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Abstract

In this thesis we investigate the problem of optimising stock portfolios
by using methods from machine learning. The simple model of Black
Scholes for the dynamics of stock prices is considered. This model has
deficiency that it is not able to describe the market realistically due to
constant volatility. The latter problem can be overcome by introducing
rough volatility model, which is empirically shown to provide better pre-
dictions. We look at the Oslo Børs Index prices and following some specific
company stock prices, we also consider also the currency market, namely
Euro (EUR) to Norwegian Kroner (NOK). Finally we try to predict the
rough volatility and make new predictions for stock dynamics based on a
geometric Brownian model with rough volatility.
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Introduction

Financial markets have been known to be hard to predict based on the
weak Efficient Market hypothesis, see section 2.1.1 namely the information
coming from the future asset prices. Stock price models have been studied
over the decades, where the most known model is the Black-Scholes model.

In chapter 1 we will discuss the scope of problems in connection with
portfolio selection as studied in this thesis, and introduce the necessarily
notation for this thesis. This chapter covers e.g. the problem of portfolio
allocation, and a discussion of transaction costs.

In chapters 2 and 3, we introduce the relevant theory for this thesis.
Focusing on mathematical finance in chapter 2, and introducing machine
learning in chapter 3, I find it educationally beneficially to write chapter
3, since machine learning has become more and more relevant in practice.
I see that much work done by the FinStart Nordic team in Oslo relates
to the field of applied machine learning. This motivates me to give a
description of methods used in practice, which I also believe can be useful
for the reader of this thesis who may be from academia or industry.

Chapter 4 is the core of this thesis. We look at how models are
implemented, and explain the methodology based on empirical data from
the financial market. This chapter also includes the simulated results such
the rough volatility found in the data set, and the estimated parameters
connected to the model. We also study the Geometric Brownian motion
with rough volatility as price model.

Chapter 5 concludes with comments on the results obtained in this
thesis. In addition we briefly discuss further work that can be done in
connection with this project.
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Chapter 1

Portfolio Selection

The portfolio selection problem aims to optimise the best portfolio by al-
locating assets in a such way of achieving the best long term return. In
practice this means that how we can trade stocks in the market in best way
as possible. These problems were first investigated by [Markowitz, 1952],
where in his work, he considered a tradeoff between expected mean return
and the risk concerning the variance. This method of portfolio optimi-
sation applied with parameters estimated from data are known to give
exceptionally volatility portfolio weights. This is due to the expected
mean return being hard to estimate accurately. The important message
from his work is that assets could not be selected only based on the char-
acteristics that where unique to the assets. The investor has to consider
the behaviour of assets movement with other assets behaviours.

More advanced approaches have been introduced to asses the future
portfolio growth by considering a model by combining the mean-variance
optimisation framework with the capital asset allocation pricing model
[Black and Litterman, 1992]. In general, the portfolio distribution is often
heavy tailed due to uncertainty of the prices. Measuring these portfolio
distribution risk can be done by the common quantile measure, Value at
Risk (VaR).

In this chapter we introduce the notation used in this thesis. We will
also be stating the portfolio equation, and further introducing transaction
costs for asset allocation.

7



1.1 Mathematical Formalism

1.1.1 Financial Instrument

We assume that the portfolio consists of a finite amount of stock assets
from certain companies. The assets number denoted by m. The time
period is defined as the time when an asset is reallocated by either hold,
buy or sell. The time between each reallocation can be in the interval of
minutes, hourly, weekly or monthly. As for this project, we will be using
time periods of 10 and 30 min as well as daily return. This is reasonable
since the data we have in hand come from frequently trading. Further
denoting the price vector with respect to the time period and m assets
we have the price vector vt = (v

(1)
t , v

(2)
t , . . . , v

(m)
t ). Price features such

as high, low, closing and opening can be formalised by the subscription
vt

(hi),vt
(lo),vt

(cl),vt
(op) respectively. The closing price for period t − 1

should be the same as the opening price at t, so vt−1
(cl) = vt

(op). The
relative price change of the trading period [t, t+ 1) is given by elementary
division of the price vector

yt =
(

1, y
(1)
t , y

(2)
t , . . . , y

(m)
t

)
=

(
1,
v

(1)
t

v
(1)
t−1

,
v

(2)
t

v
(2)
t−1

, . . . ,
v

(m)
t

v
(m)
t−1

)
.

Denoting the portfolio vector of a market investor wt = (w
(1)
t , w

(2)
t , . . . , w

(m)
t )

where each w
(j)
t ∈ w corresponds to the asset i weight in time t. The

portfolio vector is a weighted value where the restriction are formulated
by that w(i)

t ≥ 0 and
∑m

i=1 w
(i)
t = 1 for all t = 1, 2, . . . . These restrictions

assume that our market model will not handle short selling of assets, and
the consumption of capital is non-existing.

1.1.2 Portfolio

The investor initial portfolio should be subscripted with a certain time
period. Beginning with the notation of the initial portfolio value at t = 0,
where P0 is the starting wealth. The relative price vector can be used to
calculate the change in total portfolio value in a period. We first assume

8



that the time scope is at t with portfolio P̃ i
t before reallocating, then letting

P i
t denote the portfolio after reallocating time t. First we will ignore the

transaction costs. Further letting nit be the number of shares in asset i
in period t. Due to relative price change in [t, t + 1) and introducing the
relative price change yit = vit/v

i
t−1

P̃ i
t = nit−1v

i
t =

vit
vit−1

nit−1v
i
t−1 = yitp

i
t−1,

is the relative price change due to change in time period. The allocation
weight

wt =
P i
t

Pt
,

is the fraction of investment made in asset i. Still assuming that the
transaction fee is zero, denoted by µt, the portfolio value after allocation
is

Pt = µtP̃t = P̃t.

Summing over all assets m, the portfolio value is then

Pt =
m∑
i=1

yitp
i
t−1 = Pt−1

m∑
i=1

yitw
i
t−1 = Pt−1〈yt,wt−1〉. (1.1.1)

The symbol 〈·, ·〉 stands for the inner product that in our case gives the
factor of investment in asset j grows during the period. The shares holder’s
capital progress can be tracked by the portfolio vectors P0, P1, · · · ∈ R
describing the portfolio capital without any transaction cost.

The equation (1.1.1) does not include the transaction cost of buying
and selling stocks in the real market. Consequently this becomes a problem
of finding the optimal portfolio from selection optimal weight vector w

for m assets in t = 1, 2, . . . steps. [Algoet et al., 1988] maximises the
conditional expected log return given the current market information up
to time t so that

w∗t = E [log(Pt)| Ft] = supE [log(Pt)|yt−1, . . . ,y0] , (1.1.2)

is the log optimal portfolio strategy.
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1.1.3 Transaction Cost

Implementing a transaction cost introduces some complications to the
previous portfolio equation (1.1.1), due to not having a closed form so-
lution. By assuming that the initial investment portfolio is P0 = 1 of a
unit, the cost of buying and selling is cp and cs respectively. Constraining
cs, cp ∈ [0, 1], We let Nt is the net wealth at time t with the gross wealth
at time t given by

Pt = Nt−1〈wt,yt〉

The fee under a reallocating of a investment strategy from wn to
wn+1. The capital of asset j moves from w

(j)
t y

(j)
t Nt−1 before reallocating,

to w(j)
t+1Nt after reallocating. If w

(j)
t y

(j)
t Nt−1 > w

(j)
t+1Nt, we would sell where

(1− cs)(w(j)
t x

(j)
t Nt−1 − w(j)

t+1Nt),

is the transaction cost. We can further generalise for m number of assets.
Summing over all fees for selling m assets is then

m∑
j=1

(
(1− cs)(w(j)

t x
(j)
t Nt−1 − w(j)

t+1Nt)
)+

where (x)+ = max(0, x), also know as the rectifier function(ReLu) in
machine learning. The total income for trading m assets is then

m∑
j=1

{
(w

(j)
t x

(j)
t Nt−1 − w(j)

t+1Nt)
+ − cs(w(j)

t x
(j)
t Nt−1 − w(j)

t+1Nt)
+
}
, (1.1.3)

with transaction fee cs. In general, cs is proportional to the investment
amount, usually by 2-3% depending on the investment instrument and
the bank of choice. We also assume that the investor’s portfolio is only
allocated in stocks, meaning when an asset is sold, we immediately buy
new assets. The cost of obtaining new assets is then cp, with the relation
to selling fee given as

m∑
j=1

{
(w

(j)
t x

(j)
t Nt−1 − w(j)

t+1Nt)
+ − cs(w(j)

t x
(j)
t Nt−1 − w(j)

t+1Nt)
+
}

=
m∑
j=1

{
(w

(j)
t+1Nt − w(j)

t x
(j)
t Nt−1)+ + cp(w

(j)
t+1Nt − w(j)

t x
(j)
t Nt−1)+

}
,
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where cost of buying new stocks is essentially an extra cp added to the unit,
so 1 + cp. An alternative way of seeing the is by noting that the portfolio
value shrinks (given no profit or loss is made) with a constant µt for a
given trading period t, with the relation to Pt = µtPt−1. The constant µ
is then the transaction remainder factor, which we will be determined by
an approximation given in [Jiang et al., 2017] where µ is approximated.
We let c denote the transaction cost where c = cp = cs.

µ = c

m∑
j=1

|w(j)
t − w

(j)
t+1| (1.1.4)

Describing the cost of moving the m assets a step ahead with cost c.
The reasoning can be found in [Jiang et al., 2017].
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Chapter 2

Theoretical Framework

In this chapter we present the necessary theoretical framework needed in
our thesis. This also includes some economic theory about the financial
market. Further we also recall some basic concepts from probability the-
ory. Then we pass in review some basic elements and results from stochas-
tic analysis, which we want to apply to the modelling of the dynamics of
stock prices. We study the Merton problem for portfolio optimisation. Fi-
nally we discuss rough volatility stochastic volatility models and concludes
this chapter with an introduction to the theory of risk measures.

13



2.1 Economic Theory

Doing finance requires understanding a broader aspect of the world of
economics. This section will introduce some economic theory related to
the capital market.

2.1.1 Efficient Market Hypothesis

The capital market in general can be described by the capital allocation of
investors. The stock market purpose is for investors to make investments
in ownership of firms under certain assumptions that the investments are
fully informed of the market information, which should be ”efficient”. The
article of [Malkiel and Fama, 1970] presents three ways of dividing market
information given certain conditions. The proposed theory is the Efficient
Market Hypothesis (EHM), where the three forms are namely the weak
form, semi-strong form and strong form. The EMH implies that the mar-
ket information only depends on the prices, and thus knowing more then
the prices, will not give a advantage. Future knowledge is also incorpo-
rated in future prices, meaning that an market participant gains knowledge
in the same period as the market in time time of stock price changes. The
three form are given as follows:

• Weak form: All prices on the capital market fully reflect the past
history prices, this includes all other information such as trading
volume or market news. This claim is based on the assumption that
stock prices on the market are unpredictable and independent.

• Semi-strong form: This extends the previous form, where market
movements changes at a fast pace as public information such as
annual firm report or firm announcements are known.

• Strong form: The strong form of EHM implies that market fluctu-
ations also reflect the fact that certain groups have access to infor-
mation that are not available. This can be information that a firm
holds private and are not publicly announced. This knowledge does

14



effect the firm leaders believes but not necessarily have effect on the
market participants and their decisions.

2.1.2 Fundamental Financial Time Series

Properties

Estimating properties of the financial market are by means an important
aspect of gaining valuable knowledge. The general framework has been
introduced by [Cont, 2001] for asset returns. This knowledge is common
for a range of financial instruments and market, which are classified into
11 stylised facts.

1. Absence of autocorrelations: (linear) autocorrelations of asset
return are often insignificant, except for very small intraday time
scale (' 20 minutes) for which microstructure effects come into play.

2. Heavy tails: the (unconditional) distribution of returns seems to
display a power-law or Pareto-like tail, with a tail index that is
finite, higher than two and less than five for most data sets studied.
In particular this excludes stable laws with infinite variance and the
normal distribution. However the precise form of the tail is difficult
to determine.

3. Gain/loss asymmetry: One observes large drawdowns in stock
prices and stock index values but not equally large upward move-
ments.

4. Aggregational Gaussianity: As one increases the time scale ∆t

over which returns are calculated, their distribution looks more and
more like a normal distribution. In particular, the shape of the
distribution is not the same at different time scales.

5. Intermittency: Returns displayed at any time scale has a high
degree of variability. This is quantified by the presence of irregular
bursts in time series of a wide variety of volatility estimators.

15



6. Volatility clustering: Different measure of volatility display a pos-
itive autocorrelation over several days, which quantifies the fact that
high-volatility events tend to cluster in time.

7. Conditional heavy tails: The residual time series exhibits heavy
tails even after correcting for volatility clustering via e.g. GARCH-
models, although they are less heavy than before clustering correc-
tion.

8. Slow decay of autocorrelation in absolute returns: The auto-
correlation of absolute returns decreases as the time lag is increased,
sometimes interpreted as a long-range dependence sign.

9. Leverage effect: Most measure of volatility and return of an asset
are negatively correlated.

10. Volume/volatility correlation: Trading volume is correlated with
all measures of volatility.

11. Asymmetry in time scales: Long time scales measure of volatility
predict short time scales volatility better then the contrary.

2.2 Point Estimation

The expected value, variance and correlation are common parameters of
common probability density function. These parameters are often esti-
mated due to being unknown in nature. Random variables ofX1, X2, . . . , Xn

with observation x1, x2, . . . , xn have density function f(x;θ) with the un-
known parameter θ. The approximate values of θ given the point estima-
tion is denoted θ̂, based on the data observation x1, x2, . . . , xn. We define
a point estimation as a function of observed measured values defined by

θ̂ = g(x1, x2, . . . , xn).

For fixed observations of the estimator vector Θ̂ is

Θ̂ = g(X1, X2, . . . , Xn).

16



2.2.1 Properties of Point Estimator

The distribution for a single random variable Θ̂ determine what values θ̂
can be, hence investigating whether the point estimator is biased, consis-
tent and efficient is of interest. The estimator is called unbiased if

E[Θ̂] = θ,

and biased if quality does not apply. The variance of the estimator can
denoted V ar[Θ̂]. Estimating the variance is done by using the sample
variance σ̂2

σ̂2 =
1

n− 1

n∑
i=1

(θ̂i − θ̄)2,

where θ̄ = 1
n

∑n
i=1 θ̂i is the average of the sample of estimations. In large

samples, the asymptotic properties of the estimator can be of interest.
The estimator Θ̂n for sample size n is said to be consistent if for every
ε > 0

Pr(|Θ̂n − θ| > ε)→ 0, when n→∞.

For two unbiased estimators Θ1 and Θ2, then Θ1 is said to be more
efficient than Θ2 if

V ar[Θ1] < V ar[Θ2].

2.2.2 Point Estimators

We introduce some different point estimators, that are beneficial in differ-
ent settings.

Least squares estimation
Consider a sample x1, x2, . . . , xn of the random variable X1, X2, . . . , Xn,
further assuming that the expected value for each Xi is E[Xi] = µi(θ)

for i = 1, 2, . . . , n and µi(θ) function that is known except for θ. Then
Xi = µi(θ) + εi, where εi are assumed to be i.i.d. with expected value 0.
The squared sum error is then defined as

Q(θ) =
n∑
i=1

(xi − µi(θ))2.
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The value of θ̂ that minimises Q(θ) is the estimate of θ, so

θ̂ = θ∗ = arg min
θ

Q(θ).

For all the µiθ are identical, we have that

∂Q

∂θ
= −2µ′(θ)

n∑
i=1

(xi − µ(θ)),

setting this equal to 0, give that µ(θ) = 1
n

∑n
i=1 xi = x̄, which can be

solved for θ and is the least square estimate.

Maximum likelihood estimation
The maximum likelihood estimation (MLE) defines the value for unknown
parameters that are most likely for a set of sample with a known prob-
ability function. Assuming that we have a joint probability function
pdf(x1, x2, . . . , xn|θ) and the set of θ that maximises the likelihood func-
tion is the MLE, θ∗ as

θ∗ = arg max
θ

L(θ).

The estimated vector, θ̂ = θ∗, in the case of i.i.d. sample the likeli-
hood function is then

L(θ) = pdf(x1, x2, . . . , xn|θ) =
n∏
i=1

pdf(xi|θ).

Further the log-likelihood is used for computational advantages as
the likelihood estimator θ∗ as the logarithm function is strictly increasing,
then we have that

logL(θ) = log

(
n∏
i=1

pdf(xi|θ)

)
=

n∑
i=1

log (pdf(xi|θ)) .

