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Abstract

This thesis presents an experimental investigation on wave-ice interaction and prop-
agation of waves in elastic material. The main purpose of the thesis is to study
wave propagation and the energy transition from open water to water covered by an
elastic sheet. We also want to unveil if occasions where extreme waves are generated
can transpire in elastic material. As waves propagate into ice covered areas they are
immidiatly attenuated and energy is lost, we therefore want to find out if energy
builds up somewhere inside the elastic cover. For the experiments irregular wave-
fields based on the JONSWAP-spectrum are used. This provides an approximation
to a real sea state as waves are made up by a range of different frequencies, limited
by the peak frequency fp. The surface elevation is then measured and used to in-
vestigate statistical properties. In order to compare elastic surface waves with free
surface waves, measurements of the same irregular wavefield have also been taken
for surface elevation with a free surface.

To understand the movement and propagation of elastic waves in ice the work of
Lui & Mollo Christensen is used as a starting point, but equations are also derived
from the dynamic beam equation. It is concluded that the wave-ice interaction
is challenging to describe in full detail, hence some modifications had to be done.
Results show that the wavefield gradually adapts to the elastic environment and
non-linear effects are found as waves propagates into an elastic cover. It is therefore
a possibility for unexpected extreme waves to appear. In addition to deviations in
statistical parameters from a Gaussian sea state, instabilities of the wavefield are also
found by calculating Benjamin-Feir Index. Attuenuation rates of waves inside the
elastic cover are illustrated using frequency and wavenumber-frequency spectrums,
in addition to plots of amplitude decay as a function of distance.
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Notation

(x, y, z): Distance in meter
(t): Time in seconds

η(x, t): Surface elevation/displacement of surface in form of waves
φ(x, z, t): Velocity potential of surface elevation
S(f)/S(ω): One-dimensional spectrum of surface elevation
S(k, ω): Two-dimensional spectrum of surface elevation
R(t1, t2)/R(τ): Autocorrelation function
C(t1, t2): Autocovariance function
η̂(ω): One-dimensional Fourier transform of surface elevation
η̂(k, ω): Two-dimensional Fourier transform of surface elevation

k: Wavenumber
λ: Wavelength
ω: Angular frequency
T : Wave period
f : Frequency
Ẽ: Mechanical wave energy density
ε: Steepness of wave
µ: Expected value
σ: Standard deviation of surface elevation measurements
σ2/var: Variance of surface elevation measurements
κ: Kurtosis
γ: Skewness
Hs: Significant waveheight
ac: Characteristic amplitude
τ : Time difference t1 − t2
δω: Bandwidth
ξ: Angle of curvation
1/R: Curvation
P : Stresstensor
ε̃: Strain
g: Gravitational constant
ν: Poissons modulus
E: Youngs modulus/elasticity modulus
β: Kinematic viscosity

Further notation is described in the text where it is applied.
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Chapter 1

Introduction

Waves in the ocean are unpredictable and in some occasions energy can build up
and generate unstable wavefields which can be responsible for the formation of large-
amplitude water waves, also called extreme or freak waves [27]. It is a fact that these
circumstances can occur when waves adapt to new surrondings, for example when
propagating from deep to shallow water [22] [11]. Therefore it could be a possibility
that these incidents also can transpire when waves propagate into surrondings such
as ice, or other types of elastic materials.

1.1 Motivation

Even though we experience ice melting, a big part of the ocean is still covered by ice.
Sea ice covers about 7% of the Earth’s surface and about 12% of the world’s oceans
[31]. The understanding of wave propagation in ice is therefore still important to
enhance, not only to avoid damage caused by ice breaking but also to understand
the impact and evolution of wave movement in elastic material. Investigations of
waves propagating into ice covered water have been of increasing interest over the
last decade. In addition to an increasing interest in extreme waves, it has become an
important topic in engineering and science [16]. The mechanisms and more detailed
dynamic properties of extreme waves are clear because of many research efforts [6].
This thesis is an effort to provide more theory and results on wave-ice interaction
which can lead to a clearer understanding on how waves adapt to elastic material,
and maybe encourage researchers to point further studies in the direction of wave-ice
interaction.

1.2 Previous work

Wave-ice interaction and elastic waves in ice are topics of increasing interest, but
there is still a lack of research to be found on this subject. It may be the case that
the research started in 1986, when a scientist on the R/V Polarstern encountered
a series of waves with approximately one meter amplitude 560 km away from the
ice edge in the Weddell sea. These waves resulted in breakup of the icepack which
had a maximum local thickness of 2 meters, and an averaged thickness of 80 cm.
The Weddell sea extreme waves have been explained and analysed by Lui & Mollo-
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10 CHAPTER 1. INTRODUCTION

Christensen in their article Wave Propagation in a Solid Ice Pack [15]. In this article
they derive the dispersion relation for waves under pack compression and compare
group velocity to critical mean compressive stress, in addition to carrying out a
stability analysis using the non-linear cubic Schrödinger equation and providing a
non-linear model to describe waves in ice.

Lui & Mollo Christensen’s theory has further been used in other articles to pro-
vide theory on wave-ice interaction. The MET.no report written by Broström &
Christensen for Statoil Hydro in 2008 investigates methods and calculations for dif-
ferent types of ice (slush ice, pancake ice etc.) following the equations of Lui &
Mollo Christensen [15] and Wadhams et.al. [32] [4]. A recent paper which does
not follow the equations mentioned above, but rather the model of Wang & Shen
[33], shows an experimental study on gravity waves in a floating viscoelastic cover
[23]. This paper provides and discusses wave characteristics, wave celerity and wave
attenuation inside a viscoelastic cover. This thesis will later use the results and
discussions from this article for comparison.

Wave attenuation has also been an important topic when investigating waves
in elastic media. Several studies show an attempt in finding an amplitude-decay
function to fit the exponential energy decay of a wavefield inside elastic material, or
ice cover. This is done in terms of attenuation in time in Lui & Mollo-Christensen’s
article from 1988 [15], but in this thesis we will be more interested in knowing the
spatial attenuation rate. Following Sutherland et.al. [25] the spatial attenuation
rate of wave amplitude for laboratory experiments with finite dimensions can be
written:

a(x) = a0e
−αx, (1.1)

where a0 is the initial amplitude, α = β
√

ω
2β

( 1
sinh2kH

+ 1
kB

)k/cg, β is the kinematic
viscosity of water, ω is the angular frequency, k is the wavenumber, B is the width
of the wave tank and cg is the group velocity. This attenuation rate is believed to
be due to boundary layer dissipation, and will later be used for comparison to the
experimental results.

1.3 Research questions
As earlier mentioned, there is still a lack of wave-ice interaction theory. Hopefully
this thesis can contribute to the questions regarding the energy transition from open
water waves to elastic waves in ice, and propagation of elastic waves in general. In
this thesis the wave-ice interaction is investigated experimentally using the big wave
tank in the Hydrodynamic laboratory at the University of Oslo. An irregular wave-
field is provided from a JONSWAP-spectrum as defined in equation 2.38, with three
different peak frequencies. By measuring the surface elevation it is possible to carry
out a statistical analysis and compare the results with theoretical values. In order to
compare statistical results for elastic waves we measure the same irregular wavefield
on a free surface. This provides characteristic values for the wavefield as free surface
gravity waves. To approximate ice covered water four different elastic sheets are
placed in the tank, hence three different PEHD (polyethylene high density) sheets
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and one Latex sheet both with different thicknesses. For each cover all three wave-
fields with a duration of 15 minutes are measured at several locations (21 locations
for PEHD cover and 17 locations for Latex cover). By taking measurements at dif-
ferent locations we are able to investigate the development of elastic waves in space,
and hence the development of energy inside the elastic cover can be studied. It is
believed that this amount of data will provide a high enough resolution in both the
spatial and temporal domain.

1.4 Outline
Chapter 2 presents a short summary of useful mathematical and theoretical con-
cepts applied in this thesis. This include stochastic description of surface waves, an
introduction to both stochastic variables and processes, a short introduction to the
Fourier transform and descriptions of bandwith and the Benjamin-Feir Index among
more.

Chapter 3 contains theory on both free surface waves and the dynamic equa-
tion on waves in elastic material. Derivation of the beam equation is included, in
addition to calculation of dispersion relation, phase speed and group velocity. The
reflection coefficient is also calculated theoretically in this chapter.

In Chapter 4 the arrangements done in order to be able to perform the experi-
ments to provide surface displacement data are explained and accounted for. This
includes the setup of experiments, methods for imitating ice cover and for data sam-
pling.

Chapter 5 contains the results from experiments done for this thesis. First ex-
perimental conditions are explained, then results are shown. The results are divided
into subsections containing characteristic wave parameters, time series of surface
elevation and reflection coefficient calculations. Phase speed and group velocity are
plotted, in addition to amplitude attenuation. Values for skewness and kurtosis are
contained, and plots of power spectral density, wavenumber-frequency spectrum and
BFI.

In Chapter 6 discussions on results are presented. First wave characteristics are
discussed, in addition to the reflection coefficients. Next topic of discussion is val-
ues of skewness and kurtosis, then phase speed and group velocity. The amplitude
attenuation is also discussed and lastly non-linear effects are investigated.

The final conclusion of the theisis is contained in Chapter 7, in addition to
comments on further work to be done on this subject.





Chapter 2

Mathematical background

From observations of the ocean we know that waves or wavefields are not determin-
istic, but rather random and unpredictable. We can therefore look at the surface
displacement η as a stochastic process with several different outcomes, or realiza-
tions, for any selection of times [29]. This chapter provides statistical theory, and
a description of surface waves with stochastic parameters used to characterize the
wavefield in this thesis.

2.1 Stochastic description of surface elevation
As mentioned the ocean sea surface is random and unpredictable, but even so the
model of random linear wave theory assumes it to be made up by a superposition
of linear, monochromatic waves [12]. It should be mentioned that a monochromatic
wave is a wave propagating with one frequency only. A superposition of different
monochromatic waves then results in a wavefield with a range of frequencies. In this
theory we consider the sea surface as a finite sum of plane waves:

η(x, t) =
N∑
n=1

ancos(knx− ωnt+ θn), (2.1)

where an represents the amplitudes, θn represents the phases, ωn and kn represents
the angular frequencies and wavenumbers, respectively. The latter two are related
through the dispersion relation. The definition (2.1) of surface waves is the first step
towards using stochastic theory to describe waves. The phases θn are assumed to be
independent, stochastic variables uniformly distributed on [0, 2π]. The amplitudes
an in eq. (2.1) can be defined in terms of the wave frequency spectrum, or power
spectrum [17]:

1

2
a2
n = S(ω)dω = 2πS(f)df =

Ẽ

ρg
. (2.2)

In addition to being defined in terms of the wave frequency spectrum, the amplitudes
of a wavefield are also defined in terms of the energy Ẽ. Therefore when studying
amplitude development of a wavefield one can also correlate it to development of
energy. The wave frequency spectrum is an important concept in this thesis, in
addition to the energy development. A more detailed description is hence given in
Section 2.4.

13
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2.2 Stochastic variables
First we consider the surface elevation, η(t), as the real-valued stochastic process
with unpredictable stochastic outcomes for any selection of times t. We can then
choose to study only one of the outcomes, for example the stochastic variable ηi = X
of the stochastic process η(t), as the outcome at time t = ti.

The cumulative distribution function of the stochastic variable is defined by Logan
as [14]:

F (X) ≡ P{X ≤ x}, (2.3)

where X is the outcome from the stochastic process, and P , the probability function,
indicates the probability of X being less than or equal to a value x. The derivative of
the cumulative distribution function (2.3) is called the probability density function,
and is again defined by Logan [14]:

f =
dF

dx
(2.4)

with properties:

f(x) ≥ 0,

∫ ∞
−∞

f(x)dx = 1. (2.5)

The expected value, also called the first moment, for a stochastic variable is
defined as the weighted average:

µ = E[X] =

∫ ∞
−∞

xf(x)dx. (2.6)

[29]. A stochastic variable’s variance is hence defined by:

σ2 = V ar[X] = E[(X − µ)2] =

∫ ∞
−∞

(x− µ)2f(x)dx = E[X]− µ2, (2.7)

where we assume linearity of the expected value operator E. The standard deviation
of the variable is defined as the square root of the variance: σ =

√
σ2.

Generally the n’th moment of the stochastic variable X is given as:

mn = E[Xn] =

∫ ∞
−∞

xnf(x)dx, (2.8)

while the n’th central moment is:

µn = E[(X − µ)n] =

∫ ∞
−∞

(x− µ)nf(x)dx, (2.9)

where we also observe that the variance is thus defineable as the second central
moment (2.9) of the stochastic variable. Higher moments can also be found from
the stochastic variables. Skewness is defined as the third central moment (2.9), and
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is a measure of the asymmetry of the probability distribution around the real-valued
mean of the variable:

γ =
E[(X − µ)3]

σ3
=
µ3

σ3
. (2.10)

Kurtosis is defined as the fourth central moment:

κ =
E[(X − µ)4]

σ4
=
µ4

σ4
. (2.11)

We define excess kurtosis as the kurtosis minus 3. For zero excess kurtosis (κ = 3)
the distribution is said to be mesokurtic. We will also define zero excess kurtosis
to be a Gaussian, or normal distribution [20] and the kurtosis of other distributions
are often are compared to this value. When κ > 3 the tails of the propability
distribution are more weighted and extreme waves are more likely to develop. Both
skewness and kurtosis will be helpful when investigating occurences of extreme wave
events through the elastic covers in laboratory experiments.

