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Abstract

We have in this study investigated the global instability developing beneath large
internal solitary waves (ISW) of depression in a wave tank. To perform this study,
the numerical tool Basilisk has been used and we have worked in 2D. Our results
proved to compare well to both fully nonlinear theory and experiments, making
Basilisk a good choice of tool when studying internal waves. Simulations showed
that Kelvin-Helmholtz instabilities developing in large ISWs, changed the wave
profile in its rear part, making the wave broader. This effect was strongest in a
two-layered fluid, while a three-layered fluid was better at retaining its wave shape.
This led to larger velocities at the bottom of the wave tank, for the three-layered
fluid, and a stronger resuspension of bed sediments. The simulations showed that a
sloping bottom increased the vortex shedding. Having a sloping bottom increased
the strength of the reverse flow leading to the development of larger vertices. This
resulted in particles getting lifted over 60% of the total water depth for a slope
steepness of α = 2.8°. The results using a flat bottom showed a lift of particles
of 20%. The slope used in Basilisk was comparable to the average slope steepness
at the continental slope at 4°. The large resuspension of particles found in our
simulations were strong enough for mixing of the entire water column to occur. Our
study has showed that the instability appearing beneath a large ISW of depression
can contribute massively towards resuspending sediments from the sea floor. If we
include the ocean currents, we have a system where sediments from the sea floor
gets lifted high up in the water column where ocean currents act as a transport
mechanism, spreading nutrition over a larger area. Under the right conditions, ISWs
can therefore be considered a nutrition pump in the ocean.
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CHAPTER 1

Introduction and background

In this study, we will investigate the global instability appearing beneath a propagating
internal solitary wave (ISW) under depression in a wave tank. Both a two- and three-
layered fluid will be investigated. Large ISWs give rise to several instabilities. This
include convective breaking (overturning) in the upper layer (A), shear instabilities
(Kelvin-Helmholtz) along the interface between the upper and lower layer (B) and global
instabilities at the bottom (C) where bed sediments can be resuspended and transported
vertically in the water column. An illustration of an ISW in a two-layered fluid, with
the breaking processes highlighted, can be seen in figure (1.1). Our main focus in this
study is the instability that happens at the bottom of the water column (C) and leads
to flow separation and resuspension of sediments. The study has been completed using
the numerical program Basilisk to simulate ISWs in a numerical wave tank, supported by
some experiments performed in the hydrolab at the University of Oslo (UiO). The results
are compared to both fully nonlinear theory and experiments for validation.

Internal waves
When we think about ocean waves, we usually only think about the ones visible for the
human eye, but waves also exist beneath the ocean surface. These waves cannot be seen at
the surface at first glance. Internal waves move in oceans that are layered. Layering occurs
when warm and light surface water lays on top of colder and heavier water. Layering
can also exist in fjords or along coastal lines where fresh water from rivers meets heavier
seawater. The interface between cold and warm water is called a thermocline, while the
interface between water with a density difference, e.g. fresh water and salt water, is called
a pycnocline. In internal waves the upper layer is travelling in the same direction as
the wave. Beneath the thermocline/pycnocline, water is moved in the opposite direction.
When this shear increases its magnitude and reaches a threshold, the wave breaks. This
instability is called Kelvin-Helmholtz rolls.

Internal waves are created in two different ways, both cases equally common. The first
way is creation of waves when the tide travels over underwater mountains or along the
continental shelf. A blockage of the tide-movement raises and lowers the thermocline, and
internal waves are created. The second way, is due to winds acting on the ocean surface
[29]. The wave period is typically 15-30 minutes, which is in general considered a fast
movement in the ocean, especially in comparison to the tide that usually oscillates with
a period of 12.4 hours. In areas at continental shelves such as Lofoten and Vesterålen,

1



Figure 1.1: Illustration of an ISW propagating to the right with breaking processes
highlighted

internal waves are created regularly [19]. Internal waves are most often occurring in groups
and the distance between them is regulated by the tidal period. The tidal motion creates
internal waves all across the world.

Internal waves come in two main forms: periodic wave trains and pulses. Both types move
along the thermocline. The internal waves are always pointed out of the smallest layer,
which means they most often are pointed downwards in the ocean (see figure 1.1). When
these waves are created, they can propagate for long distances without changing their
shape and strength. They are therefore considered as a transport mechanism in the ocean
since they can move sediments from one place to another. The pulse waves can also occur
along the sea bottom, however pointing upwards. Internal waves that propagates along
the shelf slope can bring nutrition from the deep ocean to shallower and more light-rich
oceans where the conditions are ideal for larvae etc.

ISWs with amplitude comparable to the ocean depth have previously been observed. Duda
et al. (2004) [14] observed an ISW of depression in the South China Sea with an amplitude
of 150m in a 340m deep ocean. In addition, Van Gastel and Ivey have observed ISWs
with an amplitude of 80m in a 125m deep ocean (Presented in Diamessis and Redekopp
[12], (2006)). In such settings, interaction between the wave and the bottom boundary is
important and is expected to have a significant effect on the benthic dynamics. A benthic
boundary layer is defined as the layer of water directly above sediments at the bottom of
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1.1. Internal waves through history

the ocean, lakes or rivers.

1.1 Internal waves through history
The research history for internal waves started in the Arctic with Fridtjof Nansen’s
description of dead water. Fridtjof Nansen was an oceanographer and scientist who was
interested in the ocean circulation on a large scale. A study of the ocean currents, both in
the global and Arctic ocean was one of the main motivations of the Fram-trip in 1893-1896.
During this trip, Nansen became the first to describe the dead water phenomena. Dead
water happens due to internal waves created by a slowly moving ship. Sailors that entered
a water with a thermocline, experienced a huge reduction in the ship speed, but this was
hard to understand since the waves were impossible to see.

Internal waves are a collection of several phenomena including dead water, strong pulses
and the internal tides. They contribute towards recycling in the ocean on a large scale.
Similar phenomena exists in the atmosphere, but this did not get much attention before
the development of the aviation. The modern interest in large internal waves started
in the 1960s due to the development of ocean instrumentation, remote sensing and
applied mathematics (Melville and Helfrich 2006 [32]). This development led to several
observations of large internal waves in the coastal oceans. Among them was measurements
by Perry and Schimke (1965) [34] in the Andaman Sea. They discovered internal waves
with an amplitude of 80m and wavelength of 2000m for a thermocline situated at 500m
in a 1500m deep ocean. Osborne and Burch (1980) [33] later showed that these waves
were generated by tidal flows through channels in the Andaman and Nicobar island and
propagated toward Sumatra over hundred kilometers away. It was early established that
these were not linear dispersive waves. The wave amplitudes measured were too large
compared to upper layer thickness for them to be linear. The observations that internal
waves could propagate for long distances with finite amplitude, as those made by Osborne
and Burch, suggested that dispersion was not dominant.

After the second world war, several highly technological American submarines sank.
Submarines like to operate along a thermocline, since signals are reflected and spread from
sonars and ships in this area, making it hard to discover the submarine. The submarines
are moving neutrally in the fluid and follows the thermoclines vertical motion and therefore
oscillates slowly. This can lead to accidents. One example was the accident involving the
American submarine Tresher in 1963. Tresher had 129 passengers on board, but no one
survived. The first explanations of what went wrong came in 1965. During this period,
the first large internal waves in the ocean was observed in the Andaman ocean with an
amplitude of 80m, which were quite a sensation. This is most likely what happened
to Tresher. When a submarine travels deeper, the crew must reduce the density of the
submarine in order to arrest the fall. If the submarine falls to fast, it can exceed the
pressure capacity of the hull and the submarine will implode. There was no reports of
equipment malfunctioning or weather storms in the area. Oceanographers had up to
this point stated that internal waves did not exist. This changed when the Russian and
American space program took pictures of the earth from space. These pictures showed
signatures of internal waves at the sea surface. These signatures can be seen due to a
powerful current that is induced by the internal waves at the ocean surface. This current
varies along the wave extent. It is strong at a wave crest or trough and weaker at places
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1.2. Vesterålen

where the thermocline has smaller amplitudes. The surface current amplifies or weakens
wind driven waves, depending on the wind direction and is perceived as changes in the
light reflection from the sea surface.

The pulse wave extent is often comparable to the height of the upper layer, but the largest
amplitude measured is five times the surface layer in the ocean (Grue 2013 [20]). Since the
ocean is layered almost throughout due to differences in temperature or salinity, internal
waves can be found everywhere. The thermocline is situated at approximately 200-300
m in equatorial areas. Other examples of thermoclines from the Norwegian coast can be
found at the petroleum field Ormen Lange at 550 m and in Norwegian fjords that receive
runoff, at only 4-10 m.

In recent history, most of the research on internal waves have come from the offshore-
industry related to oil, gas and minerals. When using ships and platforms to bore or
perform installations in deep water, long tubes are used as a connection between the vessel
and the bottom of the ocean. Marine operations in equatorial areas have experienced the
size and strength of internal waves and their induced surface currents. It is not until recent
years that the knowledge of internal waves have increased. Several operators have lost
their equipment due to internal waves, which can be a very costly affair. This increases
the importance of having a thorough understanding of internal waves and their strengths,
in order to perform safe and permanent marine operations. Ormen Lange is a petroleum
field situated northwest of Kristiansund in Norway, which have stimulated lots of different
research. The thermocline in this area is located at approximately 550 meters depth.
This thermocline separates hot Atlantic Ocean at 7°C with colder polar water at -1°C.
The Atlantic current can push the thermocline deep down in the ocean. Measurements
performed at Ormen Lange shows a vertical extent of 300m from the usual thermocline at
550m depth to at most 850m depth. [20]

During the presidency of Barack Obama, 850,000 square miles of ocean were added to
America’s network of protected waters. It was pointed out that tidal waves floating over
shallow banks form short internal waves. These banks were described as oases to marine
life. The importance of such banks were later highlighted since the ocean is suffering from
overexploitation, pollution and the increasing effect of climate changes. These oases are
therefore important as a place where the marine life can recover. (National Geographic
Feb 2017 [16])

1.2 Vesterålen
Large internal waves are recently observed east of Vesterålen, at the coast of Norway, by
using synthetic "aperture" radar-technique. The waves can be seen on the left of figure
(1.2). The waves are created on the edge of a coral reef, and the area is also known for
having a high fishing density. In this case, it is the daily tides that create the large internal
waves. The pycnocline is then raised to a higher level, before being "released" and internal
waves starts to propagate upstream. In this area, a sloping bottom is present (see figure
1.3), with an average slope steepness of 3.2°. The waves spotted in this area have an
amplitude of approximately 60m in a 200m deep ocean and a wavelength λ ≈ 500m. The
average wave propagation speed is approximately 0.10 m/s. The size of these waves give
rise to several instabilities. Firstly we have the convectively induced breaking in the upper
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1.2. Vesterålen

layer of the wave. This means that nutrition in the upper layer are transported down into
the sea, following the internal waves. Secondly, if the internal waves become large enough,
a shear instability called Kelvin-Helmholtz appears. This instability mixes the layers of
different densities at a vertical distance comparable to the wave amplitude. Lastly we
have the development of vortices and vertical transportation along the bottom of the
ocean. This instability occurs when the waves become very large and strongly nonlinear
and is seen on the lee-side of the wave [19].

Figure 1.2: Signature of ISWs outside of Lofoten and Vesteralen, figure 1 from Grue (2018)
[19]

Figure 1.3: Illustration of the bottom topography in Vesterålen. The x-axis is the length
scale given in km, figure 6 from Grue (2018) [19]
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1.3. Breaking processes of ISWs

1.3 Breaking processes of ISWs
There are as mentioned before, several breaking mechanisms that occur for ISWs of large
amplitude. We will now give an introduction to how and when they occur and present
the research history for each breaking process.

Convective breaking
Convective breaking appears in internal waves, when the particle velocity u exceeds the
fluid velocity c (u/c > 1). Carr et al. (2008) [10] showed through experiments both
convective breaking and shear instabilities in strongly nonlinear waves. They proved that
the upper boundary condition had large impact on the convective breaking. By using a
rigid lid at the upper boundary, it became possible to run with larger wave amplitudes
before the convective breaking took place compared to having a free surface. In 2000,
Grue et al. [21] did both experimental and theoretical calculations, which showed that
the horizontal wave velocity became equal to the wave speed when the wave amplitude
became 0.855h1, where h1 is the upper layer height. Their study showed that convective
breaking also could take place for u/c close to 1.

Kelvin-Helmholtz instability
Kelvin-Helmholtz instability can appear when having a velocity shear in a continuous
fluid or a velocity difference along the interface between two fluids. An example of this is
wind blowing over the ocean. Kelvin-Helmholtz instability appears both in the ocean and
in the atmosphere. Several studies have been made on this instability.

Theoretical approximations of the wave induced Kelvin-Helmholtz instability was made
by Bogucki and Garret (1993) [5]. They suggested that the shear instability occurs when
the Richardson number goes below 1/4, resulting in breaking and mixing of the flow. The
Richardson number describes the relationship between buoyancy and flow shear forces
and is defined as

Ri = N2

(∂u
∂z

)2 (1.1)

where N is the Brunt-Vaisala frequency. Bogucki and Garret [5] based their calculations
on the KdV and Benjamin-Ono equations, and the pycnocline was assumed thin. Fructus
and Grue (2004) [15] found similar results for the instability in a stratified shear flow, but
noted that the Richardson number in some occasions had to be less than 0.20 for instability
to appear. Grue et al. (1999) [18] showed how Kelvin-Helmholtz instabilities contributed
towards changing the internal wave from its original form to a more broad-crested wave in
its rear part. This meant that the experiments stopped matching the standard nonlinear
wave theory, as shown in figure (1.4). Here, the wave amplitude is gradually increased
and we can clearly see in the final figure the appearance of Kelvin-Helmholtz instabilities
due to the broad-crested wave.
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1.3. Breaking processes of ISWs

Figure 1.4: Comparison between experiments, weakly nonlinear and fully nonlinear theory,
showing the presence of Kelvin-Helmholtz instability. From Grue et al. (1999) figure 7
[18].

Carr et al. (2008) [10] compared experiments with wave theory and concluded that the
instability comes as a mix of convective and shear tension. The convective instability also
contributed towards increasing the shear tension. The stability criteria found proved to
compare well to Fructus and Grue (2004) [15].
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1.3. Breaking processes of ISWs

In 2017, Carr et al. [9] investigated the spatial and temporal evolution of the shear-induced
billows associated with breaking internal solitary waves through both experiments and
numerical work. The characteristics of each billow were decided in each experiment and
the interactions of the billows were investigated and classified. Both wave steepness
and amplitude proved to have large impact on if breaking occurred and how the billows
interacted with each other. The billow characteristics were sorted in four categories:

1. The billows grow separately

2. The billows pair together

3. They engulf each other

4. Fails to completely overturn

The number of billows that evolved proved to be dependent on the wavelength. Shorter
waves had fewer but larger billows in comparison with longer waves for a given stratification.