[Devore and Berk, 2007]
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2.3 Financial Return

Financial returns are important for market interpretation, the estimation
method of future asset prices are unknown, with many methods to choose
from. Uncertainty is often measured in terms of price changes given a
time horizon, such as relative price change, absolute price change and the
log price change. The absolute price change at time t can be defined as

∆St = St − St−1,

where St is the actual price at time t. Relative price changes, are often
preferred as this measure are compared between assets on different price
levels. The percentage return is then defined as

rperct =
St − St−1

St−1

=
St
St−1

− 1.

The log price change, or log-return are also common, and defined as

rlogt = log
St
St−1

. (2.3.1)

In a multi-period model, the log-return can be computed by the sum
of single-period returns across the time interval, T . This percentage re-
turns are additive across the assets, i, which yields the return of portfolio
asset calculated as weighted sum of the individual returns. Based on the
different application, the return measure should be chosen accordingly as
aggregation convenience differ between the two metrics.

2.3.1 Expected Return

A random variable X has the expected mean denoted E[X] = µ. For a
probability function f(x), the mean is

∫∞
−∞ xf(x)dx. The expected value

is more realistic appropriate due to the actual expected value is rarely
known. Expected values are often calculated by historical data where the
estimated arithmetic mean of historic returns is defined as

µ̂ =
1

T

T∑
i=1

ri. (2.3.2)
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The log-returns are suitable for such estimation due to its aggregating
property. As for the percentage returns, there will be an overestimate of
the result, unless the time period is limited. We define the geometric mean
for a percentage return given as

µ̂ =

(
T∏
i=1

(1 + ri)

)1/T

− 1,

is unbiased during a period.

2.4 Stochastic Finance

We begin this section by introducing by some basic probability concepts
used in finance, as e.g. the Brownian motion. We then move on to the
well known Black Scholes model for stock prices. We will also define some
other mathematical preliminaries used for our thesis.

The sample space of Ω contains events (i.e. subsets) to which we can
assign probabilities. The following definition for collections of subsets in
Ω, the events in a class F , known as the σ-algebra is given by

Definition 2.4.1 (σ-Algebra). The σ-algebra F on a given non-empty set
Ω is a family F of subsets of Ω with the following properties

1. ∅ ∈ F .

2. F ∈ F =⇒ FC ∈ F , where FC = Ω\F is the complement of F in
Ω.

3. A1, A2, · · · ∈ F =⇒ A :=
⋃∞
i=1Ai ∈ F .

Such a class F contains all the events that we are interested in. (Ω,F)

is the measurable space. The probability measure denoted by P on the
measurable space (Ω,F) is a function P : F 7→ [0, 1], such that

• P(∅) = 0,P(Ω) = 1,
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• if A1, A2, · · · ∈ F and {Ai}∞i=1 are disjoint, then

P

(
∞⋃
i=1

)
=
∞∑
i=1

P(Ai).

The triplet (Ω,F ,P) is then the probability space.

Definition 2.4.2 (F -Measurable). The subsets F ⊂ Ω, which belong to
F are called F-Measurable sets. We have the following interpretation in
connection with a probability measure P:

P(F ) = ” the probability that F occurs”.

Definition 2.4.3. Given a family U of subsets of Ω, there is a smallest
σ−algebra HU containing U

HU =
⋂
{H|H σ-algebra of Ω,U ⊂ H}.

known as the σ-algebra generated by U . The Borel σ-algebra on Ω is the
σ−algebra HU , where U is the collection of all open sets of a (topological)
space Ω.

Definition 2.4.4 (Random Variable). Let (Ω,F ,P) be a probability space.
Then a random variable is a real-valued function X defined on the sample
space Ω with the property that for every Borel subset B of R, the subset
of Ω given by

{X ∈ B} = {ω ∈ Ω : X(ω) ∈ B},

is in the σ-algebra F .
[Shreve, 2004]

The general stochastic process Xt is then defined as

Definition 2.4.5 (Stochastic Process). A stochastic process X is a col-
lection of random variables

(Xt, t ≥ 0) = (Xt(ω), t ≥ 0, ω ∈ Ω),

defined on the space Ω.
[Shreve, 2004]
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Definition 2.4.6 (Filtration). The collection (Ft, t ≥ 0) of σ−fields on
Ω is called a filtration if

Fs ⊂ Ft, for all 0 ≤ s ≤ t.

The filtration is the increment of information stream.

Definition 2.4.7 (Adaptedness). The stochastic process Xt is said to be
adapted to the filtration (Ft, t ≥ 0) if

σ(Xt) ⊂ Ft, for all t ≥ 0.

Definition 2.4.8 (Martingale). A stochastic process Xt is called a mar-
tingale with respect to the filtration Ft if it is adapted, E[|Xt|] < ∞, for
all t, and

E[Xt|Fs] = Xs

for every 0 ≤ s ≤ t ≤ holds.
[Benth, 2003]

The martingale definition can be thought as the best prediction of Xt

under the information known up to time s ≤ t.

2.5 Stochastic Processes

In this section we will take a look at different types of stochastic processes
and their properties.

2.5.1 Brownian Motion

An application of Brownian motion in finance is e.g. to description of
the fluctuation of asset prices. The Brownian motion, denoted Wt, is a
stochastic process with the following properties:

Definition 2.5.1 (Brownian Motion). Let (Ω,F ,P) be a probability space.
A stochastic processWt is a Brownian motion if for all 0 = t0 < t1 < · · · <
tn, the increments

W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tn)−W (tn − 1) (2.5.1)
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are independent and each of the increments is normally distributed with

E[W (ti+1)−W (ti))] = 0

Var[W (ti+1)−W (ti))] = ti+1 − ti,

and if ω ∈ Ω, Wt(ω) is a continuous function in t with W0 = 0.
[Shreve, 2004]

Because of the properties of the Brownian motion, the random values
W (ti), i = 1, 2, . . . are jointly normally distributed, whose joint distribu-
tion is determined by the covariance structure. EachW (ti) has mean zero,
and the covariance of W (s) and W (t) is

E[W (s)W (t)] = min(s, t).

The Brownian motion paths t 7→ Wt(ω), ω ∈ Ω are useful for describ-
ing the stock price movements. For each ω we will have a realisation of
a path, namely the sample paths (t 7→ Wt(ω)) of the Brownian motion.
These paths will have the following properties:

Proposition 2.5.1. Let W (t) be Brownian motion paths, then the follow-
ing properties holds:

1. for almost every ω ∈ Ω, the path W (t, ω) is continuous.

2. for almost every ω ∈ Ω, the path W (t, ω) is not differentiable.

[Mikosch, 1998]

2.5.2 Itô’s Lemma

Let us consider an adapted stochastic process Xt, which satisfies the
stochastic differential equation (SDE):

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs. (2.5.2)

Here ds-integral is the usual integral, and µ, σ : [0, 1] × R → R are Borel
measurable functions and Wt a one-dimensional Brownian motion. The
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integral with respect to the differential dWs is a so-called Itô integral of
the form ∫ t

0

XsdWs, (2.5.3)

where Xs is an Itô integrable stochastic process, see [Mikosch, 1998] for
its construction. The class of Itô integrable processes is defined as follows

Definition 2.5.2 (Itô Integrability). A stochastic process Xs is called Itô
integrable on the interval [0, t] if:

1. Xs is adapted for all s ∈ [0, t]

2.
∫ t

0
E[X2

s ]ds <∞

The Itô integral (2.5.3) is itself a stochastic process as it is parametrised
by time t, and the process is adapted over every time interval since it is
a limit of a sum of Brownian increments. The following properties of the
Itô integral are

Theorem 2.5.1 (Expectation and Variance). The expectation of the Itô
integral is

E
[∫ t

0

XsdBs

]
= 0,

and the variance is

Var
[∫ t

0

XsdBs

]
=

∫ t

0

E
[
X2
s

]
ds.

[Mikosch, 1998]

Definition 2.5.3 (Semi-martingale). A stochastic process X(t) is semi-
martingale if there exist two Itô integrable stochastic processes Y (t) and
Z(t) such that

X(t) = X(0) +

∫ t

0

YsdWs +

∫ t

0

Zsds.

Knowing the definition and properties of the Itô integral, we now can
state the Itô lemma in the following special case:

Brownian Motion Itô’s Lemma
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Theorem 2.5.2 (Itô’s formula for Brownian motion). Let f : R → R be
two times continuously differentiable function, then the formula holds

f(Wt) = f(Ws) +

∫ t

s

f ′(Wu)dWu +
1

2

∫ t

s

f ′′(Wu)du

[Benth, 2003]

2.5.3 Geometric Brownian Motion

We introduce a process which is derived from the Brownian motion, namely
the Geometric Brownian motion. This process is also known as the Black-
Scholes model for stock prices. In order to obtain this process a as solution
to a SDE, we need the following general Itô Lemma:

Theorem 2.5.3 (General Itô Lemma). Assume that f(t, x) is a func-
tion which is once continuously differentiable in t and twice continuously
differentiable in x, and let X(t) be a semi-martingale. Then

f(t,X(t)) =f(0, X(0)) +

∫ t

s

Y (s)
∂f(s,X(s))

∂x
dWs

+
∂f(s,X(s))

∂t
+ Z(s)

∂f(s,X(s))

∂x
+

1

2
Y 2(s)

∂f(s,X(s))

∂x2
ds.

Definition 2.5.4 (Geometric Brownian motion). Let St, t ∈ [0, T ], then
a stochastic process of the stock price is defined as

dSt = µStdt+ σStdWt

where µ is the drift rate of St and σ is the standard deviation of St. Wt

is a Brownian motion
[Black and Scholes, 1973]

Further applying Itô’s lemma to the dynamics of stock prices S(t),
where we let f(t, S(t)) = log(S(t)), we get that

df(t, S(t)) = d(log(S(t))) =
dS(t)

S(t)
− 1

2S(t)2
(dS(t)2)

= µdt+ σdWt −
σ2

2
dt,
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which gives that

log(S(t))− log(S(0)) =

(
µ− σ2

2

)
t+ σWt

S(t) = S(0)exp
((

µ− σ2

2

)
t+ σWt

)
, (2.5.4)

where we used that (dS(t)2) = σ2S(t)2(dWt)
2, dt2 = 0 and dtdWt =

dWtdt = 0, [Benth, 2003].

Application of GBM
The formula for proportional return of a stock can be defined as follows:

∆S(t)

S(t)
= µ∆t+ σε

√
∆t, (2.5.5)

where the first component show the expected rate of return µ that a stock
will earn over a short period of time ∆t. The second component follows a
random process where σ is the expected volatility of the stock and ε

√
∆t

represents the random volatility which magnifies as the period of time
increases. We assume that the stock prices are log-normally distributed
with mean of the first component and a standard deviation of the uncertain
component. This then leads to the following distribution of the log-price
increments

log
S(T )

S(0)
∼ N

(
(µ− σ2

2
)T, σε

√
T

)
, (2.5.6)

where S(0) is the present stock price and S(T ) is the price at time T. The
formula for simulation of the GBM stock price at any time interval t+∆t,
given its price at t is shown in the following equation:

S(t+ ∆t) = S(t)exp
[
(µ− σ2

2
)∆t+ σε

√
∆t

]
. (2.5.7)

The expected value E(S(t)) of the stock price at the future time t is given
by:

E(S(t)) = S(0)exp
((

µ+
σ2

2

)
t

)
. (2.5.8)
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2.5.4 Fractional Brownian Motion

The extension of the Brownian motion to the Fractional Brownian motion
process is the following

Definition 2.5.5 (Fractional Brownian Motion). Let H ∈ (0, 1). A Frac-
tional Brownian motion (fBm) with Hurst parameter H is a centred con-
tinuous Gaussian process BH = (BH

t )t≥0, with covariance function

E[BH
t B

H
s ] =

1

2
(t2H + s2H − |t− s|2H).

[Nourdin, 2012]

The distribution of the Fractional Brownian motion BH is uniquely
determined by the specific covariance structure. The existence can be
confirmed by checking that the covariance function is non-negative defi-
nite. We will first introduce some properties of the fBm process. When
the Hurst parameter H = 1/2, the fBm is just the Brownian motion
[Nourdin, 2012].

We formulate the self-similar property of the fBm process.

Definition 2.5.6 (Homogeneous Function). A homogeneous function f

of variable x and y is a real-valued function that satisfies

f(tx, ty) = tkf(x, y),

for some constant k and for all real numbers t. The constant k is the
degree of homogeneity.

We note that the covariance function of the fBm is homogeneous
of the order 2H. This means the the fBm is H self-similar, for α > 0,
{BH

αt, t ∈ R} has the same distribution as {αHBH
t , t ∈ R}. Further noting

that the fBm increments are stationary

E[|BH
t −BH

s |2] = |t− s|2H ,

where s, t ∈ R. When H ∈ (0, 1
2
) ∪ (1

2
, 1), the increments of the fBm

on disjoint intervals are not independent. The covariance between two
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increments (BH
t+h − BH

t ) and (BH
s+h − BH

s ), where s + h ≤ t, t − s = nh

with the following covariance

RH(n) = E[(BH
t+h −BH

t )(BH
s+h −BH

s )]

=
1

2
h2H((n+ 1)2H + (n− 1)2H − 2n2H)

∼ h2HH(2H − 1)n2H−2 → 0, as n→∞.

Then we have the following

• When H ∈ (0, 1
2
), RH(n) < 0 and

∑∞
n=1 |RH(n)| <∞,

• When H ∈ (1
2
, 0), RH(n) > 0 and

∑∞
n=1 |RH(n)| =∞.

Meaning in the both cases, the increments of the fBm process are not
independent.

Mandelbrot-Van Ness Representation
In terms of the Wiener process, denoted {Wt, t ∈ R}, with two indepen-
dent processes {Wt, t ≥ 0} and {W−t, t ≥ 0} on [0,∞]. The step function
can be defined as

h(t) =
n∑
k=1

ak1[sk,tk](t),

and the following integral

I(h) =

∫
R
h(t)dWt =

n∑
k=1

ak (Wtk −Wsk) .

The last integral can be extended to functions in L2(R), since the in-
tegral is isometric and linear. The following properties can be summarised
as follows

• Linearity: for some α, β ∈ R and function f, g ∈ R holds

I(αf + βg) = αI(f) + βI(g).

• Mean: E[I(f)] = 0

• Isometry: E[I(f)2] =
∫
R f(x)2dx, moreover, for f, g ∈ L2(R).
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• Distribution For f1, f2, . . . , fn ∈ R the random variables I(f1), I(f2), . . . I(fn)

are jointly Gaussian distributed.

We now assume that the fBm process can be defined as

BH
t = I(KH(t)) =

∫
R
KH(t, x)dWt(x),

where KH(t) is some deterministic kernel defined in L2(R). In order to
show that the integral is a fBm process we need to show that it has the
same covariance function as a fBm.

Theorem 2.5.4 (Mandelbrot Van-Ness Representation of fBm). Define

KH(t, u) = (t− u)κ+ − (−u)κ+,

where κ = H − 1/2. The Mandelbrot Van Ness representation of the fBm
process in terms of integral

BH
t =

(∫
R+

((1 + s)κ − sκ)2ds+
1

2H

)1/2 ∫
R
KH(t, u)dWu (2.5.9)

Proof. Since BH
0 = 0 and E[BH

t ] = 0, t ≥ 0. Then for r ≥ 0 we have

E[(BH
t )2] =

∫
R+

((1+s)κ−sκ)2ds+
1

2H

∫ 0

−∞
K2
H(t, u)du+

∫ t

0

(t−u)2κdu = t2H .

For t < 0

E[(BH
t )2] =

∫
R+

((1+s)κ−sκ)2ds+
1

2H

∫ 0

−∞
K2
H(t, u)du+

∫ 0

t

(−u)2κdu = (−t)2H .

We can see that for some h < 0 yields

BH
s+h −BH

s = C(1)(H)

∫ s

−∞
(KH(s+ h, u)−KH(s, u)) dWu

+ C(1)(H)

∫ s+h

s

KH(s+ h, u)dWu

= C(1)(H)

∫ 0

−∞
(KH(h, u)−KH(0, u)) dWu

+ C(1)(H)

∫ h

0

KH(h, u)dWu

= C(1)(H)

∫ h

−∞
KH(h, u)dWu = BH

h ,
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where

C(1)(H) =

(∫
R+

((1 + s)κ − sκ)2ds+
1

2H

)1/2

.

Further the following holds

E[(BH
s+h −BH

s )2] = E[(BH
h )2] = h2H .

Then the covariance function is

E[BH
t B

H
s ] =

1

2

(
E[(BH

t )2] + E[(BH
s )2]− E[(BH

s+h −BH
s+h)

2]
)

=
1

2
(t2H + s2H − |t− s|2H),

which is the covariance function for the Fractional Brownian motion.

