6.2: Simulation results from introducing decaying within-group de-
pendence (simulation 2), with m = 200 runs for each method.

The results from the simulation setup in this section are not much different
from those of Section 6.1.1. This may be because the two models from which
we sample our data are not that different. In terms of number of variables
selected Nβ̂ 6=0, there are some minor differences for some of the methods,

60
CHAPTER 6. SIMULATION STUDY: REGULARIZATION METHODS

which may well be due to randomness. Some, but minor differences can
also be seen in Pβ̂=0 and Pβ̂ 6=0. Perhaps more interestingly is that the AUC
has decreased slightly for all methods. While at this stage one might easily
write this off as nothing more than randomness, this is consistent with a
pattern which we will see more of in the results to come.

6.4.3 Simulation 3: adding inter-group dependence

Penalty Nβ̂ 6=0 Pβ̂=0 Pβ̂ 6=0 ACCβ AUC BS
No 1000 0 1 0.1 0.632 0.321
Ridge 1000 0 1 0.1 0.740 0.237
Lasso 60.8 (15.4) 0.968 0.321 0.529 0.737 0.209
SCAD 44.9 (12.9) 0.979 0.259 0.577 0.733 0.212
Elnet (0.02) 222.7 (63.4) 0.844 0.821 0.369 0.743 0.213
Alasso 80.6 (61.7) 0.952 0.371 0.460 0.733 0.210

Table 6.3: Simulation results when introucing dependence between groups
(simulation 3), with m = 200 runs for each method.

Whereas we saw little difference between results in Section 6.4.1 and 6.4.2,
we now observe a more different set of results. The number of variables
selected Nβ̂ 6=0 has decreased for all methods which leads to an increase in
Pβ̂=0 for all methods. Lasso, for instance, is known to have this behavior,
namely that it selects only a few of many highly correlated covariates. We
see that for SCAD and elastic net, the proportion of non-zero coefficients
correctly estimated as non-zero Pβ̂ 6=0 has also increased. All methods saw
an increase in ACCβ.

As in the previous simulation experiments, elastic net performs best
in prediction, with the highest AUC of 0.743. The differences in AUC
compared to the other methods is small, especially ridge. It is interesting
to see that when we increased the correlation between the coefficients, the
AUC has increased for all methods. For maximum likelihood estimation, it
increased from 0.579 to 0.632, while the regularized models saw an increase
form approximately 0.65 to 0.74. Thus, it seems that as the strength of
dependence between covariates increases, the AUC increases. Similarly, we
also note that the Brier score has decreased. Thus, the task of classifying Y

6.4. RESULTS 61

has become easier as a result of increased correlation between the covariates.
We will take a closer look at this behavior at the end of this chapter.

6.4.4 Simulation 4: spreading non-zero coefficients
in β

Penalty Nβ̂ 6=0 Pβ̂=0 Pβ̂ 6=0 ACCβ AUC BS
No 1000 0 1 0.1 0.600 0.330
Ridge 1000 0 1 0.1 0.692 0.226
Lasso 70.8 (18.9) 0.957 0.317 0.448 0.692 0.223
SCAD 57.1 (17.3) 0.965 0.258 0.452 0.687 0.225
Elnet (0.03) 278.6 (89.3) 0.778 0.789 0.283 0.697 0.226
Alasso 107.3 (84.2) 0.920 0.351 0.327 0.681 0.227

Table 6.4: Simulation results for spreading non-zero coefficients in β (simu-
lation 4), with m = 200 runs for each method.

The number of variables selected Nβ̂ 6=0 has now increased for all methods in
comparison with section 6.4.3. Most notably, the elastic net now included
on average 278.6 variables in the final model, which is more than in any of
the previous sections. The elastic net is still close to a ridge solution, with
an average α of 0.034. The inclusion of more variables makes both Pβ̂=0 and
Pβ̂ 6=0 drop for all models, which when combined with an increase in the num-
ber of variables selected leads to lower ACCβ. This increase in the number
of covariates selected, as well as the decrease in accuracy of these selected
covariates seems intuitively reasonable. What we have essentially done is
to increase the correlation between groups of covariates that have non-zero
coefficients and groups that do not have non-zero coefficients. It thus seems
that all methods erroneously select some of the correlated covariates.

In terms of AUC elastic net is still performing the best on average with an
AUC of 0.697, though the differences are small compared to ridge and lasso.
The SCAD and adaptive lasso perform worse in this respect. Performance
measured by Brier score is also similar, but lasso again achieves the lowest
score.

62
CHAPTER 6. SIMULATION STUDY: REGULARIZATION METHODS

6.4.5 Simulation 5: change β coefficients

Penalty Nβ̂ 6=0 Pβ̂=0 Pβ̂ 6=0 ACCβ AUC BS
No 1000 0 1 0.1 0.710 0.300
Ridge 1000 0 1 0.1 0.871 0.147
Lasso 50.6 (17.7) 0.968 0.214 0.424 0.899 0.131
SCAD 55.9 (20.51) 0.958 0.182 0.326 0.896 0.131
Elnet (0.92) 51.9 (18.1) 0.967 0.224 0.432 0.899 0.131
Alasso 35.5 (39.8) 0.977 0.145 0.408 0.896 0.131

Table 6.5: Simulation results for increased β coefficients (simulation 5), with
m = 200 runs for each method.

Changing the sizes of the β coefficients has a large impact on the results
presented in Table 6.5 compared to those given in Section 6.4.4. First, we
see that the number of variables selected has been reduced for all models.
The lasso on average chooses 50.6 coefficients to be non-zero. This can be
explained by the increased sizes of some β-coefficients, and decreasing the
sizes of some of the β-coefficients. These now give a weaker signal than
before, and the lasso thus does not select them. The SCAD is not as sensitive
to these changes as the lasso in terms of number of variables selected, but
the accuracy of the selected covariates has been reduced, both in terms
of Pβ̂=0 and Pβ̂ 6=0. The elastic net now selects on average 51.9 coefficients.
This is due to the average α value which is now 0.92, quite close to a lasso
solution. Adaptive lasso is now the most conservative of the methods, with
only 35.5 variables selected on average. Note that it is still affected by a
large degree of variance in the number of covariates selected when compared
to any of the other methods.

Lasso and elastic net perform similarly in terms of AUC, which is not
surprising given that they are indeed very similar as shown by the large
average value for α in the elastic net. SCAD and adaptive lasso perform
somewhat worse. The most notable difference is that ridge now performs
the worst of all methods. Again, this is perhaps not surprising, seeing
that the ridge generally tends to dominate over the lasso in situations
with many small coefficients, the opposite of the current situation. All the
regularization methods perform similarly in terms of Brier score except ridge
which performs worst among the regularization methods.

6.4. RESULTS 63

6.4.6 Simulation 6: increase group size to 20

Penalty Nβ̂ 6=0 Pβ̂=0 Pβ̂ 6=0 ACCβ AUC BS
No 1000 0 1 0.1 0.709 0.300
Ridge 1000 0 1 0.1 0.874 0.145
Lasso 57.4 (15.8) 0.958 0.192 0.335 0.898 0.130
SCAD 51.6 (15.1) 0.961 0.165 0.319 0.897 0.130
Elnet (0.95) 57.9 (16.0) 0.957 0.191 0.330 0.899 0.130
Alasso 42.0 (60.1) 0.969 0.140 0.333 0.895 0.132

Table 6.6: Simulation results for increased group sizes (simulation 6), with
m = 200 runs for each method.

All methods with the exception of SCAD select a larger number of covariates
when the group sizes increases. In combination with this, Pβ̂ 6=0 decreases,
which leads to a lower ACCβ. This implies that variable selection has
become more difficult, which one may expect due to the increased group
sizes. Despite the apparent increased difficulty of variable selection though,
all methods perform similarly in terms of prediction (both AUC and Brier
score) when compared to Section 6.4.5. While the correlation between all
covariates has generally increased, the correlation between the true non-zero
variables is the same as in the previous simulation experiment. This is the
reason why we were so detailed in our definition of ω in Section 6.1.2. So
it appears variable selection has become more difficult in this section, but
that the predictive performance does not suffer from this.

6.4.7 Simulation 7: increase n
Increasing the number of observations n leads to an increase in the number
of variables selected for all methods. Additionally, all models with the
exception of adaptive lasso have become better in terms of ACCβ. Note also
that the SCAD and adaptive lasso methods do not benefit more than any
of the other methods from the increased sample size, despite their oracle
properties. In terms of prediction, there are some slight improvements for
all methods in terms of both AUC and Brier score. Most notably, and quite
interestingly, the ML fit now performs comparably with the fitted models
obtained via regularization. This can be explained by the bias-variance
trade-off in Chapter 2. As the number of observations n increases, the
variance of the ML estimator β̂ decreases. There is therefore not much to

64
CHAPTER 6. SIMULATION STUDY: REGULARIZATION METHODS

Penalty Nβ̂ 6=0 Pβ̂=0 Pβ̂ 6=0 ACCβ AUC BS
No 1000 0 1 0.1 0.894 0.132
Ridge 1000 0 1 0.1 0.895 0.131
Lasso 119.1 (18.8) 0.918 0.452 0.379 0.902 0.127
SCAD 65.7 (8.3) 0.961 0.311 0.473 0.901 0.127
Elnet (0.98) 120.4 (18.0) 0.916 0.449 0.374 0.902 0.127
Alasso 112.9 (82.8) 0.913 0.346 0.306 0.901 0.127

Table 6.7: Simulation results for increased number of observations (simula-
tion 7), with m = 200 runs for each method.

gain in trying to reduce variance by introducing bias, which is the purpose
of these regularization methods.

6.5 Summary
We have now studied five regularization techniques for a wide range of dif-
ferent dependence structures among the covariates. Though the results were
quite different for the different simulation experiments, there are some con-
clusions to be drawn. Lasso and SCAD seemed to be the most conservative
methods in terms of number of covariates selected. Due to this, they usually
performed best in terms of accuracy on the selected covariates as measured
by ACCβ. However, one may argue that the solutions offered by these
methods are not as informative exactly because they are so conservative
in their selection. The elastic net offered different solutions, and usually
selecting a much larger number of covariates. This lead to the inclusion
of up to 80% of all non-zero coefficients in the true model, though it also
made the elastic net perform worse than lasso in terms of ACCβ. However,
one downside to the elastic net is the high variability in the number of
covariates selected, most likely caused by the flexibility in the α parameter.
Adaptive lasso performed in between lasso and elastic net in terms of variable
selection when considering both Pβ̂ 6=0 and ACCβ. However it did perform
unsatisfactorily when the β coefficients were increased in absolute value, in
that it selected a very low number of covariates. Even though it was more
conservative than the lasso in Sections 6.1.5 and 6.1.6, it got a lower ACCβ

than did lasso. Additionally, adaptive lasso was affected by a large degree
of variability in the number of variables selected throughout all the different
simulation experiments. Admittedly, part of this can be explained by the

6.5. SUMMARY 65

lack of optimization with respect to the γ parameter. Because we set γ =
1, we force adaptive lasso to emphasize the weights generated by the ridge
estimator to a degree which may not be optimal. Another possible cause of
this uncertainty is the fact that the cross-validation procedure for adaptive
lasso had an additional element of randomness compared to for instance the
cross-validation procedure for lasso. This can be because one has to compute
the initial weights ŵj from a ridge fit for each fold. The weights used in the
different folds are thus all different. Moreover, when we train the final model
based on the optimal λ value from cross-validation, we compute yet another
set of weights as a part of training the final model. The large variability
in the variable selection coupled with the computationally intensive fitting
procedure makes the adaptive lasso an unattractive method for our purposes.
The ML solution as well as ridge have not been commented much because
they do not perform variable selection.

Predictive performance was measured by AUC and Brier score. Lasso
performed best in AUC for those scenarios where the β coefficients were not
all the same. For the other scenarios lasso performed slightly worse than
the best method. The lasso often performed best in terms of Brier score as
well. Elastic net performed best in terms of AUC for many of the simulation
experiments, though the differences between elastic net, ridge and lasso were
sometimes small. It seems that the elastic net performed best when lasso
and ridge performed similarly. When the β coefficients were changed in
Section 6.4.5, the elastic net performed similarly to lasso. Adaptive lasso
got the lowest AUC of all the regularized models for the scenarios when
the β coefficients were small. When these were changed to include some
large true coefficients, adaptive lasso performed similarly to lasso and elastic
net. The SCAD also scored among the lowest in terms of AUC in several
experiments, and did not seem to be better than for instance elastic net or
lasso for prediction.

Our simulations thus show that lasso and elastic net perform well in
terms of variable selection across a wide range of dependence structures
among the covariates. Elastic net selects many more variables than lasso
which, depending on the situation, one can either consider a pro or a con of
elastic net. These two methods are also relatively easy to implement in R,
and will fit quite fast compared to for instance adaptive lasso. They were
also among the best performers when considering prediction performance as
measured by AUC and Brier score.

66
CHAPTER 6. SIMULATION STUDY: REGULARIZATION METHODS

6.6 A comment on the effects of increased
collinearity

In our simulations we observed that as the correlation among the non-zero
covariates increased, the AUC increased as well. We will perform some addi-
tional small-scale simulations in this section in order to further understand
this behavior. Using the same notation, we now consider a scenario where
pg = 10, but ng = 2, so there are only 20 covariates. The first group has a
constant group correlation, but the latter group is an independence group.
We transform all marginals to standard normal variables. Further, β is de-
fined such that the first 10 elements are 0.4, and the last 10 are 0, and β0 = 0.

It is not obvious why increasing the correlation between the non-zero
coefficients should make for an easier classification problem is terms of AUC.
To provide an explanation we begin by proposing an expression for a sort of
"signal-to-noise ratio" for logistic regression. As a starting point, consider
for a moment the setup in linear regression where one assumes the model

Y = xTβ︸ ︷︷ ︸
signal

+ ε︸︷︷︸
noise

.

When designing simulation experiments for linear regression models, it is
common practice to keep track of the signal-to-noise ratio SNR. That is, a
ratio of the variance in the signal to the variance from the noise given by

SNR =
Var

(
xTβ

)
Var (ε) .

