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Abstract

Over the past decade, compressive sensing and deep learning have emerged
as viable techniques for reconstruction of images using far fewer samples
than what Shannon’s sampling theory dictates. The two methods are
fundamentally quite different. Compressive sensing relies heavily on the
existence of a sparsifying transform, such as the discrete wavelet transform.
Deep learning, on the other hand, tries to generalize large amounts of
training data and therefore avoids a priori assumptions about the image.

While we for compressive sensing have good mathematical results
which allow us to control the recovery error, the same cannot be said about
deep learning. Here we have no bounds on the error, and it is unclear
whether or not stable recovery is possible. Such bounds are important
to guarantee stable recovery, which in turn is vital for applications like
medical imaging. Otherwise we risk worst-case scenarios such as a tumor
showing up in an MRI scan of a healthy patient if they move a few
millimeters.

In this thesis we look for connections between the two fields. We
consider algorithms for solving compressive sensing, and see that they can
be written as neural networks. Because of this, we can for the first time
test the stability of these algorithms when exposed to worst case noise.
We find promising indications for the stability of certain algorithms. In
addition, we see a speedup of several orders of magnitude when we run
the algorithms as neural networks.
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Preface

While the code providing the main results of this thesis is not included in the
text, the author stress that it constitutes a body of work that should not be
diminished. The code provides implementations of two optimization algorithms
and code related to the setup of this thesis.

The code is written in Python 3. Most notable are the implementations
that use the deep learning framework Tensorflow. This, along with theoretical
observations made in this thesis, allows us to easily run stability tests on the
algorithms. This has previously been done only for learned neural networks.

Another beneficial consequence of the Tensorflow implementations is that
we with ease can run the algorithms on GPUs. This improves the running
time an order of magnitude for reasonably large inputs, compared to the CPU
implementations.

To make the theoretical setup work, a Tensorflow implementation of the
discrete wavelet transform was needed. In collaboration with Mathias Lohne,
a Python package to compute the discrete wavelet transform has also been
developed.

The optimization library is available as a python package at https://github.
com/UiO-CS/optimization, and the wavelet library at https://github.com/UiO-
CS/tf-wavelets. Code for generating some of the figures in this thesis can be
found at https://github.com/krimha/thesis_code
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CHAPTER 1

Introduction

Since the mid-2000s, sparse regularization techniques such as compressive sensing
have been preferred for solving inverse problems in medical imaging. In recent
years, the field of deep learning has revolutionized the artificial intelligence
community, and has therefore emerged as a competitor to these techniques. It
is known that neural networks are good function approximators, but recent
discoveries have made it clear that even state of the art deep learning methods
are prone to extreme stability issues. Even tiny perturbations of the input yield
drastic changes in the output [Ant+19; Hua+18; MFF16; Sze+13]. These issues
make neural networks less trustworthy, and less suitable for critical applications
such as medical imaging. For compressive sensing, we have theoretical results
guaranteeing stable recovery, and it is therefore considered the champion in
this regard.

A major downside is that for any input, solving the compressive sensing
problem takes considerably longer than evaluating a trained neural network.
The deep learning literature tends to focus on this advantage of deep learning
[Sch+18], without mentioning the positive properties of compressive sensing.

Due to the increasing popularity of deep learning, several frameworks for
high-level languages have been developed to ease the implementation of neural
networks on Graphical Processing Units (GPU). A notable example is Tensorflow
[TF]. This makes GPU programming possible for anyone with experience with
scientific computing in Python, and without the technicalities of relatively
low-level languages like C or C++.

The usefulness of these frameworks is not limited to deep learning. Indeed,
we shall see that some iterative algorithms used for compressive sensing have
structures resembling deep neural networks when unrolled. Therefore, it is
possible to implement them on the GPU using Tensorflow. An immediate
advantage of this, is that we will get a notable speedup when running the
algorithms compared to when they are running on a Central Processing Unit
(CPU). This also allow us to make a more fair comparison between compressive
sensing and deep learning, as they now both can run on the same hardware,
using the same software.

Because a Tensorflow implementation makes it trivial to compute the gradi-
ent of the algorithms, we are able to perform worst case stability tests, which has
previously only been done on trained neural networks. The main contribution
of this thesis, is the first initial tests of worst case performance for wavelet
reconstruction with compressive sensing decoders.
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1. Introduction

1.1 Overview

The following is a brief description of each chapter

Chapter 2 provides an overview of compressive sensing. We show fundamental
results for when we can recover sparse vectors, and what optimization problems
we want to solve.

Chapter 3 talks briefly about the type of inverse problems encountered in
medical imaging. In particular, we consider magnetic resonance imaging, and
explain how we reach the setup considered for the remained of the thesis

Chapter 4 attempts to apply the theory from Chapter 2 to the medical
imaging problem described in Chapter 3. First we discuss how we can achieve
a sparse representation of images. The rest of the chapter discusses how we
can apply the traditional compressive sensing theory to imaging problems, and
what problems need to be addressed.

Chapter 5 gives a quick introduction to deep learning with neural networks
for image reconstruction. Most importantly the standard definitions, and the
theory that motivates their application to imaging.

Chapter 6 describes and proves the correctness of the two optimization al-
gorithms we will consider in this thesis: FISTA, and Chambolle and Pock’s
primal-dual algorithm.

Chapter 7 attempts to write the algorithms from Chapter 6 as neural networks,
introducing a class of neural networks that adapts to the input.

Chapter 8 demonstrates that the results from Chapter 7 provides successful
image reconstruction, and investigates the stability of the algorithms from
Chapter 6.

Chapter 9 summarizes the thesis, and emphasises natural directions for further
research.

2



CHAPTER 2

Classical compressive sensing
theory

2.1 Notation

Throughout this thesis, we will use the following notation: For convenience, we
define [N ] to be the set {1, 2, . . . , N}, and set a . b to mean that there is a
constant C independent of any other values such that a ≤ Cb.

For any vector x ∈ CN and index set S ⊆ [N ], we let xS denote either the
vector in CN that is equal to x on S and zero otherwise; or the vector in C|S|

that contain only the entries of x that are indexed by S. Which one of these
we are working with will be clear from context, or made precise if necessary.

2.2 Sparse solutions to underdetermined problems

Suppose we have a signal x ∈ CN and a matrix A ∈ Cm×N with m < N .
We want to recover x from y ∈ Cm, given by

y = Ax

This underdetermined linear system has an infinite number of solutions. To
correctly recover x from the measurements, we need more information about
x. The fundamental assumption in compressive sensing is sparsity. We call
a vector s-sparse if it has at most s nonzero entries. The following theorem
shows two equivalent conditions that are necessary and sufficient to recover any
s-sparse vector:

Theorem 2.1 ([FR13, p. 49]). Given A ∈ Cm×N , for every s-sparse vector, the
following points are equivalent:

(a) Every s-sparse vector x ∈ CN is the unique solution of Az = Ax.

(b) The null space kerA of A does not contain any 2s-sparse vectors other
than the zero vector.

(c) Every set of 2s columns of A is linearly independent.

Proof. (a) =⇒ (b): Assume that every s-sparse vector x is the unique solution
toAz = Ax. Let v ∈ kerA be a 2s-sparse vector. We can write v = x−z where

3



2. Classical compressive sensing theory

both x and z are s-sparse, with disjoint supports. Thus, we have Ax = Az,
which implies that x = z. Because they have disjoint support, they can only
be equal if v is he zero vector.

(b) =⇒ (a): Let x and z be two s-sparse vectors such that Ax = Az. Thus
x− z is in kerA. In addition, this vector is also in the null space. Therefore,
by assumption, it must be the zero vector.

�

This also tells us that we need m ≥ 2s to recover all s-sparse vectors.
Given the measurement vector, we are now able to recover x by solving the

optimization problem

min
z∈CN

‖z‖0 subject to Az = y (2.1)

This way of solving inverse problems unfortunately gives us some compu-
tational problems. The `0-minimization problem is NP-hard [FR13, p. 54],
and the time required will be unreasonably large to actually do it in practice.
Instead, we want to solve the problem arising from the convex relaxation of
(2.1), which is

min
z∈CN

‖z‖1 subject to Az = y (2.2)

This problem is referred to as basis pursuit. Clearly, this is an entirely
different problem, and we risk getting non-sparse solutions, even if the sensing
matrix satisfies the criterion set in Theorem 2.1. We need further requirements
onA to guarantee sparse solutions. One such property is the null space property:

Definition 2.2 (Null space property [FR13, p. 78]). A matrix A ∈ Cm×N is said
to satisfy the null space property relative to a set S ∈ [N ] if

‖vS‖1 < ‖vS‖1 for all v ∈ kerA \ {0}

Using this definition of the null space property, we reach the following result

Theorem 2.3 ([FR13, p. 79]). Given a matrix A ∈ Cm×N , every vector x ∈ CN

supported on a set S is the unique solution of (2.2) with y = Ax if and only if
A satisfies the null space property relative to S.

Proof. Suppose that we are given an index set S, and assume that every s-sparse
vector is the unique minimizer of ‖z‖1 subject to Az = Ax. Thus, for any
nonzero v ∈ kerA, we have that vS is the unique minimizer of ‖z‖1 subject to
Az = AvS . However, we also have that AvS = AvS which means that both
vS and vS are feasible. Therefore, we must have ‖vS‖1 < ‖vS‖1.

Conversely, assume that the null space property relative to S holds. Given x
and z such that x 6= z and Ax = Az. Thus, by setting v = x−z ∈ kerA\{0}
and using the null space property relative to S, we have

4



2.2. Sparse solutions to underdetermined problems

‖x‖1 = ‖x− zS + zS‖1
≤ ‖x− zS‖1 + ‖zS‖1
= ‖vS‖1 + ‖zS‖1
< ‖vS‖1 + ‖zS‖1
= ‖−zS‖1 + ‖zS‖1
= ‖z‖1

Which means that x is the optimal solution. �

If this holds for all S ∈ [N ] with at most s elements, we get that any s-sparse
vector can be recovered successfully by solving(2.2) if A satisfies the null space
property of order s.

We are also interested in a measure of how suitable a matrix is for successful
recovery. We call this measure coherence, and desire low values. Several
definitions exist, and one is given in Definition 2.4. This is known as the `1
coherence function

Definition 2.4 (`1-coherence function [FR13, p. 111]). Let A = [a1,a2, . . . ,aN ]
be a matrix in Cm×N . The columns ai satisfy ‖ai‖2 = 1. The `1-coherence
function µ1 : [N − 1]→ R is given by

µ1(s) = max
i∈[N ]

max

∑
j∈S

∣∣〈ai,aj〉∣∣, S ⊆ [N ], |S| = s, i /∈ S


The following result tells us what the coherence must be to guarantee

successful recovery. This is shown by demonstrating that it implies the null
space property.

Theorem 2.5 ([FR13, p. 515]). Let A ∈ Cm×N be a matrix with `2-normalized
columns. If

µ1(s) + µ1(s− 1) < 1 (2.3)

then every s-sparse vector x ∈ CN is exactly recovered from the measurement
vector y = Ax, with basis pursuit.

Proof. We will show that Equation (2.3) implies that for every nonzero v ∈ kerA
and S ⊆ [N ] with |S| = s, we have

‖vS‖1 < ‖vS‖1

In other words, that the null space property of order s is satisfied.
Let v ∈ kerA \ {0}, and S ⊆ [N ] with |S| = s. We denote the columns of

A as a1,a2, . . . ,aN , and the entires of v as v1, . . . , vN .
A key observation, is to see that for any i ∈ [N ] we can write

0 = 〈Av,ai〉 =
N∑
j=1

vj〈aj ,ai〉

5



2. Classical compressive sensing theory

And therefore, by isolating the ith term,

vi〈ai,ai〉 = −
N∑

j=1,j 6=i
vj〈aj ,ai〉

Thus, by splitting the sum over [N ] into two sums over S and S, we can write
vi as

vi = vi〈ai,ai〉 = −
∑
l∈S

vl〈al,ai〉 −
∑

j∈S,j 6=i
vj〈aj ,ai〉

By the triangle inequality, we have

|vi| =
∑
l∈S

|vl||〈al,ai〉|+
∑

j∈S,j 6=i
|vj ||〈aj ,ai〉|

By summing over S, we get

‖vS‖1 =
∑
i∈S
|vi| ≤

∑
i∈S

∑
l∈S

|vl||〈al,ai〉|+
∑

j∈S,j 6=i
|vj ||〈aj ,ai〉|


=
∑
l∈S

(
|vl|
∑
i∈S
|〈al,ai〉|

)
+
∑
j∈S

|vj | ∑
i∈S,i 6=j

|〈aj ,ai〉|


≤ µ1(s)‖vS‖1 + µ1(s− 1)‖vS‖1

This gives

(1− µ1(s− 1))‖vS‖1 ≤ µ1(s)‖vS‖ < (1− µ1(s− 1))‖vS‖

And thus, ‖vS‖1 < ‖vS‖1

�

While the coherence seems to work well, better performance can be obtained
by a related property known as the restricted isometry property (RIP). It is
given by

Definition 2.6 ([FR13, p. 133]). For a matrix A ∈ Cm×N , the s-th restricted
isometry property constant δs = δs(A) is the smallest δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 (2.4)

for all s-sparse vector x ∈ CN .

It can be shown that if the restricted isometry constant of a matrix A ∈
Cm×N is small, this property will imply the null space property, and thus
guarantees successful recovery. The motivation for definition coherence and
RIP, instead of simply working with the null space property, is that it makes
the construction of suitable matrices easier. Showing that a specific matrix is
suitable is difficult. On the other hand, large classes of random matrices are
known to satisfy the RIP [FR13, p. 141].

6



2.3. Alternative optimization problems

2.3 Alternative optimization problems

So far, we have considered solving the compressive sensing problem with basis
pursuit. Because we need them later, we will now introduce two different
optimization problems that can be used in compressive sensing.

First, we generalize basis pursuit by assuming that the measurements are
noisy, which means that y = Ax + e. This is necessary when considering a
practical setup. If we assume that ‖e‖2 ≤ η, we want to solve the following
optimization problem, known as Quadratically constrained basis pursuit:

min
z∈CN

‖z‖1 subject to ‖Az − y‖22 ≤ η (2.5)

Where η ≥ 0. For λ ≥ 0, we have the following, which we will refer to as
LASSO.

min
z∈CN

λ‖z‖1 + ‖Az − y‖2 (2.6)

To show the equivalence between these problems, we will also consider
Constrained LASSO.

min
z∈CN

‖Az − y‖2 subject to ‖z‖1 ≤ τ (2.7)

The above problems are equivalent. Assuming that x is a minimizer of one
of the problems above, we can show that x is also a minimizer of the other
two problems. This can be done by finding appropriate values of the tuning
parameters η, λ and τ . The appropriate values will depend on the minimizer x.