2.2.1 Stochastic wave parameters
The stochastic parameters of a variable can further be used to calculate important
wave characteristics such as significant wave height Hs and characteristic amplitude
ac. Significant wave height is defined as:

Hs = 4σ, (2.12)

where σ is given from equation (2.7) and characteristic amplitude is calculated as:

ac =
Hs

2
√

2
. (2.13)

Both significant wave height and characteristic amplitude can provide a measure on
how waves are attenuated inside the elastic sheet we want to study wave propagation
in. Hence they are used as a measure on energy loss as a function of distance.

2.3 Stochastic process
The surface elevation η(t) is now considered as the real-valued stochastic process
with several different outcomes for any selection of times t. The outcomes are a col-
lection of stochastic variables, also called an ensemble [17]. The process η(t) = X(t)
is time dependent, where X(t) represents the given ensemble of outcomes for given
times t.

The expected value of the real stochastic process X(t) is:

µ(t) = E[X(t)] =

∫ ∞
−∞

x(t)f(x; t)dx. (2.14)

The autocorrelation function for a real process η(t) is given by:

R(t1, t2) = E[X(t1)X(t2)] =

∫ ∞
−∞

∫ ∞
−∞

x1x2f(x1, x2; t1, t2)dx1dx2, (2.15)
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where X1 and X2 are the outcomes for times t = t1 and t = t2. The mean power of
the process is defined as the second moment:

R(t, t) = E[| X(t)2 |]. (2.16)

The autocovariance function for a real process is defined as:

C(t1, t2) = E[(X(t1)− µ(t1))(X(t2)− µ(t2))] (2.17)
= R(t1, t2) + µ(t1)µ(t2). (2.18)

A process is said to be weakly stationary if the expected value (2.14) and autoco-
variance (2.17) does not vary with respect to time. The autocorrelation function is
then only dependent on a time difference τ = t1 − t2, and not time t explicitly [17].
Similarly, distributions of higher order only depends on time intervals and not on
absolute time. We then have:

µ(t) = E[X(t)] = µ (2.19)
R(t1, t2) = R(τ). (2.20)

For a weakly stationary process the mean power of the process is given by R(0),
where R(0) is real and non-negative. We recognize it as the variance of the process
in the case where µ = 0. In this thesis we will assume, but not justify, that the
surface elevation can be considered as a weakly stationary and ergodic process. An
ergodic process is defined by an ensemble that can be determined from a single time
history [18]. This means that time and ensemble averaging data gives the same
result.

2.4 Power spectrum and Fourier transform
The power spectrum [17] of a weakly stationary process is defined as the Fourier
transform of the autocorrelation function R(τ). The transform pairs are defined by:

S(ω) =
1

2π

∫ ∞
−∞

R(τ)eiωτdτ (2.21)

R(τ) =

∫ ∞
−∞

S(ω)e−iωτdω, (2.22)

with normalization criterion R(0) =
∫∞
−∞ S(ω)dω satisfied. Take notice of the nor-

malization in the first equation (2.21), which is different depending on preference
within different research groups. It does not matter which convention one uses as
long as one is consistent with the choice. It is also important to mention that differ-
ent programming languages use different conventions as well. In this thesis we will
follow the convention defined above.

A real process has an even spectrum and therefore we can introduce a one-sided
spectrum for non-negative frequencies. The desired Fourier transform pairs is then:

Sone−sided(ω) =
1

π

∫ ∞
−∞

R(τ)eiωτdτ =
2

π

∫ ∞
0

R(τ)cosωτdτ (2.23)

R(τ) =

∫ ∞
0

Sone−sided(ω)cosωτdω, (2.24)
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with the normalization criterion still statisfied,
∫∞

0
Sone−sided(ω)dω = R(0).

2.4.1 One-dimensional Fourier transform
The measurements of the surface elevation from the experiments this thesis is based
on present surface elevation as a function of time and space. The one-dimensional
Fourier transform can thus be used to convert the measured data from the time
domain to the frequency or angular frequency domain. The one-dimensional Fourier
transform of the function η(t) is defined as [17]:

η̂(ω) =

∫ ∞
−∞

η(t)e−iωtdt, (2.25)

with its inverse Fourier transform as mentioned earlier:

η(t) =
1

2π

∫ ∞
−∞

η(ω)eiωtdω. (2.26)

The Fourier transform can be regarded as an inner product:

η̂(ω) = 〈η(t), eiωt〉 =

∫ ∞
−∞

η(t)e−iωtdt. (2.27)

Fourier transforms can also be expressed over a finite time interval [0,∆t] instead
of over an infinite interval. The Fourier transform then becomes:

η̂(ωn) = 〈η(t), eiωnt〉 =

∫ ∆t

0

η(t)e−iωntdt, (2.28)

with its inverse Fourier transform given as:

η(t) =
1

∆t

∞∑
n=−∞

η̂(ωn)eiωnt, (2.29)

where n = 0, 1, 2, . . . is the number of different frequencies fn contained in
the wavefield. The one-dimensional Fourier transform provides the frequency- or
angular frequency spectrum (ωn = 2πfn), and shows how the energy of the wavefield
is distributed in the frequency domain.

2.4.2 Two-dimensional Fourier transform
For the two-dimensional Fourier transform the equations are defined the same way,
but the transform is then used to convert from both the time- and space domain to
the angular frequency- and wavenumber domain.

The two-dimensional Fourier transform can be defined by:

η̂(km, ωn) =

∫ ∆t

0

∫ ∆x

0

η(x, t)e−iωnte−ikmxdxdt, (2.30)

with its inverse two-dimensional Fourier transform then given as:

η(x, t) =
1

∆t

1

∆x

∞∑
n=−∞

∞∑
m=−∞

η̂(km, ωn)eiωnteikmx, (2.31)
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where n = 0, 1, 2, . . . , and m = 0, 1, 2, . . . are the numbers of different fre-
quencies fn and wavenumbers km contained in the wavefield, respectively. The
two-dimensional Fourier transform η̂(km, ωn) represents the wavenumber-frequency
spectrum of the wavefield, which means that it shows the distribution of energy in
both the wavenumber and frequency domain.

2.4.3 Bandwidth and BFI

The bandwidth of a spectrum S(ω) is the ratio between the width, ∆ω, and the cen-
terpoint, ωp, of the spectrum. This ratio is useful to know when analysing the power
spectrum and instability of the surface elevation. The bandwidth is a dimensionless
parameter defined by:

δω =
∆ω

ωp
. (2.32)

A good method to find ∆ω is the "half-height-half-width" method [19]. This method
measures the width of the spectrum at half of the maximum height of the frequency
spectrum, and defines this width as twice the bandwidth. A spectrum is said to be
narrowbanded if the bandwidth δω � 1 [29], which means that the spectral den-
sity is concentrated to a small frequency band around the peak frequency fp. If
the bandwidth δω � 1 the specrum is hence broadbanded, which means that the
spectrum consists of more widespread frequencies than for a narrowband spectrum.

Bandwidth δω is further used to calculate the Benjamin-Feir Index (henceforth
BFI) of the wavefield. As the surface elevation measurements used in this thesis
are measurements of a homogen and stationary irregular wavefield, the wavefield
can be subject to modulation instability [3]. Modulation or sideband instability is
a phenomenon where deviations from a periodic waveform are reinforced by non-
linearities. This eventually leads to generation of spectral-sidebands and eventual
breakup of the wavefield which can result in the generation of extreme waves [5].
BFI is used as an indicator for instability of the wavefield and is defined as the ratio
between steepness, ε, and bandwidth of the measured surface elevation [1]:

BFI =
ε

δω
. (2.33)

2.5 The central limit theorem
It is demanded that the surface elevation is a sum of independent and identically
distributed random variables with mean µ and variance σ2. The central limit theo-
rem then states that the limiting distribution of the surface elevation η is defined as
the normal, Gaussian distribution [14]. A Gaussian distribution with mean µ and
variance σ2 has a probability density function given by:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 . (2.34)

The ocean is often described by a Gaussian distribution, or referred to as a Gaus-
sian sea state. This sea state refers to a normal distributed stochastic process with
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skewness γ equal to zero and kurtosis κ equal to three [18]. Therefore we often
mention excess kurtosis when discussing the fourth moment. Excess kurtosis is the
kurtosis minus 3, and for zero excess we have κ = 3, as in a Gaussian state (2.11)
as earlier mentioned.

The central limit theorem and the Gaussian sea state are important for the results
of this thesis as it defines the ocean sea surface as being normal distributed. Any
deviations from Gaussian statistics will imply that the central limit theorem (2.34)
breaks down and the assumptions are no longer valid. Deviation from Gaussian
statistics is what we are seeking to find for wave propagation on the surface covered
by an elastic sheet.

2.6 Spectral models

For a fully developed sea the spectrum of a wavefield is a function of dimensionless
frequency only. The Pierson-Miskowitz spectrum assumes a fully developed sea,
while the JONSWAP-spectrum assumes that the sea is still in a developing state
[18]. For the remainder of this section, we will comment on these two spectrums
which are of great importance when generating the wavefield applied in this thesis.

2.6.1 Pierson-Moskowitz spectrum

The Pierson-Moskowitz spectrum is a unimodal spectrum with a formulation devel-
oped from analysis of weather ship data in the North Atlantic [18]. It is defined
as:

SPM(f) =
α

f 5
p

exp[− β

f 4
p

], (2.35)

where α and β are constants related to the main sea parameters. The constants are
usually set to be:

α =
5

16
H2
s f

4
p (2.36)

β =
5f 4

p

4
, (2.37)

where fp is the peak frequency and Hs is the significant wave height defined as
Hs = 4

√
σ2, where σ2 is the zeroth moment of the frequency spectrum or the variance

(2.7). It is further assumed that this spectrum is narrowbanded with Rayleigh
distributed wave heights.

2.6.2 JONSWAP spectrum

The JONSWAP spectral formulation is based on a wave measurement program
known as the Joint North Sea Wave Project [9]. It was carried out in 1968-1969
and represents a developing sea state with fetch limitations, where wind speed and
fetch length are inputs to the formulation [18]. The fetch length is the length of the
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water over which a given wind has blown. This spectrum is defined as:

S(f) =
α

f 5
p

exp[− β

f 4
p

]γ−(f−fp)2/2σ2f2p (2.38)

σ = 0.07, ω ≤ ωp (2.39)
σ = 0.09, ω > ωp, (2.40)

which may be recognized as the Pierson-Moskowitz spectrum (2.35) multiplied with
γ−(f−fp)2/2σ2f2p , called the peak enchancement factor. The peak enhancement factor
γ is usually set to γ = 3.3, hence also used in this thesis. This is the spectrum
used to simulate the data file of surface elevation used in the experiments. The
JONSWAP-spectrum plotted from the experimental input-file is shown in Figure
2.1 below.

Figure 2.1: JONSWAP-spectrum calculated from data file applied in experiments
to provide surface elevation.



Chapter 3

Wave theory

In this chapter analytical calculations are explained to provide an understanding
about the problem of waves propagating from a free surface into an ice cover, or
in this case an elastic cover. General theory on surface gravity waves are included,
in addition to theory on waves propagating into covered water. To understand the
motion of the sheets imitating ice cover, equations are derived from the dynamic
beam equation [10] and compared to the equations by Lui & Mollo-Christensen [15].

3.1 A 3D problem

The boundary value problem of waves propagating from a free surface into a covered
surface can be visualized as a three dimensional problem. We assume uniformity
in y-direction so that waves only propagate in x-direction and the surface elevation
is given by η(x, t). A figure of the problem with all spatial directions is shown in
Figure 3.1, where the wave generator is on the far left (symbolized by the red star),
and on the far right there is an absorbing beach reducing wave reflection from the
end of the tank. The elastic sheet is placed approximately in the middle of the tank
and is illustrated by the black area covering eight meters of the water surface.

Figure 3.1: Illustration of wave tank with coordinate system.

21
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3.2 Free surface gravity waves
The following section provides general information on wave characteristics, explains
both the variables used in analytical methods and the derivation of boundary con-
ditions for gravity waves on a free surface.

3.2.1 Surface wave characteristics
The wave equation is given by:

∂2η

∂t2
− c2∇2η = 0, (3.1)

and can describe wave propagation in a medium with constant propagation speed c.
There are several solutions of this equation and therefore several ways to describe
waves. Following random linear wave theory we assume a solution made up by a
superpositon of Stokes waves on deep water. Stokes waves are often given as:

η(x, t) = a
(
cosθ +

1

2
(ka2)cos2θ +O(ka3)

)
, (3.2)

where a denotes amplitude and θ = kx − ωt is the phase function, where k is the
wavenumber and ω is the angular frequency. Wavenumber k and angular frequency
ω are associated with wavelength and waveperiod as k = 2π

λ
and ω = 2π

T
[28].

In this thesis we will be interested in knowing wave characteristics such as char-
acteristic amplitude ac and characteristic wavenumber kc to find wave steepness
ε = kcac. This quantity provides information on the degree of non-linearities in the
wavefield [21].

3.2.2 Dispersion relation
The characteristic wavenumber is set equal to kp, which is the peak wavenumber.
Peak wavenumber is the wavenumber that corresponds to the maximum angular
frequency, ωp and is found by using the linear dispersion relation for surface gravity
waves:

ω2
p = kpg tanh kph. (3.3)

The dispersion relation (3.3) must be fulfilled in order for waves to be free. The
term linear dispersion relation means that the relation between angular frequency
and wavenumber is independent of the wave amplitude. If there is an amplitude
dependence the relation is thus non-linear.