The problem in our scenario is that we are working with the logistic regression
model

η(x) = xTβ︸ ︷︷ ︸
signal

, Y ∼ Bernoulli (exp{η(x)}/(1 + exp{η(x)}))︸ ︷︷ ︸
source of noise

,

so the only noise in our simulations comes from the assumption of a binomial
distribution for Y . If we wish to find an appropriate definition of signal-
to-noise ratio for logistic regression, we must separate the variance into
two parts: noise introduced by assumption of Bernoulli distributed Y , and
variance in Y actually caused by a stochastic x. To this end, consider the
rule of double variance

Var (Y) = E [Var (Y |x)] + Var (E [Y |x]) . (6.1)

6.6. A COMMENT ON THE EFFECTS OF INCREASED
COLLINEARITY 67

Returning to linear regression, and assuming x and ε are independent of
each other, we have

E [Var (Y |x)] = E [Var (ε)] = Var (ε)
Var (E [Y |x]) = Var

(
xTβ

)
.

And thus for linear regression, we may write the signal-to-noise ratio in a
more general way as

SNR = Var (E [Y |x])
E [Var (Y |x)] . (6.2)

This formulation of the SNR has the advantage that it can be computed
also for logistic regression. Evaluating (6.2) is not always easy, but is made
easier by assuming all marginals are standard normally distributed due to
the one-to-one relationship between the correlation between the uniforms
and the marginals in this situation. Note that since all covariates are
normally distributed with mean 0, the linear predictor η(x) is also normally
distributed with mean 0, and the variance σ2

η(x) is given by

Var (η(x)) =
p∑
i=1

p∑
j=1

Cov(xi, xj)βiβj. (6.3)

Using this, we can express the expected conditional variance as

Eη(x) [Var (Y |x)] =
∫ ∞
−∞

P (Y = 1|x) (1− P (Y = 1|x)) fη(x) (η(x)) dη(x)

=
∫ ∞
−∞

eη(x)

1 + eη(x)
1

1 + eη(x)
1√

2πσ2
η(x)

e
−η(x)2/

(
2σ2
η(x)

)
dη(x)

=
∫ ∞
−∞

eη(x)

(1 + eη(x))2
1√

2πσ2
η(x)

e
−η(x)2/

(
2σ2
η(x)

)
dη(x)

= Eη(x)

[
eη(x)

(1 + eη(x))2

]
. (6.4)

Similarly, the variance of the conditional expectation is

Varη(x) (E [Y |x]) = Eη(x)

(eη(x)

1 + eη(x)

)2− Eη(x)

[
eη(x)

1 + eη(x)

]2

. (6.5)

Such integrals are generally difficult to evaluate analytically, but seeing that
these can be written as expectations, we may compute them by Monte Carlo

68
CHAPTER 6. SIMULATION STUDY: REGULARIZATION METHODS

0.2 0.4 0.6 0.8

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

ρh

S
N

R

Figure 6.4: SNR plotted against ρh. Straight dashed line added for compari-
son.

methods.

We now run this smaller simulation experiment for values of ρh ranging
from 0.1 to 0.9, and run m = 400 simulations for each of these values. We
generate n = 1000 observations, of which half are used for training and half
are used for testing. We only consider the ML logistic regression model due
to the low number of covariates. The signal-to-noise ratio (6.2) is calculated
by computing the sum (6.3) directly, and estimating the expectations (6.4)
and (6.5) is done by 106 Monte Carlo simulations to keep the error low.
Additionally, we perform antithetic sampling which further reduces error
(Bølviken, 2014). Figure 6.4 shows the relationship between ρh and SNR for
the logistic regression model defined in this section. From this plot we can see
that increasing ρh increases the signal-to-noise ratio. Figure 6.5 shows AUC
as a function of ρh. In light of the insight provided by Figure 6.4 it comes as
no surprise that increasing ρh leads to an increase in AUC, since we are essen-
tially just increasing the SNR. Thus, increasing correlation among covariates
can be seen as a way of adjusting the SNR in logistic regression. In terms of
AUC, increasing ρh is thus similar to increasing the sizes of the β coefficients.

6.6. A COMMENT ON THE EFFECTS OF INCREASED
COLLINEARITY 69

0.2 0.4 0.6 0.8

0.
82

0.
84

0.
86

0.
88

0.
90

0.
92

ρh

A
U

C

Figure 6.5: AUC plotted against ρh.

Chapter 7

Simulation study: class
imbalance

In this chapter we will conduct simulation experiments to study whether
class imbalance can cause issues when training logistic regression models.
There are many studies pointing to the problems of unbalanced training
data and possible remedies for this (Solberg and Solberg, 1996), (Japkowicz,
2000). Common for many of these studies is that they focus mostly on
tree-based methods such as the algorithm C4.5 (Chawla et al., 2004). Since
our focus is on logistic regression, many of the papers where only tree-based
methods are considered are not of much interest. There are however some
studies discussing the effects of class re-sampling on a logistic regression
model. For instance in Van Hulse et al. (2007) one compared the AUC of
a logistic regression model trained both on original unbalanced data and
a re-sampled balanced training set. Improvements in AUC were modest,
and the AUC obtained by no sampling compared to random oversampling
were different only in the 3rd decimal. Statistical tests were also set up to
test whether the improvement of random oversampling to the AUC was
significant. The conclusion was that the random oversampling technique,
which performed best for logistic regression in terms of AUC, did not lead
to a significant improvement. In Oommen et al. (2011) one found that class
imbalance as the result of bias in the class balances lead to biased prediction
of probabilities, and that sampling techniques could help in reducing the
bias by restoring the original class balances. However, it was also here
concluded that sampling techniques do not improve the AUC of a logistic
regression model. It should be noted that the construction of the simulation
experiments in Oommen et al. (2011) did not allow for a thorough study of
the effects of class imbalance on AUC.

71

72 CHAPTER 7. SIMULATION STUDY: CLASS IMBALANCE

An aspect of the class imbalance problem that to our knowledge has
not been addressed in the literature is whether the combination of a high
number of covariates and class imbalance can have an unfortunate effect
on variable selection. In most studies the number of covariates is kept low,
with the largest number of covariates studied being 65 in Van Hulse et al.
(2007). A comparison of regularization techniques in the presence of class
imbalance has to our knowledge not been done either. Lastly, looking at the
problem of class imbalance and variable selection separately is not realistic,
and studying the combined effect of these two problems is very much of
interest. In conclusion, it seems that logistic regression does not benefit from
re-sampling techniques in terms of AUC, but the overall picture is not clear.
Further, re-sampling methods have not been applied to data of particularly
high dimension, and the effects of re-sampling methods on variable selection
have not been discussed. We hope to provide some clarity on these issues in
this chapter.

We will use the model defined in Section 6.1.6 as the basis for all
simulations in this chapter. The class balance will be measured by E[Y]
when referring to the properties of a stochastic model from which we sample
data, or Ȳ = 1

n

∑n
i=1 Yi when referring to a particular data set.

7.1 Adjusting class balance
Acquiring a desired class balance can be done in several ways which we will
now discuss. One way is to generate a large data set from a model where
E[Y] = 0.5, and then sample without replacement a given number of positive
and negative samples such that Ȳ reaches a desired level. Alternatively,
we could generate data from a model where E[Y] is already at the desired
level to begin with. How one does this is not obvious, and many different
approaches can be taken. The different data generation strategies also
have different interpretations. In the former, we assume that fraudulent
behavior remains constant, but that our training data are biased. In the
latter, we adjust what defines fraudulent behavior, and assume our data are
unbiased. These two strategies for generating unbalanced data are presented
in Oommen et al. (2011). However, their simulations did not allow for a
thorough study of the AUC for these different data generation strategies, so
it is therefore difficult to know beforehand which data generation strategy
would make for a most interesting simulation study. We have chosen to
generate data using the second approach. This is because we can not state
with any certainty that sampling bias is indeed a problem for our VAT data.

7.1. ADJUSTING CLASS BALANCE 73

We therefore instead choose to reduce the class balance by increasing the
threshold of what defines fraud. To reduce the class balance we will reduce
the value of β0. The interpretation of this is that as β0 is reduced, we require
fraudulent behavior to be more extreme, in the sense that the covariates
must be of greater magnitude to counter the large negative β0.

Deciding the value of β0 to obtain a desired class balance other than
E[Y] = 0.5 requires some work. Recall that we argued that if E [η(x)] = 0
then our class balance would be E [Y] = 0.5. However, if we desire a different
class balance, say E [Y] = 0.2, we need not only take into consideration
what the value of E [η(x)] should be, but also Var (η(x)). The formula for
Var (η(x)) in (6.3) is still valid, but the covariances are not known in the
case of non-normal marginal distributions, as noted in Chapter 5. Deducing
the correct β0 value for a desired level of class balance is therefore difficult
analytically. We therefore again turn to Monte Carlo methods to solve the
problem. This can be done by simulating m observations from the stochastic
model defined in Section 6.1.6 for k different values of β0. The class balance
is then estimated by 1

m

∑m
i=1 Yi in each case. This approach is costly is terms

of execution times if we want a fine grid of β0 values since we in total will
have to generate mk data points from the model in Section 6.1.6. We can
however make the problem a little easier. First, we know from Section 6.1.6
that the expected class balance is exactly 0.5 when β0 = −3.4, thus we need
not estimate the class balance for larger values than this. We will use linear
interpolation to estimate the class balance for β0 values between those k
estimated directly. The resulting graph is given in Figure 7.1. Each dot
represents one of the k estimates, and the line between the dots is obtained
by linear interpolation. Linear interpolation is perhaps somewhat simplistic,
but seems to do a decent job in this case, since E[Y] does not seem to be
too non-linear for such an approximation to be inappropriate. The choice of
β0 can then be read off Figure 7.1 based on the desired value of E[Y]. We
will in the most unbalanced situation train the logistic regression model on
data sets with E[Y] = 0.01. What then often happens is that we generate
data sets where there are no observations from the positive class, or too few
to train a model. For instance, the cross validation procedure in the glmnet
package issues a warning if there are fewer than 9 observations of each class
in the training set. To overcome this problem, we will begin each of our
simulations by generating one large data set of size 5n to ensure at least with
a reasonable large probability that there are enough observations of both
classes to make a data set of size n. We then sample without replacement
from this data set such that we can reach exactly the desired class balance
for each simulation. Again, this strategy for generating unbalanced data

74 CHAPTER 7. SIMULATION STUDY: CLASS IMBALANCE

−14 −12 −10 −8 −6 −4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

β0

E
[Y

]

Figure 7.1: E[Y] plotted as a function of β0.

sets is outlined in Oommen et al. (2011).

7.2 Experiment design
The following simulation experiments are set up as in Section 6.1.6, and
thus all parameter values are given there unless otherwise specified.

7.2.1 Simulation 1: E[Y] = 0.2
A natural starting point is to generate data where the class balance equals
that of the VAT data set, in which Ȳ ≈ 0.2. We set β0 = −7.7 to achieve a
class balance of E[Y] = 0.2.

7.2.2 Simulation 2: E[Y] = 0.05
We keep the setup as in Simulation 1, but with a reduction of the class
balance to E[Y] = 0.05 by setting β0 = −10.3.

7.3. IMPLEMENTATION AND ESTIMATION 75

7.2.3 Simulation 3: E[Y] = 0.01
Lastly, we further reduce the class balance to E[Y] = 0.01 by setting
β0 = −12.5.

7.2.4 Simulation 4: E[Y] = 0.01, re-sample to
Ȳ = 0.2

We sample data from the model defined in Simulation 3, but perform re-
sampling on the training data so that Ȳ = 0.2. The re-sampling methods
used are those given in Chapter 4, namely under-sampling, random over-
sampling and SMOTE.

7.2.5 Simulation 5: E[Y] = 0.01, re-sample to
Ȳ = 0.5

The same underlying true model as in Simulation 3, but we re-sample the
training data such that Ȳ = 0.5 using the same re-sampling methods as
used in Simulation 4. Thus, we simply perform more re-sampling compared
to Simulation 4.

7.3 Implementation and estimation
The setup of the simulation experiments also builds on that given in Chapter
6. Running the simulations will be done as described by the pseudocode
given in Algorithm 6.1.

Cross validation
Some comments on how one implements a re-sampling scheme into a cross-
validation procedure is worth mentioning. We will now discuss the potential
pitfalls when combining re-sampling with cross validation.

The first approach is to perform re-sampling on the training set prior to
the cross-validation procedure, and then run cross validation as one normally
would. This can be harmful to the training process when performing both
under-sampling and over-sampling. We begin by taking a closer look at
the former. When under-sampling is performed on the training set, we are
essentially throwing away observations belonging to the negative class (the
0’s). This is unfortunate in itself, since these data could have been used for

76 CHAPTER 7. SIMULATION STUDY: CLASS IMBALANCE

testing in the cross-validation procedure. However, what is potentially more
troubling is that each test set in the cross-validation procedure will now be
balanced, and thus does not resemble the final test set in this respect. This
can be problematic when the measure of predictive performance used is sen-
sitive to the class balance. Seeing that we have been careful not to re-sample
the true test set, we should not be satisfied by re-sampling the test sets in
the cross validation procedure either. When over-sampling is performed the
effects of re-sampling prior to the cross-validation procedure can be even
more harmful. Consider first random over-sampling where we inflate the
minority class by adding copies of the original observations. First note that
we have the same problem as that explained above, since the balance of
the test set in the cross validation procedure does not resemble that of the
final test set. A more troubling issue emerges as a result of over-sampling,
namely that one observation, say (Y ∗,X∗) may be re-sampled several times,
and appear in more than one fold in the cross validation procedure. We
have thus violated one key property of cross validation, since the folds are
no longer disjoint data sets. One observation may then very well appear
in several, or all folds. This introduces bias in the estimation of model
performance, and will lead to over-fitting.