Theorem 2.7 ([FR13, p. 64]).

(a) If x is a minimizer of the optimization problem (2.6) with λ > 0, then
there exists η ≥ 0 such that x is a minimizer of the problem (2.5)

(b) If x is a unique minimizer of the problem in (2.5) with η ≥ 0, then there
is a τ ≥ 0 such that x is a unique minimizer of (2.7).

(c) If x is a minimizer of (2.7) with τ > 0, then there exists a λ ≥ 0 such
that x is a minimizer of the optimization problem (2.6).

Proof. Let x be a minimizer of Equation (2.6). We set η = ‖Ax − y‖2.
Using that x is a minimizer, all z that are feasible for (2.5), i.e. such that
‖Az − y‖2 ≤ η, gives

λ‖x‖1 + ‖Ax− y‖22 ≤ λ‖z‖1 + ‖Az − y‖22 ≤ λ‖z‖1 + ‖Ax− y‖22

This gives us, after simplifying the above expression, that ‖x‖1 ≤ ‖z‖1, and
thus, x is also a minimizer of (2.5)

Next, let x be a unique minimizer of (2.5). We pick τ = ‖x‖1. To show that
x is a unique minimizer of (2.7), pick a z 6= x such that ‖z‖1 ≤ τ . Because
‖z‖1 ≤ ‖x‖1 and x is the unique minimizer of (2.5), z cannot be a feasible
point. Thus ‖Az − y‖2 > η ≥ ‖Ax− y‖2, and x is a minimizer of (2.7)

7



2. Classical compressive sensing theory

Finally, let x] be a minimizer of (2.7). This optimization problems is
equivalent to

min
z∈CN

‖Az − y‖22 subject to ‖z‖1 ≤ τ

The Lagrange function of this problem is

L(x, ν) = ‖Ax− y‖22 + ν(‖x‖1 − τ)

We have strong duality, and therefore there exist a dual optimal ν]. The saddle
point property implies L(x], ν]) = L(x, ν]) for all x, and so x] minimizes the
mapping x 7→ L(x, ν]).

With x] being a minimizer of the Lagrange function, it will also minimize
(2.6), with λ = ν], because the constant term −ν]τ does not affect the optimal
solution, and can therefore be discarded. By omitting the squaring of the
`2-norm, we have reached out conclusion. �

Remark 2.8. Claiming that the optimization problems discussed in Theorem 2.7
are equivalent is a bit of a misnomer, and a word of caution is in order. Most
notably, we observe that the problems have vastly different sets of feasible
points. Thus, we in general risk getting a infeasible problem if we try to covert
from one to the other [FR13, p. 563].

In addition, it is important to note that the selection of the parameters in
the proof is directly related to the minimizer(s). It also depends implicitly on A
and y, which makes it clear that this theorem is only applicable on a case by case
basis, and does not provide any general way to convert between the problems. In
fact, we have to find the minimizer before converting the optimization problem,
which defeats the purpose. Thus tuning of the parameters must be done in each
case separately. For our purposes, this theorem is only useful to see that the
problems are related, and is otherwise of little practical interest.
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CHAPTER 3

Inverse problems in medical
imaging

Inverse problems are common in medical imaging. Instead of directly sampling
in the spatial dimension, some form of linear measurements are often used.
Thus, we have measurements on the form

y = Ax (3.1)

where the matrix A ∈ Cm×N models the sampling modality, and x ∈ CN is the
unknown signal that we want to recover.

Clearly, if m = N and A is invertible, recovering x is quite straightforward.
However, obtaining all of the required measurements might be an expensive or
time consuming process. Therefore, we are motivated to recover x from fewer
measurements.

This needs to be done in a stable way, so that we can guarantee conditions
where the signal will be successfully recovered. These guarantees are important
for doctors to give a correct diagnosis. We risk false negatives, as noise and
artifacts can obscure e.g. a tumor, and likewise false positives, as artifacts
might resemble tumors.

3.1 Magnetic resonance imaging

Already in the first papers introducing compressive sensing [CRT06; Don06],
magnetic resonance imaging (MRI) was proposed as an application. To motivate
our mathematical model, we will look at a simple description of MRI, based on
[Cur+13; FR13; Lus+08].

Unlike digital photography, where the image only takes a moment to be
captured, imaging with MRI is a quite time consuming process. Patients are
expected to lie still for several minutes, or even hours as the measurements
are taken. The reason is that a large number of measurements are needed
when sampling with a strategy designed according to the Shannon–Nyquist
sampling theorem. Each measurement is relatively time consuming, and the
entire process might take a large amount of time. This relationship between
time and resolution motivates application of compressive sensing to MRI.

What makes MRI possible, is the fact that the human body in large parts
consist of water and fat, which both contains a lot of hydrogen. The positively
charged protons found in the nuclei of these hydrogen atoms have a spin with
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3. Inverse problems in medical imaging

precession (i.e. the axis of rotation also rotates). This gives each proton a
magnetic moment.

MRI aims to visualise e.g. the proton density by detecting their magnetic
moments. Unfortunately, the orientations of the rotations is random, and the
net magnetic moment for the body is therefore zero. A strong static magnetic
field is applied to align the spins. This causes the protons to precess either
parallel or anti-parallel to the static field. Depending on the orientation, the
protons are said to be in the low or high energy state, respectively.

A larger portion of the protons are in the low energy state than the high
energy state, yielding a small magnetic moment in the direction of the magnetic
field. Because the protons precess out of phase, there is no magnetic moment
transverse to the static field. The net magnetic moment is therefore parallel to
the static field and not detectable.

To obtain a detectable magnetic moment, we excite the protons with a Radio
Frequency (RF) signal. If the frequency of the signal matches the precession
frequency of the protons, the system will resonate. Some protons in the low-
energy state will “flip” and go to the high-energy state. This cancels the
magnetic moment parallel to the static field. In addition, the protons will start
spinning in phase, yielding a magnetic moment rotating transverse to the static
field. This spinning magnetic field can be detected by the current it induces
in a receiver coil. When the RF signal is turned off, the above process occur
in reverse. The protons precess out of phase, and the protons moved to the
high-energy state will go back to the low-energy state.

An immediate problem is that we don’t know where on the imaging subject
the RF signal is coming from. Luckily, this can be found by utilizing the fact
that the precession frequency is proportional to the strength of the magnetic
field. We can therefore superimpose additional magnetic fields, referred to
as gradient fields, that vary linearly with position. Thus, different parts of
the subject will resonate with different frequencies. We are then able to use
the gradient fields to determine where the RF signals are coming from. We
denote the gradient by G : [0, T ]→ R3. The precession frequency then becomes,
according to Larmors equation

ω(z) = κ(B + 〈G, z〉), z ∈ R3

Where κ is a physical constant, and we assume one gradient field in each
Cartesian direction in the 3D case. We are able to code the location in space
because the gradients induce a location-dependent linear phase dispersion. The
total signal equation becomes

s(t) =
∫
R3
m(r)e−i2π〈k(t),r〉 dr (3.2)

Where k(t) is given as

k(t) = κ

∫ t

0
G(τ) dτ

We recognize Equation (3.2) as the 3D-Fourier transform of m(r) at the spatial
frequency k(t).

Depending on what we set G(t) to be, we decide what frequencies we
sample. Setting G(t), and by extension k(t). The acquisition process consists

10
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of repeating the process of exciting the protons, and recording the signal L
times along the L curves k1, . . . ,kL.

A common discretization is sampling along lines in the Cartesian spatial
frequency space. The discretization of these lines means sampling in a Cartesian
grid. Writing out Equation (3.2) in this case, gives us the Discrete Fourier
Transform (DFT), and the image can be recovered by calculating the Inverse
Discrete Fourier Transform (IDFT).

3.2 The mathematical model

In the previous section, we saw that if we sample cleverly, the process of
obtaining the MRI signal is essentially taking the Fourier transform of the
desired signal. Therefore, our mathematical MRI machine is going to be the
DFT.

Definition 3.1 (The unitary DFT matrix). Let N ∈ N. The discrete Fourier
transform (DFT) matrix is the matrix F ∈ CN×N with entries given as

(F )nk = 1√
N
e−2πnk/N

Further, we will formalize the sense of subsampling. We define a general
sampling pattern.

Definition 3.2 (Sampling pattern). For an N ∈ N, we define a sampling pattern
as a subset Ω of [N ].

For a given sampling pattern Ω, we define the projection matrix PΩ as the
rows from the identity matrix I ∈ CN×N that are indexed by Ω.

The setup for subsampled MRI we are going to consider is as follows:

Definition 3.3 (Setup for MRI). For N ∈ N, pick a sampling pattern Ω ⊆ [N ]
with |Ω| = m. We set the measurement matrix for MRI to be

A := PΩF ∈ Cm×N

11





CHAPTER 4

Compressive sensing for medical
imaging

This chapter considers the suitability of compressive sensing when it comes to
medical imaging. In particular, we consider the MRI setup described in the
previous chapter. We first investigate how we are going to satisfy the sparsity
assumption made in Chapter 2. We also discuss problems arising from our
setup, and how to adapt the compressive sensing theory to obtain successful
recovery.

4.1 Sparsity in images using wavelets

A major challenge when applying compressive sensing to imaging problems,
is that images rarely are sparse in the standard basis. Sparse images are not
desirable, as zeros in the standard basis are manifested as black pixels. If an
image contains a lot of black pixels, they will rarely contain useful information.

The Discrete Wavelet Transform (DWT) comes to our rescue. The DWT is
applied in image compression to achieve a sparse representation, allowing us to
keep only the important components of the image. A notable example of this is
the JPEG-2000 standard [SCE01].

Multiresolution analysis

Instead of representing a function as a series of “global” sinusoidal waves, like
the Fourier transform does, wavelet decomposition also lets us see where in the
signal we have the different components. This allows us to approximate the
signal better with fewer components, and leads to better sparsity. This is done
by considering a scaling function φ : R→ R, and we introduce the notation

φj,k = 2j/2φ(2jx− k) (4.1)

By varying j and k, we translate and dilate φ. We want to use this to obtain
an orthonormal basis for L2(R). For the remainder of the thesis, we will assume
that we are working with orthonormal bases.

Before proceeding, we need the definition of a Riesz basis

Definition 4.1 (Riesz basis [Chu92]). The set {φj,k} is a Riesz basis basis for
L2(R) if the span of the functions are dense in L2(R), and that there are

13



4. Compressive sensing for medical imaging

constants A,B with 0 < A ≤ B <∞ such that

A‖{cj,k}‖
2
`

2 ≤

∥∥∥∥∥∥
∞∑

j=−∞

∞∑
k=−∞

cj,kφj,k

∥∥∥∥∥∥
2

2

≤ B‖{cj,k}‖
2
`

2

For all {cj,k} such that ‖cj,k‖2`2 :=
∑
j∈Z

∑
k∈Z|cj,k|

2 <∞

A motivation for representing functions in bases formed by (4.1) is that it
allows us to consider the signal at multiple levels of detail. This concept is
formalized in the definition of multiresolution analysis given below.

Definition 4.2 (Multiresolution Analysis [Chu92; Mal09]). We call a sequence
{Vj}j∈Z of closed subspaces of L2(R) a multiresolution anaylysis (MRA) if all
of the following points hold.

• Vj ⊂ Vj+1 for all j ∈ Z

• f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1 for all j ∈ Z

•
⋂
j∈Z Vj = {0}

• closure
(⋃

j∈Z Vj

)
= L2(R)

And there exist a function φ ∈ V0 such that {φ(x− n)}n∈Z is a Riesz basis for
V0.

The term scaling function is defined as follows

Definition 4.3 (Scaling function [Chu92]). A function φ ∈ L2(R) is called a
scaling function, if the subspaces Vj ⊂ L2(R), defined by

Vj = closure{φj,k | k ∈ Z}, j ∈ Z

Gives rise to an MRA with {φ(x− k) | k ∈ Z} as a Riesz basis of V0. We say
that φ generates a multi resolution analysis {Vj} of L2(R).

Because Vj ⊂ Vj+1, multiresolution analysis allows us to represent an f ∈ Vj
in a finer, more detailed space Vj+1. Going the other way, projecting functions
from Vj+1 onto Vj , we will lose information about f . To keep the information,
we define the set Wj as the orthogonal complement of Vj in Vj+1. We can then
decompose any f ∈ Vj+1 into one component in Vj and Wj . This gives the
relation

Vj+1 = Vj ⊕Wj

where ⊕ denotes the direct sum. As a consequence of this, we also have

L2(R) = closure

 ∞⊕
j=−∞

Wj


Thus, we can represent any function both in terms of basis functions of

{
Vj
}
j∈Z,{

Wj

}
j∈Z or a combination of these function spaces.
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4.1. Sparsity in images using wavelets

The relation depends on the conjugate mirror filters, whose coefficients arise
from expressing φ ∈ V0 in V1 i.e.

φ(x) =
∞∑

k=−∞
h[k]
√

2φ(2x− k) (4.2)

Where

h[k] =
〈
φ(x),

√
2φ(2x− k)

〉
(4.3)

Due to the relation between the spaces Vj and Wj , we are able to identify
an orthonormal basis for Wj using the conjugate mirror filter h.

Theorem 4.4 ([Mal09, pp. 278–279]). Let φ be a scaling function, h the cor-
responding conjugate mirror filter, and ψ be the function with the Fourier
transform

ψ̂(2ω) = 1√
2
φ̂(ω)ĝ(ω)

with
ĝ(ω) = e−2πiωĥ∗(ω + 1

2)

being the Fourier transform of g and h∗ denoting the complex conjugate. Then,
for any j,

{
ψj,k

}
k∈Z2 is an orthonormal basis for L2(R), where we define

ψj,k = 2j/2ψ(2jx− k)

We refer to ψ as the mother wavelet.

Vanishing moments

The main motivation behind applying wavelets to our problem is to achieve
sparsity, we need to investigate under which conditions we have sparsity in
wavelets. Multiresolution analysis allows us to repeatedly decompose our func-
tion into detail spaces. We will therefore find conditions where the coefficients
of the functions in the detail spaces are zero. In other words that the inner
products are zero.

〈f, ψk,n〉 ≈ 0 ∀ψk,n.
We consider inner products with ψk,n because after a multilevel wavelet trans-
form, a majority of the coefficients will belong to the detail spaces.