For further calculations on the wavefield we need to define the boundary between
deep and shallow water. The characteristic dimensionless parameter for wave depth
is given by kph [21]. Traditionally this parameter decides whether the wavefield is
on deep or shallow water. For this thesis the dispersion relation is assumed to be
linear and the wavefield is generated on deep water. The dispersion relation could,
in a case where kph� 1, be simplified to ω2

p = kpg since tanh kph ≈ 1 as kph→∞.
Because simplifications are only valid as kph → ∞, the dispersion relation is used
in its entirety as defined in (3.3).
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3.2.3 Conditions
For waves on a free surface the wave motion is constrained by continuity and conser-
vation of water mass, hence∇2φ = 0 for z < η, where φ is the velocity potential. The
pressure from overlying air can be found by using Bernoulli’s equation for potential
flow given as:

p− pa
ρa

+
∂φ

∂t
+

1

2
v2 + gη = 0. (3.4)

Since we know that pressure at the surface equals the atmospheric pressure, p = pa,
and in addition to the assumption of small velocities such that v2 � 1, the equation
that represents the dynamic boundary condition becomes:

∂φ

∂t
+ gη = 0, z = η. (3.5)

The kinematic boundary condition is found by assuming that all particles at the
surface stay there and move with the surface speed. In this case we look at one
specific particle at the surface, zp = η(xp, t), affected by a small displacement ∆zp:

zp + ∆zp = η(xp + ∆xp, t+ ∆t) = η(xp, t) +
∂η

∂x
∆xp +

∂η

∂t
∆t. (3.6)

On the surface, zp = η, this reduces to:

∆zp =
∂η

∂x

∂xp
∂t

∆t+
∂η

∂t
∆t, (3.7)

which gives us:

w = u
∂η

∂x
+
∂η

∂t
, z = η, (3.8)

where u = ∂xp
∂t

and w = ∂zp
∂t

. If we now assume that the wavelengths are small
compared to water depth, we know that the term u∂η

∂x
is much smaller than ∂η

∂t
and

further u∂η
∂x
� w. Therefore the kinematic boundary condition becomes:

∂φ

∂z
=
∂η

∂t
, z = η. (3.9)

If we perform a Taylor-expansion of φ around z = 0, where we can neglect
higher order terms, it can be shown that both the dynamic and kinematic boundary
condition, eq. (3.5), (3.9), are also applicable at z = 0. For illustration the expansion
is carried out for the dynamic boundary condition:

∂φ

∂t
|z=η=

∂φ

∂t
|z=0 +η

∂2φ

∂t∂z
|z=0 +

η2

2

∂3φ

∂t∂z2
|z=0 . (3.10)

3.3 Elastic waves
Waves propagating into water covered by an elastic sheet can not be analysed using
the regular wave equation with the free surface conditions. There are additional
terms in the equation of motion for the elastic sheet and several conditions that
must be taken into consideration. In this section the boundary value problem for
waves on a covered elastic surface is explained in detail motivated by the dynamic
beam equation [10] and the equations of Lui & Mollo-Christensen [15].
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3.3.1 Conditions

To be able to derive equations for the sheet-covered surface it must be assumed that
the Navier-Bernoullis hypothesis is valid and that the sheet is linear elastic, which
means application of Hooke’s law. We must also assume small displacements in the
sheet, hence a small surface elevation.

Figure 3.2: Illustration of an element from the 3D covered water problem.

The ends of the sheet are assumed to be attached, hence there are no torques
on the sheet from the end points. As mentioned earlier we assume uniformity in
y-direction, and the water under the sheet will provide pressure from underneath.
Air lying above the sheet is assumed to not provide any forces. Since water is
incompressible, the movement of the sheet will be constrained by conservation of
water mass and hence ∇2φ = 0. To summarize all conditions four hypothesises are
made [10]:

1. Deformation hypothesis I
Navier-Bernoulli’s hypothesis must be assumed fulfilled, as described in Section
3.3.2.

2. Deformation hypothesis II
Gradient of curvation z is much less than 1, which means that the incline ξ is
small enough to use the approximation: tan ξ = ξ = ∂z

dx
� 1.

3. Stress hypothesis
Normal stress on surfaces parallel with the beam axis can be neglected.

4. Material hypothesis
The material is linear elastic, which means Hooke’s law can be applied.
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3.3.2 Navier-Bernoulli’s hypothesis
Following Irgens [10] we derive the beam equation by assuming small deformations,
to further be able to define curvation and stress in a beam, or in this case an
elastic sheet, affected by deformation. Assuming small deformations the equations
can be simplified. Navier-Bernoulli’s or Bernoulli’s hypothesis involves the conse-
quences of making this assumption, and must be fulfilled for Deformation hypoth-
esis I (1) to be valid. The curvation, or deformation, to study in the elastic sheet
is z = η(x, y, t) = η(x, t) because of uniformity of wave motion in the y-direction.
The dynamic beam equation is derived using the plane of wave propagation, the
xz-plane, where the cross-section constant, I, is defined in the uniform yz-plane.

From figure 3.2 we define the neutral surface to be the surface in the yz-plane
with no deformation in the deformated xz-plane, ∆l = 0. The beam axis is defined
to be the deformation axis where the material parallel with this axis changes length
from l to l + ∆l. The neutral surface cuts a cross-section in the neutral axis and
goes through the cross-section area centre. Along the neutral axis the stress equals
zero [10].

If we study the bending of a beam with curvation centre underneath the beam
(as shown in figure 3.2) the bending radius of a curve z = η(x, t) is given as:

1

R
= −

d2z
dx2

[1 + ( dz
dx

)2]3/2
. (3.11)

If we now assume small deformations (2), ( dz
dx

)2 � 1, the bending radius can be
simplified to:

1

R
= −d

2z

dx2
. (3.12)

A direct consequence of this assumption is that a cross-section surface which is plane
and normal to the neutral axis before bending will maintain its characteristics after
deformation. The length of the beam axis before deformation is l = ∆ξR, with
corresponding angular deformation:

∆ξ =
l

R
. (3.13)

After deformation the extension is given by ∆l = ∆ξ(R+z)−∆ξR, and the angular
deformation becomes:

∆ξ =
l + ∆l

R + z
. (3.14)

The strain in x-direction is consequently:

ε̃ =
∆l

l
=

∆ξ(R + z)−∆ξR

∆ξR
=
z

R
. (3.15)

For cross-section surfaces plane and normal to the neutral axis there are no
change in length, ∆l = 0, therefore the strain is:

ε̃ = 0. (3.16)
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If we now use the assumption of a linear elastic sheet (4), Hooke’s law can be used
to define corresponding stress [7]. We can then write:

P = Eε̃ = E
z

R
, (3.17)

where E is the elasticity module. Hence is the stress of the beam in x-direction
a linear function of the curvature z = η(x, t), and hence is a plane cross-section
surface also plane and normal to the neutral axis after bending caused by small
deformations, because these surfaces are not affected by any stress.

For a thin sheet, rather than a beam, the thickness of the sheet, hi, and defor-
mation η are small compared to the length of the sheet. If the sheet is streched in
x-direction, the streching will be compensated by compression in y-direction. We
then have:

ε̃x =
1

E
(Px + νPy), (3.18)

where stress in y-direction is defined by Poisson’s module ν times the negative stress
from streching in x-direction, Py = −νPx. Therefore the non-thin direction, x-
direction, is said to resists the Poisson effect. Inserting for Py and ε̃x from (3.15)
leads to the stress:

Px =
E

(1− ν2)
ε̃x =

E

(1− ν2)

z

R
. (3.19)

3.3.3 External force from water pressure

The pressure from water under the sheet can be described using Bernoulli’s equation
(3.4) for non-stationary potential flow:

pw
ρw

+ gη +
1

2
v2 = C, (3.20)

where C is a constant, the flow is irrotational ∇×v = 0 hence v = ∇φ. φ represents
the velocity potential of the flow in the water as an effect from the wave motion η.
Including evolution in time:

∂φ

∂t
+
pw
ρw

+ gη +
1

2
v2 = C. (3.21)

Inserting the velocity potential where 1
2
v2 = 1

2
(∇φ)2 and Taylor-expanding the time-

derivative around equilibrium, z = 0:

∂φ

∂t
|z=η=

∂φ

∂t
|z=0 +η

∂2φ

∂t∂z
|z=0 +

η2

2

∂3φ

∂t∂z2
|z=0, (3.22)

where we have assumed η only provides small displacements. We can therefore write:

∂φ

∂t
|z=η=

∂φ

∂t
|z=0 . (3.23)
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Assuming small displacements we can also neglect non-linear terms in the equation,
as we then also assume small velocities, 1

2
(∇φ)2 � 1. We then get:

∂φ

∂t
+
pw
ρw

+ gη = C = 0 (3.24)

pw = −ρw(
∂φ

∂t
+ gη), , (3.25)

which is the equation (3.25) for the external force imposed from underlying water
pressure.

3.3.4 Dynamics of elastic waves

Because of the sheets elasticity and rigidity we have three more forces that must be
implemented to the equation of motion. First we consider neglected normal forces
as mentioned in the Stress hypothesis (3):∫

A

PxxdA =

∫
A

PzzdA = N = 0, (3.26)

which gives the stress-tensor for the beam or elastic sheet:

P =

[
Pxx Pxz
Pzx Pzz

]
=

[
0 Pxz
Pzx 0

]
(3.27)

The bending momentmust also be considered, and can be derived using the result
of Navier-Bernoulli’s hypothesis. Remember that we assume hi � l and z � l, l
being length in x-direction, so that the stress of bending (3.19) is given by:

Pxz =
E

(1− ν2)
ε̃xz =

E

(1− ν2)

z

R
(3.28)∫

A

(Pxz · z)dA =

∫
A

E
z2

(1− ν2)R
dA =

E

(1− ν2)R

∫
A

z2dA = M, (3.29)

where M denotes the bending moment. The shear stress is always equal such that
Pxz = Pzx. The equations will be derived for only one of the shear directions but
applies to both.

Lastly we have the cross-section constant, also called the second moment of area:

I = Iz =

∫
A

z2dA. (3.30)

With parameters from experiments done for this thesis we get the cross-section
constant defined as:

I =

∫ b

0

∫ h
2

−h
h

z2dzdy =
b

3
z3 |z=

h
2

z=−h
2

=
b

3
(
h

2
)32 =

bh3

12
, (3.31)

where h is the thickness of the beam, or in this case the elastic sheet, and b is the
beam or sheets width. We continue to refer the cross-section constant, or the second
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moment of area as I (3.31).

Further we can write the bending moment (3.29) as: EI
(1−ν2)R

= M , which is

the bending moment equation and further gives the bending radius 1
R

= M(1−ν2)
EI

[10]. The sheets bending or flexibility is consequently proportional to the bending
moment (3.29) and reverse proportional to the sheets flexural rigidity. From the
stress in x-direction we know that E = Pxz(1−ν2)R

z
, inserting this into the bending

moment gives the stress of bending formula:

Pxz =
M

I
z. (3.32)

We define the sheets bending or curvation to be 1
R

= M(1−ν2)
EI

and assume that
the incline of the sheet decreases in positive x-direction, dφ = −ds

R
, where ds is the

element length. The differential therefore gives negative curvature:

dφ

ds
= − 1

R
= −M(1− ν2)

EI
. (3.33)

Deformation hypothesis II (2) implies ds = dx: dφ
dx

= ∂2z
∂x2

, and hence we obtain
the differential equation for the elastic line which regards surfaces parallel with the
beam axis:

∂2z

∂x2
= −M(1− ν2)

EI
. (3.34)

Generally the bending moment is a function of x, M = M(x) and can be defined by
a set of differential equations with a partitioned external load f v = q(x, t) [10]:

∂V

∂x
= −q(x, t), (3.35)

where V is the shear force on the sheet.

∂M

∂x
= V (x)→ ∂2M

∂x2
= −q(x, t). (3.36)

From the differential equation for the elastic line (3.34) we get:

EI

(1− ν2)

∂2z

∂x2
= −M (3.37)

∂2

∂x2

( EI

(1− ν2)

∂2z

∂x2

)
= −∂

2M

∂x2
= q(x, t). (3.38)

Then inserting for z = η(x, t) and adding the acceleration term for the elastic sheet,
where µ = hiρi, the modified dynamic beam equation is defined as:

µ
∂2η

∂t2
+

∂2

∂x2

( EI

(1− ν2)

∂2η

∂x2

)
= q(x, t). (3.39)

In this thesis the external load q(x, t) is neglected as the air does not provide any
force on the sheet. And finally, adding the pressure (3.25) from the underlying
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water, the equation of motion for the elastic sheet becomes:

µ
∂2η

∂t2
+

EI

(1− ν2)

∂4η

∂x4
= pw (3.40)

µ
∂2η

∂t2
+

EI

(1− ν2)

∂4η

∂x4
= −ρw(

∂φ

∂t
+ gη). (3.41)

Because the strain arising from streching, νPyy, can be assumed much smaller
than the strain from wave propagation, Pxz, one can neglect the compression in y-
direction for experiments with finite dimensions. This is where the equations differ
from the equations used by Lui & Mollo-Christensen [15]. We then have:

µ
∂2η

∂t2
+ EI

∂4η

∂x4
= −ρw(

∂φ

∂t
+ gη). (3.42)

The equation of motion (3.42) is also known as the dynamic boundary condition
for the elastic waves at z = 0. In addition to this condition, the kinematic boundary
condition (3.9) from the free surface waves also holds:

∂φ

∂z
=
∂η

∂t
, z = η, z = 0 (3.43)

and as earlier mentioned water mass is conserved such that ∇2φ = 0 for z < η,
where η now is at the bottom of the elastic sheet.