2.5.5 Predicting Volatility

We forecast the log-volatility for the Fractional Brownian process. We
assume the information is generated by the fBm BH

t with filtration Ft. We
can define the fBm process from the Mandelbrot Van-Ness representation
as

BH
t =

(∫
R+

((1 + s)κ − sκ)2ds+
1

2H

)1/2 ∫
R
KH(t, u)dWu

= aH

∫
R
KH(t, u)dWu,

where

aH =

(∫
R+

((1 + s)κ − sκ)2ds+
1

2H

)1/2

.

The conditional expectation of the fBm is then

E[BH
t+∆|Ft] = E

[(
aH

∫ t

−∞
KH(t+ ∆, u)dWu + aH

∫ ∞
t

KH(t+ ∆, u)dWu

)∣∣∣∣ Ft] .
We note that the last term disappears as being independent of the

filtration Ft and the expectation is zero, i.e. E[
∫∞
t
KH(t+ ∆, u)dWu] = 0.

This leads to

E[BH
t+∆|Ft] = aH

∫ t

−∞
KH(t+ ∆, u)dWu.
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From [Gatheral et al., 2014] we have that the expected conditional
value of the fBm is

E[BH
t+∆|Ft] = C∆,H

∫ t

−∞

BH
s

(t− s+ ∆)(t− s)H+1/2
ds.

This gives us the following equation when we use the definition of the
fBm.

E[BH
t+∆|Ft] = C∆,H

∫
R

(∫ t

−∞
aH

KH(s, u)

(t− s+ ∆)(t− s)H+1/2
ds

)
dWu,

where the inner integral w.r.t. s is just KH(t+ ∆, u), and we showed that

E[BH
t+∆|Ft] = C∆,H

∫
R
KH(t+ ∆, u)dWu,

C∆,H =
cos(πH)H

H
∆H−1/2.

Further to see the prediction for log-volatility, we define σt = exp(θBH
t ).

This leads to the log-volatility being defined as

log(σ2
t+∆|Ft) = 2log + θBH

t .

Further we have

E
[
log(σ2

t )|Ft
]

= E
[
log(σ2

t+∆)
∣∣Ft]

= C + 2θE
[
BH
t+∆|Ft

]
= C + 2θ

cos(Hπ)

π
∆H+1/2

∫ t

−∞

Bs

(t− s+ ∆)(t− s)H+1/2
ds,

where C = 2 log(σ), and the last equation is the prediction formula for
log-variance [Gatheral et al., 2014]. The variance can be presented as
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Var
[
BH
t+∆|Ft

]
= E

[
(BH

t+∆ − E[WH
t+∆])2|Ft

]
= E

[(
c

∫ t+∆

0

(t− s+ ∆)H−1/2dWs

)2 ∣∣∣Ft]

= E
[(
c

∫ t+∆

0

(t− s+ ∆)H−1/2dWs

+ c

∫ t

0

(t− s+ ∆)H−1/2dWs

)2∣∣∣Ft]
= c2

∫ t+∆

t

(
(t− s+ ∆)H−1/2

)2
ds

+ c2

∫ t

0

(
(t− s+ ∆)H−1/2

)2
ds

≥ c2

∫ t+∆

t

(
(t− s+ ∆)H−1/2

)2
ds.

The last equation follows from the strong local non-determinism of
fBm, see [Berman, 1973] being a Gaussian distributed process. The vari-
ance prediction can be derived by noting that

Var
[
BH
t+∆|Ft

]
= c∆2H ,

where
c =

Γ(3/2 +H)

Γ(1/2 +H)Γ(2− 2H)
.

We obtain that the predicted estimate for variance is given by

σ̂2
t+∆ = exp

[
̂log(σt+∆) + 2θ2cBH

t

]
. (2.5.10)

[Gatheral et al., 2014]

2.5.6 Simulating Fractional Brownian Motion

We introduce a method of simulating the Fractional Brownian motion,
where the idea is from [Shevchenko, 2014]. The method uses the idea
that a Gaussian vector denoted γ with mean µ and covariance matrix C
as γ = µ + Sε, where SST = C and ε is a standard Gaussian vector.
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Finding S matrix can be done by taking the square root of the covariance
matrix C. We first define a grid of points in [0, T ] of points tnk = kT

N
for

k = 0, 1, . . . , N , where N is large. The task is then to simulate values of
the fBm and multiply with T

N

H . We proceed with simulating BH
t , then it

suffices to simulate the increments BH
1 , B

H
2 − BH

1 , . . . B
H
N − BH

N−1. where
each increment can be denoted by γi, i = 1, 2, . . . , N . Now the covariance
of γ is

RH(n) = E[γ1γn−1] =
1

2
((n+ 1)2H + (n− 1)2H − 2n2H), n ≥ 1.

Cov(γ) =



1 RH(1) RH(2) . . . RH(N − 2) RH(N − 1)

RH(1) 1 RH(1) . . . RH(N − 3) RH(N − 2)
...

...
... . . . ...

...
RH(N − 2) RH(N − 3) RH(N − 4) . . . 1 RH(1)

RH(N − 1) RH(N − 2) RH(N − 3) . . . RH(1) 1


.

We extend to a bigger model to solve SST = Cov(γ). Let M =

2(N − 1), c0 = 1 and

ci =

RH(i), i = 1, 2, . . . N − 1

RH(M − i), i = B,N + 1, . . . ,M − 1.

Also defining the circulant matrix

C =



c0 c1 c2 . . . cM−1 cM−1

cM−1 c0 c1 . . . cM−3 cM−2

...
...

... . . . ...
...

c2 c3 c4 . . . c0 c1

c1 c2 c3 . . . cM−1 c0


.

Also that the matrix Y = (yjk)
M−1
j,k=0, with

yjk =
1√
M

exp
(
−2πi

jk

M

)
.

We have that Y Y ∗ = Y ∗Y = IM , where Y ∗ is denoted the conjugate
transposition matrix of Y , and IM is the identity matrix. The C matrix
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can be given as C = Y Λ(C)Y since it is a circulant matrix. Λ is the
diagonal matrix of eigenvalues of C, and Y is unitary matrix. The matrix
C is also positive definite and symmetric, which means the eigenvalues
will be positive and real. The eigenvalues, which constitute the matrix Λ

is given as follows

λk =
M−1∑
i=0

rjexp
(
−2πi

jk

M

)
, fork = 0, 1, . . .M − 1,

where rj is the (j + 1)th element of the first row of C. This result in that
the eigenvalues

√
λ1,
√
λ2, . . . ,

√
λM−1 are positive and real. Note that

now we have S = Y Λ1/2Y ∗ satisfies SS∗ = SST = C. The sampling of
the fBm then comes to simulate the Y Λ1/2Q∗ε matrix.

1. Compute the eigenvalues λk, k = 0, 1 . . .M − 1. This can be done
by the Fast Fourier Transform (FFT) for a given sequence (αk)

j−1
k=0,

the algorithm gives

j−1∑
k=1

αkexp
(

2πi
nk

j

)
, n = 0, . . . , j − 1,

as the the power of j of 2, the method is faster in computation.

2. Take the real part of the inverse FFT method of the generated Gaus-
sian distributed ε1, . . . , εM to get 1√

M
Λ∗εT .

3. Multiply step 3. with
√
λ1,
√
λ2, . . . ,

√
λM−1.

4. Taking FFT of step.4 to get

(γ0, . . . , γM)T =
√
MY Λ1/2 1√

M
ΛεT = SεT .

5. Take the real part of γ0, γ1 . . . , and multiply with
(
T
N

)H , getting the
increments fo the fBm.

6. Take cumulative sums to obtain the values of fBm.
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Figure 2.1: Fractional Brownian motion paths.
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2.5.7 Geometric Brownian Motion with Rough

Volatility

Geometric Brownian Motion with Rough Volatility (GBMRV) is extended
from (2.5.4). We can now replace the volatility σ for the standard GBM
model with the rough volatility model mentioned in 2.7. For the GBMRV
model, the logarithmic returns can be expressed as

RH,∆t(t) = log
SH(t+ ∆t)

SH(t)
= (µ− σ2

RV

2
)∆t+ σRVWt. (2.5.11)

2.6 Optimal Portfolio

We can now introduce a measures U for a portfolio value W , which mea-
sured the utility of the amount W . The utility function satisfies the fol-
lowing conditions:

1. U(W ) is a increasing function in W .

2. U(W ) is a concave function in W .

3. U(W ) is twice differentiable.

Most common utility functions are the quadratic function, power function
and exponential function, where firstly the quadratic function can be given
as

U(ω) = ω − aω2, a > 0, ω <
1

2a
,

where a is the risk aversion parameter. The power utility with a risk
aversion parameter γ > 0 has the following form

U(ω) =

log(ω) for γ = 0

ωγ

γ
for γ ≤ 0, γ 6= 0.

The last function is the exponential utility with risk aversion parameter b

U(ω) = −ebω, b > 0.
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We consider a market which consists of a stock and a risk-free invest-
ment. The price process dynamics is modelled by the geometric Brownian
motion

dSt = µStdt+ σStdWt

and the risk-free dynamics, known as the bond denoted Bt defined as

dBt = rBtdt,

with interest rate r > 0. Further we denote the number of shares invested
in the risk-free asset and the stock asset by n0

t and n1
t respectively. Then

a self-financing portfolio can be defined as

Definition 2.6.1 (Self-Financing Portfolio). A portfolio strategy (n0
t , n

1
t )

is called self-financing if

dPt = n0
tdBt + n1

tdSt, Pt = n0
tBt + n1

t b
1
tSt

where Pt is the portfolio at time point t.

In words, the self-financing portfolio does not allow the investors to
withdraw any money gained for consumption or investing in additional
funds.

Portfolio Allocation
From the definition of the self-financing portfolio, we can show that the
portfolio optimisation can be defined in terms of finding the optimal
weights pair (ω0, ω1). We then have that

dPt
Pt

=
n0
tdBtBt

PtBt

+
n1
tdStSt
PtSt

=
n0
tBt

Pt

dBt

Bt

+
n1
tSt
Pt

dSt
St

= ω0dBt

Bt

+ ω1dSt
St

= ω0rdt+ ω1

(
(µ− σ2

2
)dt+ σdWt

)
= (ω0r + ω1µ− ω1σ

2

2
)dt+ σdWt
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where we divide by Pt. Assuming the portfolio is Pt = P0eZt , where
dZt = a(t)dt+ b(t)dWt, Z0 = 0 is a general stochastic process. Using the
Itô lemma, we get the following solution

dPt
Pt

=

(
a+

b2

2

)
+ bWt.

The terms a and b can then be found by comparing the equations

a = ω0r + ω1µ− σ2

2
ω1 − σ2

2
(ω1)2, b = ω1σ.

This gives that the stock dynamics with Z0 = 0 is

dZt =

(
ω0r + ω1µ− 1

2
ω1σ2 − 1

2
(ω1σ)2

)
dt+ ω1σdWt (2.6.1)

2.6.1 Portfolio Optimisation

The classical optimal asset allocation problem was first introduced by
[Merton, 1969]. The expected utility function Ut is log(Pt) = log(P0)+Zt.
This is then given by the following equation

E[UT ] = log(P0) +

∫ T

0

(
ω0r + ω1µ− 1

2
ω1σ2 − 1

2
(ω1σ)2

)
dt, (2.6.2)

where the integrand is a constant. Thus our goal is to find the optimal
set of (ω0, ω1) that

Maximise:
(
ω0r + ω1µ− 1

2
ω1σ2 − 1

2
(ω1σ)2

)
Subject to: ω0 + ω1 = 1, (ω0, ω1) ∈ [0, 1]

The solution of the weights are then given as follow

ω0 = 1−
µ− σ2

2
− r

σ2
, ω1 =

µ− σ2

2
− r

σ2
. (2.6.3)

2.7 Stochastic Volatility Model

The classical Merton dynamic portfolio choice model returns both the
return rate and the volatility of the risky asset which are assumed to

38



be constant. However in many applications, volatility may depend on
the time of return. This case, the constant volatility can’t explain the
dynamics of the model, since the volatility and the stock price can be
correlated. Consider the following stochastic volatility model

dSt = µStdt+ σ(Xt)StdWt,

whereWt is the Brownian motion, and now σ(Xt) is the stochastic volatil-
ity. The models of σ(Xt) can be on many forms. The most simple one,
where σ(Xt) is another Brownian motion W ∗

t that can be correlated with
the first Brownian motion Wt.

corr(Wt,W
∗
t ) = ρ, ρ ∈ [−1, 1],

where ρ is the correlation coefficient that can be depending on the market
we want to focus on. The ρ can capture effects that the constant volatility
are not able to model, such as heavy tails or skewness. The negative side
of this modelling comes often in forms where the closed form of solutions
can be derived, so simulations will be necessarily.

dXt = exp(θdBH
t ),

is the dynamics of the volatility. The calculations are the same as in the
case of the Geometric Brownian, this yields a portfolio dynamics given by

dPt
Pt

= (ω0r + ω1µ+ ω1σ
2(Xt)

2
)dt+ σ(Xt)dWt.

Assuming that the price is Pt = P0e
Zt , where Zt = a(t)dt+b(t)dWt, Z0 = 0,

we have that

dZt =

(
ω0r + ω1µ+

1

2
ω1σ2(Xt)−

1

2
(ω1σ(Xt))

2

)
dt+ ω1σ(Xt)dWt

2.7.1 Smoothness of Volatility

Assuming that we have observed the volatility σ0, σ∆, . . . , σk∆, . . . , k ∈
{0, [T/∆]}, where ∆ is grid mesh on [0, T ]. Let N = [T/∆], for some
q ≥ 0

m(q,∆) =
1

N

N∑
k=1

|log(σk∆)− log(σ(k−1)∆))|q. (2.7.1)
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For some sq > 0 and bq > 0, as ∆ tends to zero,

N qsqm(q,∆)→ bq,

where sq is the smoothness parameter which controls the regularity of the
trajectory of the volatility process. The volatility process is Hölder contin-
uous of order less than sq. The volatility process is not directly observable
in the real world setting. To estimate the smoothness, we need to approx-
imate the volatility by the estimate of the realised variance. We simulate
different log(m(q,∆)) as a function of log(∆) for different q values. The
scaling property between the simulated values are in expectation

E[|log(σ∆)− log(σ0)|q] = Cq∆
ξq , (2.7.2)

where ξq > 0 is the regression coefficient. The estimate of H is found
by regressing ξq against q, and is independent of q. The relationship is
approximately ξq ∼ Hq. The estimated volatility of out index of interest,
have shown a low value of H << 1/2, which means rough volatility. The
following plots show the relationship.

2.7.2 Rough Volatility Model

We suggest a simple model based on the empirical findings from the
previous subsection, where the increments of log-volatility has a scaling
property with constant smoothness parameter and their distribution being
close to the Gaussian.

log(σt+∆)− log(σt) = θ
(
BH
t+∆ −BH

t

)
, (2.7.3)

where BH is fbm with Hurst parameter H, and θ is a positive constant.
We may write this equation under the form

σt = σ0exp(θBH
t ),

where σ is another positive constant. This model however is not stationary,
being a property that is desirable both of mathematical tractability and
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also to ensure reasonableness of the model at very large times. We intro-
duce the a stationary model known as the Fractional Ornstein-Uhlenbeck
process (fOU) denoted Xt with the stochastic differential equation

dXt = νdBH
t − α(Xt −m)dt,

where ν and α are positive parameters, and m ∈ R. The explicit solution
is given as

Xt = ν

∫ t

−∞
e−α(t−s)dBH

t +m. (2.7.4)

This is a stochastic integral with respect to the fBM which is simply
a pathwise Young integral. We see that

σt = exp{Xt}, t ∈ [0, T ],

where Xt satisfies equation (2.7.4). H < 1/2, measures the smoothness of
the volatility. For α << 1/T , the log volatility behaves locally as a fBM
process.

Proposition 2.7.1. Let BH be a fBM and Xα be defined by equation
(2.7.4) for a given α > 0, then

E

[
sup
t∈[0,T ]

|Xα
t −Xα

0 − νBH
t |

]
→ 0, as α→ 0.

We note that the Proposition implies that the model if α << 1/T , we
can proceed as if the log-volatility process were a fBM. The exact scaling
property of the fBM is approximately reproduced by the fOU process when
α is small.

Corollary 2.7.0.1. Let q > 0, t > 0,∆ > 0, we have that

E
[
|Xα

t+∆ −Xα
t |q
]
→ νqKq∆

qH , as α→ 0.