Since data re-sampling prior to cross validation appears to be inap-
propriate, we consider alternatives. A naturally occurring alternative is
to re-sample each training set inside the cross-validation procedure. The
problem with a mismatching class balance of the test sets in cross valida-
tion and the final test set has been solved. In addition, over-sampling in
this case will not cause over-fitting, since we keep the training and test
sets separate for each iteration in the cross-validation procedure, and only
over-sample based on the current training set. However, there appears to
be one problem with this approach as well. Re-sampling the training set
separately in each iteration of cross-validation will lead to an unnecessary
randomness in the data, since the training set can vary quite substantially
for each iteration. Further, when the cross-validation procedure has finished,
and we wish to train the final model based on the optimal hyper-parameters,
we will re-sample the training set once more. The training sets in the
cross validation procedure are thus riddled with potentially unnecessary
variance, in addition to the final training set being different from those
training sets used in cross validation. It should be mentioned that during
our work on this thesis a paper by Santos et al. (2018) was published. The
combination of cross-validation and re-sampling described here is similar to
their implementation, which was not discovered until after the simulations
in this chapter were run. However, as noted above, there may be potential

7.3. IMPLEMENTATION AND ESTIMATION 77

issues with this approach, so we instead opted for a different combination of
cross-validation and re-sampling which we will now describe.

We propose an alternative approach for combining re-sampling and
cross-validation. We begin by applying Algorithm 2.1 on the training data.
For each fold, we then re-sample data contained in only that fold, and
label these re-sampled data. For under-sampling this means that those
negative observations which should be removed are labeled. Conversely, for
over-sampling the new, synthetic observations are labeled. In the case of
under-sampling, the labeled observations are included in the test-set, but
not the training set in each iteration of the cross-validation procedure. For
over-sampling we include the labeled observations in the training set, but not
the test set for each iteration in the cross-validation procedure. This ensures
that the test sets in the cross validation procedure are of the correct balance
compared to the final test set. It also means that each fold contributes with
exactly the same data in each iteration of the cross validation procedure,
and further that the final model can be trained on exactly the same data as
was used in cross validation.

Lasso and elastic net
We will use lasso and elastic net in the simulation experiments of this chapter.
This is because we observed that these two methods performed best both in
terms of prediciton, but also for variable selection in Chapter 6.

Random forest
As noted earlier, most of the literature on unbalanced data sets focus on
tree based methods. In order to keep the following simulation experiments
in touch with results in other research, we will use a random forest method
as well as (penalized) logistic regression. For this reason we briefly introduce
the concept of random forests in this section. Random forests (Breiman,
2001) are an extension of bagging (Breiman, 1996a) in the case of regres-
sion/classification trees. In bagging one samples the original training set
Z = (X,Y) with replacement to construct a new training set Z′ = (X′,Y′).
This new training set is then used to train a given model f(x). This proce-
dure is repeated B times, as shown in Algorithm 7.1. Final predictions of a
bagged model is then made by averaging the predictions of all B models, i.e.
fbag(x) = 1

B

∑B
i=1 fi(x). The models fi(x) for i = 1, . . . , B can in principle

be any kind of model, but trees are commonly used. This has to do with the
large variance of trees. When trees are bagged, one can reduce the variance

78 CHAPTER 7. SIMULATION STUDY: CLASS IMBALANCE

Algorithm 7.1 Pseudocode for bagging.
1: For i in 1:B do
2: Create bootstrap sample Z′i from Z = (X,Y)
3: Train fi(x) on Z′i
4: End For

of predictions by possibly quite a large extent. Assuming that the variance
of all models is given by Var (fi(x)) = σ2 for i = 1, . . . , B, a rationale for
bagging can be seen by

Var (fbag(x)) = 1
B2 Var

(
B∑
i=1

fi(x)
)

= 1
B2

B∑
i=1

B∑
j=1

Cov (fi(x), fj(x))

= σ2 1
B2

B∑
i=1

B∑
j=1

Cor (fi(x), fj(x)) ,

such that if Cor (fi(x), fj(x)) < 1 for any pair i 6= j the predictions of our
bagged model will have smaller variance. The goal is then to produce models
fi(x), i = 1, . . . , B which have as low correlation as possible. This can be a
problem especially in situations where there are a only few covariates with
a strong signal. Using trees in combination with bagging may then result in
great similarity in the splits of the trees. As a result, the predictions made
by such trees will be highly correlated which negatively affects the predictive
performance of the final bagged model. This is where the random forest
approach comes in. Random forest keeps the same framework as that used
for bagging, but with one key difference having to do with the construction
of the trees. The tree-growing algorithm is only allowed to consider m < p
covariates at each split, forcing a greater exploration of the predictor space.
Random forests have proven to be versatile and easy to implement methods
for classification. While one can certainly benefit from tuning m and/or
B using for instance cross-validation, it has been observed that random
forests perform very well with little parameter tuning. This is in fact one
of its strengths. For the following simulations we set the number of trees
B = 500 and the number of covariates considered at each split to √p which
has been recommended for classification in Hastie et al. (2009). We will use
the package randomForest to fit random forest models in R.

7.4. RESULTS 79

SMOTE
We will set p = 5 in the SMOTE algorithm as recommended by Chawla
et al. (2002). In the SMOTE algorithm there is an additional parameter
m which decides how many synthetic observations should be generated for
each positive observation. In these simulation experiments we round m up
to the smallest integer such that we generate enough synthetic samples to
obtain the desired class balance. We then re-sample without replacement
from these synthetic observations until we reach the desired balance.

7.4 Results
The model evaluation criteria presented in Section 6.3 will be used also
in these simulation studies. The measures of predictive performance are
computed on a test set of size n = 3000. The class balance E[Y] of the test
set is the same as that for the training set, and no re-sampling is applied to
the test set.

7.4.1 Simulation 1: E[Y] = 0.2

Penalty Nβ̂ 6=0 Pβ̂=0 Pβ̂ 6=0 ACCβ AUC BS
No 1000 0 1 0.1 0.709 0.238
Lasso 50.7 (14.3) 0.963 0.171 0.337 0.909 0.091
Elnet (0.95) 52.3 (17.5) 0.961 0.174 0.332 0.909 0.091
RF - - - - 0.863 0.112

Table 7.1: Results for running Simulation 1 m = 200 times for each method.

In this simulation we set the class balance at E [Y] = 0.2 as opposed to
E [Y] = 0.5 which was the case in Section 6.4.6. The results are shown in
Table 7.1, and when compared to the results in Table 6.6 we can see some
differences. The average number of variables selected Nβ̂ 6=0 has decreased for
both lasso and elastic net. The α parameter for elastic net averages at 0.95,
similar to the average α value in Table 6.6. As a result of the low number of
variables selected, fewer of the true non-zero covariates are selected, as we
see by a reduction of Pβ̂ 6=0. It seems that lowering class balance has slight
detrimental effects on variable selection.

80 CHAPTER 7. SIMULATION STUDY: CLASS IMBALANCE

The AUC has increased when compared to the figures shown in Table
6.6. This should not be taken to mean that the fitted models have become
better in terms of prediction. It seems generally that as we decrease the
intercept β0 in the true model the AUC will increase. The same behavior
can be seen in the results of Simulation 2. Random forest obtains an AUC
of 0.863 which is lower than the penalized logistic regression fits, but better
than maximum likelihood logistic regression. The fact that random forest
performs worse than penalized logistic regression should come as no surprise,
since we are indeed generating data from a logistic regression model. Brier
score has reduced from approximately 0.13 for all methods in Table 6.6 to
0.09 for lasso and elastic net in this scenario. Random forest scores worse
than the penalized LR models, but better than maximum likelihood LR in
terms of Brier score. In conclusion, it seems that the methods for fitting
the logistic regression model at least do not suffer in terms of AUC when
the class balance is E [Y] = 0.2.

7.4.2 Simulation 2: E[Y] = 0.05

Penalty Nβ̂ 6=0 Pβ̂=0 Pβ̂ 6=0 ACCβ AUC BS
No 1000 0 1 0.1 0.685 0.109
Lasso 43.8 (19.8) 0.966 0.134 0.307 0.924 0.034
Elnet (0.88) 45.2 (19.6) 0.965 0.133 0.296 0.924 0.034
RF - - - - 0.840 0.040

Table 7.2: Results for running Simulation 2 m = 200 times for each method.

We have now reduced the class balance to 0.05. The number of variables
selected has decreased further from the results given in Table 7.1. In addition
to this, the accuracy of the selected covariates has also been reduced, as
can be seen by a reduction in ACCβ for both lasso and elastic net. Thus,
the penalized logistic regression fits select both fewer covariates, and loses
accuracy on those covariates that are selected. The average α value for
elastic net has been reduced to 0.88.

The maximum likelihood logistic regression model performs worse with
respect to AUC when compared to results in Table 7.1. However the
penalized fits perform similarly, even increasing in AUC. Again, this increase
is due to the further reduction of β0 compared to Simulation 1. It does

7.4. RESULTS 81

not seem that the penalized logistic regression models suffer in terms of
prediction. Random forest performs similarly in terms of AUC compared to
the results given in Table 7.1, though somewhat worse. Note also that all
methods seem to improve the Brier score compared to results in Table 7.1.

7.4.3 Simulation 3: E[Y] = 0.01

Penalty Nβ̂ 6=0 Pβ̂=0 Pβ̂ 6=0 ACCβ AUC BS
No 1000 0 1 0.1 0.660 0.014
Lasso 29.8 (21.5) 0.975 0.074 0.248 0.917 0.009
Elnet (0.53) 107.1 (136.2) 0.900 0.175 0.164 0.915 0.009
RF - - - - 0.586 0.009

Table 7.3: Results for running Simulation 3 m = 200 times for each method.

Variable selection seems to have become a greater issue now that the balance
has been reduced to E [Y] = 0.01. The number of selected variables has
been reduced to 29.8 for lasso, but increased to 107.1 for elastic net. The
latter can be explained by the average α value which is now 0.514. Upon
closer inspection, we see that the chosen α value are spread between 0.01
and 0.99, so the average of 0.514 is somewhat misleading by itself. Figure 7.2
shows how α is distributed in the 200 simulations. The α values seem to be
nearly uniformly distributed, with perhaps a leaning towards α = 0.99. This
uniformity in the distribution of α is unlike those of the previous simulations
in both this chapter and Chapter 6, see for instance Figure 6.3. In the
previous simulation studies the distribution of α leaned towards value close
to either 0 or 1 as we saw in Figure 6.3. It seems that the low number
of 1’s in the data induces large variability in α. This in turn introduces
high variability in Nβ̂ 6=0. The standard deviation of Nβ̂ 6=0 for elastic net has
increased from 19.6 in Table 7.2 to 136.2. Elastic net succeeds in including
more than twice as many of the true non-zero variables in its model than
lasso, which comes at the cost of the low accuracy ACCβ.

In terms of prediction for the logistic regression methods we see a decrease
in AUC compared to the AUC in Table 7.2, as opposed to an increase which
we would expect due to the reduction of β0. A probable reason for this
is that both lasso and elastic net now struggle with variable selection. At
some point, this is bound to affect also the predictive ability of a model,

82 CHAPTER 7. SIMULATION STUDY: CLASS IMBALANCE

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99

α

F
re

qu
en

cy

0
10

20
30

40

Figure 7.2: Distribution of α for elastic net.

which may well be what we are seeing here. The random forest model seems
to completely collapse in terms of AUC. It scores an AUC of 0.586 which
indicates it is only slightly better than chance. All methods again achieve a
better Brier score compared to that shown in Table 7.2.

7.4.4 Simulation 4: E[Y] = 0.01, re-sample to
Ȳ = 0.2

We have now generated data exactly as in Simulation 3, but performed
re-sampling until the class balance is Ȳ = 0.2. Re-sampling methods are
those given in Chapter 4. Results in Table 7.4 should therefore be compared
to those in Table 7.3. Under-sampling has not been performed for maximum
likelihood logistic regression. The reason for this is that under-sampling
to Ȳ = 0.2 causes n < p, in which case the maximum likelihood logistic
regression is not appropriate. Under-sampling the majority class seems to
have a negative effect on variable selection for both lasso and elastic net.
Both methods select fewer covariates when compared to no re-sampling.
Elastic selects fewer covariates when random over-sampling and SMOTE
is performed. Lasso does not appear to be affected by neither random
over-sampling or SMOTE in terms of variable selection.

7.4. RESULTS 83

Re-sampling Penalty Nβ̂ 6=0 Pβ̂=0 Pβ̂ 6=0 ACCβ AUC BS

Under
Lasso 20.4 (13.9) 0.983 0.054 0.264 0.906 0.039
Elnet (0.44) 74.7 (85.9) 0.932 0.133 0.179 0.907 0.036
RF - - - - 0.883 0.042

Over

No 1000 0 1 0.100 0.657 0.016
Lasso 31.7 (23.0) 0.973 0.076 0.240 0.918 0.027
Elnet (0.53) 90.7 (117.1) 0.916 0.154 0.170 0.915 0.026
RF - - - - 0.714 0.009

SMOTE

No 1000 0 1 0.100 0.655 0.016
Lasso 30.1 (25.0) 0.974 0.072 0.238 0.912 0.026
Elnet (0.55) 84.8 (114.7) 0.923 0.151 0.178 0.915 0.026
RF - - - - 0.834 0.010

Table 7.4: Results for running Simulation 4 m = 200 times for each method.

For under-sampling, the predictive performance has been reduced, with
the AUC now 0.906 and 0.908 for lasso and elastic net. Random forest how-
ever seems to benefit greatly from under-sampling. Random over-sampling
and SMOTE do not appear to impact the AUC for any of the logistic
regression models. Random forest behaves differently compared to logistic
regression for the over-sampling methods as well, with an increase in AUC
for both random over-sampling and SMOTE. It seems that SMOTE offers
greater improvements to AUC than does random over-sampling for the
random forest model. Focusing on random over-sampling and SMOTE
we see that maximum likelihood LR, elastic net and lasso all get a higher
Brier score compared to those in Table 7.3, which indicates worse predictive
performance. The AUC for these methods on the other hand generally shows
that there is very little change in the predictive performance.

