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Det er ganske sandt, hvad Philosophien siger, at Livet maa
forstaaes baglænds. Men derover glemmer man den anden
Sætning, at det maa leves forlænds.

It is perfectly true, as the philosophers say, that life must be
understood backwards. But they forget the other proposition,
that it must be lived forwards.

SØREN KIERKEGAARD
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Introduction

Risk measurement is vital to the finance industry. Inadequate risk analysis can
misprice derivatives, underestimate volatilities, and in extreme situations, lead
to bankruptcies and collapse of the entire finance sector.

In insurance and financial mathematics, a risk measure is used to quantify
the risks faced by an asset or a financial position within a certain time frame. It
can also be used to calculate a monetary amount that has to be kept in reserve.
Regulators can thus impose limits on the risks taken by financial institutions,
such as banks and insurance companies. The Solvency II directive in EU and
risk supervisions by Finanstilsynet in Norway can serve as such examples.

Risk measures are a subject that has been widely studied. The literature can
trace back to [Art+99], where the authors proposed coherent risk measures as
axiomatic tools to study riskiness of financial positions. By weakening the co-
herence conditions, [FS04] managed to represent convex risk measures in general
probability spaces. Authors in [FR02] obtained the same result independently.

Yet all these above mentioned papers investigated risk measures in a static
environment. In the years between 1999 and 2002, researchers in the field stud-
ied risk measures with a different set of axioms, and in doing so they generalised
the study in a dynamic setting, as authors in [QS13] and [Ros06] pointed out.

This thesis focuses on dynamic risk measures generated by backward stochas-
tic differential equations (BSDEs). The author in [Ros06] identified the link
under the Brownian motion framework, whereas the author in [Roy06] gener-
alised the connection in a setting where the BSDES are driven by Lévy noises.
In either case, we try to derive a risk measure ρ from a given Lipschitz BSDE
driver f and a terminal time T , so that we can measure the riskiness of a fi-
nancial position X at time t. In other words, we use the solution of the BSDE,
driven by either a Brownian motion or Lévy processes in general, together with
a terminal condition X, to represent the risk measure ρ at time t. Authors in
[QS13], among others, have investigated and presented some nice properties of
dynamic risk measures in the setting of BSDEs with jumps.

In this thesis, we will study dynamic risk measures generated by BSDEs
driven by time-changed Lévy noises. This is a more general framework, thanks
to Change of Time Methods (CTMs). The main idea of CTMs is to perturb the
time line of a complicated stochastic process with another stochastic process
and obtain a relatively simpler process. In this way, it enables us to represent
processes with a complicated structure, usually referred to as the base, by some
well-known processes, such as the Brownian motion.

In the meantime, this extra stochastic component at the level of time pertur-
bation in the underlying model gives us an alternative to the use of stochastic
volatility. One may refer to [Swi16] for a general introduction to CTMs theory.
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2 INTRODUCTION

Another benefit of CTMs is that it enables us to better describe the price
dynamics of financial derivatives. Compared with the classical Black-Scholes
model which assumes constant volatility, CTMs allows us to achieve better
description of the so-called “volatility smile”, as empirical data suggest that
volatility tends to vary with respect to the option strike price and expiration
time. The use of CTMs here represents the transition from the real-time clock
to the trading clock, providing us with a method to deal with the fact that
volatility increases with the intensity of trading activities.

Lévy processes, being a rich class, are widely used as the base process in the
literature, and in this thesis, we use time-changed Lévy noises to drive BSDEs.
In particular, this thesis considers mainly time changes that are absolutely con-
tinuous with respect to the Lebesgue measure. One of the difficulties of working
with this type of time change is that the resulting time-changed process may
no longer be a Lévy process. In the meantime, this process still has many
interesting properties: being conditionally a Lévy process and, under certain
conditions, a martingale. Authors in [DS14] have presented many interesting
results in this respect, and this thesis refers to [App09] for a general introduction
to Lévy processes.

Figure 1: An illustration of connections between different components in the
thesis

Figure 1 illustrates the three components discussed in this thesis and the
connections among them. The connection between dynamic risk measures and
non-linear expectations is both natural and well-established in the literature.
On the other hand, the relationship between non-linear expectations and BSDEs
is complicated. Classical results have shown that, under the Brownian motion
framework, we can define a non-linear expectation by a so-called “g-expectation”
described by the given BSDE. This type of expectation was later generalised
in the setting of BSDEs with jumps by researchers such as Royer in [Roy06],
and then named as “f -expectation” to differentiate from the classical Brownian
motion case.

Yet if we start from opposite direction and try to represent a given non-linear
expectation by a time-changed BSDE with jumps, things are much more diffi-
cult. It turns out that, in order to show this result, it requires establishing the
Doob-Meyer Decomposition in the non-linear expectation martingale setting.
This is particularly difficult since classical arguments for such decomposition
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rely heavily on the linearity of ordinary expectations. To our best knowledge,
Peng and researchers in [Pen99] and [Coq+02] are the first ones to establish
this result in the Brownian motion setting. Royer in [Roy06] is one of the first
to generalise this result in the setting of BSDEs with jumps. This thesis dedi-
cates the entire Chapter 4 to proving this important result in our time-changed
setting, and this is, so far as we know, the first time this result is established
under such a framework.

This thesis starts by discussing BSDEs with jumps in the classical setting,
and then develops the subject further under the framework of time-changed Lévy
noises with an absolutely continuous change of time component. We present
in Chapter 3 a representation of convex and coherent risk measures derived
from such time-changed BSDEs, and then prove the Inverse Theorem under the
time-changed framework in Chapter 4. In this way, this thesis establishes a
full connection between dynamic risk measures and time-changed BSDEs with
jumps under a more general framework.

We organise this thesis as follows. In Chapter 1, we recall the classical setting
of BSDEs with jumps, present definitions and properties we will discuss in the
following thesis, and review the theory of risk measures as well BSDEs with
jumps. Results reviewed in Chapter 1, recalled from [FS04], [Ros06], [AP11]
[Roy06] and [QS13], are obtained in the classical setting.

The key part in Chapter 1 is to trace connections between dynamic risk
measures and BSDEs established in the classical setting, the so-called “non-
linear expectation”. Inspired by the classical results, this thesis sets out to
establish the same connection in a time-changed setting in Chapter 3.

Chapter 2 focuses on the discussion of CTMs. We start the chapter by
reviewing the theory of CTMs as well as properties of time-changed Brownian
motion noises, before we proceed to examine properties of the more general
time-changed Lévy processes. As mentioned earlier, one of the difficulties of
working with time-changed Lévy processes is that they may no longer stay
Lévy processes. Chapter 2 presents two of the most widely used time change
processes, namely, subordinators and absolutely continuous time change, and
compare how the time-changed Lévy processes behave under them. Most of the
theoretical results used in this Chapter are recalled from [BS10].

In the end of Chapter 2, we review the framework proposed in [DS14], where
authors from the paper apply absolutely continuous time changes to a Brown-
ian motion and a centred, pure jump Lévy process, and use these time-changed
noises to drive BSDEs. Given the conditional stationary independent incre-
ments and absolute continuity, this time-changed framework has several “nice”
properties, including the martingale property for the time-changed noises. We
will continue our study of time-changed BSDEs under this framework.

One thing we particularly need to point out is, in setting up the frame-
work, we need to make use of the filtration G, and all the results we obtain
are G-adapted. This is a big, technical filtration that includes “anticipating-
information”, which is the entire history of the time-changed noises that we
use to generate the BSDEs. In applications, we can still solve an optimal con-
trol problem with a classical performance functional, and this is achieved by
projecting the results we obtain in filtration G onto filtration F̃, the smallest
right-continuous filtration to which our random signed measure µ is adapted.
Here µ is the mixture of a conditional Brownian measure and a centred doubly
stochastic Poisson measure, both of which are used to construct the framework.



4 INTRODUCTION

For a detailed implementation of this idea, we refer to Section 6 in [DS14].
BSDEs and CTMs come together in Chapter 3, where we develop further

topics discussed in Chapter 1. All the important results of classical BSDEs,
such as the existence and uniqueness of solution, the Comparison Theorem,
are established under our new, time-changed framework in the first half of this
chapter. One can indeed observe the correspondence between the two settings.
Despite the difference in set-up, several proofs under the time-changed frame-
work can be carried out by adapting arguments used in the classical setting to
the new, time-changed framework.

The second half of Chapter 3 shows how to define a dynamic risk measure by
a given time-changed BSDE. Similar as in the classical setting, the link is estab-
lished via the so-called “f -expectation”, a non-linear expectation characterised
by the given time-changed BSDE. As mentioned earlier, we give a representa-
tion of convex and coherent risk measures in our time-changed setting, and this
is one of the main results of this thesis.

Chapter 4 establishes the link between dynamic risk measures and time-
changed BSDEs from the opposite direction, by proving that we can indeed
represent a given non-linear expectation by a time-changed BSDE with jumps
under rather general conditions. This is the so-called “Inverse Theorem”, as
shown in figure 1.

The interesting part of the Inverse Theorem is that it enables us to convert
a problem of non-linear expectations into study time-changed BSDEs. In this
way, we can represent a large class of non-linear expectations by solving time-
changed BSDEs.

As mentioned earlier, this is a deep result, and it took leading researchers in
the field quite some time to establish in the classical setting in the first place. In
proving this theorem, we follow the work that has been done by Peng in [Pen99]
and Royer in [Roy06], and generalise the results in our present, time-changed
setting. The entire Chapter 4 is devoted to proving this one theorem, which
says something about the importance and difficulty of this result.

The appendix gathers important elements of the theory of stochastic pro-
cesses and calculus that we use throughout this thesis. The i mark before some
of the proofs signifies our original effort to introduce a genuine result, or extend
and generalise results obtained in the classical setting under the time-changed
framework.



Chapter 0

Notation and Basic
Definitions

One of the first challenges one faces in the field of stochastic analysis is the
mathematical notation, and studying BSDEs under two different settings in
this thesis has only made it worse. It is because of this that we are giving the
following list of set-ups for different parts of the thesis.

In the classical set-up for BSDEs with jumps, definitions of the relevant
spaces are conventional. In comparison, the set-up for time-changed BSDEs in
Section 0.2, proposed in [DS14], is more complicated, and we will give more
explanations of this framework in Section 2.3.

0.1 Set-up for BSDEs with Jumps
We use the following important spaces in our set-up for BSDEs with jumps.

Definition 0.1.1. Throughout this thesis, we denote by (Ω,F , P ) a probability
space, W a one-dimensional Brownian motion and N(dt, du) a Poisson random
measure, defined in Definition A.0.13. We define R∗ := R\{0}. In the following
notations, E is a general σ-algebra and E := {Et, t ≥ 0} a filtration.

• Let ν(du)dt be the compensator of N(dt,du), defined in Definition A.0.7,
such that ν is a σ-finite measure on R∗, equipped with its Borel field
B(R∗);

• Let Ñ(dt,du) be the compensated process, defined in Definition A.0.7, of
N(dt, du);

• Let F := {Ft, t ≥ 0} be the natural filtration associated with W and N ;

• Let Σp be the predictable σ-algebra, defined in Definition A.0.11, on
[0, T ]× Ω, where T ∈ (0,∞];

• Let Lp(Ω, E , P ), for all p ∈ (0,∞], be the set of functions f that are
measurable with respect to a general σ-algebra E , such that

‖f‖p :=
(∫

Ω

|f |pdP
) 1
p

<∞.

5
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For p =∞, we define

‖f‖∞ := ess sup
ω∈Ω

{|f(ω)|} := inf{M ∈ [0,∞] : |f(ω)| ≤M a.e.} <∞.

We denote by Lp when there is no ambiguity, and denote by Lp(ET ), for all
p ∈ (0,∞], the set of random variables such that they are ET -measurable
and p-integrable;

• Let HpE(0, T ) be the set of real-valued E-predictable processes φ such that

‖φ‖pHpE(0,T )
:= E

[( ∫ T

0

φ2
tdt
) p

2
]
<∞.

For a special case where β > 0 and φ ∈ HpE(0, T ), we introduce the norm

‖φ‖2β,T := E
[ ∫ T

0

eβtφ2
tdt
]
;

• Let HpE(0, T, ν) be the set of processes l which are E-predictable, that is,
measurable

l : ([0, T ]× Ω× R∗,Σp ⊗ B(R∗))→ (R,B(R)); (t, ω, u)→ lt(ω, u)

such that

‖l‖pHpE(0,T,ν)
:= E

[( ∫ T

0

‖lt‖2νdt
) p

2
]
<∞.

For β > 0 and l ∈ HpE(0, T, ν), we set ‖l‖2ν,β,T := E
[ ∫ T

0
eβs‖ls‖2νds

]
.

• Let Lpν be the set of Borelian functions ` : R∗ → R such that

‖`‖pHpE(0,T,ν)
:=

∫
R∗
|`(u)|p ν(du) <∞.

The set L2
ν is a Hilbert space equipped with the scalar product

〈δ, `〉ν :=

∫
R∗
δ(u)`(u)ν(du), for all δ, ` ∈ L2

ν × L2
ν ,

and the norm
‖`‖2ν := ‖`‖22,ν =

∫
R∗
|`(u)|2 ν(du);

• Let SpE(0, T ) be the set of real-valued càdlàg E-adapted processes φ with
‖φ‖p

SpE(0,T )
:= E[sup0≤t≤T |φt|

p
] <∞.

When T is a fixed time horizon and when there is no ambiguity, we denote
HpE(0, T ) by HpE , H

p
E(0, T, ν) by HpE,ν and SpE(0, T ) by SpE .

In the following definition of a driver, we make use of the spaces defined
above.

Definition 0.1.2 (Lipschitz Driver). A function f is called a driver if it satisfies
the following conditions:
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(i) f : ([0, T ] × Ω × R2 × L2
ν) → R; (t, ω, x, π, `(u)) → f(t, ω, x, π, `(u)) is

Σp ⊗ B(R2)⊗ B(L2
ν)-measurable.

(ii) f(t, 0, 0, 0) ∈ H2.

A driver f is called a Lipschitz driver if there exists a constant C ≥ 0 such that
dP ⊗ dt-a.s., for each (x1, π1, `1), (x2, π2, `2), we have

|f(t, ω, x1, π1, `1)− f(t, ω, x2, π2, `2)| ≤ C(|x1 − x2|+ |π1 − π2|+ ‖`1 − `2‖ν).

Definition 0.1.3 (BSDE with Jumps). A solution of a BSDE with jumps with
terminal time T, terminal condition ξ and driver f consists of a triple of processes
(Y, π, l) satisfying

−dYt = f(t, Yt− , πt, lt(u))dt− πtdWt −
∫
R∗
lt(u)Ñ(dt, du)

YT = ξ

where Y ∈ S2
F (0, T ) is a càdlàg optional process and π ∈ H2

F (0, T ) (respectively
l ∈ H2

F (0, T, ν)) is a R-valued F-predictable process defined on Ω×[0, T ] (respec-
tively Ω×[0, T ]×R∗) such that the stochastic integral with respect toW (respec-
tively Ñ) is well defined. This solution is defined by (Y (ξ, T ), π(ξ, T ), l(ξ, T )).

Remark 0.1.4. We note that since the process f(t, Yt− , πt, lt(u)) is F-predictable,
it satisfies f(t, Yt− , πt, lt(u)) = f(t, Yt, πt, lt(u)) dP ⊗ dt-a.s.
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0.2 Set-up for time-changed BSDEs with Jumps
Let (Ω,F , P ) be a complete probability measure space and we define X =
[0, T ] × R, with T > 0 being a finite time horizon. We will consider X =
([0, T ]× {0}) ∪ ([0, T ]× R∗) where R∗ = R\{0}.

We denote by BX the Borel σ-algebra on X, and by ∆ ⊂ X an element
in BX . We also denote by B[0,T ] the Borel σ-algebra on [0, T ] and by m the
Lebesgue measure.

Let λ = (λB , λH) be a two dimensional stochastic process such that each
component λi, i = B,H satisfies the following three conditions:

(i) λi ≥ 0 P -a.s. for all t ∈ [0, T ];

(ii) limh→0 P (
∣∣λit+h − λit∣∣ ≥ ε) = 0 for all ε > 0 and almost all t ∈ [0, T ];

(iii) E[
∫ T

0
λidt] <∞.

We denote L as the space of all processes λ = (λB , λH) satisfying the above
three conditions.

Now we define a random measure (Definition A.0.13) Λ on X by

Λ(∆) =

∫ T

0

1{(t,0)∈∆}(t)λ
B
t dt+

∫ T

0

∫
R∗
1∆(t, z)ν(dz)λHt dt,

as the mixture of measures on disjoint sets. Here ν is a deterministic, σ-finite
measure on the Borel sets of R∗ satisfying∫

R∗
z2ν(dz) <∞.

We denote the σ-algebra generated by values of Λ by FΛ. And we let ΛH

denote the restriction of Λ to [0, T ]×R∗ and ΛB the restriction of Λ to [0, T ]×{0}.
We then obtain Λ(∆) = ΛB(∆∩ [0, T ]×{0})+ΛH(∆∩ [0, T ]×R∗), with ∆ ⊆ X.

Now we introduce the noises which drive the BSDEs.

Definition 0.2.1. B is a signed random measure on the Borel sets of [0, T ]×{0}
satisfying

(B1) P (B(∆) ≤ x | FΛ) = P (B(∆) ≤ x | ΛB(∆)) = Φ
(

x√
ΛB(∆)

)
, where

x ∈ R, ∆ ⊆ [0, T ]× {0};

(B2) B(∆1) and B(∆2) are conditionally independent give FΛ whenever ∆1

and ∆2 are disjoint sets.

Here Φ stands for the cumulative probability distribution function of a standard
normal random variable.

H is a random measure on the Borel sets of [0, T ]× R∗ satisfying

(H1) P (H(∆) = k | FΛ) = P (H(∆) = k | ΛH(∆)) = ΛH(∆)k

k! e−ΛH(∆), where
k ∈ N,∆ ⊆ [0, T ]× R∗;

(H2) H(∆1) and H(∆2) are conditionally independent give FΛ whenever ∆1

and ∆2 are disjoint sets.
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In addition, we assume that

(BH) B and H are conditionally independet given FΛ.

Remark 0.2.2. Conditions (B1) and (H1) show that given Λ, B is a Gaussian
random measure and H is a Poisson random measure. This also implies that if
λi, i = B,H are deterministic, then B is a Brownian motion and H is a Poisson
random measure.

Remark 0.2.3. The existence of such conditional distributions as defined in the
previous definition is a classical result in the literature. We refer to [Gri75] for
more details on this.

Now we define a signed random measure

H̃(∆) = H(∆)− ΛH(∆), ∆ ⊂ [0, T ]× R∗. (0.1)

We now use this H̃ to construct a random measure for the noises that drive
BSDEs with jumps as defined in Definition 0.1.3.

Definition 0.2.4. We define a signed random measure µ on the Borel subsets
of X by

µ(∆) = B(∆ ∩ [0, T ]× {0}) + H̃(∆ ∩ [0, T ]× R∗), ∆ ⊆ X. (0.2)

Remark 0.2.5. From conditions (B1), (B2), (H1), (H2) and (BH) defined in
Definition 0.2.1, we can conclude that conditional on FΛ, µ(∆1) and µ(∆2) are
orthogonal for ∆1 and ∆2 disjoint. We refer to Definition 2.2 in [DS14] for
details.

We define Fµ = (Fµt )t∈[0,T ] as the filtration generated by µ(∆), ∆ ⊂ [0, t]×R.
By conditions (B1) and (H1) in Definition 0.2.1, we have for any t ∈ [0, T ]:

Fµt = FBt ∨ FHt ∨ FΛ
t ,

where FBt is generated by B(∆ ∩ [0, T ] × {0}), FHt by B(∆ ∩ [0, T ] × R∗ and
FΛ
t by Λ(∆), ∆ ∈ [0, t]× R.
We set F̃ = (F̃t)t∈[0,T ], where

F̃t =
⋂
r>t

Fµr .

Finally, we set G = (Gt)t∈[0,T ] where Gt = Fµt ∨ FΛ. This implies that
GT = F̃T and E0 = FΛ, whereas Fµ0 is trivial. We denote F̃ = F̃T .

Definition 0.2.6. We define the following two spaces in connection with time-
changed BSDEs:

(i) Let I as a subspace of L2([0, T ]×R×Ω,BX×F̃ ,Λ×P ), then for a process
φ ∈ I where φ := (φt(0), φt(u)) for u ∈ R∗. Then we define:

‖φ‖2I = E

[ ∫ T

0

φs(0)2λBs ds+

∫ T

0

∫
R∗
φs(u)2ν(du)λHs ds

]
<∞.
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We define the (Itô type) non-anticipative stochastic integral for φ ∈ I as
I : I 7→ L2(Ω,F , P ) by

I(φ) :=

∫ T

0

φs(0)dBs +

∫ T

0

∫
R∗
φs(u)H̃(ds,du).

For a more detailed explanation of this integral, we refer to (2.9) in [DS14].

(ii) Let Φ be the space of functions φ := (φ(0), φt(u)), R2 7→ R with u ∈ R∗
such that

|φ(0)|2 +

∫
R∗
φ(u)2ν(du) <∞.

Definition 0.2.7 (Time-changed BSDE with Jumps). A solution of a Time-
changed BSDE with jumps with terminal time T, terminal condition ξ and driver
f consists of a triple of processes (Y, φ) satisfying

−dYt = f(t, λt, Yt, φt)dt−
∫
R
φt(u)µ(dt,du)

= f(t, Yt, φt(0), φt(u))dt− φt(0)dWt −
∫
R∗
φt(u)H̃(dt, du)

YT = ξ

(0.3)

where Y ∈ S2
E(0, T ) is a càdlàg process and φ ∈ I, where I is defined in

Definition 0.2.6, such that the stochastic integral with respect to µ defined in
(0.2) is well defined. This solution is defined by (Y (ξ, T ), φ(ξ, T )).

In correspondence with Definition 0.1.2, we need to impose some conditions
on the driver f in our BSDE driven by time-changed noises.

Definition 0.2.8 (Standard Parameters). We call (ξ, f) standard parametres
when ξ ∈ L2(FT ) and f : [0, T ] × R × Φ × Ω 7→ R such that f satisfies the
following conditions, for some constant Cf > 0:

(i) ft(λ, Y, φ, ω) is G-adapted for all λ ∈ L, Y ∈ S2
G(0, T ), φ ∈ I;

(ii) ft(λ, 0, 0, ω) ∈ H2
G(0, T ), and G-adapted for all λ ∈ L;

(iii)
∣∣ft((λB , λH), y1, φ(0)1, l1)− ft((λB , λH), y2, φ(0)2, l2)

∣∣ ≤
Cf
(
|y1 − y2|+ |φ(0)1 − φ(0)2|

√
λB +

√∫
R∗ |l1(u)− l2(u)|2 ν(du)

√
λH
)
,

for all (λB , λH) ∈ [0,∞)2, y1, y2 ∈ R, and (φ(0)1, l1), (φ(0)2, l2) ∈ Φ,dt×
dP -a.s.



Chapter 1

Risk Measures and BSDEs
with Jumps

We start this chapter by recalling the definition and properties of static risk
measures, and then further generalise them in the dynamic setting. One can
easily observe the correspondence of their properties in the two different settings.
In the meantime, since the dynamic risk measure is a generalisation of the
static ones, it has some extra properties related to the filtration that static risk
measures do not have. We give a discussion about this in Section 1.1, based on
work done in [FS04] [FS02] [AP11] and [Ros06].

Section 1.2 recalls the definition and theory of backward stochastic differ-
ential equations (BSDEs) with jumps. We review several important definitions
and results related to BSDEs with jumps here, including the Existence and
Uniqueness of Solution Theorem, linear BSDEs with jumps and exponential lo-
cal martingales. The most important theorem in the section is the Comparison
Theorem for BSDEs with Jumps. This section summarises work done in [AP11],
[Ros06] and [QS13].

Section 1.3 establishes the connection between BSDEs with jumps and dy-
namic risk measures in the classical setting. The connection is realised through
the so-call “f -expectation”, a non-linear expectation associated with the driver
of the given BSDE with jumps. This is realised by first showing we can indeed
define a dynamic risk measure by an f -expectation under certain conditions.
Then, by the Inverse Theorem, arguably one of the most important theorems
in the entire thesis, it shows that we can represent an f -expectation by a BSDE
with jumps under rather general conditions. We will continue to generalise
the connection between BSDEs with jumps and dynamic risk measures in the
time-changed setting in Chapter 3 and 4.

1.1 Static and Dynamic Risk Measures

This section recalls definitions and properties of the static and dynamic risk
measures. It is easy to observe that dynamic risk measures are a generalisation
of static ones, and there is need to impose extra conditions on dynamic risk
measures to deal with filtration-related issues.

11
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Static risk measures
A risk measure is a functional that determines the riskiness of financial positions
within a certain time window. We express a financial position as a mapping
X : Ω→ R, where Ω is the scenario space, and X(ω) represents the discounted
net worth of the financial position at the end of the trading period. We recall
Definition 4.1 from [FS04] as the definition of a static risk measure.

Definition 1.1.1 (Static Risk Measures). A mapping ρ : X → R is called a
monetary measure of risk if it satisfies the following conditions for all X,Y ∈ X ,
where X is a given class of financial positions:

(i) Monotonicity: If X ≤ Y , then ρ(X) ≥ ρ(Y );

(ii) Translation Invariance: if m ∈ R, then ρ(X +m) = ρ(X)−m.

Remark 1.1.2. Note that translation invariance implies:

ρ(X + ρ(X)) = ρ(X)− ρ(X) = 0.

While for m ∈ R,
ρ(m) = ρ(0)−m.

Basic properties of a risk measure justify the intuition that a bigger financial
position faces bigger risk. One can neutralise the riskiness of a position X by
adding the amount ρ(X) to the position.

If we impose further conditions, we can obtain convex and coherent risk
measures.

Definition 1.1.3. A risk measure ρ : X → R is called a convex measure of risk,
if it satisfies:

(iii) Convexity: ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ), for 0 ≤ λ ≤ 1.

A convex risk measure is called a coherent risk measure, if it satisfies:

(iv) Positive Homogenity: If λ ≥ 0, then ρ(λX) = λρ(X).

Remark 1.1.4. Under the assumption of positive homogenity, given a coherent
risk measure ρ and λ = 0, then

ρ(0) = 0.

This property is referred by [FS04] as Normalisation. More importantly, if
we combine positive homogenity and convexity, then we can obtain a stronger
property:

(v) Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

The axiom of convexity and its stronger version, subadditivity, have an im-
portant financial interpretation about diversification. Subadditivity implies that
a diversified portfolio (X + Y ) faces smaller risk than two single positions com-
bined. The convexity is a more general version where the portfolio is constructed
with weighted splits. The property of positive homogeneity, in addition, ex-
presses the idea that the riskiness of a position grows in proportion with its
size.
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In the meantime, a risk measure ρ : X → R induces an acceptance set Aρ,
defined as:

Aρ :=
{
X ∈ X

∣∣ ρ(X) ≤ 0
}
.

We can also characterise a risk measure via a given acceptance A set by
defining:

ρA := inf
{
m ∈ R

∣∣ m+X ∈ A
}
.

By remark 1.1.2, we see that, given a risk measure ρ and a position X,
X + ρ(X) ∈ Aρ. This justifies the use of risk measures as a tool to determine
the riskiness ofX, in the sense that ρ(X) can neutralise its risk and thus makeX
“acceptable”. We recall from [FS02] an important connection between a convex
risk measure and its corresponding acceptance set.

Proposition 1.1.5. Suppose ρ : X → R is a convex risk measure with its
associated acceptance set Aρ. Then

ρAρ = ρ.

Moreover, A := Aρ has the following properties:

(i) A is convex and non-empty;

(ii) If X ∈ A and Y ∈ X satisfies Y ≥ X, then Y ∈ A;

(iii) If X ∈ A and Y ∈ X , then{
λ ∈ [0, 1]

∣∣ λX + (1− λ)Y ∈ A
}

is closed in [0,1].

Proof. First we see A := Aρ by definition. Property (i) and (ii) are straightfor-
ward from the properties of convex risk measures and the definition of accep-
tance set. For property (iii), we note that the mapping λ→ ρ(λX + (1− λ)Y )
is continuous, as it is bounded and convex. The result follows accordingly. For
details of the proof, we refer to Proposition 2 in [FS02].

Now we recall the representation of convex and coherent risk measures from
[Ros06] and [FR02]. We follow [Ros06] in restricting the general class of positions
X to L2(Ω,F , P ). We denote by X ′ the dual space of X .
Remark 1.1.6. Researchers in the field usually study the class of positions X in a
general space of Lp(Ω,F , P ), where p ∈ [1,∞]. Here we have chosen L2(Ω,F , P )
in order to facilitate our discussions in connection with BSDEs in the following
chapters.

Theorem 1.1.7. A functional ρ : X (L2(Ω,F , P ))→ R is a coherent risk mea-
sure if and only if there exits a non-empty closed convex set P of P -absolutely
continuous probability measures such that

ρ(X) = sup
Q∈P

EQ[−X], for all X ∈ X .

The representation of convex risk measures is of a more general form.
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Theorem 1.1.8. A functional ρ : X → R is a convex risk measure if and only if
there exits a convex functional F : X ′ → R ∪ {∞} satisfying infx′∈X ′ F (x′) = 0
such that

ρ(X) = sup
Q∈P

{
EQ[−X]− F

(dQ

dP

)}
, for all X ∈ X ,

where P := {Q� P : dQ
dP ∈ X

′ and F (dQ
dP ) <∞} is a non-empty convex set.