Vortex shedding and vertical transport along the bottom
A third type of instability related to strongly nonlinear waves have recently been reported
from several studies, such as Statsna and Lamb (2002) [39], Diamessis and Redekopp
(2006) [12], Carr and Davies (2006) [7], Carr et al. (2008) [8] and Aghsaee et al. (2012) [1].
Both experimental and numerical studies have been made in the attempt to describe the
criteria for this global instability to appear and characterize its strength. In addition, they
have looked at the possibility for this instability to contribute towards resuspension of
sediments vertically from the seafloor and with this contribute with nutrition throughout
the water column as well as recirculating the water. Large internal waves have been
observed outside of Vesterålen that satisfies the requirements for global instability to
occur [19]. The same area is marked as an area of high fishing density and a coral reef is
also situated nearby. This fact makes the global instability even more interesting.

Statsna and Lamb (2002) [39] studied the interaction between fully nonlinear solitary waves
and the seafloor. Their study showed that the vortex shedding appearing underneath
internal waves was an effective mechanism of transporting sediments away from the
seafloor. By looking at stress-profiles along the bottom they concluded that the global
instability was strong enough for resuspension of sediments to occur.

In 2006, Diamessis and Redekopp [12] performed direct numerical simulations, where
they investigated the characteristics for benthic excitation of ISWs for different wave
parameters. Their main focus was to look at the instability evolving beneath an internal
wave under depression. If the wave amplitude was large enough, a reverse flow induced by
the wave motion appeared behind the wave, moving in the same direction as the wave,
opposite of the fluid in the lower layer. If the reverse flow was strong enough, it could
evolve into a region of resuspension. Diamessis and Redekopp tried to find a criteria for
global instability to appear. Their results showed that for Rew > 5 × 103 and a wave
amplitude exceeding a critical value, a global instability could be found near the bottom,
where an adverse pressure gradient developed leading to a sufficiently strong reverse flow.
The critical wave amplitude α0cr was found to decrease with an increase in Reynolds
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1.3. Breaking processes of ISWs

number Rew as seen in equation (1.2). The criteria for global instability to occur was
suggested to be valid for both coastal oceans and rivers.

α0cr = 1
2

(
Rew
10−4

)−0.12
(1.2)

Figure 1.5: Critical wave amplitude vs Reynolds number, from Diamessis and Redekopp
(2006) figure 7 [12].

Figure 1.6: Visualization of global instability, from Diamessis and Redekopp (2006) figure
10b [12]
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1.3. Breaking processes of ISWs

Carr and Davies (2006) [7] performed experimental measurements of the boundary layer
region beneath ISWs under depression of large amplitudes propagating over a smooth
topography. Their experiments were performed in a two-layered fluid. While Diamessis
and Redekopp [12] focused on characterizing global instability and find a criteria for when
it occurs, Carr and Davies wanted to obtain data of velocities near the bottom for a
range of different wave parameters, phase velocities and boundary layer thicknesses. Their
experiments were mainly performed with a wave amplitude comparable to the upper layer
thickness, a/h1 ∼ 1. The experiments showed that the velocity field was affected by the
bottom, leading to a decrease of the wave profile width with the distance to the wall as
seen in figure 1.7. In addition to the observed changes of the horizontal velocity profiles,
an unstable boundary jet-flow developed along the wall. This flow was small in magnitude
compared to the maximal velocity in the fluid, but was directed in the same direction as the
wave, opposite of the internal lower layer of fluid, as reported by Diamessis and Redekopp
(2006). The boundary layer flow was generated due to the presence of an adverse pressure
gradient aft of the wave leading to a reverse flow. Theoretical approximations of the
location of the separation bubble was found to compare well with the experimental data,
and confirmed that the boundary layer flow was a result of boundary layer separation.
Good qualitative comparisons were made towards the numerical results of Diamessis and
Redekopp (2006). Both the gradual narrowing of the velocity profile near the bottom in
addition to the generation of a reverse flow were reproduced by the numerical model of
Diamessis and Redekopp (2006), despite differences in the experimental and numerical
simulations.

Figure 1.7: Horizontal velocity profiles for different distances from the wall vs time, from
Carr and Davies (2006), figure 7

In 2008, Carr et al. [8] made an experimental study of global instability by looking
at the ISW induced benthic velocity fields for Reynolds numbers and wave amplitudes
larger then those used in Carr and Davies (2006) [7]. The experiments were performed in
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1.3. Breaking processes of ISWs

an undisturbed density field that consisted of a homogenous upper layer, over a linear
stratified pycnocline and a homogenous lower layer. The setup can be seen in figure (1.8).

Figure 1.8: The experimental setup of Carr et al. (Figure 1 from [8])

A depression wave was created and global instability was observed in the super-critical
cases. The vortex-structure that developed was similar to previous suggestions made by
Diamessis and Redekopp (2006) [12]. By comparing their results with Diamessis and
Redekopp (2006), they found qualitative similarities but quantitative differences. Carr et
al. (2008) [8] found the critical wave amplitude for global instability to be approximately
half of previously suggested by Diamessis and Redekopp (2006). They also found the
vertical velocity of a general vortex to be two sizes of order smaller and the maximal
vertical distance travelled by a vortex to be half of the results of Diamessis and Redekopp.
The experiments of Carr et al. showed that if the reverse flow was sufficiently deep for a
given time period, global instability could be spotted (generation of vortices along the
bottom). The critical wave amplitude for global instability for Reynolds numbers in the
area Rew ∈ [5.8, 6.6]× 104 was shown to be much smaller than previously suggested by
Diamessis and Redekopp. A previous study by Grue et al. (1999) [18] stated that weakly
nonlinear KdV theory was valid for amplitudes up to a/h1 = 0.4 where a is the wave
amplitude and h1 the upper layer thickness. Some of the differences in the two results can
then be explained by Diamessis and Redekopps use of soltions with amplitude exceeding
a/h1 = 0.4, an area where KdV theory compares bad to both experiments and fully
nonlinear wave theory. Since the experimental work by Carr et al. were performed in a
wave tank of limited length, it was impossible to compare some of the results obtained by
Diamessis and Redekopp with their experimental work. One of these was the maximal
height of a vortex due to global instability in the boundary layer. Carr et al. obtained a
maximum lift of 17% of the total water column, while Diamessis and Redekopp had a
maximum lift of approximately 30-35% as seen in figure 1.6.

In 2012, Aghsaee et al. [1] investigated global instability in a laminar boundary layer
beneath an ISW of depression that propagated along a flat bottom in addition to a sloping
topography. The study was done numerically by Direct Numerical Simulation (DNS).
Two types of slopes were used:

1. S = 0.05: A mild slope
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1.4. Motivation

2. S = 0.10: A steep slope

They discovered that vortex shedding was more likely to occur in the event of a flat bottom
for broader waves of large amplitudes, giving steeper wave profiles, larger velocities in
the bottom layer and thereby stronger pressure gradients in comparison to more narrow-
crested waves having smaller wave amplitudes. In the case of an internal solitary wave
propagating over a sloping bottom, vortex shedding occurred in all simulations, due to the
gradually increasing current along the bottom when the wave shoals. Their results showed
a maximum lift of vortices of 33%. Similar simulations by Statsna and Lamb (2008) [38]
showed a lift close to 25%. These were greater than the experimentally achieved 17%
by Carr et al. (2008) [8] for a flat bottom, where three-dimensional effects are likely to
affect the results, with a more rapid degeneration of the shed vortices. Aghsaee et al. also
discovered that the vertical velocities and bed shear was increased for a shoaling wave and
suggested that shoaling ISWs can have an important role in bed sediment resuspension
along sloping regions of oceans and lakes.

Implications of breaking internal waves
Breaking internal waves have several implications on its surroundings, but its contribution
towards mixing are considered the most important. Many authors have related ISWs of
large amplitude as the main contributor towards mixing on the shelf. Jeans and Sherwin
(2001) [24] concluded that ISWs were the prime source of mixing on the Portuguese shelf.
St. Laurent (2008) [30] found that ISWs of large amplitude make the South China Sea
one of the most dissipative shelf regions in the entire world. Several studies (Bogucki et
al. 2005 [6], Carter et al. 2005 [11]) have also identified that internal waves can resuspend
and transport sediments from the sea floor through global instabilities with its strong
currents that develop beneath large ISWs. Quaresma et al. (2007) [35] have observed
ISW induced resuspension in the coastal ocean to ascend as high as 50% of an 80m water
column.

1.4 Motivation
We have now established that ISWs of large amplitude can contribute towards resuspension
and transportation of sediments from the sea floor. This process are considered as a
potentially big source of distributing nutrition for the ocean biology and contribute to
recycling of the water. In this project, we will investigate the global instability that occurs
on the bottom of the ocean. We will try to maximize the conditions for it to happen, in
addition to track single particles to try to get an understanding of how sediments from the
ocean floor are moved upwards in the water column. The study includes internal waves
propagating over both a flat and a sloping bottom. Our main motivation for this study is
to investigate whether ISWs can be considered a nutrition pump in the ocean, and try to
discover the conditions where resuspension is at its largest. The research will be done
both numerically using Basilisk, and experimentally in the hydrolab at UiO.
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CHAPTER 2

Wave models

The linear theory of internal solitary waves in form of the motion of two fluids were first
expressed by Stokes in 1947, with nonlinear extensions made by Boussinesq in the 1870’s.
In 1932, Dubreil-Jacotin developed the equations for nonlinear motion in a stratified fluid.
Then followed the creation of the weakly nonlinear Korteweg de Vries (KdV) equations
by Keulegan (1953) [26] and Long (1956) [31]. Weakly nonlinear and weakly dispersive
theories are useful when modelling internal waves where the density lines have moderate
excursion in relation to the zero-level and the waves are long compared to the depth. The
presented equations are collected from Grue et al. (1997) [17] and chapter 5 of Grue and
Trulsen (2006) [22].

2.1 Korteweg-De Vries equations

Continous stratification
The development of weakly nonlinear theory of internal waves in a continuous stratified
fluid started with Benney (1966) [4] and was later extended to the KdV-equations and its
higher order extensions. We start by introducing a coordinate system where x is directed
horizontally and y vertically. The internal wave motion takes place in the fluid between
two horizontal walls at y = 0 and y = −H. The density field is defined as ρ̄(y). We focus
on 2D wave motion where the velocity field is given as ~v(x, y, t) = [u(x, y, t), v(x, y, t)]
and the density perturbation as ρ(x, y, t), which makes the total density field given as
ρs = ρ̄+ ρ. The equations of motion and continuity equation is then given as:

ρst + uρsx + vρsy = 0 (2.1)
ρs(ut + uux + vuy) = −px (2.2)
ρs(vt + uvx + vvy) = −py − gρs (2.3)
ux + vy = 0 (2.4)

where p is pressure and g acceleration due to gravity. We define the wave amplitude
a and wavelength λ. Next we introduce two non-dimensional numbers ε = a/H and
µ = H2/λ2, where ε gives a number on the nonlinearity of the problem and µ a number for
the dispersive effects. We assume that both ε and µ are of the same order of magnitude.
Next, we introduce non-dimensional quantities:

u = Uu′, v = V v′, p = ρ0gHp
′, ρ = ρ0ρ

′, t = ω−1t′ (2.5)
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2.1. Korteweg-De Vries equations

where we have the relations that UH = V λ and ωλ = U . Now, we introduce the inverse
Froude number G = gh/U2 and the stream function ψ′(x, y, t). Since the fluid is assumed
irrotational we achieve the relationship (u′, v′) = (ψ′y,−ψ′x). The next step is to introduce
the non-dimensional quantities into the equations of motion and continuity (2.1). This
gives us the following equations:

ρt − ρ̄yψx + ε(ρxψy − ρyψx) = 0 (2.6)

(ρ̄ψyt)y −Gρx + ε[ρψyt + ρ̄(ψyψxy − ψxψyy)]y + µρ̄ψxxt

+ε2[ρ(ψyψxy − ψxψyy)]y + µε[ρψxt + ρ̄(ψyψxx − ψxψxy)]x
+µε2[ρ(ψyψxx − ψxψxy)]x = 0

(2.7)

The rigid lid condition ψx = 0 is then applied at y = 0,−1. We search wave solutions by
introducing an amplitude function A(x, t) in addition to expanding ρ(x, y, t) and ψ(x, y, t)
by:

ρ(x, y, t) = A%(y) + εA2%̃(y) + µAxx%̂(y) + ..., (2.8)
ψ(x, y, t) = Aφ(y) + εA2φ̃(y) + µAxxφ̂(y) + ... (2.9)

These expansions are then introduced into (2.6, 2.7), which by leading order gives us:

At + cAx + εα0AAx + µβ0Axxx = 0, (2.10)

(ρ̄φy)y −
Gρ̄y
c2 φ = 0, φ(0) = φ(−1) = 0. (2.11)

Equation (2.11) is an eigenvalue problem that has an infinite set of eigenvalues c0 >
c1 > ... > 0 with corresponding eigenfunctions φ0(y), φ1(y), .... The eigenvalues represent
the wave speed and the eigenfunctions the vertical structure of the n-th linear mode of
hydrostatic internal wave motion. We will only use the lowest mode (c0, φ0), representing
the longest waves. The boundary value problem for φ̃ and φ̂ are used to determine the
constants α0 and β0, and looks as following:

(ρ̄φ̃y)y −
Gρ̄y
c2 φ̃ = −α0

Gρ̄y
c3 φ+ 1

2c(ρ̄yφφy)y + 1
2c [ρ̄(φ2

y − φφyy)]y −
1
2cρ̄yyφ

2 (2.12)

(ρ̄φ̂y)y −
Gρ̄y
c2 φ̂ = −ρ̄φ− 2β0Gρ̄yφ

c3 (2.13)

with the boundary conditions φ̃(0) = φ̃(−1) = 0 and φ̂(0) = φ̂(−1) = 0.

Equation (2.12) and (2.13) have unique solutions if the coefficients of α0 and β0 fulfill the
requirements given by: ∫ 0

−1
φ[(ρ̄φ̃y)y −G

ρ̄y
c2 φ̃]dy = 0 (2.14)∫ 0

−1
φ[(ρ̄φ̂y)y −G

ρ̄y
c2 φ̂]dy = 0 (2.15)
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2.1. Korteweg-De Vries equations

By inserting the R.H.S. of equation (2.12) into (2.14) and the R.H.S. of equation (2.13)
into (2.15), we obtain in the last case:

∫ 0

−1
φ[−ρ̄φ− 2β0Gρ̄y

c3 φ]dy = 0 (2.16)

From equation (2.11) we have that:

Gρ̄y
c2 φ = (ρ̄φy)y (2.17)

By inserting equation (2.17) into (2.16) and use partial integration with the given boundary
conditions we obtain:

∫ 0

−1
[−ρ̄φ2 − 2β0Gρ̄y

c3 φ2]dy = 0

−
∫ 0

−1

2β0Gρ̄y
c3 φ2dy =

∫ 0

−1
ρ̄φ2dy

−
∫ 0

−1
2β0

(ρ̄φy)y
c

φdy =
∫ 0

−1
ρ̄φ2dy

−2β0
ρ̄φy
c
φ

∣∣∣∣∣
0

−1
+
∫ 0

−1
2β0

ρ̄φ2
y

c
dy =

∫ 0

−1
ρ̄φ2dy

(2.18)

Since the first term is zero when inserting the boundary conditions we obtain the following:

2β0

∫ 0

−1
ρ̄φ2

ydy = c
∫ 0

−1
ρ̄φ2dy (2.19)

A similar relationship can be given for equation (2.14). For ε = µ = 1, the constants of α0
and β0 are then given as:

α0 = 3c
2

∫ 0
−1 ρ̄φ

3
ydy∫ 0

−1 ρ̄φ
2
ydy

(2.20)

β0 = c

2

∫ 0
−1 ρ̄φ

2dy∫ 0
−1 ρ̄φ

2
ydy

(2.21)

Two-layer interface
We now look at an example where we have a sharp pycnocline (two-layered fluid). The
height and density of the upper layer is given as h1, ρ1 respectively and the lower layer as
h2, ρ2. By putting ε = µ = 1 and use the assumption that ρ2−ρ1

ρ2
<< 1, we obtain:

α0 = −3
2
c0(ρ1h

2
2 − ρ2h

2
1)

h1h2(ρ2h1 + ρ1h2) ' −
3
2
c0(h2 − h1)

h1h2
(2.22)
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2.2. Weakly nonlinear solitary waves

β0 = 1
6
c0h1h2(ρ1h1 + ρ2h2)

ρ2h1 + ρ1h2
' 1

6c0h1h2 (2.23)

c2
0 = gh1h2(ρ2 − ρ1)

ρ2h1 + ρ1h2
' g′h1h2

h1 + h2
(2.24)

where g′ = g(ρ2−ρ1)
ρ2

is the reduced acceleration due to gravity in the two-layered case.