7.4.5 Simulation 5: E[Y] = 0.01, re-sample to
Ȳ = 0.5

We still generate data as in Simulation 3, and re-sampling methods are the
same as in Simulation 4. The difference is that we now re-sample such that
Ȳ = 0.5. Results in Table 7.5 should therefore be compared to the results
given in Table 7.3 and Table 7.4. Further under-sampling of the minority
class brings about substantial difficulty in variable selection for lasso and

84 CHAPTER 7. SIMULATION STUDY: CLASS IMBALANCE

Re-sampling Penalty Nβ̂ 6=0 Pβ̂=0 Pβ̂ 6=0 ACCβ AUC BS

Under
Lasso 11.2 (8.7) 0.991 0.031 0.280 0.885 0.164
Elnet (0.34) 68.7 (93.6) 0.937 0.119 0.173 0.898 0.166
RF - - - - 0.892 0.161

Over

No 1000 0 1 0.100 0.657 0.016
Lasso 30.4 (26.2) 0.975 0.077 0.253 0.915 0.082
Elnet (0.49) 82.9 (87.2) 0.925 0.154 0.186 0.916 0.088
RF - - - - 0.624 0.010

SMOTE
No 1000 0 1 0.100 0.653 0.016
Lasso 33.4 (32.7) 0.972 0.079 0.237 0.910 0.076
Elnet (0.54) 76.9 (86.2) 0.930 0.140 0.182 0.914 0.084
RF - - - - 0.788 0.010

Table 7.5: Results for running Simulation 5 m = 200 times for each method.

elastic net. Fewer variables have been selected which leads to a reduction in
Pβ̂ 6=0. We saw in Table 7.4 that over-sampling and SMOTE made variable
selection more difficult for elastic net, which can be seen here as well. Both
the standard deviation and the average number of variables selected for
elastic net have been reduced regardless of re-sampling method.

For under-sampling in combination with logistic regression the AUC
has been reduced regardless of how the model was fit compared to the
results in Table 7.4. Random over-sampling and SMOTE seem to offer
no improvement to the logistic regression models in terms of AUC when
the degree of re-sampling has been increased. Random forest seems to
benefit from increased under-sampling as we can see by the increase in AUC.
However, random over-sampling to Ȳ = 0.5 in combination with random
forest leads to a decrease in AUC when compared to random over-sampling
only to Ȳ = 0.2. SMOTE also seems to result in a lower AUC for the
random forest when compared to results in Table 7.4.

7.5 Summary
In these simulation experiments we have seen that reducing the class bal-
ance by reducing the intercept β0 in the true data generation model makes
variable selection more difficult for the logistic regression model. Depending
on the degree of imbalance, the number of variables selected is reduced,

7.5. SUMMARY 85

with less accuracy in those variables that are selected. Additionally, we
observed that the number of variables selected tends to vary increasingly
as the class balance is reduced. This is particularly true for the elastic net,
which struggles with large variability in the selection of α when class balance
is low. Elastic net thus seems to be an unsuited method when the class
balance reaches such low levels. However, the predictive performance of the
penalized logistic regression model did not seem to suffer much unless the
class balance reaches very low levels at around E[Y] = 0.01. Thus, it seems
that logistic regression suffers less from class imbalance than does tree meth-
ods such as random forest. To the degree that class imbalance is a problem
for logistic regression, this is due to poor variable selection in such situations.
This would imply that the class imbalance problem for logistic regression is
not caused by the class balance itself, but the low number of positive samples.

Regarding the re-sampling methods, it seems based on these simulation
experiments, that none of the re-sampling methods used are able to improve
variable selection or predictive performance for a logistic regression model.
We can thus conclude that it does not appear that the logistic regression
model with a large number of covariates benefits from re-sampling the
training set, at least not for any of the re-sampling methods used in this
thesis. These results are consistent with studies of re-sampling techniques
used for logistic regression in lower dimensions. The results obtained for the
random forest model are also consistent with the results found elsewhere in
the litterature. We saw that predictive performance of the random forest as
measured by AUC can suffer substantially when the class balance reaches
low levels, in this case 0.01. Further, in this situation under-sampling seemed
to offer the best improvements to the AUC, with SMOTE coming in second,
and random over-sampling being the worst of the three.

Chapter 8

Modeling VAT fraud

We have gained some insight into how the different regularization and re-
sampling methods behave in the case of dependent and unbalanced data in
earlier chapters. In this chapter we will apply the insight gained from the
previous chapters to our analysis of the VAT data set.

8.1 Data pre-processing
We began this thesis with an introduction to the VAT data set, but we did
not go into much detail. Due to the anonymous nature of the data there is
not much that can be said, but we will provide some additional properties of
the data set. The data set contains one additional dimension which we have
not yet discussed, namely time. For each control, there has been assigned a
number between 1 and 39 indicating the time of control. The start and end
dates are not known, but time is indexed in terms of size 1/6th of a year.
Thus, with the time variable being maximum 39 we have data spanning 6,5
years. This variable will not be used in the predictive model, but will be
used when we divide the data into training, validation and test sets. Figure
8.1 shows the number of controls, number of fraudulent cases, and the class
balance over time. The number of cases in each term varies around 1500,
and the class balance is approximately Ȳ = 0.2. Upon inspection of Figure
8.1 we notice some anomalies at the first two terms and last term of the
data set. For the first two terms we see that the number of controls is very
low, and the class balance is much larger than in the rest of the data set.
One may then question if the data from these two months are representative
of the rest of the data. For this reason we will omit the first two terms in
the proceeding analysis. The last term also seems to be quite different in
nature compared to the others. The number of cases is again much lower

87

88 CHAPTER 8. MODELING VAT FRAUD

1 4 7 10 14 18 22 26 30 34 38
Term

N
um

er
 o

f c
as

es
0

50
0

10
00

15
00

20
00

25
00

30
00

0.
1

0.
2

0.
3

0.
4

0.
5

C
la

ss
 b

al
an

ce

Figure 8.1: Number of controls (grey), number of fraudulent cases (blue)
and class balance plotted over time (dark blue line).

than the other terms, and the class balance is substantially lower, so we
exclude also the last term from the data set in the following.

One property of the VAT data set which is commonly met in many
applications is that of missing, or incomplete data. Data can be missing
for several reasons which we will now discuss briefly. Assume we have data
Xi = (Xi,1, Xi,2) for i = 1, . . . , n, where for a given j, Xj,1 is missing but
Xj,2 is observed. The nature of the missing data can be divided into one of
three categories. The first category is called missing completely at random
(MCAR) and is the case when

P (Xj,1 is missing|Xj) = P (Xj,1 is missing) .

This means that whether or not Xj,1 is missing does not depend on the
(possibly unobserved) values of either Xj,1 or Xj,2. Alternatively, data can
be missing at random (MAR), meaning that

P (Xj,1 is missing|Xj) = P (Xj,1 is missing|Xj,2) .

In words, this means that whether Xj,1 is missing does depend on the value
of Xj,2. The last case is when data is not missing at random (NMAR) which

8.1. DATA PRE-PROCESSING 89

means that the probability of missing data depends on the (unobserved)
value of the missing data itself, i.e.

P (Xj,1 is missing|Xj) = P (Xj,1 is missing|Xj,1) .

Imputation methods are often considered in view of which of these
situations one is faced with for a given covariate. This in turn requires
information about how the data were collected, and the relationship between
the covariates (Hastie et al., 2009). To some degree we do have such
information because each covariate has been assigned to one of four possible
variable categories. These are: background, current assignment, previous
terms and previous years. The first category, background contains variables
that explain general background information about the business being
controlled, Current assignment contains information relevant for the current
control, previous terms information from previous cases delivered in previous
terms and previous years contains information about the business reported
during the past years. Thus, for a given case the number of employees at
the time of control could be one of the variables in the category background,
and number of employees the previous years could belong to the category
previous years. Missing data thus occurs naturally, since for instance newly
started businesses will not have any information about previous years or
previous terms. However, besides this we have no information about the
data collection methods for the VAT data set. For this reason we will
not go into details of different data imputation methods, but simply apply
median imputation for numerical data. Thus for each missing observation
for a specific covariate, we replace the missing value with the median of
the observed instances of that covariate. Additionally we will create a new
indicator variable which equals 1 if that particular observation was imputed,
and 0 else. In the case of missing categorical variables we will create a new
category missing. If there is information in whether or not a variable is
missing, we will thus be able to extract that information and use it in our
predictive model. An example of this imputation scheme is given in Table 8.1.
These indicator variables can also serve as an indication of whether a given
business has handed in reports in previous terms or if information about
the business back in time is available. This information could certainly
be valuable in an analysis, so there is some justification to the chosen
imputation scheme. Doing this increases the number of covariates in our
data set. Initially there were 556 covariates of which 539 were numerical and
17 were categorical. After the numerical covariates have been imputed we
gain an additional 321 covariates which are indicator variables as described

90 CHAPTER 8. MODELING VAT FRAUD

x1 x2

1 Level 1
3 Level 2
NA Level 1
2 NA

⇒

x1 x2 x1,missing

1 Level 1 0
3 Level 2 0
2 Level 1 1
2 missing 0

Table 8.1: Illustration of imputation scheme.

above. We also convert all categorical covariates into numerical covariates.
This is done by converting a categorical covariate with d levels into d− 1
indicator variables. This gave an additional 85 covariates. One covariate
had a standard deviation of 0, and was thus removed. This gives a final
count of 944 covariates in the data set.

8.2 Model training
In Chapter 6 we saw that elastic net performed well across many different
dependence structures both in terms of prediction and variable selection.
However, there were situations in which lasso performed equally well. Ridge
also performed well for some of the simulation experiments. For this reason
we will use these three methods when modeling VAT fraud. We optimize
λ and α by 10-fold cross validation as in the previous chapters. To reduce
the variance of our cross-validation estimates of predictive performance,
we will run 5 cross validation procedures for each of these methods. We
then average the resulting 5 estimates of AUC, and select the parameters
that maximize this average. This is known as repeated cross-validation,
see Kim (2009). A natural competitor would be maximum likelihood lo-
gistic regression. However, it struggles with convergence which results in
an AUC lower than 0.5 and will thus not be presented. We will not use
any of the re-sampling methods previously discussed in this thesis. This
is because it seems, based on the results from Chapter 7 that the logistic
regression model does not suffer much from class imbalance when the balance
is Ȳ = 0.2. This is particularly true for prediction as measured by AUC,
but also for variable selection. Additionally, as we saw from the simula-
tion experiments conducted in Chapter 7, re-sampling methods do not fix
any of the issues induced by class imbalance for the logistic regression model.

Though we in Chapter 2 argued for splitting the data set into two disjoint

8.2. MODEL TRAINING 91

sets, namely a training and test set, we will now split the data set into
three disjoint sets: training, validation and test set. The motivation behind
this can be seen more clearly by looking closer at the current objective.
Our goal is first to train m fitted models M1, . . . ,Mm, then decide which
of these m fitted models perform best, and third provide a figure for the
predictive performance of our chosen model. The training set will be used
to fit each of the m models, whose performance is then evaluated on the
validation set. The method that performs best on the validation set is
declared the best method. One could then report the predictive performance
(for instance AUC) for the best fitted model computed on the validation set
as the predictive performance of the best model. This seems unproblematic,
since we have trained the model on one set, and evaluated the performance
on an independent validation set as suggested in Chapter 2. However as
pointed out by Hastie et al. (2009), using one data set to both select between
models, and then secondly estimate model predictive performance on the
same validation set is problematic. This is because we have actively selected
that model for the sole reason that its performance was indeed superior on
the validation set, and so the performance on the validation set tends to be
biased due to this selection step. Therefore, when the final model has been
selected, we estimate its performance with the third set, the test set. The
training set will consist of all data from term 3 to term 33, validation set
is from term 33 to term 35, and the test set is data in the terms 36 to 38.
This division has been visualized in Figure 8.2. We have thus set aside 5
years worth of data for training, half a year for validation and another half
for testing.

Training Validation Test

3 33 36 39
Term

Figure 8.2: Illustration of the splitting into training, validation and test
sets.

Care must be taken when performing data imputation not to extract any
information from the test and validation sets into the training set. For this
reason we did not include data from the test or validation sets to compute
the imputed median values. Additionally, we imputed the test and validation
sets using data solely from the training set.

92 CHAPTER 8. MODELING VAT FRAUD

Ridge
The ridge estimator will be fit using 10-fold cross validation repeated 5
times, with λ spaced equally between (−9, 2) on the log scale. The results
from the cross validation procedure for ridge is given in Figure 8.3. Each of
the dashed lines represent one of the 5 cross validation estimates of AUC.
The solid line is the average of these 5 cross validation estimates, which we
will denote AUCcv. We can see that for ridge regression there seems to be
little variation in the AUC across folds, seeing that all the cross validation
estimates of AUC are maximized at approximately the same λ.

−8 −6 −4 −2

0.
70

3
0.

70
4

0.
70

5
0.

70
6

0.
70

7
0.

70
8

0.
70

9

log(λ)

A
U

C
cv

Figure 8.3: AUCcv as well as the 5 cross validation estimates of AUC for
the ridge penalty.

Lasso
The lasso estimator will be fit using 10-fold cross validation repeated 5 times,
with lambda spaces equally between (−10,−4) on the log scale. Figure 8.4
shows the same as Figure 8.3, but for the lasso penalty. There appears to
be more uncertainty for lasso than ridge. It seems that one may in this case
benefit more from repeated cross validation since the variance in AUCcv is
greater.

8.2. MODEL TRAINING 93

−7.5 −7.0 −6.5 −6.0 −5.5

0.
70

90
0.

70
95

0.
71

00
0.

71
05

0.
71

10
0.

71
15

log(λ)

A
U

C
cv

Figure 8.4: AUCcv as well as the 5 cross validation estimates of AUC for
the lasso penalty.