Proof. This is a classical result in the literature for risk measures and is obtained
by applying convex analysis theories. We refer to Corollary 7 in [FR02] for
details of this proof. Following this idea, we give a proof of this result under
the time-changed BSDE setting in Theorem 3.2.4.

Remark 1.1.9. Note that Theorem 1.1.7 is a special case of Theorem 1.1.8, where
F ≡ 0. This is a direct consequence of the coherent risk measure’s property of
subadditivity. We refer to Corollary 7 vi) in [FR02] for details of the proof in
the general setting. We apply the same argument to prove this result under the
time-changed BSDE setting in Corollary 3.2.5.

Remark 1.1.10. We note that authors in [FS04] have obtained similar results
independently. To be more specific, authors in [FS04] have expressed the penalty
term F in Theorem 1.1.8 through the acceptance set Aρ:

F
(dQ

dP

)
⇐⇒ αmin(Q) := sup

X∈Aρ
EQ[−X] for Q ∈ P.

Here the αmin is the minimal penalty term for the risk measure ρ. In other
words, α ≥ αmin for any penalty function α that can represent ρ in Theorem
1.1.8. It is easy to show that the two expressions are equivalent. We refer to
Theorem 4.12 [FS04], Theorem 6 in [FR02] and Theorem 4 in [Ros06] for details.

By Theorem 1.1.7, a coherent risk measure can be interpreted as the supre-
mum of the expected loss over a set of “generalised scenarios” P. We interpret F
in Theorem 1.1.8 as a penalty term that depends on the generalised scenarios.
In this way, a convex risk measure is the supremum of the “corrected expected
loss” over the scenarios.

Dynamic Risk Measures
We have so far discussed risk measures in a static setting. Now we are ready to
generalise them in a dynamic setting. We first expand the setting into a filtered
probability space L2(Ω,F , (Ft)t∈[0,T ], P ), where a fixed time horizon T ∈ [0,∞],
(Ft)t∈[0,T ] is a sequence of filtrations such that F = FT , if T < ∞, and F =

σ
(⋃

t≥0 Ft
)
, if T = ∞. We define X := L2(Ω,F , P ), while Xt := L2(Ω,Ft, P ).

We recall the follwoing definitions from [AP11].

Remark 1.1.11. As mentioned earlier in Remark 1.1.6, here we have chosen
X := L2(Ω,F , P ) with the purpose of studying the connection between risk
measures and BSDEs.

Definition 1.1.12 (Conditional Convex Risk Measures). For t ∈ [0, T ], where
T ∈ [0,∞], a mapping ρt : X → Xt is called a conditional convex risk measure,
if it satisfies the following properties for X,Y ∈ X :



1.1. STATIC AND DYNAMIC RISK MEASURES 15

(i) Monotonicity: If X ≤ Y , then ρt(X) ≥ ρt(Y );

(ii) Conditional Invariance: For all mt ∈ Xt,

ρt(X +mt) = ρ(X)−mt;

(iii) Conditional Convexity: For all λ ∈ Xt and 0 ≤ λ ≤ 1,

ρt(λX + (1− λ)Y ) ≤ λρt(X) + (1− λ)ρt(Y ).

A conditional convex risk measure is called normalised, if it enjoys in addition
the following property:

(iv) Normalisation: ρt(0) = 0.

A normalised conditional convex risk measure is called a coherent risk mea-
sure if it satisfies the following extra property:

(v) Conditional Positive Homogenity: For all λ ∈ Xt and λ ≥ 0,

ρt(λX) = λρt(X).

As explain in Remark 1.1.4, Conditional Positive Homogenity implies nor-
malisation. Therefore, all conditional coherent risk measures are normalised.

Remark 1.1.13. It is easy to observe that dynamic risk measures are a general-
isation of static ones. We want to point out that the conditional risk measures
are parametrised with time, and depend on the filtrations, and the constants
used in the properties of static measures need to be replaced with a random
variable with respect to the filtration in the dynamic setting.

Remark 1.1.14. We note that for a position X that is Ft-measurable, it is also
FT -measurable.

As with static risk measures, a conditional convex risk measure ρt also has
an associated acceptance set:

At :=
{
X ∈ L2(Ω,F , P )

∣∣ ρt(X) ≤ 0
}
.

We recall from [AP11] the following properties for such an acceptance set.

Proposition 1.1.15. The acceptance set At of a normalised conditional convex
risk measure ρ is

(i) Conditionally Convex:

αX + (1− αY ) ∈ At,

for all X,Y ∈ At and Ft-measurable for α ∈ [0, 1];

(ii) Solid: If Y ≥ X for some X ∈ At, Y ∈ At;

(iii) Such that 0 ∈ At and ess inf{X ∈ L2(Ω,Ft, P ))
∣∣ X ∈ At} = 0.
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Moreover, ρt is uniquely determined through its acceptance set, since

ρt(X) = ess inf
{
Y ∈ L2(Ω,Ft, P )

∣∣ X + Y ∈ At
}
.

Conversely, if some set At ⊆ L2 satisfies the above conditions, then the func-
tional ρt : L2(Ω,F , P )) → L2(Ω,Ft, P )) defined in the above definition is a
normalised conditional convex risk measure.

Proof. It is very easy to see the correspondence between a static acceptance
set and a conditional one. The above three properties follow naturally from
the definition of a normalised conditional convex risk measure. We refer to
Proposition 1.2 in [AP11] for the rest of the proof.

The random variable ρt represents the riskiness of position X at time t,
conditioning on all the information up to time t. We can then look at a process
of conditional convex risk measures ρt, keeping control of the risk from the
beginning to the terminal time T , and thus obtain a definition of a dynamic
convex risk measure.

Definition 1.1.16 (Dynamic Convex Risk Measures). A sequence (ρt)t∈[0,T ] is
called a dynamic convex risk measure, if ρt is a conditional convex risk measure
for all t ∈ [0, T ].

One important feature of the dynamic setting is the conditional convex risk
measures’ dependence upon the filtrations. This motives an extra property of
dynamic risk measures. We recall the following definitions from [AP11].

Definition 1.1.17. Assume that (ρt)t∈[0,T ] is a normalised dynamic convex risk
measure and let Yt be a subset of L2 such that 0 ∈ Yt and Yt +R = Y for each
t ∈ [0, T ]. Then (ρt)t∈[0,T ] is called acceptance (resp. rejection) consistent with
respect to (Yt)t∈[0,T ] if for all t ∈ [0, T ) and for any X ∈ L2 and Y ∈ Yt+1, the
following condition holds:

ρt+1(X) ≤ ρt+1(Y ) (respectively ≥) =⇒ ρt(X) ≤ ρt(Y ) (respectively ≥).
(1.1)

Depending on different properties of Yt, the normalised dynamic convex risk
measure (ρt)t∈[0,T ] has different properties.

Definition 1.1.18. We call a normalised dynamic convex risk measure (ρt)t∈[0,T ]:

(i) Strongly Time-consistent: If (ρt)t∈[0,T ] is either acceptance consistent or
rejection consistent with respect to Yt = L2 for all t in the sense of Defi-
nition 1.1.17;

(ii) Middle Acceptance-consistent (respectively, Middle Rejection-consistent):
If for all t, we have Yt = L2(Ω,Ft, P )) in Definition 1.1.17;

(iii) Weakly Acceptance-consistent (respectively, Weakly Rejection-consistent):
If for all t, we have Yt = R in Definition 1.1.17.

In the following proposition, we provide a unifying summary of time-consistency
property for normalised dynamic risk measures from different sources in the lit-
erature, such as [Ros06] and [AP11].
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Proposition 1.1.19 (Time-consistency Property). For a normalised dynamic
risk measure (ρt)t∈[0,T ], the following properties are equivalent with (1.1) in
Definition 1.1.17:

(i) Time-consistency: If for all t ∈ [0, T ], X ∈ X and A ∈ Ft,

ρ0(X1A) = ρ0(−ρt(X)1A); (1.2)

(ii) Recursiveness: For all t, s ≥ 0 such that t, t+ s ∈ [0, T ],

ρt(X) = ρt(−ρt+s(X)). (1.3)

i Proof. It is easy to see 1.2 and 1.3 are equivalent. Given that A ∈ Ft, by
normalisation of ρt, we have

−ρt(X1A) = −ρt(X)1A.

Hence the claim follows.
To show 1.1 and 1.3 are equivalent, we recall the proof from Proposition 1.16

in [AP11]. Here 1.1 implies that for all t ∈ [0, T ) and for all X,Y ∈ L2,

ρt+1(X) = ρt+1(Y ) P -a.s =⇒ ρt(X) = ρt(Y ) P -a.s . (1.4)

By conditional invariance, defined in Definition 1.1.12, we know that ρt+1(−ρt+1(X)) =
ρt+1(X). Thus by 1.4, we obtain one-step recursiveness for s = 1. Now we as-
sume the claim holds for each t and all k ≤ s for some s ≥ 1. Then we have:

ρt(ρt+s+1(X)) = ρt(−ρt+s(−ρt+s+1(X)))

= ρt(−ρt+s(X))

= ρt(X).

We thus obtain recursiveness by 1.1 through induction. Finally, we see that
1.3 implies 1.1 by conditional monotonicity. This concludes the proof.

Before we end this section, we recall two families of examples of dynamic
coherent and convex risk measures from [Ros06] and [FR04].

Example 1.1.20. Let P be a convex set of P -absolutely continuous probability
measures defined on (Ω,F), and set

ρt := ess sup
Q∈P

EQ[−X | Ft], for all X ∈ X , t ∈ [0, T ].

Then (ρt)t∈[0,T ] is a dynamic coherent risk measure. �

Example 1.1.21. Let P be a convex set of P -absolutely continuous probability
measures defined on (Ω,F), and for any t ∈ [0, T ], let Ft : P → R ∪ {∞} be a
convex functional such that infQ∈P Ft(Q) = 0. Then (ρt)t∈[0,T ], defined by

ρt := ess sup
Q∈P

{EQ[−X | Ft]− Ft(Q)}, for all X ∈ X , t ∈ [0, T ],

is a dynamic convex measure. �
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It is clear that Example 1.1.20 is a special case of Example 1.1.21. Same as
in the static setting, the dynamic coherent risk measure has such representation
because of the stronger conditional subadditivity condition, a combination of
conditional convexity and positive homogeneity.

We note that not all dynamic risk measures in this family have the time-
consistency property. In order to guarantee the time-consistency property, We
usually need to require extra properties on the probability set P and the penalty
term Ft(·). We do not go into further discussions about this issue, and refer to
[FR04] and [Ros06] for details.
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1.2 BSDEs with Jumps
Since its introduction by Bismut to solve optimal control problems by maximum
principle, backwards stochastic differential equations (BSDEs) have developed
into a powerful tool in finance. The study of BSDEs started with the linear
form, which Pardoux and Peng later extended into a non-linear framework.
The continuous setting, where the BSDEs are driven by Brownian motions, has
been well studied in the literature.

In this section, we investigate the discontinuous framework where we asso-
ciate the natural filtration with both a Brownian motion and a Poisson random
measure. By summarising works including [QS13], [Pha09], [CFS08],[Del13],
[Ros06], [TL94], [Roy06] and [DS14], we recall various important properties of
BSDEs with jumps and their associated f -expectations.

We focus especially on the Comparison Theorem which is an instrumental
tool to the study of optimisation problems associated with BSDEs. Royer is one
of the first to prove a comparison theorem for BSDEs with jumps in [Roy06],
while a few years later, authors in [QS13] presented comparison theorems under
a even weaker condition. We also recall one of the optimisation principles from
[QS13] to characterise minima of BSDEs under the discontinuous framework.

In this section, we follow mainly the work that has been done in [QS13], and
present the Comparison Theorem as well as the Optimisation Principle, which
are useful in the next section.

Existence and Uniqueness of Solution

Given the set-up in Section 0.1 for BSDEs with jumps, we recall from [QS13] and
[TL94] an important theorem regarding the existence and uniqueness of solution
for BSDE with jumps. We note here in our setting, the Brownian motion W is
assumed to be one-dimensional.

Theorem 1.2.1 (Existence and Uniqueness of Solution in One-dimensional
Brownian Motion Setting). Let T > 0. For every Lipschitz driver f defined in
Definition 0.1.2, and every terminal condition ξ ∈ L2(FT ), there exists a unique
solution (Y, π, l) ∈ S2

F (0, T )×H2
F (0, T )×H2

F (0, T, ν) of the BSDE with jumps
in Definition 0.1.3.

Proof. We give a brief account of the proof for this fundamental result. With
a series of lemmata, authors in [TL94] make use of properties including the
quasi-left-continuous property of the right-continuous natural filtration associ-
ated with a Brownian motion and a Poisson random measure, and obtain an
orthogonal decomposition of adapted, square-integrable martingales that starts
at 0. By this decomposition, authors in [TL94] succeed in proving a Martingale
Representation Theorem in Lemma 2.3 in the paper.

With the help of the Martingale Representation Theorem, authors in [TL94]
manage to construct a contracting map, which eventually leads to the proof of
the result in Lemma 2.4 in the paper.

We refer to Lemma 2.3, Lemma 2.4 and lemmata in Appendix in [TL94] for
details of the proof.

The results we present in this thesis are in the one-dimensional setting. To
extend to a multi-dimensional (d ∈ N\{0}) Brownian motion setting, we need to
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impose some extra conditions on the generator f to guarantee the existence of a
unique solution, as stated in the following assumption. We refer to [Roy06] for
a detailed explanation of this assumption. Yet despite these extra conditions,
our results in this thesis can be generalised into the multi-dimensional situation
with no problem.

Assumption 1.2.2 (Multi-dimensional Brownian Motion Setting). We need
the following conditions on the driver f defined in Definition 0.1.3 to guarantee
a unique solution for the related BSDE with a multi-dimensional (d ∈ N\{0})
Brownian motion:

(i) f is Lipschitz with respect to π, `:

∃K ≥ 0 such that ∀t ∈ [0, T ],∀y ∈ R,∀π, π′ ∈ Rd,∀`, `′ ∈ L2
ν

|f(t, y, π, `)− f(t, y, π′, `′)| ≤ K‖π − π′‖+K‖`− `′‖2,ν

where ‖π − π′‖ is the Euclidean norm in Rd.

(ii) f is continuous with respect to y, and there exits an R∗-valued process
ϕt ∈ H2

F (0, T ) for 0 ≤ t ≤ T , and

|f(t, y, π, `) ≤ ϕt +K(|y|+ ‖π‖+)|+ ‖`‖2,ν

(iii) f is monotonic with respect to y:

∃α ∈ R such that ∀t ≥ 0,∀y, y′ ∈ R,∀π ∈ Rd,∀`, `′ ∈ L2
ν

(y − y′)(f(t, y, π, `)− f(t, y′, π, `)) ≤ α|y − y′|2 P -a.s.

We refer to Assumption (Hex) in [Roy06].

Exponential Local Martingales
We first take a look at linear BSDEs with jumps, before we present the Com-
parison Theorem. The result and properties of linear BSDEs can give us an
insight into the general comparison theorems.

We follow the notation of [QS13] and first recall the definition of exponential
local martingale from Definition 15.1.1 in [Coh15].

Definition 1.2.3 (Exponential Local Martingales). ForX a semimartingale, we
define the stochastic exponential (also known as the Doléans-Dade exponential)
to be the process E(X) by

E(X) = exp

(
Xt −

1

2
〈Xc, Xc〉t

)∏
s≤t

(1 + ∆Xs)e
−∆Xs

whereXc is the continuous martingale part ofX, and 〈Xc, Xc〉 is the predictable
quadratic variation of Xc and for process Xt, ∆Xt := Xt −Xt− .

Let (βt) be a R-valued predictable process, a.s. integrable with respect to
dWt. Let (γt(u))be an R-valued predictable process defined on [0, T ]× Ω× R∗,
in other words, Σp ⊗ B(R∗)-measurable, and a.s. integrable with respect to
Ñ(ds,du).
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Let M = (Mt)0≤t≤T be a local martingale given by

Mt :=

∫ t

0

βsdWs +

∫ t

0

∫
R∗
γs(u)Ñ(ds,du). (1.5)

Let Z = (Zt)0≤t≤T be the solution of dZs = Zs−dMs where Z0 = 1. By
Definition 1.2.3, and by using Itô’s formula, we can denote the process Z by
E(M) and show that it is the exponential local martingale associated with the
local martingale M :

E(M)s = exp

{∫ 0

s

βudWu −
1

2

∫ 0

s

β2
udu−

∫ s

0

∫
R∗
γr(u)ν(du)dr

}
×
∏

0<r≤s

(1 + γr(∆Yr))
(1.6)

where Yt :=
∫
R∗ uN([0, t],du).

Remark 1.2.4. In Definition 1.2.3, we see that if the process ∆X ≥ −1, the
process E(X) is then non-negative. In addition, if X is a local martingale, then
E(X) is also a local martingale.

Similarly in 1.6, if γt(∆Yt)) ≥ −1 for 0 ≤ t ≤ T a.s., then we have E(M)t ≥ 0
for 0 ≤ t ≤ T a.s.

We recall two important properties of exponential local martingales from
[QS13].

Proposition 1.2.5. Let (βt) and (γt(u)) be predictable R-valued processes and
let M be the local martingale defined in (1.5). The following assertions are
equivalent:

1. For each n ∈ N, γTn(∆YTn ≥ −1) P -a.s., where (Tn)n∈N is the increasing
sequence of stopping times corresponding to the jump times of Y ;

2. γt(u) ≥ −1 dP ⊗ dt⊗ dν(u)-a.s.

If one of these conditions is satisfied, we have E(M)t ≥ 0 for 0 ≤ t ≤ T a.s.
Moreover, if γt(u) > −1 dP ⊗ dt⊗ dν(u)-a.s., then for each t, E(M)t > 0 a.s.

Proof. We see for each s > 0,∏
0<r≤s

(1 + γr(∆Yr)) =
∏

n∈N, 0<Tn≤s

(1 + γTn(∆YTn)).

By equation 1.6, condition 1 implies for each s, E(M)s ≥ 0 a.s.
We then show that the two conditions are equivalent. Since ν(du)dt is the

predictable compensator of the Poisson random measure N(du,dt), we have:

E

[∑
n∈N

1{γTn (∆YTn )<−1}

]
= E

[ ∫
R∗×R+

1{γr(u)<−1}N(du,dr)

]
= E

[ ∫
R∗×R+

1{γr(u)<−1}ν(du)dr

]
.

The result follows.
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Proposition 1.2.6. Let (βt) and (γr(u)) be predictable R-valued processes and
let M be the local martingale defined in (1.5). Suppose that∫ T

0

β2
sds+

∫ T

0

‖γs‖2ν ds (1.7)

is bounded. Then we have E[E(M)2
T ] <∞.

Proof. The result follows easily from an application of the product formula or
by (1.6). We refer to Proposition 3.2 in [QS13] for details of the proof.

Remark 1.2.7. Note in the previous proposition, we can obtain (E(M)s)0≤t≤T ∈
S2
F (0, T ) by an application of martingale inequalities. To be more precise, by

Doob’s Lp Inequality in Theorem 5.1.3 in [Coh15], we can obtain:

‖E(M)‖2S2
F (0,T ) := E

[
sup

0≤t≤T
|E(M)t|2

]
≤ 2 sup

0≤t≤T
E

[
|E(M)t|2

]
<∞.

Remark 1.2.8. In the above proposition, we see that if the processes βt and ‖γt‖ν
are bounded, the random variable by (1.7) is then bounded, and by Remark
1.2.7, we have E(M)t ∈ L2.

The condition is also satisfied if there exits ψ ∈ L2
ν such that |γt(u)| ≤

ψ(u), dt⊗dP⊗dν(u)-a.s. This property will used in the proof of the Comparison
Theorem.

Linear BSDEs with jumps

We first recall a fundamental result of forward SDE solution.

Proposition 1.2.9. Let (δt) and (βt) be R-valued predictable processes, inte-
grable with respect to dt and dWt a.s. Let (γt(u)) be a predictable R-valued
process defined on [0, T ]× Ω× R∗, integrable with respect to Ñ(ds,du).

For each t ∈ [0, T ], let (Γt,s)s∈[t,T ] be the unique solution of the following
forward SDE:

dΓt,s = Γt,s−

[
δsds+ βsdWs +

∫
R∗
γsÑ(ds,du)

]
, where Γt,t = 1.

The process Γt,s can then be written as Γt,s = e
∫ s
t
δuduZt,s, where (Zt,s)s∈[t,T ] is

the solution of the following SDE

dZt,s = Zt,s−

[
βsdWs +

∫
R∗
γs(u)Ñ(ds,du)

]
, where Zt,t = 1.

Proof. The result follows easily with an application of Itô’s formula to ln Γt,s.

We recall a result from [QS13], showing that the solution of a linear BSDE
with jumps can be represented as a conditional expectation through an expo-
nential semimartingale.
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Theorem 1.2.10. Let (δ, β, γ) be a real-valued, bounded predictable process.
Let Γ be the process defined in Proposition 1.2.9. Suppose that Γ ∈ S2

F (0, T )
and process ϕ ∈ H2

F (0, T ).
Let (Yt, πt, lt) be the solution in S2

F (0, T ) × H2
F (0, T ) × H2

F (0, T, ν) of the
linear BSDE

−dYt = (ϕt + δtYt + βtπt + 〈γt, lt〉ν)dt− πtdWt −
∫
R∗
lt(u)Ñ(dt,du);

YT = ξ.

(1.8)

The process (Yt) satisfies

Yt = E

[
Γt,T ξ +

∫ T

t

Γt,sϕ(s)ds
∣∣∣ Ft], 0 ≤ t ≤ T, a.s. (1.9)

Proof. This is an important result and we recall the proof from Theorem 3.4 in
[QS13]. Fix t ∈ [0, T ]. To simplify notation, we denote Γt,s by Γs for s ∈ [t, T ].
By Itô product formula, we have:

−d(YsΓs) = −Ys−dΓs − Γs−dYs − d[X,Γ]s

= −YsΓsδsds+ Γs[ϕs + δsYs + βsπs + 〈γs, ls〉ν ]ds

− βsπsΓsds− Γs〈γs, ls〉νds− Γs(Ysβs + πs)dWs

− Γs−

∫
R
ls(u)(1 + γs(u))Ñ(du,ds)

= Γsϕsds− dMs,

with

dMs = −Γs(Ysβs + πs)dWs − Γs−

∫
R
ls(u)(1 + γs(u))Ñ(du,ds). (1.10)

Integrate from t to T , we get

Yt − ξΓt,T =

∫ T

t

Γt,sϕsds−MT +Mt a.s. (1.11)

Recall that Γt,. ∈ S2
F (0, T ) and that Y ∈ S2

F (0, T ), π ∈ H2
F (0, T ) and

l ∈ H2
F (0, T, ν). Moreover, the processes δ, β and γ are bounded. It follows that

the local martingale M is a martingale.
To see that M is indeed a martingale, we recall the classical result from

stochastic analysis that, if a local martingale M satisfies E
[
[M ]

1
2
t

]
< ∞ where

[ · ] denotes the quadratic variation, for all t ∈ [0, T ], then it is a martingale.
By assumption, (δ, β, γ) are real-valued, predictable process bounded by con-

stants. In view of predictability, the compensated Poisson term in (1.10) has
zero mean, according to classical stochastic analysis theories. In the meantime,
because of boundedness, the Brownian motion term in (1.10) is finite. We can
therefore conclude that M in (1.10) is indeed a martingale.

Note that given our time-changed framework in Section 0.2 and properties of
λ defined there, the same argument also applies in the time-changed situation.

Hence, by taking the conditional expectation in (??) , we can obtain (1.9).
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We recall one more result before presenting the Comparison Theorem.

Corollary 1.2.11. Suppose the assumptions of Theorem 1.2.10 are satisfied.

• Suppose that the inequality γt(u) ≥ −1 holds dP ⊗ dt⊗ dν(u)-a.s.

If ϕt ≥ 0, t ∈ [0, T ], dP ⊗ dt a.s. and ξ ≥ 0 a.s., then Yt ≥ 0 a.s.
for all t ∈ [0, T ].

• Suppose that the inequality γt(u) > −1 holds dP ⊗ dt⊗ dν(u)-a.s.

If ϕt ≥ 0, t ∈ [0, T ], dP ⊗ dt a.s. and ξ ≥ 0 a.s., and if Yt = 0 a.s.
for some t0 ∈ [0, T ], then ϕt = 0 dP⊗dt a.s. on [0, T ], andξ = 0 a.s.on A,
A ∈ Ft0 .

Proof. We first use Proposition 1.2.5, where we discussed the non-negativity of
exponential local martingales, to establish the non-negativity of Γt,T . Then the
result follows naturally from Theorem 1.2.10 where we expressed the solution
with a conditional expectation. For details we refer to Corollary 3.5 in [QS13].

The Comparison Theorem
We first present a comparison theorem for linear BSDEs with jumps. Based on
this preliminary result, we generalise the proof and obtain a general comparison
theorem.

Lemma 1.2.12 (Comparison Theorem for Linear BSDEs with Jumps). Let
(δ, β, γ) be a bounded, real-valued predictable process and for each t, let Γt be
the exponential semimartingale solution in Proposition 1.2.9. Suppose that

Γt,T ∈ S2
F (0, T ) ∀t and γt(u) ≥ −1 dP ⊗ dt⊗ ν(du)-a.s.

Let ξ ∈ L2(FT ) and h be a driver (not necessarily Lipschitz). Let (Yt, πt, lt) be
a solution in S2

F (0, T )×H2
F (0, T )×HpF (0, T, ν) of the BSDE

−dYt = h(t, Yt− , πt, lt(.))dt− πtdWt −
∫
R∗
lt(u)Ñ(dt,du)

YT = ξ

Let ϕ ∈ H2
F (0, T ). Suppose that

h(t, Yt− , πt, lt(.)) ≥ ϕt+ δtYt+βπt+ 〈γt, lt〉ν , 0 ≤ t ≤ T, dP ⊗dt-a.s. (1.12)

Then we have

YT ≥ E

[
Γt,T ξ +

∫ T

t

Γt,sϕ(s)ds
∣∣∣ Ft], 0 ≤ t ≤ T, a.s. (1.13)

Proof. We give a brief account of the proof. Applying similar computation as in
Theorem 1.2.10, we apply Itô product formular to −d(YsΓs) and then obtain:

−d(YsΓs) ≥ Γsϕsds− dMs,

whereM is a martingale. The result follows with integration. For further details
of the proof, we refer to Lemma 4.1 in [QS13].
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With all the preparations, now we are ready to present the main result of
this section—a general comparison theorem for BSDEs with jumps.

Theorem 1.2.13 (Comparison Theorem for BSDEs with Jumps). Let ξ1 amd
ξ2 ∈ L2(FT ). Let f1 be a Lipschitz driver. Let f2 be a driver. For i = 1, 2, let
(Y it , π

i
t, l

i
t) be a solution in S2

F (0, T )×H2
F (0, T )×H2

F (0, T, ν) of the BSDE

−dY it = fi(t, Y
i
t , π

i
t, l

i
t)dt− πitdWt −

∫
R∗
lit(u)Ñ(dt, du);

Y iT = ξi

Assume there exits a bounded predictable process (γt) such that dt⊗dP ⊗ν(du)-
a.s.,

γt(u) ≥ −1 and |γt(u) ≤ ψ(u)| , (1.14)

where ψ(u) ∈ L2
ν , and such that

f1(t, Y 2
t , π

2
t , l

1
t )−f1(t, Y 2

t , π
2
t , l

2
t ) ≥ 〈γt, l1t−l2t 〉ν , t ∈ [0, T ], dt⊗dP a.s. (1.15)

Assume that

ξ1 ≥ ξ2 a.s.

f1(t, Y 2
t , π

2
t , l

2
t ) ≥ f2(t, Y 2

t , π
2
t , l

2
t ), t ∈ [0, T ], dt⊗ dP a.s.

(1.16)

Then we have
Y 1
t ≥ Y 2

t a.s. for all t ∈ [0, T ]. (1.17)

Moreover, if inequality 1.16 is satisfied for (Y 1
t , π

1
t , l

1
t ) instead of (Y 2

t , π
2
t , l

2
t ) and

if f2 (instead of f1) is Lipschitz and satisfies (1.15), then inequality (1.17) still
holds.

Proof. The crucial part of the proof is the linearisation of f1. We give a brief
account of the key elements.

We first rewrite the BSDE in the following way. Put Y t = Y 1
t − Y 2

t , πt =
π1
t − π2

t , and lt(u) = l1t (u)− l2t (u). Then the BSDE is rewritten as

−dY t = htdt− πdWt −
∫
R∗
lt(u)Ñ(dt,du); Y T = ξ1 − ξ2,

where ht := f1(t, Y 1
t , π

1
t , l

1
t )− f2(t, Y 2

t , π
2
t , l

2
t ). We can rewrite ht further:

ht = f1(t, Y 1
t , π

1
t , l

1
t )− f1(t, Y 2

t , π
1
t , l

1
t )

+ f1(t, Y 2
t , π

1
t , l

1
t )− f1(t, Y 2

t , π
2
t , l

1
t )

+ f1(t, Y 2
t , π

2
t , l

1
t )− f1(t, Y 2

t , π
2
t , l

2
t )

+ f1(t, Y 2
t , π

2
t , l

2
t )− f2(t, Y 2

t , π
2
t , l

2
t )

ϕt := f1(t, Y 2
t− , π

2
t , l

2
t )− f2(t, Y 2

t− , π
2
t , l

2
t )

δt :=
f1(t, Y 1

t− , π
1
t , l

1
t )− f1(t, Y 2

t− , π
1
t , l

1
t )

Y t
1{Y t 6=0}

βt :=
f1(t, Y 2

t− , π
1
t , l

1
t )− f1(t, Y 2

t− , π
2
t , l

1
t )

πt
1{πt 6=0}
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By assumption (1.15) about f1, we can show that there exist δ, β such that
ht satisfies inequality (1.12). Now conditions in Lemma 1.2.12 are satisfied and
by the positivity of Γt,., the result follows.