A key property in achieving this is the number of vanishing moments

Definition 4.5 (Vanishing moments [Mal09, p. 208]). We say that ψ as k van-
ishing moment if ∫ ∞

−∞
tlψ(t)dt = 0 (4.4)

for l = 0, . . . , k − 1

Equation (4.4) tells us that ψ having k vanishing moments is equivalent to
ψ being orthogonal to polynomials up to degree k− 1. Thus, the corresponding
scaling function φ can be used to express polynomials up to degree k − 1.

Because polynomials are good at approximating smooth functions, wavelets
with several vanishing moments will also work well for approximation.
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4. Compressive sensing for medical imaging

The discrete wavelet transform

We can now define the discrete wavelet transform

Definition 4.6 (Discrete wavelet transform). Let Φj = {φj,n}n∈Z, and likewise
Ψj = {ψj,n}n∈Z. Them-level discrete wavelet transform (DWT) of f ∈ Vm is the
change of basis from Φm to (Φ0,Ψ1, . . . ,Ψm−1). Similarly, we define the inverse
discrete wavelet transform as the change of basis from (Φ0,Ψ1, . . . ,Ψm−1) to
Φm

The next result shows how to compute the DWT. We define

aj [k] = 〈f, φj,k〉, dj [k] = 〈f, ψj,k〉

to denote the coefficients of f in the resolution and detail spaces Vj and Wj ,
respectively. In addition, we introduce the notation h̄[k] = h[−k] for any filter.
The relationship between the coefficients of the coefficients of the spaces are
given below.

Theorem 4.7 ([Mal09, p. 298]). Let f ∈ Vj. The decomposition of f into Vj−1
and Wj−1 is given by

aj−1[k] =
∞∑

n=−∞
h[n− 2k]aj [n] = aj ∗ h̄[2k]

dj−1[k] =
∞∑

n=−∞
g[n− 2k]aj [n] = aj ∗ ḡ[2k]

where x ∗ y denotes convolution.
The reconstruction back into Vj becomes

aj [k] =
∞∑

n=−∞
h[k − 2n]aj−1[n] +

∞∑
n=−∞

g[k − 2n]dj−1[n]

In applications, we are rarely working directly with the continuous signal
f . Rather, we have discrete samples. Instead of working on L2(R), we scale
the space down to L2([0, 1]), and observe N equispaced samples f(k/N) for
k = 0, 1, . . . , N − 1.

Because it makes the discrete wavelet transform easier to work with, we
are going to assume that N = 2R for some R ∈ N. Further, we will assume
that f(k/N) ≈ 〈f, φk,R〉, which is a fair approximation if the scaling functions
generate an orthonormal basis, as the inner product will be a weighted average
[Mal09, p. 301]. However, it is worth noting that we in fact are committing
what is known as the wavelet crime. That is, we are assuming that the function
samples are coefficients in some space VR. Usually, we won’t run into serious
problems because of this, but we might risk serious errors [AH16].

Performing the DWT on the finite aR[k] will give us problems on the edges.
The easiest way to deal with this, is to extend the signal periodically, or
equivalently, replace the convolutions in Theorem 4.7 with circular convolutions.

Theorem 4.7 motivates a fast and straightforward way of computing the
DWT and IDWT. Indeed, if we have the coefficients aj , the computation of the
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4.2. Applying classical compressive sensing to MRI

DWT is applying the filters h̄ and ḡ, and downsample, keeping only every other
entry. Likewise, we see that the IDWT can be computed by first upsampling
the coefficient vectors, and then apply the filters h and g. The complexity of
this algorithm becomes O(N).

Setup for compressive sensing

With the knowledge of wavelets’ role in achieving sparsity in our signal, we will
aim to instead recover the wavelet coefficients. When these are successfully
recovered, we can easily find the actual signal by computing the IDWT.

The optimization problem we want to solve, as previously discussed com-
pressive sensing becomes, according to e.g. [RHA14]

min
z∈CN

‖z‖1 subject to ‖AW−1z − y‖2 ≤ η (4.5)

Which is Equation (2.5) where the constraint does not only include the
sensing matrix A, but also the IDWT matrix W−1. It is worth noting that the
measurement vector y is obtained only from multiplication with A, and not
with AW−1.

Next, we consider this setup, and see how well it fits the previously discussed
compressive sensing theory, and potentially how it can be improved.

4.2 Applying classical compressive sensing to MRI

In the classical compressive sensing theory, the fundamental requirement for
successful recovery is sparsity. No assumptions about the non-zero entries of
the signal x are made, and thus theory has been developed for uniform random
subsampling.

As a measure of the suitability of the measurement matrix A for successful
recovery, we have the coherence. In the literature, many different definitions of
the coherence are used, such as Definition 2.4. We will consider the following
definition:

Definition 4.8 (coherence). Let U = (uij) ∈ CN×N be a unitary matrix. The
coherence of U is

µ(U) = max
i,j
|uij |

2 ∈ [1/N, 1]

By assuming that U is unitary, the coherence µ(U) tells us something about
how much the values of U are “spread out”. Further, this plays an important
role when it comes to how many samples we need to recover the signal with
high probability.

Theorem 4.9 ([AH16]). Let U ∈ CN×N be a unitary matrix, and set ε ∈ (0, 1).
Assume that x ∈ CN has support S ⊆ [N ] with |S| = s.

If the number of samples m ∈ N satisfies

m & µ(U) ·N · s ·
(

1 + log ε−1
)
· logN

And the elements of Ω ⊆ [N ] with |Ω| = m are chosen uniformly at random.
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4. Compressive sensing for medical imaging

Then, x can be recovered with probability at least 1− ε from measurements
y = PΩUx by solving

min
z∈CN

‖z‖1 subject to ‖y − PΩUz‖2 ≤ η

According to Theorem 4.9, low coherence is crucial to recover x successfully
from few samples. Unfortunately, the sensing operators in medical imaging,
such as the Fourier-Wavelet setup discussed above, are often coherent, meaning
that µ(U) = 1. The theory then says that full sampling is required. The
classical compressive sensing theory is therefore not suitable for this type of
problems.

4.3 Changing the sampling operator

In Chapter 2 we developed theory that guaranteed recovery of sparse vectors.
However, as we have seen, the theory does not work well when applied to MRI
due to the high coherence of the sensing matrix.

We know that large classes of matrices with low coherence exist. For instance
matrices with entries draw from a Gaussian distribution [FR13, p. 279]. We
might be tempted to use such matrices instead of the previously described setup.
Unfortunately, this is not possible due to the following reasons:

Physical limitations

We saw in Chapter 3, that the sensing matrix arises from the sampling modality.
Magnetic resonance imaging works by sampling the continuous Fourier transform,
and it is reasonable to choose the sampling strategy to be such that the resulting
matrix is the DFT. Although we have some freedom to select which Fourier
samples we want, this is not flexible enough to represent any general matrix.

Thus, while the theory allows us to set the sampling operator to whatever
we want, we can’t always do this in practice due to physical limitations of the
sampling modality.

Computational issues

A more general problem with using arbitrary matrices in compressive sensing
is directly related to computing. Most notably when it comes to storage. For
instance, assume that we are working with images with a size of one megapixel
(106 pixels). Then the signal is a vector x ∈ R106

. The sensing matrix must
therefore have a million columns. Assuming that we sample only 12.5% of the
rows, the resulting matrix takes 1 TB of memory, assuming that the entires are
64-bit floating point number. Working with matrices of this size quickly becomes
difficult. They cannot be stored in memory. As this is only a moderately sized
setup, the problem becomes even more evident when increasing the size or
number of samples. This is both due to the storage problem, and the additional
fact that a matrix-vector multiplication is computed in O(mN) time.

Using the DFT matrix, on the other hand, has a quite substantial advantage
over general matrices. It can be computed efficiently, using the Fast Fourier
Transform (FFT). We solve the problems mentioned above quite easily. Not
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4.4. Structured compressive sensing

only does the FFT not realize the Fourier matrix, which allows us to compute
the DFT of even large signals without using much memory, but also does so
quickly, in O(N log2N) time. We also get similar advantages from using the
discrete wavelet transform, as it can be computed in O(N).

4.4 Structured compressive sensing

We have seen that even though the signals we are trying to recover in MRI are
sparse, the setup does not perform well according to the classical compressive
sensing theory due to high coherence. However, our setup has the advantage
that it makes computation possible. Therefore, we would rather improve upon
the theory rather than modify the setup. Enter structured compressive sensing.

As a motivation, consider the wavelet transform of a signal. The signal is
sparse, but the sparsity differs in different parts. In the wavelet case, we also
have a clear structure. The wavelet transform is sparse for the detail spaces,
while the nonzero coefficients exist among the low resolution coefficients, causing
the image to not be sparse at all in this region. Below, we will generalize several
of the definitions from Chapter 2, to allow structure. Therefore, we can for
instance move away from the notion of global sparsity to sparsity in levels.

Definition 4.10 (Sparsity in levels). Let x ∈ CN . For r ∈ N, set the sparsity
levels M = (M1, . . . ,Mr) ∈ Nr and sparsities s = (s1, . . . , sr) ∈ Nr, with
sk ≤Mk −Mk−1, k = 1, . . . , r, where M0 = 0. We say that x is (s,M)-sparse
if, for each k = 1, . . . , r, the sparsity band

∆k = supp(x) ∩ {Mk−1 + 1, . . . ,Mk}

satisfies |∆k| ≤ sk. We denote the set of (s,M)-sparse vectors by Σs,M .

Likewise, this motivates a similar definition for structured sampling.

Definition 4.11 (Multilevel random subsampling [AL]). For r ∈ N let N =
(N1, . . . , Nr) where 1 ≤ N1 < · · · < Nr = N and m = (m1, . . . ,mr), where
mk ≤ Nk − Nk−1 for k = 1, . . . , r and N0 = 0. For each k = 0, . . . , r let
tk,1, . . . , tk,mk

be drawn uniformly and independently from {Nk−1 + 1, . . . , Nk},
and set Ωk =

{
tk,1, . . . , tk,mk

}
. If Ω = ΩN ,m = Ω1 ∩ · · · ∩ Ωr we refer to Ω as

an N ,m-multilevel subsampling scheme.

Remark 4.12. We emphasise that Definition 4.11 allows us to sample the same
point multiple times. Sampling uniformly and independently in each level,
makes the analysis easier [AH19, pp. 190–191] , as we are working with several
independent, identically distributed random variables. For practical purposes,
on the other hand, this is not desirable. Because we allow ourselves to only
take a limited number of samples, we clearly would want to obtain as much
information as possible. Repeating the same point twice is therefore wasteful.

Not only is there a structure in the sparsity of the signal, but also in the
coherence of the sensing matrix. At this point, we have only considered the
global coherence. Because this considers the matrix as a whole, we do not know
if there is a certain part of the matrix that gives the high coherence, or if high
valued entries are scattered around different places in the matrices.
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4. Compressive sensing for medical imaging

Figure 4.1: The coherence between the Fourier matrix and the DB4 wavelet
bases

As seen in Figure 4.1 only a few rows in the sensing matrix contributes to
the high coherence. To investigate this further, one might want to look at the
coherence of submatrices. This motivates coherence in levels

Definition 4.13 (Coherence in levels). Let N = (N1, . . . , Nr) be the sampling
levels, and M = (M1, . . . ,Mr) be the sparsity levels. If U ∈ CN×N is an
isometry, The (k, l)th local coherence is given as

µk,l = max
{
|Uij |

2 : i = Nk−1 + 1, . . . , Nk, j = Ml−1 + 1, . . . ,Ml

}
As previously mentioned, several definitions can be found for the global

coherence. This is also the case for local coherence in levels. The definitions
are often similar, but not necessarily equivalent.

The above definition is chosen because we are concerned with uniform
recovery guarantees. We will investigate under which conditions we can recover
any (s,M)-sparse vector.

A sufficient requirement in the classical compressive sensing theory is the
restricted isometry property (RIP). Below is a more general definition, which
allows levels.

Definition 4.14 (RIP in levels [AL]). Let s,M be a sparsity pattern, and
A ∈ Cm×N with m < N . The sth restricted isometry constant in levels (RICL)
δs,M is the smallest δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22, ∀x ∈ Σs,M

A is said to satisfy the restricted isometry property in levels (RIPL) of order
(s,M) if 0 < δs,M < 1.

Indeed, this gives us stable and robust recovery of (s,M)-sparse vectors.
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Theorem 4.15 ([AL]). Suppose that A ∈ Cm×N satisfies the RIPL of order
(2s,M) with constant

δ(2s,M) <
1√

r(√ρ+ 1/4)2 + 1

where
ρ = ρ(s,M) = max

k,l=1,...,r
{sk/sl}

Let x ∈ CN and y = Ax+e where ‖e‖2 ≤ η. Then, for any minimizer x∗ ∈ CN

of
min
z∈CN

‖z‖1 subject to ‖Az − y‖2 ≤ η

we have
‖x∗ − x‖1 . σs,M (x) +

√
sη (4.6)

and

‖x∗ − x‖2 .
(

1 + (rρ)1/4
)σs,M (x)
√
s

+ (1 + (rp)1/4)η (4.7)

where s = s1 + · · ·+ sr

Theorem 4.15 gives us an interesting result. Looking at the performance
guarantees (4.6) and (4.7), we see the error is bounded by the best (s,M)-sparse
approximation, and the level of noise η. This means that in the case where A
satisfies the RIPL, x is (s,M)-sparse, and there is no measurement error, we
are able to recover x exactly.

Another important thing to take away from this theorem, is how the error
changes in terms of the noise level η. For practical applications, we must allow
some error, but we need to ensure that this does not have drastic effects on
the output. Indeed, we see that the error scales linearly with the error, which
makes the output easier to trust.

The constant ρ depends on the sparsity pattern. A large value for ρ means
that at least two sparsity levels have a very different number of nonzero entries.
This means that the nonzero entries are not very uniformly distributed. This
leads to a stricter requirement, namely that the RIPL constant δs,M becomes
smaller. At the same time, the error estimate becomes bigger, and the recovery
can get worse.

We will now need to make sure that our setup satisfies the RIPL. Let
U ∈ CN×N be a unitary matrix. We consider a matrix on the form

A =


1/√p1PΩ1

U
1/√p2PΩ2

U
...