Elastic net

As with the two previous methods, the elastic net estimator will be fit using
10-fold cross validation repeated 5 times, with lambda spaced equally between
(−9, 2) on the log scale. The α parameter will be optimized over a grid
between (0.1, 0.9) with increments of 0.1. In addition, we add the possible α
values 0.01, 0.05, 0.95, 0.99 seeing that these were selected frequently in our
simulation studies. Figure 8.5 is a surface plot of AUCcv for values of both λ
and α. Like in Figure 8.4, we also here see that AUCcv is somewhat uneven,
which is due to the variance of AUCcv. We could have repeated the cross
validation procedures more than 5 times in order to smooth out AUCcv for
lasso and elastic net. However this would induce increased computational
cost which is already an issue when repeating the cross validation procedures
5 times. Of the three methods, elastic net is by far the most computationally
demanding. Interestingly, choice of α does not appear to be very important
as long as α is greater than approximately 0.3. AUCcv seems to flatten out
after this.

94 CHAPTER 8. MODELING VAT FRAUD

Figure 8.5: log(λ) values along the x-axis, α values along the y-axis, AUCcv
along the z-axis.

8.3 Results
The results for the ridge, lasso and elastic net applied to the VAT data set
are given in Table 8.2. Beginning with the results for ridge, we see that
AUCcv is 0.7082. However, the AUC computed on the validation set AUCval
is higher. For lasso, AUCcv is 0.7112, and the AUC for the validation set is
0.7125. Elastic gets an AUCcv of 0.7112, the same as lasso, and an AUCval
of 0.7119. Lasso selects 255 covariates in the final model, lower than the
elastic net which selects 411. For elastic net, the optimal α value is 0.3.

Penalty Nβ̂ 6=0 AUCcv AUCval BSval

Ridge 944 0.7082 0.7151 0.1631
Lasso 255 0.7112 0.7125 0.1627
Elnet (0.3) 411 0.7112 0.7119 0.1628

Table 8.2: Results for the three different methods, based on all data.

What is immediately apparent is the similarity of the predictive per-

8.3. RESULTS 95

formance for these three methods. Both in terms of AUCval and BSval the
methods perform similarly. Ridge performs best on the validation set in
terms of AUC, and should thus be selected as the method best suited if
AUC is the desired model selection criterion. Lasso does however score a
little better in Brier score. If we continue as we have previously in this
thesis by using the AUC as the primary predictive performance measure,
we would conclude that ridge is superior. To obtain an unbiased estimate of
predictive performance we must then compute AUC and Brier score on the
separate test set. This yields an AUC of 0.7055 and a Brier score of 0.1474,
which are both lower than the same values computed on the validation set.
For AUC this means that the model seems to be performing worse on the
test set compared to the validation set, while Brier score shows the opposite.

Other measures of performance can be constructed for this application
which may be of interest. Consider the problem at hand, namely that
the Norwegian Tax Administration each year has a number of cases which
should be controlled. This number is typically much larger than what is
feasible to control, so we are trying to make the selection of cases to control
more effective by assigning a probability of fraud to each case. The cases
with the highest probability of fraud are then chosen for inspection. We
can recreate this situation, by rank ordering all cases by their estimated
probabilities and compute the proportion of fraudulent cases uncovered by
inspecting say the top 10%. This has been done for a range of percentages,
and the result is given in Figure 8.6. The figure shows the result of using
the lasso fit to predict cases in the test and validation set. If our model
were no better than chance, the proportion of fraudulent cases uncovered
should equal the proportion of cases controlled. We see that by inspecting
the top 5% according to their estimated probabilities, we have uncovered
13.8% of the fraudulent cases. Similarly, by inspecting the top 10%, we
uncover 24.5% of the fraudulent cases. This percentage becomes less im-
pressive as the proportion of cases controlled increases, with a mere 70%
of fraudulent cases being among the top 50% ordered by probability of fraud.

Another related measure is the hit rate, that is, the number of fraudulent
cases divided by the total number of cases. These can be computed for
different ranges of the predicted probabilities, which was done in Berset et al.
(2016). We wish to recreate the figure given there, but for our model and
test data. Their model gave each case a score between 0 and 100 indicating
the probability of fraud. They then plotted the hit rate for cases with
scores in the ranges (90,100), (80,89) and (75,79). We can use the same
approach by multiplying our predicted probabilities by 100. Unfortunately,

96 CHAPTER 8. MODELING VAT FRAUD

5% 10% 20% 30% 40% 50%

Proportion of cases controlled

P
ro

po
rt

io
n

 o
f

fr
au

d
u

le
nt

 c
as

e
s

u
nc

ov
e

re
d

0%
10

%
2

0
%

30
%

40
%

50
%

6
0

%
70

%

Figure 8.6: Proportion of the fraudulent cases uncovered by inspecting top
percentages of the estimated probabilities. Grey portion corresponds to
random guessing, black portion illustrates the added performance gain of
our fitted model.

the resulting figure is not very informative in our case because only a few
cases are assigned probabilities in the range (0.9,1). For this reason, we
choose to look at the ranges of the percentiles of the predicted probabilities,
see Figure 8.7. We have also for this figure used the lasso fit and predicted
on the data from the test and validation sets. Of those controls where
the predicted probabilities were in the 75’th to 79’th percentiles, roughly
30% of the cases were fraudulent. When this range is increased to 80’th to
89’th percentile we see a small increase to about 36%. A greater increase is
observed for the upper 10’th percentile, where more than half of the controls
were actually fraudulent. The performance of the methods used for selecting
cases currently employed at the Norwegian Tax Administration is not known.
Hence, it is difficult to make conclusions about whether the performance of
our model offers any improvement.

8.4. MODELING FRAUD OVER TIME 97

75−79 80−89 90−100

Percentile of predicted probabilities

H
it

ra
te

 in
 %

0
10

2
0

30
40

5
0

60

Figure 8.7: Hit rate for ranges of percentiles of the predicted probabilities.
Grey portion corresponds to random guessing, black portion illustrates the
added performance gain of our fitted model.

8.4 Modeling fraud over time
In the previous section we took a somewhat static view of the fraud detection
problem by training models using one data set, and testing on data from
the same time period for all models. We would also like to test which
method performs best over time, thus reducing our reliance on a small part
of the data set (the validation set) for selection of the final model. This is
interesting because it recreates the way in which fraud models will be used,
with frequent updating on more and more data as time progresses.

We will now train logistic regression models at time points tk, for
k = 1, . . . , K. For each time tk, 0 < k < K we predict the cases be-
tween times tk and tk+1. Optimally, we would set K = 38 such that we
re-train the models for the new data given in each term. Prediction would
then be performed only on the single next term. This is however numerically
demanding since it requires training of a large number of models. Instead,
we propose to set K = 6, and define the times tk such that t0 = 3, t1 = 8,
t2 = 14, t3 = 20, t4 = 26, t5 = 32, t6 = 38. That is, we increment time by 6

98 CHAPTER 8. MODELING VAT FRAUD

terms, which is one year. So, for the first sets of models trained at t1 will
use data from the terms 3 to 8 as training data, and then test on the terms
9 through 14. The next training time point t2 trains on data from terms 3
through 14, and tests on the terms 15 through 20, and so on. The AUCtest
will be given for each term, and not averaged over the time periods. See
Table 8.3 for a full overview of which terms are included in the training and
test sets at each time point, as well as some information about the training
set at each time point.

Time Train terms Test terms Nr. of cases Fraudulent cases
t1 3:8 9:14 6 820 1 427
t2 3:14 15:20 16 980 3 427
t3 3:20 21:26 26 522 5 525
t4 3:26 27:32 36 049 7 199
t5 3:32 33:38 43 988 8 978

Table 8.3: Overview of data sets at each time point.

One must also remember that for this analysis to be appropriate we can
not use the imputed data set from the previous section. In that data set we
defined data from term 3 to term 33 as training data, and thus all imputed
values are computed based on data between these time points. However, we
now wish to test on data that are in between these two time points. This is
problematic because we do not want to use data from the test set to impute
values in the training set. So we must create one training and one test set for
each of the time points tk, 0 < k < K, and impute missing values accordingly.

The results of applying the three methods as described above is shown
in Figure 8.8. AUC computed on the test set is shown for lasso in red solid
line with red circles and ridge in blue dashed line with angled squares, and
elastic net in dotted lines with black squares. A number of conclusions can
be drawn from this plot. First, we see that lasso performs better than ridge
on average, and slightly better than elastic net. While the differences in
AUC between lasso and ridge can be (relatively) large, the results for elastic
net are usually somewhere in between these two. After term 20, elastic net
seems to perform similarly to lasso. This behavior seemed curios, and was
checked by running elastic net several times, but the results were always
as shown here. Figure 8.8 provides additional insight into the performance

8.4. MODELING FRAUD OVER TIME 99

10 15 20 25 30 35

0.
66

0.
68

0.
70

0.
72

term

A
U

C
te

st

Figure 8.8: AUCtest computed over time for lasso (red circles) and ridge
(blue angled squares), and elastic net (black squares) fits. Vertical dashed
lines indicate model updating times.

of the three methods compared to that provided by Table 8.2. We can see
that the data chosen as our validation set for creation of Table 8.2, which
corresponds to the data from the first three terms after the last dashed
vertical line in Figure 8.8, was perhaps unfortunate. This is because at least
the 2nd and 3rd terms after the last vertical line are in fact one of the very
few terms in which ridge performs better than elastic net and especially
lasso. The results from Figure 8.8 at least begs the question of whether
ridge actually provides the best predictive performance. Having utilized the
data to a higher degree by performing such a sequential analysis we see that
the ridge fit may in fact be sub-optimal, and that maybe either lasso or
elastic net should be preferred instead. The variable selection properties of
these two latter methods, and particularly elastic net as demonstrated in
Chapter 6, is another sound argument to consider either of these methods
over ridge.

Another purpose of this analysis was to study whether there was any
indication of either model improvements or deterioration with respect to
AUC as time progressed. One might suspect that predictive performance
would improve as more data became available, but this does not seem to be

100 CHAPTER 8. MODELING VAT FRAUD

the case. On the other hand, it is possible that any model trained on data
from the first terms would be biased in its predictions on data from the last
terms, due to a changing nature of the data over time. Such changes could
be induced by changes in operations or data collection of The Norwegian
Tax administration. By again returning to Figure 8.1 we can see that there
may be signs of seasonality, since the class balance reaches a peak every 6
terms. This seasonality does not appear to be present in the last year of
data, so this may be reason to suspect that there may be some time dynamic
making prediction on future data points more difficult.

8.5 Chosen covariates
Other than looking at predicitve performance, it is also interesting to see
how the estimated β coefficients are distributed. The following results are
obtained by using all available training data as was the case when creating
Table 8.2. Ridge seemed to offer the best AUC on the validation set, while
lasso performed best on the data set over time, as illustrated in Figure 8.8.
Additionally, lasso unlike ridge does perform variable selection. For this
reason we will consder the fit of the logistic regression model obtained by
lasso. One could argue that the results of our simulations conducted in
Chapter 6 also should be taken into account when deciding on the final
method. If so, then one could argue that elastic net demonstrated arguably
superior variable selection performance over lasso, and should therefore be
chosen here. However, the number of variables included by elastic net in this
case is quite large (411) and in addition elastic net also performs somewhat
worse than lasso in terms of AUC. Another point to consider is that elastic
net struggles selecting the value for α, as demonstrated by the flatness of
AUCcv in Figure 8.5 for α values greater than 0.3. The apparent indifference
of elastic net in the choice of α (as long as α ≥ 0.3) introduces additional
variability into the distribution of β̂.

We begin by looking at the coefficients for the numerical covariates. In
order to make the comparison independent of the scale of the covariates,
we have standardized all coefficients. This is done by multiplying the un-
standardized β̂ values by the standard deviation of the relevant covariate.
The 10 largest standardized coefficients in absolute value are shown in Figure
8.9. The color of each bar represents the sign of the coefficient: black means
negative, grey means positive. Recall that in our model a negative coeffi-
cient reduces the probability of fraud, and a positive coeffient increases the
probability of fraud. Because the data are anomymized, there is not much

8.5. CHOSEN COVARIATES 101

Va
r_

15
_n

um
er

ic
Va

r_
47

0_
nu

m
er

ic
Va

r_
54

3_
nu

m
er

ic
Va

r_
21

3_
nu

m
er

ic
Va

r_
21

0_
nu

m
er

ic
Va

r_
21

4_
nu

m
er

ic
Va

r_
34

8_
nu

m
er

ic
Va

r_
12

_n
um

er
ic

Va
r_

55
5_

nu
m

er
ic

Va
r_

16
6_

nu
m

er
ic

β̂

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Figure 8.9: The 10 largest coefficients for numerical covariates.

that can be said. However, there does appear to be some covariates that are
more imporant than others. Figure 8.10 shows the same as Figure 8.9 but
for the categorical covariates. Note that these have, as previously explained,
been converted to binary covariates which is what Figure 8.10 displays. We
see that the indicator variables we constructed to indicate when a numerical
value was missing seem to be quite important. Some of these coefficients, for
instance "Var_6_numericMISSING" have a negative sign, meaning that if
the covariate "Var_6_numeric" is missing, then the estimated probability of
fraud decreases. Again, interpreting these coefficients would have been easier
had the true covariate names been known. Additionally, Var_81 seems to
be important, with the coefficients of two of its levels appearing among the
top 10.

We can also compute the number of covariates selected in the four covari-
ate categories: background, current assignment, previous terms and previous
years, see Table 8.4. In the largest group previous terms 80 covariates
were selected thus being the group from which most variables were selected.
However, it is also the group with the lowest percentage of covariates chosen.
The group current assignment followed by background scores best in this
respect, with 50% and 41% of the covariates chosen, respectively. This is

102 CHAPTER 8. MODELING VAT FRAUD

Va
r_

6_
nu

m
er

ic
M

IS
SI

N
G

Va
r_

4_
nu

m
er

ic
M

IS
SI

N
G

Va
r_

24
0_

nu
m

er
ic

M
IS

SI
N

G
Va

r_
1_

fa
ct

or
Le

ve
l_

2

Va
r_

81
_f

ac
to

rL
ev

el
_1

0

Va
r_

16
8_

fa
ct

or
Le

ve
l_

2
Va

r_
24

_f
ac

to
rL

ev
el

_2
Va

r_
81

_f
ac

to
rL

ev
el

_3

Va
r_

53
8_

nu
m

er
ic

M
IS

SI
N

G

Va
r_

32
8_

nu
m

er
ic

M
IS

SI
N

G

β̂

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 8.10: The 10 largest coefficients for binary covariates.