We can show the second assertion by linearising f2 instead. We refer to
Theorem 4.2 in [QS13] for details of the proof.

Theorem 1.2.14 (Strict Comparison Theorem). Suppose that the assumptions
of Theorem 1.2.13 hold and that the inequality γt(u) > −1 holds dt⊗dP⊗dν(u)-
a.s.

If Y 1
t0 = Y 2

t0 a.s. on A for some t0 ∈ [0, T ] and A ∈ Ft0 , then Y 1 = Y 2 a.s.
on [t0, T ]×A, ξ1 = ξ2 a.s. on A and 1.16 holds as an equality in [t0, T ]×A.

Proof. This result follows closely from the previous one. We refer to Theorem
4.4 in [QS13] for details of the proof .

Remark 1.2.15. We draw attention to the fact that Theorem 1.2.14 is stronger
than Theorem 1.2.13, as the former requires an additional condition.

Based on the comparison theorems, we recall from [QS13] an optimisation
principle, which will be useful for determining minima of BSDEs in the next
section.

Theorem 1.2.16 (Optimisation Principle). Let ξ in L2(FT ) and let (f, fα;α ∈
AT ) be a family of Lipschitz drivers. Let (Y, π, l) (resp. (Y α, πα, lα)) be the
solution of the BDE associated with terminal condition ξ and driver f (resp. fα
).

Suppose that

f(t, Yt, πt, lt) = ess inf
α

fα(t, Yt, πt, lt) = f ᾱ(t, Yt, πt, lt),

t ∈ [0, T ], dP ⊗ dt-a.s. for some parameter ᾱ ∈ AT

and that for each α ∈ A, there exits a predictable process γα satisfying 1.14 and

fα(t, Yt, πt, l
α
t )− fα(t, Yt, πt, lt) ≥ 〈γαt , lαt − lt〉ν , t ∈ [0, T ], dt⊗ dP a.s.

Then
Yt = ess inf

α
Y αt = Y ᾱt , t ∈ [0, T ] a.s.

Proof. This result follows from the Comparison Theorem, see Theorem 1.2.13.
We will need to use this lemma to show the representation of convex risk mea-
sures. We refer to Theorem 4.6 in [QS13] for details of proof.

For the above theorem, a detailed proof in the time-changed setting can be
found in Lemma 3.2.1.
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1.3 Risk Measures and f-expectations
In this section, we establish in the classical setting the link between dynamic
risk measures and BSDEs with jumps via non-linear expectations. We first
recall the definition of non-linear expectations, and then the definition of “f -
expectation”, a non-linear expectation associated with the initial value of the
solution of BSDEs with jumps. In this way, we show that we can indeed char-
acterise a non-linear expectation via the associated BSDE.

On the other hand, we would like to be able to construct BSDEs with jumps
from a given non-linear expectation, and this is what we call the inverse problem.
So far as we know, authors in [Pen99] and [Coq+02] are the first to prove this
result under the Brownian motion framework, and a few years later, Royer in
[Roy06] generalised this result in the Lévy process setting. We recall the result
from [Roy06] in this chapter, and will give a detailed proof of this result in the
time-changed setting in Chapter 4.

Then by exploiting the natural connection between a non-linear expectation
and dynamic risk measures, we show that we have established the link between
dynamic risk measures and BSDEs with jumps.

We end this section by presenting a representation of convex and coherent
dynamic risk measures. A corresponding result established under the time-
changed framework will be presented in Section 3.2 with more details.

Non-linear Expectation
We first recall the definition of a non-linear expectation from Definition 3.1 in
[Roy06].

Definition 1.3.1. We say that an operator E : L2(FT ) 7→ R is a non-linear
expectation if

• E [c] = c, for all c ∈ R;

• if η1 ≤ η2 P−a.s., then E [η1] ≤ E [η2]. If moreover E [η1] = E [η2], then
η1 = η2 P−a.s.

Obviously, any traditional expectations is also a non-linear expectation.
In the following proposition, we show that we can indeed characterise a

non-linear expectation via the associated BSDE with jumps. Note also that,
in order to use non-linear expectations to express dynamic risk measures, we
need to impose a stronger condition on the generator so as to guarantee the
monotonicity property of risk measures. This is why the following proposition
requires the generator f satisfying assumptions made in the Strict Comparison
Theorem, see Theorem 1.2.14.

Proposition 1.3.2 (f -expectation). Consider a BSDE drived by a generator
f , defined in Definition 0.1.3, such that

(i) f(t, x, 0, 0) = 0 for all x ∈ R;

(ii) f is Lipschitz in x, π;

(iii) f satisfies assumptions in the Strict Comparison Theorem, see Theorem
1.2.14.
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Then for any fixed ξ in L2(FT ), we denote the unique solution of the related
BSDE with terminal condition ξ by (Y ξ, πξ, lξ). We set Ef [ξ] = Y ξ0 , the initial
value of the solution. Then Ef is a non-linear expectation called f -expectation.

i Proof. By checking the two properties listed in the definition of a non-linear
expectation, see Definition 1.3.1, it is easy to see that the Ef defined above
exists and it is indeed a non-linear expectation.

We first show that for ξ = c where c ∈ R, Ef [ξ] = c. We convert the BSDE
defined in Definition 0.1.3 into the forward form:

Yt = Y0 −
∫ t

0

f(s, Ys, πs, ls(u))ds+

∫ t

0

πsdWs +

∫ t

0

∫
R∗
ls(u)Ñ(ds,du).

Then by assumption,

YT = Y0 −
∫ T

0

f(s, Ys, πs, ls(u))ds+

∫ T

0

πsdWs +

∫ T

0

∫
R∗
ls(u)Ñ(ds,du)

= c

This implies, for s ∈ [0, T ],

πs ≡ 0, ls(u) ≡ 0.

By our assumptions on f , it implies the trivial situation where f ≡ 0, and then
Y0 = c, and the result follows.

The monotony property is guaranteed by the assumptions in the Strict Com-
parison Theorem. Given ξ1 ≥ ξ2 a.s. and f1 = f2 = f , then by the comparison
theorem we have Y (ξ1) ≥ Y (ξ2) a.s., where Y (·) denotes the solution associ-
ated with respective terminal conditions. We need to use the Strict Comparison
Theorem, see Theorem 1.2.14 to obtain the equality. We can therefore conclude
that Ef is indeed a non-linear expectation.

Remark 1.3.3. The f -expectations are generally not linear, except in situations
where the generator f has a linear form.

Remark 1.3.4. As explained in the previous proof, we need assumptions in the
Strict Comparison Theorem in Condition (iii) in Proposition 1.3.2 to guarantee
the monotonicity property for the associated non-linear expectation and, by
extension, the associated risk measures. We will impose similar conditions when
we define f -expectation in the time-changed setting in Proposition 3.1.1.

We now recall some properties of non-linear expectations and see under
what conditions the f -expectation satisfies them. We emphasise here we use
the natural filtration F defined in Definition 0.1.1. Corresponding properties
in Chapter 3, under the time-changed framework, replaces F with filtration G
defined in Section 0.2.

Definition 1.3.5 (Filtration-consistency). A non-linear expectation E is said
to be filtration-consistent if, for all A ∈ Ft,

∀ξ ∈ L2(FT ), ∀t ∈ [0, T ], ∃ηt ∈ L2(Ft) such that E [ξ1A] = E [ηt1A]. (1.18)

In this case, we denote E [ξ | Ft] = ηt, which is called the non-linear conditional
expectation of ξ with respect to Ft.
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Given that ξ ∈ L2(FT ) and the fact that f(t, x, 0, 0) = 0 for all x ∈ R, any
f -expectation is filtration-consistent. In the meantime, we have

E
[

sup
0≤t≤T

|Ef [ξ | Ft]|2
]
<∞.

To see that any f -expectation is filtration-consistent, we note that (1.18) can
be written as

Ef [ξ1A] = Ef
[
Ef [ξ | Ft]1A

]
. (1.19)

Given solution (Y ξ, πξ, lξ) in Proposition 1.3.2, by the uniqueness of solution,
it is easy to see that, for A ∈ Ft, Y ξt 1A and ξ1A coincide on the interval [0, t].
Then we conclude:

Ef [ξ | Ft] = Y ξt .

We will apply the same argument to obtain the corresponding result in the
time-changed setting in (3.1).

Definition 1.3.6 (Additivity). Let E be a filtration-consistent non-linear ex-
pectation. We call additivity the following property:

∀ξ ∈ L2(FT ), ∀t ∈ [0, T ], ∀η ∈ L2(Ft) E [η + ξ | Ft] = η + E [ξ | Ft]. (1.20)

We note that any f -expectation is additive if the generator f is independent
of y. This is a consequence of the uniqueness of solution for the associated
BSDE, as shown in the following argument.

By definition, for t ∈ [0, T ],

E [η + ξ | Ft] = Y η+ξ
t

= η + ξ +

∫ t

0

f(s, πη+ξ
s , lη+ξ

s (u))ds

−
∫ t

0

πη+ξ
s dWs −

∫ t

0

∫
R∗
lη+ξ
s (u)Ñ(ds,du).

We thus obtain

Y η+ξ
t − η = ξ +

∫ t

0

f(s, πη+ξ
s , lη+ξ

s (u))ds

−
∫ t

0

πη+ξ
s dWs −

∫ t

0

∫
R∗
lη+ξ
s (u)Ñ(ds,du).

(1.21)

On the other hand, we have

Y ξt = ξ +

∫ t

0

f(s, πη+ξ
s , lη+ξ

s (u))ds

−
∫ t

0

πξsdWs −
∫ t

0

∫
R∗
lξs(u)Ñ(ds,du).

(1.22)

We see by (1.21), (Y η+ξ − η, πη+ξ, lη+ξ) is a solution of (1.22), since f is inde-
pendent of y. By the uniqueness of solution of (1.22), we have

Y η+ξ − η = Y ξ.
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And we have thus shown (1.20).
In fact, classical results in the literature tell us that we have the additivity

property if and only if the driver f is independent of y. For details of this
fact, we refer to Lemma 4.2 and 4.3 in [Bri+00], which proved this result in the
Brownian motion setting. The proof carries over to the jump setting in [Roy06].
We will show the same property for time-changed f -expectation in Section 3.1.

Definition 1.3.7 (EC,C1-domination). Let E be a filtration-consistent non-
linear expectation. We say that it is EC,C1-dominated if there exists C > 0
and −1 < C1 ≤ 0 such that

∀ξ, ξ′ ∈ L2(FT ), E [ξ + ξ′]− E [ξ] ≤ EC,C1 [ξ′]

where EC,C1 [ξ′] is the non-linear f -expectation associated with the driver

fC,C1
(t, π, `) := C |π|+ C

∫
R∗

(1 ∧ |u|)`+(u)ν(du)− C1

∫
R∗

(1 ∧ |u|)`−(u)ν(du).

Here t ∈ [0, T ] and in the current classical setting π ∈ H2
F (0, T ) and ` ∈

H2
F (0, T, ν).
Note the filtration in this context is the natural filtration F defined in Defini-

tion 0.1.1. We recall from discussion following Definition 3.7 and 3.8 in [Roy06]
that any f -expectation with generator f satisfying assumptions in Proposition
1.3.2 and being independent of y is both additive and EC,C1 -dominated. Ad-
ditivity follows from our earlier discussion in Definition 1.3.6. It is easy to see
thatfC,C1 is independent of y and EC,C1-domination follows from the Lipschitz
condition imposed on f , since f satisfies assumptions in Proposition 1.3.2. We
use the same argument to show a corresponding result in the time-changed
situation, see Remark 3.1.3.

With the above properties in place, we can recall the important Inverse
Theorem, see Theorem 4.6 in [Roy06], that allows us to represent a large class of
non-linear expectations by BSDEs with jumps under rather general conditions.

Theorem 1.3.8 (Inverse Theorem). Let E be a filtration-consistent expectation
which satisfies both properties of EC,C1-domination and additivity. Then these
exits a function f : [0, T ]× Ω× R2 × L2

ν 7→ R such that E = Ef .

Proof. This is a fundamental result that is much more difficult to establish
than it appears. In fact, in order to prove this result, it requires the establish-
ment of the Doob-Meyer Decomposition for non-linear expectation martingales,
which is very difficult since the classical argument for the decomposition relies
heavily on the linearity of conventional expectation. The proof in Theorem
4.6 in [Roy06] starts with establishing the Doob-Meyer Decomposition for f -
expectation martingales, before it generalises the result for general non-linear
expectation martingales without a given driver f . For details, see Theorem 4.1,
4.5 and 4.6 in [Roy06].

So far as we know, Royer in [Roy06] is one of the first to generalise this result
to the jump setting. This thesis devotes the whole Chapter 4 to establishing a
corresponding result in the time-changed setting, see Theorem 4.0.1.
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Dynamic risk measures as f-expectations
With f -expectations defined in Proposition 1.3.2, we can use them to repre-
sent dynamic risk measures. The following proposition shows us the natural
connection between non-linear expectations and dynamic risk measures.

Proposition 1.3.9. Let T ′ > 0 be a time horizon and Ef be an f -expectation
generated in Proposition 1.3.2. Suppose Ef satisfies properties of additivity,
filtration-consistence and EC,C1-domination, all with respect to the natural filtra-
tion F defined in Defition 0.1.1, then we can define a normalised, time-consistent
dynamic risk measure in the following way: for each T ∈ [0, T ′] and ξ ∈ L2(FT ),

ρft (ξ, T ) := −Ef [ξ | Ft] = −Yt(ξ, T ), t ∈ [0, T ]. (1.23)

Moreover, if the generator f is also concave with respect to (x, π, l), then the
dynamic risk measures thus represented is convex.

i Proof. We show that the ρft (ξ, T ) defined in (1.23) satisfies the properties
listed in Definition 1.1.12 and Proposition 1.1.19.

First we note that the additivity of the f -expectation is equivalent to the
conditional invariance for the dynamic risk measure defined in Definition 1.1.12.
Thus the additivity of the f -expectation Ef implies the conditional invariance
for the conditional risk measure ρft defined in (1.23).

The filtration-consistency property of the f -expectation is equivalent to the
normalised conditional time-consistency property (1.2) in Proposition 1.1.19,
as we have observed in (1.19). In this way, the filtration consistency of the
f -expectation Ef implies time-consistency for the conditional risk measure ρft .

Here we note that, since we have the condition that f(t, y, (0, 0)) = 0, the
associated conditional dynamic risk measure ρft defined in (1.23) has the nor-
malisation property defined as (iv) in Definition 1.1.12.

When it comes to monotonicity property, Proposition 1.3.2 and Remark 1.3.4
tell us that the conditions on the driver f guarantees monotonicity for the f -
expectation Ef , and this implies monotonicity for the conditional risk measure
ρft . Behind the curtain, this results rests on the strict Comparison Theorem,
see Theorem 1.2.14.

Finally, the convexity follows by an application of the Comparison Theorem,
see Theorem 1.2.13. To be more specifically, consider ξ1, ξ2 ∈ L2(FT ), η ∈ [0, 1].
We note that, by assumptions, f is additive and is therefore independent of y,
then by the concavity of f in terms of (π, l), we have

f(η (π(ξ1), l(ξ1)) + (1− η) (π(ξ2), l(ξ2))) ≥ η f(π(ξ1), l(ξ1))

+ (1− η) f(π(ξ2), l(ξ2))

Then by the Comparison Theorem, the resulting risk measure is convex, and
the result is established.

Corollary 1.3.10. In addition to assumptions in Proposition 1.3.9, if the driver
f is also positively homogeneous, see (v) in Definition 1.1.12, then the resulting
dynamic risk measures defined in (1.23) is coherent.

i Proof. We note that by assumptions, the driver f is concave with respect
to (π, l), and the resulting risk measure ρt is convex. If the driver f is, in
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addition, positively homogeneous, it follows that the associated risk measure
ρt is also positively homogeneous, namely for C ∈ R and C ≥ 0, we have
ρt(Cξ) = Cρt(ξ).

For the rest, we need to make use properties of the associated BSDE. Details
of this proof can be found in the proof of Corollary 3.1.5, where we show a
corresponding result in the time-changed setting, and we skip them here.

Representation of Convex Dynamic Risk Measures

We now present a representation of normalised convex dynamic risk measures
generated by concave BSDEs with jumps. As mentioned in [QS13], this result is
established through a set of probability measures that are absolutely continuous
with respect to P .

Following [QS13], we define a function F of f with respect to (π, ` ), for each
(α1, α2) in R× L2

ν by

F (ω, t, α1, α2) := sup
(π,`)∈R×L2

ν

[f(ω, t, π, `)− α1π − 〈α2, `〉ν ]. (1.24)

Now we recall Theorem 5.2 in [QS13].

Theorem 1.3.11 (Representation of Normalised Convex Dynamic Risk Mea-
sures). Suppose that the Hilbert space L2

ν is separable. Let f be a Lipschitz
driver with Lipschitz constant C, which does not depend on x. Suppose also that
f satisfies assumptions in the Strict Comparison Theorem, see Theorem 1.2.14,
and is concave with respect to (π, l).

Let T ′ > 0, and T ∈ [0, T ′]. Let AT be the set of predictable processes
α = (α1, α2) such that F (t, α1

t , α
2
t (u)) ∈ H2

F (0, T ), where F is defined by 1.24.
For each α ∈ AT , let Qα be the probability absolutely continuous with respect to
P which admits ZαT as density with respect to P on FT , where Zα is the solution
of

dZαt = Zαt−

(
α1
tdWt +

∫
R∗
α2
t (u)dÑ(dt,du)

)
; Zα0 = 1. (1.25)

The convex dynamic risk measure ρ(ξ, T ) has the following representation: for
each ξ ∈ L2(FT ),

ρ0(ξ, T ) = sup
α∈AT

[EQα [−ξ]− ζ(α, T )], (1.26)

where the function ζ, the penalty term, is defined for each T and α ∈ AT by

ζ(α, T ) := EQα

[ ∫ T

0

F (s, α1
s, α

2
s)ds

]
.

Moreover, for each ξ ∈ L2(FT ), there exits ᾱ = (ā1, ᾱ2) ∈ AT such that

F (t, ā1, ᾱ2) = f(t, πt, lt)− ā1πt − 〈ᾱ2, lt〉ν , t ∈ [0, T ], dP ⊗ dt-a.s.,

where (Y, π, l) is the solution to the associated BSDE with driver f , terminal
time T and terminal condition ξ. Also the process ᾱ is optimal for (1.26).
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Remark 1.3.12. As pointed out in [QS13], in the case of filtrations generated by
only a Brownian motion, the probability measures Qα are equivalent to P .

Under the discontinuous framework, the process α is valued in the Hilbert
space R×L2

ν . The separability assumption will be used to fix some measurability
problems in the proof.

To prove the previous theorem, we need to have the following lemmata.

Lemma 1.3.13. For each (t, ω), D(ω) is defined as the non-empty set of α =
(α1, α2) ∈ R×L2

ν such that F (ω, t, α1, α2) > −∞, where F is defined in (1.24).
Then for each (t, ω), D(ω) ⊂ U where U is the closed subset of the Hilbert
space R × L2

ν of the elements α = (α1, α2) such that α1 is bounded by C and
ν(du)−a.s.,

α2 ≥ −1 and |α2| ≤ ψ(u) ∧ C,

where C is the Lipschitz constant of f .

Proof. Proof of this lemma rests on the fact that f satisfies assumptions in the
Strict Comparison Theorem, see Theorem 1.2.14. Then we are able to construct
a contradiction with F . For details we refer to Lemma 5.4 in [QS13].

We follow the same idea and give a detailed proof of a corresponding lemma
in the time-changed setting in Lemma 3.2.2.

Lemma 1.3.14. These exists a process ᾱ = (ᾱ1, ᾱ2(u)) ∈ AT such that

f(t, π, `t) = ess inf
α∈AT

{fα(t, πt, `t)} = f ᾱ(t, πt, `t), t ∈ [0, T ], dP ⊗ dt-a.s.

Proof. We need to recall results from convex analysis to obtain this result. For
details we refer to Lemma 5.5 in [QS13].

Now we can present a brief proof for the previous Theorem.

Proof of Theorem 1.3.11 . We first need to fix the measurability issue with F .
Given that the space R × Lν2 is separable, there is a dense countable subset I,
and since f is concave and continuous with respect to (π, `) by assumption, the
superemum in (1.24) coincides with the supremum over I. And thus we can
establish the measurability of F . By results from convex analysis, F is also
convex.

Since f is concave and continuous, we have the conjugacy relation between
f and F :

f(ω, t, π, `) = inf
α∈Dt(ω)

{F (ω, t, α1, α2) + α1π + 〈α2, `〉ν},

where Dt(ω) is defined in Lemma 1.3.13.
Thus with Lemma 1.3.13 established, for each process αt = (α1

t , α
2
t ) ∈ AT ,

let fα be the associated linear driver defined by

fα(ω, t, π, `) := F (ω, t, α1
t (ω), α2

t (ω)) + α1
t (ω)π + 〈α2

t (ω), `〉ν .

Here we can also see that by the infimum, for each α ∈ AT , fα ≥ f .
Let T ∈ [0, T ′] and ξ ∈ L2(FT ). Let (Y (ξ, T ), π(ξ, T ), l(ξ, T )) be the solution

in S2
F (0, T ) × H2

F (0, T ) × HpF (0, T, ν) of the BSDE associated with driver f ,
terminal time T and terminal condition ξ.
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By Lemma 1.3.14 and the Optimisation Principle in Theorem 1.2.16, we can
derive that

Y0(ξ, T ) = inf
α∈AT

Y α0 (ξ, T ) = Y ᾱ0 (ξ, T )

where for each α ∈ AT , Y α(ξ, T ) is the solution of the linear BSDE associated
with driver fα, terminal time T and terminal condition ξ.

By Lemma 1.3.13, the process Zα defined by (1.25) belongs to S2
F (0, T ) by

Proposition 1.2.6. Thus by the representation of linear BSDEs as conditional
expectations in Theorem 1.2.10, we have:

Y α0 (ξ, T ) = E

[
ZαT ξ +

∫ T

0

Zαs F (s, α1
s, α

2
s)ds

]
.

Then by Lemma 1.3.13 where α2
t ≥ −1 dt ⊗ dP ⊗ dν-a.s., we can establish

the non-negativity of (Zαt )0≤t≤T and it is a martingale. Thus as a density for
Qα with respect to P on FT , ZαT is well-defined. And the result follows. For
other details, we refer to Theorem 5.2 in [QS13].

We apply a similar argument and prove a corresponding result in the time-
changed setting. For more details, see Theorem 3.2.4.

Corollary 1.3.15. Given assumptions in Theorem 1.3.11, we note that if the
driver f is also positively homogeneous, then F = 0.

i Proof. If the driver f is, in addition, positively homogeneous, it follows that
the associated risk measure is also positively homogeneous, namely for C ∈ R
and C ≥ 0, we have ρt(Cξ) = Cρt(ξ). It implies that the resulting risk measure
is coherent by Corollary 1.3.10. For the rest of the proof, we apply the argument
used in Corollary 3.2.5, where we show a corresponding result in the time-
changed setting. We skip the details here.



Chapter 2

Change of Time Methods

The Change of Time Methods (CTMs) has been widely studied in the literature
of mathematical finance. The central idea of CTMs is to perturb the time line
of a “complicated” process with another stochastic process and then obtain a
well-known process with comparatively “simpler” structure. The change of time
process is usually interpreted as “operational time” or “business time”.

Section 2.1 recalls the basic definitions and theory of CTMs. Focus in this
section is on the mathematical properties of both the original process, which are
usually referred to as base processes, and the resulting time-changed processes.

Section 2.2 goes deeper in CTMs by considering Lévy processes in the semi-
martingale setting, and there one needs to take into consideration issues related
to filtrations.

Section 2.2 also reviews two classes of change of time processes that have
been extensively studied in the literature, namely, subordinators and absolutely
continuous time changes. Subordinated Lévy processes have arguably “nicer”
properties, since they stay Lévy processes and results in the literature tell us that
we can figure out the characteristic triplet for the subordinated Lévy processes
based on those of the base process.

On the other hand, absolutely continuous time changes causes more prob-
lems, since time-changed Lévy processes in this case may no longer stay Lévy
processes. In the meantime, they can be used to construct processes with con-
ditional independent stationary increments, as classical results in the literature
show. This section addresses these problems.

In section 2.3, we present a framework for BSDEs with jumps driven by
noises associated with absolutely continuous time changes, based on results from
[DS14]. This is a novel framework to generalise the discussion of BSDEs with
jumps, and it has several “nice” properties, thanks to the absolutely continuous
time change. We will give a detailed discussion about this framework in this
section.

This chapter tries to approach the CTMs in a more conceptual way, in the
sense that it presents more examples to offer intuitions about CTMs instead of
detailed proofs. One of the reasons for this is that, CTMs-related results usually
involve large amount of computations, something that is highly technical, yet
sheds little lights on the main topic of this thesis. After establishing the time-
changed framework in Section 2.3, we continue the discussion of time-changed
BSDEs in this setting in the next chapter.

35
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2.1 Change of Time Methods
We first recall some basic definitions of CTMs, before presenting some important
properties. Results for this section are based on works done in [BS10] and
[Swi16].

Basic Definitions

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space, with filtration (Ft)t≥0

being right-continuous. We first define the random change of time.

Definition 2.1.1 (Random Change of Time). A family of random variables
T̂ = (T̂ (θ))θ≥0 is said to be a random change of time, if

(i) (T̂ (θ))θ≥0 is a non-decreasing, right-continuous family of [0,∞]-valued ran-
dom variables T̂ (θ), θ ≥ 0;

(ii) for all θ ≥ 0 the random variables T̂ (θ) are stopping times with respect
to the filtration (Ft)t≥0, meaning

{T̂ (θ) ≤ t} ∈ Ft, θ ≥ 0, t ≥ 0.

Definition 2.1.2. The random variable

ζ̂ = inf{θ : T̂ (θ) =∞}

is called the life time of the process T̂ = (T̂ (θ))θ≥0. The change of time is said to
be finite if T̂ (θ) <∞ P−a.s., for all θ ∈ [0,∞), or equivalently, P (ζ̂ =∞) = 1.

Definition 2.1.3 (Subordinator). The change of time T̂ = (T̂ (θ))θ≥0 is called
a subordinator, if this randome process T̂ on the interval [0, ζ̂] is a Lévy process.
If P (ζ̂ =∞) = 1, then the change of time T̂ is said to be a subordinator in the
strong sense.

General Idea and Construction

With the basic definitions in place, we now provide a general construction of
change of time processes.

Let (Ω,F , (Ft)t≥0, P ) be the above-mentioned probability space, and let
A = (At)t≥0 be an increasing, right-continuous random process, adapted to the
filtration (Ft)t≥0, with A0 = 0.

We also assume the stochastic processes we consider in this section to be pro-
gressively measurable, see Definition A.0.1, with respect to the filtration (Ft)t≥0.

We define
T̂ (θ) = inf{t : At > 0}, θ > 0, (2.1)

where, following the convention, inf ∅ =∞.
We show that such a process constitutes a random change of time.

Lemma 2.1.4. The family of random variables T̂ = (T̂ (θ))θ≥0 as defined in
(2.1) constitutes a random change of time.
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Proof. Property (i) in Definition 2.1.1 follows easily from construction in (2.1),
given that

{t : At > θ} =
⋃
ε>0

{t : At > θ + ε},

we have T̂ (θ) = limε↓0 T̂ (θ + ε), namely, the process T̂ is right-continuous for
each θ ≥ 0.

To verify Property (ii) in Definition 2.1.1, we first note that since the filtra-
tion (Ft)t≥0 is right-continuous. Given this assumption, we see {T̂ (θ) ≤ t} ∈ Ft
is equivalent to {T̂ (θ) < t} ∈ Ft, as we can see if we start with {T̂ (θ) ≤ t} ∈ Ft,

{T̂ (θ) < t} =
⋃
ε>0

{T̂ (θ) ≤ t− ε} ∈ Ft−ε ⊆ Ft.

Conversely, if we have {T̂ (θ) < t} ∈ Ft, then by the right-continuity of the
filtration,

{T̂ (θ) ≤ t} ∈
⋂
ε>0

Ft+ε = Ft.

Hence the claim for equivalence is established.
Then by the definition of (2.1), we have

{T̂ (θ) < t} =
⋃

s<t,s∈Q
{As > θ} ∈ Ft,

where Q is the set of the rational number on [0,∞). So the second property
also holds.

With the change of time, we will be able to construct another filtration F̂θ,
where the process we used in (2.1) becomes a stopping time for each t.

Lemma 2.1.5. If T̂ = (T̂ (θ))θ≥0 is defined as in (2.1), then

At = inf{θ : T̂ (θ) > t},

and, for all t ≥ 0, the random variables At are (F̂θ)θ≥0-stopping times, where

F̂θ = FT̂ (θ).

Proof. We prove here the equation for At in the lemma, for the rest of the proof,
we refer to Lemma 1.2 in [BS10]. We note that for given θ ∈ [0,∞), we have
T̂ (θ) > t, then by (2.1), we have At ≤ inf{θ : T̂ (θ) > t}.

Conversely, since T̂ (At) ≥ t for each t ∈ [0,∞), so T̂ (At+ε ≥ t + ε > t).
Therefore, At+ε ≥ inf{θ : T̂ (θ) > t}, and given that At is right-continuous, we
have the reversed inequality. Hence we have proved the equality for At.

