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Abstract

This thesis is devoted to the development of a focused information criterion
for dynamic multinomial logit models. The achievements of the thesis
are fourfold. First, a dynamic multinomial logit model is defined which
admits the possibility of model misspecification. Then, approximate large
sample distributions of maximum likelihood estimates of this model are
deduced. The deduction is done both for correctly specified models and
for misspecified models. On the basis of these approximate distributions,
the Focused Information Criterion is constructed. The performance of
the developed Focused Information Criterion is investigated through
simulation experiments. It is shown that the developed information
criterion indeed aims at selecting the models giving the most precise
estimate of the focus parameter. As an application of the developed
methodology, armed conflict data are analyzed. The focus parameter in
this analysis is the probability of conflict escalation. The findings show
that the level of democracy has no significant effect on conflict escalation
probabilities.
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CHAPTER 1

Introduction

Statistical analysis of armed conflict is of interest to an audience much wider
than just the scholars working on international relations. After all, questions of
War and Peace are of the highest importance to everyone. Show me the person
indifferent to the way Madame Fortuna is turning her wheel of violence!

No wonder then, that a global bestseller in recent years has been Steven
Pinker’s The Better Angels of our Nature (Pinker, 2011). In this impressive
work, Pinker examines historical data from a variety of sources and concludes
that the world has seen a steady decline in armed conflict. According to Pinker,
the world has changed to the better: Wars have become less probable, the
chances of violent death are reduced. Not the worst of messages to convey to
the general public.

Among conflict researchers, the question of reduced conflict probabilities
has been debated for a long time. A considerable amount of studies supports
Pinker’s joyful message. Gat (2006), Goldstein (2011) and Cunen, Hjort, and
Nygård (2019) for example, all agree with Pinker that the world has become
more peaceful. Cunen, Hjort and Nygård even give an estimate of when this
change took place. Through statistical change point analysis, they argue that
the war-generating mechanism got less intense somewhere during the sixties.

Other authors are less sanguine. Clauset (2017, 2018) is a case in point.
Clauset argues that it is still too early to draw conclusions from the current
trend of relative peace. According to him, this trend has to last another
hundred years before we can state anything with confidence about reduced
conflict probabilities. Still, even if the thesis of the ‘long peace’ (Gaddis, 1989)
is somewhat contested, there seems to be clear evidence that democracies are
highly unlikely to go to war with each other. (See Hegre (2014) for a summary
of findings.) So even if Pinker’s thesis may be too optimistic, statistical analyses
reveal that free people in liberal democracies do not wage war against each
other. A message hardly less delightful to convey to the general public.

The potential of statistical analysis in conflict research is however greater
than just being a tool for testing hypotheses about the progress of the world.
Statistical analysis may in itself be a contributor to a decline in violence.
Consider all armed conflicts that have taken place in modern times. Of course,
each of these conflicts is unique in its own right. Each conflict has its particular
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agents, its particular stakes, its particular historical causes. Nevertheless, it
would be very strange if there were no common patterns across these conflicts.
We would be very surprised if an increase in arms expenditure did not have any
effect on the probability of war for example. (If this were the case, all states are
wasting a lot of money). We would also be surprised if the form of government
had absolutely nothing to say for the war chances.

To identify such common patterns, dynamic regression is the appropriate
choice of method. Dynamic regression methods are able to identify numerical
patterns in the data, decide which effects are significant and even make us able
predict violent conflict in the future!

It is not difficult to see the practical value of this. The international
community, for example the United Nations, could use such dynamic regression
models to monitor current conflict levels around the globe. Aid and attention
could be directed to the areas identified as hot spots. In this way, conflicts could
be stopped even before they erupted. The general public would be thrilled!

Dynamic regression models for conflict prediction is no idealist’s dream
of the future. Hegre, Karlsen, Nygård, Strand, and Urdal (2013) have used
multinomial Markov chain models with a logit link to predict future of civil wars.
Basing their analysis on data on civil wars after 1946, they use such dynamic
regression models to predict the future. Their predictions are encouraging.
They predict that the coming years will see a decline in intrastate violence.
They estimate probabilities of civil war eruption in different countries, they
identify potential hot spots and they even identify effects that tend to increase
the probability of an outbreak of civil war. This is exactly what would be of
great use to the international community.

The question of model selection is important, to such dynamic conflict
modeling, as it is to all statistical modeling. There is a multitude of models
that can be fitted to the data. How to select the best one? We could of course
use traditional information criteria, such as the Aikake’s Information Criterion
(AIC), the Bayesian Information Criterion (BIC) or the Deviance Information
Criterion (DIC). These well-known and widely used criteria aim at selecting
the model closest to the true data-generating mechanism.

The potential problem is that the model deemed closest to the true data-
generating mechanism not necessarily is the model best at estimating the
parameter of interest, the focus parameter of the analysis. It may be that the
model deemed closest to the true data-generating mechanism includes so many
parameters that it renders the final estimates of the focus parameter imprecise.
Simpler models may be preferable. Such simple models would probably be
biased, but due to their simplicity, they may involve so much less variance that
they nevertheless give more stable estimates of the focus parameter. This is
all the more true in the modeling of conflict dynamics. War rarely breaks out,
peace observations are abundant. The model chosen by the AIC may be much
too wide to estimate war-related parameters, as the probability of escalation
from minor conflict to war, for example.