Background Current assignment Previous terms Previous years
Total 168 42 220 126
Selected 69 21 80 48
Percentage 41% 50% 36% 38%

Table 8.4: Distribution of the selected covariates among the four different
groups.

perhaps not surprising, seeing that information about the business being
controlled, as well as the facts regarding the current control should be able
to explain much of the variation. Still, we see that covariates from the two
other groups certainly contribute to the final model.

8.5.1 Measuring stability of the lasso fit
As mentioned in Chapter 3 lasso can be variable in terms of variable selection
when covariates are highly dependent. As we have seen in Chapter 5 many
covariates in the VAT data set are indeed affected by dependence. Until
now we have studied the importance of covariates based on their absolute

8.6. SUMMARY 103

value for one fit of lasso. Due to the high levels of dependence between
covariates, this is perhaps an overly simplistic picture since it does not
provide a picture of the uncertainty involved. If some of the covariates given
in Figures 8.10 and 8.9 are highly dependent with other covariates, then
one would expect that they could easily be replaced by any of those highly
dependent covariates in another lasso fit. For this reason we will now study
the uncertainty in the variable selection procedure. This means we will
measure the uncertainty related to the tuning of the λ parameters as a result
of the 10-fold cross validation procedure. The large uncertainty coming from
the randomness of the data is thus not taken into account in the following.

The 10 fold stratified cross-validation procedure has been repeated 200
times, each time with different partitioning of the folds. We thus obtain 200
different λ values, which will result in 200 lasso fits. Figure 8.11 shows the
number of covariates selected in these fits in a histogram. In addition to
presenting the frequencies, we also provide the estimated density using the
density() function in R. There are some gaps in the histogram, which is
due to a low number of unique observations. In fact, out of 200 repetitions
we are left with only 19 unique values. Certainly, some degree of uncertainty
is present, but it seems that our lasso fit which selected 255 covariates is
quite close to the average number (272) of covariates selected. Figure 8.11
also illustrates that repeating the cross validation procedure was a good
idea because of the large variance in the number of covariates. All the 10
covariates shown in each of the Figures 8.9 and 8.10 are selected in all 200
lasso fits. This suggests that those covariates the model emphasizes most
are perhaps not affected by dependence with other covariates. This result
also strengthens the choice of the lasso model, seeing that in this case we
actually obtain a seemingly stable fit. This is strengthened further by Figure
8.12 which shows the frequency of the covariates that occurred most often
in the 200 lasso fits. 187 were selected in all 200 fits, and 465 covariates
were selected in one or more of the 200 fits.

8.6 Summary
In this chapter we analyzed the VAT data set which we have referred to in
both Chapter 1 and 5. Data belonging to the beginning and end points (in
time) of the data set was removed. We then imputed the missing values
by median imputation and extracted further information from the data by
recording the instances of missing data. The data set was then increased
to a total of 944 covariates. We then applied some of the methods for

104 CHAPTER 8. MODELING VAT FRAUD

Number of covariates selected

F
re

qu
en

cy

150 200 250 300 350 400 450

0
20

40
60

80

Figure 8.11: Results from repeating the 10 fold cross validation procedure
200 times. Dashed vertical line represents number of covariates selected for
the lasso model in Section 8.5.

1 30 64 98 136 179 222 265 308 351 394 437
Order index

C
ov

ar
ia

te
 fr

eq
ue

nc
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 8.12: Ordered (descending) frequencies of selected covariates.

8.6. SUMMARY 105

regularization discussed in Chapter 3 to these data. Only ridge, lasso and
elastic net were tried because these illustrated promising behavior in the
simulations in Chapter 6. All three methods performed similarly in terms
of AUC, but yielded different fitted models regarding how many covariates
were included. Ridge of course uses the highest number of covariates since
it does not perform variable selection. Elastic net included 411 covariates
which is approximately 43% of all covariates in the data set. We also saw
that elastic net struggled finding a uniquely best α value, as shown in Figure
8.5. As long as α ≥ 0.3 the choice of α seemed to be not very important.
This introduces much uncertainty regarding the elastic net model since α
has a large impact on the final coefficients. Additionally the computational
effort is much larger for elastic net than ridge or lasso, which is definitely
a disadvantage. Seeing that the predictive performance of lasso in AUC
was similar to, if not better than elastic net we therefore opted for the
lasso model which selected 255 covariates. All the four groups of covariates
were represented among these 255, with the groups background and current
assignment scoring the highest percentage of covariates included. In addition
to modeling the data in a somewhat static sense by training on the first 5
years and testing on the last year, we also trained our models over time,
always predicting on future data. The results showed that lasso indeed did
achieve the best AUC over time. There were of course fluctuations in AUC,
but there was no clear improvement to AUC as more data became available
for training.

The fact that lasso achieves at least as good performance compared to
ridge and elastic net, but uses much fewer covariates can be an advantage
to model interpretation. Perhaps more important, it means that the model
fit using lasso requires much less data to be gathered about each control
than does a model fit using ridge or elastic net. This is beneficial because it
reduces the amount of data that needs to be gathered. Reducing the number
of coefficients also reduces the amount of work and resources necessary for
storing and upkeep of such data sets.

Chapter 9

Conclusion and discussion

The end goal of this thesis was to model VAT fraud probabilities in the
data set provided by the Norwegian Tax administration. We illustrated
that one problem with this data set was the large degree of dependence
between covariates. We therefore conducted a simulation experiment where
we focused particularly on recreating the dependence structures between
the covariates in the VAT data set. Generating dependent covariates from
different families of distributions, both numerical and categorical was of some
concern initially. However, we solved the problem by generating data using
a copula approach. This approach proved to be very flexible, because we
can construct complicated dependence structures with no restrictions on the
marginal distributions for the covariates. Using this setup, we then conducted
a simulation experiment where the goal was to study which methods for
regularization for logistic regression perform best when covariates are highly
dependent. We found that elastic net performed well in terms of prediction
and arguably best in terms of variable selection. Elastic net included a
large proportion of the true non-zero covariates in the model, depending
on the β coefficients. Lasso also performed well for prediction, though
sometimes not as good as elastic net, again depending on the β coefficients
in the true model. Lasso was generally more conservative in its variable
selection than elastic net. We also provided an explanation to why the
AUC increased as the correlation among the non-zero covariates increased
in Chapter 6. We hope that this insight can be of use to others when
designing similar simulation studies. One possible extension of our work
could be to study how using different copulas to model dependence between
covariates would affect variable selection and prediction. If data such as
the VAT data set are available, one can select an appropriate copula by
maximum pseudolikelihood estimation, as described in Genest and Favre
(2007). They focus mainly on bivariate copulas, but extending their work to

107

108 CHAPTER 9. CONCLUSION AND DISCUSSION

the p-dimensional case, we get the following procedure: Define

F j
n(x) = 1

n+ 1

n∑
i=1

I(x ≥ xi,j),

for j = 1, . . . , p, and maximize the pseudolikelihood given by
n∏
i=1

c
(
F 1
n(xi,1), F 2

n(xi,2), . . . , F p
n(xi,p)

)
,

where c is the density of some p-dimensional copula. Not only could one
then use the pseudolikelihood to select the copula that fits the data best, but
also use it to estimate parameters, in our case the correlation matrix ρ. New
simulation studies could then be conducted using the resulting estimated
copula for modeling dependence between covariates.

The effect caused by class imbalance on the predictive performance of a
logistic regression model was unclear prior to our analyses. Similarly, the
effects this has on variable selection has to our knowledge not been studied
previously. A second objective of this thesis was therefore to provide some
clarity on these issues. We observed that the AUC of our logistic regression
models did not suffer as much as did random forest when the class balance
was reduced. However, the performance of random forest could be improved
markedly by using any of the re-sampling methods, most notably under-
sampling. Logistic regression did not seem to benefit from such re-sampling
methods. The variable selection capabilities of both lasso and elastic net
worsened when the class balance was reduced, and particularly elastic net
was highly variable in the number of covariates included in the model. The
re-sampling methods did not seem to offer any improvements to variable
selection either. We therefore recommend using lasso with no re-sampling
when dealing with unbalanced data for logistic regression.

Based on the conclusions drawn from the simulation studies we progressed
to analyze the VAT data set. Logistic regression models were fit using ridge,
elastic net and lasso for regularization. Ridge performed well in AUC in the
last part of the data set, but did not score as high as elastic net and lasso on
data from earlier time points. Predictive performance was similar between
lasso and elastic net. The AUC of the model fit by lasso was approximately
0.70, depending on which part of the data set one selects as the test set.
Our work demonstrates that penalized logistic regression can be used to
improve VAT fraud detection. However, we have not studied whether there
are any signs of non-linearity in the VAT data set. A natural extension of

109

the analyses conducted in this thesis would be to consider also generalized
additive models. For logistic regression, the linear predictor then becomes
(Hastie et al., 2009)

η(xi) = β0 +
p∑
j=1

fj(xi,j),

which introduces a high degree of flexibility on the linear predictor η(xi)
due to the unspecified nature of the functions fj for j = 1, . . . , p. This in
turn allows for a more flexible model for P (Yi = 1|xi). One problem with
such additive models is that they may perform poorly when the number of
covariates is high, depending on how the model is fitted. However, methods
for fitting additive models have been proposed to alleviate this problem, see
Tutz and Binder (2006).

Missing data was present to a large degree in the VAT data set. In
addition, many of the covariates were highly dependent. It could therefore
be worthwhile to study whether a more comprehensive imputation method
than median imputation could improve predictive performance. One possible
approach would be to perform a regression analysis on one covariate at a
time, using the remaining covariates as explanatory variables (Hastie et al.,
2009). One could then predict the missing values. Such an approach would
take into consideration any structure among the covariates when imputing,
which median imputation does not.

It should also be noted that the final analysis of the VAT data set was
restricted by the anonymity of the data set. A more in-depth analysis
would have been easier to carry out had the covariate names been known.
For instance, it is easier to create interaction terms that are more likely
than others to be informative when covariate names are known. Similarly,
knowing the covariate names can help us in implementing non-linear effects
of some covariates. Interpretation and evaluation of the final model would
also have been easier if the covariate names had been known.

Appendix A

R-code

A.1 Chapter 2
Create stratified folds for k-fold cross validation.

1 stratified <- function(X,Y,k){
2 # X - Covariates
3 # Y - Response
4 # k - nr. of folds
5
6 #find indexes which contains 1’s and 0’s
7 ind_1 <- which(Y==1)
8 ind_0 <- which(Y==0)
9
10 #find number of 1’s and 0’s
11 n_1 <- length(ind_1)
12 n_0 <- length(ind_0)
13
14 n <- n_1 + n_0
15
16 floor_1 <- floor(n_1/k)
17 floor_0 <- floor(n_0/k)
18
19 #how many left?
20 left_1 <- n_1-k*floor_1
21 left_0 <- n_0-k*floor_0
22
23 labels <- rep(0,n)
24
25 #sample fold labels for 1’s
26 tags_1 <- rep(1,floor_1)%*%t(1:k)
27 if(left_1 == 0){
28 labels[ind_1] <- sample(c(tags_1))
29 }else if(left_1 > 0){

111

112 APPENDIX A. R-CODE

30 labels[ind_1] <- sample(c(tags_1,1:left_1))
31 }
32
33 #sample fold labels for 0’s
34 tags_0 <- rep(1,floor_0)%*%t(1:k)
35 if(left_0 == 0){
36 labels[ind_0] <- sample(c(tags_0))
37 }else if(left_0 > 0){
38 labels[ind_0] <- sample(c(tags_0,1:left_0))
39 }
40 return(labels)
41 }

A.2 Chapter 5
Produce the correlation matrix ρ as outlined in Chapter 6.

1 produceRho <- function(p_g,n_g,high,med,low,constant_cor,high.min){
2 # p_g - number of covariates in group
3 # n_g - number of groups
4 # high - high level dependence value
5 # med - medium level dependence value
6 # low - low level dependence value
7 # constant_cor - should decaying dependence be applied to the high-

level dependence block?
8 # high.min - the lowest level of within-group dependence
9
10 p <- p_g*n_g
11
12 if(p_g==10 && n_g==100){
13 #groups number 90-100 are independence groups
14 independence_group_start <- 90
15 }else if(p_g==20 && n_g==50){
16 #groups number 45-50 are independence groups
17 independence_group_start <- 45
18 }
19 #initialize rho
20 rho <- diag(p)
21 #Define high,medium and low level matrices
22 block_high <- matrix(high,p_g,p_g)
23 block_med <- matrix(med,p_g,p_g)
24 block_low <- matrix(low,p_g,p_g)
25
26 lower_high <- high.min
27
28 #compute decay weights
29 w <- ifelse(constant_cor,0,-log(lower_high/high)/(20-2)*0.99)

A.2. CHAPTER 5 113

30 #Compute the high level matrix with decay to correlations
31 for(i in 1:p_g){
32 block_high[i,] <- block_high[i,]*exp(-w*(abs(1:p_g - i) - 1))
33 }
34
35 diag(block_high) <- 1
36 #Insert the high, medium and low level block matrices into the

correct indexes of rho
37 for(i in (1:(n_g))){
38 ind_x <- 1 + (i-1)*p_g
39 ind_y <- 1 + (i-1)*p_g
40
41 if(i <= independence_group_start){
42 rho[ind_x:(ind_x+p_g-1),ind_y:(ind_y+p_g-1)] <- block_high
43 }else if(i > independence_group_start){
44 rho[ind_x:(ind_x+p_g-1),ind_y:(ind_y+p_g-1)] <- diag(p_g)
45 }
46
47 if(i > 1 && i <= independence_group_start){
48 rho[(ind_x - p_g):(ind_x - 1),ind_y:(ind_y+p_g-1)] <- block_med
49 }
50 if(i > 2 && i <= independence_group_start){
51 rho[(ind_x - 2*p_g):(ind_x - p_g - 1),ind_y:(ind_y+p_g-1)] <-

block_low
52 }
53 }
54
55 #The above for loop only defined the upper triangle of rho. The

following creates the full matrix
56 rho[lower.tri(rho)] <- t(rho)[lower.tri(rho)]
57 rho
58 }

Generate data using the copula approach in Chapter 5.
1 gen_data <- function(n,p_g,n_g,beta0,beta,high,med,low,constant_cor,

high.min){
2
3 p <- p_g*n_g
4 #produce the correlation matrix
5 rho <- produceRho(p_g=p_g,n_g=n_g,high=high,med=med,low=low,constant

_cor=constant_cor,high.min=high.min)
6
7 #If matrix is not pos. definite break.
8 if(sum(eigen(rho)$values<0)>0){
9 cat("Specified correlation matrix is not positive definite!")