The above lemma provides us with a “dual” structure for change of time
processes. It is easy to observe that A is the inverse of T̂ . To emphasise this
duality, we define a process T := (T (t))t≥0 coinciding with A = (At)t≥0 such
that T (t) = At for t ≥ 0. And from now on, we use T to emphasise the original
process.
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This is why T and T̂ are referred to as mutually inverse in the literature, as
we can see T̂ can be constructed from T by T̂ = inf{t : T (t) > θ}, and T can
be retrieved as T (t) = inf{θ : T̂ (θ) > t}.

Now we take a look at a simple example where the change of time process
is deterministic.

Example 2.1.6. Let B̂ = (B̂θ)θ≥0 be a Brownian motion and T = (T (t))t≥0

be a deterministic non-decreasing and right-continuous function with T (0) = 0.
We consider the process defined as

Xt = F (f(t) + g(t)B̂T (t)),

where f(t), g(t) and F (x) are continuous functions.
To be more specific, let X be a process satisfying the SDE of the Ornstein-

Uhlenbeck type:
dXt = (α(t)− β(t)Xt)dt+ γ(t)dWt,

where W = (Wt)t≥0 is a Brownian motion.

Given the conditions that
∫ t

0

∣∣∣α(s)
g(s)

∣∣∣ds <∞ and
∫ t

0

∣∣∣γ(s)
g(s)

∣∣∣2 ds <∞ for t ≥ 0,
we can find a unique strong solution for X, namely,

Xt = g(t)
[
X0 +

∫ t

0

α(s)

g(s)
ds+

∫ t

0

γ(s)

g(s)
dWs

]
,

where

g(t) = exp
{
−
∫ t

0

β(s)ds
}
.

Now we put

T (t) =

∫ t

0

(γ(s)

g(s)

)2

ds,

and we suppose that T (t) ↑ ∞ as t→∞. Then we can defined a “new” Brownian
motion by

B̂T (t) :=

∫ t

0

γ(s)

g(s)
dWs.

In this way, we can represent the process X as

Xt = f(t) + g(t)B̂T (t)

where

f(t) = g(t)
[
X0 +

∫ t

0

α(s)

g(s)
ds
]
.

The way we constructed the Brownian motion B̂ is as follows:

B̂θ =

∫ T̂ (θ)

0

γ(s)

g(s)
dWs,

where
T̂ (θ) = inf{t : T (t) > θ}.

�
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Since we assume that the processes we consider in this section are progres-
sively measurable, we see that with the change of time T̂ , the “compound”
process

X̂θ = XT̂ (θ), θ ≥ 0,

is (Fθ)-adapted, that is to say, X̂θ is Fθ-measurable for each θ ≥ 0. We refer to
Section 1.1.6 in [BS10] for a more detailed explanation on this.

The following lemma describes some mathematical properties of the asso-
ciated time-changed filtration, which in turn depend on the properties of the
process (At)t≥0 in (2.1).

Lemma 2.1.7 (Properties of Change of Time). Given the construction of a
change of time process T̂ in (2.1), we have the following properties:

(i) If the process (At)t≥0 is continuous and τ is a stopping time with respect
to the filtration (Ft)t≥0, then we have:

Fτ ⊆ F̂Aτ = F̂T (τ) = FT̂ (T (τ));

(ii) If the process (At)t≥0 is continuous and strictly increasing, then

T̂ (T (t)) = t,

T (T̂ (θ)) = θ,

T̂ (θ) = T−1(θ),

T (t) = T̂−1(t),

and if τ is a stopping time, then

Fτ = F̂Aτ = F̂T (τ) = FT̂ (T (τ));

(iii) If the process (At)t≥0 is continuous, strictly increasing and A∞ = ∞ P -
a.s., then the associated change of time process T̂ is also continuous, and
strictly increasing and its life time ζ̂ =∞ P -a.s.

Proof. These properties are very easy to check, given the construction and as-
sumptions in (2.1) (especially the right-cotinuity of process A). We refer to
Section 1.2.1 in [BS10] for a detailed explanation.

Representations

As stated before, the central idea of CTMs is to represent a process X with
a complicated structure with a comparatively “simpler” one via perturbing its
time line with another stochastic process. One natural question is: given process
X, how can one construct a simpler process X̂ via an also “simple” time-change
process T , such that the representation X = X̂T holds, no matter in the strong
(indistinguishable), semi-strong (P -a.s.), or the weak (distribution) sense.

We end this section by presenting two important and classical results for
change of time representations, namely, for continuous local martingales and for
local martingales obtained by compensation of counting processes.
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Let M = (Mt)t≥0 be a continuous local martingale, with M0 = 0. Denote
by 〈M〉 its quadratic variation as defined in Definition A.0.6 and its existence
is guaranteed by Theorem A.0.5 the Doob-Meyer Decomposition for local sub-
martingales. We have the following classical results for the strong representation
of M as a Brownian motion via a change of time process.

Theorem 2.1.8 (Dambis, Dubins and Schwartz). Let M = (Mt)t≥0 be a con-
tinuous local martingale withM0 = 0 and 〈M〉∞ =∞. Then there exits a Brow-
nian motion B̂ = (B̂θ)θ≥0 such that for the change of time T (t) = 〈M〉t, t ≥ 0,
we have the strong representation M = B̂T .

Proof. Proof of this theorem is slightly technical, and we will only give a general
sketch. In accordance with construction of a change of time as in (2.1), we make
At = 〈M〉t, t ≥ 0. Given the assumption that 〈M〉∞ = ∞, we conclude that
T̂ (θ) is finite for all θ ≥ 0. Then we have

B̂θ = MT̂ (θ) and F̂θ = FT̂ (θ).

For the rest of the proof, we need to verify that B̂ is indeed a Brownian
motion. We need to make use of the nice properties of 〈M〉 and refer to Theorem
1.1 in [BS10] for details of the rest of the proof.

Remark 2.1.9. In the above theorem, we have made the assumption that 〈M〉∞ =

∞, something that guarantees the time T̂ (θ) is finite for all θ ≥ 0. We will need
to extend the current probability space and construct a more complicated fil-
tration if we relax this assumption by having 〈M〉∞ < ∞. But the theorem
remains true. For details of this respect, we refer to Section 1.4 in [BS10].
Remark 2.1.10. For extension of the previous theorem into a multi-dimensional
time-changed Brownian motion setting, we refer to Remark 1.4 and Remark 1.5
in [BS10].

A direct consequence of the above theorem is that it can be applied to
construct models of stochastic volatility, such as in the following corollary.

Corollary 2.1.11. Let Mt be a continuous local martingale defined in our prob-
ability space (Ω,F , P ) equipped with the filtration (Ft)t≥0 as

Mt =

∫ t

0

σsdBs, t ≥ 0,

where Bt is a Brownian motion adapted to (Ft)t≥0 and σ is a positive process
with

∫ t
0
σ2
sds <∞ and

∫∞
0
σ2
sds =∞. If we define

T̂ (θ) = inf
{
t :

∫ t

0

σ2
sds ≥ θ

}
,

Then the process B̂θ = MT̂ (θ) is a Brownian motion with respect to the filtration

(F̂θ)θ≥0, and thus
Mt = B̂T (t),

where

T (t) =

∫ t

0

σ2
sds.
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In the above theorem, the Brownian motion B̂ clearly played the role of the
comparatively “simpler” process in the representation. A natural generalisation
of this is to consider processes which are not as “nice” as Brownian motions,
processes with discontinuities. Counting processes are a natural candidate, and
among them, the Poisson process stands out for its “simplicity”.

Theorem 2.1.12. Let N = (Nt)t≥0 be a counting process with continuous
compensator (as defined in Definition A.0.7) A = (At)t≥0, N0 = 0, A0 = 0. Let
M = (Mt)t≥0 where Mt = Nt − At. If A∞ = ∞, then there exists a standard
Poisson process N̂ = (N̂θ)θ≥0, with intensity λ = 1, such that N = N̂T , T = A,
and M = M̂T , where M̂t = N̂t − t is a “Poisson martingale”.

Proof. Proof of the above theorem starts with the fact that by the Doob-Meyer
Decomposition for counting proccesses, we have N = A + M , where A is the
compensator process and M is a local martingale.

For the rest of the proof, we refer to Theorem 1.2 in [BS10], where it was
shown that N̂ is indeed Poissonian by verifying its characteristic function .

We end this section with a remark about the representation of the general
Lévy process with an independent Brownian motion B̂.

Remark 2.1.13. We assume that in our probability space (Ω,F , P ), there exist
two processes: 1) a Lévy process X, and 2) a Brownian motion B̂ that does not
depend on X.

It turns out that we could construct a non-decreasing change of time process
(T (t))t≥0 with T (0) = 0 such that at least for each t > 0, we have the equality
with probability one

Xt = B̂T (t).

Here it was shown that the process (T (t))t≥0 is also a Lévy process, and because
it is non-decreasing, it is a subordinator. For a more detailed explanation of this
result, we refer to Section 1.4.6 in [BS10].
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2.2 Time-changed Lévy Processes
We have introduced the general idea and construction of random change of
time in the previous section, and in this section, we will look at models in
a semimartingale setting. Some new aspects, such as filtration, will be also
considered here.

As mentioned earlier, two classes of change of time have been widely stud-
ied in the literature, namely, subordinators and continuous and differentiable
random change of time processes. This section recalls more detailed results for
the former, since classical results in the literature showed that a subordinated
Lévy process remains a Lévy process. In this way, it has “nicer” properties
and we stay in the Lévy process framework. This also means that, if we want
to study time-changed BSDEs in the setting of subordinated Lévy processes,
with the time-changed noises satisfying sufficient properties (such as martingale
property), results from the classical setting carry over with no problem.

Time-changed Lévy processes with continuous and differentiable change of
time are more complicated, since under such a time change a Lévy process
may not longer be a Lévy process. In this section, we use them to construct
the framework of processes with conditional stationary independent increments,
guaranteed by classical results in the literature. We review such a framework
from [DS14] in the next section to study time-changed BSDEs with jumps.

Most of the results presented in this section are recalled from Chapter 8 in
[BS10].

Brownian Motions
As in the previous section, let (Ω,F , P ) be our filtered probability space and
now we have a semimartingale X = (Xt)t≥0 defined in this space. See Definition
A.0.8 for the definition of semimartingales.

In addition to the filtration F = (Ft)t≥0, we also consider the filtration
FX = (FXt )t≥0 where

FXt =
⋂
ε>0

σ(Xs; s ≤ t+ ε),

so FX is a right-continuous version of the so-called natural filtration generated
by process X.

In the meantime, we will also consider another filtration G = (Gt)t≥0, where

FXt ⊆ Gt ⊆ Ft, for t ≥ 0.

Given the set-up, we recall the following two propositions from Chapter 8
in [BS10] that ensures the semimartingale will remain a semimartingale with
respect to different filtrations.

Proposition 2.2.1. A semimartingale X = (Xt)t≥0 considered with respect
to the filtration F = (Ft)t≥0 is a semimartingale relative both to its natural
filtration FX = (FXt )t≥0 and any filtration G = (Gt)t≥0 such that FXt ⊆ Gt ⊆
Ft, t ≥ 0.

Proposition 2.2.2. If X = (Xt)t≥0 is a semimartingale with respect to a
filtration F, then the time-changed process X̂ = (X̂θ)θ≥0, where X̂θ = XT̂ (θ), is

a semimartingale with repect to the time-changed filtration F̂ := (F̂θ)θ≥0.
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Proof. For detailed explanation for the above two theorems, we refer to Theorem
8.1 and Theorem 8.2 in [BS10].

Now we recall a classical result named “Monroe theorem”, saying that under
assumptions, any semimartingale can be represented as a time-changed Brow-
nian motion in distribution. For a detailed explanation, we refer to Section 8.1
in [BS10].

Theorem 2.2.3 (Monroe Theorem). If X = (Xt)t≥0 is a semimartingale with
respect to the natural filtration FX , then there exists a filtered probability space
with a Brownian motion B̂ = (B̂θ)θ≥0 and a change of time T = (T (t))t≥0

defined on it such that

X = B̂T in distribution.

We note that the representation in the above theorem is generally not unique,
and we need to consider the filtered probability space to study the connection
between B̂ and T .

Yet by the Dambis-Dubins-Schwartz theorem, see Theorem 2.1.8, we can
establish the following result.

Proposition 2.2.4. A semimartingale X can be represented by X = B̂T in
distribution, with a continuous process T if the provess X is a continuous local
martingale.

If we put in an additional condition that B̂ and T are independent processes,
and the process T is continuous, then we have come to the following theorem
by D. L. Ocone. We recall the result from Section 8.2 in [BS10].

Theorem 2.2.5. Given above-mentioned assumptions where we have a semi-
martingale X, the following two conditions are equivalent:

(i) X = B̂T in distribution;

(ii) X is a continuous local martingale such that(∫ t

0

HsdXs; t ≥ 0

)
= (Xt; t ≥ 0) in distribution,

for any FX-predictable process (Definition A.0.12) H = (Ht)t≥0 such that
|H| = 1.

Here B̂ and T are independent, and T is continuous.

We look at an example of subordinated Brownian motion.

Example 2.2.6 (Cauchy Process). Let T = inf{θ ≥ 0 : Wθ > t}, t ≥ 0 where
W is a standard Brownian motion independent of B̂.

For any λ ≥ 0 and t ≥ 0 the process(
exp

{
λWT (t)∧θ −

λ2

2
(T (t) ∧ θ)

})
θ≥0
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is a bounded martingale. Since T (t) is finite and by Doob Optional Sampling
Theorem, see Theorem A.0.16, we have for λ ≥ 0

E
[
λWT (t) −

λ2

2
T (t)

]
= 1.

We can thus obtain
E
[
e−

λ2

2 T (t)
]

= e−λt,

and then for any u ≥ 0

E
[
e−uT (t)

]
= e−

√
2ut.

By Lévy-Khinchin formula for stable processes, see A.0.15, we can conclude
that T is a 1

2 -stable process with triplet (0, 0, ρ) and the Lévy measure

ρ(dx) = (2π)−
1
2x−

3
2 dx.

Given that B̂ and T are independent, we have for any λ ∈ R

E
[
eiλB̂T (t)

]
= E

[
e−λ

2 T (t)
2

]
= e−|λ|t

and this means X := B̂T is a 1-stable symmeric process, which is called the
standard Cauchy process. �

Another question that arises from this set-up is: if we start with a Brownian
motion B̂ and a subordinator T , what is the resulting process X := B̂T ? The-
orem 2.2.12 in the following subsection answers this question, as the Brownian
motion is a special case of Lévy processes.

On the other hand, we can also ask the inverse question, namely, for a Lévy
process X to be represented in distribution as X := B̂T , what will be the
conditions on X itself as well as on the change of time process T? Theorem
2.2.11 gives an answer to this question for subordinated Lévy processes. We
refer to Theorem 8.6 in [BS10] for a more general discussion on this question.

Subordinated Lévy Processes

Before we start discussing about processes being represented by subordinated
Brownian motions, we recall some important facts about Lévy processes.

By the famous Lévy-Khinchine formula, see Theorem A.0.15, we recall Corol-
lary 2.4.20 from [App09].

Theorem 2.2.7. If X is a Lévy process for each u ∈ Rd, t ≥ 0, then

E[ei(u,X(t))] = exp(tη(u))

η(u) =
{
i(b, u)− 1

2
(u,Au) +

∫
R∗

[ei(u,y) − 1− i(u, y)1B̂(y)]µ(dy)
}
(2.2)

where B̂ denotes the ball of radius 1 around 0, b ∈ Rd, A is a positive definite
symmetric d× d matrix and µ a Lévy measure on R∗.
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Remark 2.2.8. In this way, every Lévy process can be represented with a triplet
of characteristics (b, A, µ). Yet since a subordinator is a Lévy process with non-
decreasing trajectories, its triplet must be of the form (b, 0, µ), with b ≥ 0 and
µ satisfying the additional requirements:

µ(−∞, 0) = 0 and
∫ ∞

0

(y ∧ 1)µ(dy) <∞.

And we usually represent a subordinator T in the following way:

E[e−uT (t)] = e−tL(u),

where t ≥ 0 and u ≥ 0, where

L(u) = ub+

∫ ∞
0

(1− e−ux)µ(dx). (2.3)

In literature, L(u) in (2.3) is often referred to as the “Laplace transform”
of the subordinator. For details of this result, we refer to Theorem 1.3.15 in
[App09].

Example 2.2.9 (Poisson Subordinators). One of the simplest subordinators is
Poisson processes. More generally, a compound Poisson process is a subordina-
tor if and only if all its jump sizes are non-negative. �

Example 2.2.10 (Gamma Subordinators). Let (T (t))t≥0 be a gamma process
with parametres a, b > 0, and the density for x ≥ 0 will be

fT (t)(x) =
bat

Γ(at)
xat−1e−bx.

We see that for each u > 0∫ ∞
0

e−uxfT (t)(x)dx =
(

1 +
u

b

)−at
= exp

[
− ta log

(
1 +

u

b

)]
.

With some manipulation, we can get∫ ∞
0

e−uxfT (t)(x)dx = exp
[
− t
∫ ∞

0

(1− e−ux)ax−1e−bxdx
]
.

By this we see that for the subordinator triplet, b = 0 and µ(dx) = ax−1e−bxdx.
�

Now we can answer the question about what kind of Lévy processes can be
represented by a subordinated Brownian motion. We focus on one-dimension
situation in our discussion.

Theorem 2.2.11. If a Lévy process X with the characteristic triplet (0, a, µ)

admits the representation X = B̂T in distribution, then

(i) the measure µ is symmetric, absolutely continuous relative to the Lebesgue
measure with density q(z) = µ(dz)

dz , having the property that the function
q(
√
z), z > 0 is completely monotonous;
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(ii) there exits a unique positive measure ν on (0,∞) such that

q(
√
z) =

∫ ∞
0

e−zyν(dy), z > 0;

(iii) the triplet (β, 0, ρ) of the subordinator T in the representation is such that

β = a

and
ρ(dx) =

√
2πx

(
ν
(1

2
x
)−1)

(dx).

Proof. We refer to Theorem 8.6 in [BS10] for details of the proof.

In the above discussion, we used Brownian motion as the building block
for the time-changed process. In fact, if we let general Lévy processes play
the similar role, with the change of time process being a subordinator, and the
resulting process will still be a Lévy processes. This is a “classical” result proved
by Sato in [Sat99].

Theorem 2.2.12. Let L = (Lt)t≥0 be a Lévy processes, and T a subordinator
independent of L, then the subordinated process X = LT remains a Lévy process
under P with respect to the filtration F.

Proof. We refer to pages 197-198 in [Sat99] for details of the proof. Note that
Brownian motion is just a special case of Lévy processes and is therefore included
this theorem.

Given a suordinated Lévy process X = LT , we would want to figure out its
triplet from those of the original Lévy process L and the subordinator T . The
following proposition enables us to do that.

Proposition 2.2.13 (Triplets for Subordinated Lévy Processes). Given a Lévy
Process (Lt)t≥0 with triplets (b, A, µ) and its characteristic exponent η(u) as
defined in (2.2), and a subordinator (T (t))t≥0, with its triplet (β, 0, ν) and its
Laplace transform defined in (2.3). We assume L and T are independent of each
other. The triplet (bx, Ax, µx) for the subordinated Lévy process X = LT can
then be expressed in the following way:

bx = βb+

∫ ∞
0

(∫
|L|<1

lfLs(dl)
)
ν(ds)

Ax = βA

µx = βµ(dx) +

∫ ∞
0

fLs(dl)ν(ds)

where fLs(dl) is the probability distribution of the Lévy Process (Lt)t≥0.

Proof. To see the result, we need to compute the characteristic function for the
subordinated process X, given the assumption that L and T are independent:

E[eiuX ] = E[eiuLT (t) ] = E[E[eiuLξ | T (t) = ξ]] = E[e−T (t)η(u)] = L(η(u))

The result follows by expanding the equation and direct computations.
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Remark 2.2.14. We note that the time-changed process X has two sources of
randomness: the original Lévy process L and the change of time process T .
If we have independence between L and T , then by the proof of the previous
proposition, we see that the characteristic function of the time-changed process
X can be represented by the Laplace transform of the change of time process,
provided that indeed such a closed form exists. We will give a more general
discussion in the following where we study absolutely continuous change of time
processes.

Lévy Processes with Absolutely Continuous Change of Time
We will end this section with a discussion of time-changed Lévy process with a
continuous and differentiable change of time process T . Unliked subordinated
Lévy processes, time-changed Lévy process with a continuous change of time
may no longer remain a Lévy process and we will need a more complicated
framework for our study.

The following is yet another classical result in the literature that studies
processes with conditional independent increments. And this is the general
framework we will use to study BSDEs driven with time-changed Lévy noises.

We first need to have a definition of processes with conditional stationary
increments.

Definition 2.2.15 (Process with Conditional Stationary Independent Incre-
ments). Let (Tt)t≥0 be a non-negative, real-valued stochastic process with sam-
ple paths that are non-decreasing, right-continuous, and T0 = 0 a.s. Let
A = σ(Tt, t ≥ 0) , which is the σ-algebra generated by (Tt)t≥0. Let X be a
measurable, real-valued process that satisfies the following conditions:

(i) For any s1 < t1 < · · · < sn < tn ∈ R and x1 · · · , xn ∈ R, we have

P [Xt1−Xs1 ≤ x1, · · · , Xtn−Xsn ≤ xn | A] =

n∏
k=1

P [Xti−Xsi ≤ xi | A] a.s.;

(ii) for any 0 ≤ s ≤ t and ζ ∈ R, we have

E[exp(iζ(Xt −Xs)) | A] = φ(ζ)Tt−Ts a.s.,

where φ is an infinitely divisible characteristic function (Definition A.0.14).

Then we call X a (continuous parameter) process with conditional stationary
independent increments with respect to T .

In the above definition, we can see that the first condition is about condi-
tional independent increments, and the second condition means that the distri-
bution of Tt − Ts determines the way the distribution of Xt − Xs depends on
time. In this way, the behaviour of X was completely determined by the pro-
cess T and the characteristic function φ. We can thus present two examples of
processes with conditional stationary independent increments by changing the
characteristic function φ.

Example 2.2.16 (Conditional Gaussian Processes). We call the process (Xt)t≥0

a conditional Gaussian Process with variance process (Tt)t≥0 if φ(ζ) = e−
ζ2

2 . �
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Example 2.2.17 (Conditional Poisson Processes). We call a non-negative,
integer-valued process (Xt)t≥0 defined on the same probability space a con-
ditional Poisson Process with mean value process (Tt)t≥0 if φ(ζ) = exp(eiζ − 1).

This is to say (Xt)t≥0 is conditionally a non-homogeneous Poisson process
with mean value function (Tt)t≥0 given the σ-algebra A. We can also express
the conditional probability distribution for Xt − Xs for any 0 ≤ s ≤ t and
x ∈ N ∪ {0} in the following way:

P
(
Xt −Xs = x | A

)
=

(Tt − Ts)x exp(−(Tt − Ts))
x!

a.s.

In the literature, there are sometimes referred to as doubly stochastic Poisson
processes (or Cox processes). �

Proposition 2.2.18. Let X and Y be two random variables that are condition-
ally independent with respect to a σ-algebra A, namely, for x, y ∈ R,

P (X ≤ x, Y ≤ y | A) = P (X ≤ x | A) P (Y ≤ y | A)

Then we have
E[f(X) | A ∨ B] = E[f(X) | A].

Here B := σ(Y ), namely, the σ-algebra generated by Y , and f is a measurable
function such that f(X) ∈ L1(Ω,F , P ).

i Proof. We denote by G := σ(X), the σ-algebra generated by X. We denote
by G ∈ G an event G in the the σ-algebra G, A ∈ A and B ∈ B, events in
σ-algebras A and B, respectively. Let 1A and 1B be characteristic functions for
any events A ∈ A and B ∈ B.

In the following, we show that the equality holds for the indicator function
1G for all G ∈ G. Since f is measurable and bounded, the result follows by
approximation through monotone convergence.

For events G := {ω : X(ω) ≤ x} ∈ G and B := {ω : Y (ω) ≤ y} ∈ B for
x, y ∈ R, we can rewrite the assumption of conditional independence in terms
of conditional expectations with the help of characteristic functions:

E[1G∩B | A] = P (G ∩B | A) = P (G | A)P (B | A) = E[1G | A]E[1B | A]

From the above result, we can show that events G and A∪B for A ∈ A are
also conditionally independent by using the indicator function 1A∪B :

E[1G∩(A∪B) | A] = E[1G1A∪B | A]

= E[1G(1A + 1B) | A]

= E[1G1A | A] + E[1G1B | A]

= 1AE[1G | A] + E[1G | A]E[1B | A]

= E[1G | A](1A + E[1B | A])

= E[1G | A]E[1A + 1B | A]

= E[1G | A]E[1A∪B | A]

(2.4)

Now we are ready to show the main results.
We want to show that

E[1G | A ∨ B] = E[1G | A],
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which by the definition of conditional expectation means

E[1G1A∪B ] = E[E[1G | A]1A∪B ]

for all G ∈ G, A ∈ A and B ∈ B. We start from the right hand side:

E[E[1G | A]1A∪B ] = E[E[ E[1G | A]︸ ︷︷ ︸
A-measurable

1A∪B | A]]

= E[E[1G | A] E[1A∪B | A]]

= E[ E[[1G∩(A∪B) | A]︸ ︷︷ ︸
Conditional independence by (2.4)

]

= E[1G∩(A∪B)]

= E[1G1A∪B ].

And we have thus arrived at the left-hand side.
Since the result holds for the indicator function 1G, by the linearity of con-

ditional expectations it also holds for simple functions for 1 ≤ k ≤ n, s(X) :=∑n
k=1 ak1Gk , where Gk := {ω : X(ω) = ak} ∈ G.
If f(X) ≥ 0, we can find a non-decreasing sequence of such simple func-

tions (sm(X))∞m=1 that converges to point-wise to f(X). The result follows by
applying the Monotone Convergence Theorem.

For a general measurable function function f(X), since it is integrable we
can decompose it into the positive and negative parts, and the result follows in
the same way.

As the following theorem shows, if we start with processes with station-
ary independent increments, make a time change with continuous change of
time process, then the resulting process will be one with conditional stationary
independent increments. This allows us to conduct our investigation of Lévy
processes with absolutely continuous change of time under the framework of
processes with conditional stationary independent increments.

Theorem 2.2.19. Let T be defined as in Definition 2.2.15. Let L be a mea-
surable, real-valued process with stationary increments, independent of T , such
that L has an infinitely divisible characteristic function for each t. Then the
resulting process

Xt = LTt , for t ≥ 0,

is a process with conditional stationary independent increments with respect to
Tt. Conversely, every process with conditional stationary independent incre-
ments is equal in distribution to a process of the above form.

Proof. The proof can be carried out through direct probability calculations. We
refer to Theorem 3.1 in [Ser72] for details of the proof.

We will make use of this result when we discuss BSDEs driven by time-
changed Lévy noises in the next section.

A widely used class of absolutely continuous change of time is locally deter-
ministic ones represented in the following form:

T (t) =

∫ t

0

v(s)ds
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Here we characterise the random change of time process T by the instantaneous
activity rate v(t) which is a predictable càdlàg process. We note that v(t) needs
to be non-negative to ensure that T does not decrease. We can intuitively regard
t as the calender time whereas T is the business time at calender time t.

Given the activity rate v(t), we can obtain its Laplace transform in closed
form,

LT (t)(u) = E
[

exp
(
− u

∫ t

0

v(s)ds
)]
.

As was shown in the proof of Proposition 2.2.13 and pointed out in Remark
2.2.14, if we have independence between L and T , with T being a subordinator,
finding the characteristic function of the time-changed process X = LT can be
reduced to a problem of finding the closed form of Laplace transform of the
change of time process, provided that it exists.

The following theorem from [CW02] showed that, generally, we could in-
deed reduce the problem of characterising the time-changed process X = LT
to finding the Laplace transform of T . But in case L and T do not satisfy the
assumption of independence, we need to make a change of measure by a class
of complex-valued measures.

There is clear intuition behind the change of measure, indeed, if there exists
“leverage effect”, as was described by [CW02], between the original Lévy process
L and the random change of time T , we need to use the measure change to absorb
it so that we can represent the time-changed process X in a leverage-neutral
world. But if there exists no “leverage effect” between the original Lévy process
L and the random change of time T , in other words, they are independent, then
the real world is also leverage-neutral.

This thesis does not intend to go into too much details about CTMs, so
we will try to substantiate the insight from [CW02] with some examples. For
detailed proof of the following theorem, we refer to Theorem 1 in [CW02].

Theorem 2.2.20. The problem of finding the characteristic function of the
time-changed Lévy process X = LT under measure P reduces to the problem of
finding the Laplace transform of the change of time process T under the complex-
valued measure Q(u), evaluated at the characteristic exponenet η(u) of L,

E[eiuXt ] = Eu[e−T (t)η(u)] = LuT (t)(η(u)),

where E[·] and Eu[·] denote expectations under measures P and Q(u) respec-
tively. The new class of complex-valued measure Q(u) is absolutely continuous
with respect to P and is defnied by

dQ(u)

dP
= Mt(u),

where
Mt(u) = exp{iuXt + T (t)η(u)}, u ∈ D

with D ⊆ Cd, the set of complex values for which the expectation E[eiuXt ] is
well-defined.

By the above theorem, we have somewhat simplified the question of repre-
senting the time-changed Lévy process, and thus we can focus on deriving the
Laplace transform of the change of time process.
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Given our current framework of instantaneous activity rate v(t), we can
adopt existing models for v(t). In the following we present the class of affine
activity rate models as an example. For a more detailed discussion of this class
of models, we refer to Section 4.2.1 in [CW02].