2.8 Risk Measure

The key goal is to find the optimal portfolio when constraints are intro-
duced which maximises the expected return. The threshold is a measure
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of the distribution quantile given a certain confidence. These kinds of
problem were first introduced by [Markowitz, 1952]. His work in the fi-
nancial field concerns the fact that a market investor would maximise the
portfolio by using the expected value and the variance as criteria. He
shows that under some simple constraints, portfolio maximising can be
done by diversifying allocations of assets where the weights are derived by
the E-V rule to find a attainable set of E-V.

This method in practice is limited as computations are not efficient.
In the past years, new methods have been developed to solve the optimal
portfolio problem. Linear programming are common where the variance
is estimated by the absolute variance. Further there are methods that
ignore the E-V rule and use the risk as a measure itself. This means that
the model can assess the worst case scenario using a distribution quantile
of the portfolio returns. For an overview, see [Duffie and Pan, 1997]. We
will introduce risk measure in brief and further present the conditional
risk measure based on the same idea.

Assessing portfolio risk is done through the Value at Risk (VaR) or
Conditional Value at Risk (CVaR), which is closely related to VaR. We
will introduce both risk measures, but CVaR measure is a coherent risk
measure.

[Artzner et al., 1999] denotes ρ(X) as the measure of risk for a given
position X, defined formally to be

Definition 2.8.1. A risk measure is a mapping X : t→ R, where X is a
set of real-values functions.

The set X is the risk set of real-valued functions X ∈ X . This can
be understood as the risk over the final net stock or portfolio value. As
this value is higher, the portfolio holder are prone to a riskier position.
Being in a comfortable risk position in the sense of trading stock depends
on the agents risk preference and acceptability. The preference might be
depending on the fact that a higher risk position might lead to a higher net
return. The acceptability is related to the some set A of final net portfolio
value accepted by the agents. The set A depends on the individual risk
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preference, meaning the A and ρ(X) is connected that can be defined such

Definition 2.8.2. Let the return of the portfolio be denoted ST where T
denotes the final time period of trading. Then the risk measure with an
associated acceptance set A is a mapping from X to R defined as

ρA,ST = inf{m|m · ST +X ∈ A}, (2.8.1)

where m is the the minimum extra investment capital needed to enter a
tolerable position of the portfolio with respect to the final outcome portfolio
value.

Definition 2.8.3. The acceptance set with respect to a risk measure is
the set denoted Aρ defined as

Aρ = {X ∈ X |ρ(X) ≤ 0}. (2.8.2)

This means that if f(X, Y ) real valued functions of the loss of a
decision made in the space X ∈ X and Y ∈ Y be a random vector.
Further P (Y ) is the probability density function of Y , where we have that

Ψ(X, g0) =

∫
f(X,Y )≤g0

P (Y )dY, (2.8.3)

is the probability of loss with g0 is the threshold. The VaR is then denoted

φ(X) = min{g0 ∈ R : Ψ(X, g0) ≥ β}, (2.8.4)

for a probability β ∈ [0, 1]. The Value at Risk is the value where the
probability is greater or equal to the probability level, usually β is 99% or
95%

2.8.1 Coherent Risk Measure

We introduce the axioms that governs a coherent risk measure, which are
to satisfy these four axioms below and further relate them to a portfolio
perspective.
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1. Translation Invariance: For all X ∈ X and for all m ∈ R, we
have

P (X +m) = P (X)−m

2. Sub-additivity: For X1, X2 ∈ X , we have

P (X1 +X2) ≤ P (X1) + P (X2)

3. Positive Homogenity: For all X ∈ X and for all τ > 0, we have

P (τ ·X) = τ · P (X)

4. Monotonicity: For all X1, X2 ∈ X with X1 ≤ X2, we have

P (X1) ≥ P (X2)

Translation invariance covers the fact that by adding some risk free
amount of cash investments of size m to the portfolio, does not increase or
decrease any further risk to the portfolio risk at the current position. Sub-
additivity allows diversification of portfolios, meaning that the composed
portfolio risk will contain strictly less risk then individual assets. This
also requires that the assets are somewhat uncorrelated. This property
captures the fact that adding a new assets of some sort, not correlated
with value 1 from previous asset in the portfolio, will increase the risk
by the risk of the single asset. The third axiom explains that a certain
portfolio risk is increased with the factor τ , then the portfolio risk would
increase with at least the amount of τ . The last axiom of monotonicity
covers the fact that a portfolio of X2 that does perform better than a
portfolio X1, then the risk of holding X1 compared to holding X2 will be
greater for each state of portfolio holding.

2.8.2 Law Invariance

The risk measuring methods assess its risk by the loss distribution of
the portfolio from the empirical data we have. The definition for a risk
measure that is law invariant is the following:
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Definition 2.8.4. Let X1 and X2 be random variables with a distribution
function FX1 and FX2, then ρ(·) is a law invariant risk measure if

FX1 = FX2 → ρ(X1) = ρ(X2)

.

Notice that if the distribution of the random variables are identical,
the risk should also be identical. This implies measuring a non-identically
loss distributions, where the risk measure can’t be deducted through the
distribution itself.

The VaR measure does not satisfy the sub-additivity property which
when aggregating the risk for a portfolio, it will lead to a risk reduction
as shown here.

V aRβ(L1 + · · ·+ Ld) > V aRβ(L1) + · · ·+ V aRβ(Ld)

2.9 Deep Learning Approximation for

Stochastic Control Problems

The common way to solve stochastic control problems is through dynamic
programming. The problem that the dynamic programming encounters,
are due to the data being in high-dimensions or known as the ”curse of
dimensionality”. In the recent years, machine learning have shown good
results to solving such problems. Dealing with high-dimension problems
in the sense of stochastic control problems, have be done by the approx-
imating dynamic programming [Han et al., 2016]. The method replaces
the true value function with an approximated function, then advancing
forward in time from a sample path with backward steps to update the
value function. We mention briefly the theory under stochastic control
problems and stock prediction using binary indicators. The following two
problems was considered during the project, but did not make any mean-
ing full progress to be included more then a short introduction.
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2.9.1 Stochastic Optimal Control Problem

We now define the stochastic optimal control problem where we first intro-
duce the key elements required. The general setup consist of the stochastic
differential equation with initial condition given as follows:dx(t) = f(t, s(t), u(t))dt+ b(t, s(t), u(t))dWt,

s(0) = s0,

where f(t, s, u) is the drift, and b(t, s, u) is the diffusion. The state variable
is denoted s(t) ∈ Rn and the control variable is u(t) ∈ U ⊂ Rm. Wt is the
Wiener process. We define the optimal control variable u to be

u(t) = u(t, s(t)).

The control problem aims to minimise the loss or a performance
J(t, s, u) given

J(x, y;u) = Ex,y
[∫ T

x

l(τ, s(τ), u(τ))dτ + ψ(s(T ))

]
.

The value function is defined as:

V (x, y) = inf
u∈U

Exy
[∫ T

x

L(τ, s(τ), u(τ))dτ + ψ(s(T )))

]
= J(x, y;u∗),

where the value function is the minimum cost reachable given some initial
condition s(x) = y.

2.9.2 Problem 1

We consider a stochastic control problem with finite time horizon T on the
probability space (Ω,F ,P) with the increasing filtration F0 ⊂ F1 ⊂ · · · ⊂
FT = F . We assume that any variable indexed by t is FT -measurable.
We further denote the state variable s(t) ∈ St ⊂ Rm, where St is the set
of states. The control variable is u(t) ∈ Rn. We assume that the evolution
of the system is described by the stochastic model

s(t− 1) = s(t) + bt(s(t), u(t)) + ξt+1,
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here bt is the deterministic drift term given by the model. ξt+1 ∈ Rn is
a Ft+1-measurable random variable that contains all the noisy information
arriving in the period [t, t+ 1). This can be viewed as as a discretised ver-
sion of a stochastic differential equations. The problem can be formulated
as

min E(CT |s(0)) = min E

(
T−1∑
t=0

ct(s(t), u(s(t))) + cT (s(T ))|s(0)

)
,

where ct(st, at) is the intermediate cost, cT (sT ) is the final cost and CT is
the total cost. we define the cumulative cost

Ct =
t∑

τ=0

cτ (sτ , aτ ), t < T.

In applications in finance, where we are concerned with minimising
the expected cost of trading blocks of stocks over a fixed time horizon.
Let at denote the number of shares of each stock brought in period t, and
the respective price be pt. Then the investor’s objective is then to

min E
T−1∑
t=0

ptat, s.t. all n stocks within time T.

We let the price be constructed of two components

pt = p̃t + δt,

where p̃t is the no-impact price given by the Geometric Brownian motion,
and δt is the impact price (the price of transactions etc.).

2.9.3 Problem 2

We want to predict the prices either going up or down. Let the predic-
tion denote by Zt, what is our optimal allocation of assets based on the
indicator Z. We then seek to maximise

E[U(Pt+1)|Zt = z] =

∫
U(x)pPt+1|Zt=z(x)dx,
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where pPt+1|Zt=z is the conditional probability distribution of Pt+1 and
U is some utility function. We let Yt := log(yt).

E[U(Pt+1)|Zt = z] = E[U(Ptµt〈yt+1, ωt〉)|Zt = z]

= E[U(Ptµt〈exp(Yt+1), ωt〉)|Zt = z]

= E[U(Ptµt〈ey, ωt〉)|Zt = z]

=

∫
U(Ptµt〈ey, ωt〉)dPYt+1 |Zt=z(y)dy

Further we consider a simple model with one risk asset, and cash. The
log-return can then be assumed to have a normally distributed random
variable, that is,

Yt+1|Zt = z ∼ N(µz, σz)

for some µz, σz. It follows that

E[U(Pt+1|Zt = z)] =

∫
U(Ptut(e

rω0
t + eyω1

t ))ϕz(y)dy,

where ϕz(y) is the density of N(µz, σz). We optimise with respect to the
weights ω0

t = 1− λ and ω1
t = λ. First consider the classical case u = log.

That is

E[log(Pt+1)|Zt = z] = log(Pt) + log(µt)

+

∫
log(er(1− λ) + eyλ)ϕz(y)dy.

Denoting the last term

Ψ(λ) =

∫
log(er(1− λ) + eyλ)ϕz(y)dy.

Optimising the last term with respect to λ, differentiating we obtain

Ψ′(λ) =

∫
κ(λ, y)ϕz(y)dy, κ(λ, y) =

ey−r − 1

1 + λ(ey−r − 1)
.

The indicator Z does not require to be discrete, we assume that the esti-
mated conditional expectation have a mean distribution with µz and σz.
Then the continuous indicator is a function which can be optimised as
z 7→ (µz, σz).
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Chapter 3

Machine Learning

In this chapter we discuss the most common methods in machine learning
used for solving certain problem. We begin by introducing some history of
the machine learning field. We present the general theory neural networks,
where we describe more in detail how neurons work and the methods for
learning using neural network. Further we briefly mention some machine
learning methods such as convolutional network and recurrent neural net-
work. We end this chapter by introducing the reinforcement learning
method, where the goal is to learn from some experience.
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3.1 Neural Network

The objective of this section is to give the readers an understanding of the
deep learning algorithms used in practice. Mainly focusing on the neural
networks based on the idea of human neural system, but also giving a
more general view of that machine learning as statistical problem solver.

3.1.1 Machine Learning

The general framework of machine learning definition is by means of con-
structing algorithms that solve problems and possibly make predictions.
This process is done by learning some task where key characteristics of
the problem to be solved, are to be trained on. The output result should
validated, and then to be tested on some test sample data to enable to
say something about the result. A famous quotation goes as follows: “A
computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks
in T , as measured by P , improves with experience E.” [Mitchell, 1997]

General learning Task
The task of the machine learning can be of many variations, but it is
mainly categorised in two groups, this is directly connect to what the de-
sired output of the model is. The regression model is such that the learning
task is to find a relationship between a set of independent variables. The
dependent variables then changes based on what happens when the in-
dependent input variable changes, or a new input is given. This model
is widely used w.r.t. prediction, forecasting and function approximation.
The regression method that is a method can be used to predict a prob-
lem with outcome of either “yes“ or “no“, where output are of classes.
This problem is from supervised learning, whereas an unsupervised learn-
ing method classifies observations without determining its output classes.
More material can be found in [Goodfellow et al., 2016] or [Bishop, 2006].
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3.1.2 Introducing Neural Network

The field of neural network is based on the idea of how the human brain
works on a biological level. To understand better what neural nets are,
we will give a brief overview of how neural networks is inspired by the
biological brain structure of neurons. We will be mainly focusing on the
process of receiving an input signal from nerve or other sources, then
reaching a neuron. [Bishop, 2006] mentions some application where the
neural network models are more relevant where problems such as: pattern
recognition, function approximation and control problems. These prob-
lems are of mapping the input to a specified output by adjusting network
weights, hence the leaning methodology is a supervised learning task.

Figure 3.1: Illustration of a neuron with the body and axons

The structure of a neuron which we are mainly interested in is the
cell body and it’s branches, the dendrites and axons. The dendrites are
the input surface of the neuron, signals are transferred through the cell
body to the axon terminals. The terminal axons that interacts with other
neurons are called a synapse. The end terminal axons connects to a vast
amount of neurons, which further connects to more neurons, making it
a neural system. Which neurons connected to which neurons or synapse
decides what the end output will be. The neuron has a certain threshold
for a synapse to be activated, this sequentially triggers the next neuron
to be activated. The threshold is either a on or off alternative, defined
by the difference of the membrane of the cell neuron electrical charge or
chemical structure. The difference of the inside part of membrane and the
outside part of membrane i.e. the adjacent cells.
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In [McCulloch and Pitts, 1943] gave a simple mathematical defined
computational model of neurons with a binary classification. The inputs
which where either excitatory or inhibitory, the on or off principle. Their
model did have limitations where it was not able to do any learning. It
was not until 1958 the paper [Rosenblatt, 1958] introduced a solution using
perceptrons.

The perceptron model inherited some of it’s key ideas of how signal
transmissions of neurons happens. Using the on or off property of neurons,
they were able to formulate weights to model this. The synapse connected
to output and input of neurons has some weights wi on the i’th input
attached to it. For all inputs, the weights are multiplied and summed, so
if we have m inputs, we then get a =

∑m
i=1 xiwi + b. The b term is bias,

often uses as a offset value set to 1. The returning y∗ value is compared
with the threshold θ to decide the output of y∗.

y∗ =

−1 if a ≤ θ

1 if a > θ

The output here used in classification of whether the model gives val-
ues of +1 or −1. Further the output value is compared with the ”correct”
value y. The learning procedure requires that the threshold and weights
are changed according to the classification. The learning rule employed
here can be written formally as

wi(t+ 1) = wi(t) + ∆wi(t)

θ(t+ 1) = θ(t) + ∆θ(t),

where t is some time point under training. If y∗ 6= y then the weights will
be changed in the direction of ∆wi = yxi, and we start with the summation
again with the new weights until the correct classification occurs. The
threshold is modified after the following rule

∆θ =

0 classification is correct

y∗ otherwise

The learning process of a human, for example with a young child involves
a certain input of a object such as a dog or a cat. Assuming that the child
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as never seen a dog before, the child would learn that the object in front
is a dog, by his parents. The parents then act as a teacher which then
correct the child if he/she would assume that the dog is a cat. As the child
is more exposed to dogs and cats through multiple encounters in daily life,
the child will learn the features of a dog or a cat. In the sense of neural
nets, this can be simulated by adjusting the weights through training the
model and to be able to classify different objects. [Deng et al., 2009]

In the early stages when the perceptron model was introduced, the
model it self didn’t get much attention since [Minsky and Papert, 2017]
showed in in 1960 that the model had limitations of not being able to
solve nonlinear function. The discovery lead to a natural breaking point
of interest in neural networks of almost three generations. The work of
[Rumelhart et al., 1986] introduced the back-propagating, a technique to
back trace errors made in a multiplayer perceptron model. The method
will be described further in this thesis. Their paper brought a new spark
in the interest of neural networks.

3.1.3 Network Architectures

Setting up a network of neurons and layers is essential to make a usable
model for problem solving. The network structure in defined as the net-
work architecture, where we denote the number of layers L, which can be
categorised to three different types of layers. The first is the input layer,
hidden layers and output layer. Define the within layer l, the design must
decide how many nodes, Ml each layer should be made of. The general
rule is to not chose a complex model, when a simple model are sufficient
for the problem.