3.3.5 Dispersion relation
Assuming a monochromatic wave solution as:

η(x, t) = a sin(kx− ωt), (3.44)

with velocity potential on the form:

φ(x, z, t) = −bekz cos(kx− ωt), (3.45)

where we also assume that the kinematic boundary condition (3.9) underneath the
sheet also holds in time:

∂

∂t
(
∂φ

∂z
) =

∂2η

∂t2
→ −bkω = −aω2. (3.46)

Implementing this into the equation of motion for the elastic sheet (3.42) gives us:

µ
∂2η

∂t2
= −ω2µa sin(kx− ωt), (3.47)

EI
∂4η

∂x4
= EIk4a sin(kx− ωt), (3.48)

−ρv(
∂φ

∂t
+ gη) = −ρv(−bωekz sin(kx− ωt) + ga sin(kx− ωt)). (3.49)

Multiplication with k for all terms, and taking in account that the lower sheet lies
at z = 0 results in:

−ρvk(
∂φ

∂t
+ gη) = −ρv(−bωk sin(kx− ωt) + gka sin(kx− ωt). (3.50)
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We can then use the kinematic boundary condition (3.9) at z = 0 which gives:

−ρvk(
∂φ

∂t
+ gη) = −ρv(−aω2 sin(kx− ωt) + gka sin(kx− ωt). (3.51)

After some rearranging we end up with the dispersion relation for waves in the elastic
sheet:

−ω2µk + EIk5 = −ρv(−ω2 + gk) (3.52)

ω2 =
gkρv + EIk5

ρv + µk
. (3.53)

It should be mentioned that it is not certain if these equations are enough to
describe waves in elastic material. This topic is much discussed and equations as the
non-linear Schrödinger and modified non-linear Schrödinger are also frequently used
[15] [2] [13]. Hopefully, when presenting the results and comparing with theoretical
values it will show which equations are in agreement with waves in elastic material.

3.3.6 Phase speed and group velocity

As for the free surface waves both phase speed and group velocity of the waves can
be calculated from the dispersion relation. From theory [21] we know that:

cp =
ω

k
, (3.54)

is the phase velocity, and the group velocity is the dispersion relation derivated with
respect to the wavenumber k:

cg =
dω

dk
. (3.55)

Inserting the dispersion relation in each of these equations, (3.54) and (3.55), pro-
vides two equations for phase speed and group velocity respectively:

cp =
(gkρv + EIk5)

1
2

(ρv + µk)
1
2

· 1

k
. (3.56)

Derivating the dispersion relation with respect to k using partial derivation:

cg = ω′(k) =
u′(k)v(k)− u(k)v′(k)(

v(k)
)2 , (3.57)

where u(k) = gkρv + EIk5 and v(k) = rhov + ρihik.
Derivating u and v and inserting into the equation gives:

cg =
[ gρv + 5EIk4

2
√
gkρv + EIk5

·
√
ρv + ρihik −

√
gkρv + EIk5 · ρihi

2
√
ρv + ρihik

]
· 1

ρv + ρihik
. (3.58)
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3.4 Reflection at boundary
To be able to calculate the amount of energy reflected at the boundary between open
water and water covered by an elastic sheet we calculate the reflection coefficient,
assumed to be the ratio [19]:

R

I
(3.59)

where I is the incoming complex amplitude, and R is the reflected complex ampli-
tude. Since the reflected amplitudes are assumed to be smaller than the amplitudes
of the incoming waves, the reflection coefficient should be a number between 0 and
1. In order to find this ratio the Fourier transform of the measured surface elevation
is used.

3.4.1 Theoretical reflection coefficient
Assuming the incoming wavefield defined as the surface elevation:

η(x, t) = Iei(kx−ωt) +Rei(−kx−ωt). (3.60)

Where I and R are the amplitudes of the incoming and reflected waves respec-
tively. Taking the inverse Fourier transform accomplishes independence of angular
frequency of the surface elevation function:

η̂ =< η(x, t), e−iωt >=
1

∆t

∫ ∆t

0

η(x, t)eiωtdt (3.61)

=
1

∆t

∫ ∆t

0

(
Iei(kx−ωt) +Rei(−kx−ωt)

)
eiωtdt (3.62)

η̂ =
1

∆t
(Ieikx +Re−ikx), (3.63)

where wavenumber k and angular frequency ω are related by the dispersion relation
(3.3). Measuring surface elevation η(x, t) at two different locations, that is x = 0
and x = d gives us:

η(0, t) = η0 =
1

∆t
(Iei(−ωt) +Rei(−ωt)) (3.64)

η(d, t) = ηd =
1

∆t
(Iei(kd−ωt) +Rei(−kd−ωt)), (3.65)

with corresponding Fourier transforms:

η̂0 =
1

∆t
(I +R) (3.66)

η̂d =
1

∆t
(Ieikd +Re−ikd). (3.67)

Eliminating R or I in these two equations, which means multiplying η̂0 with
e±ikd, provides equations for the complex amplitudes R and I:

R =
η̂d − η̂0e

ikd

e−ikd − eikd
(3.68)

I =
η̂0e
−ikd − η̂d

e−ikd − eikd
, (3.69)
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and finding the reflection coefficient to be:

R

I
=

η̂d − η̂0e
ikd

η̂0e−ikd − η̂d
. (3.70)

Note that η̂0 and η̂d are the Fourier coefficients representing the highest energy in the
Fourier transform (frequency domain) of two surface elevations measured at x = 0
and x = d, respectively. In addition the amplitudes R and I becomes complex
amplitudes when performing a Fourier transform.

3.4.2 Singular points
As we derive the reflection coefficient, R

I
, we notice that the complex amplitudes

have singularities in the denominator of the fraction for both R and I. If this equals
zero we have singular points in our calculations. The denominator can be written
as:

e−ik∆x − eik∆x = −2i sin(k∆x). (3.71)

Having this expression equal to zero gives the singular points:

−2i sin(k∆x) = 0→ k∆x = πn, (3.72)

which means that there are singularities in the reflection coefficient for each ∆x = πn
k

where n = 1, 2, . . . , N and ∆x is the distance between measurements. When these
singular distances are discovered it is possible to avoid them by placing the probes
at different locations, which do not provide singular values in calculations of the
reflection coefficient.



Chapter 4

Experimental arrangements

This chapter provides information and descriptions of the experimental work done,
in order to provide surface displacement data to this thesis. All experiments are
carried out in the Hydrodynamic Laboratory at the University of Oslo, where wave
propagation is generated with a WaveLab system. In addition to experimental ar-
rangements, this chapter also includes explanations on how the surface displacement
data is post processed.

4.1 Experimental setup
For the investigation of wave propagation in elastic material the big wave tank in
the Hydrodynamic Laboratory at the University of Oslo is used. The wave tank
is 23.4 meters long and 0.5 meters wide. The water depth can be adjusted and is
chosen to be h = 0.7 meters in these particular experiments to provide deep water
waves. An illustration of the wave tank is shown in figure 4.1 below.

Figure 4.1: Illustration of wave tank with all spatial directions

At the end of the tank, at the far right in figure 4.1, there is an absorbing beach
reflecting 3% of the incoming waves [8]. On the left side of the tank the hydraulic
wave generator is installed. This generator induces a field of surface waves into
the tank and is controlled by WaveLab software, where manual input of frequency
and amplitude generates regular waves. An irregular wavefield, which is applied in
this thesis, can also be generated by supplying WaveLab with numerically generated
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input signals. Explanation of input signals and numerical code are to be found in
Appendix A.

The x-axis is chosen to be the longitudinal direction of the wave tank with the
z-axis pointing upwards as the vertical axis. We define z = 0 at the mean water
level. We assume uniformity in y-direction and therefore analyse the experiment in
two dimensions, in the xz-plane, as shown in figure 5.1.

4.2 Methods

4.2.1 Elastic covers

To approximate ice covered water PEHD (polyethylen high density) 300 sheets are
placed into the tank. Three different sheets of this type are used with different
thicknesses, being 1, 2 and 3 mm. In addition to the PEHD sheets, a thin Latex
sheet is also used with thickness 0.2 mm. Important properties of the two types of
elastic sheets are shown in Table 4.1 below:

Property of sheet PEHD Latex
Thickness [mm] 1,2,3 0.2
Density [kg/m3] 940 960
E-module [N/m3] 0.8 0.0015
Possion’s ratio 0.45 0.5

Table 4.1: Properties of elastic sheets used in experiments.

4.2.2 Surface elevation measurements

Figure 4.2: Moveable skeleton consisting of four probes over water surface.

To measure the surface elevation a setup consisting of 4 USS02/HFP, IP 65, M18 x
1.0 wave ULS Advanced probes, also called gauges, delivered by Ultralab were used,
with a techincal resolution of 0.18 mm. The scan rate of the probes can be chosen
to either 125 Hz or 250 Hz, whith a measuring range between 30 mm and 250 mm.
We will in this experiment use a sampling rate of 125 Hz. The wave probes send
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out an ultrasonic pulse and measures the time, t, it takes to recieve the transmitted
signal. The transport time, t, is then used to calculate the distance from the surface
by comparing it to the mean level. The four wave probes are placed as shown in
Figure 4.2 with a distance of 0.2 meters between them. The probes are attached to
a movable skeleton which is placed at different locations making a overlapping grid
towards the beach to get high resolution results. For the PEHD sheet a three-probe
overlapping grid is used as shown in Figure 4.3, and for the Latex sheet a two-probe
overlapping grid is used as shown in Figure 4.4. This grid arrangement is used be-
cause of attachments in the PEHD sheets which we do not want to include in the
measurements.

Figure 4.3: Measurement locations and measurement grid for PEHD sheets, in total
20 locations on the sheet.

Figure 4.4: Measurement locations and measurement grid for Latex sheet, in total
16 locations on the sheet.

An advantage using this particular system when measuring surface elevation is
the possibility to connect multiple probes to the same channel. If the transmitted
signal from the surface is reflected outside of the transmitting wave probe range,
one of the other probes connected to the same channel might recieve it. This means
that the amount of dropouts can be reduced if the geometry of the waves causes
reflections outside the range of the transmitting probe. Four probes connected to
four different channels are used in experiments for this thesis, mainly because the
waves applied are far from breaking. Hence geometry of the waves does not cause
reflections outside the transmitting probe range.

It is believed that the surface elevation generated in the tank is the most unstable
close to the wave generator and at the very beginning of propagation, which is
why the start of measurements are triggered 30 seconds after generating the first



36 CHAPTER 4. EXPERIMENTAL ARRANGEMENTS

waves and measurments are taken eight meters away from the generator. This
reduces startup effects and assures that the wavefield is stable when measuring
surface elevation.

4.3 Post processing of data
When post processing the data measured by the probes MatLab is used. The files
are imported as csv-files, and for each location a 885 seconds long time series of
surface elevation is provided. With a sampling rate of 125 Hz the resolution in the
time domain is ∆t = 0.008 and gives 110612 values for surface elevation in time. In
the spatial domain the resolution is constrained by number of locations in the wave
tank. For all sheets we have 4 probes per location with a spatial distance of 0.2
meters and an overlapping grid. For PEHD sheets the resolution is ∆x = 4.8 which
gives 96 values in x-direction and for the Latex sheet the resolution is ∆x = 7.2
which gives 115 values.

To reduce noise and dropouts from the data the function "InterpolateDropouts"
is used (see Appendix B for details). Calculations are done and inbuilt functions in
MatLab are used to find statistical parameters for surface elevation, attenuation of
energy inside the elastic sheet and to visualize the results.

4.4 Sources to error
In both the experiments and in the post processing of data done for this thesis there
are some sources to error to be taken into consideration. First of all the interpolation
of dropouts that occur in the measurements can result in giving a false picture of
the surface elevation. Interpolating dropouts only give an approximation of the
true surface elevation that is measured. Luckily, there was a very small amount of
dropouts in the data provided for this thesis. Measurements of surface elevation
are taken approximately in the middle of the tank, where the width is measured to
be 0.5 meters. When generating the wavefield in the wave tank it is assumed that
we only have wave propagation in x-direction, which means that waves propagating
across the wavetank are not taken into account. For some experimental incidents a
small amount of water from the propagating waves splashed over the elastic sheet,
making a thin film of water on top of the front sheet. This is not considered in the
dynamic equations for elastic sheets. Other sources to error are dissipation of waves
and wall friction from the wave tank. In addition we also have friction between
the elastic sheet and underlying water. The measured surface elevation for wave
propagation in the elastic sheet also shows a great amount of attenuation, this must
be taken into consideration when studying the experimental results. None of the
sources to error mentioned above are justified in this thesis.