2.2 Weakly nonlinear solitary waves

KDV soliton, stratified ocean
We are now turning our attention towards KdV solitons in a stratified fluid. When there
is balance between the nonlinearity and dispersion in equation (2.10), we have a solitary
wave solution of permanent form. Using the longest mode, we then obtain:

A0 = a0 sech2
(
x− ct
λ

)
(2.25)

where c = c0 + ∆c and ∆c is the excess velocity, a0 is the amplitude. The coefficients are
given as:

1
λ2 = a0α0

12β0
(2.26)

∆c = a0α0

3 (2.27)

where α0, β0 and c0 are given as in equation (2.22), (2.23) and (2.24). β0 is always a positive
quantity, while α0 can be both positive and negative depending on the stratification ρ̄.
The product a0α0 is however always positive.

To find the wavelength λ and wave excess speed ∆c we need to solve equation (2.11).
This equation can be rewritten to the Taylor-Goldstein equation. We start by inserting
G = gh/U2 into equation (2.11):

(ρ̄φy)y −
ghρ̄y
U2c2φ = 0 (2.28)

Next, we use the relation c2 = c2
0/U

2. By inserting this and expanding the first derivative
we obtain:

ρ̄yφy + ρ̄φyy −
ghρ̄y
c2

0
φ = 0 (2.29)
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2.2. Weakly nonlinear solitary waves

A change of variable is performed to simplify the equation with y = z/H. This changes
the boundary conditions to φ(0) = φ(−H) = 0. We then get:

h2ρ̄zφz + ρ̄φzzh
2 − gh2ρ̄z

c2
0
φ = 0 (2.30)

where the first term is assumed small and neglected. The equation known as the Taylor-
Goldstein equation is then created:

φzz + N2

c2
0
φ = 0, φ = 0 for z = 0,−H (2.31)

Here N is the Brunt-Vaisala frequency defined as:

N2 = −gρ̄z
ρ̄

= −g
ρ̄

∂ρ̄

∂z
(2.32)

We are now looking for an expression for the linear wave celerity. This can be found by
only considering the first mode for equation (2.31), and applying the energy principle:

φzzφz + N2

c2
0
φφz = 0 (2.33)

1
2
d

dz
(φ2

z) + N2

c2
0

d

dz

1
2(φ)2 = 0 (2.34)

c2
0 = −

∫ 0
−H N

2(φ2)zdz∫ 0
−H(φ2

z)zdz
(2.35)

Equation (2.35) gives us an additional way of finding the linear wave speed, that can be
used for both two- and three-layered fluids.

KdV soliton on an interface
Several KdV models on an interface have been used to study weakly nonlinear interface
waves (Keulegan, 1953 [26]; Long, 1956 [31]; Koop and Butler, 1981 [27]; Segur and
Hammack, 1982 [37]). We look at the case where ρ2 > ρ1, where the upper layer is
numbered 1 and the lower layer 2. Keulegan (1953) and Long (1956) looked at interfacial
waves in a two-layered fluid assuming that the waves are long, the amplitude small
compared to the total depth kh << 1 and a/H << 1 where k is the wavenumber and
including weak dispersion. Then, as presented in Long (1956) [31], the coefficients of a
solitary wave are given as:
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2.2. Weakly nonlinear solitary waves

η(x− ct) = −a sech2[(x− ct)/λ] (2.36)
c2

c2
0
− 1 = a

ρ2h1/h2 − ρ1h2/h1

ρ2h1 + ρ1h2
(2.37)

λ2 = 4h2
2h1

3a
ρ1/ρ2 + h2/h1

1− ρ1h2
2/(ρ2h2

1) (2.38)

The approximations made are valid for ρ2−ρ1
ρ2

<< 1 and with c0 given from equation (2.24).
By looking at the equation for the excess velocity, we see that the amplitude a0 is positive
for ρ2h

2
1 − ρ1h

2
2 > 0 and negative for ρ1h

2
2 − ρ2h

2
1 < 0. The fluid velocity at the maximum

depression (assuming a0 < 0) of the wave can be obtained by KdV theory, which gives us
the velocity profile in the upper layer for −h1 < y < 0:

u1(x = ct, y)
c0

'
[
− η̂

h1

(
1 + ∆c

c0

)
− η̂2

h2
1
− h1η̂

′′

6 − h1(η̂′)2

3 + η̂′′y2

2h1

]
x=ct

(2.39)

and for −(h1 + h2) = −H < y < −h1

u2(x = ct, y)
c0

'
[
− η̂

h2

(
1 + ∆c

c0

)
− η̂2

h2
2
− h2η̂

′′

6 − h2(η̂′)2

3 + η̂′′(y +H)2

2h2

]
x=ct

(2.40)

where we have neglected terms of O(a3
0).

Deep water equations
Benjamin (1967) [3] looked at the case when h2 → ∞, kh1 << 1 and a/h1 << 1. He
presented a solitary wave with algebraic decay (equations 5.3 - 5.7 [3]), given as:

η = − a

1 + (x− ct)2/λ2 (2.41)

λ = 4ρ2

3ρ1

h2
2
a

(2.42)

c2
0 = (ρ2 − ρ1)gh2

ρ2
(2.43)

c2

c2
0
− 1 = 3a

4h2
(2.44)

Finite depth
Joseph (1977) [25] and Kubota et al. (1978) [28] provided a wave solution in a two-layer
fluid of finite depth, achieving a connection between the KdV theory in shallow water
with the Benjamin-Ono deep water equations. The finite depth theory was given for the
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2.3. Fully nonlinear model for two-layered fluid

intermediate range h1/H << 1, kH = O(1), a/h1 << 1 (accounting for weak dispersion).
The equations include both the KdV and Benjamin-Ono equations as limiting cases.

η(x− ct) = −
a sech2(x−ct

λ
)

1 +
(

tan H
λ

tanh(x−ct
λ

)
)2 (2.45)

λ cot
(
H

λ

)
= 4ρ2

3ρ1

h2
2
a

(2.46)

c

c0
− 1 = h2

2H

(
1− 2H

λ
cot 2H

λ

)
(2.47)

c2
0 = ρ2 − ρ1

ρ2
gh2 (2.48)

Interfacial waves of maximal amplitude
For finite upper and lower layer heights h1 and h2, interfacial solitary waves have a
theoretical upper bound for the wave speed cmax and amplitude amax (Amick and Turner
(1986) [2]). The equations for the maximum wave speed and amplitude are given by Amick
and Turner as:

c2
max = g(h1 + h2)(ρ2 − ρ1)

(ρ1/2
1 + ρ

1/2
2 )2

, (2.49)

amax = h2ρ
1/2
1 − h1ρ

1/2
2

ρ
1/2
1 + ρ

1/2
2

(2.50)

In addition, Turner and Vanden-Broeck (1988) [40] found that the volume of the wave
may become infinitely large within this limit.

2.3 Fully nonlinear model for two-layered fluid
To find the theoretical solutions for internal solitary waves, the internal wave model
IW2 [36] is used. This program is based on a fully nonlinear time-stepping method for
interfacial waves as demonstrated in Grue et al. (1997) [17], where the complex fluid
velocities are obtained using Cauchy’s theorem. The coordinate system is defined with
the x-axis at the level of the interface in the far field and the y-axis pointing upwards.
The upper layer is numbered 2 and the lower layer as 1.

The following figure shows an illustration of a one-layered fluid (used as a simplification),
where we have defined a point z′ in the fluid. We will first present integral equations
based on a one-layered fluid and then expand to a two-layered fluid.

We work in the complex plane and define:

β(z) = φ(x, y) + iψ(x, y) (2.51)
z = x+ iy (2.52)
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2.3. Fully nonlinear model for two-layered fluid

Figure 2.1: Illustration of a one-layered fluid

The complex velocity is defined as:

q(z) = dβ

dz
= u(x, y)− iv(x, y) (2.53)

Where q is an analytical function. We then use Cauchy’s theorem:

2πiq(z′) =
∮
C

q(z)
z′ − z

dz, z′ ∈ Ω (2.54)

On the boundary we get a similar result:

0 =
∮
C′

q(z)
z′ − z

dz +
∮
Cε

q(z)
z′ − z

dz =
∮
C′

q(z)
z′ − z

dz − πiq(z′), z′ ∈ ∂Ω

πiq(z′) = PV
∫
I

q(z)
z′ − z

dz, z′ ∈ ∂Ω
(2.55)

Where PV stands for principal value. Next step is to parameterize the interface I, z = z(ξ).
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2.3. Fully nonlinear model for two-layered fluid

Since we are working with stationary waves, we have the velocity field q(z)−c. Furthermore
we define:

γ = (q(z)− c)dz
dξ

= (q(z)− c)zξ

qzξ = γ + czξ

(2.56)

Now, we multiply our integral with z′ξ and use dz = zξdξ:

πiq(z′)z′ξ = z′ξPV
∫
I

q(z)zξ
z′ − z

dξ

πi(γ′ + cz′ξ) = z′ξPV
∫
I

γ + czξ
z′ − z

dξ

(2.57)

We then use the fact that zξ = xξ + iyξ and insert into our integral equation:

πi(γ′ + cx′ξ + icy′ξ) = PV
∫
I

(
z′ξ

z′ − z

)
(γ + cxξ + icyξ)dξ (2.58)

By looking at the imaginary part we then get:

π(γ′ + cx′ξ) = PV
∫
I
Re

(
z′ξ

z′ − z

)
cyξdξ +

∫
I
Im

(
z′ξ

z′ − z

)
(γ + cxξ)dξ (2.59)

To fulfill the boundary conditions we use the method of images and use the Green function:

G(x, y) = 1
z′ − z

+ 1
z∗ − z′ − 2ih (2.60)

Here the asterix (*) stands for complex conjugate. By adding the image we get similar
integrals, but without the principal value since the image is situated outside the domain
of singularity.

The integrals for a one- and a two-layered fluid are very similar. The only difference is
the sign of the LHS and we use the local fluid velocities. We then have the two following
equations, one for each layer:

π(γ′1 + cx′ξ) =PV
∫
I
Re

(
z′ξ

z′ − z

)
cyξdξ −

∫
I
Re

(
z′ξ

z∗ − 2ih1 − z′

)
cyξdξ

+
∫
I
Im

(
z′ξ

z′ − z
+

z′ξ
z∗ − 2ih1 − z′

)
(γ1 + cxξ)dξ, z′ ∈ I

(2.61)
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2.3. Fully nonlinear model for two-layered fluid

−π(γ′2 + cx′ξ) =PV
∫
I
Re

(
z′ξ

z′ − z

)
cyξdξ −

∫
I
Re

(
z′ξ

z∗ + 2ih2 − z′

)
cyξdξ

+
∫
I
Im

(
z′ξ

z′ − z
+

z′ξ
z∗ + 2ih2 − z′

)
(γ2 + cxξ)dξ, z′ ∈ I

(2.62)

From the Bernoulli equation we get:

p+ 1
2ρ~v

2 + ρgy = p∞ + 1
2ρ~v

2
∞ + ρgy|y=∞

1
2ρq

2 + ρgy = 1
2ρc

2

1
2ρ(q2 − c2) + ρgy = 0

(2.63)

The tangential velocities at I are determined by γ1
|zξ|

= q1zξ
|zξ|

and γ2
|zξ|

= q2zξ
|zξ|

. Inserting this
into Bernoulli and demand continuity of the pressure at the interface, we get:

1
2|zξ|2

(γ2
1 − µγ2

2)− 1
2(1− µ)c2 + (1− µ)gy = 0, at I (2.64)

where µ = ρ2
ρ1

and g denotes acceleration due to gravity.