10 }else{
11 #Initialize X
12 X <- matrix(0,ncol=p,nrow=n)
13 #Generate n instances of p correlated normal variables.

114 APPENDIX A. R-CODE

14 Z <- mvrnorm(n=n,rep(0,p),rho)
15 #Transform from Z to U using cumulative density function.
16 U <- pnorm(Z)
17
18 #Transform the marginals. Done as described in Chapter 6. The

following code is difficult to read because it needed to be
vectorized to reduce computational cost as commented in Chapter
6. It is essentially just a matter of extracting the correct
elements of U and transforming these using the correct
marginals, and inserting them into the correct position into X.

19 for(i in 1:n){
20 if(p_g == 10 && n_g == 100){
21 X[i,1:3 + c(rep(p_g,3)%*%t(0:(n_g-1)))] <- qnorm(U[i,1:3 + c(

rep(p_g,3)%*%t(0:(n_g-1)))])
22 X[i,4:6 + c(rep(p_g,3)%*%t(0:(n_g-1)))] <- qgamma(U[i,4:6 + c(

rep(p_g,3)%*%t(0:(n_g-1)))],1,1)
23 X[i,7:10 + c(rep(p_g,4)%*%t(0:(n_g-1)))] <- ifelse(U[i,7:10 +

c(rep(p_g,4)%*%t(0:(n_g-1)))]<0.5,0,1)
24 }else if(p_g == 20 && n_g == 50){
25 X[i,1:9 + c(rep(p_g,9)%*%t(0:(n_g-1)))] <- qnorm(U[i,1:9 + c(

rep(p_g,9)%*%t(0:(n_g-1)))])
26 X[i,10:12 + c(rep(p_g,3)%*%t(0:(n_g-1)))] <- qgamma(U[i,10:12

+ c(rep(p_g,3)%*%t(0:(n_g-1)))],1,1)
27 X[i,13:20 + c(rep(p_g,8)%*%t(0:(n_g-1)))] <- ifelse(U[i,13:20

+ c(rep(p_g,8)%*%t(0:(n_g-1)))]<0.5,0,1)
28 }
29 }
30 }
31 #Compute linear predictor
32 eta <- beta0 + X%*%beta
33 #Compute probability of Y=1
34 P <- exp(eta)/(1+exp(eta))
35 #Sample from Bernoulli distribution with probability P.
36 Y <- rbinom(n,1,p=P)
37 return(list(Y=Y,X=X,eta=eta))
38 }

A.3 Chapter 6
Create cross validation procedure for SCAD using AUC as performance
measure.

1 cv_scad <- function(X,Y,k,alpha,lambda_sequence){
2 #create stratified folds
3 cv_ind <- stratified(X,Y,k=k)
4
5 #initialize

A.3. CHAPTER 6 115

6 cv_AUC <- matrix(0,nrow=k,ncol=length(lambda_sequence))
7 #for each iteration in the cv routine
8 for(i in 1:k){
9 #train model for current training set, and return AUC on the

current test set
10 cv_AUC[i,] <- scad_auc(X_train = X[-which(cv_ind==i),],
11 Y_train = Y[-which(cv_ind==i)],
12 X_test = X[which(cv_ind==i),],
13 Y_test = Y[which(cv_ind==i)],
14 alpha = alpha,
15 lambda_sequence = lambda_sequence)
16
17 }
18 return(list(cv_AUC=cv_AUC,lambda_sequence=lambda_sequence))
19 }
20
21 scad_auc <- function(X_train,Y_train,X_test,Y_test,alpha,lambda_

sequence){
22 number_of_runs <- length(lambda_sequence)
23 AUC_v <- 1:number_of_runs*0
24
25 #NOTE#
26 #The following approach, i.e. fitting one lambda value sequentially,

is slow but necessary due to the instability of "ncvreg" for
small values of lambda

27 for(i in 1:number_of_runs){
28 scad_model <- ncvreg(X_train,Y_train,family="binomial",penalty="

SCAD",gamma=alpha,lambda=lambda_sequence[i])
29 Y_pred <- predict(scad_model,X_test,type="response")
30 #compute AUC
31 AUC_v[i] <- AUC(Y_test,Y_pred)$AUC
32 }
33
34 return(AUC_v)
35 }

Script for running simulations in Chapter 6. This is the full version of the
pseudocode given in Algorithm 6.1.

1 #my own package, contains functions like "stratified" given above
2 library(package)
3 library(ncvreg)
4 library(MASS)
5 library(glmnet)
6 library(DMwR)
7 library(doParallel)
8
9 study1 <- function(m,regularization,cores,simulation){
10 #initialize parameter values

116 APPENDIX A. R-CODE

11 coeff_type <- "constant"
12 high <- 0.9
13 spacing <- 0
14 high.min <- 0.7
15 p_g <- 10
16 n_g <- 100
17 n <- 3000
18 if(simulation==1){
19 med <- 0
20 low <- 0
21 constant_cor <- T
22 }else if(simulation==2){
23 med <- 0
24 low <- 0
25 constant_cor <- F
26 }else if(simulation==3){
27 med <- 0.4
28 low <- 0.2
29 constant_cor <- F
30 }else if(simulation==4){
31 med <- 0.4
32 low <- 0.2
33 constant_cor <- F
34 spacing <- 1
35 }else if(simulation==5){
36 coeff_type <- "varied"
37 med <- 0.4
38 low <- 0.2
39 constant_cor <- F
40 spacing <- 1
41 }else if(simulation==6){
42 coeff_type <- "varied"
43 med <- 0.4
44 low <- 0.2
45 constant_cor <- F
46 spacing <- 1
47 p_g <- 20
48 n_g <- 50
49 }else if(simulation==7){
50 coeff_type <- "varied"
51 med <- 0.4
52 low <- 0.2
53 constant_cor <- F
54 spacing <- 1
55 p_g <- 20
56 n_g <- 50
57 n <- 30000
58 }
59

A.3. CHAPTER 6 117

60 #Produce the beta-vector. The function "produceBeta" is in the
package "package" referred to above.

61 tmp_res <- produceBeta(p_g=p_g,n_g=n_g,spacing=spacing,coeff_type=
coeff_type)

62
63 #get beta_0 value
64 beta0 <- tmp_res$beta0
65 #get beta vector
66 beta <- tmp_res$beta
67
68 #initialize cluster
69 cl <- makeCluster(cores)
70 registerDoParallel(cl)
71 #Run for-loop in parallel
72 parallel_result <-
73 foreach(i=1:m,.combine=’rbind’,.packages=c(’MASS’,’glmnet’,’ncvreg’,

’package’,’DMwR’),.verbose=TRUE) %dopar% {
74 hyper_param <- -1
75
76 #####################
77 ### Generate data ###
78 #####################
79 data <- gen_data(n=(n+3000),p_g=p_g,n_g=n_g,beta0=beta0,beta=beta,

high=high,med=med,low=low,constant_cor=constant_cor,high.min=
high.min)

80 data_train <- list(Y=data$Y[1:n],X=data$X[1:n,])
81 data_test <- list(Y=data$Y[(1+n):(n+3000)],X=data$X[(1+n):(n

+3000),])
82
83 #Cross validation fold id’s
84 labels <- stratified(data_train$X,data_train$Y,k=10)
85
86 nlambda <- 50 #default is 100
87 ###################
88 ### Train model ###
89 ###################
90 if(regularization=="scad"){
91 #Need to supply lambda values for SCAD
92 if(n==30000){
93 lambda_sequence <- exp(seq(-6.5,-2,length=nlambda))
94 }else{
95 lambda_sequence <- exp(seq(-5.5,-2,length=nlambda))
96 }
97 #Note: "gamma" here equals the "a" parameter for SCAD in Chapter

3.
98 #Option to optimize over gamma as well
99 gamma_sequence <- 3.7
100 tmp_result <- lambda_opt <- 1:length(gamma_sequence)*0
101

118 APPENDIX A. R-CODE

102 for(j in 1:length(gamma_sequence)){
103 tmp_mod <- cv_scad(X=data_train$X,Y=data_train$Y,k=10,alpha=

gamma_sequence[j],lambda_sequence=lambda_sequence)
104 tmp_result[j] <- max(apply(tmp_mod$cv_AUC,2,mean))
105 lambda_opt[j] <- lambda_sequence[which.max(apply(tmp_mod$cv_

AUC,2,mean))]
106 }
107 #Find optimal gamma
108 gamma_final <- gamma_sequence[which.max(tmp_result)]
109 #Find optimal lambda
110 lambda_final <- lambda_opt[which.max(tmp_result)]
111 #Fit final model
112 final <- ncvreg(data_train$X,data_train$Y,family="binomial",

penalty="SCAD",lambda=lambda_final,gamma=gamma_final)
113 hyper_param <- gamma_final
114 betahat <- final$beta[-1]
115
116 }else if(regularization=="lasso"){
117 cvresult <- cv.glmnet(data_train$X,data_train$Y,family="binomial

",alpha=1,type.measure="auc",foldid=labels,nlambda=nlambda)
118 betahat <- as.numeric(coef(cvresult,s="lambda.min"))[-1]
119
120 }else if(regularization=="ridge"){
121 cvresult <- cv.glmnet(data_train$X,data_train$Y,family="binomial

",alpha=0,type.measure="auc",foldid=labels,nlambda=nlambda)
122 betahat <- as.numeric(coef(cvresult,s="lambda.min"))[-1]
123
124 }else if(regularization=="elnet"){
125 alpha_sequence <- c(0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99)
126 tmp_result <- lambda_opt <- 1:length(alpha_sequence)*0
127 models <- list()
128 #optimize over alpha
129 for(j in 1:length(alpha_sequence)){
130 models[[j]] <- cv.glmnet(data_train$X,data_train$Y,family="

binomial",alpha=alpha_sequence[j],type.measure="auc",foldid
=labels,nlambda=nlambda)

131 tmp_result[j] <- max(models[[j]]$cvm)
132 lambda_opt[j] <- models[[j]]$lambda.min
133 }
134 cvresult <- models[[which.max(tmp_result)]]
135
136 #find best alpha
137 alpha_final <- alpha_sequence[which.max(tmp_result)]
138
139 hyper_param <- alpha_final
140 betahat <- as.numeric(coef(cvresult,s="lambda.min"))[-1]
141
142 }else if(regularization=="alasso"){
143 lambda_sequence <- rev(exp(seq(-10,1,length=nlambda)))

A.3. CHAPTER 6 119

144
145 folds <- stratified(data_train$X,data_train$Y,k=10)
146
147 #Cross validation for adaptive lasso.
148 #This ensures that the weights are computed for each

iteration. See chapter 6.
149 #The method "cv_glmnet" is defined below.
150 tmp_mod <- cv_glmnet(X=data_train$X
151 ,Y=data_train$Y
152 ,folds=folds
153 ,re_method="no"
154 ,re_balance=0
155 ,alpha=1
156 ,weights_gamma=1
157 ,lambda_sequence=lambda_sequence)
158
159 cv_auc <- apply(tmp_mod$cv_AUC,2,mean)
160 optimal_lambda <- lambda_sequence[which.max(cv_auc)]
161
162 #############################
163 ### COMPUTE FINAL WEIGHTS ###
164 #############################
165
166 weights_cvresult <- cv.glmnet(data_train$X,data_train$Y,family="

binomial",alpha=0,type.measure="auc",foldid=folds,nlambda=
nlambda)

167 beta_values <- as.numeric(coef(weights_cvresult,s="lambda.min"))
[-1]

168
169 weights_final <- abs(1/beta_values)
170 weights_final[weights_final==Inf] <- 999999
171 #train final model using correct weights
172 cvresult <- glmnet(data_train$X,data_train$Y,family="binomial",

alpha=1,penalty.factor=weights_final,lambda=lambda_sequence)
173
174 betahat <- as.numeric(coef(cvresult,s=optimal_lambda))[-1]
175 hyper_param <- 1
176 }else if(regularization=="no"){
177 final <- glm(Y~.,data=data.frame(Y=data_train$Y,X=data_train$X),

family="binomial")
178 betahat <- as.numeric(final$coefficients[-1])
179 }
180
181 ###############
182 ### Predict ###
183 ###############
184 if(regularization=="no"){
185 p <- predict(final,data.frame(X=data_test$X),type="response")
186 }else if(regularization=="scad"){

120 APPENDIX A. R-CODE

187 p <- predict(final,data_test$X,type="response")
188 }else if(regularization=="alasso"){
189 p <- predict(cvresult,s=optimal_lambda,newx=data_test$X,type="

response")
190 }else{
191 p <- predict(cvresult,s="lambda.min",newx=data_test$X,type="

response")
192 }
193
194 #Return relevant information
195 c(sum(betahat!=0)
196 ,mean(betahat[beta==0] ==0) #TPR for beta
197 ,mean(betahat[beta!=0] !=0) #FPR for beta
198 ,mean(1*(p[data_test$Y==1]>=0.5)) #TPR for predicitons
199 ,mean(1*(p[data_test$Y==0]<0.5)) #TNR for predicitons
200 ,package::AUC(data_test$Y,p)$AUC
201 ,package::BS(data_test$Y,p) #Brier score
202 ,hyper_param)
203 }
204 stopCluster(cl)
205 #return result
206 parallel_result
207 }
208
209 #Number of simulations
210 m <- 200
211 #Number of cores to be used
212 workers <- 8
213
214 regularization <- c("no","lasso","ridge","scad","elnet","alasso")
215 simulation <- 1:7
216
217 #Run simulations
218 for(i in simulation){
219 for(j in 1:length(regularization)){
220 result <- 0
221 result <- study1(m=m,regularization=regularization[j],

cores=workers,simulation=simulation[i])
222 #Write result to file
223 write.table(result,paste(regularization[j],simulation[i],sep="_"),row.

names=F,col.names=F)
224 }
225 }

A.4. CHAPTER 7 121

A.4 Chapter 7
The following R script computes the AUC for logistic regression for lasso,
ridge, adaptive lasso and elastic net.