1/√prPΩr
U

 ∈ Cm×N (4.8)

Where pk = mk

Nk−Nk−1
for k = 1, . . . , r, and m = m1 +m2 + · · ·+mr

Theorem 4.16 (Subsampled matrices and the RIPL I [AL]). Let U ∈ CN×N be
a unitary matrix, r ∈ N be the number of sampling levels, and 0 < ε, δ < 1. Let
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Ω = ΩN ,m be an (N ,m)-multilevel sampling scheme, and M and s be sparsity
levels and local sparsities respectively. Suppose that

mk & δ
−2 · (Nk −Nk−1) ·

(
r∑
l=1

µk,l · sl

)
·
(
r log(2m) log(2N) log2(2s) + log

(
ε−1
))

For k = 1, . . . , r where m = m1 + · · ·+mr. Then with probability at least 1− ε,
the matrix Equation (4.8) satisfies the RIPL of order (s,M) with constant
δs,M ≤ δ.

A more general version of this theorem, that allows fully sampling the first
r0 levels, is given below.

Theorem 4.17 (Subsampled matrices and the RIPL II [AL]). Let U ∈ CN×N

be a unitary matrix, r ∈ N be the number of sampling levels, 0 < ε, δ < 1, and
0 ≤ r0 ≤ r. Let Ω = ΩN ,m be an (N ,m)-multilevel sampling scheme, and M
and s be sparsity levels and local sparsities respectively. Suppose that

mk = Nk −Nk−1, k = 1, . . . , r0

and

mk & δ
−2 · (Nk −Nk−1) ·

(
r∑
l=1

µk,l · sl

)
·
(
r log(2m̂) log(2N) log2(2s) + log

(
ε−1
))

For k = r0 + 1, . . . , r where m̂ = mr0+1 + · · · + mr. Then with probability at
least 1− ε, the matrix Equation (4.8) satisfies the RIPL of order (s,M) with
constant δs,M ≤ δ.

This theorem is motivated by the previously discussed structure The first
few levels of the wavelet transform is rarely sparse. In fact, the opposite is often
the case. Therefore, it might be a good idea to fully sample the first levels.

This can be confirmed by looking at the total number of required samples as
in [AL]. This assumes the setup with the Fourier matrix and the Haar wavelet.
Theorem 4.16 gives us, with m = m1 + · · ·+mr

m ≥ C1δ
−2 ·

(
r∑
i=1

si

)
· L (4.9)

While Theorem 4.17 gives

m ≥ Nr0
+ C2δ

−2 ·

 r∑
i=r0+1

si

 · L (4.10)

In these two equations, the constants C1, C2 are independent of all parame-
ters, and L contains all the log factors. In addition Nr0

is the total number of
entries in the first r0 levels.

Assuming si = Ni for i = 1, . . . , r0, the estimate in Equation (4.10) will be
smaller than in Equation (4.9) because we don’t have to multiply the sparisty
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4.4. Structured compressive sensing

(i.e. Nr0
) with the log factors and global constants. In fact, this also outperforms

incoherent sampling (e.g. sampling with gaussian matrix).
This demonstrates that there exist matrices that satisfies the RIPL, and

that they are indeed able to recover the signal successfully. Although initially,
compressive sensing seemed difficult to use on MRI, Theorem 4.15 and Theo-
rem 4.17 have shown that we at least theoretically are able to apply compressive
sensing to MRI with success.
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CHAPTER 5

Deep learning for medical imaging

We will now provide a brief overview over the basics of deep learning in the
context of neural networks applied to inverse problems in medical imaging. We
will consider the basic definitions and theory that motivates the feasibility of
this approach. Finally, we consider approaches for training neural methods,
and related problems.

5.1 Definitions of dense and convolutional neural
networks

An alternative approach to solving the inverse problem, is deep learning. In this
thesis, we will consider deep learning in the context of deep neural networks,
which are artificial neural networks, defined in Definition 5.1, with several layers.
As with compressed sensing, the goal is for us to be able to recover an image
from undersampled Fourier measurements.

Neural networks form a very flexible class of functions. Theoretically, we
are able to approximate large classes of functions, which is useful when we
know little or nothing about what the function we are approximating looks like,
apart from a limited number of samples. According to [Pin99], there are no
universally accepted definition of neural networks. We will work with the one
given below, as it is suitable for the theoretical results we are going to show,
and well suited for the extensions we are going to perform in Chapter 7.

Definition 5.1. Let L, d,N1, N2, . . . , NL ∈ N. A neural network is a mapping
Φ: Rd → RNL given by

Φ(x) = WL(ρ(WL−1(ρ(. . . ρ(W1(x))))))

Where ρ : R → R is a non-linear function that extended to be applied com-
ponentwise on vectors, and W` : RN`−1 → RN` is an affine mapping given
by

W`(x) = A`x+ b`
The mapping W` is referred to as the `-th layer. And the entries of A` and b`
are the weights of that layer.

The general neural network defined above, is often referred to as a dense
neural network (DNN). The reason being that the weight matrices can be dense.
Interpreting the networks as nodes (neurons) organized in layers where each
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5. Deep learning for medical imaging

x Weight layer ρ +
Figure 5.1: Skip connection

node in one layer is connected to every node in the next layer, also motivates
this term as the network will form a dense graph. For imaging purposes, it is
more common to use a subclass of DNNs, where the matrices A` are restricted
to being convolutional operators. A neural network of this type is called a
convolutional neural network (CNN). This class of networks is often used in
imaging because it scales better with the input size in terms of storage size. We
don’t need to store large matrices, only the filter kernel. Thus, we can work
quite efficiently with even rather large images.
Remark 5.2. Modern Deep Learning largely deviates from the definition of
neural networks given in Definition 5.1. The definition above works well if we
want to consider e.g. theoretical analysis. However, there are operations and
structures used today that can not be expressed by the classical definition. One
such operation is max pooling, which behaves like a convolutional operator, but
pick the greatest element instead of computing the inner product with a filter
kernel. This operator is not linear, and does therefore not fit the definition.

A structural deviation is skip connection. Skip connections mean that
in addition to feeding input through normal weight layers like the classical
definition, and the output is combined with the input in a way. This is illustrated
in Figure 5.1.

Because of these deviations, it would be easier to model modern neural
networks in a more general way. One alternative is with a graph definition,
where the vertices are operations, and the edges direct the input and output.
We would then define neural networks to be Directed Acyclic Graphs (DAG),
but this easily becomes too general to be useful for our purposes.

5.2 Neural networks as function approximators

Few theoretical results exist for neural networks. Among those that exist, are
universal approximation theorems. It turns out that any continuous function
can be approximated arbitrarily well. Several different variants of these results
exist, for a variety of activation functions, and motivates the feasibility of neural
using neural networks in medical imaging

We are going to consider the result found in [Cyb89]. This paper consider
neural networks containing a single layer, and uses a fairly flexible class of
functions. These function are known as sigmoidal functions and are defined in
Definition 5.3.
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5.2. Neural networks as function approximators

Definition 5.3 ([Cyb89]). Sigmoidal activation functions are continuous func-
tions σ : R→ R such that

σ(t)→
{

1 as t→∞
0 as t→ −∞

(5.1)

In the literature, this class of functions is defined in a variety of ways [Pin99].
In our case, we will only demand continuity in addition to the limits given in
Definition 5.3.

Further, we define In = [0, 1]n and let the set C(In) be the set of real-valued
continuous functions on In. In addition, we need the space M(In) of finite
signed Borel measures on In.

Instead of working directly with the sigmoidal function when proving the
universal approximation theorem, we are going to use a more general class of
functions, called discriminatory functions.

Definition 5.4 ([Cyb89]). We say that σ is discriminatory if for a measure
µ ∈M(In) ∫

In

σ(yTx+ θ)dµ(x) = 0

For all y ∈ Rn and θ ∈ R implies that µ = 0.

This generalization is supported by the following lemma

Lemma 5.5. Sigmoidal function are discriminatory.

Proof. let σ be a sigmoidal function. To show that it is discriminatory, we
employ contrapositivity. Assume that the measure µ is nonzero. It is then
enough to show that we can pick y ∈ Rn and θ ∈ R so that the integral∫

In

σ(yTx+ θ)dµ(x)

is different from zero.
Because σ is sigmoidal, which in means that σ(t)→ 1 as t→∞. We will

attempt to find a set on which σ is strictly positive µ-almost everywhere, which
means that the integral cannot be zero.

We can determine the existence of a set by using that the function converges
to 1. We set 1 > ε > 0. There must be an x such that when t > x, we have
σ(t) ∈ (1− ε, 1 + ε).

By setting θ > x and y = 0, we have that∣∣∣∣∫
In

σ(θ)dµ(x)
∣∣∣∣ ≥ ∣∣∣∣∫

In

inf
t>x

σ(t)dµ(x)
∣∣∣∣ ≥ (1− ε)|µ(In)| 6= 0

Which completes the proof. �

We can now state and prove the universal approximation theorem for the
functions given above.

Theorem 5.6 ([Cyb89]). Let σ be any continuous sigmoidal function. Then
finite sums of the form
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G(x) =
r∑
j=1

wjσ(yTj x+ bj) (5.2)

Are dense in C(In).

Proof. We denote the set of one-layered neural networks on the form Equa-
tion (5.2) as N . To show that this is dense in C(In), we are going to show that
the closure of N in C(In) is equal to C(In).

To show this, we are going to assume for contradiction that the closure R of
N is a closed, proper subset of C(In).

We can therefore apply the Hahn-Banach theorem. There exists a nontrivial
bounded linear operator L on C(In) such that L(h) = 0 for h ∈ R, and L(h) 6= 0
when h ∈ C(In) \R.

By Riesz’ Representation Theorem, there is a µ ∈M(In) that lets us write
L on the form

L(h) =
∫
In

h(x)dµ(x)

The mapping x 7→ σ(yTx+ θ) is in R, and we therefore have that∫
In

σ(yTx+ θ)dµ(x) = 0

But because the function also is discriminatory, this must mean that µ = 0.
This implies L = 0, which contradicts the nontriviality of L. Thus, R cannot
be a proper subset of C(In), and N must be dense in C(In). �

Significance and lack of practical usefulness

Density as proved in Theorem 5.6 is indeed useful, as it certainly is a necessary
condition for arbitrary precision in our neural networks. On the other hand, the
result only tells us that a suitable neural network exist, it does not tell us how
to find a suitable network. Thus, finding the correct y, θ and wj for j ∈ [r]. In
addition, we don’t know a priori what the value of r must be. That is, even
though the universal approximation theorem holds, there is no guarantee that
we are able to find a good approximation for any fixed r [Pin99].

In particular, the theorem does not consider the feasibility of learning. Even
though we theoretically are able to approximate any function, the proposed
architecture might be unsuitable for any sort of training scheme. Indeed,
architectures in deep learning, that have several layers, have turned out to
perform better when training with methods explained in Section 5.3, compared
to the single layer model that the theorem consider. Intuitively, this improvement
can be explained by more freedom to create an abstract representation of the
input, which allows for easier feature extraction.

5.3 Training neural networks

We would like to find a function f : Cm → CN that maps the measurement
vector y to the recovered image. We might be tempted to learn this mapping
directly with a neural network. Unfortunately, this turns out to be quite
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(a) Original image (b) Brightness adjusted (c) Noise in part of image

Figure 5.2: Different modifications of images can lead to misleading `2-loss.

difficult . A major source of problems is that the input vector contains Fourier
measurements in the MRI setting, but we want the output in the standard
basis. Therefore, the network essentially need to learn the inverse discrete
Fourier transform (IDFT). This has been done with some success, but due
to the aforementioned problems, we are severely limited in terms of image
size. Doing this with CNNs, is even more difficult, because the IDFT must be
expressed as a digital filter.

Learning the DFT has been done with some success in [Zhu+18]. The net-
work has a few dense layers in the beginning, and the input is the measurement
vector. A motivation behind this type of architecture, is desires of a network
that can recover images independently of imaging techniques and sampling
pattern. In addition, we want to find a way to more effectively represent the
data in a low-dimensional space. However, as the number of weights increases
with the input size, so does the storage space and computational time required.
This limits the network to small resolutions.

By taking the adjoint of our measurements, in our case the IDFT of the
measurement vector, we will get an image that resembles the desired result.
However, due to the subsampling, we may have noise or artifacts we want to get
rid of. The noise depends in large part by the sampling pattern. An alternative
approach is therefore to consider our problem as a denoising problem:

Given measurements y, we want our neural network Φ to take the “noisy”
image A∗y and return the (negative) noise from the image. This output can
then be added to the noisy image to get the recovered image.

That is, the function we want to find is

f(y) = A∗y + Φ(A∗y) (5.3)

Where Φ: CN → CN is a neural network that finds the noise in of its input. If
this function is trained correctly, it would yield an image that is noiseless.

The desired output of the neural network when we input a noisy image, is
an image that is as close to the fully sampled image as possible. When talking
about training a neural network, we mean finding weight that give such output.
To train, we need a cost function C : RN ×RN → R that is a measure of whether
two images are similar. A popular choice is C(x, z) = ‖x− z‖22.
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5. Deep learning for medical imaging

Remark 5.7. Several other cost functions exists. For instance, we could consider
other norms. In principle, any differentiable function can be applied, as long as
C(x,x) = 0, to ensure that the we can identify the correct minimizer.

The job of the cost function is to tell us something about how “close” the
two inputs are to each other. For imaging, this poses an additional challenge.
Finding good cost functions is difficult.

By definition of the norm, the aforementioned cost function work well in the
way that it is zero if and only if the output from the neural network is identical
to the original image. However, achieving this is unfeasible that the network
will become that good without severely overtraining the network.

It is imaginable that by using the aforementioned cost functions, we might
get a large value for the cost, even though the images are quite similar visually.
The reason for this is limitation in human vision. For instance, even if several
pixels in the output deviate slightly from the original, we might not be able
to detect it visually. Thus, assuming that details in the image is preserved,
this could be a satisfying result, and we would expect a low value of the cost
function. However, the small deviations will add up, and yield a net high cost.
This would motivate more training even though we would get quite satisfying
results. This loss might not be as large as when the differences between the
images are more severe, but does not reflect the differences (or lack thereof)
well.

For instance, consider a scaling of an image x by α ∈ R

C(x, αx) = ‖x− αx‖22 = (1− α)2‖x‖22

This value can be quite large, depending on the dimensions of x and α. This is
undesirable, as the scaling of α only changes the brightness of the image.

This is also demonstrated in Figure 5.2, where the cost between the original
image Figure 5.2a and Figure 5.2b is larger than the cost between the original
and Figure 5.2c. However, the Figure 5.2b is clearly the image that is visually
closest to the original. The two loss values are approximately 70 and 47,
respectively.