Numerical procedure
Due to symmetric wave profiles with respect to x = 0, we get the relation z(−x) = −z∗(x).
We define I+ that denotes the part of I where x ≥ 0. This results in the following equations
as presented by Grue et al. (1999) [18]:

π(γ′1 + cx′ξ) = PV
∫
I+
Re

(
z′ξ

z′ − z

)
cyξdξ −

∫
I+
Re

(
z′ξ

z′ + z∗

)
cyξdξ

−
∫
I+
Re

(
z′ξ

z∗ − 2ih1 − z′
+

z′ξ
z + 2ih1 + z′

)
cyξdξ

+
∫
I+
Im

(
z′ξ

z′ − z
+

z′ξ
z′ + z∗

+
z′ξ

z∗ − 2ih1 − z′
−

z′ξ
z + 2ih1 + z′

)
(γ1 + cxξ)dξ

(2.65)

− π(γ′2 + cx′ξ) = PV
∫
I+
Re

(
z′ξ

z′ − z

)
cyξdξ −

∫
I+
Re

(
z′ξ

z′ + z∗

)
cyξdξ

−
∫
I+
Re

(
z′ξ

z∗ + 2ih2 − z′
+

z′ξ
z − 2ih2 + z′

)
cyξdξ

+
∫
I+
Im

(
z′ξ

z′ − z
+

z′ξ
z′ + z∗

+
z′ξ

z∗ + 2ih2 − z′
−

z′ξ
z − 2ih2 + z′

)
(γ2 + cxξ)dξ

(2.66)

for z′ at I+.
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2.3. Fully nonlinear model for two-layered fluid

The interface I+ is then discretized by N points, ξ = 1, 2, ..., N . Next, we evaluate the
principal value integrals by expanding the integrand in a series in the vicinity of the pole
at z′ = z, and then using the trapezoidal rule. The expansion is performed using the
following relation by Dold and Peregrine (1985) [13]:

Ωξ

Ω− Ω′ = 1
ξ − ξ′

+ Ωξξ

2Ωξ

+O(ξ − ξ′) (2.67)

We apply the trapezoidal rule to the regular integrals as well. In addition, we take into
account the symmetry of y, γ1 and γ2 and the anti-symmetry of γξ. The discrete version
of equation (2.65) and (2.66) becomes:

π
(
γ1(ξ′) + cxξ(ξ′)

)
=c

N∑
ξ=1

(
A(ξ′, ξ)− A1(ξ′, ξ)

)
yξ(ξ)− cyξξ(ξ′)

+
N∑
ξ=1

(
B(ξ′, ξ)−B1(ξ′, ξ)

)(
γ1(ξ) + cxξ(ξ)

) (2.68)

−π
(
γ2(ξ′) + cxξ(ξ′)

)
=c

N∑
ξ=1

(
A(ξ′, ξ)− A2(ξ′, ξ)

)
yξ(ξ)− cyξξ(ξ′)

+
N∑
ξ=1

(
B(ξ′, ξ)−B2(ξ′, ξ)

)(
γ2(ξ) + cxξ(ξ)

) (2.69)

where:

A(ξ′, ξ) + iB(ξ′, ξ) =



zξξ/2zξ, ξ = ξ′ = 1
1
2 [z′ξ/(z′ − z)−

(
z′ξ/(z′ + z∗)

)∗
], ξ = 1, ξ′ > 1

z′ξ/(z′ − z)−
(
z′ξ/(z′ + z∗)

)∗
, ξ > 1, ξ′ 6= ξ

zξξ/2zξ −
(
z′ξ/(z′ + z∗)

)∗
, ξ > 1, ξ′ = ξ

(2.70)

and for the image part we get:

Ak(ξ′, ξ)− iBk(ξ′, ξ)

=


1
2 [z′ξ/(z∗ + 2(−1)kihk − z′)−

(
z′ξ/(−z + 2(−1)khk − z′)

)∗
], ξ = 1

z′ξ/(z∗ + 2(−1)kihk − z′)−
(
z′ξ/(−z + 2(−1)khk − z′)

)∗
, ξ > 1

(2.71)

for k = 1, 2. We also discretize the dynamic boundary condition on the interface and
obtain:

1
2|zξ(ξ)|2

(
γ2

1(ξ)− µγ2
2(ξ)

)
− 1

2(1− µ)c2 + (1− µ)gy(ξ) = 0, ξ = 1, 2, ..., N (2.72)
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2.3. Fully nonlinear model for two-layered fluid

Here µ = ρ2/ρ1. The derivatives with respect to ξ are obtained by using a five-point
Lagrangian differentiation formula. This first and second derivative of a function f(ξ) are
then given as:

fξ(ξ) = 1
12(−f(ξ + 2) + 8f(ξ + 1)− 8f(ξ − 1) + f(ξ − 2)), (2.73)

fξξ(ξ) = 1
12(−f(ξ + 2) + 16(f(ξ + 1)− 30f(ξ) + 16(ξ − 1)− f(ξ − 2) (2.74)

The boundary conditions are given as y(N) = 0 and yξξ(N) = 0. A final requirement is
for the horizontal tangent at x(N) which gives yξ(N) = 0. This gives us 3N equations
for 3N + 1 unknowns, γ1(ξ), γ2(ξ), y(ξ) and c. In order to close the set of equations, we
either give the volume V or the amplitude a for the solitary wave as initial condition. The
equations are then solved iteratively with a weakly nonlinear start guess.

IW2
IW2 is a numerical model for calculating stationary internal waves in a two-layered fluid
and is developed by Per-Olav Rusaas [36]. The program is written in Matlab and solves
a set of fully nonlinear equations (see section (2.3)) in an iterative way. The program
uses solitary waves of permanent form and is modelled in a frame of reference moving
with the wave speed c. The interface is therefore to be considered as "frozen", with a
horizontal current in the far field with velocity -c. The layers are assumed homogenous,
incompressible and inviscid, and the motion is irrotational.

The program is used by choosing your parameters inside setpar.m. An illustration of this
function can be seen in figure (2.2). Here you can define the density of the upper and
lower layer, their respective height, the wave amplitude, propagation speed, volume etc.
The height of the upper and lower layer are scaled towards the upper layer. In IW2, the
upper layer is numbered 2 and the lower layer 1. The program is then started by running
iw2.m, which return the results in one single cell array of structs. The results can then be
plotted by using the built-in post-processing tools found in the postPlot folder, which also
includes functions for calculating and plotting streamlines and velocity profiles.

The struct returned by the solver includes all the results for the given input parameters.
Plotting x towards y gives us the wave profile where both the x and y axis are dimensionless,
y towards the upper layer height and x towards the linear wave propagation speed and
the upper layer height. The solution is assumed symmetric. The model does not include
instabilities that may develop. This means that the rear part of the wave remains
unchanged even for large waves where Kelvin-Helmholtz instabilities have a large impact
on the wave form (Grue et al. 1999 [18]). The wave front on the other hand remains an
important quantity that should be reproduced by both the numerical and experimental
work for all simulations. The relationship c/c0 can be found directly in the solI struct.
IW2 also comes with the possibility to calculate fluid velocities. This can be done at any
point by using the function hast(). This function returns a new updated solution struct.
The results can then be found in the solution struct named pi where i is the number 1 for
lower layer or 2 for upper layer.
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2.3. Fully nonlinear model for two-layered fluid

Figure 2.2: Illustration of setpar.m from the IW2 program in Matlab

The program is used as a comparison against both experimental and numerical results
for the wave profile η, the propagation velocity c and velocities (u,w) plotted against the
dimensionless amplitude.
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CHAPTER 3

Methods

We will now give an introduction to the tools used in our study. This includes the
numerical tool Basilisk and experiments performed in the hydrolab at UiO.

3.1 Basilisk
Basilisk is a free software used to solve partial differential equations on adaptive Cartesian
grids. Basilisk contains a second order accurate finite volume solver for the Navier-Stokes
equation, making it a good choice when dealing with internal waves. The code is developed
by Stephane Popinet et al. and is the successor of Gerris. The code is developed for Linux
and is written in C. Basilisk comes with an additional supported programming language
“Basilisk C”, which is an extension of C and is used to write code in Basilisk. This
extension is created to make it easier to perform general operations in your own programs.
The program comes with several solvers that are ready to use, such as Navier-Stokes,
Saint-Venant, advection and more. The program has previously been used on several
different problems such as the Indian Tsunami from 2004, bubbles rising in a large tank,
measuring Kelvin-Helmholtz instabilities, atmospheric flows and much more.

Introduction
Installation

The program is downloaded from “www.basilisk.fr”, which is a complementary website
where you find all information that is necessary to install the program and start to use it.
Here you find help from tutorials, examples, solvers, tests and more information. Basilisk
also comes with its own user forum where users can ask questions to other users or even
the developers of Basilisk. The program is installed in Linux. If you are using either
Windows or Mac, Linux can be run by downloading Oracle VirtualBox and Ubuntu, to
create a virtual desktop of Linux. The easiest way to install Basilisk is by using darcs to
download the source code from the website. The tutorial found on the website gives a
quick introduction on how to write your own code in Basilisk.

How to get started

The programming language used in Basilisk is based on C and is created to simplify
standardized operations. To perform a task in Basilisk, you create an event. The main
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3.1. Basilisk

event in each code is called main. The grid is always created as a quadratic domain
where each side has length equal to 1. This domain can be stretched and modified by
specifying the locked keyword L0. The number of grid points are defined by N and the
grid resolution is put equal in all directions for most solvers in Basilisk. This is always the
case throughout our study on ISWs. The timestep is defined in each iteration to satisfy
the Courant-Friedrichs-Lewy (CFL) condition. The origin of the coordinate system is
specified in the vector origin. This vector specifies the bottom left corner of the coordinate
system. The main function always ends with the keyword run, which starts the program.
To perform operations during the simulation, you specify events. This can either be done
for each iteration, each timestep or to your own chosen time. During a simulation, data
can be saved to files as images, text files, movies or similar for post-processing.

One of the main advantages of using Basilisk is its ability to adapt the grid during a
simulation, which can save both a lot of simulation time and computer memory. The
grid can be refined either locally or more dynamically based on parameters such as the
velocity, pressure, etc.

Numerical features
Adaptive grid in Basilisk

Basilisk uses a tree-structure to adapt to local refinement or coarsening. The tree-structure
introduces a hierarchy between cells of different levels of refinement. Basilisk allows a
difference of one level between two neighbouring cells, where the levels of refinement differs
with a factor of two. In several dimensions this is equal to a refinement of n2. Due to
the difficulties with an uneven grid, Basilisk uses ghost cells that allows simple Cartesian
stencil operations for cells near the resolution boundaries. The ghost cells work as virtual
cells and are defined such that all cells have neighbours on the same level of refinement as
seen in figure 3.1. The field values in the ghost cells are defined through interpolation of
the original field values.

The tree-grid structure gives a convenient and effective structure to decide whether to
refine or coarsen a grid cell. As an example we can introduce a signal f with an even
number of evaluation points n, fn. We then perform two operations. First, we use a
downsampling operator D, which approximates f on a coarser grid

fn/2 = D(fn) (3.1)

Next, we use an upsampling operator U, which samples the coarsened signal back to fn,
defined as

gn = U(fn/2) (3.2)
We now have two signals for the same number of elements that most often have the
following property fn 6= gn. This means we can define the absolute error given as:

χin = ||f in − gin||, fn 6= gn (3.3)

The downsampling operator in Basilisk is defined as a local volume averaging to obtain
the field value for a corresponding coarser grid. This is an exact formulation since Basilisk
uses a finite-volume formulation that defines grid cells representing averaged volume
quantities. Since the solver is second order, we use a second order interpolation scheme
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Figure 3.1: Figure 2 of Van Hooft et al. (2018) [23]

for the upsampling operator on the downsampled solution. When both operations are
performed, we can check the relative error in each cell. The criterion for refinement or
coarsening is then defined as

The i’th grid cell is


too coarse, χin > ζ

too fine, χin <
2ζ
3

just fine, else
where ζ is the threshold given by the user.

Additional information on the adaptive grid in Basilisk can be found in Van Hooft et al.
(2018) [23].

Volume of fluid (VOF)

The volume of fluid method (VOF) is in computational fluid dynamics a numerical
technique for tracking and locating the free surface or fluid - fluid interfaces. The method
can be used for both a moving or stationary mesh to represent the evolution of the
interface. VOF is an advection scheme, but it is not a standalone flow solving algorithm.
VOF is therefore solved separately beside the Navier-Stokes equations, which describes
the motion of the flow.
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The method is based on a fraction function C. This is a scalar function that is defined as
the volume of a computational grid cell. The scalar function C is defined as zero when
a cell is empty and C = 1 when the cell is full. A cell can also have a value 0 < C < 1
if there is a fluid interface in the cell. When using the VOF method, the free surface
is not defined sharply, but distributed over the height of a cell. Therefore, local grid
refinements have to be done to attain accurate results. Cells are refined if a cell contains
a fluid interface 0 < C < 1. All cells have to satisfy the following constraint, which says
that the volume of the fluid is constant:

n∑
m=1

Cm = 1 (3.4)

The density in each cell are defined by.

ρ =
n∑

m=1
ρmCm (3.5)

Here n denotes the number of fluids. To ensure stability of the solution, the CFL condition
must be smaller than 0.5.

Figure 3.2: Illustration of a fluid simulation using VOF

Two-phase flow

A two-phase flow is in fluid mechanics a flow of gas and liquid. A two-phase flow can
occur in several forms:

(a) Transient two-phase flow, a flow transitioning from pure liquid to vapor due to
external heating
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(b) Separated two-phase flow, which is the form we use for internal waves.

(c) Dispersed two-phase flow, where one phase is present in the form of droplets or
bubbles in a continuous carrier phase.

In Basilisk, the two-phase flow is used by defining the density ρi and dynamic viscosity
µi, where i = 1, 2, 1 for the upper layer and 2 for the lower layer. The interface between
the two layers is then tracked with VOF. Basilisk uses arithmetic averages by default for
both the density and viscosity, but this can be overloaded by the user.

Navier-Stokes centered

When solving for internal waves in Basilisk, we use the incompressible, variable-density
Navier-Stokes equations:

∂u

∂t
+∇ · (u× u) = 1

ρ
[−∇p+∇ · (2µD)] + a (3.6)

Together with the continuity equation

∇ · u = 0 (3.7)

The deformation tensor is given as

D = ∇u+ (∇u)T
2 (3.8)

To solve for advection we use the Bell-Collela-Glaz advection scheme, which is second
order accurate and an implicit viscosity solver. If we use embedded boundaries, a different
scheme is used for the viscosity.

The variables used are the centered pressure and velocity field, p and u. The centered
vector field g contains pressure gradients and acceleration terms. For numerical purposes
we also define an auxiliary face velocity field uf and an associated centered pressure field
pf. The viscosity is defined as the dynamic viscosity µ and the default value is zero. The
acceleration a is given as a face field and default is zero. A boolean variable stokes decides
whether to omit the velocity advection term ∇ · (u× u). This is helpful when working
with Stokes flows, where inertia is negligible compared to viscosity.

The pressures are never dumped in the solver. The timestep in each iteration is controlled
by the CFL condition, applied to the face centered velocity field uf. In two dimensions,
the CFL condition is given as:

C = ux∆t
∆x + uy∆t

∆y ≤ Cmax (3.9)

The maximum allowed value Cmax is given by the user or defined in imported solvers. For
explicit solvers, Cmax = 1 is common to use. Implicit are often more stable than explicit
solvers and larger values of Cmax may be tolerated. When solving for internal waves in
this project, the maximum value is Cmax ≤ 0.5, to ensure stability when using the VOF
method.
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Embedded boundaries
Embedded boundaries (EB) are a numerical method that can be used to include complex
geometries in a numerical grid. In this project, embedded boundaries are used to create a
sloping bottom of constant angle (figure 3.3). In Basilisk, the EB method uses a Cartesian
grid and the boundary is allowed to "cut" cells. Each cell is labeled. They can either be
regular, cut or covered. A regular cell is a normal grid cell, with no boundary present.
The cut cell contains a value between 0 and 1 and is used to create a slope. Finally, the
covered label tells us that the cell is not to be included in the grid. The EB method
can generate complex geometries quickly and robustly due to its relatively simple grid
generation technique. Combined with an adaptive grid, embedded boundaries can give
precise results of flow around complex geometries. The problem with using EB is that it
can produce arbitrarily small cut cells in the domain, that can have a significant impact
on the stability and robustness of traditional finite-volume methods. An example of an
embedded boundaries grid combined with adaptive grid refinement can be seen in figure
(3.3).

Figure 3.3: Illustration of velocity field with visible grid lines created with embedded
boundaries and adaptive grid in Basilisk

Internal waves in Basilisk
In this project, Basilisk is used to create internal waves in 2D. This is done by using the
built-in Navier-Stokes centered solver and include a two-phase simulation. The two-phase
function uses VOF to define the interface. To be able to extract the position of the
interface, we include a function called curvature, which returns the exact position of the
density interface. A problem with using VOF arises if we want to solve for a three-layered
fluid. Here the pycnocline starts to diffuse and the three-layered fluid gradually moves
over to a two-layered fluid. Based on this, a modification on the two-phase solver was
performed where the VOF method used to track the fluid interface got substituted with a
passive tracer. This modification proved to be suitable for the operations performed in
this study as the results compared well to both theory and experiments.