Chapter 5

Experimental results

The experiments for this thesis are designed to investigate wave propagation in an
elastic sheet to approximate waves in ice covered water. To approximate the waves in
the tank to a real life wavefield, the JONSWAP-spectrum is used [9]. This spectrum
provides propagation of an irregular wavefield consisting of a variety of frequencies
with a given peak frequency, fp. Three different peak frequencies are used to sim-
ulate the wavefield, hence fp = 0.9 Hz , 1.0 Hz and 1.1 Hz. Measurements of wave
propagation in PEHD sheets are done at 21 different locations, one location over
open water and 20 locations over the elastic sheet. For the Latex sheet, surface
elevation is measured at 17 different locations, one location over open water and 16
locations over the elastic sheet.

In this chapter, the experimental conditions for this thesis will be presented and
the results will be obtained. This includes calculated characteristic wave parameters
and time series of surface elevation, in addition to calculated reflection coefficient
at the boundary between open water and water covered by the elastic sheet. Wave
phase speed and group velocity plots are provided, in addition to plots of spatial
amplitude attenuation rates. Values for statistical parameters such as skewness and
kurtosis are also calculated and presented in this chapter. Power spectral density,
in addition to wavenumber-frequency spectrum are plotted for different locations in
the wave tank. Lastly the stability of the wavefield is investigated by calculating
the Benjamin-Feir Index (BFI).

5.1 Experimental conditions

The input files, based on the JONSWAP-spectrum [9], are made in MatLab with con-
stant parameters. Only peak period, or peak frequency, is changed. Table 5.1 shows
an overview of the parameters that are used to simulate the JONSWAP-spectrum.
All experiments are carried out using the big wave tank in the Hydrodynamic lab-
oratory at the University of Oslo, as earlier mentioned. For all experiments a water
depth of h = 0.7 m is used to provide wave systems in the deeper domain, kph > 1.

In this thesis we would like to investigate how waves propagate into an elas-
tic material and if the wave characteristics change with propagation distance. We
therefore use two different types of elastic sheets with different elasticity modulus
and with four different thicknesses. For each sheet (see Table 5.2), hence thicknesses
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3, 2, 1 and 0.2 mm, wavefields with peak periods Tp = 1.1 s, 1.0 s and 0.9 s are used.
From here on we refer to the different sheets as PEHD1 = 1 mm, PEHD2 = 2 mm,
PEHD3 = 3 mm and Latex = 0.2 mm, where the number refers to thicknesses for
the PEHD sheets.

Parameter for JONSWAP-spectrum Value
Time duration, T [s] 885
Intensity of spectrum, α 0.001
Peak enhancement factor, γ 3.3
Shape factor, β 1.25

Table 5.1: Parameters used in all JONSWAP-files to provide surface elevation in
the wave tank.

Sheet type Thickness [mm] Tp [s] Tp [s] Tp [s]
PEHD 3 1.1 1.0 0.9
PEHD 2 1.1 1.0 0.9
PEHD 1 1.1 1.0 0.9
Latex 0.2 1.1 1.0 0.9

Table 5.2: Sheet types with thicknesses and peak periods used to provide surface
elevation for the experiments.

Figure 5.1: Illustation of the wave tank with locations and distances in meters for
calculations done for both sheets. Wave paddle is installed on the left side (at 0
meters) and a damping beach to reduce reflection is located at the right side of the
wave tank.
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5.1.1 Calculations
To be able to analyse the wave system and its characteristics different wave param-
eters such as peak frequency fp, peak wavenumber kp and significant waveheight
Hs are calculated. All calculation methods and calculated parameters are presented
in Table 5.3. The power spectrum is calculated using Welch’s method, where peak
frequency fp is found. Welch’s method and the power spectrum are explained in
more detail in Subsection 5.2.7.

Parameter Calculation
Peak frequency fp [s−1] Maximum value from spectrum
Peak angular frequency ωp [s−1] ωp = 2πfp
Peak wavenumber kp [m−1] From dispersion relation
Peak wavelength λp [m] λp = 2π

kp

Significant waveheight Hs [mm] Hs = 4σ
Characteristic amplitude ac [mm] ac = Hs

2
√

2

Steepness ε ε = ackp
Benjamin-Feir Index (BFI) BFI = ε

δω

Table 5.3: Wave parameters provided for specified locations on each sheet and for
each period.

5.1.2 Amplitude attenuation
To compare characteristic amplitude caluclations to theoretical values the attenu-
ation curve of Sutherland et.al. is used (1.1) [25], where the kinematic viscosity is
used as a free variable. Table 5.4 shows values for kinematic viscosity, β, used to
produce the best fit of the attenuation rate curve to the measurements.

Sheet type Tp = 1.1s Tp = 1.0s Tp = 0.9 s
Latex 5 · 10−4 3 · 10−3 3 · 10−3

PEHD1 5 · 10−3 9 · 10−3 1 · 10−2

PEHD2 5 · 10−3 5 · 10−3 5 · 10−3

PEHD3 6 · 10−3 5 · 10−3 4 · 10−3

Table 5.4: Values for kinematic viscosity, β [m2s−1], for each experimental incident
used to fit the attenuation curve to measurements.
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5.2 Results
The results obtained from experiments will now be presented. Because of a big
amount of results, the section is divided into subsections to provide overview and
structure. Each subsection will be presented properly and contains results for the
given subsection only. It should be mentioned that all results are compared to
reference measurements. Reference measurements are of the same irregular wavefield
used for elastic sheets, but propagating on a free surface. In the plots, these reference
measurements are located before a black dashed line, representing the start of the
elastic sheets at x = 1.

5.2.1 Characteristic wave parameters
Since it is necessary to investigate the characteristic properties of the wavefield as
a function of distance, wave parameters are calculated from measurements on open
water, at the start of the elastic sheet, at the middle of the sheet and at the end of
the sheet (distances shown in Figure 5.1). The locations on the elastic sheets with
distances are shown in Figures 4.3 and 4.4. The measurements are done at several
different locations to be able to characterize the wavefield of elastic waves and to
investigate the effect of attenuation inside the sheet.

5.2.1.1 Free surface reference measurements

To be able to analyse characteristic wave parameters for waves propagating into an
elastic sheet we have to compare the data with some threshold values. Therefore
measurements of the same irregular wavefield are taken with a free surface, and
with no elastic sheet in the tank. Wave parameters calculated from measurements
of free surface gravity waves, consisting of the same irregular wavefield used in the
experiments with elastic sheets, are presented in Table 5.5 below. These parameters
are used as threshold values in the comparison with the characteristic parameters
for waves in elastic material.

Parameter Tp = 1.1 s Tp = 1.0 s Tp = 0.9 s
fp [s−1] 0.916 0.977 1.099
ωp [s−1] 5.752 6.135 6.903
kp [m−1] 3.429 3.871 4.867
λp [m] 1.832 1.623 1.291
Hs [mm] 14.336 10.501 7.365
ac [mm] 5.069 3.712 2.604
ε 0.017 0.014 0.012

Table 5.5: Measurements of gravity waves with free surface used as reference mea-
surements for values calculated with elastic sheet.
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5.2.1.2 PEHD1

Parameter Open water Sheet start Mid-sheet Sheet end
Tp = 1.1 s
fp [s−1] 0.916 0.870 0.778 0.702
ωp [s−1] 5.752 5.465 4.890 4.410
kp [m−1] 3.429 3.055 2.445 1.990
λp [m] 1.832 2.063 2.582 3.181
Hs [mm] 13.326 7.499 4.301 2.563
ac [mm] 4.712 2.651 1.520 0.906
ε 0.016 0.008 0.003 0.002
Tp = 1.0 s
fp [s−1] 0.977 0.977 0.855 0.778
ωp [s−1] 6.136 6.136 5.368 4.890
kp [m−1] 3.871 3.851 2.954 2.445
λp [m] 1.623 1.632 2.150 2.582
Hs [mm] 10.417 4.560 2.117 1.142
ac [mm] 3.683 1.612 0.749 0.404
ε 0.014 0.006 0.002 0.001
Tp = 0.9 s
fp [s−1] 1.083 0.992 0.961 0.641
ωp [s−1] 6.807 6.232 6.040 4.027
kp [m−1] 4.738 3.984 3.750 2.210
λp [m] 1.329 1.594 1.710 2.844
Hs [mm] 7.513 2.679 1.302 0.662
ac [mm] 2.656 0.947 0.460 0.234
ε 0.013 0.004 0.001 0.0005

Table 5.6: Wave parameters for sheet type PEHD1 with all peak periods measured
and calculated at four different locations in the wave tank.
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5.2.1.3 PEHD2

Parameter Open water Sheet start Mid-sheet Sheet end
Tp = 1.1 s
fp [s−1] 0.915 0.885 0.854 0.778
ωp [s−1] 5.752 5.560 5.369 4.889
kp [m−1] 3.429 3.174 2.954 2.458
λp [m] 1.832 1.989 2.127 2.599
Hs [mm] 13.369 4.980 2.990 1.984
ac [mm] 4.7267 1.760 1.057 0.701
ε 0.016 0.006 0.003 0.002
Tp = 1.0 s
fp [s−1] 0.977 0.977 0.946 0.854
ωp [s−1] 6.136 6.136 5.944 5.369
kp [m−1] 3.871 3.866 3.630 2.969
λp [m] 1.623 1.625 1.738 2.160
Hs [mm] 10.630 3.866 1.686 1.214
ac [mm] 3.758 1.079 0.596 0.429
ε 0.015 0.004 0.002 0.001
Tp = 0.9 s
fp [s−1] 1.113 1.037 0 0.244
ωp [s−1] 6.998 6.519 0 1.534
kp [m−1] 5.004 4.376 0 0.966
λp [m] 1.258 1.446 0 6.504
Hs [mm] 6.397 2.035 0.848 0.608
ac [mm] 2.261 0.719 0.299 0.214
ε 0.011 0.003 0 0.0002

Table 5.7: Wave parameters for sheet type PEHD2 with all peak periods measured
and calculated at four different locations in the wave tank.

From Table 5.6, 5.7 and 5.8 it can be observed that peak frequency fp decreases as
waves propagate into the elastic sheet for all thicknesses, and as a function of spatial
distance. Wavenumber kp also decreases as a function of distance, and the length
of the waves increases so the wavefield gradually consists of larger wavelengths as it
propagates into the sheet. Significant waveheightHs is highly decreasing for all three
PEHD sheets. It is more decreasing for peak periods Tp = 1.1 s than for Tp = 0.9
s. Characteristic amplitude ac decreases aswell, and the most rapid decrease of this
parameter is found at the boundary between open water and the start of the sheet.
Steepness ε is also decreasing as waves propagate into a the elastic media, and is
approximately zero at the end of the sheet.
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5.2.1.4 PEHD3

Parameter Open water Sheet start Mid-sheet Sheet end
Tp = 1.1 s
fp [s−1] 0.915 0.869 0.854 0.625
ωp [s−1] 5.752 5.464 5.368 3.931
kp [m−1] 3.429 3.073 2.120 2.119
λp [m] 1.832 2.051 2.120 2.965
Hs [mm] 13.837 3.592 2.329 1.719
ac [mm] 4.892 1.270 0.823 0.607
ε 0.017 0.003 0.002 0.001
Tp = 1.0 s
fp [s−1] 0.977 0.977 0.946 0.641
ωp [s−1] 6.135 6.135 5.944 4.026
kp [m−1] 3.871 3.880 3.642 2.230
λp [m] 1.623 1.619 1.732 2.817
Hs [mm] 8.672 1.881 1.349 1.140
ac [mm] 3.066 0.665 0.477 0.403
ε 0.012 0.002 0.001 0.0009
Tp = 0.9 s
fp [s−1] 1.083 1.022 1.007 0.717
ωp [s−1] 6.807 6.423 6.327 4.506
kp [m−1] 4.738 4.259 4.133 2.807
λp [m] 1.329 1.479 1.526 2.238
Hs [mm] 6.797 1.327 0.855 0.766
ac [mm] 2.403 0.469 0.302 0.271
ε 0.011 0.002 0.001 0.0007

Table 5.8: Wave parameters for sheet type PEHD3 with all peak periods measured
and calculated at four different locations in the wave tank.

As mentioned the same characteristics as for PEHD1 can also be observed for PEHD2

and PEHD3. For the decreasing parameters, which are peak frequency fp, peak
wavenumber kp, significant waveheight Hs, characteristic amplitude ac and wave
steepness ε, one can observe that the amount of decrease is greatest for PEHD3,
and least for PEHD1. Summed up the decrease of characteristic wave parameters
is a function of thickness of the sheets. For PEHD2 the zero peak frequency fp was
dominating the wavefield at the middle of the sheet for Tp = 0.9 s. Therefore the
values for some of the parameters at this location could not be calculated.
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5.2.1.5 Latex

Parameter Open water Sheet start Mid-sheet Sheet end
Tp = 1.1 s
fp [s−1] 0.916 0.916 0.915 0.854
ωp [s−1] 5.752 5.752 5.752 5.368
kp [m−1] 3.429 3.375 3.375 2.940
λp [m] 1.832 1.862 1.862 2.130
Hs [mm] 13.858 13.042 11.124 8.869
ac [mm] 4.899 4.611 3.932 3.136
ε 0.017 0.016 0.013 0.009
Tp = 1.0 s
fp [s−1] 0.977 0.977 0.977 0.977
ωp [s−1] 6.136 6.136 6.136 6.136
kp [m−1] 3.871 3.840 3.840 3.840
λp [m] 1.623 1.636 1.636 1.636
Hs [mm] 9.942 9.115 7.382 5.811
ac [mm] 3.515 3.223 2.610 2.054
ε 0.014 0.012 0.010 0.007
Tp = 0.9 s
fp [s−1] 1.098 1.098 1.038 1.038
ωp [s−1] 6.902 6.902 6.519 6.519
kp [m−1] 4.867 4.861 4.336 4.336
λp [m] 1.291 1.292 1.449 1.449
Hs [mm] 6.881 6.157 4.676 3.460
ac [mm] 2.433 2.177 1.653 1.223
ε 0.012 0.010 0.007 0.005

Table 5.9: Wave parameters for sheet type Latex with all peak periods measured
and calculated at four different locations in the wave tank.