Assume that we are given a training set T = ((x1,y1), . . . , (xT ,yT )) where
xi is the true image, and yi is the corresponding subsampled measurements
for i = 1, 2 . . . , T . Training the neural network means solving the optimization
problem

w := (A`, b`, . . . ,A1, b1) = argmin(A`,b`,...,A1,b1)
∑

(x,y)∈T

C(x,Φ(y)) (5.4)

Where w, for ease of notation is the vector containing all the weight in
the neural network. Minimizing the total C in terms of the weights of the
network is therefore the goal. Doing this analytically is impossible. Instead,
iterative methods are usually preferred. One of the most important algorithms
are gradient descent and its variations [Goo+16].

Gradient descent

The idea behind gradient descent (GD), is that if we are given a starting point,
we can iteratively improve it by iteratively finding points that improves the
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5.3. Training neural networks

value of the objective function. The algorithm is greedy, in the sense that it
will always go in the direction that improves the objection function the most.
From calculus, we know that the gradient of a differentiable function points
in the direction where the function is steepest upwards, and that the negative
gradient points in the steepest direction downward. Thus, the chosen direction
will always be that of the negative gradient. Because of this, gradient descent
is also known as steepest descent.

Each step in gradient descent for solving the deep learning optimization
problem is given by

wn+1 = wn − ε

T

T∑
i=1
∇wC(xi,yi;w

n) (5.5)

Where the step size ε > 0 is referred to as the learning rate in the context of
deep learning. Setting an appropriate value can be difficult, if it is too small,
the algorithm will converge slowly. On the other hand, if the step size is too
large, we might have difficulties getting convergence, because the algorithm
might overshoot, and miss the minimum.

To justify taking the average in the equation above, We stress that we are
solving an optimization problem where the weights are the variables. Thus,
we take the average of all the samples in the training set to get a value of the
gradient that represents the class of images we are working with.

Stochastic gradient descent

When training a neural network, we want as many training samples as possible.
Because one step of gradient descent involves computing the gradient for each
sample in the training set, the time required to compute a single step with
gradient descent will become quite large.

Stochastic gradient descent (SGD) utilizes the training data differently from
GD. Instead of using the entire dataset in each iteration, the training set is
randomly subsampled. Because of this, the time spent for each step can be
reduced drastically.

At first glance, SGD may not seem like a significant improvement to GD.
Using fewer samples improves the time spent for each iteration, but gives us
poorer estimates, which gives us unsteady convergence. However, in the time
frame GD uses to perform one step, we are able to perform enough steps with
SGD to outperform GD.

In training step i, we create a set Ti ⊂ T of randomly subsamples examples
from the training set. The update step then becomes

wn+1 = wn − ε

|Ti|
∑

(x,y)∈Ti

∇wC(x,y;wn) (5.6)

Other modifications can be made to improve gradient descent. For instance,
it is normal to change the learning rate ε in each iteration. Another approach
is to preserve the “momentum”. Usually, we only consider the gradient in
the current point to determine which direction we will go next. When using
momentum, however, we combine this with the step direction given in the
previous step. This makes it more difficult for the algorithm to change the
direction in each iteration, and provides a more steady path.
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5. Deep learning for medical imaging

Challenges in training

Several issues exist when it comes to training neural networks with this approach.

Local minima The above algorithms work well on convex functions. However,
the optimization problem (5.4) we are trying to solve when training neural
networks is not a convex optimization problem. Therefore, we don’t have any
guarantees that applying the above algorithms will find a global minimum.

Ideally, gradient descent will stop when a stationary point is reached. For
convex functions, we only have one such type of points, as the local and global
minima are the same. If the function is. For neural networks, on the other
hand, we might risk finding local minima, or saddle points. The functions are
difficult to visualize, and it is therefore difficult to determine what type of point
we have found.

Initial values The initial values of the weights are also important for the
result. Ideally, we would like to pick initial values that are close to the global
minimum, or at least places somewhere that would guarantee that we find
the global minimum instead of some other stationary point. For other classes
of functions, we might have some idea about what a good starting point is.
However, due to the extreme complexity of neural networks, caused by the often
vast number of weight, we do not have this luxury when working with neural
networks. Therefore, it is normal to initialize the weights by random numbers,
typically drawn from a Gaussian or uniform distribution [Goo+16].

Overfitting Deep neural networks are statistical models with many hyperpa-
rameters. Therefore, they are very flexible, and able to express a wide range of
functions. The drawback to this is that they are prone to overfitting, meaning
that they generalize poorly to unseen data. Generally, it helps to have large
amounts of training samples. This is often easier said than done, as data
acquisition may be expensive. Therefore, it is normal to limit the model in
other ways. Typically, some regularization techniques are applied. One such
technique is dropout, where we randomly “remove” nodes from the network,
with a set probability.

Other problems with neural networks

Stability As briefly mentioned previously, neural networks often have severe
stability issues [Ant+19; Hua+18; MFF16; Sze+13]. Most notably in the image
classification setting, where imperceptible perturbations can drastically change
the suggested label. This is true even for the images in the training set.

For inverse problems, this issue is manifested in that the network amplifies
noise added to the image, resulting in potentially illegible output [Ant+19].

Lack of generality Neural networks are often trained on a specific class of
images. This means that a net trained on MRI images may not work well on
data from other medical imaging techniques, or Fourier measurements of e.g.
everyday items. More surprisingly, neural networks also perform worse if they
are given more samples [Ant+19].
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CHAPTER 6

Solving the compressive sensing
optimization problem

In this section, we are going to present two optimization algorithms for recovering
a signal from the setup described in Chapter 4. Because this is a convex
optimization problem, we are going to consider two algorithms for solving
convex problems, FISTA and the Chambolle–Pock primal-dual algorithm. We
will see that they work quite differently, and solves two different optimization
problems. However, they also have some similarities. Most notably, they both
utilize what is referred to as the proximal operator, defined by

Definition 6.1 (Proximal operator [FR13, p. 553]). The proximal operator PF
for a function F is the mapping

PF (z) = argmin
x∈CN

{
F (x) + 1

2‖x− z‖
2
2

}
This is particularly useful in the cases where we want to minimize a convex

function that is not differentiable. The proximal operator gives rise to an
iterative optimization method. We see that the value of PF (z) is an x such that
F has a low value, with x being close to z. By iteratively applying the proximal
operator, we are therefore able to improve the estimate of the minimizer of F
without having to calculate the gradient.

Computing the value of the proximal operator does unfortunately involve
solving an optimization problem. Luckily, for our cases, this can be found
analytically.

6.1 FISTA

The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), introduced in
[BT09] solves problems on the form

min
{
F (x) = f(x) + g(x) : x ∈ RN

}
where

• g : RN → R is a continuous convex function which is possibly nonsmooth.
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6. Solving the compressive sensing optimization problem

• f : RN → R is a smooth convex function which is continuously differen-
tiable with Lipschitz continuous gradient L(f), i.e.

‖∇f(x)−∇f(z)‖2 ≤ L(f)‖x− z‖2 ∀x, z ∈ RN

Because we need our objective function to be continuous, we will consider
the optimization problem

min
z∈CN

λ‖z‖1 + ‖Az − y‖22

By Theorem 2.7 this is equivalent to the quadratically constrained basis pursuit
problem Equation (2.5), with some caveats discussed in Remark 2.8.

Although we earlier defined A = PΩF , we will for ease of notation write
A = PΩFW

−1. Because we are working directly with the optimization problem,
we are not concerned with differentiating between the sampling operator and
the sparsity basis.

We set f(z) = ‖Az−y‖22 and g(z) = λ‖z‖1. Both functions are continuous.
The function f has continuous gradient ∇f(z) = 2A∗(Az − y).

For z,x ∈ CN , we find the smallest Lipschitz constant for A = PΩFW
−1

by the unitary invariance of the spectral norm:

‖∇f(z)−∇f(x)‖2 = 2‖A∗A(z − x)‖2
≤ 2‖A∗A‖2‖z − x‖2
= 2‖P ∗ΩPΩ‖2‖z − x‖2
= 2‖z − x‖2

Where we use that projection operators have spectrum {0, 1}. Therefore, we
will set L = 2.

FISTA relies on the quadratic approximation of F around y given by

Q(x,y) = f(y) + 〈x− y,∇f(y)〉+ L

2 ‖x− y‖
2
2 + g(x)

This approximation has properties that we will discuss later. The proximal
operator introduced in [BT09], is given by

pL(y) = argminz

{
g(z) + L

2

∥∥∥∥z − (y − 1
L
∇f(y)

)∥∥∥∥2

2

}
(6.1)

We see that it by definition computes the minimizer of x 7→ Q(x,y).
In [BT09], this function is referred to as a proximal operator. However, it

does not fit Definition 6.1. Instead, we see that it can be written as

pL(y) = Pg

(
y − 1

L
∇f(y)

)
which makes things a bit clearer. We recognize y − L−1∇f(y) as one step of
gradient descent, which will minimize f . By using this as the input to the
proximal function, we will minimize both f and g simultaneously, which in turn
means that we are minimizing the sum F = f + g.

It turns out that Pg is the soft thresholding operator, defined as follows
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6.1. FISTA

Definition 6.2 (Soft thresholding operator [FR13]). For α ≥ 0, the soft thresh-
olding operator is the function Sα : CN → CN . The entries of the output are
given by

Sα(x)i = sign(xi) max{|xi| − α, 0} (6.2)
This is shown in the next proposition

Proposition 6.3 (Proximal operator for FISTA). The proximal operator pL for
the setup in compressive sensing can be written as

pL(y) = Sλ/L(y − L−1∇f(y))

Proof. We first define the function

qL(b) = argminx
{
λ‖x‖1 + L

2 ‖x− b‖
2
2

}
= argminx

{
λ

L
‖x‖1 + 1

2‖x− b‖
2
2

} (6.3)

and see that we can write pL(y) = qL(y−L−1∇f(y)). It remains to show that
Equation (6.3) is the soft thresholding operator

By the definition of the norms, we see that we can write the minimization
problem as

N∑
i=1

(
λ

L
|xi|+

1
2(xi − bi)2

)
We will minimize each term by itself. We set α = λ/L, and define the function

h(xi) =
{
αxi + 1

2 (xi − bi)2 if xi ≥ 0
−αxi + 1

2 (xi − bi)2 if xi ≤ 0

Taking the derivative

h′(xi) =
{
α+ xi − bi if xi ≥ 0
−α+ xi − bi if xi ≤ 0

Setting this equal to zero, for xi ≥ 0, the minimizer is xi = bi − α or 0. For
xi ≥ 0 we attain the minimum in bi + α or 0.

The minimized points become

h(bi − α) = α

(
bi −

1
2α
)

bi > α

h(0) = 1
2b

2
i |bi| ≤ α

h(bi + α) = α

(
bi + 1

2α
)

−bi > α

To summarize, the minimizer is sign(bi) max{|bi| − α, 0}, and pL(y) =
Sλ/L

(
y − L−1∇f(y)

)
�

We now have everything we need to describe the algorithm.
Next, we will show the that FISTA in fact converges to the minimizer.
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6. Solving the compressive sensing optimization problem

Algorithm 6.1 FISTA
Input: L = L(f) – A Lipschitz constant of ∇f
Initialization: Take y1 = x0 = A∗y, t1 = 1
Step k ≥ 1: Compute

xk = pL(yk) (6.4)

tk+1 =
1 +

√
1 + 4t2k
2 (6.5)

yk+1 = xk +
(
tk − 1
tk+1

)
(xk − xk−1) (6.6)

Correctness of the algorithm

The main selling point of FISTA is that while its predecessor ISTA converges
with a rate of O(1/k), FISTA converges with a rate of O(1/k2). This is a
consequence of the main result in this section.

Before showing the results, we note that while the Lipschitz constant is
easily computable for our setup, this is not the case in general. Therefore, an
alternative to the variant of FISTA given in Algorithm 6.1 is also introduced in
[BT09]. The paper proves the correctness for both variants simultaneously, but
for ease of notation, we have omitted details concerning the alternative variant.

Central to the proof, is some tools from convex analysis

Definition 6.4 (Subgradient [FR13, p. 551]). The subdifferential of a convex
function F : CN → (0,∞] at a point x ∈ CN is defined by

∂F (x) =
{
v ∈ CN | F (z) ≥ F (x) + 〈v, z − x〉 ∀z ∈ CN

}
The subdifferential in a point can be interpreted as the candidates to the

gradient. The next result is therefore not surprising

Lemma 6.5 ([FR13, p. 552]). The vector x is a minimizer of F if and only if
0 ∈ ∂F (x)

Proof. The proof is shown by applying the definition of the subdifferential.

0 ∈ ∂F (x)
⇐⇒ F (z) ≥ F (x) + 〈0, z − x〉 ∀z
⇐⇒ F (z) ≥ F (x) ∀z
⇐⇒ x is a minimizer of F

�

The subdifferential plays an important role in the following lemma

Lemma 6.6 ([BT09]). For any y ∈ CN , one has z = pL(y) if and only if there
exists a γ(y) ∈ ∂g(z), such that

∇f(y) + L(z − y) + γ(y) = 0
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Proof. We see that the result holds by considering the objective function

Q(z,y) = f(y) + 〈z − y,∇f(y)〉+ L

2 ‖z − y‖
2
2 + g(z)

By the Moreau–Rockafellar theorem, we can compute the subgradient of Q
by adding the subdifferentials of its terms. In addition, we have that ∂f(x) =
{∇f(x)} for differentiable functions. We get

∂Q(z,y) = {∇f(y)}+ {L(z − y)}+ ∂g(z)

Because z is the minimizer if and only if 0 ∈ ∂Q(z,y), and ∂g(z) is the only
set in the above expression that can contain more than one element, we have
that 0 is in the subdifferential if and only if there is a γ(y) ∈ ∂g(z) such that

∇f(y) + L(z − y) + γ(y) = 0

�

A consequence of the next lemma, is that the quadratic approximation
Q(x, y) is always greater than or equal to F , so the premise of Lemma 6.8 is
always satisfied for our setup.