A wave tank was created in Basilisk by defining its length L0, the origin of the coordinate
system in origin and the number of grid points in each direction N . This creates initially
a quadratic grid, but a rectangular wave tank was then created by removing the excess
grid in the vertical direction using a function named mask. An imaginary gate was created
at a position named x0. The content of the wave tank was then defined by specifying a
scalar named f , that were used to track the fluid and is defined as 0 ≤ f ≤ 1. The upper
layer is defined as f = 1 and the lower layer as f = 0. The density and viscosity are
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defined by specifying the values for both the upper and lower layer. Intermediate values
are then calculated from the volume fraction f . The acceleration term is given by the
acceleration of gravity at g = 9.81. The acceleration term is initially created as a constant
scalar. This means that it can only be overwritten by another constant scalar and not
adjusted directly. The numerical parameters are initialized in an event called main. Here
we also define the simulation length, the CFL criteria, the wanted tolerance, which we
believe controls the residual for pressure, and the maximum allowed timestep DT .

All simulations are performed with a rigid lid at the upper boundary. This is a valid
approximation since the movements in the vertical direction are considered small at the
surface. The boundary conditions are given as no-slip on the bottom boundary and free
slip on the vertical walls and the upper boundary. The horizontal velocity is also put to
zero at the start of our simulation.

Grid adaption can be performed both locally or more dynamically based on the evolution
of the simulation. Both approaches have been performed in this study. A weakness with
local refinement proved to be an increase in the vortex shedding in the transfer from a fine
to a coarser grid, resulting in similar behaviour as when a wave propagates over a step.
This made it a poor choice when investigating the vortices that developed behind the
propagating ISW. When using dynamic grid adaption, we changed the resolution based
on the presence of a sloping bottom and the velocity field.

Embedded boundaries are included by adding embed.h to our program. The boundary is
then created by defining a vector called φ. If φ < 0 the grid point is considered outside
the domain. The embedded boundaries method does at this point not work for variable
viscosity. This means that all of our simulations including embedded boundaries have
been solved with a constant viscosity. To include particles in our simulations we have
included a function from Basilisk named particles.h. This function creates tracer particles
that are advected using a forward Euler method or in 2D the split semi-implicit Euler
method. This method is similar to Lagrangian particle tracking where a particle at initial
position ~x0 is moved to its new position based on the local velocity field as ~x = ~x0 + ~v∆t.
Several functions can be called to place the particles in the wave tank at the start of the
simulation, either in a circular, quadratic or linear formation.

3.2 Experimental procedure
The experiments were performed in the hydrolab at UiO. We have used a 7m long wave
tank with a width of 0.25m. A gate is situated x0 m away from the start of the tank.
To create internal waves, we fill the tank with water and supply with salt to create a
density of approximately ρ2 = 1.047 g

cm3 . Next, we gently fill up a layer of fresh water
on the top with density ρ1 = 0.999 g

cm3 . To measure the density, we use a Density Meter
DE 40 Mettler Toledo that gives a measure of the water based on its weight with up to
four decimal precision. The height of the upper layer and the initial volume behind the
gate are varied to achieve ISWs with different non-dimensional amplitudes. When adding
the upper layer, we use a technique involving wetted sponges to make the process as
gently as possible, since we want a sharp pycnocline. This process can last up to one hour
depending on the thickness of the upper layer. When this is done, the gate is lowered
gently to make sure the layers do not mix. Next, we add more fresh water behind the
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gate. This extra added volume approximately becomes the total volume of the internal
wave. When adding the extra water behind the gate, some salt water travels to the other
side of the gate by moving through a small opening at the bottom of the paddle. To start
the experiment, the paddle is raised and an internal solitary wave of depression is quickly
established and starts propagating. Our main objective is to create only one solitary wave.
This can be done by carefully adjusting the gate position and the height of the extra
water behind the gate.

To track the wave, we use particles of pliolite VTAC, a granular material used in white
paint, due to its good reflective properties and density of approximately 1.0228 g

cm3 . The
particles are created by crushing and sieving the pliolite to the wanted size. Next, the
particles are wetted by using a rinse aid and then washed to remove surface tension. If
this process is done correctly we obtain particles that effectively are naturally buoyant
throughout the water column. The particle size used is in the range from 400− 500µm.

When creating a three-layered fluid, we start by making a two-layered fluid, which then is
left to diffuse for approximately 16 hours. The density field is then measured using probes
to measure the conductivity of the water throughout the water column. The probes are
connected to a voltmeter, which returns the voltage of each wanted height of the water
column. The results are then converted to density to give us the density profile of the
three-layered fluid.
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CHAPTER 4

Results

Definitions used in Basilisk
Before we present the results, we will give a clarification of the definitions we have used
throughout the study. In addition, we will explain how the different numerical studies
can be used to build a better understanding of the behaviour of internal solitary waves.

When a numerical simulation has been performed, our first objective is to check that
the numerical wave compares good to analytical theory. If this is not the case, the
numerical results can not be used as they do not represent real world physics. In order
to represent a wave profile from Basilisk, a density field is returned for the entire wave
tank. We have chosen to represent the wave profile by using the density lines (isolines)
following the salt water. This gives a good representation of the wave width when we
compare it to fully nonlinear theory. When using the isolines following the fresh water,
the wave width becomes too narrow in comparison to theory. One more option would
be to choose a mid-value for the density, but this results in fewer grid points satisfying
our criteria, making it harder to represent our wave profile in a good way. We have used
the smoothing function in Matlab on the data to remove small distractions. The wave
amplitudes are given as the maximal displacement for the isoline following the salt water.
The numerical program IW2 programmed by P. O. Rusaas ([36]) shows that the isolines
get compressed around the wave crest. This means that if we choose a different isoline,
the non-dimensional amplitude will change.

We have in this study used the upper layer thickness to make length scales dimensionless.
This is easy when we solve for a two-layered fluid but can be defined in different ways for
a three-layered fluid. We have therefore chosen to use the length from the surface to the
middle of the pycnocline h̃1 = h1 + h2/2 as the scaling factor.

The wave profiles, the velocities in the upper layer and the horizontal velocity at the
maximal displacement of the wave, have throughout this study been calculated by taking a
snapshot at a given time and investigate the results. The wave celerity has been calculated
by using the crest position in two consecutive snapshots and divide by the difference in
time. All other figures are calculated by using data evolving with time. The linear wave
speed c0 has been calculated for both a two- and three-layered fluid. In most of our results,
the two-layered linear wave speed has been used to perform comparisons with previous
studies. If the linear wave speed of a three-layered fluid has been used, it is highlighted.
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In our study, we have performed simulations for both a two- and three-layered fluid. The
motivation for this comes from results presented by Grue et al. (1999) [18]. They showed
that the shear instability evolving in the interface between the upper and lower layer makes
the tail of the wave profile wider compared to fully nonlinear theory. We have therefore
decided to perform three-layered simulations in order to decrease the Kelvin-Helmholtz
instability and by this better retain the wave profile also for larger waves.

The additional volume of fresh water added behind the gate is important when deciding the
magnitude of our wave. When we increase the nonlinearity of our problem by increasing
H/h1, a larger volume is necessary in order to create a max wave. A max wave is a
wave that fulfills the following requirement: a+h1

H
≈ 1

2 . The initial volume necessary to
create a wave of a given amplitude is found using the numerical program IW2 [36]. A
single solitary wave can be made by carefully adjusting the gate position and the initial
amplitude height h0. When we start our simulations for the largest waves, the distance
between the fresh water and bottom of the wave tank is small behind the gate. This
creates some large vortices that get lifted high up into the water column. When looking
at the global instability, it is therefore important to chose a point in the wave tank where
the instabilities get created due to the wave motion and not the initial condition. We have
chosen to use the same point as Carr et al. (2008) [8] at x/H ≈ 7.6. This is sufficient to
avoid vortices created from our initial condition, unless we include a sloping bottom. In
these conditions, the initial motion travels further with the wave and may result in an
increased global instability in our measurement point. We have in this case included a
second measurement point.

We have in this work included a study where we investigate how a change in the pycnocline
thickness affects the velocity profiles at the bottom of the wave tank, in addition to the
wave profile itself. This study gives us a better understanding of how different wave
profiles affect the fluid motion and the global instabilities.

In order to validate our numerical results, two questions need to be answered. Does the
results relate to a physical interpretation and does it compare well to similar experiments?
To be able to answer our first question, we need to perform a lot of simulations from
different angles in order to build up an understanding of how different parameters affect
the solution. In addition, it is necessary to read up on similar experiments done before
to build a good understanding of the problem. To answer our second question, we have
several possibilities. We can compare our results to analytical theory. In our case, we have
used fully nonlinear theory and some weakly nonlinear KdV theory. Another opportunity
is to compare numerical results to experiments. This has been done with a comparison
to experiments performed by Carr et al. (2008) [8] and experiments performed in the
hydrolab at UiO. A final possibility is to use the numerical model itself as validation. This
is done by performing several simulations where small adjustments are made on either
the timestep, resolution or the tolerance. Basilisk uses an iterative Navier-Stokes solver.
By adjusting these parameters, we can check whether our numerical results converge. If
convergence is achieved, we know that numerical errors are kept to a minimum. This
means that eventual errors lay in the numerical solver itself or in the usage of it.

In order to capture the global instability from the bottom of the wave tank, a fine
numerical resolution has to be used. If this criteria is invalidated, no global instability
is observed. The simulations in this study have been performed using Ubuntu on a VM
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4.1. Validation and verification of Basilisk

VirtualBox created by Oracle. This creates a virtual laptop on your computer where
additional operational systems can be installed. One of the problems with performing
simulations on a virtual machine is that the total allocated memory is small, which gives
restrictions on the total number of nodes used. The maximum amount of nodes used in
the beginning of our adaptive simulations are approximately 0.7 million nodes, but since
we use an adaptive grid, the number of grid points are a bit higher.

4.1 Validation and verification of Basilisk
When you work on highly nonlinear problems it is difficult to tell whether your results are
correct. Analytic theory is good for linear cases, but once the equations become nonlinear
they soon gets much harder to solve. We have therefore made several tests to validate if
the results produced by Basilisk can be used in our study.

In the first test, we looked at the internal wave properties produced by Basilisk and
compared them to theory. We then had to use small amplitudes to be closer to the
linear case and have a good reference for comparisons. We have chosen to use both
weakly nonlinear KdV theory and fully nonlinear theory in our comparisons. For the fully
nonlinear theory we used a program named IW2 [36] created by P. O. Rusaas. In this
comparison we looked at the wave profile η, wave propagation speed c, the horizontal
wave velocity u and the wave width at η/2.

If we increase the wave amplitude, it is more difficult to verify the results. This is why
we chose to do a reproduction of experiments performed by Carr et al. [8]. In 2008,
Carr et al. [8] made experiments looking at the boundary layer induced by an ISW of
depression in a stable stratified shallow water with use of PIV. The experiments proved
that a wave-induced boundary layer separates in the adverse pressure gradient region aft
of the wave, which induces a reverse flow along the bottom. If the reverse flow was deep
enough for a period, global instabilities could be observed. A reproduction of these results
would therefore give a good reference to see the accuracy of our numerical model on a
study with the same focus as us. We focus on the experiment known as 08.02.07 from [8].

Comparison between Basilisk, KdV theory and fully nonlinear
theory
Our first validation test is to see how good Basilisk compares to both weakly nonlinear
KdV and fully nonlinear theory. Comparisons have been made for the wave profile η, the
horizontal velocity in the upper layer u(z = h1/2), the wave propagation speed c, the
wave width evaluated at η/2 and the horizontal velocity u(z) at the maximal displacement
of the wave. We have used the VOF solver from Basilisk in our comparisons.

Wave profile

We start by comparing the wave profile for different wave amplitudes. The non-dimensional
wave amplitude is given as a

h1
. We made eight simulations for different wave amplitudes,

but will only present four of these, which is seen in table (4.1). h0 is defined as the depth
of the extra volume added behind the gate in meters.
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h0 (m) 0.025 0.10 0.15 0.207
a
h1

0.29 1.11 1.50 1.67

Table 4.1: Numerical parameters, Basilisk

We can see from figure (4.1) that the wave profiles computed by Basilisk compares well to
fully nonlinear theory for all wave amplitudes. The wave profile computed by Basilisk
differs a bit in the rear of the wave. This is due to some dispersion that is present in all
cases, but also Kelvin-Helmholtz instabilities that appear for the largest amplitudes. The
dispersion could be avoided by adjusting the gate position relative to the initial height of
the extra added fresh water behind the gate. We can see that KdV theory compares well
to the other models for the lowest wave amplitude, but differs with increase in amplitude.
This is also in agreement with work presented by Grue et al. (1999) [18], which found
weakly nonlinear theory to be valid for dimensionless amplitudes up to a/h1 = 0.4.

(a) a/h1 = 0.29 (b) a/h1 = 1.11

(c) a/h1 = 1.50 (d) a/h1 = 1.67

Figure 4.1: Wave profiles compared to KdV theory and fully nonlinear theory for different
dimensionless wave amplitudes

Horizontal velocity

Next we look at the horizontal velocities in the middle of the upper layer at u1(h1/2) and
the horizontal velocity beneath the maximal displacement of the wave. Looking at the
velocity in the upper layer, there is once more good agreement between Basilisk and the
nonlinear theory, but with Basilisk slightly overestimating the fully nonlinear theory for
the largest waves. Once more, we observe that the tail of the wave in figure d) differs
from the fully nonlinear theory.

Moving over to the horizontal velocity profile u(z)/c0 at the maximal displacement of
the wave (figure 4.3), we see that Basilisk slightly overestimates the horizontal velocity
compared to theory in the lower layer. This also occurs near the surface.

37



4.1. Validation and verification of Basilisk

(a) a/h1 = 0.29 (b) a/h1 = 1.11

(c) a/h1 = 1.50 (d) a/h1 = 1.67

Figure 4.2: Horizontal velocity in upper layer u1(h1/2) compared to fully nonlinear theory
for different dimensionless wave amplitudes

Figure 4.3: Horizontal velocity profile u(z)/c0 vs non-dimensional height z/H at the
maximal displacement of the wave
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Comparison for wave propagation speed and wave width

At last we look at a comparison between the wave propagation speed and the wave width at
η/2 for different amplitudes. The propagation speed compares very well to fully nonlinear
theory for all amplitudes, while KdV theory is good for the lowest value, before it starts
to differ. This is in accordance with results from Grue et al. (1999) [18]. Looking at the
wave width, the comparison is again good to the fully nonlinear model, but it differs for
the largest value. This happens due to Kelvin-Helmholtz instabilities that are present for
the largest wave, making the tail of the wave longer.