From Table 5.9 one can observe that fp, kp, Hs, ac and ε are decreasing parameters,
which is the same trend as for the PEHD sheets but the decrease is much less for the
Latex sheet. The peak frequency fp is approximately constant for all peak periods
Tp, but is slowly decreasing as a function of distance for Tp = 1.1 s and Tp = 0.9 s.
The wavenumber kp is also approximately constant through the sheet, but is slowly
decreasing, as a function of distance. It can be noticed that the rapid decrease in
significant waveheight Hs and characteristic amplitude ac is not to be found for
the Latex sheet, but both are slowly decreasing as a function of distance. Wave
steepness ε is less decreasing in the Latex sheet than for PEHD sheets, but still a
significant decrease is found.
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5.2.2 Time series

When studying the time series of surface elevations in the elastic sheets it can be
observed a typical attenuation effect, inceasing with thickness of the sheet. For
the Latex sheet we have no effect of this becuase the thickness is almost negligable
and the sheet more or less follows the surface displacement. For the PEHD sheets
the attenuation occurs as a result of sheet stiffness and the natural frequency of the
sheet. The stiffness is included in the equations for the sheet by the E-module value.

5.2.2.1 Free surface reference measurements

For all wavefields, wich means JONSWAP-spectrums with peak periods 1.1 s, 1.0 s
and 0.9 s, measurements are taken on a free surface in the wave tank with no elastic
sheet and at locations in front of the elastic sheet. Data provided for this thesis
consists of four probes measuring surface elevations for each location. A time series
plot of one location (four probe measurements) and a plot of surface elevation from
only one probe is shown in Figure 5.2 and 5.3, respectively.

Figure 5.2: Time series plot of all four probes per location. Measurements taken on
free surface.

Figure 5.3: Time series plot of one probe. Measurements taken on free surface.
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5.2.2.2 PEHD sheets

For all PEHD sheets, with thickness 1, 2 and 3 mm, the effect from stiffness of the
sheet occur at the very beginning of the sheet (location 1). Figure 5.4 shows effects
of the wave attenuation as waves propagate into the PEHD sheets with an E-modul
equal to 0.8 GPa. These measurements are taken at location 1. Figure 5.5 and 5.6
show surface elevation measurements taken at mid-sheet (location 10) and at the
end of the sheet (location 20), respectively. We notice that the amplitudes are "cut
off" and that they are replaced by small amplitudes on top of a bigger amplitude.
This is an effect of the waves being constrained by the elastic sheet. Waves are
attenuated as they propagate into a surface covered by a material with different
mechanic and elastic properties. Effect of attenuation also increases with distance,
hence for locations close to the sheet end the natural movement of the sheet is even
more noticeable, and the waves are almost completely attenuated.

Figure 5.4: Effect of attenuation and stiffness on elastic sheets. Measurements taken
at sheet start, location 1

Figure 5.5: Effect of attenuation and stiffness on elastic sheets. Measurements taken
at mid-sheet, location 10
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Figure 5.6: Effect of attenuation and stiffness on elastic sheets. Measurements taken
at sheet end, location 20

The effect of an high elasticity module must be taken in to consideration when
analysing calculated values and statistical properties of the wavefield. Parameters
such as significant wave height, characteristic amplitude, kurtosis and skewness could
be noticeably influenced by the attenuation as a function of distance into the elastic
sheet. The effect of stiffness also increase with increasing thickness of the elastic
sheets, resulting in a rapid development at the water-sheet boundary. The effects
of elasticity can hence be partitioned into gradual attenuation and rapid attenua-
tion. Gradual attenuation being distance dependent, and rapid attenuation being
dependent of elasticity module.

5.2.2.3 Latex sheet

For the Latex sheet, with an E-modul equal to 0.0015 GPa, the effects of stiffness
are almost unnoticable. Figure 5.7 shows surface elevation measurements at the
beginning of the elastic sheet, and Figure 5.8 shows the surface elevation at the end
of the sheet. From the figures it can be observed that attenuation from stiffness
mostly affects the low-amplitude waves.

Figure 5.7: Effect of attenuation and stiffness on elastic sheet. Measurements taken
at sheet start, location 1
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Figure 5.8: Effect of attenuation and stiffness on elastic sheet. Measurements taken
at sheet end, location 16
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5.2.3 Reflection from elastic sheet
Reflection coefficients are calculated for the open water location (see locations in
Figure 5.1) in front of the elastic sheet for all four sheets. This calculation (see
Section 3.4) is done to investigate how much of the wavefields energy is transmitted
through the boundary between a free surface and a surface covered by an elastic
sheet. The coefficient, R

I
, is calculated between the first and the third probe with

a distance of 0.4 m between them. The results are given in Table 5.11 below and
are compared to reflection coefficients calculated from reference measurements with
a free surface and no sheet in the wave tank shown in Table 5.10.

Tp [s] Reference measurements
1.1 0.177
1.0 0.187
0.9 0.377

Table 5.10: Reflection coefficient from reference measurements done on a free surface
with no sheet in the wave tank.

Tp [s] R/I - PEHD1 R/I - PEHD2 R/I - PEHD3 R/I - Latex
1.1 0.219 0.161 0.207 0.185
1.0 0.132 0.323 0.188 0.206
0.9 0.494 0.484 0.358 0.355

Table 5.11: Reflection coefficient in front of the elastic sheet for all sheet types used
in experiments.

The calculated reflection coefficients calculated show that the reflection of waves
at the boundary between free surface and surface covered by an elastic sheet is more
dominating for the wavefield with low peak period, Tp = 0.9 s. Reflection increases
as the peak period and angular frequency of the waves increases. The Latex sheet
gives the least reflection, hence it shows the lowest reflection coefficients.
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5.2.4 Wave phase speed and group velocity
To investigate wave propagation inside the elastic sheets wave phase speed cp and
group velocity cg are calculated from equations (3.54) and (3.55) in Section 3.3.6.

5.2.4.1 PEHD1

Figure 5.9: Phase speed and group ve-
locity as a function of spatial distance
for PEHD sheet with 1 mm thickness for
Tp = 1.1, 1.0, 0.9 s

5.2.4.2 PEHD2

Figure 5.10: Phase speed and group ve-
locity as a function of spatial distance
for PEHD sheet with 2 mm thickness for
Tp = 1.1, 1.0, 0.9 s
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5.2.4.3 PEHD3

Figure 5.11: Phase speed and group ve-
locity as a function of spatial distance
for PEHD sheet with 3 mm thickness for
Tp = 1.1, 1.0, 0.9 s

5.2.4.4 Latex

Figure 5.12: Phase speed and group ve-
locity as a function of spatial distance for
Latex sheet with 0.2 mm thickness for
Tp = 1.1, 1.0, 0.9 s

From the results it can be observed that both the phase speed and the group
velocity gradually increase as the waves propagate into the elastic sheets. For all
sheet types, cp and cg lie above the reference measurement line (red dashed line).
Speed cp and velocity cg decrease as a function of thickness and peak period Tp
and the group velocity seems to be approximately half the phase speed for all sheet
types. The values of wave phase speed and group velocities are slightly lower inside
the Latex sheet than they are inside the PEHD sheets.
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5.2.5 Amplitude attenuation
To study the attenuation of amplitudes of the wavefield the characteristic ampli-
tudes, ac, are plotted as a function of distance x in the wave tank. Following
Sutherland et.al the characteristic amplitudes are compared to theoretical values as
the exponential decay is described to follow the attenuation curve given by:

a(x) = a0e
−(β
√

ω
2β

( 1
sinh2kH

+ 1
kB

)k/cg)x (5.1)

5.2.5.1 PEHD1

Figure 5.13: Amplitude attenuation as
a function of spatial distance for PEHD
sheet with 1 mm thickness for Tp =
1.1, 1.0, 0.9 s

5.2.5.2 PEHD2

Figure 5.14: Amplitude attenuation as
a function of spatial distance for PEHD
sheet with 2 mm thickness for Tp =
1.1, 1.0, 0.9 s
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5.2.5.3 PEHD3

Figure 5.15: Amplitude attenuation as
a function of spatial distance for PEHD
sheet with 3 mm thickness for Tp =
1.1, 1.0, 0.9 s

5.2.5.4 Latex

Figure 5.16: Amplitude attenuation as
a function of spatial distance for Latex
sheet with 0.2 mm thickness for Tp =
1.1, 1.0, 0.9 s

Theoretical attenuation curve is represented as the red curve in all the plots,
where kinematic viscosity β is adjujsted to fit the measured data (see Table 5.4).
It should be taken into consideration that Sutherland et.al have concluded that
the given function for amplitude attenuation should include elasticity of the sheet
covering the surface, but is still not included here. From the figures it can be
observed that the energy intensity decreases exponentially as waves propagate into
the elastic sheets. The decrease in energy is much bigger and rapid for the PEHD
sheets than for the Latex sheet.
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5.2.6 Skewness and kurtosis
The statistical parameters skewness and kurtosis are calculated using the MatLab
functions skewness and kurtosis, respectively. It should be mentioned that for the
PEHD sheets the waves are stongly attenuated and the energy intensity is approxi-
mately zero at the end of the sheets, therefore the values are calculated as the mean
values of skewness and kurtosis for each location.

5.2.6.1 PEHD1

Figure 5.17: Skewness and kurtosis as
a function of spatial distance for PEHD
sheet with 1 mm thickness for Tp =
1.1, 1.0, 0.9 s

5.2.6.2 PEHD2

Figure 5.18: Skewness and kurtosis as
a function of spatial distance for PEHD
sheet with 2 mm thickness for Tp =
1.1, 1.0, 0.9 s
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5.2.6.3 PEHD3

Figure 5.19: Skewness and kurtosis as
a function of spatial distance for PEHD
sheet with 3 mm thickness for Tp =
1.1, 1.0, 0.9 s

5.2.6.4 Latex

Figure 5.20: Skewness and kurtosis as
a function of spatial distance for Latex
sheet with 0.2 mm thickness for Tp =
1.1, 1.0, 0.9 s
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Reference measurements on free surface in front of elastic sheet, represented by
the red dashed line, is added to all plots (Fig.5.17-5.20). Plots of skewness γ and
kurtosis κ as a function of distance in the wave tank show how the wavefield de-
velops in statistical terms. Plots of skewness γ shows sligthly oscillating values for
all sheets. For PEHD1 and PEHD3 with Tp = 0.9s one can observe a calculated
skewness of 1.0, this is the maximum calculated skewness for all sheets. For the
Latex sheet calculated skewness lies between a maximum of 0.16 and a minimum of
0.002.

From the values of kurtosis it can be observed that measurements on sheet
PEHD1 have a peak in kurtosis for peak period Tp = 1.1 s and 1.0 s at approx-
imately 1 meter into the sheet. For Tp = 0.9s the peak kurtosis is found at the
end of the elastic sheet. For PEHD2 one can also observe the peak kurtosis at 1
meter into the sheet for Tp = 1.0 s, but not for the two other peak periods. It is
also observed that the calculated kurtosis values decrease as thickness of the PEHD
sheets increase. For the Latex sheet the kurtosis κ seems to be increasing as waves
propagates into the Latex sheet, but from approximately 5 meters the values start
decreasing.
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5.2.7 Power spectral density
The power spectral density is calculated using pwelch function in MatLab, with
a 50% overlap and windows of 1000 values for each calculation. This function re-
turns the power spectral density (PSD) estimate of the input signal using Welch’s
overlapped segment averaging estimator. Since the surface elevation of four probes
is a matrix PSD is computed independently for each column and the result is the
one-sided power spectral density estimate of the surface elevation.

5.2.7.1 PEHD1

Figure 5.21: Power spectral density for
PEHD sheet with 1 mm thickness for
Tp = 1.1, 1.0, 0.9 s

5.2.7.2 PEHD2

Figure 5.22: Power spectral density for
PEHD sheet with 2 mm thickness for
Tp = 1.1, 1.0, 0.9 s
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5.2.7.3 PEHD3

Figure 5.23: Power spectral density for
PEHD sheet with 3 mm thickness for
Tp = 1.1, 1.0, 0.9 s

5.2.7.4 Latex

Figure 5.24: Power spectral density for
Latex sheet with 0.2 mm thickness for
Tp = 1.1, 1.0, 0.9 s

From the figures, Fig. 5.21-5.24 it can be observed that attenuation of waves
is a function of both sheet thickness and peak period. The attenuation of waves
increase as the thickness increase and peak period Tp decrease. Therefore the waves
are mostly affected by attenuation for sheet PEHD3 and Tp = 0.9 s. The least
attenuated waves are found for the Latex sheet with Tp = 1.1 s. In addition to
attenuation it can also be observed that the peak frequency fp tends towards lower
values as the wavefield propagates into all elastic sheets.
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5.2.8 Wavenumber-frequency spectrum
For all sheets the wavenumber-frequency spectrum is calculated using the two-
dimensional Fourier transform. The spectrum provides information and visibility
of linear- and non-linear effects of the wavefield in terms of conformity with the
dispersion relation. Because of aliasing of the signals the spectrum needed to be
rearranged [24]. For the PEHD sheets, the energy intensity of linear effects are not
visible because of the highly attenuated time series of waves from the middle to
the end of the elastic sheet. The spectrum is plotted as a function of (k, ω) with
the dispersion relation curve to illustrate linear effects and its harmonics. The non-
linear effects arise as we plot the spectrum with logarithmic scale as shown in the
plots with dB colorbar. Both linear and logarithmic scaled plots show the energy
intensity of the wave distribution.