Input Layer
The number of input layers, denoted the vector x ∈ RM1×1, is the general
case for simple input vector. This corresponds to one neuron, where for
simple problems, the number of input nodes is defined. As for simple prob-
lem, the determination of number of inputs are fairly easy compared to
network solving financial time series. The specifications and the dependen-
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cies of the output result are often unknown which leads to a more guessing
and trying exercise. The choices are plenty, spending time on the right
set of inputs are often needed to do well in the model [Walczak, 2001]. In
general we must consider the fact that adding a large amount of input data
does not necessarily mean good. The problem arises when the data are to
complex, which requires more computational power, also adding tendency
to overfit the data. Further following [Walczak, 2001], the choice of inputs
sets can be based on the beliefs on the input being sufficient to explain the
data structure. This involved consulting the domain of input where noisy
and not relevant data is being removed. This can be done by correlation
and dependence investigation. A simple model or complex model should
be ideally uncorrelated with each other. A set of highly correlated data
leads to overlapping information, which can make the network predictions
bad.

Hidden layers
Further the number of hidden layers must be specified. The number of
hidden layers allows detection of data features, where nonlinear mapping
between input and output are performed. [Hagan et al., 1996] mentions
that a large function with a large number of points requires also requires
a large number of neurons in the hidden layers. This meets the problem
of having a smaller model compared to a larger model where increased
learning time are required.

Output Layer
Number of output layer are connected to the problem to be solved, and
are relatively easy to determine. The output number are often decided if
the problem is of classification or a direct consequence of the number of
classes or labels the selected input should be divided into. For regression
problems, the number of outputs can be more determined by the prob-
lem which one want to solve. The model architecture is crucial for all
modelling problems. The number of training examples limits the size that
should be used, as bigger models adds more parameters to be estimated,
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and thus making it harder. Some suggesting for [Zhang et al., 1998] that
each parameter of interest should at least have 10 training data sample,
meaning that more weights too be estimated, the bigger the network it
requires.

3.1.4 Data Preprocessing

Preprocessing the input and output data are often necessarily for most real
world application where often data comes in a raw format. The structure
of such raw data are often unstructured, which is quite useless. Rework-
ing data are often done by removing noise, highlighting relationships and
flattening distributions and detect the trends to help the network. As we
mentioned in the first chapter, we did remove days which had no occurred
trading. Determining the right set of inputs which data can be used in
preprocessing techniques such as the PCA dimension reduction method
[Smith, 2002].

3.2 Optimisation of Neural Network

Parameters

The optimisation of the neural network parameter consists of two parts,
which are the optimisation of the network weights given some a set of hy-
perparameters. This is known as the training process of the network. The
weights vector w∗, that minimises the error function for a given training
sample. The second part is optimisation of the hyperparameters, which
determines the network structure for best modelling result.

3.2.1 Training, Validation and Testing

The training process of a neural network model requires that we process
the data samples in batches for first the training, validation and a testing
process. The training sample are used to optimise the network weights.
The validation data are used to adjust the network weights for any over-
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fitting. This means by verifying that any increase in accuracy over the
training data set actually yields an increase in accuracy over a data set
that has not been seen by the model before. Should the training accuracy
data set increase, but the accuracy over the validation set stay on the
same level or decreases, then there are overfitting in the network. The
final test set is made such that there are no overlapping data set where
the network can be evaluated on.

3.3 Feedforward Network

Modern models neural nets such as a feedforward network are based on
the perceptron model. How the model is build is described using its archi-
tecture features such as the depth, width and the number of hidden units
involved. Deepness of the model corresponds to the network of functions
that are connected in chain. Let classifier be denoted y = f(x) with input
x and activation function f(·). The function can be composed with a num-
ber of functions where each function acts as a new layer to give the model
depth. This can be written as f(xt) = f (n)(f (n−1)(· · · f (2)(f (1)(xt))))

where n is the depth of the model. The first layer, here z1 = f (1)(xt)

takes directly on the input vector of xt, such as the market vector. Layer
zn = f (n) is the output layer of the model, when the training is finished,
the neural network hands over the predicted value of the true value of
label y, in this case denoted y∗. Layers between the first and the n’th
layer are the hidden layers or units. These layers are vector valued with a
width, which also determines the network width.
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Figure 3.2: Perceptron network.

Further a simplified model will be used to illustrate the feedfor-
ward network, then generalised to a deep feedforward model in done
by adding more hidden layers. We have that, when a neural input is
xt = {x(1)

t , . . . , x
(m)
t } the first and second layer from the model above is

z1
j = f 1

(
m∑
k=1

w
(1)
jk xk + bj

)

z2
i = f 2

(
n∑
j=1

w
(2)
ij z

1
j

)
,

where m and n are the numbers of input units and number of hidden units
respectively. We denote the number of layer l, our model have two layers.
The weights w(l)

ij are subscribed with the layer l, and going from a unit j
to unit i. For a single layer output we have that

zl = f(Wl · zl−1 + bl),

where the Wl is the weight matrix with size n ×m. By using the mean
squared error as a measure of loss we have

J (x) =
1

m

m∑
i=1

[y(xi)− z(xi)]
2 ,
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where z(xi) is the output of the prediction from the last layer. This is the
more commonly used mean squared error function, that has certain pros
and cons depending on the training data set available.

3.3.1 Loss Function and Optimisation

The loss function topic regards the choosing of a suitable function that can
be optimised under network training. In general the weights are updated
iteratively as we described in the introducing section of neural networks.
The loss function measures the distance from predicted value of y∗ from
the true value y. We introduce maximum likelihood to train networks.
This means that the cost function is the negative log-likelihood function.
The cost or loss function J (θ) is then given as in [Goodfellow et al., 2016].

Through iterative computation, the learning are done by maximising
or minimising the loss function with the input vector x. We assume first
that the data has some probability distribution denoted p(y|x;θ).

J (θ) = −Ex,y [L(x, y,θ)] =
1

m

m∑
j=1

L(x(j), y(j),θ)

= − 1

m

m∑
j=1

log p(y(i)|x;θ),

where m is the number of training set. Using the gradient method based
on finding critical points with respect to θ we have that the gradient of
the loss function is

∇θJ (θ) =
1

m

m∑
j=1

∇θL(x(j), y(j),θ),

where ∇θ is the gradient with respect to θ.
We will use aa extension of the gradient decent method named stochas-

tic gradient decent where we will be taking smaller batches of the sample
size m, denoted ms. The learning then becomes

θ = θ − εg,
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where ε is the learning rate and g is the new loss function with a smaller
batch sample formalised as

g =
1

ms

ms∑
j=1

∇θL(x(j), y(j),θ).

The learning rate ε ∈ [0, 1] controls the momentum, indicating the
effect of the previous update should be included in the current update of
θ. Batch updates have advantages when the sampling space is large and
where taking the gradient of the m inputs can be time consuming.

Often a one does not need to take the distribution of p(y|x;θ), but
instead take the some statistic of y conditioned on x.

The log-likelihood loss function are usually used along with the soft-
max function as it outputs are in the form of a probability distribution.
The softmax transforms logits values into the probability space (0, 1). The
cross-entropy then finds the error of the prediction output after transform-
ing the logits. We have that the softmax function is given as follows:

σ(zj) =
ezj∑m
k=1 e

zk
,

normalised over the K number of inputs. Together with the cross-entropy,
we we have a loss function

L = −
∑
j

yj logσ(zj),

further averaging over number of classes we get

J = − 1

m

m∑
j=1

(yj · logσ(zj)).

As the cross-entropy loss function as been revealed, we will need to
consider to derive the gradients of the loss function. This is done in the
next section with backpropagating.

3.3.2 Backpropagation

In order to derive the weights through back propagating, we need to be
able to calculate the gradients of the loss function with softmax cross-
entropy. The key is to use chain-derivatives as our main tool. We first
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begin with the softmax function defined in previous section, then move on
to the loss function. We have that

∂σ(zj)

∂zj
= σ(zj)(1− σ(zj)) if j = k

∂σ(zj)

∂zk
= −σ(zj)σ(zk) if j 6= k

With the cross-entropy loss we have

∂J

∂zj
= σ(zj)− yj

The calculation can be looked up in the appendix. The backprop-
agation method was first introduced in 1986 by [Rumelhart et al., 1986],
making it possible for neural networks to solve problems related to learn-
ing task and classification problems that was previously was considered
complicated. The training of deep learning models was also meet with
obstacles such as the vanishing gradient problem. For more detailed ex-
planation see [Hochreiter, 1998].

3.3.3 Activation Function

The choice of activation function used in the hidden units can be a mysteri-
ous and often found by trying different functions. We already mentioned
one type of activation function, the softmax, and their usage. Another
common activation functions are the rectified linear function (ReLU) de-
fined as

f(z) = max{0, z}.

This function is easy to optimise due to being closely related to linear
units. The derivates remains large over the active states since the output
of this particular function is zero across half its domain. In general the
ReLU function is easy to optimise when the models is related to a linear
model [Goodfellow et al., 2016]. The ReLU function is not differentiable
at x = 0, which might be an issue for the gradient learning. This might
not seem to work here in this case, but this method does work in practise
due to the fact that derivates are close to zero, still is defined.
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The sigmoid function is

σ(z) =
1

1 + exp(−z)
.

This function suffers from saturation of high values if the input x have
high values, and the opposite for high negative values of x. Sigmoid works
best as the values of input is close to zero. The sigmoid function works
best when used as the output function mapping values to a probability
space.

Since the introduction of the ReLU function, the use sigmoid func-
tion has been left behind in the feedforward network. Another activation
function that we will be including is the exponential linear units (ELU).
This activation function is given as:

σ(z, α) =

α(ex − 1) for x ≤ 0

x for x > 0

3.3.4 Regularisation Methods

Training large neural networks have been known to be overfitting. We
will give short introduction to the L2 norm regularisation and its ideas.
Further bringing in dropout methods that covers high level data that we
will be using.

The L2 regularisation aims to reduce unimportant weights to zero by
adding a scaling term with the loss function that does the weight decaying
operation. The loss function is then:

ˆJ (θ) = J (θ) + λreg

∑
w

(w
(j)
t )2

where λreg is the strength controller of the regularisation.
The common regularisation method now is the dropout method

[Hinton et al., 2012] assess a upper bound on the L2 norm regularisation
for each hidden units in the network. This method work alongs the mini
batch sampling, where randomly chosen units are being removed under
the training process with some given probability. As the weights under
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the hidden layers overcome the upper bound threshold, the weights are
then renormalised.

The dropout methods is used in a way of reducing the errors in the
training data set. The training is dividend into mini batches. Training
on each of these mini batches implies running a separate network on each
batch, which then are averaged. For a large sample size training data,
this could take time to compute when not using dropout, but the method
allows for an optimised method without adding any covariates and excess
time during training. In practice, the dropout used in conjunction with
the L2 norm regularisation, in which these are both independent ways of
reducing the training risk error.

3.4 Recurrent Neural Network

Stock market trends are often somewhat correlated to the previous infor-
mation of stock movements. The recurrent network are a network archi-
tecture that takes into the account for such series in the financial market.
This means also that an RNN also can do general sequential datas, such as
audio, natural language processing or sentiment analysis. We will cover
some fundamental ideas behind the RNN framework and discuss some
properties with our problem task in mind. Then we will see that the ba-
sic RNN also struggles with the vanishing or exploding gradient problem,
which are solved by using a Long Short Term Memory network.

The simples RNN takes the one neuron as the input, producing an
output, where the networks sends the input signal backwards to the first or
input layer. Denoting the input xt at time step t, the network also takins
the output from the previous iteration step, denoted yt−1. The parameters
are then then xt and yt−1, which are both vectors. Denoting the weights
wx and wy the output of a single recurrent neuron can be computed as
some function φ(·) where the output is

yt = φ (xt · wx + yt−1 · wy + b) .

This seems similar to the feed forward network from our introduction,
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which is correct. Further a import concept is the memory cell and forget
cell. Such cells contains the data from previously states, and the network
are stacked with such layers of cells. The cells are also some sense hidden
in the network as the feedforward hidden layers. The input of the cell at
time step t depends on the previous state t − 1, so denoting a cell h(·),
we have that ht = f(ht−1, xt). For a more complex network, in a sense
where we use more past data steps, the network output will be different
from our debut network structure.

In connection with our problem, we will take to predict the t+ 1 step
ahead price of the stock, where we input the information at time step t.
We will also look at the values the network suggests from the beginning
of the trading, so at t = 0 up to t = t, to access some possible information
of the prediction accuracy and even possibly deduct some sort of risk of
the predictions.

When considering the training, the process follows much of the same
ideas as the feed forward network. The forward pass from each cell, and
then the gradients of the loss function are computed using backpropaga-
tion. Assuming a RNN network with some loss function L(yt, yt−1, yt−2),
meaning the loss function only depends on the the last known steps of
the stock prices. Then backpropagation computes it’s following three gra-
dients and ignores the rest. The cell layers allow for sharing parameter
under training.

3.4.1 LSTM cell

The LSTM cells as introduced above have some common factors with the
basic cells in RNN networks. The popularity rises due to it’s performance
during training, in which the converges happens faster and detects long
term dependencies in the data. The LSTM structure takes two states,
the input of a short term state ht and a long term state ct. The net-
work learnings what should be remembered as a long term property or a
short term property. The long term states ct−1 traverse the network from
left to right, firstly the data goes through a forget gate, dropping some
memories, and adds some new memories via the addition operation. ct
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sends straight out, without transformation. At each steps, some mem-
ories are dropped, and some memories are added to. Results are then
passed through a tanh function, and filtering by some output gate. The
short term state ht, remembers information for a short period of time.
See [Hochreiter and Schmidhuber, 1997] for more information on LSTM
model.

3.5 Convolutional Network

The name ”convolutional” has it’s roots in the convolutional operations in
the network. In a general 2-dimensional discrete finite space a convolu-
tional can be defined as

(I ∗K)(x, y) =
M∑

m=−M

N∑
n=−N

I(x+m, y + n)K(m,n),

where I is a input image with black and white colour represented with an
array of size n1 × n2, and the K is the convolutional kernel function with
size (2M + 1)× (2N + 1). The kernel can be then given as the matrix:

K =


K(−M,−N) . . . K(−M,N)

... K(0, 0)
...

K(M,N) . . . K(M,N)


The discrete case, the kernel takes the multiplication of a smaller win-
dow sizes of the image, trying to extract features such as edges of image
objective. Further expanding to a multicoloured picture, the image then
takes a new layer of depth describing colours where the image array tuns
into (width) × (height) × (depth). We can notice that using a feedfor-
ward network would easily lead to a high number of weights, which also
increases the computational difficulty. Introducing a convolutional net-
work will allows us to perform calculations without compensation result
with computing time. This method is often used in imagine recognition
or patter recognition [Krizhevsky et al., 2012].
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3.6 Reinforcement Learning

The reinforcement learning (RL) framework takes the idea of learning from
some experience. As humans, we often encounter the need to complete
a certain task. Assuming these task are done by some action that maps
to a reward for this task. The learning does not know in the beginning
what the outcome of such task is. By taking one action, we look at the
reward. Was is well done or did it go horribly. The second action is then
perhaps something better then the first try, which leads to a better out
come. After completing multiple trails, the human has learned that doing
certain actions is more efficient then other actions. The learners has then
found some optimal method of solving such task. This section we look
at how this can be done in a computational way where learning is done
through interaction with the environment. We use the same notations in
the book of [Sutton and Barto, 2018].

3.6.1 Return and Reward

The RL agents learns to maximise the cumulative future reward of some
task. We denote the return Rt, t ≥ 0, where the return depends on the
time t. The most simple cumulative return is

Gt = Rt+1 +Rt+1 + · · · =
∞∑
i=1

Rt+i+1

= Rt+1 +Gt+1,

this return does give equal weights to the present return and the future
return. We introduce a shrinkage constant γ ∈ [0, 1], where we give less
weighs to the returns future in time then the present

Gt = γ0Rt+1 + γ1Rt+1 + γ2Rt+1 + · · · =
∞∑
i=1

γiRt+i+1

= Rt+1 + γGt+1.

We can now consider reward not only based on the instantaneous feed-
back, by also reward for next situation, and through that, all subsequent
rewards.
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3.6.2 Value Functions

Learning the optimal policy, requires the use of value functions. Mainly
the value functions are of the state value function or action value function.
The primer describes the value of a state when following a policy. We have
the following equation for state value function V π(s)

V π(s) = Eπ[Rt|St = s],

where the return Rt is depends on the state s in time t. The action value
function denoted Qπ(s, a), and can be formalised as

Qπ(s, a) = Eπ[Rt|St = s, At = a],

where the return depends on the state s and action a at time t. Expec-
tation are taken due to the randomness in future returns of both value
functions.

3.6.3 Bellman Equation

We first define the following probability

p(s′, r |s, a) = Pr[st = s′, Rt = r|St−1 = s, At−1 = a],

where s′, s ∈ S, r ∈ R, and a ∈ A(s). S,R and A(s) is the state space,
return space and action space respectively. Note that p specifies a proba-
bility distribution for each choice of s, a, in a way that∑

s′∈S

∑
r∈R

p(s′, r|s, a) = 1.