(a) Propagation speed (b) Wave width

Figure 4.4: Comparison for the wave propagation speed c/c0 − 1 and wave width at η/2
versus non-dimensional wave amplitude a/h1 found using the VOF method in Basilisk.
Red indicates KdV theory, yellow fully nonlinear theory and blue results from Basilisk

Our validation tests have shown that Basilisk compares well to fully nonlinear theory for
nearly all measured parameters. Weakly nonlinear theory compares well for amplitudes up
to a/h1 = 0.4 before it starts to differ. This is in accordance with experiments performed
by Grue et al. (1999) [18]. Basilisk overestimated the horizontal velocity in the lower layer
and near the surface, at the position of max displacement compared to fully nonlinear
theory.
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Reproduction of Carr et al., (2008) [8]

Figure 4.5: Illustration of experimental setup in a wave tank, figure 1 from Carr et al.
(2008) [8]

Figure (4.5) shows the experimental setup used by Carr et al. They used a three-layered
model, in a wave tank with dimensions of 6.4× 0.4× 0.6m3. The gate was situated 0.6m
away from one end of the wave tank, with a small opening at the bottom of the gate
making it possible for water to move from one side of the gate to the other, when adding
the additional volume. The experimental parameters are presented in table (4.2), where ρ
is the density, 1 denotes the upper layer, 3 the bottom layer, and H is the total height of
the water column. h0 denotes the height of the additional fresh water behind the gate and
is given as h0 = 0.207m. This value was found using the numerical program for internal
waves called IW2, developed by P. O. Rusaas [36].

ρ1 (g/cm3) ρ3 (g/cm3) h1 (m) h2 (m) h3 (m) H (m)
0.999 1.047 0.035 0.052 0.0293 0.38

Table 4.2: Experimental parameters, Carr et al. (2008)

The same parameters were inserted into Basilisk, which gave the density profiles seen in
figure (4.6).

Reverse flow

First, we look at the depth of the reverse flow due to an internal wave of depression at a
fixed location along the x-axis. A reverse flow is defined as a flow in the same direction
as the wave, but opposite the direction of the interior flow in the lower layer beneath
the wave. We look at the non-dimensional height z/H against the non-dimensional time
tc0/H. Counting of the non-dimensional time starts when the wave crest passes the point
x/H ≈ 7.6. The height of the reverse flow is in our calculations taken as the maximum
height of a horizontal velocity in the same direction as the wave. The reverse flow appears
first after approximately one non-dimensional time unit, before it starts increasing almost
linearly as time increases. The slope steepness from Basilisk is similar to that produced
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(a) Behind gate (b) Rest of wave tank

Figure 4.6: Density profiles from Basilisk

in figure 4 of Carr et al. (2008) [8]. The only difference is a small period of time in the
experiments from Carr et al. where the reverse flow remains constant for a period of time,
before it starts to increase again with similar steepness as before.

(a) Basilisk (b) Figure 4 from Carr et al. (2008) [8]

Figure 4.7: Comparison of the depth of the reverse flow at x/H ≈ 7.6 versus non-
dimensional time tc0/H

Velocities at the bottom

Next, we look at the wave-induced velocities at fixed locations in the wave tank. We start
looking at the non-dimensional horizontal velocity taken at x/H ≈ 7.6 and z/H ≈ 0.013.
From figure (4.8) we can see an increased negative velocity that increases in magnitude
prior to the wave crest passing our location, reaching a magnitude near u/c0 = −0.7.
The magnitude then decreases before it stabilizes itself positively, but close to zero. The
magnitude is similar to the results shown in figure 5 presented in Carr et al. (2008) [8].

Figure (4.9) presents the non-dimensional vertical velocity taken at a fixed location
x/H ≈ 7.6 and z/H ≈ 0.052 above the bottom of the tank. When the wave approaches
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(a) Basilisk (b) Figure 5 from Carr et al. (2008) [8]

Figure 4.8: Comparison of the horizontal velocity u/c0 versus non-dimensional time tc0/H
at x/H ≈ 7.6 and z/H ≈ 0.013, between Basilisk and Carr et al. (2008) [8]

our location, the wave induces a negative velocity, but as the wave crest approaches,
the magnitude decreases to zero. As the wave propagates away, a positive velocity is
induced reaching a smaller maximum value than the maximum negative induced velocity.
After this point, vortices start to develop, and the flow gets chaotic. The results from
Basilisk get more vigorous than those predicted by Carr et al., but the maximal velocities
measured compare well to those presented in figure 6 of Carr et al. (2008) [8].

(a) Basilisk (b) Figure 5 from Carr et al. (2008) [8]

Figure 4.9: Comparison of the vertical velocity versus non-dimensional time tc0/H at
x/H ≈ 7.6 and z/H ≈ 0.052, between Basilisk and Carr et al. (2008) [8]

Velocity vector fields

At last, we look at the velocity vector fields developing behind the propagating wave. The
following figures show the development for the velocity vector field as the non-dimensional
time tc0/H increases. The vortices appear at an earlier stage in Basilisk than those
presented by Carr et al. (2008) ([8]) (figure 4.10), but the highest vortex measured is
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at the same level at ∼ 6% (figure 4.11). When we looked at the reverse flow, we saw
that the results from Basilisk had a linear slope, while the experiments from Carr et al.
had a period of zero slope steepness around tc0/H = 2. The vortices developing at the
bottom of the ocean gets created when the reverse flow gets strong enough. This might
be the reason why vortices are created at an earlier point in Basilisk compared to the
experiments.

(a) Basilisk

(b) Figure 8 from Carr et al. (2008) [8]

Figure 4.10: Comparison of the velocity vector field at tc0/H ≈ 2.812 between Basilisk
and Carr et al. (2008) [8]

(a) Basilisk

(b) Figure 10 from Carr et al. (2008) [8]

Figure 4.11: Comparison of the velocity vector field at tc0/H ≈ 6.427 between Basilisk
and Carr et al. (2008) [8]
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Comparison to experiments
Beside the numerical work with Basilisk, I have also contributed to experimental work
performed at UiO by fellow master students Laila Andersland and Jon Alexander Pirolt.
Together, we have run experiments where our goal has been to compare the experimental
work to numerical results from Basilisk. As previously mentioned, we have used two
different solvers in Basilisk. The first is a VOF solver that defines the interface sharply.
Secondly, we have replaced the VOF solver with a passive tracer to track the interface. The
reproduction of Carr et al. (2008) [8] (section 4.1) has been performed with both solvers
in addition to experiments performed in the hydrolab at UiO. We will now perform a
comparison between the three and see which solver is best at reproducing the experimental
results.

We have performed comparisons for both the horizontal velocity profile situated at
x/H ≈ 7.6 and z/H ≈ 0.013 (same as before) and the vertical velocity profile at x/H ≈ 7.6
and z/H ≈ 0.052. The horizontal velocity profile comparison as seen in figure (4.12),
showed that the modified solver in Basilisk induces a slightly larger velocity compared to
the experiments, but the wave shape is similar. If we look at the results in yellow (VOF
solver), we see that the velocity profile follows the modified solver at the beginning of the
wave, but the maximal obtained induced velocity is smaller. The VOF solver also differed
from the other two in its rear part, due to the presence of Kelvin-Helmholtz instabilities,
making the wave broader. This meant that the modified solver was better at recreating
the experimental velocity profile.

Figure 4.12: Comparison of the horizontal velocity at x/H ≈ 7.6 and z/H = 0.013
between Basilisk using a: 1) Modified solver, 2) Experiments, 3) VOF solver
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Secondly, we look at a comparison for the vertical velocity profile as seen in figure (4.13).
Once more we see that the modified solver from Basilisk is better at retaining the induced
velocity profile in addition to reaching the maximal induced velocities. The VOF solver
does once more obtain smaller maximal velocities, and we see that the broadening of the
wave affects the shape of the velocity profile.

Figure 4.13: Comparison of the vertical velocity at x/H ≈ 7.6 and z/H = 0.052 between
Basilisk using a: 1) Modified solver, 2) Experiments, 3) VOF solver

This comparison has showed us that the modified solver from Basilisk is better at retaining
the wave shape we saw from experiments. It does also better approximate the maximum
induced velocities in the fluid. However, it looks like our modified solver induces a slightly
larger velocity overall for the horizontal velocities.
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4.2 Two- vs three-layered fluid
We have chosen to investigate both a two- and three-layered fluid when looking at the
global instabilities. The problem with running simulations of large ISWs for a two-layered
fluid is the presence of Kelvin-Helmholtz instabilities, which deform the internal wave and
make the tail of the wave become steeper (Grue et al. 1999 [18]). To minimize the effect
of Kelvin-Helmholtz we therefore perform simulations for a three-layered fluid.

Solving for a three-layered fluid in Basilisk using VOF proved to be difficult since the fluid
interface started to diffuse, which changed the three- towards a two-layered fluid. This
motivated us to modify the solver in order to maintain a three-layered fluid throughout
the simulation. From this point, only our modified solver has been used. If we compare
the wave profile in figure (4.14b) with a simulation using VOF with the same parameters
as in figure (4.1d), we see that the non-dimensional amplitude increases a bit with our
modified solver. The wave shape is also better retained with the modified solver, and
Kelvin-Helmholtz looks to appear at a later stage compared to the wave profile found
using a VOF solver.

(a) Two-layered fluid (b) Three-layered fluid

Figure 4.14: Comparison of wave profiles to fully nonlinear theory for two- and three-
layered fluid simulations using Basilisk

We start by comparing the wave profiles found in figure (4.14). Here we can see that
results using a two-layered fluid better approximates the wave profile compared to fully
nonlinear theory. The wave profile using a three-layered fluid is similar to the fully
nonlinear theory, but the wave width becomes smaller. The fully nonlinear theory is
however given for two-layered fluids and we should not expect a perfect match to our
three-layered simulations.

Moving over to the horizontal velocities in the upper layer at z = h1/2, the differences
become significant as seen in figure (4.15). The two-layered fluid simulations compare
well to fully nonlinear theory, while the three-layered fluid deviates significantly with a
more pointy shape and a larger maximal velocity. This can however be explained by the
conservation law for fluid velocities along a horizontal column.

∫ 0

−H
udz =

∫ 0

−H

∂ψ

∂z
dz = ψ|0 − ψ|−H = 0 (4.1)

This is true due to the fact that the stream function ψ is zero along the upper and lower
boundary.
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(a) Two-layered fluid (b) Three-layered fluid

Figure 4.15: Comparison of wave velocities at z = h1/2 to fully nonlinear theory for two-
and three-layered fluid simulations using Basilisk

Equation (4.1) tells us that the amount of fluid entering the horizontal column must
also leave the horizontal column. Knowing this fact, we see that for a three-layered
fluid, the horizontal velocity must increase in the upper layer for the integral to be zero.
This is confirmed in figure (4.16), where the three-layered fluid has an increase in the
horizontal velocity near the surface compared to the two-layered fluid. We have in figure
(4.16) also compared fully nonlinear theory for a two-layered fluid (red line) to the results
from Basilisk (blue dots) for the non-dimensional horizontal velocity profile u/c0 at the
maximal displacement of the wave. The two-layered simulations from Basilisk compare
very well to theory, but slightly underestimate the velocities in the lower layer, while
the three-layered fluid obtains a larger velocity in both the lower and upper layer. By
comparing the results using the modified solver to the VOF solver used in figure (4.4),
we see that the modified solver better approximates the horizontal velocity in the entire
water column for a two-layered fluid.

(a) Two-layered fluid (b) Three-layered fluid

Figure 4.16: Comparison of the non-dimensional horizontal velocities at the maximal
displacement of the wave to fully nonlinear theory for two- and three-layered fluid
simulations using Basilisk

The linear wave speed is in the two-layered case given as in equation (2.24) while the
three-layered linear wave speed is found from equation (2.35). The ratio between these
for the experimental parameters used by Carr et al. [8] is c0,2lay

c0,3lay
= 1.0962. For figure

(4.17), we scaled the horizontal velocity u in the two-layered fluid with c0,2lay and the
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three-layered fluid with c0,3lay. The relationship c/c0 − 1 becomes larger in the three-
layered case compared to the two-layered case. This tells us that the excess propagation
speed is stronger for a three- than a two-layered fluid. We see from figure (4.17) that our
modified solver compares well to fully nonlinear theory for most amplitudes, but as the
non-dimensional amplitude increases, Basilisk starts to underestimate the predicted wave
speeds.

(a) Two-layered fluid (b) Three-layered fluid

Figure 4.17: Comparison of the wave propagation speed between a) two-layered simulations
in Basilisk, b) three-layered KdV equations, c) two-layered KdV equations and d) two-
layered fully nonlinear theory for both a two- and three-layered fluid. The modified solver
of Basilisk was used

4.3 Maximum wave
To maximize the vortex shedding along the bottom, we increase the nonlinearity of the
wave and increase the initial amplitude h0. The nonlinearity is now chosen to be H/h1 = 10
where H is the total depth and h1 the upper layer thickness. A max wave is defined as a
wave amplitude satisfying the relation (a+ h1)/H ≈ 1/2. If we perform a three-layered
simulation, the upper layer thickness used in scaling is chosen to be h̃1 = h1 +h2/2, where
h2 is the length of the mid-layer. The wave parameters used are given in table (4.3).
When we run a two-layered simulation, half of the middle layer h2 is added to both the
upper and lower layer heights, to make the total wave height H unchanged.

We start by comparing the wave profiles for a two- and three-layered fluid simulation. Since
the initial wave amplitude has been maximized we expect Kelvin-Helmholtz instabilities
to have a large impact on the wave profiles. Figure (4.18) shows us that for a two-layered
simulation (figure 4.18a), the shear-instabilities along the interface have a large impact
on the wave profile and make the wave very broad. In the three-layered fluid (figure
4.18b), we see that the wave shape is much better retained, but also here Kelvin-Helmholtz
instabilities are present due to the strongly nonlinear wave created. We notice that the
wave amplitudes for the two- an three-layered fluids have become very different. Both
simulations had the same initial conditions, with an amplitude of a/h1 = 4.0. We see that
a/h1 in the simulated waves are smaller than this. This happens due to the broadening of
the wave. When Kelvin-Helmholtz instabilities become strong enough, the wave profile
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Upper density (g/cm3) ρ1 0.999
Lower density (g/cm3) ρ3 1.047
Upper layer (m) h1 0.012/H
Mid layer (m) h2 0.052/H
Lower layer (m) h3 0.316/H
Total depth (m) H 0.38
Initial amplitude (m) h0 0.278/H
Gate position (m) x0 0.90/H
Tank length (m) L0 12.0/H

Table 4.3: Wave parameters, three-layer case for maximum wave in Basilisk

is changed, and the wave broadens. For such large waves, this also effects the wave
amplitude and it decreases. Since the Kelvin-Helmholtz instabilities are strongest for
the two-layered simulation, we see that this also has the smallest value of the nonlinear
amplitude a/h1 = 3.20 compared to a/h1 = 3.75 for the three-layered simulation. The
long tail seen in figure (4.18a) comes from our definition of the wave profile η, which
follows the isoline of the salt water. The same effect occurs if we choose a different isoline,
but the tail becomes more moderate.

(a) Two-layered fluid (b) Three-layered fluid

Figure 4.18: Comparison of wave profiles for a maximum wave for two- vs three-layered
simulations to fully nonlinear theory

Next, we look at the reverse flow in figure (4.19). Here we see that the reverse flow is
strongest for the three-layered fluid in the beginning and increases almost linearly until
tc0/H = 10. The two-layered fluid has on the other hand a more gentle start before it
increases rapidly to the same level as in the three-layered fluid.