5.2.8.1 Aliasing

Plots of the wave spectrums as a function of (k, ω) show a clear aliasing effect of
the signals in the spatial domain. Figure 5.25 and 5.26 below show the linear and
logarithmic scaled plots of the (k, ω)-spectrums with the aliasing effect of signals.
This effect is later removed and the de-aliased spectrum is retrieved for both cases.
The red lines, representing n∆k where n = 1, 2, 3, . . . calculated from 2π

L
where L is

the measuring length in x-direction, are the measurement grid.

Figure 5.25: Linear scaled spectrum plot
with aliasing for Latex sheet with 0.2 mm
thickness for Tp = 1.1 s. Black dashed
line shows dispersion relation for elastic
sheet.

Figure 5.26: Logarithmic scaled spec-
trum plot with aliasing for Latex sheet
with 0.2 mm thickness for Tp = 1.1 s.
Black dashed line shows dispersion rela-
tion and its harmonics for elastic sheet.

The grid-lines, or reconstruction lines, show the grid in the spatial domain. To
retrieve the de-aliased spectrum, values are replaced from negative wavenumbers k
to continue the values of the spectrum at the positive wavenumbers, making the
spectrum to be periodic. This means that the entire part of the spectrum ranging
from zero to the minimum wavenumber, is replaced to the maximum wavenumber
extending the spectrum to be able to investigate effects of the wavefield. This
principle is used for both the linear and logarithmic scaled plots.



60 CHAPTER 5. EXPERIMENTAL RESULTS

5.2.8.2 Free surface reference measurements

As earlier mentioned reference measurements are taken on a free surface with no
elastic sheet in the tank. The reference measurements are processed in the same
way, hence taking the two-dimensional Fourier transform of the surface elevation, as
for the measurements taken on the elastic sheet. It should be noted that the spatial
resolution is much worse for the free surface measurements than for the elastic sheets,
as these measurements are taken from only four probes, hence one location.

Figure 5.27: Linear scaled spectrum plot
for open water with Tp = 1.1, 1.0, 0.9 s.
Black dashed line shows dispersion rela-
tion for gravity waves.

Figure 5.28: Logarithmic scaled spec-
trum plot for open water with Tp =
1.1, 1.0, 0.9 s. Black dashed line shows
dispersion relation for gravity waves.
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5.2.8.3 Linear effects

Plot of the linear scaled wavenumber-frequency spectrum shows if the linear disper-
sion relation is fulfilled for waves in the elastic sheets. For some of the peak periods
with the PEHD sheets the waves are highly attenuated, especially low peak period
Tp, which can be observed in the figures below.

Figure 5.29: Linear scaled spectrum plot
for PEHD sheet sheet with 1 mm thick-
ness for Tp = 1.1, 1.0, 0.9 s. Black dashed
line shows dispersion relation for elastic
sheet.

Figure 5.30: Linear scaled spectrum plot
for Latex sheet with 2 mm thickness
for Tp = 1.1, 1.0, 0.9 s. Black dashed
line shows dispersion relation for elastic
sheet.
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Figure 5.31: Linear scaled spectrum plot
for PEHD sheet sheet with 3 mm thick-
ness for Tp = 1.1, 1.0, 0.9 s. Black dashed
line shows dispersion relation for elastic
sheet.

Figure 5.32: Linear scaled spectrum plot
for Latex sheet with 0.2 mm thickness
for Tp = 1.1, 1.0, 0.9 s. Black dashed
line shows dispersion relation for elastic
sheet.

The plot of energy intensity in Latex sheet shows a clear linear relation as energy
intensities are located around the dispersion relation curve. As peak period Tp
decreases the energy intensity tend towards higher wavenumbers k. For PEHD1 the
energy has a more cloudly distribution. Energy is distributed over a larger angular
frequency range, and shows the same trend as the Latex sheet for decreasing peak
period. For all PEHD sheets with Tp = 0.9 s the two-dimensional spectrum does
not show any energy intensity.
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5.2.8.4 Non-linear effects

To investigate non-linear effects of the wavenumber-frequency spectrum the spec-
trum is plotted with logarithmic scale. The spectrum is firstly made dimensionless
as 10 log( S

Smax
) and then plotted as a function of (k, ω). The plot then shows the

relative energy intensity in decibell (dB) of the waves for given (k, ω) values. Linear
dispersion relation and its harmonics are plotted as (k, ω), (2k, 2ω) and (3k, 3ω),
respectively, as black dashed lines in the plots [26].

Figure 5.33: Logarithmic scaled spec-
trum plot for PEHD sheet sheet with
1 mm thickness for Tp = 1.1, 1.0, 0.9 s.
Black dashed line shows dispersion rela-
tion and its harmonics up to the third
order.

Figure 5.34: Logarithmic scaled spec-
trum plot for PEHD sheet with 2 mm
thickness for Tp = 1.1, 1.0, 0.9 s. Black
dashed line shows dispersion relation and
its higher harmonics up to third order.
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Figure 5.35: Logarithmic scaled spec-
trum plot for PEHD sheet sheet with
3 mm thickness for Tp = 1.1, 1.0, 0.9 s.
Black dashed line shows dispersion re-
lation and its higher harmonics up to
fourth order.

Figure 5.36: Logarithmic scaled spec-
trum plot for Latex sheet with 0.2 mm
thickness for Tp = 1.1, 1.0, 0.9 s. Black
dashed lines shows linear dispersion re-
lation and its harmonics up to the third
order.

One can observe from the spectrum plots above that the resolution in space is
worse for PEHD sheets than for the Latex sheet. For the Latex sheet the most of the
energy is located along the first harmonic (k, ω), but there are relative intensities
from the zeroth and second harmonic to be found as well. For the PEHD sheets the
relative energy intensity along the first harmonic is to be found at higher wavenum-
bers k than for the Latex sheet. It also seems as the relative energy intensity is
distributed over a larger angular frequency interval for PEHD sheets, and the size
of the interval is a function of thickness.
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5.2.9 BFI
The Benjamin-Feir Index (BFI) is often used to indicate instability of the wavefield.
The BFI is, as earlier mentioned, the ratio between steepness and bandwidth of the
measured surface elevation (2.33). BFI is plotted as a function of spatial distance
for each sheet, where mean values are calculated from four probe measurements for
each location.

5.2.9.1 PEHD1

Figure 5.37: Benjamin-Feir index (BFI)
for PEHD sheet with 1 mm thickness for
Tp = 1.1, 1.0, 0.9 s

5.2.9.2 PEHD2

Figure 5.38: Benjamin-Feir index (BFI)
for PEHD sheet with 2 mm thickness for
Tp = 1.1, 1.0, 0.9 s
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5.2.9.3 PEHD3

Figure 5.39: Benjamin-Feir index (BFI)
for PEHD sheet with 3 mm thickness for
Tp = 1.1, 1.0, 0.9 s

5.2.9.4 Latex

Figure 5.40: Benjamin-Feir index (BFI)
for Latex sheet with 0.2 mm thickness for
Tp = 1.1, 1.0, 0.9 s

Calculations of Benjamin-Feir Index for PEHD sheets show an exponential decay
as a function of distance, and that the wavefield tends to develop towards a more
stable state inside the elastic sheets as the calculated values decrease. For the
PEHD1 sheet there can be observed a very small local instability at 2.5 and 4.5
meters for all peak periods. For PEHD2 and PEHD3 the local instability is only
found at 4.5 meters for both sheet types. The amount of instabilities increase for
the Latex sheet, and is hence showing a maximum BFI of 0.12 inside the elastic
sheet.



Chapter 6

Discussion

This chapter contains discussions of the experimental results presented in Chapter
5, and is divided into six sections. The first section gives a discussion on the tables
of wave characteristics, and the second section discusses the reflection at the front
of the elastic sheets. The third and fourth section discusses calculated skewness
and kurtosis, phase speed and group velocity, respectively. In the fifth section wave
attenuation is discussed and in the sixth section the discussion on non-linear effects
is contained.

6.1 Wave characteristics

As mentioned in Chapter 5, Section 5.2.1, the results of wave propagation into
an elastic cover are gradually decreased peak frequency in addition to decreasing
wavenumber. Decreasing wavenumber means that the wavefield consists of longer
waves inside the elastic sheets than on open water, and that shorter waves are more
exposed to attenuation. The transition from a wavefield dominated by shorter waves
to a wavefield dominated by longer waves happens gradually as waves propagate
further into the elastic sheets, and wavelength increases as a function of distance.
Significant waveheight and characteristic amplitude decrease drastically when the
surface environment is changed, and the changes in these parameters are rapid once
the wavefield enters the elastic sheets. These rapid changes in parameters can be due
to amplitude attenuation and decrease in energy. The steepnesses of the waves are
shown to decrease inside the elastic sheets, assuring that non-linear effects causing
wave breaking should not play an important role at any location since ε� 1 for all
incidents measured experimentally.

6.2 Reflection at sheet edge

From Table 5.11 one can observe that the maximum reflection coefficient of 0.494
is found for Tp = 0.9 s and sheet type PEHD1. For all sheet types the highest
coefficients are found for Tp = 0.9 s, which can mean that a wavefield with low
peak period, hence high frequency, give the most reflection from the elastic sheets.
It could be that a higher value of sheet thickness hi should correspond to a larger
reflection coefficient, but from the results of reflection coefficient in this thesis that

67
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does not seem to be the case. Even though the Latex sheet is the thinnest sheet,
the calculated reflection coefficients for this sheet does not show remarkable devia-
tions from the calculated coefficients for PEHD sheets. In addition the values from
measurements at the location in front of elastic sheets does not vary alot from the
reference measurements, which could mean that the effect of reflection from the
sheet edge generally is low for all four sheets.

6.3 Skewness and kurtosis

The calculated skewness and kurtosis values from Subsection 5.2.6 shows a few de-
viating values from a Gaussian sea state, but there is still not an equal development,
or trend, for all sheets. One can observe that for the thinnest sheets, hence PEHD1

and Latex, the values of kurtosis start increasing once the wavefield propagates into
the elastic sheets. It seems as kurtosis builds up until mid-sheet, and having a
maximum bigger than three before values start decreasing again. Having a kurtosis
value higher than the kurtosis for a Gaussian sea state implies that it can be as-
sumed more big waves in the wavefield inside the elastic sheets, than for a normal
distribution. This gradually increasing curve of kurtosis has also been discovered
in earlier studies for waves propagating from deep to shallow water [22] [11]. It
could be that an equal statistical development for waves gradually adapting into the
elastic material is found. It seems as the evolution of kurtosis can be believed to
be energy dependent, and because of the high attenuation rate for PEHD sheets it
could be that it does not show for PEHD2 and PEHD3.

Evolution of skewness seem to be increasing for some sheets, and decreasing for
others. As mentioned there are no typical trends to observe. Hence it seems as
skewness is more negative inside elastic sheets for sheet types PEHD1 and PEHD2

than for PEHD3 and Latex. Why the values of skewness are negative for these two
sheets, and thus the distribution of the surface elevation is more skewed towards the
left than for a normal distribution we can not explain. For the positive values of
skewness the distribution of the surface elevation is more skewed towards the right.

Unfortunately, there has not been found earlier studies on calculated kurtosis and
skewness for waves in elastic material. Therefore we are not able to compare these
calculated values to anything else than statistical values for a Gaussian sea state.
Having skewness γ 6= 0 and kurtosis κ 6= 3 states that the wavefield is non-Gaussian
as it adapts to the elastic environment.

6.4 Phase speed and group velocity

Calculations (3.3.6) and plots (5.2.4) of phase speed cp and group velocity cg shows
that both are gradually increasing as waves propagate into elastic sheets. This ap-
plies for all sheet types and thicknesses. It also appears as the group velocity cg is
approximately half of the phase speed, hence cg ≈ 1

2
cp as for free surface gravity

waves. This is also discovered in Lui & Mollo-Christensen’s article [15]. On the
other hand Sree, Law & Shen [23] found the phase speed for elastic waves to be
less than the phase speed for free surface waves, but also increasing as a function of
space. In this thesis the phase speed for elastic waves is found to be bigger than the
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free surface phase speed, but agrees with the spatial increase.

Why the increase in phase speed and group velocity one should ask. It might
seem more intuitive that both the phase speed and group velocity should decrease
as waves propagate into an elastic cover where surface friction occurs. Even in
the thickest PEHD sheet the phase speed and group velocity increase through the
sheet. A possible explanation for the increase could be the elastic material properties
making wave propagation faster. It could also be a result of the decrease in energy,
since the amplitudes attenuates and since the wavefields are dominated by longer
waves than for a free surface, they travel faster through the sheet. By inserting
wavenumber k into equations for cp (3.56) and cg (3.58) one can be sure that low
wavenumbers, hence long waves, have higher phase speed and group velocity than
for larger wavenumbers.