Lemma 6.7 ([BT09]). Let f : CN → R be a continuously differentiable function
with Lipschitz continuous gradient and Lipschitz constant L(f). Then, for any
L ≥ L(f),

f(x) ≤ f(y) + 〈x− y,∇f(y)〉+ L

2 ‖x− y‖
2
2

for every x,y ∈ CN

Lemma 6.8 plays an important role in the main result

Lemma 6.8 ([BT09]). Let y ∈ CN and L > 0 be such that

F (pL(y)) ≤ Q(pL(y),y)

Then for any x ∈ CN ,

F (x)− F (pL(y)) ≥ L

2 ‖pL(y)− y‖22 + L〈y − x, pL(y)− y〉

Proof. From the assumptions in the lemma, we have

F (x)− F (pL(y)) ≥ F (x)−Q(pL(y),y) (6.7)

By the convexity of f and g, we have

f(x) ≥ f(y) + 〈x− y,∇f(y)〉
g(x) ≥ g(pL(y)) + 〈x− pL(y), γ(y)〉

Here, γ(y) ∈ ∂g(pL(y)) is given as in Lemma 6.6. Next, we sum the inequalities
above to obtain

F (x) ≥ f(y) + 〈x− y,∇f(y)〉+ g(pL(y)) + 〈x− pL(y), γ(y)〉
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6. Solving the compressive sensing optimization problem

We also have

Q(pL(y),y) = f(y) + 〈pL(y)− y,∇f(y)〉+ L

2 ‖pL(y)− y‖22 + g(pL(y))

Applying the two above functions, along with Lemma 6.6, we get

F (x)− F (pL(y)) ≥ F (x)−Q(p(y),y)

≥ −L2 ‖pL(y)− y‖22 + 〈x− pL(y),∇f(y) + γ(y)〉

=
−L2 ‖pL(y)− y‖22 + 〈x− pL(y),∇f(y)

+ (−∇f(y)− L(pL(y)− y))〉

= −L2 ‖pL(y)− y‖22 + L〈x− pL(y),y − pL(y)〉

= −L2 ‖pL(y)− y‖22 + L〈x+ y − y − pL(y),y − pL(y)〉

= L

2 ‖pL(y)− y‖22 + L〈y − x, pL(y)− y〉

And we have arrived at our conclusion. �

Lemma 6.9 ([BT09]). The sequences {xk,yk} generated by FISTA with constant
step size satisfies for every k ≥ 1

2
L
t2kvk −

2
L
t2k+1vk+1 ≥ ‖uk+1‖

2
2 − ‖uk‖

2
2

where vk = F (xk)− F (x∗) and uk = tkxk − (tk − 1)xk−1 − x
∗, with x∗ being

a minimizer.

Proof. We first apply Lemma 6.8 twice, both for x = xk,y = yk+1 and with
x = x∗,y = yk+1. By rearranging and the definition of {vk} and xk+1 =
pL(yk+1), we obtain

2L−1(vk − vk+1) ≥ ‖xk+1 − yk+1‖
2
2 + 2〈xk+1 − yk+1,yk+1 − xk〉

−2L−1vk+1 ≥ ‖xk+1 − yk+1‖
2
2 + 2〈xk+1 − yk+1,yk+1 − x

∗〉

We multiply the first inequality by (tk+1 − 1) and add it to the second
inequality to get

2
L

((tk+1 − 1)vk − tk+1vk+1) ≥tk+1‖xk+1 − yk+1‖
2
2

+ 2〈xk+1 − yk+1, tk+1yk+1

− (tk+1 − 1)xk − x∗〉

From the definition of tk, we have t2k = tk+1 − t
2
k+1, which gives

2
L

(t2kvk − t2k+1vk+1) ≥ ‖tk+1(xk+1 − yk+1)‖22
+ 2tk+1〈xk+1 − yk+1, tk+1yk+1 − (tk+1 − 1)xk − x∗〉
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6.1. FISTA

The relation

‖b− a‖22 + 2〈b− a,a− c〉 = ‖b− c‖22 − ‖a− c‖22

with
a = tk+1yk+1, b = tk+1xk+1, c = (tk+1 − 1)xk + x∗

Applied to the right hand side of the above inequality, we obtain

2
L

(t2kvk − t2k+1vk+1) ≥ ‖tk+1xk+1 − (tk+1 − 1)xk − x∗‖22

− ‖tk+1yk+1 − (tk+1 − 1)xk − x∗‖22

Substitute the definition of yk+1 and uk completes the proof.
�

The next simple results are also important for proving the main result

Lemma 6.10. Let {ak, bk} be sequences of positive reals satisfying

ak − ak+1 ≥ bk+1 − bk ∀k ≥ 1,with a1 + b1 ≤ c, c > 0

Then ak ≤ c for every k ≥ 1.

Proof. We rewrite
ak − ak+1 ≥ bk+1 − bk

to obtain
ak + bk ≥ bk+1 + ak+1

Which means that the sequence {ak + bk} is a decreasing sequence. Because
bk ≥ 0 for all k, we therefore have

c ≥ a1 + b1 ≥ ak + bk ≥ ak

which completes the proof. �

Lemma 6.11. The sequence {tk} of positive numbers generated by FISTA with
t1 = 1 satisfies tk ≥ (k + 1)/2 for all k ≥ 1.

Proof. We prove this by induction. The statement holds in the base case k = 1
as t1 = 1 = 1+1

2 = 1. Assuming that the statement holds for tk, it remains to
show that tk+1 = k+2

2 . Indeed, because the square root is a monotone function,
we get

tk+1 =
1 +

√
1 + 4t2k
2 ≥

1 +
√

4t2k
2 = 1 + (k + 1)

2
Where the induction step used in the equality completes the proof. �

We can now establish the main result, whose proof builds on the conclusion
of Lemma 6.9.
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6. Solving the compressive sensing optimization problem

Theorem 6.12 ([BT09]). Let {xk}, {yk} be generated by FISTA. Then for any
k ≥ 1

F (xk)− F (x∗) ≤ 2L‖x0 − x
∗‖22

(k + 1)2

For all minimizers x∗.

Proof. We define

ak := 2
L
t2kvk, bk := ‖uk‖22, c := ‖y1 − x

∗‖22

Where we recall that we previously defined

vk := F (xk)− F (x∗)
uk := tkxk − (tk − 1)xk−1 − x

∗

By Lemma 6.9, we have that for every k ≥ 1.

ak − ak+1 ≥ bk+1 − bk

Applying Lemma 6.10, would complete the proof. To apply it, we need to show
that show that a1 + b1 ≤ c. We see that

F (x∗)− F (x1) = F (x∗)− F (pL(y1))

≥ L

2 ‖pL(y1)− y1‖
2
2 + L〈y1 − x

∗, pL(y1)− y1〉

= L

2 ‖x1 − y1‖
2
2 + L〈y1 − x

∗,x1 − y1〉

= L

2

(
‖x1 − x

∗‖22 − ‖y1 − x
∗‖22
)

Where we have applied Lemma 6.8 with x = x∗ and y = y1 to obtain the
inequality in the expression above. The requirements in Lemma 6.8 are satisfied
by Lemma 6.7. Thus, we have that since t1 = 1

a1 = 2
L
v1, b1 = ‖x2 − x

∗‖2

And so
2
L
v1 ≤ ‖y1 − x

∗‖22 − ‖x1 − x
∗‖22

And we have established that a1 + b1 ≤ c. Thus, by Lemma 6.10

2
L
t2kvk ≤ ‖x0 − x

∗‖22

The proof is completed by Lemma 6.9, as

vk ≤
L‖x0 − x

∗‖22
2t2k

≤ 2L‖x0 − x
∗‖22

(k + 1)2 .

�
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6.2. Chambolle and Pock’s primal-dual algorithm

6.2 Chambolle and Pock’s primal-dual algorithm

We begin this section by introducing the notion of lower semicontinuous functions
and extended real-valued functions. The latter are functions that are allowed
to take ±∞, while lower semicontinuity is given by Definition 6.13

Definition 6.13 (Lower semicontinuity [FR13, p. 547]). A function F : CN →
(−∞,∞] is called lower semicontinuous if, for every x ∈ CN , and every sequence
{xj}j≥1 converging to x,

lim inf
j→∞

F (xj) ≥ F (x)

Chambolle and Pock’s primal-dual algorithm, solves problems on the form

min
x∈CN

F (Ax) +G(x) (6.8)

Where A ∈ Cm×N and where F : Cm → (−∞,∞] and G : CN → (−∞,∞] are
extended real-valued lower semicontinuous convex functions.

We set

G(x) = ‖x‖1

F (x) = χB(y,η)(x) =
{

0 if ‖x− y‖2 ≤ η
∞ otherwise

We see that G is continuous, and therefore lower semicontinuous. Also, F (x)
is lower semicontinuous because the ball B(y, η) is closed [FR13, p. 485].

This algorithm also utilizes proximal operators. For a function G and τ ∈ R,
we introduce the notation PτG(x) = PG(τ ;x)

In addition, the Chambolle–Pock algorithm needs the proximal operator for
the convex conjugate function of F , defined to be

F ∗(y) = sup
x∈CN

{〈x,y〉 − F (x)}

The proximal operator PF∗ is given by the following lemma.

Lemma 6.14 ([FR13, p. 485]). The proximal operator PF∗(σ, ξ) is given by

PF∗(σ; ξ) =
{

0 if ‖ξ − σy‖2 ≤ ησ(
1− ησ

‖ξ−σy‖2

)
(ξ − σy) otherwise

(6.9)

Proof. We first observe that

PF (σ, ξ) = argminζ∈Cm:‖ζ−ξ‖2≤η‖ζ − ξ‖2

We see that this is the orthogonal projection onto the ball B(y, η). We write
this as

PF (σ, ξ) =
{
ξ if ‖ξ − y‖2 ≤ η
y + η

‖ξ−y‖2
(ξ − y) otherwise
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6. Solving the compressive sensing optimization problem

To find PF∗ , we apply Moreau’s identity [FR13]

PτF∗(z) + τP
τ

−1
F

(z/τ) = z

and get

PF∗(σ; ξ) = PσF∗(ξ) =
{

0 if ‖ξ − σy‖2 ≤ ησ(
1− ησ

‖ξ−σy‖2

)
(ξ − σy) otherwise

�

In addition, the proximal operator

PG(τ ; z) = Sτ (z) (6.10)

is derived similarly to the proximal operator in Section 6.1, by omitting the
part concerning y − L−1∇f(y).

We now have what we need to describe the algorithm.

Algorithm 6.2 Chambolle and Pock’s primal-dual algorithm
Input: A ∈ Cm×N , convex functions F,G
Parameters: θ ∈ [0, 1], τ, σ > 0 such that τσ‖A‖22 < 1
Initialization: x0 ∈ CN , ξ0 ∈ Cm, x0 = x0
Step k ≥ 1: Compute

ξk+1 = PF∗(σ; ξk + σAxk) (PD1)
xk+1 = PG(τ ;xk − τA∗ξk+1) (PD2)
xk+1 = xk+1 + θ(xk+1 − xk) (PD3)

Duality theory

Before diving into proving that this algorithm works, we recall the basics of
duality theory. We consider our problem in a more general sense

min
x∈CN

F0(x) subject to Ax = y (6.11)

We refer to this as the primal problem. Generally, we also consider inequality
constraints, but because we don’t need these for our setup, they are omitted.

An important component in duality theory is the Lagrange function, which
gives us a similar optimization problem to Equation (6.11)

The key to duality theory is to consider this function as an optimization
problem in terms of the Lagrange multiplier ξ. We define

H(ξ) = inf
x∈Cn

L(x, ξ) = inf
x∈Cn

F0(x)− 〈x, ξ〉

For the optimal value F0(x]) of Equation (6.11), we have

H(ξ) ≤ F0(x])
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6.2. Chambolle and Pock’s primal-dual algorithm

The function H provides a lower bound of the primal problem (6.11). This
motivates looking at the problem

max
ξ∈Cm

H(ξ) (6.12)

to get an optimal lower bound of the minimum of the primal problem. We call
this optimization problem the dual problem. If x] is primal optimal, and ξ]
is dual optimal, i.e. optimal for their respective problems, we call the tuple
(x], ξ]) primal-dual optimal, and we have weak duality, i.e.

H(ξ]) ≤ F (x])

If we have equality in the above equation, we say that we have strong duality.
We will show that with our setup, we have strong duality. The dual problem

is
max
ξ∈Cm

−F ∗(ξ)−G∗(−A∗ξ) (6.13)

To see that this is indeed the case, we set z = Ax, and rewrite Equation (6.8)
as

min
x,z

F (z) +G(x) subject toAx− z = 0

Because we have the equality constraint, the Lagrangian function is therefore

L(x, z) = F (z) +G(x) + 〈ξ,Ax− z〉

The dual Lagrangian becomes, by definition of the convex conjugation

H(ξ) = inf
x,z
{L(x, z, ξ)}

= − sup
z
{〈ξ, z〉 − F (z)} − sup

x

{〈
x,−A∗ξ

〉
−G(x)

}
= −F ∗(ξ)−G∗(−A∗ξ)

Minimizing the function H(ξ) thus gives us the proposed dual optimization
problem (6.13).

Because of strong duality, solving the primal and dual optimization problems
simultaneously is the same as finding the solution of

min
x∈CN

max
ξ∈Cm

Re〈Ax, ξ〉+G(x)− F ∗(ξ) (6.14)

which is known as the saddle-point problem. We know that this property holds
from Proposition 6.15

Proposition 6.15 ([FR13, p. 564]). Let A ∈ Cm×N and F : Cm → (−∞,∞]
G : CN → (−∞,∞] be proper convex functions such that there exist x ∈ CN

such that Ax is in the domain of F . Assume that both the primal and the dual
problem have optimal solutions. Then we have strong duality, i.e.

min
x∈CN

(F (Ax) +G(x)) = max
ξ∈Cm

(
−F ∗(ξ)−G∗(−A∗ξ)

)
Furthermore, a primal-dual solution (x], ξ]) is a solution to the saddle-point
problem

min
x∈CN

max
ξ∈Cm

〈Ax, ξ〉+G(x)− F ∗(ξ)
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6. Solving the compressive sensing optimization problem

Correctness of the algorithm

The main result with regards to showing the correctness of the Chambolle–Pock
Primal-Dual algorithm is given below

Theorem 6.16 ([FR13]). Assume that Equation (6.14) has a saddle point. Pick
θ = 1 and σ, τ > 0 such that στ‖A‖22 < 1. Let {xn,xn, ξn}

∞
n=0 be the sequence

generated by the primal-dual algorithm. Then the sequence (xn, ξn) converges
to a saddle point (x]n, ξ]n) of Equation (6.14). In particular, the sequence of xn
converges to a minimizer of Equation (6.8).

The proof of this theorem is rather convoluted. We will structure it by
showing a series of lemmas. The proofs of these are also omitted, as they involve
more heavy computations than difficult theory.

The first involves the discrete derivate

∆τun = un − un1
τ

, n ∈ N

We further extend this to other sequences

∆τ‖un‖
2
2 = ‖un‖

2
2 − ‖un1‖

2
2

τ
, n ∈ N

and multiple orders, e.g. ∆2
τun := ∆τ∆τun

The following lemma proves some desirable properties

Lemma 6.17. Let u,un ∈ CN , n ≥ 0. Then

2 Re〈∆τun,un − u〉 = ∆τ‖u− un‖
2
2 + τ‖∆τu

2‖22 (6.15)

In addition, if the sequence {vn} is another sequence of vectors, then we have
discrete integration formula holds for M ∈ N.