Bigger differences start to appear when we look at the horizontal velocity just above
the bottom of the wave tank at z/H ≈ 0.013 and x/H ≈ 7.60. We saw in figure (4.18)
that the wave profile became very different for a two- compared to a three-layered fluid.
The effect of a smaller non-dimensional wave amplitude a/h1 can also be seen in figure
(4.20) with a decreased maximal horizontal velocity at u/c0 ≈ 1.1 for the two-layered
fluid compared to u/c0 ≈ 1.3 for the three-layered simulation. Where a perfect solitary
wave would give a symmetric horizontal velocity profile, we see from figure (4.20a) that
the long tail of the wave makes the horizontal velocity profile of the two-layered fluid
anti-symmetric.

Looking at the vertical velocity profiles at x/H ≈ 7.6 and z/H ≈ 0.52 in figure (4.21), we
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(a) Two-layered fluid (b) Three-layered fluid

Figure 4.19: Comparison of reverse flow for a maximum wave for two- vs three-layered
simulations

(a) Two-layered fluid (b) Three-layered fluid

Figure 4.20: Comparison of horizontal velocities near the bottom for a maximum wave for
two- vs three-layered simulations

see that the three-layered fluid obtains the largest velocity once more. When we created
similar profiles in the reproduction of Carr et al. (2008) [8] (section 4.1), we saw the ISW
first induced a negative vertical velocity, before passing and inducing a positive vertical
velocity. This time, we see that the positive induced vertical velocity appears at a later
stage for the three-layered fluid, and even later for the two-layered fluid to what we saw
earlier. The reason for this could be due to the broadening of the wave, making the tail
of the wave longer. This means that it takes longer time for the wave to pass, making the
fluid motion at the bottom more horizontal than vertical.

The next figure (4.22) shows a comparison for the vorticity at time tc0/H ≈ 16. Both
simulations give vortices of approximately the same size. The difference of the height
of the upper vortex is small, but with the three-layered simulation as the highest one.
Another observation is the presence of a third vortex in figure (4.22b).

As an attempt on looking at how sediments from the bottom of the sea floor move in the
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4.3. Maximum wave

(a) Two-layered fluid (b) Three-layered fluid

Figure 4.21: Comparison of vertical velocities near the bottom for a maximum wave for
two- vs three-layered simulations

(a) Two-layered fluid (b) Three-layered fluid

Figure 4.22: Comparison of vorticity at tc0/H ≈ 16 for a maximum wave for two- vs
three-layered simulations

water column, we have tracked particles using Lagrangian particle tracking. This is done
by placing a number of particles along a horizontal line situated just above the bottom of
the tank between 9.0 < x/H < 11.0 at z/H = 0.005. The particles are then moved in the
fluid by using the local velocity vector field for each timestep, and the results can be seen
in figure (4.23). Here we see that the maximal attained height are similar for the two- and
three-layered fluid, but the two-layered fluid are obtaining the largest value of z/H ≈ 0.25,
while the three-layered simulation are more consistent around z/H ≈ 0.20. The main
difference for the two fluids can be seen by the quantity of particles getting lifted. In
the two-layered simulation, the most consistent particle trajectories can be seen between
8.5 < x/H < 9.0 with a lift of approximately 10%. The three-layered fluid has however a
much larger number of particles reaching the maximal obtained height of z/H ≈ 0.20 or
20% of the height of the water column.
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4.3. Maximum wave

(a) Two-layered fluid (b) Three-layered fluid

Figure 4.23: Comparison of particle paths tracked with Lagrangian Particle Tracking for
two- and three-layered fluid

Convergence of max wave
To validate the results for the max wave, we performed several simulations with a slight
modification on the numerical parameters to look for convergence. We started by changing
the relative tolerance in our simulations. This term is believed to give a restriction for the
maximum allowed residual for pressure. If this condition is not fulfilled, the simulation is
stopped. Our standard tolerance criteria of Tolerance = 1e-4 was refined to Tolerance =
1e-6. We also modified the standard criteria of our maximum allowed timestep ∆t = 0.01
to ∆t = 0.005. Since we already are using the maximum allowed resolution for our
computer, it could not be changed. A smaller resolution could have been used, but since
the global instability occurs on a small scale, we need the finer resolution to catch them.

Before we look at the different particle paths, we have to make sure that we have created
similar waves with the different numerical parameters. Looking at figure (4.24) we see
that both the wave profiles and horizontal velocities in the upper layer are very similar.

(a) Wave profile (b) Velocity in the upper layer at u(y = h1/2)

Figure 4.24: Comparison of wave profile and the upper layer velocity for a max wave of
different numerical parameters. Blue indicates our standard run, red refined tolerance
and yellow refined timestep ∆T

In figure (4.25), we have compared the particle paths for the three simulations. The
particles are initially placed at the same location for all cases. We see that all simulations
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4.4. Slope

give similar results. Both the run named Original and Refined timestep have similarities
when it comes to the amount and height travelled for the particles. The final simulation
named Refined tolerance differs from the other two with a smaller quantity of particles
getting lifted, but obtains a larger maximum height for a large quantity of particles at
approximately z/H = 0.3. Based on our results we can clearly see a trend where particles
get lifted high up into the water column beneath a propagating ISW. A lift of 20% the
total water depth is achieved in all cases.

Figure 4.25: Comparison of particle paths for a max wave with small adjustments for the
numerical parameters

4.4 Slope
Until now, we have only simulated ISWs propagating over a flat bottom. As an attempt
to strengthen the global instability we attached a sloping bottom to the numerical wave
tank. The slope has a maximum height of Hmax = 0.45H or half the lower layer h2/2
(figure 4.26), where H is the total depth. The slope starts in one end of the wave tank
and ends at the other end, which gives an amplitude of α = Hmax/L0 = 0.014. The wave
parameters are the same as for the max wave given in table (4.3), where x0 is the gate
position.

First, we look at how the wave profile is affected by the sloping bottom. Two wave profiles
are given in figure (4.27). The red line indicates the wave profile created by the numerical
program IW2 and is plotted as a reference for how a solitary wave of the given size should
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4.4. Slope

Figure 4.26: Illustration of a sloping bottom created with EB in Basilisk

look like. We can see that the results from Basilisk give a very broad wave compared to
the fully nonlinear theory used in IW2. Our results show that as the wave propagates
up the sloping bottom, the wave is constantly broadening while the dimensionless wave
amplitude a/h1 is constantly decreasing. Similar behaviour was also seen in our study of
how the pycnocline thickness affected the wave shape for large waves (see section 5.2).

(a) tc0/H ≈ 2.38 (b) tc0/H ≈ 5.47

Figure 4.27: Wave profiles for two different dimensionless times tc0/H. Red indicates the
wave profile from fully nonlinear theory and is given as a reference

To get knowledge of the strength of the velocity field we look at the horizontal and vertical
velocity profiles at the bottom of the wave tank. The velocities are made dimensionless
by dividing with the linear wave speed c0. By comparing the maximal velocities given in
figure (4.28) with previous velocity profiles, we notice a small increase for the horizontal
velocities, but twice as strong max velocity for the vertical velocities. Since we have
included a slope, the measurement point is situated higher in the water column, which
can have affected the strength of the velocities. However, since the maximal horizontal
velocity is similar to earlier results (figure 4.20a) the large change in vertical velocities are
worth noticing.

When including a sloping bottom, the maximal height reached by a vortex (figure 4.29) is
similar to the simulations of the max wave (section 4.3). The vortex strength is in this
case larger than in the maximum wave simulations seen in figure (4.22b). The increased
vortex strength results in a large quantity of particles getting lifted from the bottom floor
(figure 4.30a). Now, a larger amount of particles are moved higher up into the water
column, with a maximal vertical distance of approximately z/H ≈ 0.45.

Particles were also initialized further up the slope between 13 < x/H < 15 and z/H = 0.22,
with the results given in figure (4.30b). Here we see similar behaviour as in figure (4.30a),
with a large amount of particles getting lifted up into the water column. The maximum
distance travelled vertically for particles in figure (4.30b) are smaller than in figure (4.30a).
This could be due to the fact that as the wave propagates up the slope, its length increases
and its nonlinear amplitude decreases. Since both figures are created from the same
simulation, the non-dimensional time that the particles in figure (4.30b) have travelled are
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4.4. Slope

(a) Horizontal velocity (b) Vertical velocity

Figure 4.28: Velocity profiles at a fixed point situated at the bottom of the wave tank. (a)
Horizontal velocity at x/H ≈ 7.60 and z/H ≈ 0.063. (b) Vertical velocity at x/H ≈ 7.60
and z/H ≈ 0.102

Figure 4.29: Velocity vector field at tc0/H ≈ 14 for an area near the bottom of the slope

also smaller than in figure (4.30a). This affects the particle trajectories, since the vortices
as seen in figure (4.29) are at their strongest at the end of the simulations.
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4.4. Slope

(a) Position nr 1

(b) Position nr 2

Figure 4.30: Particle paths found with Lagrangian particle tracking for two different
positions with α = 0.014
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4.4. Slope

Increasing the steepness
After including a sloping bottom in the previous section, we increased the slope steepness
to see how this affected the results. The slope steepness was therefore increased to
α = 0.028 by decreasing the length of the wave tank L0 to half of its original value. The
simulations with the steeper sloping bottom were performed for two different resolutions,
as a verification of the results. The wave profile found when using the finest resolution
can be seen in figure (4.31). Once more, we see how the sloping bottom appears to change
the wave profile, by decreasing the amplitude and increasing its length.

Figure 4.31: Wave profile from Basilisk taken at tc0/H ≈ 2.38 for the finest resolution

Figure (4.32) shows one of the vortices that evolved as the internal wave propagated
uphill. The magnitude of this vortex is large, and it has a vertical extension just beneath
30% of the total wave depth. This is 50% larger than the vortex seen in figure (4.29), for
a slope of steepness α = 0.014. A vortex of this size can contribute massively towards
lifting sediments from the bottom up in the water column. In figure (4.33) we see the
particle paths for both a "coarse" and "fine" resolution for a sloping bottom of amplitude
α = 0.028. We can see from both figures that a large amount of particles reach a height of
minimum 60% of the total water depth H. Since the particles are moved vertically more
than 50% of the total water depth, a complete mixing of the water column is expected to
occur for such large waves. In figure (4.33) we can even see particles reaching a maximum
height of 80% of the total water depth H.
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4.4. Slope

Figure 4.32: Velocity vector field from Basilisk at tc0/H ≈ 8 for a sloping bottom of
steepness α = 0.028

Figure 4.33: Particle paths from Basilisk for two different resolutions with α = 0.028

We have in this section shown that a steeper slope results in larger vortices and due to
this, particles are lifted higher up into the water column. As an attempt to explain the
reason behind this, we look at the horizontal velocity u just above the sloping bottom.
We have previously looked at the reverse flow that develops behind the propagating ISW,
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4.4. Slope

but we have not looked at its magnitude. This has been done using the image viewer
Paraview and the maximum measured velocity can be seen in table (4.4). Here we see
that the horizontal velocity u has a maximum positive velocity of almost twice the size for
α = 0.028 compared to α = 0.014. Since the strength of the reverse flow is increased with
an increase in the slope steepness α, the shear tension will also increase along the reverse
flow. The increase in shear tension could be the reason why vortices become larger in size
with slope steepness.

α urev,max
0.014 0.28 m/s
0.028 0.54 m/s

Table 4.4: The strength of the reverse flow for different slope steepness
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CHAPTER 5

Further results and further
discussions

5.1 Convergence of Basilisk
When using a numerical model, it is important to control the truncation errors. This
is done through convergence of the numerical method. Convergence is reached if the
truncation error decreases with resolution. We will now perform a convergence test for
the modified solver in Basilisk. The parameters used are the same as in our comparison
between a two- and three-layered fluid. We will investigate convergence for several different
aspects of the simulation, such as wave profile, horizontal velocity in the upper layer and
the velocity profiles at the bottom of the wave tank. In this test, the height of the layers
are put to constant values, and two-layered simulations are performed by adding half of
the middle layer h2 to the upper and lower layer heights. We have run three simulations
for both two- and three-layered fluids. We use the same number of cells in all simulations,
but vary the tank length to obtain the different resolutions. The step-length is given as
∆x = L0/N . The numerical parameters are given in table (5.1):

Number of horizontal cells (Const val) N 2048
Original tank length L0,org 10.0/H
Refined tank length L0,ref 0.7*10/H
Coarse tank length L0,cor 2.0*10/H
Total height H 0.38
Upper layer thickness h1 0.035/H
Middle layer thickness h2 0.052/H
Lower layer thickness h3 0.293/H

Table 5.1: Numerical parameters for convergence runs in Basilisk

Two-layered fluid
First, we look at the wave profile and the horizontal velocity at z = h1/2 in figure (5.1).
As the step size ∆x decreases, we see that the differences between the different resolutions
decrease, and convergence is obtained.
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5.1. Convergence of Basilisk

(a) Wave profile

(b) Horizontal velocity at z = h1/2

Figure 5.1: (a) Wave profile and (b) horizontal velocity in the upper layer for different
resolutions (Two-layered simulations)

Next, we look for convergence for the velocities near the bottom of the wave tank as seen
in figure (5.2). Here we see that different ∆x provides very similar results. One thing
to note is that an increase in the resolution results in a slightly smaller maximal value.
Since the results converge towards the same result, we know that the truncation errors
are kept to a minimum.
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5.1. Convergence of Basilisk

(a) Horizontal velocities

(b) Vertical velocities

Figure 5.2: (a) Horizontal velocities and (b) vertical velocities at the bottom of the wave
tank for different resolutions (Two-layered simulations)

Three-layered fluid
A check for convergence was also performed for a three-layered fluid. By decreasing the
length of the wave tank and hence increasing the resolution, we obtain convergence for
the wave profile and the horizontal velocity in the upper layer for a three-layered fluid
(figure 5.3).
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5.1. Convergence of Basilisk

(a) Wave profile

(b) Horizontal velocity at z = h1/2

Figure 5.3: (a) Wave profile and (b) horizontal velocity in the upper layer for different
resolutions (Three-layered simulations)

Finally, we look at a comparison for the horizontal and vertical velocity profiles at the
bottom of the wave tank. We can see from figure (5.4) that the different resolutions give
very similar results. This means that we will create similar waves despite differences in
the numerical solver, and we know that the truncation errors are small.
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5.1. Convergence of Basilisk

(a) Horizontal velocities

(b) Vertical velocities

Figure 5.4: (a) Horizontal velocities and (b) vertical velocities at the bottom of the wave
tank for different resolutions (Three-layered simulations)
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5.2. Notes on Kelvin-Helmholtz instabilities

5.2 Notes on Kelvin-Helmholtz instabilities
In this section, we are going to investigate how different pycnocline thicknesses affects
Kelvin-Helmholtz instabilities at the interface and the instabilities and wave characteristics
at the bottom of the wave tank for large ISWs of non-dimensional amplitude a/h1 ≈ 2.75.
This is done by adjusting the thickness of the pycnocline from a two-layered simulation
h2 = 0, to a large pycnocline at h2 = 0.08/H (21% of the total water depth) for a
three-layered simulation. The different layer thicknesses are chosen to satisfy H/h̄1 = 8,
where H = h1 + h2 + h3 and h̄1 = h1 + h2/2. All numerical parameters are given in table
(5.2).