6.5 Amplitude attenuation

Measured amplitudes, calculated to be characteristic amplitudes ac, for the wave-
field show a distinct exponential decay through the sheet. The exponential decay fits
the theoretical attenuation curve of Sutherland et.al. as the kinematic viscosity β is
used as a free variable (see Table 5.4). The attenuation curve fits the measurements
as the value for kinematic viscosity is increased as a function of both increasing
thickness hi and decreasing peak period Tp. This could mean that viscosity and
dissipation from a boundary layer underneath the elastic sheet becomes even more
important as the thickness of the surface cover increases, and as the frequency fp of
the wavefield increases. In addition to viscous effects, a rapid decay in amplitude at
the start of the elastic sheet is to be observed for all PEHD sheets. This could be
explained from the high E-module since this decay does not follow the theoretical
attenuation curve. If properties as elasticity were included in the theoretical func-
tion for spatial attenuation rate it might have given a better fit to the measurements
on PEHD sheets.

Amplitude attenuation can also be observed in both the one-dimensional fre-
quency spectrum and the two-dimensional, linear scaled wavenumber-frequency spec-
trum as the energy intensity decreases with decreasing peak period Tp through the
elastic sheets. One can also observe that energy intensity decreases as a function
of sheet thickness, as some of the plots of the wavenumber-frequency spectrum do
not show any intensities for PEHD sheets. This observation is also consistent with
both the time series plots and the amplitude decay plots where the amplitudes are
approaching to zero.

6.6 Non-linear effects

The intensities of the wavenumber-frequency spectrums with a logarithmic scale
can be analysed as we know that the harmonic curves makes up a hierarchy of
increasing order of steepness, defined by kpac = ε. Normalizing the wave solution
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(2.1) by multiplying it with wavenumber k we obtain:

kη = (ak)η1 + (ak)2η2 + (ak)3η3 +O(ak4), (6.1)

where one can observe that the first harmonic is of order ε, the second harmonic
is of order ε2 and so on. Studying the logarithmic scaled wavenumber-frequency
spectrums from measurements on the elastic sheets, one can recognize energy in-
tensities around the first harmonic (k, ω) being of relative intensity ε. Which for
the Latex and PEHD1 sheet are approximately of order 10−2, and for PEHD2 and
PEHD3 are of order 10−3 (see Subsection 5.2.1 for values of ε). There is also a pos-
sibility that energy around the the second harmonic is visible for the Latex sheet,
both for Tp = 1.1 s and 1.0 s. The second harmonic relative intensity should be
of order ε2 ≈ 10−4, which one can observe in Figure 5.36 agrees with the relative
intensity along the second harmonic curve.

In the wavenumber-frequency plots of the wavefield for the PEHD sheets the
resolution is poor, and it is therefore hard to seperate intensities from blurriness.
It can though be discussed if there are energy at some higher harmonics shown for
PEHD2 and PEHD3, or if these intensities are just a result of attenuation or poor
spatial resolution. Since the intensities of the harmonics often are observed having
a cloudly distribution, the interpretation of these intensities is not certain. The
reason for the second harmonic relative intensity can also be discussed. It could be
a possibility that the BFI would increase as a function of distance inside an elastic
environment, and that this could be investigated if the elastic sheet used in ex-
periments were longer. The reasons for visible non-linearities in logarithmic scaled
spectrums needs to be further investigated, and are therefore not further commented.

For the Latex sheet the zeroth harmonic can clearly be observed as a straight
line with an approximate relative intensity of 10−4. This is the same intensity as for
the second harmonic, and it might be that this harmonic is of order ε2 as observed
in plots. It seems to be the case for the PEHD sheets aswell, even though the zeroth
harmonic line is not as visible for this sheet type. The zeroth harmonic intensity has
also been discovered for waves on finite depth kh > 1, in the article The non-linear
Schrödinger method for water kinematics on finite depth by Trulsen et.al. [30]. It
should be noted that the propagation of waves in elastic material has been modelled
by the non-linear Schrödinger equation in Wave propagation in a solid ice pack [15]
as earlier mentioned and simulated in several articles [2], [13], so there could be a
possibility that the zeroth harmonic is of the same order as concluded in the article
of Trulsen et.al.. Still the harmonic expansions for waves in elastic material is yet to
be derived, but one can still conclude that non-linear effects can be observed from
the results in this thesis.

In addition to the energy intensities concentrated around the harmonics, one can
also observe intensities not related to the dispersion relation, being distributed as
a cloud around the harmonics. This distribution can be found both for the linear
scaled and the logarithmic scaled spectrums.

For the logarithmic scaled spectrum a big amount of intensities being equal to
the intensities found around the first harmonic, O(ε), are also to be found at low
wavenumbers k and approximately the peak angular frequency ωp. This is to be
found for all elastic sheets, and could be an imprint of attenuation of short waves
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since we know that the wavenumber increases through the sheets. The intensities
which are not related to harmonics could also be classified as artifacts from the
measurements, as earlier observed in measurements from MARIN’s Seakeeping and
Manoeuvring Basin by T.M. Taklo et.al. [2]. If this is the case the amount of artifacts
from experiments done for this thesis is much bigger than found by T.M. Taklo
et.al., and it is believed that there must be another explanation. Unfortunately,
the explanation of these intensities is still not certain and should be further studied
before anything can be concluded.

The energy intensities in the linear scaled spectrums are clearly distributed along
the dispersion relation, but still one can recognize the distribution as cloudy over
a larger frequency area. This type of energy distribution can be seen for all elastic
sheets, but is more clear for PEHD1. The distribution could be due to non-linear
effects since it does not follow the first harmonic, but rather seems as its tangent.
This is earlier found for non-linear Schrödinger solutions, and it is believed that the
results from linear scaled spectrums can be explained by the non-linear terms from
this equation [2].





Chapter 7

Conclusions and further work

7.1 Conclusions
This thesis presents an experimental investigation on wave propagation from open
water into water covered by an elastic sheet. A JONSWAP-spectrum with three
different peak frequencies, fp, are used and surface elevation is measured as a func-
tion of time and space, both on open water and on elastic sheets. Results show
that the characteristics of elastic waves gradually changes, and the wavefield be-
comes non-Gaussian as γ 6= 0 and κ 6= 3. Hence the central limit theorem breaks
down, and the wavefield can not be assumed to consist of independent contribu-
tions. Phase speed and group velocity are concluded to gradually increase as a
function of distance inside elastic sheets. Unlike rates of amplitude attenuation,
which show a rapid attenuation due to effects of elasticity at water-sheet boundary.
Non-linearities do occur as waves propagate into new surrondings, including into a
surface covered by an elastic sheet. Relative energy intensities from zeroth, first and
second harmonics are discovered from the surface elevation over the elastic sheets,
and are concluded to follow the same order of steepness as derived in the article The
nonlinear Schrödinger method for water wave kinematics on finite depth of Trulsen
et.al.. Accordingly the zeroth, first and second harmonic is of O(ε2), O(ε) and
O(ε2), respectively. In addition, the form of the linear scaled energy distribution
in the (k, ω)-domain shows similarity with solutions of the non-linear Schrödinger
equation. The similarity being energy distributed as a cloud around the first har-
monic. Calculation of Benjamin-Feir Index is done, and small instabilities are found
inside elastic sheets. It could be a possibility that the effect of these instabilities can
develop if propagation distance inside the elastic environment were longer. Wave
characteristics, evolution of phase speed and group velocity show that waves gradu-
ally adapts to the new elastic surroundings, as mentioned parameters are a function
of distance x into the elastic sheets covering the surface.

7.2 Further work
To follow up this investigation on wave-ice interaction, measurements should be
taken with an even higher resolution both for open water measurements in front
of elastic sheets and on the elastic sheets. In addition the duration of the surface
elevation measurements and the length of the elastic sheets should be extended, to
be able to investigate the imprint of non-linear effects found in this thesis. Benjamin-
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Feir Index could then be further investigated to unveil if occasions where extreme
waves occur are to be found, and hence could be the reason for ice cover breakup.
The derivation of harmonics for elastic waves should also be derived to compare
results with theoretial values, and to prove the relative intesities of the harmonics
from logarithmic scaled spectrums.



Appendix A

Input-file

A.1 JONSWAP

In this particular experiment an irregular and stationary wavefield based on the
JONSWAP-spectrum is used to provide propagating waves in the tank. The numer-
ical input, which is uploaded in WaveLab, is made by using Matlab and consists
of signals representing voltage V to make irregular waves in the wave tank. When
making the signal file in Matlab propagation time, peak period and amplitude can
be chosen. This way convergence of different parameters, such as kurtosis and skew-
ness, can be checked for the input-file and the propagation time can be chosen to
assure converged results.

A.1.1 Input-file

1
2 % JONSWAP -spectrum and time series
3 % Saving the time series in a usable format for the paddle.
4
5 % Formula for the JONSWAP -spectrum from
6 % http :// www.codecogs.com/library/engineering/fluid_mechanics/waves
7 % /spectra/jonswap.php
8
9 % Parameters

10 Tp = 1.0; % Peak period
11 T_min = 30; % How many minutes the time series should last
12 N = 3000; % Number of points in spectrum
13 alpha = 0.001; % Amplitude factor
14 V_0 = 5.5; % Voltage in mid-position
15 starttime = 30; % Number of seconds before the series is recorded
16 SampleRate_JONSWAP = 50;
17 delta_t = 1/ SampleRate_JONSWAP;
18
19 g = 9.81;
20 gamma = 3.3;
21 beta = 5/4;
22 omega_p = 2*pi/Tp;
23 % Frequencies in the sum
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24 omega_n = linspace(omega_p *0.64,omega_p *2.9,N)’;
25 sigma = ones(size(omega_n ));
26 sigma(omega_n <=omega_p) = 0.07;
27 sigma(omega_n >omega_p) = 0.09;
28 delta_n = rand(N ,1)*2* pi; % Phase shifting vector
29
30 % Calculating spectrum
31 a = exp(-(omega_n -omega_p).^2./(2* omega_p ^2* sigma.^2));
32 % The spectrum , which is the weights on the different omega_n
33 S = alpha*g^2* omega_n.^(-5).*exp(-beta*omega_p ^4* omega_n.^(-4))...
34 .*gamma.^a;
35
36 % Making time series
37 T = T_min *60; % Length of time series in seconds
38 t = delta_t:delta_t:T+starttime; % time vector in seconds
39 ant_t = length(t); % number of points in the time vector
40 % S_n is a matrix where the coloumns are the values in S
41 [kast S_n] = meshgrid (1:ant_t ,S);
42 % DELTA_n is a matrix where the coloumns are the values in delta_n
43 [kast DELTA_n] = meshgrid (1:ant_t ,delta_n);
44 tension = V_0 +sum(sqrt(S_n).*cos(omega_n*t+DELTA_n ));
45
46 % Ramp up from mid-position at start
47 % number of seconds to ramp up the movement
48 oppramp_tid = 3;
49 opprampefaktor = linspace (0,1, oppramp_tid*SampleRate_JONSWAP);
50 tension (1: length(opprampefaktor )) = ...
51 V_0+( tension (1: length(opprampefaktor ))-V_0)...
52 .*opprampefaktor;
53
54 % Ramp down to mid-position in the end
55 % number of seconds to ramp down the movement
56 nedramp_tid = 3;
57 nedrampefaktor = linspace (1,0, nedramp_tid*SampleRate_JONSWAP);
58 tension(end-(length(nedrampefaktor)-1):end) = ...
59 V_0+( tension(end-(length(nedrampefaktor)-1): end)-V_0)...
60 .*nedrampefaktor;



Appendix B

Post processing

After the time series of surface elevation is carefully studied the data is processed by
interpolating random dropouts that does not seem to fit in to the surface elevation,
and are classified as errors from the measurement probes.

B.1 InterpolateDropOuts

1 function [eta_out] = InterpolateDropouts(dt ,eta ,
2 UpperThreshold , LowerThreshold , InnerThreshold)
3
4 % This function removes peaks and dropouts by setting them
5 % to NaN values and interpolating them afterwards.
6
7 % t is the time array for our measured surface elevation
8 % eta is the surface displacement matrix containing 4
9 % coloumns of probes

10 % Uppertheshold: highest peak allowed
11 % Innertheshold: maximum difference allowed between two
12 %neighbouring points
13 T = length(eta)*dt;
14 t = linspace(0,T,length(eta));
15
16 InterpolationMethod = ’pchip ’;
17 for ProbeNo = [1, 2, 3, 4]
18 for i=1: length(eta)-1
19 if abs(eta(i+1,ProbeNo) - eta(i,ProbeNo )) > InnerThreshold ||...
20 eta(i,ProbeNo) > UpperThreshold || eta(i,ProbeNo) < ...
21 LowerThreshold || abs(eta(i,ProbeNo) -eta(i+1,ProbeNo )) >...
22 InnerThreshold
23
24 eta (i, ProbeNo ) = NaN;
25
26 end
27 end
28
29 eta(any(isnan(eta),2),ProbeNo) = NaN;
30 eta_out(:,ProbeNo) = interp1(t,eta(:,ProbeNo),t,InterpolationMethod);
31
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32 for j = 1: length(eta_out)
33 if (eta_out(j,ProbeNo )) > UpperThreshold || ...
34 eta_out(j,ProbeNo) < LowerThreshold
35
36 eta_out(j,ProbeNo) = 0;
37 end
38 end
39 end
40
41 end
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