τ

M∑
n=1

(〈∆τun,vn〉+ 〈un−1,∆τvn〉) = 〈uM ,vM 〉 − 〈u0,v0〉 (6.16)

Next, we need some properties of the sequences generated by the algorithm.

Lemma 6.18. Let {xn,xn, ξn}
∞
n=0 be the sequence generated by the Primal-Dual

algorithm, and let x ∈ CN and ξ ∈ Cm be arbitrary. Then, for any n ≥ 1

1
2∆σ‖ξ − ξn‖

2
2 + 1

2∆τ‖x− xn‖
2
2 + σ

2 ‖∆σξn‖
2
2 + τ

2‖∆τxn‖
2
2

≤ L(x, ξn)− L(xn, ξ) + Re〈A(xn − xn−1), ξ − ξn〉
(6.17)

Summing (6.17) in Lemma 6.18 from n = 1 to n = M , we arrive at the next
lemma
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6.2. Chambolle and Pock’s primal-dual algorithm

Lemma 6.19. Let {xn,xn, ξn}
∞
n=0 be the sequence generated by the primal-dual

algorithm, with θ = 1, and let x ∈ CN , ξ ∈ Cm be arbitrary. Then, for M ≥ 1,

M∑
n=1

(L(xn, ξ)− L(x, ξn)) + 1
2τ ‖x− x

M‖22 + 1− στ‖A‖22
2σ ‖ξ − ξM‖

2
2

+ 1−
√
στ‖A‖2
2τ

M−1∑
n=1
‖xn − xn−1‖

2
2 + 1−

√
στ‖A‖2
2σ

M∑
n=1
‖ξn − ξn−1‖

2
2

≤ 1
2τ ‖x− x0‖

2
2 + 1

2σ ‖ξ − ξ0‖
2
2

(6.18)

A corollary of Lemma 6.19 shows that the sequence in Theorem 6.16 is
bounded

Corollary 6.20. Let (x], ξ]) be a primal-dual optimum/saddle point of Equa-
tion (6.14). Then the iterates with θ = 1 and στ‖A‖2 < 1 satisfy

1
2σ ‖ξ

] − ξM‖
2
2 + 1

2τ ‖x
] − xM‖

2
2 ≤ C

(
1

2σ ‖ξ
] − ξ0‖

2
2 + 1

2τ ‖x
] − x0‖

2
2

)

Where C = (1− στ‖A‖22)−1. In particular, the iterates (xn, ξn) are bounded.

We now have the required tools to prove Theorem 6.16

Proof of Theorem 6.16. Consider the sequence {(xn, ξn)}∞n=0. We want to show
that it converges to a saddle point (x], ξ]). From Corollary 6.20, we know that
it is bounded, and because we are working in a complete metric space, it has a
convergent subsequence (xnk

, ξnk
) that converges to a point (x◦, ξ◦) as k →∞.

Setting x = x] and ξ = ξ] in Equation (6.18) in Lemma 6.19, makes all terms
nonnegative. Thus any terms on the left hand side can be discarded, and still
make the inequality hold. Thus

1−
√
στ‖A‖2
2σ

M−1∑
n=1
‖xn − xn−1‖

2
2 ≤

1
2τ ‖x− x0‖

2
2 + 1

2σ ‖ξ − ξ0‖
2
2

Both sides of this inequality are positive. In addition, the right hand side does
not depend on the number of iterations M . Increasing M will therefore keep
the right hand side constant, while increasing the left hand side. Therefore,
we must have ‖xn − xn−1‖ → 0 as n → ∞. By choosing a different term on
the left hand side from Equation (6.18), we also get that ‖ξn − ξn−1‖2 → 0.
The point (x◦, ξ◦) must be a fixed point of the algorithm, and Proposition 6.15
gives us that it is a saddle point.

Choosing (x, ξ) = (x◦, ξ◦) in Equation (6.17), and summing from n = nk
to M > nk, and following a similar technique as in the proof of Lemma 6.19,
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we finally get

1
2σ ‖ξ

◦ − ξM‖22 + 1
2τ ‖x

◦ − xM‖22 + 1−
√
στ‖A‖2
2σ

M∑
n=nk

‖ξn − ξn−1‖22

+ 1−
√
στ‖A‖2
2τ

M−1∑
n=nk

‖xn − xn−1‖22

+ 1
2τ

(
‖xM − xM−1‖22 −

√
στ‖A‖2‖x

nk−1 − xnk−2‖22
)

− Re〈A(xM − xM−1), ξ◦ − ξM 〉+ Re〈A(xnk−1 − xnk−2), ξ◦ − ξnk〉

≤ 1
2σ ‖ξ

◦ − ξnk‖22 + 1
2τ ‖x

◦ − xnk‖22

(6.19)

We have that

lim
n→∞

‖xn − xn−1‖2 = lim
n→∞

‖ξn − ξn−1‖2 = 0

lim
k→∞

‖x◦ − xnk
‖2 = lim

k→∞
‖ξ◦ − ξnk

‖2 = 0

And it follows that

lim
M→∞

‖x◦ − xM‖2 = lim
M→∞

‖ξ◦ − ξM‖2 = 0

because the expression on the right hand side of the equation converges to
zero. �
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CHAPTER 7

Writing compressive sensing
algorithms as neural networks

In this section, we are going to investigate the structure of the iterative algo-
rithms from Chapter 6 when they are unrolled. We will see that affine maps
and non-linear functions are important for the algorithms. Therefore, we are
going to see that they resemble a neural network.

It turns out that writing these algorithms as neural networks by strictly
following Definition 5.1, is not possible. However, we are going to allow ourselves
to perform some slight modifications to the definition. The changes will be
made as small as possible, in an attempt to maintain the notion of what a
neural network is.

Changing the definition as we see fit, might of course seem counterproductive,
as the existing definition may be useful for e.g. theoretical analysis. We allow
ourselves to still call the modified definition neural networks because modern
neural networks rarely follow Definition 5.1. For instance, they often allow
skip connections, running several networks in parallel, max pooling and other
techniques we cannot express using the classical definition, while still having
“neural network-like” structure.

The motivation behind the results in this chapter is that it makes an
implementations in deep learning frameworks feasible, and as a consequence,
we can test the stability conjecture supported by Theorem 4.15.

7.1 FISTA as a neural network

Before showing the result for FISTA, we are first going to consider an easier case,
namely ISTA, which FISTA was inspired from [BT09; FR13]. The algorithm
consist of a single iteration step, given below

Algorithm 7.1 ISTA with constant stepsize
Input: L := L(f) – A Lipschitz constant of ∇f
Step 0: Take x0 ∈ RN . Typically x0 := A∗y
Step k: k ≥ 1

xk+1 = pL(xk) (7.1)

ISTA solves the same problem as FISTA, so we will use the same setup as
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7. Writing compressive sensing algorithms as neural networks

we did in Section 6.1, i.e. we have f(z) = ‖Az − b‖22, g(z) = λ‖z‖1. We recall
that this gives the proximal operator

pL(x) = Sλ/L(x− L−1∇f(x))

We want to write the iteration step (7.1) as a one-layered neural network.
When that is established, ISTA generalizes to a multi-layered neural network
by increasing the number of iterations. Indeed, the desired result is given in
the following lemma:

Lemma 7.1. The application of the proximal operator in Equation (7.1) can be
written as forward propagation through a layer in a neural network. In other
words

pL = (ρISTA ◦WISTA)

where

WISTA(x) = WISTAx+ bISTA

WISTA = (I − 2L−1A∗A)
bISTA = 2L−1A∗y

ρISTA = Sλ/L

If we allow the bias term bISTA to depend on the measurement vector y.

Proof. We have to show that

Sλ/L(x− L−1∇f(x)) = ρISTA(WISTA(x))

By the definition of ρISTA, we have that

ρISTA(WISTA(x)) = Sλ/L(WISTA(x))

By definition, this acts elementwise on its input, and is nonlinear. We also
have that WISTA(x) = W ISTAx+ bISTA is an affine map, because W ISTA is a
matrix, and bISTA is a vector.

It therefore remains to show that WISTA = x − L−1∇f(x). Indeed, by
applying the definitions and factoring the result, we get

WISTA(x) = W ISTAx+ bISTA

= (I − 2L−1A∗A)x+ 2L−1A∗y

= x− 2L−1A∗Ax+ 2L−1A∗y

= x− 2L−1A∗(Ax− y)
= x− L−1∇f(x)

Which completes the proof. �

ISTA fits rather nicely into the classical definition of neural networks given
in Definition 5.1. Lemma 7.1 provides appropriate affine mapping and nonlinear
functions that will lets us write ISTA as a neural network.
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y WISTA(y) ρISTA WISTA(y) ρISTA

Figure 7.1: Two layers of ISTA as as neural network where the weights functions
of the measurements.

y WISTA ρISTA WISTA ρISTA WISTA ρISTA

Figure 7.2: Three layers of ISTA as a neural network where the dependency is
illustrated using skip connections.

However, Lemma 7.1 makes an important assumption: The bias term in
WISTA must depend on the measurements y. This leads to skip connections,
meaning that the input, in addition to being passed through the network in the
way expected, it will also skip some nodes, and be passed directly to some of
the nodes. This is illustrated in Figure 7.2.

We are now ready to attempt writing FISTA as a neural network. This will
be done according to the following definition

Definition 7.2 (Neural networks). A neural network Φ is a function composed
of N function fi such that is on the form

Φ(x) = fN (fN−1(fN−2(. . . f1(x) . . . ))) (7.2)

Where each fi is on one of the following forms:

• An affine map W.

• An activation function ξ 7→ s(ξ)ρ(ξ), where

– ρ is a nonlinear function acting componentwise on its input.
– s : Cm → R is a function that will scale the output of ρ

• A function L that computes the linear combination

L(x, z, α, β) = g(α, β)x+ h(α, β)z

Where the functions g, h : R2 → R compute the coefficients.

In addition, we require that if fi is an affine map, then fi+1 must be an activation
function

We also allow skip connections to make e.g. L usable in Equation (7.2). We
do this by additionally allowing the functions fi to take the output of any fj
for any j < i as additional inputs.

The requirement of always having activation functions after affine maps
mainly stems from the wish to preserve a similar structure as in Definition 5.1.
The importance of the nonlinearity in the activation functions comes from the
fact that if W1 and W2 are affine maps, then both W1 +W2 and W1 ◦ W2
are affine maps. Thus, a neural network considering of only affine maps, no
matter how many, will just be an affine map. In other words, having repeating
affine maps reduces to a single affine map, and that approach will therefore
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7. Writing compressive sensing algorithms as neural networks

y WISTA(y) ρISTA L WISTA(y) ρISTA L WISTA(y) ρISTA

Figure 7.3: FISTA

be wasteful from a computational point of view, as expressing the series of
maps as a single one will provide the same amount of expressiveness and can
be computed faster.

When writing FISTA as a neural network, we are going to need the following
definition

Definition 7.3 (Linear combination node for FISTA). We define the following
linear combination node L

L(xk, xk−1, tk, tk−1) = xk +
(
tk − 1
tk+1

)
(xk − xk−1)

=
(

1 + tk − 1
tk+1

)
xk +

(
tk − 1
tk+1

)
xk−1

This is Equation (6.6).

We are now ready to describe FISTA as a neural network. We will see
that the discussion about ISTA proves useful when doing this, as the proximal
operator is the same in both cases, and so

Theorem 7.4 (FISTA as a neural network). The equations (6.4) and (6.5) can
be written as a neural network according to Definition 7.2 withWFISTA =WISTA
and ρFISTA = ρISTA given by Lemma 7.1 and L given by Definition 7.3. The
composite function

ρFISTA(WFISTA(L(xk,xk−1, tk, tk−1))

Is one layer of a neural network that computes one iteration of FISTA if we set
x−1 := x0 and t0 := t1.

Proof. We first note that defining t0 and x−1 allows the first evaluation of L to
return its first input x1, as the algorithm does not actually perform the linear
combination until the end of the first iteration.

Due to the similarities between ISTA and FISTA, we can apply Lemma 7.1
for the affine mapping and the nonlinear function. For the linear combination,
we see that it computes x, according to Equation (6.6), which is the input to
Equation (6.4). �

FISTA, using L is illustrated in Figure 7.3. Note that the figure uses function
notation for the dependency on y in WISTA. This is done mainly to focus on
the structure involving L, and avoid clutter.

At this point, the function in Definition 7.3 does only implicitly compute
the coefficients in the linear combination. These coefficients involving tk are
not arbitrary, and need to be computed.

The sequence {tk}
∞
k=1 in the context of FISTA has a major advantage as it

does not depend on anything other that the value from the previous iteration,
therefore, the sequence can be computed and set when building the network.
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7.2. Chambolle–Pock as a neural network

y WISTA(y) ρISTA L WISTA(y) ρISTA L WISTA(y) ρISTA

t1 Wt ρt t2 Wt ρt t3

Figure 7.4: FISTA with tk computed in parallel

Another approach is to observe that the sequence {tk} can be computed
using a neural network. By setting

Wt(t) = t (7.3)

ρt(t) = 1 +
√

1 + 4t2

2 (7.4)

Thus, the function (Wt ◦ ρt) composed with itself k times will give us tk. In
addition, Wt is an affine map, as it is linear, and ρt is a non-linear function,
because of both the square and the square root. It also acts componentwise, as
tk only have one component.

Thus, we can compute FISTA by running two neural networks in parallel.
This is illustrated in Figure 7.4

We conclude this section by noting that FISTA indeed can be written as a
neural network using the extended definition. We do note, however, that this
is only the case when we compute {tk} outside of the network. The technique
illustrated in Figure 7.4 does not fit the definition.

7.2 Chambolle–Pock as a neural network

Let us now consider Chambolle and Pock’s primal-dual algorithm, as discussed
in Section 6.2. We want to write this as a neural networking according to the
above modified definition.

We recall that the iteration steps in the Primal-Dual algorithm.

ξk+1 = PF∗(σ; ξk + σAxk) (PD1)
xk+1 = PG(τ ;xk − τA∗ξk+1) (PD2)
xk+1 = xk+1 + θ(xk+1 − xk) (PD3)

This algorithm is quite similar to FISTA, but is also more complicated.
Instead of just computing the primal solution, as FISTA does, the dual solu-
tion is also computed. In addition, these two sequences cannot be computed
independently, because they heavily depend on each other.