No pycnocline h2 = 0
Small pycnocline h2 = 0.02/H
Medium pycnocline h2 = 0.04/H
Large pycnocline h2 = 0.08/H
Nonlinearity H/h̄1 = 8
Initial amplitude h0 = 0.25/H
Gate position x0 = 0.9/H
Tank length L0 = 10.0/H

Table 5.2: Wave parameters for investigating different pycnocline thicknesses

We start by looking at the wave profile for different pycnocline thicknesses. The graphs
are named N - Two-layer fluid, S - small pycnocline, M - medium pycnocline and L -
large pycnocline. We can see from figure (5.5a) that as the pycnocline decreases, the
wave profile is broadening. This is expected since a large pycnocline decreases the shear
tension and therefore also the broadening of the wave due to Kelvin-Helmholtz instabilities.
Looking at the horizontal velocity in the upper layer (figure 5.5b), we see that the thickest
pycnocline also have the largest horizontal velocity in the upper layer, which is the same
result as we found in section (4.2).
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5.2. Notes on Kelvin-Helmholtz instabilities

(a) Wave profile η

(b) u(z = h1/2)

Figure 5.5: (a) Wave profile and (b) horizontal velocity in the upper layer at z = h1/2 for
different pycnocline thicknesses

Next, we investigate the velocity profiles at the bottom of the wave tank at a fixed point.
Figure (5.6a) shows a comparison between both the horizontal and vertical velocity profiles
for different pycnocline thicknesses. From this figure, we see that the maximum velocity
increases with the pycnocline thickness. If we combine these results together with the
results from figure (5.5) showing the wave profiles, this observation tells us that a small
pycnocline thickness gives a broad wave profile, which results in smaller maximal velocities
along the bottom of the wave tank. This figure also shows that the relative difference
between the different pycnocline thicknesses is largest in for the horizontal velocity, where
the velocity profile becomes very broad in its upper rear part.
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5.2. Notes on Kelvin-Helmholtz instabilities

(a) Horizontal velocity

(b) Vertical velocity

Figure 5.6: (a) Horizontal and (b) vertical velocity measured along the bottom for different
pycnocline thicknesses. Both is measured at x/H ≈ 7.6 with a) at y/H ≈ 0.013 and b) at
y/H ≈ 0.052

To understand the evolution of instabilities at the bottom of the wave tank, we plot
the velocity vector fields for two different non-dimensional times. The times chosen are
tc0/H ≈ (6, 12). From figure (5.7) we see that a thicker pycnocline results in more vortices.
If we increase the time to tc0/H ≈ 12 as shown in figure (5.8) we see that the difference
is large between a two-layered simulation (no pycnocline) and having a pycnocline of any
size. Where figure (5.8a) has very weak vortices, figure (5.8b) has a lift of ∼ 15%. The
figures do not show whether a thicker pycnocline results in a larger lift of vortices from the
bottom of the water column. Our investigation indicates that future simulations should
be run with a three-layered fluid to increase the vortex shedding and global instabilities
at the bottom of the wave tank.
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(a) No pycnocline

(b) Small pycnocline

(c) Medium pycnocline

(d) Large pycnocline

Figure 5.7: Velocity vector field at tc0/H ≈ 6.0 for different pycnocline thicknesses
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(a) No pycnocline

(b) Small pycnocline

(c) Medium pycnocline

(d) Large pycnocline

Figure 5.8: Velocity vector field at tc0/H ≈ 12.0 for different pycnocline thicknesses
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5.3 Implications of changing the upper-layer
thickness

In this project, the relative upper layer thickness h1 has been varied. To get a better
understanding of the consequences of these changes, a comparison has been made for
various upper layer thicknesses. The only parameter changed in this test was the different
layer heights to obtain the wanted nonlinearities. This means that the initial volume and
total height H were kept constant for all simulations. The different nonlinearities used are
given in table (5.3).

H/h1 6.23
H/h1 8
H/h1 10

Table 5.3: The different nonlinearities investigated

The linear wave speed is, as mentioned before, given as c0 = gh1h2(ρ2−ρ1)
ρ1h2+ρ2h1

for a two-layered
fluid. From this equation, we see that a decrease in the upper-layer thickness results in a
smaller linear wave speed. We will now investigate the horizontal velocity profile at the
bottom of the wave tank. From figure (5.9) we see that as the nonlinearity increases, the
induced fluid velocities also increase in the lower layer. Since we know that an increase of
the nonlinearity decreases the linear wave speed c0 we wanted to investigate the differences
if we assumed a constant linear wave speed. This resulted in figure (5.10). Here we see
that the induced fluid velocities becomes very equal. This means that as the nonlinearity
of a wave increases, the relative velocities in the fluid increases compared to the linear
wave speed, while the observed velocities becomes similar in size.

Figure 5.9: Comparison of horizontal velocity at the bottom of the wave tank for different
upper-layer thicknesses
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Figure 5.10: Comparison of horizontal velocity at the bottom of the wave tank for different
upper-layer thicknesses, constant c0

At last, we wanted to see whether an increase in the nonlinearity resulted in stronger
global instabilities in the wave tank. We have therefore plotted the velocity vector field
for the three different nonlinearities as seen in figure (5.11). The vortices that develop
looks to have the same size and height for all three thicknesses of h1. Longer simulations
should be performed to see if the behaviour changes as time increases.
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(a) H/h1 = 6.23

(b) H/h1 = 8

(c) H/h1 = 10

Figure 5.11: Velocity vector field at tc0/H ≈ 6 for different values of H/h1

72



CHAPTER 6

Summary and conclusion

We have in this study investigated the global instability in the bottom boundary layer,
induced by large internal solitary waves, by using the numerical tool of Basilisk. Our
work can be divided into three categories. First, we have a validation test of Basilisk
against both experiments and analytic theory. Secondly, we have simulations using a flat
bottom. Here we used both a two- and three-layered fluid of different wave amplitudes.
Lastly, we performed simulations with two sloping bottoms of different steepness using a
three-layered fluid.

Basilisk proved to compare well to fully nonlinear theory for all measured parameters, such
as wave profile η, horizontal velocities u and wave propagation speed c. A deviation from
theory was found when we increased the non-dimensional amplitude a/h1 in accordance
with Grue et al. (1999) [18], where Kelvin-Helmholtz instabilities grew strong, which
broadened the tail of the wave. Kelvin-Helmholtz instabilities proved to appear for larger
non-dimensional amplitudes a/h1 for our modified solver using a passive tracer to track
the interface compared to using a VOF solver that defined the interface more sharply.
When we compared both solvers to experiments performed in the hydrolab at UiO, we
found the modified solver to give the best representation of the resulting flow field. A
small overestimation of the horizontal velocities near the bottom was found with the
modified solver compared to experiments.

Through our study, we discovered that different pycnocline thicknesses affected the wave
profile and global instabilities for large amplitudes (section 5.2). ISWs proved to better
retain their wave shape in a three-layered fluid. This increased the induced velocities
in the bottom layer and enhanced global instability. A three-layered fluid is also more
representable to the actual ocean environment. A comparison was also performed against
experimental work done by Carr et al. (2008) [8]. These results proved to compare well to
the reverse flow, horizontal and vertical velocities in the lower layer. Global instabilities
appeared at an earlier stage in Basilisk compared to the experiments, but the resulting
velocity vector field from Basilisk were in good accordance with the results from Carr et
al.

A broad variety of tests were performed to make sure that our numerical model was
reliable for all parameters present. Our results showed that Basilisk compared well to
both theory and experiments. A convergence test was also performed, which showed that
the wave profile and velocity profiles converged towards the same results as the resolution
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increased. For particle trajectories, it was more difficult to establish convergence since the
global instability is a turbulent and random process, however, they did show a similar
behaviour.

Having established that Basilisk can be used to represent ISWs in a good way, a comparison
was performed between a two- and three-layered fluid of moderate amplitude. The
motivation for running such a test was to see the relative differences between having a
two- and three-layered fluid for otherwise equal parameters. This test showed us that
the horizontal velocity in the upper layer u(z = h1/2) changed its shape. They differed
by attaining a larger maximum velocity, and changed towards having a more pointy
shape compared to fully nonlinear theory for a two-layered fluid. This was explained
by conservation of mass in a water column. The amount of water entering a horizontal
column in the fluid, must also leave the horizontal column. When adding a pycnocline to
our simulation, the relative upper layer h1 became smaller in size. In order to conserve
the mass, the velocities had to increase in the upper layer.

In this study, the linear wave speed has been calculated in two different ways. For a
two-layered fluid, we have used:

c2
0 = gh1h2(ρ2 − ρ1)

ρ1h2 + ρ2h1
(6.1)

We also introduced a formula for the linear wave speed of a stratified ocean, valid for all
stratifications:

c2
0 = −

∫ 0
−H N

2(φ2)zdz∫ 0
−H(φ2

z)zdz
(6.2)

The relationship between the linear wave speed for a two- and three-layered fluid of
otherwise equal parameters showed a large difference as seen in equation (6.3). When
looking at the wave propagation speed for a two- and three-layered fluid, it showed that the
relationship c/c0 increased when using a three-layered fluid compared to a two-layer fluid.
This meant that the excess propagation speed increased if we added a linear stratification
to the water column. The relationship in equation (6.3) is only an example for a given
stratification and will change when changing the stratification.

c0,2lay

c0,3lay
= 1.0962 (6.3)

In order to maximize the global instability and the vertical transportation of particles
from the bottom of the wave tank, we performed several changes to try to enhance the
global instability. We started by increasing the nonlinearity of the problem by reducing
the upper layer height to H/h1 = 10. When reducing the upper layer thickness, the
excess velocities c/c0, u/c0 and w/c0 increased in the fluid (section 5.3). The next step
was to increase the wave amplitude. This was done by using the internal wave program
IW2 developed by P. O. Rusaas [36] to find the necessary volume for creating a wave
of amplitude close to half of the depth of the water column. The input amplitude was
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calculated using (a+h1
H
≈ 1/2). We also added a sloping bottom to our simulations to see

how this affected the global instability.

When we increased the dimensionless amplitude a/h1, simulations were performed with
both a two- and three-layered fluid. A large wave amplitude proved to have a huge
impact on the wave profile. Due to a large number of Kelvin-Helmholtz instabilities
present, the wave shape was changed for both layer types. But where the three-layered
fluid managed to retain its wave shape in a decent manner, the wave profile from the
two-layered fluid became very broad and the wave amplitude decreased. The broadening
of the wave resulted in a dimensionless amplitude a/h1 = 3.20 for the two-layered fluid
while an amplitude of a/h1 = 3.75 was obtained for the three-layered fluid. These results
also affected the induced velocity profiles where the three-layered fluid had larger induced
fluid velocities both in the upper and lower layer.

By using Lagrangian particle tracking, we obtained an illustration of how fluid particles
are transported in the fluid. Several simulations were performed to verify the results. The
results showed that both a two- and three-layered fluid had particles reaching the same
maximum height at 20%, but the three-layered fluid had a much larger quantity of particles
getting lifted from the bottom of the wave tank. We performed several simulations to
look for convergence, and obtained similar results with a large number of particles getting
lifted 20%.

The simulations performed with a flat bottom showed particles getting lifted 20% of
the total water column. Diamessis and Redekopp [12] performed similar numerical
simulations, but for weakly nonlinear equations, and obtained a lift of nearly 30-35%.
We have previously shown that weakly nonlinear theory compares well to both fully
nonlinear theory and simulations for non-dimensional amplitudes up to a/h1 = 0.4 in
accordance with Grue et al. (1999) [18]. When the amplitude increases above this level,
the wave profiles created with weakly nonlinear theory becomes more narrow-crested.
Our comparison of a two- vs three-layered fluid has shown that the global instability is
increased for a three-layered fluid due to its better ability to maintain its wave form and
obtain a steeper tail of the wave. This resulted in larger fluid velocities and hence stronger
global instabilities. Diamessis and Redekopps use of weakly nonlinear theory can therefore
have strengthened the global instability by having a very steep wave tail. Experimental
work performed by Carr et al. (2008) [8] showed a maximal disturbed depth of 17%.
Their setup gave the non-dimensional height of H/h1 = 4.83 and their wave amplitude
had a maximal displacement of the total water column given as (a+ h1)/H = 0.47. The
simulation performed in Basilisk had a non-dimensional height of H/h1 = 10 and a wave
displacement of (a+ h1)/H = 0.475 of the total water column. A resulting lift of 20% of
the water column is therefore in accordance with what we would expect when comparing
to Carr et al.

Previously, a study by Aghsaee et al. (2012) [1] suggested the important role of shoaling
ISWs in sediment resuspension. Shoaling waves had larger vertical velocities, higher bed
shear and a greater energy transfer to the separation bubbles. This motivated us to
include a sloping bottom to our simulations. Two different slopes were introduced to study
how this affected the global instability. As the ISW propagated up the slope, the wave
got compressed and the amplitude reduced. The wave was also constantly broadening.
Adding a slope had large implications on the vortices that evolved. These were very large
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in magnitude compared to simulations on a flat bottom with same initial conditions. The
slope having a steepness of α = 0.014 had a lift of particles of 40% of the total water
column (scaled with H defined with a flat bottom). The vortex also had a size of 20%
of the total water column, which is considered very large. Similar behaviour was found
when we increased the slope steepness to α = 0.028. The wave profile experienced the
same behaviour as before. For the steeper slope, the vortex increased in size to 30% of
the water column. This increase in vortex strength resulted in better lift of particles and
a large amount of particles getting lifted to z/H = 60% of the total water column. We
also had particles exceeding this value and reaching as high as 80% of the total water
column. The increase in vortex strength with increase in slope steepness got related to an
increase in the strength of the reverse flow. We believe that an increase of the velocities
in the reverse flow results in stronger bed-shear, resulting in the creation of larger vortices.
We know from theory that the maximum possible obtained amplitude for a two-layered
fluid is given by (a+ h1)/H = 1/2. However, for a three-layered fluid this value can be
exceeded. Knowing that an ISW has a maximum displacement of half the ocean depth, we
achieve complete mixing of the water column due to the large lift of particles experienced
when adding a sloping bottom.

Our results suggest that the presence of a sloping bottom has large implications on the
strength of the global instability, in accordance with Aghsaee et al. (2012) [1]. We used
an angle of 2.8°for the steepest slope. This is comparable to the average angle of the
continental slope, which lays on 4°. On the continental shelf, the average slope steepness
is 1°. Knowing this combined with our results, we understand that the global instability
that occurs in the ocean can have a strong effect on mixing in the entire water column,
and contribute towards resuspension of sediments from the sea floor.

If we go back to the example from the introduction, internal waves were observed in
Vesterålen close to a coral reef and in an area of high fishing density. A sloping bottom
with average steepness of 3.2°was also present in this area. We have in our study showed
that the instability appearing beneath a large ISW of depression can contribute massively
towards resuspending sediments from the sea floor, especially when having a sloping
bottom. If we include the ocean currents, we have a system where sediments from the
sea floor gets lifted high up in the water column where ocean currents act as a transport
mechanism, spreading nutrition over a larger area. In addition to this, nutrition from the
upper part of the ocean is transported downwards with the ISWs and we get a complete
mixing of the water column. Based on our results, ISWs can be considered as a nutrition
pump that given the right conditions, can create an environment ideal for the ocean
biology.
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