Example 2.2.21 (Affine Activity Rate Models). Let Z be a k-dimensional
Markov process that starts at z0 and satisfies the following SDE:

dZ = µ(Zt)dt+ σ(Zt)dWt + qdJ(γ(Zt)).

Here we denote by W a k-dimensional Brownian motion, and J a Poisson jump
component with intensity γ(Zt) and random jump size q, characterised by its
two-sided Laplace transform Lq(·). We also require µ(Zt) and σ(Zt) to satisfy
the technical conditions such that the SDE has a strong solution. Then the
instantaneous rate of activity v(t) is assumed to be a function of the Markov
process Zt.

Proposition 1 in [CW02] states that if the instantaneous rate of activity
v(t), the drift vector µ(Zt) the diffusion covariance matrix σ(Z)σ(Z)>, and the
arrival rate γ(Z) of the Markov process are all affine in Z, then the Laplace
transform LT (t)(u) is exponential-affine in z0.

This means that with the affine activity models, given that all the conditions
satisfied as above, we have

LT (t)(u) = E[e−uT (t)] = exp(−b(t)>z0 − c(t)), (2.5)

where b(t) ∈ Rk and c(t) is a scalar.
In particular, we can let

v(t) = b>v Zt + cv, bv ∈ Rk, cv ∈ R,
µ(Zt) = a− κZt, κ ∈ Rk×k, a ∈ Rk,

[σ(Zt)σ(Zt)
>]ii = αi + β>i Zt, αi ∈ R, βi ∈ Rk,

[σ(Zt)σ(Zt)
>]ij = 0, i 6= j,

γ(Zt) = αγ + b>γ Zt, αγ ∈ R, bγ ∈ Rk.

Then the coefficients (b(t), c(t)) in (2.5) can be determined by the following
ordinary differential equations:

b′(t) = ubv − κ>b(t)− βb(t)2/2− bγ(Lq(b(t))− 1),

c′(t) = ucv + b(t)>a− b(t)>αb(t)/2− αγ(Lq(b(t))− 1),

with boundary conditions b(0) = 0 and c(0) = 0. Here α denotes a diagonal
matrix with the i-th diagonal element given by αi, β denotes a k × k matrix
with the i-th column given by βi, and b(t)2 denotes a k× 1 vector with the i-th
element given by b(t)2

i .
As pointed by authors in [CW02], under more specific conditions, we would

be able to find closed form solutions for the coefficients, such as the square-root
model of Cox–Ingersoll–Ross interest model and Heston model for stochastic
volatility. �
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2.3 BSDEs Driven by Time-changed Lévy Noises
In this section we study the BSDEs driven with time-changed Lévy noises. As
mentioned earlier, this section focuses on Lévy noises with a continuous and
differentiable change of time process.

Unlike subordinated Lévy processes, which stay Lévy processes after the
time change, time-changed Lévy processes with a continuous change of time
may no longer stay within the Lévy process framework. This is why we need to
conduct our study under a more general framework, namely, that of processes
with conditional stationary independent increments.

In doing so, we would like to point out in the very beginning the problem
of dealing with two filtrations in our probability space. The bigger filtration
G is generated by a mixture of a conditional Brownian measure and a centred
doubly stochastic Poisson measure, which we denote by µ, together with the
entire history of the change of time processes for the conditional Brownian
measure and stochastic Poisson measure. A smaller filtration F̃, the smallest
right-continuous filtration to which µ is adapted.

This is a novel framework proposed in [DS14] for problems related to time-
changed processes and is the first to study BSDEs driven by time-changed Lévy
processes in the general form. This section is based on the results from [DS14]
in proving the existence and uniqueness of solution for BSDEs with jumps under
this framework, and establishing a comparison theorem.

More General Framework
We first recall the framework in Section 0.2, proposed in [DS14].

The random measures B and H defined in Definition 0.2.1 are related to
time-change Brownian motion and pure jump Lévy process in a specific way.
We can thus define, for t ∈ [0, T ]:

Bt = B([0, t]× {0});

ΛBt =

∫ t

0

λBs ds;

ηt =

∫ t

0

∫
R∗
zH̃(ds,dz);

Λ̂Ht =

∫ t

0

λHs ds.

We can formulate the explicit connection by applying Theorem 2.2.19 in the
previous section. We recall Theorem 2.3 from [DS14], due to Theorem 3.1 by
Serfozo in [Ser72], which gives a more suitable expression in our situation.

Theorem 2.3.1. Let (Wt)t∈[0,T ] be a Brownian motion and (Nt)t∈[0,T ] be a
centred pure jump Lévy process with Lévy measure ν. Assume that both W and
N are independent of Λ. Then B satisfies conditions (B1) and (B2) if and only
if, for any t ≥ 0,

Bt = WΛBt
in distribution,

and η satisfies (H1) and (H2) if and only if, for any t ≥ 0,

ηt = NΛ̂Ht
in distribution.
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Now we can construct the two filtrations mentioned earlier in Section 0.2.
We define Fµ = (Fµt )t∈[0,T ] as the filtration generated by µ(∆), ∆ ⊂ [0, t]×R.

By conditions (B1) and (H1) in Definition 0.2.1, we have for any t ∈ [0, T ]:

Fµt = FBt ∨ FHt ∨ FΛ
t ,

where FBt is generated by B(∆ ∩ [0, T ] × {0}), FHt by B(∆ ∩ [0, T ] × R∗ and
FΛ
t by Λ(∆), ∆ ∈ [0, t]× R.
We set F̃ = (F̃t)t∈[0,T ], where

F̃t =
⋂
r>t

Fµr .

Finally, we set G = (Gt)t∈[0,T ] where Gt = Fµt ∨ FΛ. This implies that
GT = F̃T and E0 = FΛ, whereas Fµ0 is trivial. We denote F̃ = F̃T .

Lemma 2.3.2. The filtration G is right-continuous.

Proof. We can prove this lemma by exploiting the structure of filtration G
and apply some classical argument, given conditional independence, such as
Theorem 2.1.10 in [App09]. We refer to Lemma 2.4 in [DS14].

By direct calculation and applying conditions (B2) and (H2) defined in Def-
inition 0.2.1, we see that µ defined in (0.2) has the martingale property with
respect to the filtration G, as stated in the following proposition.

Proposition 2.3.3. The signed measure µ defined in (0.2) has the following
properties with respect to G:

(i) µ has σ-finite variance measure,

m(∆) := E[µ(∆)2] = E[Λ(∆)]; (2.6)

(ii) µ is G-adapted;

(iii) µ has conditionally orthogonal values, for ∆1,∆2 ⊂ (t, T ] × R such that
∆1 ∩∆2 = ∅. To be more precise, we have:

E[µ(∆1)µ(∆2) | Gt] = E[µ(∆1) | FΛ] E[µ(∆2) | FΛ] = 0. (2.7)

This implies that it has the martingale property with respect to the filtration G.

Proof. We note that adaptedness is obvious and the rest of the proof can be
carried out by direct computation and applying properties of B and H defined
in Definition 0.2.1.

To see that µ defined in (0.2) has the martingale property with respect to
G, we recall that Proposition 2.2.18 guarantees the conditional independence
between a random variable and a σ-algebra. Then for ∆ ⊂ (t, T ]× R it follows
from Proposition 2.2.18:

E[µ(∆) | Gt] = E[µ(∆) | Fµt ∨ FΛ] = E[µ(∆) | FΛ] = 0. (2.8)
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Here we obtain the result in the final step of (2.8), because we have used the
corresponding properties of B and H in the following way:

E[B(∆) | FΛ] = 0 by (B1)

E[H(∆) | FΛ] = ΛH(∆) by (H1)

E[H̃(∆) | FΛ] = 0.

We can also calculate the second moment in the same way:

E[B(∆)2 | FΛ] = ΛB(∆)

E[H̃(∆)2 | FΛ] = ΛH(∆).

By properties (B2) and (H2), it follows:

E[µ(∆)2 | FΛ] = Λ(∆).

Take expectation on both sides, and then we obtain (2.6).
In the mean time, Property (BH) provides us with the following result:

E[µ(∆1)µ(∆2) | FΛ] = E[µ(∆1) | FΛ] E[µ(∆2) | FΛ] = 0. (2.9)

Finally, we can obtain (2.7) by combining (2.9) and (2.8), and the proof is
complete.

BSDEs driven by Time-changed Lévy noises
For the sake of completeness, we give an explanation of time-changed BSDEs
and its connection with non-time-changed ones, even though we have presented
its definition in Definition 0.2.7.

We recall the definition of BSDEs with jumps, with all the assumptions,
from Definition 0.1.3:

−dYt = f(t, Yt− , πt, l(u)t(u))dt− πtdWt −
∫
R∗
l(u)t(u)Ñ(dt,du)

YT = ξ

where Y ∈ S2
F (0, T ) is a càdlàg optional process and π ∈ H2

F (0, T ) (respectively
l ∈ H2

F (0, T, ν)) is a R-valued F-predictable process defined on Ω × [0, T ] (re-
spectively Ω× [0, T ]× R∗) such that the stochastic integral with respect to W
(respectively Ñ) is well defined.

With the time-changed process (B, H̃), defined respectively in Definition
0.2.1 and (0.1), we need to rewrite the above BSDE in the following form:

−dYt = f(t, λt, Yt− , φ(0)t, φt(u))dt− φ(0)tdBt −
∫
R∗
φ(u)tH̃(dt,du)

YT = ξ

Here we note that the solution pair processes (Y, φ) are now adapted with
respect to filtration G. The driver f now accepts one additional parameter, the
process λ = (λB , λH).

In the classical setting, we have Y ∈ S2
F (0, T ) in Definition 0.1.3. But with

time change, we need Y to be adapted to filtration G, and we denote by S2
G(0, T )

the space consisting of such Y ’s for simplicity, see Definition 0.2.7.
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Time-changed Comparison Theorem
In establishing the Time-changed Comparison Theorem, we following the same
agenda as in the classical setting. We present first a theorem relating to the
existence and uniqueness of solution for time-changed BSDEs and then provide
a comparison theorem for linear time-changed BSDEs.

We recall first the martingale representation theorem from [DS14], which
will be used to prove the existence of unique solution for time-changed BSDEs.

Theorem 2.3.4 (Martingale Representation Theorem). Assume (Mt)t∈[0,T ] is
a G-martingale. Then there exists a unique φ ∈ I such that

Mt = E[MT | FΛ] +

∫ t

0

∫
R
φs(z)µ(ds,dz), t ∈ [0, T ].

Proof. Note here that, since µ has the martingale property with respect to
filtration G, shown in Proposition 2.3.3, it is a martingale random field with
respect to filtration G in the sense of [DE10]. We refer to Thereom 3.5 in
[DS14] and Theorem 2.2 in [Di 07] for details of the proof.

Theorem 2.3.5 (Existence of Unique Solution for Time-changed BSDEs). Let
T > 0 and (f, ξ) standard parametres, defined in Definition 0.2.8, then there
exits a unique solution (Y, φ) := (Y, (φ(0), φ(u))) ∈ S2

G(0, T ) × I for BSDEs
driven with time-changed noise as defined in (0.3).

Proof. We give a brief sketch of this proof. Similar with BSDEs with jumps,
authors in [DS14] used the previous martingale representation theorem for G-
martingales to define a mapping

Θ : S2
G(0, T )× I 7→ S2

G(0, T )× I, Θ(U,ψ) := (Y, φ) (2.10)

where Y is defined as

Yt = E
[
ξ +

∫ T

t

fs(λs, Us, φs)ds | Gt
]
, t ∈ [0, T ].

For a G-martingale in the form

Mt = E
[
ξ +

∫ T

0

fs(λs, Us, φs)ds | Gt
]
, t ∈ [0, T ],

we can find the unique element in I, guaranteed by the previous martingale
representation theorem, which we denote by φ in (2.10), as in the following
representation:

Mt = M0 +

∫ t

0

∫
R∗
φs(u)µ(ds,du)

= M0 +

∫ t

0

φ(0)sdBs +

∫ t

0

∫
R∗
ls(u)H̃(ds,du).

By a sequence of lemmata, authors in [DS14] showed that the mapping Θ in
(2.10) is a contraction and the result is thus established. We refer to Theorem
4.5 in [DS14] for details of the proof.
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Similar to the previous chapter, we first take a look at linear BSDE driven
by time-changed noises before we start working on the comparison theorem.

Following is what we call time-changed linear BSDEs, where the BSDE is
driven by time-changed noises with a linear driver:

−dYt =
(
ϕt + δtYt + βtφ(0)t

√
λBt +

∫
R∗
γt(u)φ(u)t(u)ν(du)

√
λHt

)
dt

− φ(0)tdBt −
∫
R∗
φ(u)t(u)H̃(dt,du);

YT = ξ,

(2.11)

where the coefficients satisfy:

(i) ϕ ∈ H2,T and G-adapted;

(ii) δ is bounded by a constant Cδ for all t ∈ [0, T ], P -a.s.;

(iii) (β, γ) ∈ I;

(iv) γt(u) ≥ 0 is bounded by a constant Cγu for u ∈ R∗ dt× dP -a.s., and β is
bounded by a constant Cβ for all t ∈ [0, T ], P -a.s.

We define (Γt,s)s∈[t,T ] as the solution of the following SDE:

dΓt,s = Γt,s−

[
δsds+ βs

1{λBs 6=0}√
λBs

dBs +

∫
R∗
γs
1{λHs 6=0}√

λHs
H̃(ds,du)

]
,

Γt,t = 1.

(2.12)

Same as in Proposition 1.2.9 in Section 1.2, we can write Γt,s = e
∫ s
t
δuduZt,s,

where (Zt,s)s∈[t,T ] is the solution of the following SDE:

dZt,s = Zt,s−

[
βs
1{λBs 6=0}√

λBs
dBs +

∫
R∗
γs
1{λHs 6=0}√

λHs
H̃(ds,du)

]
,

Zt,t = 1.

We note (Zt,s)s∈[t,T ] here as the solution to the forward SDE is well-defined,
a fact that can be shown by applying Itô’s formula in the same way as in
Proposition 1.2.9.

Given our assumptions on the coefficients in (2.11) that (β, γ) ∈ I, and given
that λ ∈ L, where L is defined in Section 0.2, by applying a similar argument in
Proposition 1.2.6 in Section 1.2 under the time-changed framework, we conclude
that Zt,s ∈ S2,T and by our assumptions it is adapted to filtration G. Thus we
conclude that Γt,s ∈ S2,T and is adapted to G as well.

Then, by applying a similar argument used in Theorem 1.2.10 in our time-
changed setting, we can represent the solution to the linear BSDE as a condi-
tional expectation.

Theorem 2.3.6 (Solution for Time-changed Linear BSDEs). Given a linear
BSDE defined as in (2.11), we can find a unique solution (Y, φ) in S2

G(0, T )×I,
and Y has the following representation:

Yt = E

[
Γt,T ξ +

∫ T

t

Γt,sϕ(s)ds
∣∣∣ Gt], 0 ≤ t ≤ T, a.s. (2.13)
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Proof. It is easy to observe the correspondence between this theorem and its
classical counterpart Theorem 1.2.10. Once established in our new time-changed
framework, the result follows by applying a similar argument.

Now we are ready to present the most important result of this section, the
comparison theorem for BSDEs driven by time-changed noises. We recall this
result from Theorem 5.2 in [DS14].

Theorem 2.3.7 (Comparison Theorem for Time-changed BSDEs). Let (f1, ξ1)
and (f2, ξ2) be two sets of standard parametres for the BSDEs with solutions
(Y 1
t , φ

1
t ) and (Y 2

t , φ
2
t ) ∈ S2

G(0, T )× I. Assume that

f2(t, λ, y, φ) = f2

(
t, y, φ(0)βt

√
λB ,

∫
R∗
φ(u)γt(u)ν(du)

√
λH
)

where processes (βt, γt(u)) ∈ I are defined in condition (iv) in (2.11), and f2 is
a Lipschitz driver as defined in Definition 0.1.2.

If ξ1 ≤ ξ2, P -a.s., and f1(t, λt, Y
1
t , φ

1
t ) ≤ f2(t, λt, Y

1
t , φ

1
t ), dt×dP -a.s., then

Y 1
t ≤ Y 2

t dt× dP -a.s.

Proof. The proof proceeds in the same way as in Theorem 1.2.13. Define the
following processes and coefficients:

ξ := ξ2 − ξ1,
Y t := Y 2

t − Y 1
t ,

φt(0) := φ(0)2
t − φ(0)1

t ,

φt(u) := φ(u)2
t (u)− φ(u)1

t (u),

ϕt := f2(t, λt, Y
2
t− , φ(0)2

t , φ(u)2
t )− f1(t, λt, Y

2
t− , φ(0)2

t , φ(u)2
t ),

δt :=
f2(t, λt, Y

2
t− , φ(0)1

t , φ(u)1
t )− f2(t, λt, Y

1
t− , φ(0)1

t , φ(u)1
t )

Y t
1{Y t 6=0},

βt :=
f2(t, Y 2

t− , φ(0)2
t , φ(u)1

t )− f2(t, Y 2
t− , φ(0)1

t , φ(u)1
t )

φt(0)Cβ
√
λB

1{φt(0)Cβ
√
λB 6=0},

γt :=
f2(t, Y 2

t− , φ(0)1
t , φ(u)2

t )− f2(t, Y 2
t− , φ(0)1

t , φ(u)1
t )∫

R∗ φt(u)Cγuν(du)
√
λH

1{
∫
R∗ φt(u)Cγuν(du)

√
λH 6=0}.

Then we can rewrite as a linear BSDE as defined in (2.11)

−dY t =
(
ϕt + δtY t + Cββtφt(0)

√
λBt +

∫
R∗
Cγuγt(u)φt(u)ν(du)

√
λHt

)
dt

− φt(0)dBt −
∫
R∗
φt(u)H̃(dt,du);

Y T = ξ.

We see that the process δ, β and γ are bounded as f is a Lipschitz driver.
ϕ ∈ H2,T and G-adapted, since it is a difference of such two functions. Moreover,
Cββ and Cγuγt(u)1R∗(u) satisfy condition (iv) in (2.11).

We can therefore apply Theorem 2.3.6, and obtain a solution

Y t = E

[
Γt,T ξ +

∫ T

t

Γt,sϕ(s)ds
∣∣∣ Gt], 0 ≤ t ≤ T, a.s.
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which is positive, given that ξ,Γ and ϕ are all positive a.s., and we have thus
accomplished the proof.

Remark 2.3.8. We note that in Theorem 2.3.7, we have the γt(u) ≥ 0 in con-
dition (iv) in (2.11). This is a stronger condition then γt(u) > −1 in the strict
comparison theorem without change of time, see Theorem 1.2.14.

By adapting a similar argument used in Proposition 1.3.2 and Remark 1.3.4
to our current time-change setting, the stronger condition we imposed on the
driver f2 in the Time-changed Comparison Theorem, see Theorem 2.3.7, can
guarantee the the monotonicity of the associated risk measures.



Chapter 3

Dynamic Risk Measures
Generated by
Time-changed BSDEs

This chapter and the next form the core of the present thesis. Topics we have
discussed in the previous two chapters, namely, dynamic risk measures, BSDEs
with jumps and Change of Time Methods, all come together in this chapter.

We have ended the previous chapter by introducing a comparison theorem for
BSDEs driven by time-changed Lévy noises. Following a natural development,
Section 3.1 presents the link between a dynamic risk measure and its associated
BSDE, which is the non-linear expectation we denote by “f -expectation”. Only
this time our BSDE is driven by time-changed noises in comparison with the
classical setting in Section 1.3. We also discuss the mathematical properties of
the resulting dynamic risk measure, given the conditions we have imposed on
the driver f .

In Section 3.2, we present the representation of convex and coherent risk
measures generated by a concave driver f . Most of these results have been
presented in Section 1.3 in the classical setting, but now we need to establish
their counterparts in our new, time-changed setting. Since we are dealing with
an absolutely continuous time change, it does not cause too much trouble to
carry out the proof in our current setting.

Yet when we look at the question from the opposite direction, a challenge
arises. To be more precise, we need to answer the question that, given a so-called
f -expectation, can we construct a time-changed BSDE with a corresponding
driver f? If we impose some conditions on the f -expectation, the answer is
affirmative. One key element in the proof of this inverse problem is the Doob-
Meyer Decomposition in our time-changed setting. The difficulty lies in the fact
that the classical proof of the Doob-Meyer Decomposition relies on the linearity
of classical expectations, something that no longer applies in our current non-
linear expectation situation. To give a proper presentation of this problem is
the task for the next chapter.

59
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3.1 Dynamic Risk Measures and Time-changed
BSDEs

We follow the same agenda as in Section 1.3, namely, we will first derive a
non-linear expectation generated by the driver f of the associated time-changed
BSDE, and then define a dynamic risk measure with it. We note that all the
results we obtain in this chapter and the next are adapted to the filtration G,
and the same applies to the dynamic risk measures we derive in this section.

Time-changed f-expectations

We recall the definition of non-linear expectation in Definition 1.3.1, and we
claim that we can derive a time-changed non-linear expectation from the asso-
ciated BSDE by the following proposition.

Proposition 3.1.1 (Time-changed f -expectation). Consider a time-changed
BSDE drived by a generator f defined in (0.3) such that

(i) f(t, λ, y, (0, 0)) = 0 for all y ∈ R;

(ii) f satisfies conditions for f2 in the Time-changed Comparison Theorem,
Theorem 2.3.7.

Then for any fixed ξ in L2(GT ), we denote the unique solution of the related
time-changed BSDE with terminal condition ξ by (Y ξ, φξ). We set Ef [ξ] = Y ξ0 ,
the initial value of the solution. Then Ef is a non-linear expectation called
time-changed f -expectation.

Proof. We note this proposition corresponds to Propostion 1.3.2 in the classical
setting. We can indeed adapt the argument used in Propostion 1.3.2 to our
current time-changed framework, and prove this proposition by applying the
Time-changed Comparison Theorem, see Theorem 2.3.7.

Remark 3.1.2. In view of Remark 2.3.8, we note that the Time-changed Com-
parison Theorem, see Theorem 2.3.7, imposes a stronger condition on f than
assumptions made in the Strict Comparison Theorem in the classical setting,
see Theorem 1.2.14. Using the same argument from Proposition 1.3.2 and
Remark 1.3.4 under our time-changed framework, we can conclude that the
Time-changed Comparison Theorem guarantees the monotony property of the
associated risk measures.

Now we can investigate the properties we listed in Section 1.3 in the time-
changed setting and check under what conditions the f -expectation defined
above satisfies them.

(i) Filtration consistency.
This property is defined in Definition 1.3.5 with respect to filtration F,
defined in Definition 0.1.1 and in this chapter and the next, we consider
filtration G, defined in Section 0.2. In fact, we see that this property can
also be written as, for A ∈ Gt,

Ef [ξ1A] = Ef
[
Ef [ξ | Gt]1A

]
. (3.1)
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We see that all time-changed f -expectations defined in Proposition 3.1.1
are filtration-consistent. Given solution (Y ξ, φξ) in Proposition 3.1.1, by
the uniqueness of solution, it is easy to see that, for A ∈ Gt, Y ξt 1A and
ξ1A coincide on the interval [0, t]. We can thus express the conditional
expectation, in the similar way as in Definition 1.3.5:

Ef [ξ | Gt] = Y ξt .

(ii) Additivity.
Additivity is defined in Definition 1.3.6 with respect to filtration F. Now
we consider the filtration G. By adapting discussion following Definition
1.3.6 to our time-changed setting, it is easy to see that we can obtain ad-
ditivity if the driver f is independent of y under our time-changed frame-
work.

(iii) EC,C1 -domination.
This property can be directly applied to our time-changed situation. We
only need to replace the filtration with filtration G and change the driver
fC,C1

in Definition 1.3.7 to the following: for t ∈ [0, T ] and φ ∈ I, where
I is defined in (i) in Definition 0.2.6,

fC,C1
(t, φ) := C

∣∣φ(0)λBt
∣∣+ C

∫
R∗

(1 ∧ |u|)φ+(u)ν(du)λHt

− C1

∫
R∗

(1 ∧ |u|)φ+(u)ν(du)λHt .

Remark 3.1.3. We note that independence between the driver f and y and as-
sumptions in Proposition 3.1.1 ensure both additivity and EC,C1-domination.
We can obtain the same result as in the classical setting by applying the ar-
gument in our time-changed framework, see our discussion about this following
Definition 1.3.7.

Dynamic Risk Measures as Time-changed f-expectations

Now we can use time-changed f -expectation to represent a dynamic risk mea-
sure, and thus establish a link from non-linear expectation to risk measures.

Proposition 3.1.4. Let T ′ > 0, and Ef be a time-changed f -expectation gener-
ated in Proposition 3.1.1. Suppose Ef satisfies properties of additivity, filtration-
consistence and EC,C1-domination, all with respect to filtration G defined in Sec-
tion 0.2, then we can define a normalised, time-consistent dynamic risk measure
in the following way: for each T ∈ [0, T ′] and ξ ∈ L2(GT ),

ρft (ξ, T ) := −Ef [ξ | Gt] = −Yt(ξ, T ), t ∈ [0, T ]. (3.2)

Moreover, if the generator f is also concave with respect to (y, φ), then the
dynamic risk measures thus represented is convex.

i Proof. We have showed similar results in Proposition 1.3.9, and here we carry
out the proof by adapting the argument used in the classical setting to our time-
changed framework.
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In the following, we check that the conditional risk measure ρft (ξ, T ) defined
in (3.2) satisfies the properties listed in Definition 1.1.12 and Proposition 1.1.19.

First we note that the additivity of the f -expectation is equivalent to the
conditional invariance for the dynamic risk measure defined in Definition 1.1.12.
Thus the additivity of the time-changed f -expectation Ef implies the conditional
invariance for the conditional risk measure ρft defined in (3.2).

The filtration-consistency property of the f -expectation is equivalent to the
normalised conditional time-consistency property (1.2) in Proposition 1.1.19,
as we have observed in (3.1). In this way, the filtration consistency of the
time-changed f -expectation Ef implies time-consistency for the conditional risk
measure ρft .

Here we note that, since we have the condition that f(t, λ, y, (0, 0)) = 0,
the associated conditional dynamic risk measure ρft defined in (3.2) has the
normalisation property defined as (iv) in Definition 1.1.12.

When it comes to monotonicity property, Remark 3.1.2 tells us that the con-
ditions on the driver f guarantees monotonicity for the f -expectation Ef , and
this implies monotonicity for the conditional risk measure ρft . Behind the cur-
tain, this results rests on the Time-changed Comparison Theorem, see Theorem
2.3.7.

Finally, the convexity follows by an application of the Time-changed Com-
parison Theorem, Theorem 2.3.7. To be more specifically, consider ξ1, ξ2 ∈
L2(GT ), η ∈ [0, 1]. We note that, by assumptions, f is additive and is therefore
independent of y, then by the concavity of f in terms of φ, we have

f(η φ(ξ1) + (1− η) φ(ξ2)) ≥ η f(φ(ξ1)) + (1− η) f(φ(ξ2)) (3.3)

Then by the Time-changed Comparison Theorem, the resulting risk measure is
convex, and the result is established.

Corollary 3.1.5. In addition to assumptions in Proposition 3.1.4, if the driver
f is also positively homogeneous, see (v) in Definition 1.1.12, then the resulting
dynamic risk measures defined in (3.2) is coherent.

i Proof. We note that by assumptions, the driver f is concave with respect to
φ, and the resulting risk measure ρt is convex. If the driver f is, in addition,
positively homogeneous, it follows that the associated risk measure ρt is also
positively homogeneous, namely for C ∈ R and C ≥ 0, we have ρt(Cξ) = Cρt(ξ).

This is because,

Ef [C ξ | Gt] = Yt

= C ξ +

∫ T

t

f(s, λs, φ)ds−
∫ T

t

∫
R∗
φs(u)µ(ds,du)

Note that f(s, λs, φ) by our assumptions is independent of Y and positively
homogeneous, it follows:

Yt = C
[
ξ +

∫ T

t

f(s, λs, φ)

C
ds−

∫ T

t

∫
R∗

φs(u)

C
µ(ds,du)

]
= C

[
ξ +

∫ T

t

f(s, λs,
φ

C
)ds−

∫ T

t

∫
R∗

φs(u)

C
µ(ds,du)

]
,
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Now we denote

Y t = ξ +

∫ T

t

f(s, λs,
φ

C
)ds−

∫ T

t

∫
R∗

φs(u)

C
µ(ds,du),

and we note this BSDE has unique solution, given the conditions we imposed
on f . Thus we conclude, by the definition of Ef [ξ | Gt] coincides with Y :

Ef [C ξ | Gt] = Yt = C Y t = C Ef [ξ | Gt].

This means that the associated risk measure has subadditivity property, namely,
for two financial positions X,Y , we choose η = 1

2 in (3.3), then we obtain:

ρt(X + Y ) ≤ ρt(X) + ρt(Y )

By definition 1.1.3, the resulting risk measure is coherent.
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3.2 Representation of Dynamic Risk Measures

In this section, we present a representation of dynamic risk measures generated
by time-changed BSDE with jumps. We use a similar approach to proving this
theorem under our time-changed framework as Theorem 1.3.11 in the classi-
cal setting. Before we present the main result, we need the following lemma
which corresponds to Optimisation Principle in the classical setting, see Theo-
rem 1.2.16.

Lemma 3.2.1 (Time-changed Optimisation Principle). Let ξ in L2(GT ) and
let (f, fα) be a family of Lipschitz drivers parametrised by predictable processes
α, and AT ∈ GT is the set of α. Let (Y, φ) (resp. (Y α, φα)) be the solution of
the BSDE associated with terminal condition ξ and driver f (resp. fα ).