In a Markov decision framework, the probabilities p completely char-
acterise the environment’s dynamics, meaning each possible value for St
and Rt depends only on the previously states St−1 and At−1. Further the
state transition probabilities from state s to s′ given the action a

p(s′|s, a) = Pr[St = s′|St−1 = s, At−1 = a] =
∑
r∈R

p(s′, r|s, a).
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The expected reward for the same specification is

r(s, a) = E[Rt|St−1 = s, At−1 = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a).

A policy denoted π(a|s) describes the agents actions. The policy function
maps states to probabilities of selecting each possible action. This means
that at time t, the agent follows the policy π(a|s) is the probability that
At = a if St = s.

We can now derive the Bellman equation for the state value action

Vπ(s) = Eπ[
∞∑
i=0

γiRt+i+1|St = s].

The expectation Eπ denotes the value of a random variable under the
agent policy π. Further we have that

Vπ(s) = Eπ[Rt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γEπ[Rt+1|St+1 = s′]]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γVπ(s′)].

The last equation is the Bellman equation for state value equation.

3.6.4 Optimal Policies and Optimal Value

Functions

The goal for reinforcement agent is to find some optimal policy that can
achieve good result over a long run. In the finite MDPs, we can define the
optimal policy π∗ is the policy π∗(s) ≥ π(s) for all s ∈ S. The optimal
policy is always at least better or equally good as other policies. Then the
problem is to find the optimal state value function

V∗(s) = max
π

Vπ(s), for all s ∈ S.
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The optimal Bellman equation can be derived as follow

V∗(s) = max
a
Qπ∗(s, a)

= max
a

Eπ∗[Rt+1 + γGt+1|St = s, At = a]

= max
a

Eπ∗[Rt+1 + γV∗(St+1)|St = s, At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γV∗(s
′)].

For the optimal action-state value function

Q∗(s, a) = max
π

Qπ(s, a).

With the optimal state value function, we have the following

Q∗(s, a) = E[Rt+1 + γV∗[St+1|St = s, At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

Q∗(s
′, a′)].

When in a MDP framework, the optimal Bellman equation for V∗
have a unique solution. The system of equations, one for each state, with
n states we have n equations with n unknowns. If the dynamics p of
the environment are known, then we can in principle solve this system of
equations for V∗. The optimal policy relies on finding V∗. For each state
s, there will be one or more actions at which the maximum is obtained
in the optimal Bellman equation. After one step, the optimal equation, is
the best actions that results in best value function V∗.

3.6.5 Dynamic Programming

We begin this section by noting that the optimal state value function Vπ for
an arbitrary policy π can be evaluated using the Dynamic programming
principle. Then the prediction of Vπ for s ∈ S

Vπ(s) = Eπ[Gt|St = s]

= E[Rt+1 + γGt+1|St = s]

= E[Rt+1 + γVπ(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVπ(s′)],
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where π(a|s) is the usual policy probability of taking action a in state s.
The existence of Vπ are guaranteed as long as γ < 1. We now assume
that the sequence of approximate value functions are {Vt}∞t=0 maps from
S+(real positive numbers) to R. Letting V0 be arbitrary chosen. Then the
update rule for optimal Bellman equation is

Vk+1(s) = Eπ[Rt+1 + γVk(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γVk(s
′)],

where all the updates are based on the expected future returns over a
finite time horizon defined by the MDP framework.

We now seek to find a policy decision π that generates Vπ(s) for some
state s. Will this current policy we follow through be better then a new
policy we can find? This can be answered by using the optimal action
function. We now have that

Qπ(s, a) = [Rt+1 + γVπ(St+1)|St = s, At = a]

=
∑
s′,r

p(s′, r |s, a)[r + γVπ(s′)].

Comparing a only state based return with respect to some policy
denoted Vπ(s) or using a deterministic action a chosen in state s, then the
policy is decided Qπ(s, a). The update is done if we have the following

Qπ(s, π′(s)) ≥ Vπ(s),

for a change policy π′ compared to π. Further considering the changes
made to all states and to all possible actions taking. Selecting at each
state the action that appears best according to Qπ(s, a), and is also known
as the greedy policy decision, we have

π′(s) = arg max
a

Qπ(s, a)

= arg max
a

E[Rt+1 + γVπ(St+1)|St = s, At = a]

= arg max
a

∑
s′,r

p(s′, r|s, a)[r + γVπ(s′)].
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With the greedy policy, it can be shown that the best policy is also
the optimal Bellman equation. Assume that the new policy π′ is as good
as, but note better then the old policy π. This yields Vπ′ = Vπ, where

Vπ′(s) = max
a

E[Rt+1 + γVπ′(St+1)|St = s, At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γVπ′(s′)].

The last equation is the optimal Bellman equation, meaning that
Vπ′ = V∗, and π, π′ are both optimal policies. The MDP for a finite
horizon leads to that there must exits a optimal policy as convergence is
guaranteed.

3.6.6 Value Function Approximation

Selecting policies to be evaluated are either a on-policy or a off-policy
method. The former method attempts to evaluate or improve the policy
that is used to make decisions. The latter method evaluate or improves
a policy different from that used to generate the data. We introduce
the method of function approximation in RL by considering its use in
estimating the state-value function from on-policy data. We try to ap-
proximate Vπ from experience generated using a known policy π. We
denote the parameterised functional from with weights w ∈ Rd and write
V̂ (s,w) ≈ Vπ(s) is the approximate value for state s, with W as the
feature weights. It is natural to interpret each update as specifying an
example of the desired input-output behaviour of the value function. This
means that the update, s 7→ u where the estimated value function for state
s should be more like the update target u. Permitting arbitrarily complex
and sophisticated methods to implement and update s, generalising so
that the estimated values of many other states are changed as well.

We now turn to the the predictive objective. In general, an change in
the state space affect other states. This is troublesome due to not being
able to find the exact value of all states in the space. When working in
this framework, we often have more states then weights. We can specify a
state distribution to measure how much we care about certain states. We
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denote the the state distribution µ(s), which must satisfy
∑

s∈S µ(s) = 1.
This then indicate how much we care about a the error in each state
s. Now the error can be computed with the common mean square of
the difference between the approximated value v̂(s,w) and the true value
vπ(s). Weighting this over the state space by µ we the the following error
measure

VE(w) =
∑
s∈S

µ(s) [vπ(s)− v̂(s,w)]2 ,

is the Mean Squared Value Error. Depending on the task of optimisation,
the error function can be different [Sutton and Barto, 2018].

3.6.7 Stochastic Gradient Decent

The most common method for solving function approximation problems
by value prediction is the Stochastic Gradient Decent (SGD) method. Let
the weight vector be w ∈ Rd with the approximate value function V̂ (s,w)

is a differentiable function of w for all the states s ∈ S. The update are
done for each time steps t, where wt is the weight vector for each time
step. The observed value is St 7→ Vπ(St), for some state St and the true
value under the policy π. The SGD method then updates the weights wt

by the rule given as follow

wt+1 = wt −
1

2
α∇

[
Vπ(St)− V̂ (St,wt)

]2

= wt − α∇
[
Vπ(St)− V̂ (St,wt)

]
∇V̂ (St,wt),

where α is the step size parameter, and ∇ is the gradient of w. In general
the true value of Vπ(St) is not known, and there it should be approximated
by some value Ut, then the last equation above yields

wt+1 = wt − α∇
[
Ut − V̂ (St,wt)

]
∇V̂ (St,wt),

where Ut is unbiased estimate, that is E[Ut|St = s] = Vπ(St). When using
a bootstrap estimate of Vπ(St) as target of Ut, the convergence is not
guaranteed. Methods such as the return function used in DP, where the
return are dependent on successive estimates. These dependencies affect
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the weight vector wt, which leads to biased weights. The gradient method
works better when the weights are independent of the target prediction.
The bootstrapping estimates gradient only effect the change of weights
wt on the estimate, but not on the target itself, these are then called
semi-gradient methods.

These methods does have advantage that the learning can be contin-
ual and online with no need to wait for the end of an episode. For further
reading concerning reinforcement learning, the book [Sutton and Barto, 2018]
explains theory and includes examples.
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Chapter 4

Methodology

This chapter describes methods used to for our implementation based on
the previous chapters. We also provide plots in connection with simula-
tions we do. We begin by looking at the market data we have. Then we
move with the model for rough stochastic volatility, introduced in section
2.7 for the market data and simulated stock prices. The next section then
shows the volatility prediction. Using the predicted volatilities, we design
a stock price model based on the Geometric Brownian motion with rough
stochastic volatility. In the last two sections, we find the optimal portfolio
based on simulated stock prices, and finish the chapter by looking at the
Geometric Brownian motion with rough volatility.
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4.1 Stock Market Data

As mentioned in the introduction, we will be using real stock market
data, and also stock prices driven by a Geometric Brownian motion, see
subsection 2.5.1, and including volatility driven by a fractional noise, see
subsection 2.5.4. From the stock market data, we will be considering the
Oslo Børs Index. This dataset consists of open, close, high, low and 10
minutes realised variance for daily trades from January, 2000 up to March,
2019. The currency exchange NOK to EUR is from January 2018 up to
December 2018, intraday with 10 minutes window. The stock data consist
9 months period, intraday 10 minutes sampling from the end of April 2018
up to the middle of November 2018.

We make sure that the dataset does not have empty data or values of
"not a number" (NaN). We also remove holidays and weekends where the
stock market is closed. For the currency data, we have trading all day long
from Monday through Friday. For the index and stock, we only consider
data when the market is open. This leads to jumps in close and open
between two days. In general these market data exhibit these problems.
By looking at the trading volume for intraday data, the periods leading
up to the closing hour, show a stronger volatility than during the daytime.
This is due to the high volume trades in the last hour of market closing.
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4.1.1 Oslo Børs Index Data

Figure 4.1: Oslo Børs index daily closing price.

Figure 4.2: Oslo Børs index daily realised variance.

The large variance peeks are due to the financial crisis in 2008.
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4.1.2 EUR to NOK Currency

Figure 4.3: EUR to NOK currency 10 minutes closing price.

Figure 4.4: EUR to NOK currency 10 minutes standard deviation.

Here the large peaks in the volatility is due to high amounts of trading at
the end of the weeks where the market is about to close.
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4.1.3 Norwegian Stocks

Figure 4.5: AKSONO 10 minutes closing price.

Figure 4.6: AKSONO 10 minutes standard deviation.

The stock has even more periods where no trading are happening. This
is shown clearly in these two plots made.
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4.2 Fractional Brownian Motion Volatility

Model Smoothness

In this section we will introduce a volatility model to our Markowitz port-
folio optimisation to model stock volatility defined as in the first chapter.
[Gatheral et al., 2014] discovered the fact that increments of log-volatility
are approximately Gaussian distributed, which also has been done by other
prior studies. Further a mono-fractal scaling relationship (2.7.1) was given
for the underlying volatility processes. This then led to a the log-volatility
could be modelled using a fractional Brownian motion. We use then ap-
ply the volatility model to out stochastic pricing model (2.7.1), with the
volatility being the stochastic process driven by the fractional Brownian
motion.

4.2.1 Market Data

In the application, this will make a more realistic model compared with
the Black Scholes stock price model. We estimate the smoothness of the
volatility process for the Oslo Børs Index (.OSEAX), where data are from
the Oxford-Man Institute of Quantitative Finance. We use the precom-
puted 10-min window variance given by the data set. We calculate the
smoothness parameter from m(q,∆) for different values of q and ∆. Then
we do a linear regression of log m(q,∆) against ∆. As we mentioned
earlier, the scaling can also be found by (2.7.2) given

E[|log(σ∆)− log(σ0)|q] = Cq∆
ξq .

We shall also be looking at the different distribution of increments of
log−volatility.
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The regression coefficient form Cq against q gives the Hurst parameter
H.

Figure 4.7: Plotting log m(q,∆) against log(∆). (.OSEAX)

Figure 4.8: Scaling of Cq with q. (.OSEAX)
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Figure 4.9: Log-increments for different lags ∆. (.OSEAX)

Figure 4.10: Plotting log m(q,∆) against log(∆). (.EURNOK)
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Figure 4.11: Scaling of Cq with q. (.EURNOK)

Figure 4.12: Log-increments for different lags ∆. (.EURNOK)
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Figure 4.13: Plotting log m(q,∆) against log(∆). (.AKSONO)

Figure 4.14: Scaling of Cq with q. (.AKSONO)
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Figure 4.15: Log-increments for different lags ∆. (.AKSONO)

Market Hurst Parameter
.OSAEX 0.0979
.EURNOK 0.0132
.AKSONO 0.0194

Table 4.1: Hurst parameter for different market.

We note that the Hurst parameters are very small, meaning we have
rough paths. The smoothness fitting for .OSEAX and .EURNOK shows
better result due to the fact that the dataset contains more points then
.AKSONO. Both the first mentioned markets is related to what [Gatheral et al., 2014]
calls the mono-fractional scaling property. We also note that the distri-
bution of the log-increments are close to normal distributed by comparing
the empirical data to the normal fitted curve in yellow. Further the log-log
plot tells us that m(q,∆) is related to Cq∆ξq , where the latter is directly
related to q in a proportion sense. From the plot for the first two markets,
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the scaling can be expressed as

m(q,∆) ∝ ∆ξq,

from figure 4.7 and 4.10. Also we have the relationship

Cq = qH,

from figure 4.8 and 4.11. [Gatheral et al., 2014] also mentioned that the
estimated parameter H for different time interval, have different values of
H. This means that for some time interval, some volatility are more or
less rough then certain intervals, e.g. the volatility is very high at the year
of 2008, which was the financial crisis.

The log-normal plots indicate out initial assumption about the stylised
fact, also reported from [Andersen et al., 2001], where the histogram is
Gaussian distributed

4.2.2 Simulated Stock Price

We simulate the stock price movement driven by a Geometric Brownian
motion process with stochastic volatility from section 2.7. The simulation
procedure can be summarised with the following algorithm

Algorithm 1: Simulating Stock Price with Fractional Volatility.
Set initial values S0, µ,H,N, T ;
for N , simulation numbers do

Simulate the Fractional Brownian motion;
Simulate the Geometric Brownian Motion with the
Fractional Brownian motion volatility;
Calculate the standard deviation of the GBMRV stock price;
Calculate the log of the standard deviation;
Calculate the stock prices S0, S1, . . . ;

end
return N number of stock prices S0, S1, . . . SN , standard
deviation and log-standard deviation;
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Figure 4.16: Simulated stock prices with different θ values.
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Figure 4.17: Volatility from simulated stock prices with different θ values.

We see that the volatility have the same roughness as our index and
currency marked, having low volatility on some points, and high volatility
peeks as well.

Figure 4.18: Plotting log m(q,∆) against log(∆). (Simulated stock prices)
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Figure 4.19: Scaling of Cq with q. (Simulated stock prices)

Simulates stock Hurst Parameter
θ = 0.3 0.009997
θ = 0.36 0.007309
θ = 0.42 0.016343
θ = 0.48 0.017463
θ = 0.54 0.012656
θ = 0.6 0.018069

Table 4.2: Hurst parameter for simulates stock prices with different θ
values.

4.3 Prediction Stochastic Volatility

In this section the main focus will be on fitting the rough volatility paths
using the Fractional Brownian motion given in 2.7. We use the forecasting
equation (2.5.10). We measure the forecast accuracy by using the mean
squared error function of our prediction and the log-variance

P =

∑N−∆
k=500

(
log(σ2

k+∆)− ̂log(σ2
k+∆)

)2

∑N−∆
k=500

(
log(σ2

t+∆)− E[log(σ2
t+∆)]

)2 ,

where we begin from k = 500 and E[log(σ2
t+∆)] is the empirical mean of

the log-variance over the time period.
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4.3.1 Market Data

We plot the actual volatility against the predicted volatility

Figure 4.20: Predicted volatility against actual volatility, ∆ = 1. (.OS-
EAX)

Figure 4.21: Predicted volatility against actual volatility,∆ = 1. (.EU-
RNOK)

Figure 4.22: Predicted volatility against actual volatility, ∆ = 1. (.AK-
SONO)
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Predication from figure 4.20 and 4.21 have in general good fit for ∆ =

1. The AKSONO stock prices struggles to find the roughness compared
to the former predications. This indicate that the model fits bad when
coming to lack of data. The error measure is shown in this table below.