1 glmnet_auc <- function(X_train,Y_train,X_test,Y_test,alpha,weights,
lambda_sequence){

2 #Train model
3 cvresult <- glmnet(X_train,Y_train,family="binomial",alpha=alpha,

lambda=lambda_sequence,penalty.factor=weights)
4 #Predict the test data, this produces a matrix
5 predicted <- predict(cvresult,newx=X_test,type="response")
6 AUC_v <- 1:length(lambda_sequence)*0
7 #Loop over all predicted values, one iteration for each lambda value
8 if(ncol(predicted)==length(lambda_sequence)){
9 for(i in 1:length(lambda_sequence)){
10 Y_pred <- predicted[,i]
11 AUC_v[i] <- AUC(Y_test,Y_pred)$AUC
12 }
13 }
14 return(AUC_v)
15 }

The following R script takes the re-sampled training data and uses these
in the cross-validation prodecure as described in Chapter 7. Synthetic
observations are labeled by Y = −1.

1 cv_glmnet <- function(X,Y,folds,re_method="no",re_balance="0",alpha,
weights_gamma=-1,lambda_sequence){

2 n <- nrow(X)
3 k <- length(unique(folds))
4
5 #initialize
6 cv_AUC <- matrix(0,nrow=k,ncol=length(lambda_sequence))
7
8 #for each k
9 for(i in 1:k){

10
11 #The following if-tests are necessary in order to treat the over-

sampled data correctly in the cross-validaiton procedure.
12 #See comments regarding this in Chapter 7.
13
14 #If under-sampling is used
15 if(re_method == "under"){
16
17 ind_train <- which((folds!=i) & (Y != -1))
18 ind_test <- which(folds==i)
19
20 Y_train <- Y[ind_train]

122 APPENDIX A. R-CODE

21 X_train = X[ind_train,]
22 X_test = X[ind_test,]
23 Y_test = Y[ind_test]
24 Y_test[Y_test==-1] <- 0
25
26
27 #If weights should be applied, i.e. adaptive lasso
28 if(weights_gamma != -1){
29 ind_train_w <- which((folds!=i))
30 X_train_w <- X[ind_train_w,]
31 Y_train_w <- Y[ind_train_w]
32
33 Y_train_w[Y_train_w==-1] <- 0
34
35 folds_w <- stratified(X_train_w,Y_train_w,k=5)
36
37 weight_cvresult <- cv.glmnet(X_train_w,Y_train_w,family="

binomial",alpha=0,type.measure="auc",foldid=folds_w,nlambda
=50)

38 beta_values <- as.numeric(coef(weight_cvresult,s="lambda.min")
)[-1]

39
40 weights <- abs(1/beta_values)
41 weights[weights==Inf] <- 999999
42 weights <- weights^weights_gamma
43 }else{
44 weights <- rep(1,ncol(X_train))
45 }
46 #If random over-sampling or SMOTE is used
47 }else if(re_method == "over" || re_method == "smote"){
48
49 ind_train <- which(folds!=i)
50 ind_test <- which(folds==i & (Y != -1))
51
52 Y_train <- Y[ind_train]
53 X_train = X[ind_train,]
54 X_test = X[ind_test,]
55 Y_test = Y[ind_test]
56
57 Y_train[Y_train==-1] <- 1
58
59 #If weights should be applied, i.e. adaptive lasso
60 if(weights_gamma != -1){
61 ind_train_w <- which((folds!=i) & (Y != -1))
62 X_train_w <- X[ind_train_w,]
63 Y_train_w <- Y[ind_train_w]
64
65 folds_w <- stratified(X_train_w,Y_train_w,k=5)
66

A.4. CHAPTER 7 123

67 weight_cvresult <- cv.glmnet(X_train_w,Y_train_w,family="
binomial",alpha=0,type.measure="auc",foldid=folds_w,nlambda
=50)

68 beta_values <- as.numeric(coef(weight_cvresult,s="lambda.min")
)[-1]

69
70 weights <- abs(1/beta_values)
71 weights[weights==Inf] <- 999999
72 weights <- weights^weights_gamma
73 }else{
74 weights <- rep(1,ncol(X_train))
75 }
76 #If no re-sampling
77 }else{
78
79 ind_train <- which(folds!=i)
80 ind_test <- which(folds==i)
81
82 Y_train <- Y[ind_train]
83 X_train = X[ind_train,]
84 X_test = X[ind_test,]
85 Y_test = Y[ind_test]
86
87 #If weights should be applied, i.e. adaptive lasso
88 if(weights_gamma != -1){
89 ind_train_w <- which(folds!=i)
90 X_train_w <- X[ind_train_w,]
91 Y_train_w <- Y[ind_train_w]
92
93 folds_w <- stratified(X_train_w,Y_train_w,k=5)
94
95 weight_cvresult <- cv.glmnet(X_train_w,Y_train_w,family="

binomial",alpha=0,type.measure="auc",foldid=folds_w,nlambda
=50)

96 beta_values <- as.numeric(coef(weight_cvresult,s="lambda.min")
)[-1]

97
98 weights <- abs(1/beta_values)
99 weights[weights==Inf] <- 999999
100 weights <- weights^weights_gamma
101 }else{
102 weights <- rep(1,ncol(X_train))
103 }
104 }
105
106 #Run the function "glmnet_auc" for the current training and test

data
107 cv_AUC[i,] <- glmnet_auc(X_train = X_train,
108 Y_train = Y_train,

124 APPENDIX A. R-CODE

109 X_test = X_test,
110 Y_test = Y_test,
111 alpha=alpha,
112 weights=weights,
113 lambda_sequence = lambda_sequence)
114 }
115 return(list(cv_AUC=cv_AUC,lambda_sequence=lambda_sequence))
116 }

The R script for running simulations in Chapter 7 is very similar to that
given for Chapter 6 above. The difference is that the training data are
re-sampled prior to model training.

Code for Chapter 8 has not been provided. This was done to conserve
space. Additionally, the analyses have been described thoroughly in the text
of Chapter 8.

Bibliography

Balakrishnan, N. (1991). Handbook of the logistic distribution. CRC Press.

Berset, A., S. Hussain, and P. A. Paulsen (2016). “Prediktiv modell har økt
treffprosenten på oppgavekontroll”. In: Skatteetatens Analysenytt 1/2016,
pp. 16–19.

Bolton, R. J. and D. J. Hand (2002). “Statistical fraud detection: a review”.
In: Statistical Science 17.3, pp. 235–249.

Bølviken, E. (2014). Computation and Modelling in Insurance and Finance.
Cambridge University Press.

Breiman, L. (1996a). “Bagging predictors”. In: Machine Learning 24.2,
pp. 123–140.

Breiman, L. (1996b). “Heuristics of instability and stabilization in model
selection”. In: The Annals of Statistics 24.6, pp. 2350–2383.

Breiman, L. (2001). “Random Forests”. In: Machine Learning 45.1, pp. 5–32.

Brier, G. W. (1950). “Verification of forecasts expressed in terms of proba-
bility”. In: Monthey Weather Review 78.1, pp. 1–3.

Chan, P. K. et al. (1999). “Distributed data mining in credit card fraud
detection”. In: IEEE Intelligent Systems and Their Applications 14.6,
pp. 67–74.

Chawla, N. V., N. Japkowicz, and A. Kotcz (2004). “Special issue on learning
from imbalanced data sets”. In: The Association for Computing Machin-
ery’s Special Interest Group on Knowledge Discovery and Data Mining
Explorations 6.1, pp. 1–6.

Chawla, N. V. et al. (2002). “SMOTE: synthetic minority over-sampling
technique”. In: Journal of Artificial Intelligence Research 16, pp. 321–
357.

125

126 BIBLIOGRAPHY

Fan, J. and R. Li (2001). “Variable selection via nonconcave penalized likeli-
hood and its oracle properties”. In: Journal of the American Statistical
Association 96.456, pp. 1348–1360.

Fawcett, T. (2006). “An introduction to ROC analysis”. In: Pattern Recog-
nition Letters 27.8, pp. 861–874.

Friedman, J., T. Hastie, and R. Tibshirani (2010). “Regularization paths
for generalized linear models via coordinate descent”. In: Journal of
Statistical Software 33.1, p. 1.

Genest, C. and A.-C. Favre (2007). “Everything you always wanted to know
about copula modeling but were afraid to ask”. In: Journal of Hydrologic
Engineering 12.4, pp. 347–368.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statisti-
cal Learning: Data Mining, Inference, and Prediction, Second Edition.
Springer New York.

Japkowicz, N. (2000). “The Class Imbalance Problem: Significance and
Strategies”. In: In Proceedings of the 2000 International Conference on
Artificial Intelligence, pp. 111–117.

Jong, P. de and G. Z. Heller (2008). Generalized Linear Models for Insurance
Data. Cambridge University Press.

Kim, J. H. (2009). “Estimating classification error rate: Repeated cross-
validation, repeated hold-out and bootstrap”. In: Computational Statis-
tics & Data Analysis 53.11, pp. 3735–3745.

Kohavi, R. (1995). “A study of cross-validation and bootstrap for accuracy
estimation and model selection”. In: International Joint Conference on
Articial Intelligence 14.2, pp. 1137–1145.

Kubat, M. and S. Matwin (1997). “Addressing the curse of imbalanced train-
ing sets: one-sided selection”. In: International Conference on Machine
Learning. Vol. 97, pp. 179–186.

Le Cessie, S. and J. C. Van Houwelingen (1992). “Ridge estimators in logistic
regression”. In: Journal of the Royal Statistical Society: Series C (Applied
Statistics) 41.1, pp. 191–201.

Leeb, H. and B. M. Pötscher (2008). “Sparse estimators and the oracle
property, or the return of Hodges’ estimator”. In: Journal of Econometrics
142.1, pp. 201–211.

BIBLIOGRAPHY 127

Ling, C. X. and C. Li (1998). “Data mining for direct marketing: Problems
and solutions.” In: Proceedings of the Fourth International Conference
on Knowledge Discovery and Data Mining, pp. 73–79.

Løland, A., A. Berset, and I. Hobæk Haff (2017). “Er maskinlæring framtida
i Skatteetaten?” In: Praktisk økonomi & finans 33.3, pp. 344–352.

Oommen, T., L. G. Baise, and R. M. Vogel (2011). “Sampling bias and class
imbalance in maximum-likelihood logistic regression”. In: Mathematical
Geosciences 43.1, pp. 99–120.

Santos, M. S. et al. (2018). “Cross-Validation for Imbalanced Datasets:
Avoiding Overoptimistic and Overfitting Approaches”. In: IEEE Compu-
tational Intelligence Magazine 13.4, pp. 59–76.

Sklar, M. (1959). “Fonctions de repartition an dimensions et leurs marges”. In:
Publications de l’Institut Statistique de l’Université de Paris 8, pp. 229–
231.

Solberg, A. S. and R. Solberg (1996). “A large-scale evaluation of features for
automatic detection of oil spills in ERS SAR images”. In: International
Geoscience and Remote Sensing Symposium. Vol. 3, pp. 1484–1486.

Swets, J. A. (1988). “Measuring the accuracy of diagnostic systems”. In:
Science 240.4857, pp. 1285–1293.

Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso”. In:
Journal of the Royal Statistical Society: Series B (Methodological) 58.1,
pp. 267–288.

Tutz, G. and H. Binder (2006). “Generalized additive modeling with implicit
variable selection by likelihood-based boosting”. In: Biometrics 62.4,
pp. 961–971.

Van Hulse, J., T. M. Khoshgoftaar, and A. Napolitano (2007). “Experimental
Perspectives on Learning from Imbalanced Data”. In: Proceedings of the
24th International Conference on Machine Learning, pp. 935–942.

Zou, H. (2006). “The adaptive lasso and its oracle properties”. In: Journal
of the American Statistical Association 101.476, pp. 1418–1429.

Zou, H. and T. Hastie (2005). “Regularization and variable selection via
the elastic net”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 67.2, pp. 301–320.

	Introduction
	Statistical framework
	Mathematical representation of data
	Modeling probabilities
	The bias-variance trade-off
	Model selection criteria
	Training and test set
	K-fold cross-validation

	Model regularization
	Ridge regression
	Lasso regression
	Elastic net
	Adaptive lasso
	SCAD regression
	Oracle properties
	Summing up

	Data re-sampling
	Under-sampling
	Over-sampling

	Generating data using copulas
	Preliminary descriptive analysis of tax data
	Copulas
	Generating a data set

	Simulation study: regularization methods
	Experiment design
	Implementation and estimation
	Model evaluation criteria
	Results
	Summary
	A comment on the effects of increased collinearity

	Simulation study: class imbalance
	Adjusting class balance
	Experiment design
	Implementation and estimation
	Results
	Summary

	Modeling VAT fraud
	Data pre-processing
	Model training
	Results
	Modeling fraud over time
	Chosen covariates
	Summary

	Conclusion and discussion
	R-code
	Chapter 2
	Chapter 5
	Chapter 6
	Chapter 7

	Bibliography