Suppose that

f(t, λt, Yt, φt) = ess inf
α

fα(t, λt, Yt, φt) = f ᾱ(t, λt, Yt, φt),

t ∈ [0, T ], dP ⊗ dt-a.s. for some parameter ᾱ ∈ AT

and that for each α ∈ AT , fα(t, λt, Yt, φt) satisfies conditions for f2 in the
Time-changed Comparison Theorem, Theorem 2.3.7. Then

[Yt = ess inf
α

Y αt = Y ᾱt , t ∈ [0, T ] a.s. (3.4)

Proof. This result is straightforward with an application of the Time-changed
Comparison Theorem, see Theorem 2.3.7.

Given that for each α, f(t, λt, Yt, φt) ≤ fα(t, λt, Yt, φt), by the Time-changed
Comparison Theorem, we obtain Yt ≤ Y αt for all t ∈ [0, T ] almost surely. It
follows that, for all t ∈ [0, T ],

Yt ≤ ess inf
α

Y αt .

On the other hand, Yt is the solution of the BSDE associated with
fα(t, λt, Yt, φt) by assumption. By the uniqueness of solution, we conclude that
Yt = ess infα Y

α
t , for all t ∈ [0, T ] almost surely. This gives us the equality

(3.4).

Similar as in (1.24), now we define a function F of the driver f(t, λt, Yt, φt)
with respect to φt, for each α := (α1, α2) ∈ Φ, where Φ is defined in (ii) in
Definition 0.2.6, and u ∈ R∗, as the following:

F (ω, t, λ, α) := sup
φ∈Φ

[f(ω, t, λ, φ)− αφλ]

= sup
φ∈Φ

[
f(ω, t, λ, φ)− α1φ(0)

√
λB

−
∫
R∗
α2φ(u)

√
λHν(du)

]
.

(3.5)

Here f is a Lipschitz driver with Lipschitz constant C, which does not depend
on y. Suppose also that f satisfies conditions for f2 in the Time-changed Com-
parison Theorem, Theorem 2.3.7 and is concave with respect to φ. We also need
the following two lemmata to prove the main theorem.
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Lemma 3.2.2. For each (t, ω), D(ω) is defined as the non-empty set of α =
(α1, α2) ∈ Φ, where Φ is defined in (ii) in Definition 0.2.6, such that F (ω, t, λt, α1, α2) <
∞, where F (ω, t, λt, α1, α2) and the associated driver f(ω, t, λ, φ) is defined as
in (3.5). Then for each (t, ω), D(ω) ⊂ U, where U is the closed subset of the
Hilbert space Φ of the elements α = (α1, α2) such that α1 is bounded by C and
ν(du)−a.s.,

α2 ≥ −1 and |α2| ≤ ψ(u) ∧ C,
where C is the Lipschitz constant of f , and ψ(u) ∈ Φ.

i Proof. We follow the proof of Lemma 5.4 in [QS13] in proving the lemma in
the time-changed setting. First we show that a2 ≤ −1. We assume for now that

ν({u ∈ R∗ : α2(u) < −1}) > 0.

We note that from the our assumptions on the driver f(ω, t, λ, φ) and inde-
pendent of Y . For the sake of simplicity, we assume the Lipschitz coefficient
C = 1 for now. Then for φ1(u) and φ2(u) we have, similarly to expression
used in the Time-changed Comparison Theorem, Theorem 2.3.7, namely, for
i = {1, 2},

f(t, ω, λt, φ
i) = f

(
t, 0,

∫
R∗
φi(u)γt(u)ν(du)

√
λH
)

Then by assumptions imposed on f , we can find a process γ1,2
t (u), such that

f(t, ω, λt, φ
1)− f(t, ω, λt, φ

2) ≤
∫
R∗

(φ1(u)− φ2(u))γ1,2
t (u)ν(du)

√
λH ,

and

f(t, ω, λt, φ
2)− f(t, ω, λt, φ

1) ≥
∫
R∗

(φ2(u)− φ1(u))γ1,2
t (u)ν(du)

√
λH .

Here we note γ1,2
t (u) ≥ 0 and is bounded by a constant Cγu that depends on u,

as defined in condition (iv) in (2.11), for any φ(u) ∈ I. Now we make φ1(u) = 0,
then by (3.5), it follows:

F (ω, t, λ, α) ≥ f(t, ω, λt, φ
2)−

∫
R∗
α2φ2(u)

√
λHν(du)

≥ f(t, ω, λt, 0) +

∫
R∗
φ2(u)γ1,2

t (u)ν(du)
√
λH

−
∫
R∗
α2φ2(u)

√
λHν(du)

= f(t, ω, λt, 0) +

∫
R∗

(γ1,2
t (u)− α2)φ2(u)

√
λHν(du)

Then we make φ2(u) = n1{α2<−1}, we end up with

F (ω, t, λ, α) ≥ f(t, ω, λt, 0) + n

∫
{α2<−1}

(γ1,2
t (u)− α2)

√
λHν(du)

and this shows F (ω, t, λ, α) → ∞ as n → ∞, since γ1,2
t (u) ≥ 0 and α2 < −1 .

This is a contradiction since (α1, α2) ∈ Dt(ω). And the same argument can be
applied to prove the other results.
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Lemma 3.2.3. Given assumptions in (3.5) and Lemma 3.2.2, and we as-
sume that the Hilbert space Φ is separable. Then there exists a process ᾱ =
(ᾱ1, ᾱ2(u)) ∈ AT such that

f(t, π, `t) = ess inf
α∈AT

{fα(t, πt, `t)} = f ᾱ(t, πt, `t), t ∈ [0, T ], dP ⊗ dt-a.s.

Proof. We refer to the proof of Lemma 5.5 in [QS13]. This is a result based
on classical arguments of convex analysis. The proof is rather technical and it
carries over to our time-changed setting with no problem.

Theorem 3.2.4 (Representation of Time-changed Normalised Convex Dynamic
Risk Measures). Suppose that the Hilbert space Φ is separable. Let f be a Lip-
schitz driver with Lipschitz constant C, which does not depend on y. Suppose
also that f satisfies conditions for f2 in the Time-changed Comparison Theorem,
Theorem 2.3.7 and is concave with respect to φ.

Let T ′ > 0 be a time horizon and T ∈ [0, T ′]. Let AT be the set of predictable
processes α = (α1, α2) such that F (t, α1

t , α
2
t (u)) ∈ H2

G(0, T ), where F is defined
by (3.5). For each α ∈ AT , let Qα be the probability absolutely continuous with
respect to P which admits ZαT as density with respect to P on FT , where Zα is
the solution of

dZαt = Zαt−

(
α1
tdBt +

∫
R∗
α2
t (u)H̃(dt, du)

)
; Zα0 = 1. (3.6)

The convex dynamic risk measure ρ(ξ, T ) has the following representation:
for each ξ ∈ L2(FT ),

ρ0(ξ, T ) = sup
α∈AT

[EQα [−ξ]− ζ(α, λ, T )], (3.7)

where the function ζ, the penalty term, is defined for each T and α ∈ AT by

ζ(α, λ, T ) := EQα

[ ∫ T

0

F (s, λ, α1
s, α

2
s)ds

]
.

Moreover, for each ξ ∈ L2(FT ), there exits ᾱ = (ā1, ᾱ2) ∈ AT such that for
t ∈ [0, T ], dP ⊗ dt-a.s.:

F (ω, t, λ, ᾱ) = f(ω, t, λ, φ)− ᾱ1φ(0)
√
λB −

∫
R∗
ᾱ2φ(u)

√
λHν(du),

where (Y, φ) is the solution to the BSDE with driver f , terminal time T and
terminal condition ξ. Also the process ᾱ is optimal for (3.7).

Proof. We follow the argument used in Theorem 5.3 in [QS13] in the classical
setting but now try to establish the result in our time-changed setting. Here we
need the assumption of the Φ space being separable so as to solve the measur-
ability issues for F , defined in (3.5).

Given the separability assumption, Φ is separable, then it admits a dense
countable subset I. Since our driver f is Lipschits with respect to φ, it is
continuous with respect to φ, then by the definition in (3.5), the supremum in
(3.5) coincides with the supremum over I. This shows that F is measurable.
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Then classical convex analysis arguments provide us with the result that F
is also lower semi-continuous with respect to α. We refer to Theorem 5.2 in
[QS13] for details concerning this part.

Since f is concave and continuous, we have

f(ω, t, λ, φ) = inf
α∈Dt(ω)

{F (ω, t, λ, φ) + αφλ}.

Here Dt(ω) is defined as in Lemma 3.2.2, and the Lemma holds.
For each α = (α1, α2) ∈ AT , we define:

fα(ω, t, λ, φ) := F (ω, t, λ, φ) + αφλ.

Then we note here fα ≥ f for each α ∈ AT , because of the construction of f .
Now we consider T ∈ [0, T ′] and ξ ∈ L2(GT ). Let (Y, φ) be the solution of

the BSDE associated with the driver f , terminal time T and terminal condition
ξ. Then we apply Lemma 3.2.3.

Then by the optimisation principle for Time-changed BSDEs with jumps,
Lemma 3.2.1, it follows that

Y0(ξ, T ) = inf
α∈AT

Y α0 (ξ, T ) = Y ᾱ0 (ξ, T ).

Here for each α ∈ AT , Y α(ξ, T ) is the solution of the BSDE associated with
driver fα.

Now we let α = (α1, α2) ∈ AT . By Lemma 3.2.2, we have
∣∣α2
∣∣ ≤ ψ(u) ∧ C.

Then by Proposition 1.2.6 in Section 1.2, we know Zα ∈ S2
G(0, T ) for Zα defined

in (3.6), and by our assumptions it is adapted to filtration G. As a result, we can
represent the solution of linear BSDE in the following way, proved in Theorem
2.3.6:

Y
α(ξ,T )
0 = E

[
ZαT ξ +

∫ T

0

Zαs F (s, λ, α1
s, α

2
s)ds

]
, 0 ≤ t ≤ T, a.s.

On the other hand, also by Lemma 3.2.2, we have that α2 > −1. Hence
(Zαt )0≤t≤T is a non-negative martingale and the probability Qα that admits ZαT
as density with respect to probability P on GT is well-defined. We have thus
obtained

Y
α(ξ,T )
0 = EQα

[
ξ +

∫ T

0

F (s, λ, α1
s, α

2
s)ds

]
,

and the result is established.

Finally, we show that the representation for coherent dynamic risk measures
is just a special case of convex risk measures with F = 0.

Corollary 3.2.5. Given assumptions in Theorem 3.2.4, we note that if the
driver f is also positively homogeneous, then F = 0.

i Proof. If the driver f is, in addition, positively homogeneous, it follows that
the associated risk measure is also positively homogeneous, namely for C ∈ R
and C ≥ 0, we have ρt(Cξ) = Cρt(ξ). It implies that the resulting risk measure
is coherent. We have shown this result in Corollary 3.1.5.
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Now we only need to show that given the above assumptions, the F = 0 and
we can thus obtain the representation for coherent risk measures. By positive
homogeneity, we have in (3.7), ρ0(0, T ) = 0. This implies that, for ξ = 0:

ζ(α, λ, T ) = sup
α∈AT

[EQα [−ξ]− ρ0(ξ, T )] ≥ 0.

Now we assume that for ξ ∈ L2(GT ), we have EQα [−ξ]− ρ0(ξ, T ) > 0, then
by construction, it follows that, for a constant C > 0,

ζ(α, λ, T ) := sup
α∈AT

[EQα [−ξ]− ρ0(ξ, T )]

≥ sup
C>0

[EQα [−Cξ]− ρ0(Cξ, T )]

= sup
C>0

C[EQα [−ξ]− ρ0(ξ, T )]

→∞.

We can thus conclude that, for all ξ ∈ L2(GT )

EQα [−ξ]− ρ0(ξ, T ) ≤ 0,

which implies

ζ(α, λ, T ) = sup
α∈AT

[EQα [−ξ]− ρ0(ξ, T )] ≤ 0.

We have thus shown ζ(α, λ, T ) = 0 and therefore F = 0, and the result is
established.



Chapter 4

The Inverse Theorem

This chapter addresses the Inverse Theorem. It is arguably the most difficult
result in the entire thesis. Establishing the Inverse Theorem enables us to
represent, under rather general assumptions, a given non-linear expectation,
and by extension, a given dynamic risk measure, by a time-changed BSDE.

Thanks to the work done by authors in [Pen99], [Coq+02], where the proof
is established in the Brownian motion setting, and in [Roy06], where the author
extends the proof in a more general setting of BSDEs with jumps, a result
has been proved in the classical setting in Theorem 1.3.8. This section gives a
detailed proof of the corresponding theorem in the time-changed setting with
absolutely continuous time change, the framework constructed in Section 2.3
and used in the previous chapter.

Proof of the Inverse Theorem is more complicated than it appears. The
result depends in fact on establishing the Doob-Meyer decomposition in our
time-changed setting. Given the time change Λt =

∫ t
0
λsds, t ≥ 0 and the

filtration G, both defined in Section 0.2, we have the following theorem:

Theorem 4.0.1 (Time-changed Inverse Theorem). Let E be a filtration-consistent
time-changed non-linear expectation which satisfies both properties of EC,C1-
domination and additivity, all with respect to filtration G, both defined in Section
0.2. Then these exits a function f : [0, T ]× Ω× Φ 7→ R such that E = Ef .

In Section 4.1, we give first the definition of supermartingales (or submartin-
gales) with respect to non-linear expectations and establish some of their prop-
erties, which are used in the proofs in the following sections.

Section 4.2 proves the important results of the Doob-Meyer Decomposition
for Ef -supermartingales. Proof of this theorem follows the idea from [Pen99],
where the result is established in a Brownian motion setting. To carry over
this result in our time-changed setting is not easy, as now we have to take into
consideration the extra term, namely, the time-changed jumps of the BSDEs.
We adapt to our time-changed framework some of the arguments used in [Roy06]
to generalise this result from the Brownian motion setting to the one of BSDEs
with jumps in the classical setting.

Section 4.3 further generalises the result from Section 4.2 by establish-
ing the Doob-Meyer Decomposition for a general non-linear expectation E-
supermartingales with a given driver f . This is an important step towards
the proof of the main theorem. And the key here is to express the results in

69
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Section 4.2 as conditional (non-linear) expectations. In order to do so, it re-
quires proving several important lemmata, including one comparison theorem
for conditional (non-linear) expectations, before establishing the decomposition
for non-linear expectation martingales. One good thing is that, most of the
hard work has already been done in Section 4.2, so the proof of decomposition
theorem in Section 4.3 can follow a correspondingly similar argument. In this
section, we base our proof on works done mainly in [Coq+02] and [Roy06].

We end this chapter and the main part of this thesis by presenting the
proof of the Inverse Theorem, see Theorem 4.0.1. The result follows from the
theorems we have established in the previous sections. What is important about
the Inverse Theorem is that it enables us to convert a question about non-linear
expectations into a study of time-changed BSDEs. In this way, we establish a
full connection between BSDEs and risk measures via non-linear expectations,
fulfilling the goal of this thesis.

4.1 Properties of E-supermartingales

Definition 4.1.1 (E-martingale). Let (Xt)0≤t≤T ∈ L2([0, T ]×Ω,B[0,T ]×F̃ ,m×
P ) be a G-adapted, càdlàg process, and E be a time-changed non-linear expecta-
tion. (Xt)0≤t≤T is called an E-martingale (E-supermartingale, E-submartingale,
respectively) if for all 0 ≤ s ≤ t ≤ T :

Xs = E [Xt | Gs] (≥, ≤, respectively).

We recall from Definition 1.3.7 the definition of the EC,C1-domination prop-
erty in our time-changed setting.

Definition 4.1.2 (Time-changed EC,C1-domination property). Let E be a filtration-
consistent non-linear expectation with respect to filtration G. We say that it
is EC,C1 -dominated if there exists C ∈ R and −1 < C1 ≤ 0 such that, for all
ξ, ξ′ ∈ L2(GT ):

E [ξ + ξ′]− E [ξ] ≤ EC,C1 [ξ′]

where EC,C1 := EfC,C1
is the non-linear f -expectation associated with the fol-

lowing driver: for t ∈ [0, T ] and φ ∈ I, where I is defined in (i) in Definition
0.2.6,

fC,C1
(t, φ) := C

∣∣∣∣φ(0)
√
λBt

∣∣∣∣+ |C|
∫
R∗

(1 ∧ |u|)φ+(u)ν(du)
√
λHt

− C1

∫
R∗

(1 ∧ |u|)φ−(u)ν(du)
√
λHt

(4.1)

We denote another non-linear f -expectation as EC,C1
:= EfC,C1

associated

with the driver fC,C1
defined as:

fC,C1
(t, φ) := −C

∣∣∣∣φ(0)
√
λBt

∣∣∣∣− |C|∫
R∗

(1 ∧ |u|)φ+(u)ν(du)
√
λHt

+ C1

∫
R∗

(1 ∧ |u|)φ−(u)ν(du)
√
λHt
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Remark 4.1.3. As mentioned in Remark 3.1.3, it is easy to see that any f -
expectation with generator f independent of y is both additive and EC,C1-
dominated.

Given the definition of EC,C1 , we can deduce the following property.

Lemma 4.1.4. For all constant C > 0, ξ ∈ L2(GT ),

EC,C1 [C ξ | Gt] = C EC,C1 [ξ | Gt].

For all constant C < 0,

EC,C1 [C ξ | Gt] = −C EC,C1 [−ξ | Gt].

i Proof. We have proved a similar result in Corollary 3.1.5. We prove this result
for C > 0, the same argument can be applied to the situation where C < 0. By
the definition of EC,C1 [C ξ | Gt], it is associated with the following BSDE:

EC,C1 [C ξ | Gt] = Yt

= C ξ +

∫ T

t

fC,C1
(s, λs, φ)ds+

∫ T

t

∫
R∗
φs(u)µ(ds,du)

Note that by fC,C1(s, λs, φ) by definition is independent of Y and linear in φ, it
follows:

Yt = C
[
ξ +

∫ T

t

fC,C1
(s, λs, φ)

C
ds+

∫ T

t

∫
R∗

φs(u)

C
µ(ds,du)

]
= C

[
ξ +

∫ T

t

fC,C1(s, λs,
φ

C
)ds+

∫ T

t

∫
R∗

φs(u)

C
µ(ds,du)

]
,

Now we denote

Y t = ξ +

∫ T

t

fC,C1
(s, λs,

φ

C
)ds+

∫ T

t

∫
R∗

φs(u)

C
µ(ds,du),

and we note this BSDE has unique solution, thanks to the construction of fC,C1
.

Thus we conclude, by the definition of EC,C1 [ξ | Gt] coincides with Y :

EC,C1 [C ξ | Gt] = Yt = C Y t = C EC,C1 [ξ | Gt].

And the result is established.

We can also express the EC,C1-domination property in terms of conditional
non-linear expectations, as stated in the following proposition.

Proposition 4.1.5. If E is a filtration-consistent and EC,C1-dominated and
additive non-linear expectation, then for all ξ, ξ′ ∈ L2(GT ):

EC,C1
[ξ′ | Gt] ≤ E [ξ + ξ′ | Gt]− E [ξ | Gt] ≤ EC,C1 [ξ′ | Gt].

Proof. By the construction of drivers fC,C1
and fC,C1

, we note that:

EC,C1
[ξ′ | Gt] = −EC,C1 [−ξ′ | Gt].

The result follows from Lemma 4.3, 4.4 and 4.5 in [Coq+02], and we skip
the proof here.
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We give an estimation that is very useful in proving the following theorems.

Lemma 4.1.6. For ξ ∈ L2(GT ), we have

E
[
Eµ[ξ | Gt]2

]
≤ e(2(|C|+1)2)(T−t) E[ξ2].

i Proof. We write out the expression for Eµ[ξ | Gt]:

Eµ[ξ | Gt] = ξ +

∫ T

t

fC,C1(t, φ)ds−
∫ T

t

∫
R
φs(u)µ(ds,du),

where fC,C1
is defined in (4.1). Then we apply Itô’s formula, see Theorem

A.0.17, to Eµ[ξ | Gt]2 and obtain

Eµ[ξ | Gt]2 = ξ2 +

∫ T

t

2Eµ[ξ | Gt]fC,C1
ds−

∫ T

t

2Eµ[ξ | Gt]φs(0)dBs

−
∫ T

t

∫
R∗

(
2Eµ[ξ | Gt− ]φs(u) + φ2

s(u)
)
H̃(ds,du)−

∫ T

t

φ2
s(0)λBs ds

−
∫ T

t

∫
R∗
φ2
s(u)ν(du)λHs ds.

Then we take expectation on both sides,

E
[
Eµ[ξ | Gt]2

]
= E[ξ2] +

∫ T

t

2E[Eµ[ξ | Gt] fC,C1 ]ds−
∫ T

t

E[φ2
s(0)λBs ]ds

−
∫ T

t

∫
R∗

E[φ2
s(u)λHs ]ν(du)ds

= E[ξ2] +

∫ T

t

2E

[
Eµ[ξ | Gt] C

∣∣∣∣φs(0)
√
λBt

∣∣∣∣
]

ds

+

∫ T

t

∫
R∗

2E

[
Eµ[ξ | Gt] (1 ∧ |u|)

(
|C|φ+(u)

− C1φ
−(u)

)
ν(du)

√
λHt

]
ds−

∫ T

t

E[φ2
s(0)λBs ]ds

−
∫ T

t

∫
R∗

E
[
φ2
s(u)λHs

]
ν(du)ds.

(4.2)

Here we note by the inequality 2ab ≤ a2 + b2, and by the linearity of ordinary
expectation,

∫ T

t

2E

[
Eµ[ξ | Gt] C

∣∣∣∣φ(0)
√
λBt

∣∣∣∣
]

ds ≤ C2

∫ T

t

E
[
Eµ[ξ | Gt]2

]
ds

+

∫ T

t

E
[
φ2
s(0)λBt

]
ds,

(4.3)
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and∫ T

t

∫
R∗

2E

[
Eµ[ξ | Gt] (1 ∧ |u|)

(
|C|φ+(u)− C1φ

−(u)
)
ν(du)

√
λHt

]
ds

≤
∫ T

t

∫
R∗

2E

[
(1 ∧ |u|)Eµ[ξ | Gt]

(
|C|+ 1

)
|φ(u)| ν(du)

√
λHt

]
ds

≤
(
|C|+ 1

)2
∫ T

t

E
[
Eµ[ξ | Gt]2

]
ds+

∫ T

t

∫
R∗

E
[
φ2
s(u)λHs

]
ν(du)ds

(4.4)

Now we insert (4.3) and (4.4) into (4.2), cancel the last four terms, and we
end up with:

E
[
Eµ[ξ | Gt]2

]
= E[ξ2] + C2

∫ T

t

E
[
Eµ[ξ | Gt]2

]
ds

+
(
|C|+ 1

)2
∫ T

t

E
[
Eµ[ξ | Gt]2

]
ds

≤ E[ξ2] + 2
(
|C|+ 1

)2
∫ T

t

E
[
Eµ[ξ | Gt]2

]
ds

≤ e(2(|C|+1)2)(T−t) E[ξ2].

In the final step we used Grönwall inequality, and we have thus obtained the
result for general non-linear expectation E .

Combining Proposition 4.1.5 and the above lemma, we can obtain the fol-
lowing result.

Corollary 4.1.7. Let E be a filtration-consistent and EC,C1-dominated and ad-
ditive non-linear expectation, and ξ, ξ′ ∈ L2(GT ). Then we have

E
[(
E [ξ | Gt]− E [ξ′ | Gt]

)2] ≤ e(2(|C|+1)2)(T−t) E
[
|ξ − ξ′|2

]
.

Proof. From Proposition 4.1.5, we have:

|E [ξ | Gt]− E [ξ′ | Gt]| ≤
∣∣EC,C1 [ξ − ξ′ | Gt]

∣∣ ∨ ∣∣∣EC,C1
[ξ − ξ′ | Gt]

∣∣∣
≤ EC,C1 [|ξ − ξ′| | Gt].

This is because
EC,C1

[ξ′ | Gt] = −EC,C1 [−ξ′ | Gt].
Then we apply Lemma 4.1.6 and obtain the result as we want.

Note the above corollary provides us with a nice bound for convergence. This
is useful in the following theorem, where we see that a general E-supermartingale,
under mild conditions, admits a càdlàg modification, although we will skip de-
tails of the proof. By the following theorem, we consider E-supermartingales as
their càdlàg modifications for the rest of this section.

Theorem 4.1.8. Let (Mt)t∈[0,T ] be an E-supermartingale such that

E
[

sup
0≤t≤T

|Mt|2
]
<∞,

then it admits a càdlàg modification.
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Proof. We adapt to our current, time-changed setting the argument used in
Theorem 3.12 in [Roy06] in the classical setting. Note here we need to use
Corollary 4.1.7 when there is need to show convergence of conditional non-
linear expectations in the form E [ξ | Gt] → E [ξ′ | Gt] in L2([0, T ] × Ω,B[0,T ] ×
F̃ ,m× P ).

We will also need the following property for filtration-consistent non-linear
expectations in our proof of the main theorem.

Lemma 4.1.9. Let E be a filtration-consistent non-linear expectation, and ξ ∈
L2(GT ). Then we have almost surely for all A ∈ GT ,

E [ξ 1A | Gt] = E [ξ | Gt]1A.

Proof. The result is rather straightforward. Consider for all B ∈ GT , by the
filtration-consistent property, it follows:

E
[
E [ξ 1A | Gt]1B

]
= E [ξ1A1B ]

= E
[
E [ξ | Gt]1A∩B

]
= E

[
[E [ξ | Gt]1A]1B

]
.



4.2. DECOMPOSITION FOR EF -SUPERMARTINGALES 75

4.2 Decomposition for Ef-supermartingales

This sections establishes the Doob-Meyer Decomposition for Ef -supermartingales.
This is the first step towards proving the Inverse Theorem. Proof of the decom-
position under this framework is difficult, since we can make use of the linearity
of classical expectations. To our best knowlegde, Peng in [Pen99] is the first to
prove this result under the Brownian motion framework, and his argument gets
further generalised in the discontinuous setting by Royer in [Roy06].

Proof of this result under our new, time-changed setting requires adapting
the classical arguments from [Pen99] and [Roy06] to our current setting, and we
manage to do so, thanks to the “nice” properties of our time-changed setting.

To establish the decomposition, we first need the following lemma to control
jumps of càdlàg processes by choosing a sequence of stopping times.

Lemma 4.2.1. Let (At)t∈[0,T ] be an increasing predictable càdlàg process de-
fined on [0, T ] with A0 = 0 and E [A2

T ] < ∞. Then for any δ, ε there exits
a finite number of pairs of stopping times {σk, τk}, k = 0, 1, 2, . . . , N with
0 < σk ≤ τk ≤ T such that

(i) (σj , τj ] ∩ (σk, τk] = ∅ if j 6= k;

(ii) E[
∑N
k=0[τk − σk](ω)] ≥ T − ε;

(iii)
∑N
k=0 E

[∑
σk<t≤τk(∆At)

2
]
≤ δ.

Here ∆At denotes the jump At −At− .

Proof. Peng has proved a similar Lemma 2.3 in [Pen99] in the Brownian motion
setting. In Peng’s setting, an arbitrary stopping time is also predictable. We
do not enjoy such convenience in our current setting, but given that A is a
predictable process, we can apply Peng’s arguments in our current setting and
make use of the announcing sequence of stopping time to complete the proof in
our setting.

We first construct a sequence f non-decreasing, predictable stopping times
{σk}N+1

k=0 with σ0 = 0 and σN+1 = T such that σk < σk+1 and that

N∑
k=0

E
[ ∑
σk<t<σk+1

(∆At)
2
]
≤ δ. (4.5)

Intuitively, this corresponds to the fact that a major part of jumps by a
predictable càdlàg process take place over a finite number of (random) time
points. To see this result, we follow Peng’s notation and denote for jump size
ν > 0,

At(ν) = At −
∑
s≤t

∆As1{∆As>ν}.

We have thus removed all the jumps with size larger than ν. In this way, we
can choose a ν > 0 that is small enough such that

E
[∑
s≤T

(∆As(ν))2
]
≤ ε

2
.
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Now we fix a sequence of predictable stopping times {τk}∞k=1 where jumps
of A have size bigger than ν, and there exists an N such that

E
[ ∑
τN<t<T

(∆As)
2
]
≤ ε

2

Then we denote σk = τk ∧ T for k ≤ N and σ0 = 0, σN+1 = T , and such a
sequence of predictable stopping time {σk}N+1

k=0 satisfies (4.5).
Note that we have thus obtained a sequence of open intervals in the form

of (σk, σk+1), but this is not so convenient. To obtain the sequence of stopping
times we wanted, we need to cut away a small portion of the open interval and
thus keep the remaining part as (σk, τk]. Peng in [Pen99] achieved this under the
Brownian motion framework, and here we can achieve the same result, thanks to
the fact that our process At is predictable. We can thus approach a predictable
stopping time σ with an announcing sequence (σi)i=1 such that 0 < σi < σ for
all i and that σi ↑ σ.

Given the sequence of stopping times (σk)N+1
k=0 we have obtained in the first

step, for each 0 ≥ k ≥ N , we can find a stopping time τ ′k in the announcing
sequance for σk+1 such that

E
[ N∑
k=0

(σk+1 − τ ′k)
]
≤ ε.

We set
τ0 = τ ′0, τ1 = σ1 ∨ τ ′1, . . . , τN = σN ∨ τ ′N

By this construction, we make sure that τk ∈ [σk, σk+1) ∩ [τ ′k+1, σk+1] and
that τk < σk+1 if σk < T .

Then we have

E
[ N∑
k=0

(σk+1 − τk)
]
≤ ε.