Market Error
.AKSONO ∆ = 1 0.0001576
.AKSONO ∆ = 5 0.0001578
.AKSONO ∆ = 25 0.0001588
.AKSONO ∆ = 125 0.0001640
.EURNOK ∆ = 1 0.0000268
.EURNOK ∆ = 5 0.0000269
.EURNOK ∆ = 25 0.0000269
.EURNOK ∆ = 125 0.0000270
.OSEAX ∆ = 1 0.0002957
.OSEAX ∆ = 5 0.0002964
.OSEAX ∆ = 25 0.0002999
.OSEAX ∆ = 125 0.0003191

Table 4.3: Prediction error for different market.

The error is relative to the stock market, in general when ∆ increases,
the prediction error also increases. [Gatheral et al., 2014] compared pred-
ications with an Autoregressive models and an HAR models. The results
showed that the rough volatility model outperformed latter models.
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4.3.2 Simulated Data

We plot the predicted volatility for out Geometric Brownian motion with
stochastic volatility model.

Figure 4.23: Predicted volatility against actual volatility, ∆ = 1.
(GBMFBM)

Simulated stock Error
∆ = 1 0.0002501
∆ = 5 0.0002506
∆ = 25 0.0002532
∆ = 125 0.0002667

Table 4.4: Prediction error for simulated stock.

4.4 Portfolio Optimisation

In chapter 2, we obtained the explicit formula for the optimal portfo-
lio given some self-financing strategy (2.6.2). We first assume the stock
prices follow a Geometric Brownian motion, and we optimise the portfolio
allocation by controlling the optimal weights (ω0, ω1) with using a simple
network. We assume that the weights (ω0, ω1) are randomly sampled from
[0, 1] and the µ and σ given constant. The following portfolio returns are
given with these plots:
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Figure 4.24: Geometric Brownian motion portfolio return with µ =
0.03, σ = 0.316.

Figure 4.25: Geometric Brownian motion portfolio return with µ =
0.03, σ = 0.116.

Both plots shares the same mean µ, but different standard deviations
σ. The latter result shows a significant lower spread and a less obvious
curve compared to the former plot. The sampling size made with these
plots are 5000 sample means. This runs fairly quickly on a laptop com-
puter with only CPU power.

Network Structure
We will use the PyTorch package in python for building our model. The
PyTorch library is an easy starting point for machine learning compared to
TensorFlow. We can define dynamic computational graphs, which makes
changes to the model easy during runtime, compared to TensorFlow that
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does not include runtime options. The network parameters is then given
as follows:

• Input shape: 3

• Hidden layer size: 7

• Output shape: 1

• Batch size: 500

• Learning rate = 0.001

• Number of epoch: 40,000

• Criterion: Mean squared error

• Optimiser: Stochastic gradient decent

• Train sample size: 5000

• Test sample size: 200

• µ = 0.03, σ = 0.2

The network structure consists of

1. Input layer: Linear layer (input, hidden)

2. Hidden layer: Exponential linear activation function on Linear layer
(hidden, hidden)

3. Output Layer: Linear layer (hidden, output)

Model Fitting
We fit the model using the network described above.
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Figure 4.26: Network fitting the GBM stock price for weight ω1. (µ =
0.03, σ = 0.316)

The loss is visualised using tensorboard, which is a tool from Tensor-
flow, and working with PyTorch package.

Figure 4.27: Network loss the GBM stock price for weight ω1.

The loss after 15,000 iterations does not really improve much for
our model. We obtain the optimal weigh (ω0, ω1) for the test data set
containing 200 random sample from the portfolio given

max

(
ω0r + ω1µ−

1

2
ω1σ

2 − 1

2
(ω1σ)2

)
, s.t. ω0 + ω1 = 1
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where ω̂1 = 0.73, and ω̂0 = 1− ω̂1 = 0.23. We compare the result to
the exact solution from equation (2.6.3), where we have that ω1 = 0.6 and
ω0 = 0.4.

4.4.1 Market Data

Now we turn our attention to the real market data. We optimise the
portfolio using a direct method of allocation. Let us make some assump-
tion for our optimisation scheme, firstly the log returns of investments
(2.3.1) are independent, identically distributed random sequence. In par-
ticular, each return rt is distributed accordingly to the same and possibly
unknown probability distribution P. This assumption is compatible with
the assumption about EMH from section 2.1.1. Secondly we assume that
we restrict our trading to not include any short positions or borrowing
money, meaning that we exclude ω0, ω1 < 0.

4.4.2 Simulated Data

We simulate the portfolio returns from Geometric Brownian motion with
stochastic volatility. We modify our network structure to include a deeper
network consisting of these layers

1. Input: Rectified linear unit activation function on linear layer (input,
hidden)

2. Hidden: Exponential linear activation function on linear layer (hid-
den, hidden)

3. Output: Linear layer (hidden, output),

with these parameters

• Input shape: 3

• Hidden layer size 10

• output shape: 1
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• Batch size: 500

• Learning rage = 0.001

• Number of epoch: 30,000

• Criterion: Mean squared error

• Optimiser: Stochastic gradient decent

• Train sample size: 5000

• Test sample size: 200

• µ = 0.03, θ = 0.13, H = 0.09

The fitted model then can be plotted

Figure 4.28: Fitting Geometric Brownian motion with fractional volatility.
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These data points seems to be more spread then the Geometric Brow-
nian motion test data set. The shape of the optimal allocation seems to
be more closely to 0.5 for ω1.

Figure 4.29: Training loss Geometric Brownian motion with fractional
volatility.

Here the loss function reaches the lowest level after 10,000 iterations
of training. The loss accuracy after that have slightly variations.

4.5 Evaluation of the Geometric Brownian

Motion with Rough Volatility

We compare our GBMRV against the Oslo Børs index. The following
table shows the estimated yearly return and volatility of the .OSEAX and
GBMRV. The table below are specified by each year from 2013 to 2019.
The second column is the estimated µ based on historical log-returns.
Columns 4 and 5 are the volatility for the index with actual and predicted
σ. Columns 6 corresponds to the expected stock price of the GBMRV
model. The actual index price are in the last column.
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Period µ
Annual
µ

Actual
σ

Predicted
σ

Simulated
GBM St

Actual
St

2003 0.00187 0.1344 0.116 0.111 157.81 157.73
2004 0.00128 0.3212 0.111 0.108 180.65 180.42
2005 0.00167 0.4175 0.128 0.130 249.20 248.78
2006 0.00120 0.2989 0.158 0.159 378.14 377.68
2007 0.00045 0.1128 0.155 0.155 509.53 509.28
2008 -0.00275 -0.0693 0.305 0.316 568.68 570.14
2009 0.00163 0.4095 0.252 0.236 285.68 285.18
2010 0.00052 0.132 0.169 0.164 429.75 429.51
2011 -0.00037 -0.0927 0.181 0.182 490.01 490.16
2012 0.00046 0.1155 0.130 0.125 446.98 446.76
2013 0.00073 0.1809 0.089 0.087 501.83 501.47
2014 0.00014 0.0353 0.110 0.112 601.02 600.92
2015 0.00012 0.0290 0.145 0.143 622.62 622.52
2016 0.00078 0.1874 0.154 0.154 641.35 640.84
2017 0.00065 0.1621 0.089 0.087 773.42 772.91
2018 0 -0.0022 0.121 0.124 908.90 908.88
2019 0.00126 0.0077 0.122 0.112 907.20 906.89

Table 4.5: Simulated GBM compared against .OSEAX index.

The simulated GBM paths under these parameters are then plotted

Figure 4.30: Simulated Geometric Brownian Motion with estimated pa-
rameter.

From table 4.5 we note that the estimated stock prices are close to the
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actual prices. Figure 4.30 are made of 1000 samples where each period of
year are sampled with their respective parameters of µ and σt is changed
over the whole period. The high peek is due to high volatility during
financial crisis. The estimated stock price E(S(t)) is found by equation
(2.5.8)

Stock Price Prediction
Now that we have verified the GBMRVmodel does a good job of predicting
the index prices, we can simulate stock prices using this model.

Figure 4.31: Simulation of GBMRV paths from different years.
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Figure 4.32: Simulation of GBMRV paths from 2018.

A closer look at the most recently year from the .OSEAX data, the
plot shows the simulated stock prices in blue. The red line is the actual
price, and the white line is average price. The average price is not able to
capture the movements of the price, this is due to the simulations being
stochastic by model. We note that at some points the average prices are in
the same line as the actual prices. For the year of 2018, the starting price
ends up in the same category as the ending price. At both these points,
the simulated model are able in some sense to capture the right price. We
also observe that the actual prices are covered by the simulation with 500
samples. This is a good sigh that the model can be used in practice to
say something about the future prices.
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Chapter 5

Conclusion

To summarise this thesis, we explored the optimal portfolio allocation in
a market with a risk-free asset and a risky asset in sense of the Oslo Børs
index, EURO to NOK currency and the Aker Solution stock prices. We
found that in the first two markets, there were indication of the volatil-
ity process being rough in sense of the Hurst parameter H < 0.1. Due
to this, we introduced a simple model for the price dynamics based on
the Black Scholes model, where we afterwards introduced a stochastic
volatility model based on the rough volatility. We then began to simulate
Geometric Brownian motion with rough volatility by replacing σ with a
stochastic σt, which was predicted using the Fractional Brownian motion
variance based on the actual stock market. We used this to simulate a
GBMRV with different µ and σt based on the estimated values from the
.OSEAX close prices. We found that the price model with rough volatility
model manages to find the peeks where the stock prices had high volatility.
When implementing the volatility in the simulated model, we find that the
average volatility consists with the actual volatility in the market. This
also leads to that the prices are close to the actual market prices.

Under our optimisation, we assumed that there were some optimal
strategy to allocate between the risk-free asset and the risky security. We
found that using the simple Geometric Brownian motion requires a large
data set, which is often a problem, when working with finance data. By
making a GBM with rough volatility, we replace σ with a volatility process
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based on the fractional Brownian motion. The latter process requires the
Hurst parameter to be estimated, in general these markets have rough
stochastic volatility embedded.

As for future work, we could extend the model by including a differ-
ent environment in connection with portfolio allocation. This means that
we could include information such as a portfolio return based on future
returns and as well as include different methods of machine learning for
optimisation. We could also collect more data points from the stock mar-
ket, i.e. include more trading days, which we say had effect for being able
to find the rough volatility property. The framework of this thesis, was
build on the face that our stock dynamics under the Geometric Brownian
motion could be extended to simulate more stocks. This would imply that
we need to measure the correlation between these stocks. The theoretical
foundation as been introduced, and for the numerical simulation we need
to extend our model to include correlation. Other methods of optimising
optimising could also be used, such as having risk constraints based on
the investors risk preference.
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Code

Some codes are not included due to repetition of the same calculations.
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1 Importing libraries

In [ ]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import os
import sys
from fbm import FBM
import feather

import matplotlib.cm as cm
colours = iter(cm.rainbow(np.linspace(0, 1, 4)))

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
import torchvision
import torchvision.transforms as transforms
import torch.nn.functional as F
from logger import Logger

from sklearn.metrics import mean_squared_error
from scipy.special import gamma

2 Functions

In [ ]: def GBM(S0,mu,sigma,N,T):
"""
Simulate geometric Brownina motion
"""
dt = T/N
t = np.linspace(0.,T,N+1)
W = np.zeros(N+1)
W[1:] = np.cumsum((np.random.normal(0., 1., N)*np.sqrt(dt)))
S = S0*np.exp((mu-(0.5*sigma**2))*dt+sigma*W)
return S,t

def Portfolio(w1,mu,sigma,N,T,sample):
"""
Simulate portfolio
"""
t = np.linspace(0.,T,N)
dt = t[1]-t[0]
w0 = 1-w1
r = 0.02
zt = (w0*r + w1*(mu-0*sigma**2)-0.5*(w1*sigma)**2)*dt
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+w1*sigma*np.random.randn(sample,N)*np.sqrt(dt)
pt = np.exp(np.cumsum(zt,axis=1))
pt = np.mean(np.log(pt))
return pt,w0,w1

def Batch(datapd,sample_size,shuffle):
"""
Making batches for PyTorch
"""
if shuffle==True:

df = datapd.sample(n=sample_size,replace=True)
mu_b = torch.tensor(np.vstack(df['mu'].values).astype(np.float32))
sigma_b = torch.tensor(np.vstack(df['sigma'].values).astype(np.float32))
w1_b = torch.tensor(np.vstack(df['w1'].values).astype(np.float32))
pT_b = torch.tensor(np.vstack(df['pT'].values).astype(np.float32))
x_b = torch.cat((mu_b,sigma_b,w1_b),1)

else:
df = datapd
mu_b = torch.tensor(np.vstack(df['mu'].values).astype(np.float32))
sigma_b = torch.tensor(np.vstack(df['sigma'].values).astype(np.float32))
w1_b = torch.tensor(np.vstack(df['w1'].values).astype(np.float32))
pT_b = torch.tensor(np.vstack(df['pT'].values).astype(np.float32))
x_b = torch.cat((mu_b,sigma_b,w1_b),1)

return x_b, pT_b

def MakeTraindata(mu,sigma,N,steps,T,samples):
"""
Make dataframe for train data
"""
testlist = []
for i in range(N):

w1 = np.asscalar(np.random.uniform(0.0,1.,1))
pt,w0,w1 = Portfolio(w1,mu,sigma,steps,T,samples)
testlist.append([mu,sigma,w0,w1,pt])

df = pd.DataFrame(data = testlist, columns = ["mu","sigma","w0","w1","pT"])
return df

def MakeTestdata(mu,sigma,N,steps,T,samples):
"""
Make datafreame for test data
"""
trainlist = []
w1_list = np.linspace(0.,1.,N2)
for i in range(N):

pt,w0,w1 = Portfolio(np.asscalar(w1_list[i]),mu,sigma,steps,T,samples)
trainlist.append([mu,sigma,w0,w1,pt])

df = pd.DataFrame(data = trainlist, columns = ["mu","sigma","w0","w1","pT"])
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return df

def logTransfer(time_series):
"""
Log-return
"""
ts = []
for i in range(1,len(time_series)):

ts.append(np.log(time_series[i]/time_series[i-1]))
return ts

def Stock_price(S0,mu,sigma,dt):
return S0*np.exp((mu+(0.5*sigma**2))*dt)

In [ ]: def fbms(sample,T,h):
"""
Makes a matrix of fractional Brownian motion with N samples
"""
fbm_list = [[FBM(T-1,h).fbm()] for _ in range(sample)]
return np.array(fbm_list).reshape(sample,T)

def Hurst(ts):
"""
Estimating Hurst parameter
"""
lags = range(2, 100)
# Calculate the array of the variances of the lagged differences
tau = [np.sqrt(np.std(np.subtract(ts[lag:], ts[:-lag]))) for lag in lags]

# Use a linear fit to estimate the Hurst Exponent
poly = np.polyfit(np.log(lags), np.log(tau), 1)

# Return the Hurst exponent from the polyfit output
return poly[0]*2.0

def GBM_fbm(S0,mu,sigma0,h,N,T):
"""
Simulate geometric Brownian motion with fractional Brownian motion
as volatility
"""
theta = np.sqrt(h)
dt = 1/N
t = np.linspace(0.,T,N+1)
W = np.zeros(N+1)
fbm = FBM(N,h).fbm()
sigma = sigma0*np.exp(theta*fbm)
W[1:] = np.cumsum((np.random.normal(0., 1., N)*np.sqrt(dt)))
S = S0*np.exp((mu-(0.5*sigma**2))*dt+sigma*W)
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return S,t,sigma

def Portfolio_fbm(w1,mu,theta,N,T,sample,fbm):
"""
Simulate portfolio from geometric Brownian motion with fractional
Brownian motion as volatility
"""

t = np.linspace(0.,T,N)
dt = t[1]-t[0]
w0 = 1-w1
r = 0.02
sigma = np.exp(theta*fbm)
zt = (w0*r + w1*(mu-(0.5*sigma**2)) - 0.5*(w1*sigma)**2)*dt