Because of this dependency, it is better to consider each of the two equations
as one layer in the network. This way, Equation (PD1) will be the calculation
done in the odd numbered layers, and Equation (PD2) will be the even numbered
layers. After each even numbered layer, we need to compute a linear combination,
namely Equation (PD3), which we will define by the following function
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7. Writing compressive sensing algorithms as neural networks

Definition 7.5 (Linear combination node for Chambolle-Pock). The function L
is given as

L(xn+1,xn, θ) = xn+1 + θ(xn+1 − xn)
= (1 + θ)xn+1 − θxn

Because we are mostly interested in the primal solution x, it is interesting
to write out Equation (PD2) in terms of the other equations in the algorithms.
We get

xn+1 = PG(xn − τA∗(PF∗(ξn + σAL(xn,xn−1)))) (7.5)
Which motivates the following theorem

Theorem 7.6 (Chambolle–Pock as a neural network). One iteration of the
Chambolle–Pock primal-dual algorithm described in Algorithm 6.2 can be written
as a two-layered neural network according to Definition 7.2, i.e.

ρP(WP(ρD(WD(L(xn,xn−1, θ))))) (7.6)

where

ρP = PG

ρD = PF∗

WP(z) = WPz + bP

WD(z) = WDz + bD

WP = −τA∗

bP = xn

WD = σA

bD = ξn

Composing Equation (7.6) with itself n times yield a neural network with 2n
layers that computes n iterations of Algorithm 6.2. It outputs only the primal
solution.

Proof. From Equation (7.5), it is quite easy to see that Equation (7.6) computes
one iteration of the primal-dual algorithm. It therefore only remains to show
that it is a neural network according to Definition 7.2.

We begin by showing that the functions ρP, ρD,WP,WD are functions that
the definition allow. Indeed WP and WD are affine mappings. They do depend
on skip connections for the bias, which is allowed.

Further, we observe that PG(τ,z) = Sτ (z) is similar to the activation
function for FISTA, and is therefore allowed.

Consider PF∗ . Recall that it is defined by

PF∗(σ; ξ) =
{

0 if ‖ξ − σy‖2 ≤ ησ(
1− ησ

‖ξ−σy‖2

)
(ξ − σy) otherwise

We observe that 1− ησ
‖ξ−σy‖2

< 0 when ‖ξ − σy‖2 ≤ ησ. Thus, we can write

PF∗(σ; ξ) = max
{

0, 1− ησ

‖ξ − σy‖2

}
(ξ − σy)
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7.3. Adaptive neural networks

The mapping ξ 7→ ξ − σy is nonlinear, and it acts componentwise on ξ. As
the output is scaled by the value of the max function, we have that P ∗F is an
activation function according to Definition 7.2.

Finally, we observe that whenever an affine map is computed, it is followed
by an activation function. Thus, we also satisfy the requirement that we cannot
have two affine maps in succession.

�

7.3 Adaptive neural networks

We observe that the neural networks arising from unrolling the two algorithms
form networks where the weight layers WFISTA, WP and WD depend on the
measurement vectors y and/or the measurement matrix A. In other words,
these networks change their weights to accommodate the input. Therefore, they
do not require any training. With the difficulties of training a neural network
in mind, this might provide an advantage, especially with the theory described
in Chapter 4 and 6 guaranteeing recovery. Because the weights adapts to to the
input of the network, we refer this class of neural networks as Adaptive Neural
Networks (ANNs).
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CHAPTER 8

Numerical results

8.1 Setup

Treating the optimization algorithms for compressive sensing as neural networks
in Chapter 7 motivates implementing them as neural networks as well. In recent
years, this has typically been done by using frameworks such as Tensorflow [TF].
With these frameworks, we can program GPUs by using high-level languages
such as Python [Py3]. For programmers with experience with other frameworks
for scientific computing, such as SciPy [SciPy], this is done with relative ease,
compared to more low-level languages such as C. Tensorflow is also designed
with deep learning in mind, and can therefore calculate gradients for us, which
makes us able to perform stability tests.

Every example of recovery with compressive sensing in this chapter is done
with the author’s Tensorflow implementations, unless otherwise noted. The
sampling patterns have been generated using the cslib MATLAB library, which
can be found at https://bitbucket.org/vegarant/cslib

Table 8.1 shows a legend with information about the hardware used to
run experiments. To avoid cluttering our figures and tables, we refer to the
hardware using the keys in the legend.

Key Description
GPU NVIDIA GeForce GTX 1080
CPU Intel Core i7-4790K CPU (4.00 GHz)

Table 8.1: Legend for the keys in Table 8.2 and Table 8.3

8.2 Speed

A welcomed consequence of running the code on a GPU is that we are able to
get a significant speedup, compared to running similar code on a CPU.

Table 8.2 and Table 8.2 along with the plots in Figure 8.1 and Figure 8.2
show running times for FISTA and Chambolle–Pock, implemented both in
Tensorflow and with Numpy. For each of the values 256, 512, 1024 and 2048, ten
experiments have been performed, and the resulting datapoints shown are the
median. We choose the median over the mean for the following reasons: The
first run of a Tensorflow graph is usually slower than subsequent runs because
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Figure 8.1: Fista time plot
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Figure 8.2: pd time plot
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8.3. Successful recovery

N GPU CPU
256 12.35 13.93
512 18.13 66.17
1024 32.77 321.86
2048 88.39 1579.44

Table 8.2: Running times in seconds for FISTA with different values of N

N GPU CPU
256 12.39 19.50
512 18.84 92.23
1024 33.87 346.01
2048 91.05 1679.67

Table 8.3: Running times in seconds for Chambolle–Pock with different values
of N

it has not yet been optimized. The median is more robust with respect to
extreme values, and will therefore not be skewed by this potential outlier. Such
values might arise from simultaneous usage of the computational resources the
computations have been made on.

We see that the Tensorflow implementations running on GPU is faster than
the Numpy implementations. However, the difference for small N is perhaps
not as extreme as expected. This might be due to parallelization done by
Numpy. When the problem size grows, Tensorflow outperforms Numpy with
an order of magnitude for N = 2048. To emphasize the significance of this, we
note that the combined time spend computing the experiments for Tensorflow
was approximately one hour, while the CPU implementation took a total of
11 hours to complete. For running several large scale experiments, the GPU
implementation is therefore clearly preferred.

8.3 Successful recovery

Figure 8.3 shows the result of a practical experiment using 12.5% of the original
samples. We see that as a consequence of the subsampling, some details are
lost when we recover by taking the adjoint in Figure 8.3c. These details are
recovered in Figure 8.3d.

8.4 Superresolution

An experiment that better illustrates the usefulness of compressive sensing can
be seen in Figure 8.5. In Figure 8.6, we have added text to the Shepp–Logan
phantom image of size 2048× 2048, which has then been rescaled to 512× 512.
As we can see in Figure 8.5a, we have lost a significant amount of detail, and
thus the text is illegible. This corresponds to classical methods, where we have
to sample the entire 512× 512 grid in Figure 8.5e.
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(a) Original image (b) Sampling pattern

(c) Adjoint (d) Recovery

Figure 8.3: Recovery using 12.5% of the samples

(a) Original zoomed (b) Recovered zoomed (c) Adjoint zoomed

Figure 8.4: Zooming Figure 8.3
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8.5. Stability

(a) N = 512 (b) N = 2048 (c) N = 2048 (d) N = 2048

(e) 100 % (f) 6.25 % (g) 6.25 % (h) 6.25 %

Figure 8.5: Recovery of details with compressive sensing

From the same measurements, we obtain Figure 8.5b by padding the Fourier
measurements. The recovery using the IDFT still provides illegible text. By
more carefully selecting our samples, we obtain Figure 8.5c, which greatly
improve the adjoint. Lastly, we apply compressive sensing to the measurements
in Figure 8.5c, to get an image where the text is legible Figure 8.5d. We note
that this is recovery using 6.25% of the original measurements. In addition, we
obtain better resolution than 100% sampling for the 512× 512 case.

8.5 Stability

In Chapter 4, we looked at theoretical results regarding compressive sensing. In
particular, Theorem 4.15 guarantees that the upper bound on the recovery error
scales linearly. Therefore, if we perturb the input, we would not expect the error
to become drastically different. In other words, compressive sensing is stable
with respect to perturbations. Figure 8.7 recreates a figure from [Ant+19],
where we apply a series of perturbations r1, . . . , r4 with increasing norm to
an image to investigate if the neural network AUTOMAP from [Zhu+18] is
stable. Figures (8.7a) through (8.7j) are taken from [Ant+19]. The first row of
images visualizes the MRI data with the different perturbations added. The
second rows displays the recovery of using AUTOMAP (AM) to recover the
corresponding image in the top row from 60 % Fourier subsampling.

AUTOMAP performs well in the noiseless case, but performs poorly already
when the smallest perturbation is applied. For the remaining cases, the noise
causes the network to perform even worse. In few of the cases, we are unable
to see the outline of the heart added as a detail, and in the worst cases, like
Figure 8.7j, we also unable to separate what is the added detail, and what is
artifacts arising from the added noise.

The last row shows the recovery compressive sensing (CS) using the exact
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8. Numerical results

Figure 8.6: The full 2048× 2048 Shepp–Logan phantom with text

same data as was put into AUTOMAP in the second row. We see that the
output is more or less identical to the input images. This is good news, as it is
an indication that we in fact have stable recovery. However, this is not a fair
comparison. The noise applied in the figure is generated to make the error in
the output as large as possible when recovered with AUTOMAP.

Instead, we attempt to find worst-case noise for compressive sensing on the
same scale as the perturbations in Figure 8.7. We consider the same problem
as in [Ant+19], given in Equation (8.1)

argmaxr
1
2‖f(y +Ar)− f(y)‖22 −

λ

2 ‖r‖
2
2 (8.1)

When solving this optimization problem, we are seeking a small perturbation
r that makes the difference between the noiseless recovery f(y) and the recovery
with the noise added f(y +Ar) large. We solve this problem iteratively using
Nesterov accelerated gradient descent. To make the comparison as fair as
possible, we terminate the algorithm when the `2-norm of the perturbation is
larger than the perturbations used in Figure 8.7.

60



8.5. Stability

(a) |x| (b) |x+ r1| (c) |x+ r2| (d) |x+ r3| (e) |x+ r4|

(f) AM |x| (g) AM |x+ r1| (h) AM |x+ r2| (i) AM |x+ r3| (j) AM |x+ r4|

(k) CS |x| (l) CS |x+ r1| (m) CS |x+ r2| (n) CS |x+ r3| (o) CS |x+ r4|

Figure 8.7: Stability compared to AUTOMAP.

(a) |x| (b) |x+ r1| (c) |x+ r2| (d) |x+ r3| (e) |x+ r4|

(f) CS Ax (g) CS A(x+ r1)(h) CS A(x+ r2)(i) CS A(x+ r3) (j) CS A(x+ r4)

Figure 8.8: Stability of FISTA
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(a) |x| (b) |x+ r1| (c) |x+ r2| (d) |x+ r3| (e) |x+ r4|

(f) CS Ax (g) CS A(x+ r1)(h) CS A(x+ r2)(i) CS A(x+ r3) (j) CS A(x+ r4)

Figure 8.9: Stability of Chambolle–Pock

(a) |x| (b) |x+ r1| (c) |x+ r2| (d) |x+ r3| (e) |x+ r4|

(f) CS Ax (g) CS A(x+ r1)(h) CS A(x+ r2)(i) CS A(x+ r3) (j) CS A(x+ r4)

Figure 8.10: Stability of square root LASSO

Figures 8.8 and 8.9 shows the results of stability experiments for FISTA and
Chambolle–Pock, respectively. The top row in each figure shows the original
images with added noise, and the bottom rows shows the resulting recovery
from the same 60% sampling pattern used for Figure 8.7.

We can immediately see that the algorithms do not perform as well as when
we applied the noise generated for AUTOMAP. Quite surprisingly, we get a
lot of artifacts. The noise is most severe for FISTA, where we lose a lot of
details around the added heart detail. The noise when using Chambolle–Pock
for recovery is not as severe. Similarly to FISTA, we experience that small
artifacts added by the noise are amplified in the recovery. Compare for instance
the brightest dots in Figure 8.9j and compare the brightness with the original
image Figure 8.9e. These sorts of artifacts can obscure details, for instance in
Figure 8.9i

To investigate if a more stable form of the algorithms previously considered
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8.5. Stability

in this thesis exist, a stability test of Chambolle–Pock with the square root
LASSO (8.2) problem was also performed. We omit any theoretical analysis,
derivations and discussion of this problem due to time constraints.

min
z

λ‖z‖1 + ‖Az − y‖2 (8.2)

Surprisingly, we see that it performs much better than the other two algo-
rithms. We see slight amplification of the noise, but the outputs are nearly
identical to the input images. This is good news, and a clear indication of
stability.
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CHAPTER 9

Conclusion

This thesis started with a presentation of the basic compressive sensing prob-
lem: Recovery of sparse vectors from linear measurements. We proved some
fundamental results that guarantees successful recovery. In Chapter 3 and 4,
we saw that the classical theory does not perform well when applied to inverse
problems in MRI. Due to computational and physical limitations, we had to
modify the theory, rather than changing the sampling operator. The solution
was structured sparsity, where we assume a structure in the way the non-zero
components are organised in the image. Further, Chapter 5 provided an overview
of the principles of deep learning with neural networks, as an alternative to
compressive sensing. In Chapter 6, we presented two algorithms for solving
optimization problems in compressive sensing: FISTA and Chambolle–Pock’s
Primal-Dual algorithm. Once their correctness was established, we were able to
show in Chapter 7 that when unrolled, they formed a structure similar to that
of neural networks. Therefore, with minimal modifications of the original neural
network definition, we formed a new class of neural networks not requiring any
training for successful image recovery. Chapter 8 was devoted to numerical
results, where we demonstrated that the supplied implementations provided a
significant speedup. In addition, we performed the first worst-case stability test
of these algorithms.

The stability tests of the algorithms we considered in Chapter 6 showed that
they were rather unstable. Relatively low levels of noise caused quite dramatic
artifacts in the output. Due to these rather surprising results, we also tested
Chambolle–Pock with the square root LASSO optimization problem, and it
turned out that it was stable.

More exhaustive testing is required for the first two algorithms, to investigate
if we can find parameters that makes them stable. We have established that
they are not stable in general, because we found cases where they greatly
amplified the noise. An important takeaway is that the choice of algorithm and
optimization problem is not arbitrary when it comes to stability, even though
the problem we are solving is stable in theory.
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