By construction, σN+1 = T , thus the above equation can be converted to

E
[ N∑
k=0

(τk − σk)
]
≥ T − ε,

and
N∑
k=0

E
[ ∑
σk<t≤τk

(∆At)
2
]
≤

N∑
k=0

E
[ ∑
σk<t<σk+1

(∆At)
2
]
≤ δ,

and the proof is accomplished.

Now we are ready to prove the main result of this section.

Theorem 4.2.2 (Doob-Meyer Decomposition for Ef -supermartingales). Sup-
pose we have a driver f that satisfies assumptions in Proposition 3.1.1. Let
(Yt)0≤t≤T ∈ S2

G(0, T ). If (Yt)0≤t≤T is an Ef -supermartingale, then there exist a
process (φt)0≤t≤T ∈ I where φt := (φt(0), φt(u)) for u ∈ R∗ and an increasing
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càdlàg process (At)0≤t≤T , predictable with respect to filtration G, with A0 = 0,
and E[A2

T ] <∞ such that

Yt = YT +

∫ T

t

f(λs, Ys, φs)ds+ (AT −At)−
∫ T

t

∫
R
φs(u)µ(ds,du)

= YT +

∫ T

t

f(λs, Ys, φs)ds+ (AT −At)−
∫ T

t

φs(0)dBs

−
∫ T

t

∫
R∗
φs(u)H̃(ds,du).

Moreover, processes φ and A are unique in their respective spaces.

i Proof. This theorem corresponds to Theorem 4.1 in [Roy06] which is estab-
lished in the classical setting, but here we need to prove the result under our
time-changed framework.

We take three steps to prove the result. In the first step, we construct the
so-called “penalised sequence” mentioned in [Pen99], in the following form:

Y nt = YT +

∫ T

t

f(λs, Y
n
s , φ

n
s )ds+ n

∫ T

t

|Yt − Y nt |ds−
∫ T

t

∫
R
φns (u)µ(ds,du).

(4.6)
We denote Ant := n

∫ T
t
|Yt − Y nt |ds.

We then show that the sequence in (4.6) would converge to our
Ef -supermartingale process Y . In the meatime, the limit must be of the follow-
ing form:

Yt = YT +

∫ T

t

g(λs, Ys, φs)ds+ (AT −At)−
∫ T

t

∫
R
φs(u)µ(ds,du). (4.7)

Here g(λs, Ys, φs) is the weak limit for (f(λs, Y
n
s , φ

n
s ))n∈N in H2

G(0, T ), At the
weak limit for Ant in H2

G(0, T ) and φ the weak limit for (φn)n∈N in I.
Step two is the key part, where we show that (φn)n∈N in (4.6) converges

to φ in (4.7) in the strong sense in Lp([0, T ] × R × Ω,BX × P,Λ × P ) for all
p ∈ [1, 2). We obtain this result by applying the Itô’s formula, see Theorem
A.0.17, to achieve a convergence in measure, and given that φn are bounded in
I, we can have a strong convergence in Lp([0, T ]×R×Ω,BX ×P,Λ×P ) for all
p ∈ [1, 2).

By the strong convergence in step two, we show that (f(λs, Y
n
s , φ

n
s ))n∈N in

(4.6) converge strongly to f(λs, Ys, φs). By the uniqueness of weak limits, we can
show that this f(λs, Ys, φs) coincides with our earlier weak limit (g(λs, Ys, φs))
in (4.7). And this is our final step and the result is proven.

Step 1. In order to prove the theorem, we first consider the following family
of BSDEs parametrised by n = 1, 2, . . .:

Y nt = YT +

∫ T

t

f(λs, Y
n
s , φ

n
s )ds+ n

∫ T

t

(Yt − Y nt )+ds−
∫ T

t

∫
R
φns (u)µ(ds,du).

Here Y is the Ef -supermartingale, with YT being its terminal condition, and
f the driver given in the theorem. Thus there exit unique solutions for this
sequence of BSDEs, which we denote by (Y nt , φ

n
t )0≤t≤T .
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Note that we can write the driver for Y n as fn(λs, Ys, φs) = f(λs, Ys, φs) +
n(Yt−Y )+. In this way, we can apply the Time-changed Comparison Theorem,
see Theorem 2.3.7, and conclude that (Y nt )n∈N is a non-decreasing sequence.

Given that Yt is an Ef -supermartingale, we can observe by this construction
of driver fn(λs, Ys, φs) = f(λs, Ys, φs) + n(Yt − Y )+ that, for all n ∈ N and for
all t ∈ [0, T ], by the time-changed comparison theorem again, we have:

Ef [YT | Gt] ≤ Y nt ≤ Yt. (4.8)

In this way, we see that (Y nt )n∈N and (φnt )n∈N are bounded in respective
spaces.

By (4.8), we can denote Ant = n
∫ t

0
|Ys − Y ns |

+
ds = n

∫ t
0
|Ys − Y ns |ds =

n
∫ t

0
(Ys−Y ns )ds. We have thus constructed a “penalised sequence” expressed in

(4.6).
We note for a fixed n ∈ N, Ant is a non-decreasing process with respect to t.

We denote by C the common bound for all sequences, which changes it values
and potentially depends on T , and we obtain:

E
[
|AnT |

2
]

= n2E
[( ∫ T

0

|Ys − Y ns |ds
)2]

≤ n2E
[( ∫ T

0

|Ys − Y ns |
2

ds
)]

≤ C.

This shows that (Y nt )n∈N converges to Yt almost surely as n → ∞. We
can also derive the convergence in S2

G(0, T ) by applying dominated convergence
theorem. In addition, we can obtain that E[

∫ T
0
|f(λs, Y

n
s , φ

n
s )|2 ds] ≤ C, and

here C is the (new) common bound.
Note here that we have obtained the boundedness of (f(λs, Y

n
s , φ

n
s ))n∈N,

(Y nt )n∈N and (φnt )n∈N in respective spaces based on the following assumptions
on f :

|f(λs, Y
n
s , φ

n
s )| ≤ K1‖φns (0)‖+K2

(∫
R∗
|φns (u)|2λHs ν(ds)

) 1
2

f(λs, Y
n
s , (0, 0)) = 0

(4.9)

Here it is sufficient that constants K1 and K2 do not depend on n. We will
make use of these assumptions when we prove Theorem 4.3.3.

We can thus find subsequences of (φt)n∈N and fns := (f(λs, Y
n
s , φ

n
s ))n∈N that

are weakly convergent to φt and gt in respective spaces. Then for each stopping
time τ ∈ [0, T ], the weak convergence holds in their respective spaces:∫ τ

0

fns ds→
∫ τ

0

gsds,

∫ τ

0

∫
R
φns (u)µ(ds,du)→

∫ τ

0

∫
R
φs(u)µ(ds,du).

We can rewrite the BSDE into a forward SDE:

Anτ = Y n0 − Yτ −
∫ τ

0

fns ds+

∫ τ

0

∫
R
φns (u)µ(ds,du),
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and we denote the weak limit for An as A. Since A is equal to its predictable
projection, it is predictable. Thus we have:

Anτ → Aτ := Y0 − Yτ −
∫ τ

0

gsds+

∫ τ

0

∫
R
φs(u)µ(ds,du),

and since A and its predictable projection coincide in any stopping time, they
are indistinguishable. And we have thus established (4.7).

Step 2. Our focus now is to prove (φnt )n∈N converges to φt in the strong
sense, and by this result, we would be able to show that fns converges strongly
to ft in HpG(0, T )) for all p ∈ [1, 2). This convergence is particularly important,
given that we are now dealing with non-linear expectations.

We apply Itô’s formula, see Theorem A.0.17, to (Y nt −Yt)2 on a given subin-
terval (σ, τ ], where 0 ≤ σ ≤ τ ≤ T and σ, τ are two stopping times.

∫ τ

σ

|φns (0)− φs(0)|2 λBs ds+

∫ τ

σ

∫
R∗
|φns (u)− φs(u)|2 λHs ν(du)ds =(

Y nτ − Yτ
)2

−
(
Y nσ − Yσ

)2

+ 2

∫ τ

σ

(fns − gs)(Y ns − Ys)ds+ 2

∫ τ

σ

(Y ns − Ys)dAns

−2

∫ τ

σ

(Y ns − Ys)dAs − 2

∫ τ

σ

(Y ns − Ys)dBs

−
∫ τ

σ

∫
R∗

[
|φns (u)− φs(u)|2 + 2(Y ns− − Ys−)(φns (u)− φs(u))

]
H̃(ds,du)

We take expectation on both sides, and since Y nt − Yt ≤ 0, we can thus derive
the following inequality:

E
[ ∫ τ

σ

|φns (0)− φs(0)|2 λBs ds+

∫ τ

σ

∫
R∗
|φns (u)− φs(u)|2 λHs ν(du)ds

]
≤ E

[
|Y nτ − Yτ |

2
]

+ 2E
[ ∫ τ

σ

|fns − gs| |Y ns − Ys|ds
]

+2E
[ ∫ τ

σ

(Y ns − Ys)dAs
]

= E
[
|Y nτ − Yτ |

2
]

+ 2E
[ ∫ τ

σ

|fns − gs| |Y ns − Ys|ds
]

+2E
[ ∫ τ

σ

∆(Y ns − Ys)dAs
]

+2E
[ ∫ τ

σ

|Y ns− − Ys− |dAs
]

(4.10)

Given that A terms have jumps, we obtained the last two terms in (4.10) in
the following way:

E
[ ∫ τ

σ

(Y ns − Ys)dAs
]

= E
[ ∫ τ

σ

[(Y ns − Ys)− (Y ns− − Ys−) + (Y ns− − Ys−)]dAs

]
= E

[ ∫ τ

σ

∆(Y ns − Ys)dAs
]

+ E
[ ∫ τ

σ

(Y ns− − Ys−)dAs

]
,
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The first term on the right hand side of (4.10) goes to 0, and so does the
second term. To see the latter, we apply Hölder’s inequality and obtain:

E
[ ∫ τ

σ

|fns − gs| |Y ns − Ys|ds
]
≤ C E

[( ∫ τ

σ

(Y ns − Ys)2ds
) 1

2
]
→ 0,

since we have that fnt and gt are bounded by C.
The last term on the right hand side of (4.10) also goes to 0 almost surely.

We note that since (Y nt )n∈N is non-decreasing, for all t ∈ [0, T ],∣∣Y 1
t− − Yt−

∣∣ ≥ |Y nt− − Yt− | → 0.

Then by

E
[ ∫ T

0

∣∣Y 1
s− − Ys−

∣∣dAs] ≤ [E[ sup
s

(Y 1
s− − Ys−)2

]] 1
2
[
E[AT ]2

] 1
2

<∞,

we can apply the dominated convergence theorem and conclude that

E
[ ∫

(0,T ]

|Y ns− − Ys− |dAs
]
→ 0.

The only remaining term on the right hand side of (4.10) is the jump term.
But this is tricky as in our setting we have jumps both from the càdlàg process
A as well as the (conditional) Poisson integral.

Now we recall a classical result. For an increasing predictable process A, we
can decompose it as a sum of continuous and a purely discontinuous process:
At = Act + Adt . Given a càdlàg martingale N that is bounded in L2(Ω,GT , P ),
then for any stopping time τ ∈ [0, T ]:

E
[ ∫ τ

0

∆NsdA
c
s = 0

]
. (4.11)

And for any predictable stopping time τ ∈ [0, T ]:

E
[ ∫ τ

0

∆NsdA
d
s

]
= E

[ ∑
0≤s≤τ

∆Ns∆A
d
s

]
. (4.12)

Recall in Lemma 4.2.1, we have constructed a sequence of predictable stop-
ping times {σk, τk}, k = 0, 1, 2, . . . , N with 0 < σk ≤ τk ≤ T such that

(i) (σj , τj ] ∩ (σk, τk] = ∅ if j 6= k;

(ii) E[
∑N
k=0[τk − σk](ω)] ≥ T − ε;

(iii)
∑N
k=0 E

[∑
σk<t≤τk(∆At)

2
]

=
∑N
k=0 E

[∑
σk<t≤τk(∆Adt )

2
]
≤ δ.

Now we denote Nt :=
∫ t

0

∫
R∗ |φ

n
s (u)− φs(u)| H̃(ds,du) and as mentioned

earlier, Nt is bounded in H2
E(0, T, ν). Since φnt (u) and φt(u) are bounded in

I by C, by applying the inequality (a + b)2 ≤ 2(a2 + b2), we can obtain the
following bound:

E
[

sup
0≤t≤T

|Nt|2
]
≤ 4C. (4.13)
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Another observation we can make is that, jumps in Yt come from both the
At and

∫
R∗ φt(u)H̃(dt, du) terms, whereas in Y nt , Ant is continuous and jumps

are caused by the
∫
R∗ φ

n
t (u)H̃(dt,du) term only. It follows:

∆(Y nt − Yt) = ∆At + ∆Nt

Thus, by a convenient choice of stopping times, {σk, τk}, k = 0, 1, 2, . . . , N
with 0 < σk ≤ τk ≤ T , which is guaranteed by Lemma 4.2.1, we can obtain:

2E
[ N∑
k=0

∫ τk

σk

∆(Y ns − Ys)dAs
]

= 2E
[ N∑
k=0

∫ τk

σk

(∆As + ∆Ns)dAs

]
= 2E

[ N∑
k=0

∫ τk

σk

(∆As + ∆Ns)dA
d
s

]
(by (4.11))

= 2

N∑
k=0

E
[ ∫ τk

σk

∆AsdA
d
s

]
+ 2

N∑
k=0

E
[ ∫ τk

σk

∆NsdA
d
s

]
= 2

N∑
k=0

E
[ ∑
σk≤s≤τk

∆As∆A
d
s

]

+ 2

N∑
k=0

E
[ ∑
σk≤s≤τk

∆Ns∆A
d
s

]
(by (4.12))

≤ 2

N∑
k=0

E
[ ∑
σk≤s≤τk

(∆Ads)
2
]

+ 2

[
N∑
k=0

E
[ ∑
σk≤s≤τk

(∆Ads)
2
]] 1

2

[
N∑
k=0

E
[ ∑
σk≤s≤τk

(∆Ns)
2
]] 1

2

.

Here we applied Hölder’s inequality to obtain the last inequality.
Now we apply property (iii) of these stopping times as the following, for

ε, δ > 0:
N∑
k=0

E
[ ∑
σk<t≤τk

(∆Adt )
2
]
≤ ε2δ2

64(C + 1)
< 1.

Combining with (4.13), it follows:

2E
[ N∑
k=0

∫ τk

σk

∆(Y ns − Ys)dAs
]
≤ 2
[ ε2δ2

64(C + 1)
+
( ε2δ2

64(C + 1)

) 1
2

2C
1
2

]
≤ 2
[εδ

4
+
εδ

4

]
= εδ,

and we have thus shown that

E
[ ∫ τ

σ

|φns (0)− φs(0)|2 λBs ds+

∫ τ

σ

∫
R∗
|φns (u)− φs(u)|2 λHs ν(du)ds

]
≤ εδ.



82 CHAPTER 4. THE INVERSE THEOREM

Note this result will provide us with a strong convergence in measure. To
be more specific, we denote by m the Lebesgue measure on [0, T ], then we have

m× P
{

(s, ω) ∈
N⋃
k=0

(σk(ω), τk(ω)]× Ω : |φns (0)− φs(0)|2 ≥ δ
}
≤ ε,

m× P
{

(s, ω, u) ∈
N⋃
k=0

(σk(ω), τk(ω)]× Ω× R∗ :∫
R∗
|φns (u)− φs(u)|2 λHs ν(du) ≥ δ

}
≤ ε

The fact that E[
∑N
k=0[τk − σk](ω)] ≥ T − ε implies that for n big enough,

m× P
{

(s, ω) ∈ [0, T ]× Ω : |φns (0)− φs(0)|2 ≥ δ
}
≤ 2ε,

m× P
{

(s, ω, u) ∈ [0, T ]× Ω× R∗ :

∫
R∗
|φns (u)− φs(u)|2 λHs ν(du) ≥ δ

}
≤ 2ε

It follows that for δ > 0,

lim
n→∞

m× P
{

(s, ω) ∈ [0, T ]× Ω : |φns (0, ω)− φs(0, ω)|2 ≥ δ
}

= 0,

lim
n→∞

m× P
{

(s, ω, u) ∈ [0, T ]× Ω× R∗ :∫
R∗
|φns (u)− φs(u)|2 λHs ν(du) ≥ δ

}
= 0

We have thus established strong convergence in Lp([0, T ]×R×Ω,BX×P,Λ×
P ) for p ∈ [1, 2) where sequences φnt are uniformly integrable.

Step 3. With the strong convergence established, we can find a strong
convergence of (f(λs, Y

n
s , φ

n
s ))n∈N to f(λs, Ys, φs) in HpG(0, T ) for p ∈ [1, 2), by

the Lipschitz conditions and Minkowski’s inequality:

‖f(λs, Y
n
s , φ

n
s )− f(λs, Ys, φs)‖p ≤ C‖(Y ns − Ys) + (φns − φs)‖p

≤ C‖Y ns − Ys‖p + ‖φns − φs‖p
→ 0.

By the uniqueness of weak limit, we have∫ t

0

gsds =

∫ t

0

fsds.

We can thus conclude that

Yt = YT +

∫ T

t

f(λs, Ys, φs)ds+AT −At −
∫ T

0

∫
R
φs(u)µ(ds,du),

and the result is established.

By applying the same proof, we can obtain a similar result for Ef -submartingales,
which is stated in the following theorem.
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Theorem 4.2.3 (Doob-Meyer Decomposition for Ef -submartingales). Suppose
we have a driver f that satisfies assumptions in Proposition 3.1.1. Let (Yt)0≤t≤T ∈
S2
G(0, T ). If (Yt)0≤t≤T is an Ef -submartingale, then there exist a process (φt)0≤t≤T ∈
I where φt := (φt(0), φt(u)) for u ∈ R∗ and an increasing càdlàg process
(At)0≤t≤T , predictable with respect to filtration G, with A0 = 0, and E[A2

T ] <∞
such that

Yt = YT +

∫ T

t

f(λs, Ys, φs)ds+ (At −AT )−
∫ T

t

∫
R
φs(u)µ(ds,du)

= YT +

∫ T

t

f(λs, Ys, φs)ds+ (At −AT )−
∫ T

t

πsdBs −
∫ T

t

∫
R∗
ls(u)H̃(ds,du).

Moreover, processes φ and A are unique in their respective spaces.

Now we derive a corollary from the above two theorems, such that we can ex-
press a general E-supermartingale (or E-submartingale) as an EC,C1 -martingale
(or EC,C1 -martingale). We follow Corollary 4.3 from [Roy06].

Corollary 4.2.4. Let E be a EC,C1-dominated, additive and filtration-consistent
non-linear expectation. Given process (Yt)t∈[0,T ] ∈ S2

G(0, T ), and if it is a E-
supermartingale (or E-submartingale), then there exits an increasing predictable
process A (or A′) such that Y + A (or Y − A′) is an EC,C1-martingale (or
EC,C1-martingale).

i Proof. We give a brief proof for the E-supermartingale case. Same argument
can be applied to the E-submartingale situation.

Given (Yt)t∈[0,T ] ∈ S2
G(0, T ) such that it is a E-supermartingale. In the

meantime by the assumptions, we have E is EC,C1-dominated. By Proposition
4.1.5, we have

EC,C1
[ξ | Gt] ≤ E [ξ | Gt] ≤ Yt.

This shows that Yt is an EC,C1-supermartingale. Then we can apply Theorem
4.2.2 and obtain

Yt = YT +

∫ T

t

fC,C1
(λs, φs)ds+ (AT −At)−

∫ T

t

∫
R
φs(u)µ(ds,du),

then we see

Yt +At = (YT +AT ) +

∫ T

t

fC,C1
(λs, φs)ds−

∫ T

t

∫
R
φs(u)µ(ds,du).

Since fC,C1
is independent of Y , and by the uniqueness of solution, we see

that Yt +At is an E
C,C1 -martingale, and the proof is complete.
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4.3 Decomposition for E-supermartingales

In the previous section, we establish decomposition of Ef -martingales with a
given driver f . In order to prove the Inverse Theorem, we need to look at
martingales with respect to a general non-linear expectation E without a given
driver f .

This result is first established by authors in [Coq+02] in the Brownian mo-
tion setting, three years after Peng proved the result in the previous section
in [Pen99], and later extended to the setting of BSDEs with jumps in [Roy06].
Similar with the previous section, we need to adapt the classical arguments in
our time-changed setting.

As mentioned earlier, one of the most important arguments for this result
is to express the non-linear expectation martingales as conditional non-linear
expectations. This gives rise to new challenges, since it requires showing that
such representation is unique, and there also needs to be a comparison theorem
in the corresponding, conditional non-linear expectation form.

The first proposition, based on results from the previous section, enables us
to construct BSDEs for general E-martingales. It corresponds to Proposition
4.4 from [Roy06] in the classical setting.

Proposition 4.3.1. Let (Yt)t∈[0,T ], (Ŷt)t∈[0,T ] ∈ S2
G(0, T ) such that they are

E-martingales. Then there exits functions g, ĝ and processes φ, φ̂ ∈ I such that

Yt = YT +

∫ T

t

gsds−
∫ T

t

φs(u)µ(ds,du),

Ŷt = ŶT +

∫ T

t

ĝsds−
∫ T

t

φ̂s(u)µ(ds,du).

Moreover,
fC,C1

(λs, φs − φ̂s) ≤ g − ĝ ≤ fC,C1
(λs, φs − φ̂s).

Proof. Note here Y and Ŷ are their càdlàg modifications, as mentioned earlier.
We apply Corollary 4.2.4 to Y , and obtain processes A and A′.

Yt = YT +

∫ T

t

fC,C1
(λs, φs)ds+ (AT −At)−

∫ T

t

∫
R
φs(u)µ(ds,du)

Yt = YT +

∫ T

t

fC,C1
(λs, φ

′
s)ds+ (A′t −A′T )−

∫ T

t

∫
R
φ′s(u)µ(ds,du)

By this result, we have:

φ′t = φt,

fC,C1
(λt, φ

′
t)dt− dA′t = fC,C1

(λt, φt)dt+ dAt

This shows us
dA′t + dAt = (fC,C1(λt, φt)− fC,C1

(λt, φt))dt

=
[
2C

∣∣∣∣φ(0)
√
λBt

∣∣∣∣+ (|C| − C1)

∫
R∗

(1 ∧ |u|)φ+(u)ν(du)
√
λHt

+ (|C| − C1)

∫
R∗

(1 ∧ |u|)φ−(u)ν(du)
√
λHt

]
dt
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By this we see A and A′ are both càdlàg, and we write that dAt = atdt and
dA′t = a′tdt. Given that∫

R∗
(1 ∧ |u|)φs(u)ν(du)

√
λH =

∫
R∗

(1 ∧ |u|)φ+
s (u)ν(du)

√
λH

−
∫
R∗

(1 ∧ |u|)φ−s (u)ν(du)
√
λH

we can construct the driver g in the following way:

gs =
|C|+ C1

2

∫
R∗

(1 ∧ |u|)φs(u)ν(du)
√
λH +

1

2
(as + a′s)− a′s

=
|C|+ C1

2

∫
R∗

(1 ∧ |u|)φs(u)ν(du)
√
λH +

1

2
(as − a′s).

Clearly this satisfies our requirements in the proposition. We apply the same
construction to Ŷ , and the result follows.

One direct consequence of the previous proposition is that we can obtain
càdlàg modifications for the general non-linear conditional expectation.

Corollary 4.3.2. Let E be a EC,C1-dominated, additive and filtration-consistent
non-linear expectation. Then for any ξ ∈ L2(GT ) and h ∈ H2

G(0, T ), the process

E
[
ξ +

∫ T
t
h(s)ds | Gt

]
admits a càdlàg modification.

Proof. By additivity we obtain

E
[
ξ +

∫ T

t

h(s)ds | Gt
]

= E
[
ξ +

∫ T

0

h(s)ds−
∫ t

0

h(s)ds | Gt
]

= E
[
ξ +

∫ T

0

h(s)ds | Gt
]
−
∫ t

0

h(s)ds.

Then we apply Proposition 4.3.1, and the proof is complete.

The following theorem is the generalised version of Theorem 4.2.2 in the
sense that we are now dealing with general E-supermartingales with a given
driver f , whereas in Theorem 4.2.2 the driver f is given.

Theorem 4.3.3 (Doob-Meyer Decomposition for E-supermartingale). Let E
be a EC,C1-dominated, additive and filtration-consistent non-linear expectation,
and (Yt)t∈[0,T ] ∈ S2

G(0, T ) such that it is an E-supermartingale. Then there
exits an increasing cádlág predictable process (At)t∈[0,T ] such that A0 = 0 and
E[A2

T ] ≤ ∞ and that (Yt + At)t∈[0,T ] is an Ef -martingale, namely, Yt + At =
Ef [YT +AT | Gt].

Proof of Theorem 4.3.3 requires a similar argument used in the proof of
Theorem 4.2.2. But before we start working on the proof, we need the following
two lemmata to fix some technical issues. They correspond to Lemma 6.1 and
6.2 from [Coq+02] in the classical setting and we adapt the classical arguments
to our new, time-changed setting.

Lemma 4.3.4 (Existence of unique solution). Given a function h : (Ω× [0, T ]×
R) 7→ R such that for a constant K > 0
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(i) h(t, ω, λ, y) ∈ H2
G(0, T ), for all y ∈ R;

(ii) |h(t, λt, y1)− h(t, λt, y2)| ≤ K |y1 − y2| for all y1, y2 ∈ R.

Then given a terminal condition ξ ∈ L2(GT ) the following type of equation

Yt = E
[
ξ +

∫ T

t

h(s, λs, Ys)ds | Gt
]

(4.14)

has a unique process {Yt}t∈[0,T ] solution in S2
G(0, T ), and it admits a càdlàg

modification.

i Proof. We prove this lemma by first showing the following G-adapted map-
ping Φ(y(ω))(t) : L2([0, T ] × Ω,B[0,T ] × F̃ ,m × P ) 7→ L2([0, T ] × Ω,B[0,T ] ×
F̃ ,m× P ) is a contraction:

Φ(y(ω))(t) = E
[
ξ +

∫ T

t

h(s, λs, ys)ds | Gt
]
.

We denote Y 1(t) := Φ(y1(ω))(t) and Y 2(t) := Φ(y2(ω))(t). Then by the prop-
erties of EC,C1 -domination and additivity, and basic property of BSDEs, we
obtain:∣∣Y 1(t)− Y 2(t)

∣∣ ≤ ∣∣EC,C1 [Y 1(t)− Y 2(t) | Gt]
∣∣ ∨ ∣∣∣EC,C1

[Y 1(t)− Y 2(t) | Gt]
∣∣∣

≤ EC,C1 [
∣∣Y 1(t)− Y 2(t)

∣∣ | Gt]
= EC,C1

[ ∣∣∣∣∣
∫ T

t

h(s, λs, y1(s))− h(s, λs, y2(s))ds

∣∣∣∣∣ | Gt
]

≤ EC,C1

[∫ T

t

|h(s, λs, y1(s))− h(s, λs, y2(s))|ds | Gt

]

≤ EC,C1

[∫ T

t

K |y1 − y2|ds | Gt

]

= KEC,C1

[∫ T

t

|y1 − y2|ds | Gt

]

Equality in the final step is a result of Lemma 4.1.4, where we used the properties
of the BSDE associated with EC,C1 , since fC,C1

is independent of y. Now we
recall Corollary 4.1.7 and obtain

E
[ ∣∣Y 1(t)− Y 2(t)

∣∣2 ] ≤ K2E

[
EC,C1

[ ∫ T

t

|y1 − y2|ds | Gt
]2]

≤ K2e(2(|C|+1)2)(T−t) E

[(∫ T

t

|y1 − y2|ds
)2
]

≤ K2e(2(|C|+1)2)T (T − t) E

[∫ T

t

|y1 − y2|2 ds

]
.

(4.15)
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We used Hölder’s inequality in the last step. This implies

E

[∫ T

t

∣∣Y 1(t)− Y 2(t)
∣∣2 ds

]
≤ K2e(2(|C|+1)2)T (T − t)2 E

[∫ T

t

|y1 − y2|2 ds

]
.

Now we pick a time interval η > 0 such that K2e(2(|C|+1)2)T η2 < 1, then
Φ on this interval [T − η, T ] is a contraction, and therefore there exits a fixed
point such that it solves (4.14).

Once this is established, we just need to repeat this procedure over the whole
[0, T ] time interval and find a solution. For t ≤ T−η, we can define the mapping
Φ in the same way, and ξ′ := ξ +

∫ T
T−η h(s, ys)ds, then we have:

Φ(y(ω))(t) = E
[(
ξ +

∫ T

T−η
h(s, λs, ys)ds

)
+

∫ T−η

t

h(s, λs, ys)ds | Gt
]

= E
[
ξ′ +

∫ T−η

t

h(s, λs, ys)ds | Gt
]

By the same computation as before, we obtain:

E

[∫ T

t

∣∣Y 1(t)− Y 2(t)
∣∣2 ds

]
≤K2e(2(|C|+1)2)T (T − t− η)2

E

[∫ T−η

t

|y1 − y2|2 ds

]
.

In this way, we can find a solution by iterating over the whole [0, T ] interval.
Suppose Y1 and Y2 are two solutions we find in this way, then by (4.15), we
have:

E
[
|Y1(t)− Y2(t)|2

]
≤ K2e(2(|C|+1)2)TT E

[∫ T

t

|y1 − y2|2 ds

]
.

and this implies Y1 = Y2 and we have thus shown uniqueness of solution.
Finally, by applying Corollary 4.3.2, we conclude that the solution of (4.14)

admits a càdlàg modification and the proof is complete.