+ w1*sigma*np.random.randn(sample,T)*np.sqrt(dt)
pt = np.exp(np.cumsum(zt,axis=1))
pt = np.mean(np.log(pt))
return pt,w0,w1

def logTransferIncrement(time_series):
"""
Log-transformation of increments
"""
ts = []
for i in range(1,len(time_series)):

ts.append(np.log(time_series[i])-np.log(time_series[i-1]))
return ts

In [ ]: def shift_delta(log_vol,q, x):
return [np.mean(np.abs(log_vol

- log_vol.shift(lag)) ** q) for lag in x]

def plot_zeta(vol):
"""
Plotting scaling of log(m(q,Delta)) and log(Delta)
"""
fig, ax = plt.subplots()
plt.xlabel('log$(\Delta)$')
plt.ylabel('log $m(q.\Delta)$')
plt.ylim=(-4, -1)
zeta_q = list()
q_list = np.array([.5, 1, 1.5, 2, 3])
x = np.arange(1, 100)
for q in q_list:

ax.plot(np.log(x), np.log(shift_delta(vol, q, x)), 'o', label=str(q) + ' = q')
model = np.polyfit(np.log(x), np.log(shift_delta(vol, q, x)), 1)
ax.plot(np.log(x), np.log(x) * model[0] + model[1])
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zeta_q.append(model[0])
plt.legend()
return zeta_q, q_list

def c_tilde(h):
"""
Calculate the constant c from equation (2.5.9)
"""
return gamma(3. / 2. - h) / gamma(h + 1. / 2.) * gamma(2. - 2. * h)

def forecast(rvdata, h, date, nLags, delta, nu):
"""
Forecast rough volatility
"""
i = np.arange(nLags)
cf = 1./((i + 1. / 2.) ** (h + 1. / 2.) * (i + 1. / 2. + delta))
ldata = rvdata.truncate(after=date)
l = len(ldata)
ldata = np.log(ldata.iloc[l - nLags:])
ldata['cf'] = np.fliplr([cf])[0]
ldata = ldata.dropna()
fcst = (ldata.iloc[:, 0] * ldata['cf']).sum() / sum(ldata['cf'])
return np.exp(fcst + 2 * nu**2 * c_tilde(h) * delta**(2 * h))

def prediction(vol,delta=1):
"""
Volatility prediction
"""
h = Hurst(vol)
nu = np.sqrt(h)
rvdata = vol
n = len(rvdata)
delta = delta
nLags= 500
dates = rvdata.iloc[nLags:n-delta].index
rv_predict = [forecast(rvdata, h=h, date=d, nLags=nLags,

delta=delta, nu=nu) for d in dates]
rv_actual = rvdata.iloc[nLags+delta:n].values
vol_actual = np.sqrt(np.multiply(rv_actual,252))
vol_predict = np.sqrt(np.multiply(rv_predict,252))
fig = plt.figure(figsize=(16, 6))
plt.plot(vol_actual,color='b')
plt.plot(vol_predict,color='r')
T = vol_actual.shape[0]-delta
mse = 0
for i in range(nLags,T):

mse = mse + (((np.log(vol_actual[i+delta]) - np.log(vol_predict[i+delta]))**2)/
(np.log(vol_actual[i+delta]) - np.mean(np.log(vol_actual)))**2)
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mse = 1/(T-nLags)
return vol_actual, vol_predict, np.round(mse,decimals=8)

def plot_q_zeta(q,zeta):
"""
Fitting Hurst
"""
plt.figure(figsize=(8,8))
plt.xlabel('q')
plt.ylabel('$\zeta_{q}$')
plt.plot(q, zeta, 'or')
line = np.polyfit(q[:4], zeta[:4],1)
plt.plot(q, line[0] * q + line[1])
h_est= line[0]
return h_est

def plot_log_increments(scale, vol):
"""
Plot log-normal plot of the increments
"""
def xDel(x, lag):

return x-x.shift(lag)

def sdl(lag):
return (xDel(np.log(vol), lag)).std()

sd1 = (xDel(np.log(vol), 1)).std()
f, ax = plt.subplots(2,2,sharex=False, sharey=False, figsize=(10, 10))

for i_0 in range(0, 2):
for i_1 in range(0, 2):

la = scale ** (i_1*1+i_0*2)

hist_val = xDel(np.log(vol), la).dropna()
std = hist_val.std()
mean = hist_val.mean()

ax[i_0][i_1].set_title('Lag = %s Days' %la)
n, bins, patches = ax[i_0][i_1].hist(hist_val.values,

bins=80, normed=1, alpha=0.8)
hist_val.plot.density(ax=ax[i_0][i_1],legend=None)

In [ ]: def GBM_fbm_paths(S0,mu,h,N,T):
"""
Sample mutiple fractional Brownian motions
"""
theta = np.round(np.linspace(0.3,0.6,6),decimals=3)
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df = pd.DataFrame()
for i in range(theta.shape[0]):

s,t = GBM_fbm(S0,mu,h,N,T,theta[i])
temp = pd.DataFrame(data = s, index = t, columns = ["s_"+str(i)])
temp["std_"+str(i)] = temp["s_"+str(i)].rolling(2).std()
temp["log_std_"+str(i)] = np.log(temp["std_"+str(i)])
df = pd.concat([df, temp],axis = 1)

df = df.dropna(axis=0)
return df,theta

3 Fractional Brownian motion

In [ ]: """
Simulate some fractional Brownian paths
"""
S0 = 10
mu = 0.03
h = 0.097
N = 5000
T = 1
fbm_df, theta = GBM_fbm_paths(S0, mu, h, N, T)

In [ ]: """
Simulate random portfolio allocation
"""
theta = 0.13
sample = 3000
N = 3000
pt_list = []
w1_list = []
w0_list = []
for i in range(sample):

fbm = fbms(sample,T,h)
w1 = np.asscalar(np.random.uniform(0.,1.,1))
pt,w0,w1 = Portfolio_fbm(w1,mu,theta,N,T,sample,fbm)
pt_list.append(pt)
w1_list.append(w1)
w0_list.append(w0)
if i%500==0:

print(i)
plt.plot(w1_list,pt_list, "p")

In [ ]: """
Plotting smoothness and predicting volatility
"""
df2 = df[["s_5","std_5","log_std_5"]]
df2 = df2.reset_index()
df2 = df2.drop("index",axis=1)
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zeta, q = plot_zeta(df["log_std_5"])
h = plot_q_zeta(q,zeta)
rvdata = pd.DataFrame(df2['std_5']**2)
prediction(rvdata,delta=1)

4 Aker Solution stock

In [ ]: """
Reading the data set, and cleaning
"""
aksono = pd.read_csv('aksono_10min.csv')
def format_data(stock):

vol = pd.DataFrame(stock['std'])
stock = stock[stock !=0 ]
stock = stock[~stock.isin([np.nan, np.inf, -np.inf]).any(1)]
stock = stock.reset_index()
vol = vol[vol != 0]
vol = vol[~vol.isin([np.nan, np.inf, -np.inf]).any(1)]
vol['var'] = vol['std']**2
vol['log_std'] = np.log(vol['std'])
vol = vol.reset_index()
log_vol = logTransferIncrement(vol['var'])
return stock,vol,log_vol

stock,vol,log_vol = format_data(aksono)

stock['time'] = pd.to_datetime(stock['time'], utc=True)

In [ ]: """
Plotting distribution of the volatility and prediction volatility
"""
plot_log_increments(5, vol['var'])
zeta, q = plot_zeta(vol['log_std'])
h = plot_q_zeta(q,zeta)
rvdata = pd.DataFrame(vol['var'])
actual, predict, mse = prediction(rvdata,delta=1)

5 Oslo Børs index

In [ ]: """
Read and clean the data set
"""
stock = pd.read_csv('oxfordmanrealizedvolatilityindices.csv', sep=';')
stock = stock.set_index('Symbol == .OB', drop = True)
volatility_intra_oseax = stock.loc[".OSEAX","rv10"].values
oseax_df = stock.loc[".OSEAX",:]
oseax_df['Unnamed: 0'] = pd.to_datetime(oseax_df['Unnamed: 0'], utc = True)
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oseax_df = oseax_df.rename(columns={'Unnamed: 0':'time'})
oseax_df = oseax_df.set_index("time")

In [ ]: """
Plot log-normal distribution of the volatility and the volatility
"""
plot_log_increments(5,oseax_df["rv10"])
plt.plot(oseax_df.index,oseax_df['rv10'])

In [ ]: """
Reducing the dataset
"""
vol_oseax = oseax_df["rv10"][:-1].copy()
simple_oseax_pd = pd.DataFrame(data = vol_oseax, columns=['rv10'])
simple_oseax_pd['std'] = np.sqrt(simple_oseax_pd['rv10'])
simple_oseax_pd['log_std'] = np.log(simple_oseax_pd['std'])
simple_oseax_pd['close_price'] = oseax_df['close_price'][:-1].values
simple_oseax_pd['log_st'] = logTransferIncrement(oseax_df["close_price"].values)
years = list(simple_oseax_pd.index.year.unique())

In [ ]: """
Plotting the smoothness and prediction volatility
"""
zeta,q = plot_zeta(simple_oseax_pd['log_std'])
h = plot_q_zeta(q,zeta)
rvdata = pd.DataFrame(simple_oseax_pd['rv10'])
actual, predict, mse = prediction(rvdata,delta=1)

6 Geometric Brownian motion with rough volatility model

In [ ]: """
Calculate som usefull information about the stock such as
mean return and sigma
"""
df = simple_oseax_pd[500:-2]
years = list(df.index.year.unique())
vol = predict.reshape(3882)
mean_return = {}
mean_return_annualy = {}
day_dict = {}
start_prices = {}
sigma_pred_dict = {}
l = 0
temp_len = 0
for y in years:

y = str(y)
l = temp_len
temp = df.loc[df.index.strftime("%Y") == y]
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temp_len2 = temp.shape[0]
temp_len = temp_len + temp.shape[0]
mu_hat = float(temp["log_st"].mean(axis=0))
mu_annualy = float(temp["log_st"].sum(axis = 0))
sigma = np.mean(vol[l:temp_len])
mean_return[y] = mu_hat
mean_return_annualy[y] = mu_annualy
sigma_pred_dict[y] = sigma
start_prices[y] = temp["close_price"][0]
day_dict[y] = temp_len2
l = temp_len

In [ ]: """
Simulation of GBM paths with predicted volatility
"""
vol = predict[:3899].reshape(3882)
gbm_df = pd.DataFrame()
stock_price = []
S0 = start_prices.get("2003")
fig = plt.figure(figsize=(15, 9))
for i in range(1000):

stock_price = []
S0 = start_prices.get("2003")
N_teller = 0
for key in sorted(day_dict):

N = day_dict.get(key)
T = 1
mu = mean_return_annualy.get(key)
sigma = vol[N_teller:(N_teller+N+1)]
N_teller = N_teller + N
st,t = GBM(S0,mu,sigma,N,T)
S0 = st[-1]
st = st.tolist()
stock_price.extend(st)

gbm_df = pd.concat([gbm_df,pd.DataFrame(stock_price)],axis = 1)
plt.plot(stock_price)

plt.savefig("gbm_est.png",bbox_inches = 'tight')
gbm_df.columns = range(gbm_df.shape[1])

In [ ]: """
Stock price calculation based on the predicted parameters
"""
s = []
for key in sorted(day_dict):

dt = 1/252
S0 = start_prices.get(key)
mu = mean_return_annualy.get(key)
sigma = sigma_pred_dict.get(key)
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st = Stock_price(S0,mu,sigma,dt)
s.append(st)

In [ ]: """
Simulate some fractional Brownian paths for different years
"""
gbm_fbm_df = pd.DataFrame()
fig, ((ax1, ax2, ax3), (ax4, ax5, ax6),(ax7, ax8, ax9),(ax10, ax11, ax12),

(ax13, ax14, ax15),(ax16, ax17, ax18)) = plt.subplots(6, 3,figsize=(15,10))
plt.subplots_adjust(wspace=0.3, hspace=0.7)
h = 0.09800
N = 252
T = 252
sample = 100
c = 1
for day in sorted(day_dict):

S0 = start_prices.get(day)
mu = mean_return_annualy.get(day)
sigma0 = sigma_pred_dict.get(day)
N = day_dict.get(day)
gbm_fbm_df = pd.DataFrame()
for i in range(sample):

s, t, sig = GBM_fbm(S0,mu0,sigma0,h,N,T)
gbm_fbm_df = pd.concat([gbm_fbm_df,pd.Series(s).rename(str(i))],axis=1)

gbm_fbm_df.plot(color="blue",legend=False,ax = eval("ax"+str(c)), title=day)
eval("ax"+str(c)).plot(gbm_fbm_df.mean(axis=1),"w")
c+=1

plt.savefig("gbmrv_sim.png",bbox_inches = 'tight')

In [ ]: """
Sample paths from parameters from 2018
"""
S0 = 908.88
mu0 = -0.002191908442963353
sigma0 = 0.1213797066759016
h = 0.09800
N = 252
T = 252
sample = 500
gbm_fbm_df = pd.DataFrame()
gbm_fbm_sigma_df = pd.DataFrame()
for i in range(sample):

s, t, sig = GBM_fbm(S0,mu0,sigma0,h,N,T)
gbm_fbm_df = pd.concat([gbm_fbm_df,pd.Series(s).rename(str(i))],axis=1)
gbm_fbm_sigma_df = pd.concat([gbm_fbm_sigma_df,pd.Series(sig).rename(str(i))],

axis=1)

In [ ]: """
Stock price calculation
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"""
dt=1/25
price_df = pd.DataFrame()
for col in gbm_fbm_df.columns:

S0 = gbm_fbm_df.iloc[0:-1,int(col)]
sigma0 = gbm_fbm_sigma_df.iloc[0,0]
sigma = gbm_fbm_sigma_df.iloc[1:,int(col)]
mu = logTransfer(gbm_fbm_df[col].values)
s = Stock_price(S0,mu,sigma0,dt)
price_df = pd.concat([price_df,pd.Series(s).rename(str(col))],axis = 1)

In [ ]: fig = plt.figure(figsize=(14, 8))
df_last_m = df[(df.index > '2018-01-04') & (df.index <= '2019-01-04')]
plt.plot(price_df, "b")
plt.plot(price_df.mean(axis=1),"white", label = "Average price")
plt.plot(df_last_m["close_price"].values, "red", label = "Actual price")
plt.savefig("gbm_fbm_price.png")
plt.legend()
plt.show()

7 EURO to NOK currency

In [ ]: """
Reading and cleaning data
"""
data = feather.read_dataframe('EURNOKCurncy_10T.h5')
data = data[data.trades != 0]
data = data[~data.isin([np.nan, np.inf, -np.inf]).any(1)]
data = data.reset_index()
df = pd.DataFrame(data['std'])
df = df[df['std'] != 0]
df = df.reset_index()
df['var'] = df['std']**2
df['log_std'] = np.log(df['std'])
plot_log_increments(5,df['var'])

In [ ]: """
Plotting and prediction volatility
"""
q, zeta = plot_zeta(df['log_std'])
h = plot_q_zeta(zeta,q)
rvdata = pd.DataFrame(df['var'])
actual, predict, mse = prediction(rvdata,delta=1)

8 Neural Network

In [ ]: """
Initiate network parameters
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"""
input_size = 3
hidden_size = 7
num_classes = 1
num_epochs = 40000
batch_size = 500
learning_rate = 0.001
logger = Logger('./logs')

mu = 0.03
sigma = 0.2
N = 5000
N2 = 200
T = 1.
steps = 2
samples = 5000
df_train = MakeTraindata(mu,sigma,N,steps,T,samples)
df_test = MakeTestdata(mu,sigma,N2,steps,T,samples)

In [ ]: """
Specify network structure and optimiser, loss function and learning rate
"""
class Network(nn.Module):

def __init__(self, input_size, hidden_size, num_classes):
super().__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size,hidden_size)
#self.linear3 = nn.Linear(hidden_size, num_classes)

def forward(self, x):
out = F.elu(self.linear1(x))
#out = F.elu(self.linear2(out))
out = self.linear2(out)
return out

model = Network(input_size, hidden_size, num_classes)
criterion = nn.MSELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
logger = Logger('./logs')

In [ ]: """
Training data with epoch
"""
loss_list = []
for epoch in range(num_epochs):

x_b, pT_b = Batch(df_train, batch_size, shuffle=True)
outputs = model(x_b)
loss = criterion(pT_b, outputs)
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optimizer.zero_grad()
loss.backward()
optimizer.step()

if epoch%batch_size == 0:
print(epoch, loss.item())
info = {'loss': loss.item()}

for tag, value in info.items():
logger.scalar_summary(tag, value, epoch)

for tag, value in model.named_parameters():
tag = tag.replace('.', '/')
logger.histo_summary(tag, value.data.cpu().numpy(), epoch+1)
logger.histo_summary(tag+'/grad', value.grad.data.cpu().numpy(),

epoch+1)

In [ ]: """
Make test data, and plot the test data
"""
df_test = MakeTestdata(mu,sigma,N2,steps,T,samples)
test_batch, pT = Batch(df_test,N2,shuffle=False)
w1_list = np.linspace(0.,1.,N2)
with torch.no_grad():

model_reward = np.reshape(model(test_batch).numpy(),N2)
plt.scatter(w1_list, pT)
plt.plot(w1_list,model_reward,color = "r")
plt.xlabel("Portfolio weight on stock")
plt.savefig('gbm_fit1.png')
plt.show()
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