Now we establish a comparison theorem for the conditional E-expectation
expressed as in (4.14).

Lemma 4.3.5 (Comparison Thoerem). Let Y be the solution of (4.14) and let
Y
′
be the solution of

Y
′
t = E

[
ξ′ +

∫ T

t

[h(s, λs, Y
′
s) + ζs]ds | Gt

]
.

Here ξ′ ∈ L2(GT ) and ζ ∈ H2
G(0, T ). If

ξ′ ≥ ξ, ζt ≥ 0 dP × dt-a.s. (4.16)

then we have
Y
′
t ≥ Y t, dP × dt-a.s. (4.17)

Moreover, (4.17) becomes equality if and only if (4.16) takes equalities.
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i Proof. Proving this lemma requires adapting to the time-changed setting the
classical argument used in Theorem 6.2 in [Coq+02]. First we assume ζt ≡ 0,
then we define, for each δ > 0, the following stopping time τ δ1 and its corre-
sponding set Aδ:

τ δ1 := inf{t ≥ 0; Y
′
t ≤ Y t − δ} ∧ T,

Aδ := {τ δ1 < T} ∈ Gτδ1

Then we see if for δ > 0, τ δ1 = T , then we can conclude that (4.17) holds.
Now we can assume rather for some δ > 0, P (Aδ) > 0. Then we can define
another stopping time τ2,

τ2 := inf{t ≥ τ δ1 ; Y
′
t ≥ Y }.

Since Y
′
T = ξ′ ≥ ξ = Y T , we can conclude that τ2 ≤ T , and that 1AδY

′
τ2 =

1AδY τ2 . Then for t ∈ [τ δ1 , τ2], by definition

1AδY
′
t = E

[
1AδY τ2 +

∫ τ2

t

1Aδh(s, λs,1AδY
′
s)ds | Gt

]
1AδY t = E

[
1AδY τ2 +

∫ τ2

t

1Aδh(s, λs,1AδY s)ds | Gt
]

By Lemma 4.3.4, solutions of the above two equations coincide. This means
1AδY

′
τδ1

= 1AδY τδ1 a.s., and this is a contradiction to P (Aδ) > 0.

Now we consider generally ζt ≥ 0. To do this, we first construct a sequence
of Y

n

t for n = {1, 2, 3, . . .}, i = {1, 2, 3, . . . , n − 1} and t ∈
[
iT
n ,

(i+1)T
n

)
, as

solutions of

Y
n

t = E

[[
ξ′ +

∫ T

iT
n

ζsds
]

+

∫ T

t

h(s, λs, Y
n

t )ds | Gt

]
Y
n

T = ξ′.

Then by the additivity, we can rewrite the above equation into

Y
n

t = E

[[
Y (i+1)T

n
+

∫ (i+1)T
n

iT
n

ζsds
]

+

∫ (i+1)T
n

t

h(s, λs, Y
n

t )ds | Gt

]
,

for t ∈
[
iT
n ,

(i+1)T
n

)
.

Now we consider a small time interval t ∈ [ (n−1)T
n , T ). Here Y

n

t can be
written as (4.14) with the same function h but a different terminal condition:

ξ′′ := ξ′ +

∫ T

(n−1)T
n

ζsds ≥ ξ′ ≥ ξ.

Then by the proof in the first part, we can conclude that Y
n

t ≥ Y t on the
interval t ∈ [ (n−1)T

n , T ). We note in particular, Y
n
(n−1)T

n
≥ Y (n−1)T

n
on the left

point of the interval.
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This result allows us to iterate over all i = {1, 2, 3, . . . , n − 1} as t ∈[
iT
n ,

(i+1)T
n

)
, and conclude that Y

n

t ≥ Y t for all t ∈ [0, T ].

What remains to show is the fact that Y
n

t converges to Y
′
. Once again, we

look at an interval t ∈
[
iT
n ,

(i+1)T
n

)
. With correspondingly big enough constants

K1 and the Lipschitz constant K from Lemma 4.3.4, we can follow the same
procedure as in Lemma 4.3.4 and obtain the following result:

E

[ ∣∣∣Y nt − Y ′t∣∣∣2
]
≤ K1 E

[(∫ t

iT
n

|ζs|ds+K

∫ T

t

|y1 − y2|ds
)2
]

≤ K1 E

[
2
(∫ t

iT
n

|ζs|ds
)2

+ 2K2(T − t)
∫ T

t

|y1 − y2|2 ds

]

Now we apply Schwarz’s inequality, and for t ∈ [0, T ) we have:

E

[ ∣∣∣Y nt − Y ′t∣∣∣2
]
≤ 2K1

T

n
E
[ ∫ T

0

|ζs|2 ds
]

+ 2K2K1T E
[ ∫ T

t

|y1 − y2|2 ds
]

Then we can apply Grönwall’s inequality and obtain the convergence. We can
thus conclude that Y

′
t ≥ Y t.

Finally, we need to check when (4.17) becomes equality, (4.16) take equali-
ties. We can no longer follow the proof in [Coq+02] to prove this point, as we
do not have continuity for Y and Y

′
. We assume ξ′ ≥ ξ, ζt ≥ 0 and Y 0 = Y

′
0.

Then we can see:

ξ +

∫ T

0

h(s, λs, Y s)ds ≤ ξ′ +
∫ T

0

[h(s, λs, Y
′
s) + ζs]ds

Yet in the meantime, given Y 0 = Y
′
0, by definition we have

E
[
ξ+

∫ T

0

h(s, λs, Y s)ds | Gt
]

= Y 0 = Y
′
0 = E

[
ξ′+

∫ T

0

[h(s, λs, Y
′
s)+ζs]ds | Gt

]
.

By the strict monotonicity of non-linear expectations, we conclude

ξ +

∫ T

0

h(s, λs, Y s)ds = ξ′ +

∫ T

0

[h(s, λs, Y
′
s) + ζs]ds.

We have thus shown that ξ = ξ′ and ζt = 0 dP × dt-a.s., and the proof is
complete.

Now we are ready to prove Theorem 4.3.3.

i Proof of Theorem 4.3.3. Much of the hard work has been done in the proof of
Theorem 4.2.2, and in this proof we will adopt a very similar approach, with the
only difference being that we now express the processes as non-linear conditional
expectations. We now give a sketch of proof by adapting to our time-changed
setting the classical argument used in Theorem 4.5 in [Roy06].
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Similar as in the proof of Theorem 4.2.2, for a given E-supermartingale Y ,
we construct

Y nt := E
[
YT + n

∫ T

t

(Ys − Y ns )+ds | Gt
]
,

and define Ant := n
∫ t

0
(Ys − Y ns )+ds. By the comparison theorem established in

Lemma 4.3.5, we conclude in the similar way as in the proof of Theorem 4.2.2
that (Y nt )n is an increasing sequence and Y nt ≤ Yt for all n ∈ N and all t ∈ [0, T ].
This implies that (Y nt )n converges almost surely to a certain limit, and what
remains to show is that this limit can be expressed as a non-linear conditional
expectation, and that this limit indeed coincides with our E-supermartingale Y .

Because Y nt ≤ Yt for all n ∈ N and all t ∈ [0, T ], we can rewrite

Ant = n

∫ t

0

(Ys − Y ns )+ds = n

∫ t

0

(Ys − Y ns )ds = n

∫ t

0

|Ys − Y ns |ds.

For 0 ≤ t ≤ r ≤ T , we apply Lemma 4.3.4 and find the unique solution for
Y nt := E

[
Y nr + n

∫ r
t
|Ys − Y ns |ds | Gt

]
. By additivity of the non-linear expecta-

tion, we have
Y nt +Ant = E

[
Y nr +Anr | Gt

]
,

and this satisfies the definition of an E-martingale.
Then we apply Proposition 4.3.1 to Y nt +Ant and construct a corresponding

BSDE as the following

Y nt +Ant = YT +AnT +

∫ T

t

gns (λs)ds−
∫ T

t

∫
R
φns (u)µ(ds,du).

Here we note fC,C1
(s, λs, φ

n
s ) ≤ gns (λs) ≤ fC,C1(s, λs, φ

n
s ).

Now we manipulate some terms on both sides and obtain the following

Y nt = YT +

∫ T

t

(
gns (λs) + n |Ys − Y ns |

)
ds−

∫ T

t

∫
R
φns (u)µ(ds,du).

The only difference here from the proof of Theorem 4.2.2 is that now the
driver gnt also depends on n. But given that fC,C1

(s, λs, φ
n
s ) ≤ gns (λs) ≤

fC,C1
(s, λs, φ

n
s ), this does not pose any problem, as we have discussed in (4.9)

in the proof of Theorem 4.2.2. For a detailed discussion of this condition, we
refer to theorems 4.1 and 4.5 in [Roy06].

We can thus proceed as in the proof of Theorem 4.2.2, and then conclude
that Y n converges almost surely to Y , and obtain an increasing, predictable
càdlàg process A, such that An converges almost surely to A.

Finally, we need to show that the limit of Y n can indeed be expressed as a
non-linear conditional expectation. We note∣∣∣Y nt − E[YT +AT −At | Gt

]∣∣∣ =
∣∣∣E[YT +AnT −Ant | Gt

]
− E

[
YT +AT −At | Gt

]∣∣∣
Then we apply Corollary 4.1.7 and note

E

[ ∣∣∣E[YT +AnT −Ant | Gt
]
− E

[
YT +AT −At | Gt

]∣∣∣2 ]
≤ e(2(|C|+1)2)(T−t) E

[
|(AnT −Ant )− (AT −At)|2

]
.
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Therefore, by this convergence, there exists a subsequence of (Y nt )n we denote
also by (Y nt )n that converges almost sure to E

[
YT + AT − At | Gt

]
. Since Y n

converges almost surely to Y , by the uniqueness of limit, we conclude that Yt
coincides with this process and thus obtain that

Yt = E
[
YT +AT −At | Gt

]
.

And the proof is complete.
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4.4 Proof of the Time-changed Inverse Theorem

With all the above results in place, we are ready to prove the Time-changed
Inverse Theorem, see Theorem 4.0.1.

i Proof of Theorem 4.0.1 . We take three steps to prove the Time-changed In-
verse Theorem. In the first step, we construct a function f from an E-martingale,
given that the non-linear expectation E is EC,C1 -dominated and has additivity
property. We show that f is well-defined and bounded between fC,C1

and fC,C1
.

In step two, we check that the operator Ef derived from our constructed f is
indeed a non-linear expectation. This would follow naturally from assumptions
on the driver f .

Our last step is to show that Ef coincides with E , and this completes our
proof.

Step 1. Given that E is EC,C1 -dominated, we consider a deterministic φ0 ∈
Φ, where Φ is defined in (ii) in Definition 0.2.6, and we consider a process in
the following form:

Y φ0

t = −tfC,C1
(λt, φ0) +

∫ t

0

∫
R
φ0(u)µ(ds,du). (4.18)

Here we note that φ0 ∈ I, where I is defined in (i) in Definition 0.2.6. Then we
conclude that, for a BSDE associated with (fC,C1

, Y φ0

T ), there exists a unique
solution. By the uniquess of solution for BSDEs, we have that

(Yt, φt) = (Y φ0

t , φ0)

We note Y is an EC,C1 -martingale, and by the EC,C1 -domination property, it is a
E-supermartingale in S2

G(0, T ). Apply Theorem 4.3.3 to Y and then we can find
an increasing predictable càdlàg process (At)t∈[0,T ] such that A0 = 0,E[A2

T ] <
∞ and (Yt +At)t∈[0,T ] is an E-martingale.

In the meantime, Proposition 4.3.1 allows us to construct from E-martingale
(Yt +At)t∈[0,T ] a function f(λs, φ0) and process φ̂ such that

Yt +At = Y φ0

T +AT +

∫ T

t

fs(λs, φ0)ds−
∫ T

t

∫
R
φ̂(u)µ(ds,du).

Here,
fC,C1

(λs, φ̂s) ≤ fs(λs, φ0) ≤ fC,C1(λs, φ̂s),

and given (4.18), we conclude:

At =

∫ t

0

fs(λs, φ0)ds− tfC,C1 ,

φ̂ = φ0,

and f is well-defined.

Step 2. We check that Ef is indeed a non-linear expectation, by Proposition
3.1.1. We conclude it is so, because:
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(i) f(t, λ, (0, 0)) = 0 as fC,C1
(λs, φ0 ≤ f(λs, φ0) ≤ fC,C1

(λs, φ0);

(ii) f satisfies all other conditions, thanks to Proposition 4.3.1.

We have thus shown that Ef is indeed a non-linear expectation and it is
EC,C1-dominated and additive, since f is independent of Y .

Step 3. Now we show that Ef coincides with E . To see this result, we first
claim that for processes φ̃ ∈ I, for all r ≤ t ∈ [0, T ], we have:

E
[
−
∫ t

r

fs(λs, φ̃s) +

∫ t

r

∫
R
φ̃s(u)µ(ds,du)

∣∣ Gr] = 0. (4.19)

From the previous argument and the construction of f , for all r ≤ t ∈ [0, T ], we
have the martingale property and can thus obtain:

E
[
−
∫ t

r

fs(λs, φ0,s) +

∫ t

r

∫
R
φ0,sµ(ds,du)

∣∣ Gr] =

E
[
(Y φ0

t +At)− (Yr +Ar)
∣∣ Gr] = 0.

(4.20)

Now let {Ai}Ni=1 be a Gr-measurable partition of Ω, then we consider {φi}Ni=1

with φi defined in the same way as φ0, by Lemma 4.1.9 and the fact that
fs(λs, (0, 0)) = 0, it follows:

E
[
−
∫ t

r

fs(λs,

N∑
i=1

φi,s1Ai) +

∫ t

r

∫
R

N∑
i=1

φi,s1Aiµ(ds,du)
∣∣ Gr] =

E
[ N∑
i=1

1Ai

(
−
∫ t

r

fs(λs, φi,s) +

∫ t

r

∫
R

N∑
i=1

φi,sµ(ds,du)
) ∣∣ Gr] =

N∑
i=1

1AiE
[(
−
∫ t

r

fs(λs, φi,s) +

∫ t

r

∫
R

N∑
i=1

φi,sµ(ds,du)
) ∣∣ Gr] = 0.

We obtain the final equality by (4.20). In this way, we have shown that (4.19)
holds for any simple function in I. Now we apply Corollary 4.1.7, and the fact
that f is Lipschitz with respect to φ ∈ I gives us dominant convergence which
enables us to establish (4.19).

Finally, we prove that Ef [ξ] coincides with E [ξ] for all ξ ∈ L2(GT ). Now we
consider the following BSDE:

−dYt = ft(λt, φt)dt+

∫
R∗
φt(u)µ(dt, du)

YT = ξ

Here ξ ∈ L2(GT ). By the definition of f -expectation, Ef [ξ] = Y0. On the other
hand, by applying (4.19), we can obtain:

E [ξ] = E
[
Y0 −

∫ T

0

fs(λs, φs)ds+

∫ T

0

∫
R∗
φs(u)µ(dsdu)

]
= Y0 + E

[
−
∫ T

0

fs(λs, φs)ds+

∫ T

0

∫
R∗
φs(u)µ(dsdu)

]
= Y0 = Ef [ξ].

The proof is thus complete.
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Conclusion

This thesis sets out to establish the connection between dynamic risk measures
and BSDEs with jumps driven by time-changed Lévy noises. As mentioned in
Introduction, the natural link between them is the non-linear expectation.

In Chapter 1, this thesis reviews definitions and mathematical properties of
both static and dynamic risk measures. Here we also recall basic definitions
and theories of BSDEs with jumps. Several important results, such as the Exis-
tence and Uniqueness of solution for BSDE, see Theorem 1.2.1, and Comparison
Theorem for BSDEs with Jumps, see Theorem 1.2.13, are also included in this
chapter.

Chapter 1 establishes the link between dynamic risk measures and BS-
DEs with jumps under the classical framework. By Proposition 1.3.2, we are
able to characterise a non-linear expectation via the associated BSDE. On the
other hand, Proposition 1.3.9 shows that we can define a dynamic risk measure
through a non-linear expectation. Theorem 1.3.11 gives a specific representation
of dynamic risk measures associated with a BSDE that satisfies our assumptions.
By this line of argument, given a BSDE, we are able to generate a corresponding
dynamic risk measure.

To represent a given dynamic risk measure, under reasonable conditions, by
a BSDE with jumps is considerably more difficult. In Chapter 1, we recall the
Inverse Theorem from [Roy06], see Theorem 1.3.8, without giving a detailed
proof. This is because this result is much more difficult than it appears to
be. In order to prove this theorem, it requires establishing the Doob-Meyer
Decomposition for non-linear expectation martingales. The classical argument
for the decomposition is no longer relevant here, since it relies heavily on the
linearity of ordinary expectations.

In this way, Chapter 1 provides us with all the key elements in this thesis
that we can develop further in our time-changed setting in Chapter 3 and 4.

Chapter 2 starts by recalling basic theories of the Change of Time Method
(CTMs) as well as two of the most widely studied time change processes, namely,
subordinators and absolutely continuous time changes. According to a well-
established result in the literature, see Theorem 2.2.12, a subordinated Lévy
process remains a Lévy process. This makes our job of investigating properties
of BSDEs driven by subordinated Lévy processes conceptually easier, because
now we are back in the classical framework discussed in Chapter 1. In the
meantime, given the original process, Proposition 2.2.13 enables us to compute
the characteristic triplets for the subordinated Lévy process, under the condition
that the original process and the subordinator are mutually independent.

Things are trickier with absolutely continuous time changes, as time-changed
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Lévy processes in such cases may no longer stay Lévy processes. Theorem 2.2.19
shows that, given all the necessary assumptions, we can use absolutely contin-
uous time change processes to construct processes with conditional stationary
independent increments. Similar with subordinators, we would like to be able
to figure out the characteristic triplets for the time-changed process based on
those of the original process. Theorem 2.2.20 tells us that we can reduce this
problem into finding the closed form of the Laplace transform of the time change
process, provided that it exits.

In the Section 2.3, we review the time-changed framework proposed by au-
thors in [DS14], where we define BSDEs with jumps driven by time-changed
Lévy noises. Given the conditional stationary independent increments and ab-
solute continuity, this time-changed framework has several “nice” properties. For
example, Proposition 2.3.3 tells us that the signed measure µ constructed under
this framework has the martingale property with respect to the filtration G.
Without the martingale property of µ, many of the results we try to establish
in later chapters are not possible.

In general, Chapter 2 tries to approach CTMs in a more conceptual way,
in the sense that there are more examples in this chapter rather than detailed
proofs. The main reason for this is that many of the proofs for this chapter
are quite technical and get quickly bogged down in large amount of detailed
computations, something that sheds little light on the main topic of this thesis.
More examples, on the other hand, could help us develop an intuition of the
usefulness of CTMs, and gain a better understanding of the framework proposed
in [DS14].

Chapter 3 and 4 constitute the core of this thesis, and it is also here we have
put in most effort. In Chapter 3, we try to further develop the subject presented
in Chapter 1, under the time-changed framework established in Section 2.3. Cor-
responding to their non-time-changed counterparts, Proposition 3.1.1 enables us
to characterise a non-linear expectation via the associated time-changed BSDE,
whereas Proposition 3.1.4 shows that we can indeed produce a dynamic risk
measure by a non-linear expectation generated by a time-changed BSDE. In
the meantime, Theorem 3.2.4 gives us a specific representation of dynamic risk
measures. In this way, we can define a dynamic risk measure in accordance with
the associated time-changed BSDE.

But Chapter 3 only tells half of the story. To establish a mutual connection,
we need to be able to represent a given dynamic risk measure by time-changed
BSDEs with jumps, under general enough conditions. We devote the entire
Chapter 4 to proving this important Inverse Theorem, see Theorem 4.0.1.

This is an important result as much as it is a difficult one. We have to rely on
ideas from [Pen99], [Coq+02] which proved this result in the Brownian motion
setting, and [Roy06], which generalised it in the setting of BSDEs with jumps.

To prove this theorem, it requires first establishing the Doob-Meyer Decom-
position for f -expectation martingales. This is difficult, because, as mentioned
earlier, the classical argument is based on the linearity of ordinary expectation,
something we no longer have with our non-linear f -expectation. To solve this
problem, we adapt to the time-changed setting the method used in [Pen99],
namely, to construct a so-called “penalised” sequence and push it up so hard
that it finally converges to a supermartingale with respect to the f -expectation,
see Theorem 4.2.2 for details.
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The second step is to obtain the decomposition for a general non-linear
expectation, and here we no longer have a given driver f . The key element
in this step is to express the “penalised” sequence in the form of conditional
non-linear expectations, and in order to show convergence, there needs to be a
comparison theorem in the corresponding form, see Lemma 4.3.5 for details.

Results from the previous steps enables us to prove the time-changed Inverse
Theorem in Section 4.4, and we have thus achieved a full connection between
time-changed BSDEs and dynamic risk measures.

One thing in particular that we would like to point out is that, all the
results we obtain in Chapter 3 and 4 are adapted to the filtration G. This is
a big, technical filtration that includes “anticipating-information”, which is the
entire history of the time-changed noises that we use to generate the BSDEs.
In applications, we can still solve an optimal control problem with a classical
performance functional, and this is achieved by projecting the results we obtain
in filtration G onto filtration F̃, the smallest right-continuous filtration to which
our random signed measure µ is adapted. For a detailed implementation of this
idea, we refer to Section 6 in [DS14]. This can well serve as a motivation for
further developments of this thesis in terms of applications.

Another direction for further studies is to investigate other types of time
change processes and see if our results still hold. We have benefited immensely
from the “nice” properties of our current framework, such as continuity of the
time change process and martingale property, as mentioned earlier.

These are all ambitious and promising projects for future studies, but at the
moment they are, regrettably, beyond the scope of the present thesis.



98 CONCLUSION



Appendix A

Elements of Stochastic
Processes and Calculus

Definition A.0.1 (Progressively measurable processes). Suppose (Ft)t∈[0,∞)

is a filtration on the probability space (Ω,F), where X is a stochastic process
with values in (E, E). Then X is said to be progressively measurable if for every
t ∈ [0,∞), the map (s, ω) 7→ Xs(ω) of [0, t] × Ω into (E, E) is measurable with
respect to the product σ−algebra B([0, t])⊗Ft.

Definition A.0.2 (Class (D)). A right-continuous uniformly integrable super-
martingale X is said to be of class (D) if the set of random variables (XT )T∈T
is uniformly integrable (where T is the set of all stopping times).

Definition A.0.3 (Potential). A non-negative, right-continuous supermartin-
gale X is called a potential if limt→∞ E[Xt] = 0.

Definition A.0.4 (H̃pspaces). For M a martingale and p ∈ [1,∞), write

‖M‖H̃p := ‖M∗∞‖p = E[sup
t
|Mt|p]1/p.

Here ‖ · ‖p denotes the norm in Lp. Then H̃p is the space of martingales such
that

‖M‖H̃p <∞.

Theorem A.0.5 (Doob-Meyer Decomposition: Class (D)). Suppose Z is a
potential , defined in Definition A.0.3, of class (D), defined in Definition A.0.2.
Then there is a unique predictable integrable increasing càdlàg process A ∈ A+

0

such that Z is the potential generated by A. That is, upto indistinguishability,

Zt = E[A∞ | Ft]−At.

Here A+
0 denotes the set of adapted (with respect to the relevant filtration),

integrable and increasing processes that starts at 0 at t = 0.

Definition A.0.6 (Predictable quadratic variation). For M ∈ H̃2 where H̃2 is
defined in Definition A.0.4, we denote by 〈M〉 the unique predictable increasing
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process in A+
0 given by Theorem A.0.5 the Doob-Meyer decomposition of the

class (D) potential X defined by

Xt = E[M2
∞ | Ft]−M2

t .

The process 〈M〉 is called the predictable quadratic variation of M .

Definition A.0.7 (Compensated Poisson Process). The process Ñ defined by
Ñt = Nt − λt is a martingale, and is called the compensated Poisson Process.

We call λ the parameter of the Poisson Process and λt the compensator of
the increasing process N .

Definition A.0.8 (Semimartingale). A process X = {Xt}t≥0 is a semimartin-
gale if it has a decomposition of the form

X = X0 +M +A,

where M is a local martingale and A is a càdlàg adapted process of almost
surely finite variation, and M0 = A0 = 0. Clearly, semimartingales are càdlàg
and adapted.

Definition A.0.9 (Evanescent Sets). Suppose A is a subset of [0,∞)× Ω and
that 1A(t, ω) = 1A is the indicator function of A. Then A is said to be evanes-
cent if 1A is indistinguishable from the zero process.

Definition A.0.10 (Stochastic Intervals). Suppose S and T are maps Ω 7→
[0,∞] and S ≤ T a.s. The (half open) stochastic interval denoted by JS, T J is
the set

{(t, ω) ∈ [0,∞)× Ω : S(ω) ≤ t < T (ω)}.

The stochastic intervals JS, T K, KS, T K, KS, T J are defined similarly. The stochas-
tic interval

JT, T K = {(t, ω) ∈ [0,∞)× Ω : T (ω) = t}

is denoted by JT K, and is called the graph of T.

Definition A.0.11 (Optional and Predictable σ-algebras). The optional (re-
spectively predictable) σ-algebra Σo (respectively Σp) on [0,∞] × Ω is the σ-
algebra generated by the evanescent sets, defined in Definition A.0.9, and all
stochastic intervals, defined in Definition A.0.10, of the form JT,∞J for T an
arbitrary (respectively predictable) stopping time.

Definition A.0.12 (Optional and Predictable Processes). A stochastic process
{Xt}t∈[0,∞) defined on (Ω,F), with values in the measurable space (E, E), is
said to be optional (respectively, predictable) if the map X : [0,∞) × Ω 7→ E
is measurable with respect to the optional (respectively, predictable) σ-algebra,
defined in Definition A.0.11.

Definition A.0.13 (Random measure). Suppose we are working on a proba-
bility space (Ω,F , P ) which has a complete, right continuous filtration (Ft)t≥0.
We also have an auxiliary Blackwell Space (Z,Z). However, we do not require
such generality as the applications we have in mind are when Z ⊂ Rn.

A non-negative random measure µ is an F-measurable family {µ(ω, t)}ω∈Ω of
σ-finite measures on ([0,∞)×Z,B([0,∞)⊗Z). A function that can be written as
the difference of two non-negative random measures is called a random measure.
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Definition A.0.14 (Infinitely divisible characteristic function). Let X be a
random variable taking values in Rd with law µX . We say that X is infinitely
divisible if, for all n ∈ N, there exits identically and independently distributed
random variables Y (n)

1 , Y
(n)
2 , Y

(n)
3 , . . . , Y

(n)
n such that

X = Y
(n)
1 + Y

(n)
2 + Y

(n)
3 + . . .+ Y (n)

n in distribution.

Let φx(u) = E[ei(u,X)] denote the characteristic function of X, where u ∈
Rd. More generally, if µ ∈ M1(Rd) where M1(Rd) denote the set of all Borel
probability measures on Rd, then

φµ(u) =

∫
Rd
ei(u,y)µ(dy).

If µ ∈ M1(Rd) is infinitely divisible if it has a convolution n-th root µ
1
n ∈

M1(Rd) for each n ∈ N such that, for each x ∈ Rd,

φµ(x) = [φ
µ

1
n

(x)]n.

Theorem A.0.15 (Lévy-Khinchine Formula). µ ∈ M1(Rd) is infinitely divis-
ible, defined in Definition A.0.14, if there exists a vector b ∈ Rd, a positive
definite symmetric d× d matrix A and a Lévy measure ν on Rd/{0} such that,
for all u ∈ Rd,

φµ(u) = exp

{
i(b, u)− 1

2
(u,Au) +

∫
Rd/{0}

[
ei(u,y) − 1− i(u, y)χB̂(y)

]
ν(dy)

}
,

(A.1)

where B̂ = B1(0), namely the ball with radius 1 and centred at 0.
Conversely, any mapping of the form (A.1) is the characteristic function of

an infinitely divisible probability measure on Rd.

Theorem A.0.16 (Doob Optional Sampling Theorem). Suppose X is a uni-
formly integrable or non-negative right-continuous supermartingale with respect
to the filtation {Ft}t∈[0,∞]. If S and T are two stopping times such that S < T
a.s., then the random variables XS and XT are integrable and XS ≥ E[XT | FS ]
a.s.

Theorem A.0.17 (One-Dimensional Itô Formula for Itô-Lévy Processes). Sup-
pose Y (t) ∈ R is an Itô-Lévy Process of the form

dX(t) = α(t, ω)dt+ β(t, ω)dB(t) +

∫
R
γ(t, z, ω)N̄(dt, dz),

where,

N̄(dt, dz) =

{
N(dt, dz)− ν(dz)dt, if |z| < R

N(dt, dz), if |z| ≥ R

for some R ∈ [0,∞].
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Let f ∈ C2(R2) and define Y (t) = f(t,X(t)). Then G(t) is again an Itô-
Lévy Process and

dY (t) =
∂f

∂t
(t,X(t))dt+

∂f

∂x
(t,X(t))[α(t, ω)dt+ β(t, ω)dB(t)]

+
1

2
β2(t, ω)

∂2f

∂x2
(t,X(t))dt

+

∫
|z|<R

{
f(t,X(t−) + γ(t, z))− f(t,X(t−))

− ∂f

∂x
(t,X(t−))γ(t, z)

}
ν(dz)dt

+

∫
R
{f(t,X(t−) + γ(t, z))− f(t,X(t−))}N̄(dt,dz).

We recall this formula from Theorem 1.14 in [ØS07]. We note that if R = 0,
then N̄ = N everywhere. If R = ∞, then N̄ = Ñ , where Ñ is defined in
Deinfition A.0.7, everywhere.
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