The Focused Information Criterion (FIC) is an information criterion that
aims at selecting the models in regard to the precision of the focus parameter
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estimator, rather than the closeness to the true data-generating mechanism.
Compared to the AIC and its relatives, however, the FIC is a mathematically
complex criterion. It is not readily available through a general formula, as are
the handy AIC and BIC. Being based on large sample asymptotics of maximum
likelihood estimators under misspecification, it needs to be worked out uniquely
for each class of parametric models.

In this Master’s thesis I develop such a Focused Information Criterion for
the dynamic multinomial logit model of Markov chains. Inspired by the analysis
of Hegre et al. (2013) I will use the developed FIC to analyze interstate conflict
dynamics in the period between 1950 and 2010. The data to be analyzed will
be the Military Interstate Disputes data set of the Correlates of War project
(Maoz, Johnson, Kaplan, Ogunkoya, & Shreve, 2018). The focus parameter of
the analysis will be the probability of escalation from minor conflict to war.
We will be particularly interested in assessing the effect of democracy on this
escalation probability.

1.1 Markov Chains

Markov chain models are a natural choice when it comes to the modeling of
conflict dynamics. Current conflict probabilities may be dependent on past
conflict levels and we should allow for such dependency on the past in our
models.

Recall that a Markov Chain is a stochastic process where the probability
distribution of the current event depends on the states of past events. Consider
a time series {yt} for t = 0, 1, . . . n. Define K different categories such that yt
may take values 1, . . . ,K. A categorical time series is a p’th order finite Markov
Chain if it is the case that

P (yt = j|yt−1, . . . , y0) = P (yt = j|yt−1, . . . , yt−p), j = 1, . . .K,

with initial probabilities

P (y0 = j), k = 1, . . .K.

Thus in a p’th order Markov chain the probability distribution of yt is conditioned
on the p past values yt−1, . . . , yt−p.

For regression models of higher order Markov chains, the number of parame-
ters quickly becomes immense. We therefore restrict ourselves to Markov chains
of the first order in this thesis. For such first-order Markov chains, we denote
the transition probabilities

πkj = P (yt = j|yt−1 = k), k, j = 1, . . .K.
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We denote the K ×K transition probability

P(t) =


π11(t) π12(t) · · · π1K(t)

π21(t) . . . ...
... . . . ...

πK1(t) · · · · · · πKK(t)

 .

The probability of the chain being in state k at time t and then in state j at
time t + s we denote P (s)

kj (t). This probability is the (k, j)’th element of the
forward matrix, which for s = 0 is P (0)(t) = I. For s ≥ 1 it is

P(s)(t) = P(t+ 1)P(t+ 2) · · ·P(t+ s).

Now, a Markov chain may either be homogeneous or inhomogeneous. A
Markov chain is homogeneous if the probability of going from one state to
another state is independent of the time t at which the transition takes place. In
this case P(t) = P for all t. The constancy of the transition matrix ensures that
the limiting behavior of the homogeneous Markov chain has a clean mathematical
formulation. Due to this desirable property, homogeneous Markov chains are
extensively studied. See for example Karlin and Taylor (1975), Meyn and
Tweedie (1993).

The inhomogeneous Markov chain is a much more complicated creature. In
this class of Markov chains the transition probabilities change with t so that the
transition matrix P(t) is not constant. The changing nature of the transition
matrix may result in very complicated limiting behavior of inhomogeneous
Markov chains, if such a limiting behavior exists at all. Early students of
inhomogeneous Markov chains are Dobrushin (1956), Sarymsakov (1953) and
Hajnal (1956, 1958). For a summary of fundamental concepts see Seneta (2014).

Homogeneous and inhomogeneous Markov chains need to be ergodi to have a
limiting behavior. According to Hajnal (1958) a Markov chain is weakly ergodic
if there for each t exists a K × 1 vector function π(t) = (π1(t), . . . , πK(t))t of
limiting probabilities. This is equivalent to saying that

lim
s→∞

∣∣∣∣P (s)
kj (t)− πj(t)

∣∣∣∣ = 0.

When the number of transitions goes to infinity, the probability of a weakly
ergodic Markov chain ending in state j will be independent of the state k where
it started. In other words, the chain has forgotten where it started. The
chain has not completely forgotten its past, however, as it still remembers the
probability operators associated with t.

A complete loss of memory the chain has only if it is strongly ergodic. For
strongly ergodic Markov chains there exists a K × 1 vector π = (π1, . . . , πK)t of
limiting probabilities which is independent of t. This is equivalent to saying
that
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lim
s→∞

∣∣∣∣P (s)
kj (t)− πj

∣∣∣∣ = 0.

We see that a strongly ergodic chain has completely forgotten its past as the
long term behavior of the chain is the same at each time t.

To be able to demonstrate the asymptotic behavior of Markov chain models
under misspecification, a first task will be to show that the models under study
fulfill the conditions of strong ergodicity.

1.2 Regression Models for Markov Chains

Regression models for Markov chains have their applications in all fields where
dynamic systems are studied. Examples are as diverse as medicine, genetics,
engineering, economics and meteorology, in addition of course to the study of
international relations.

Parametric Markov chain models may be elegantly expressed in the frame-
work of generalized linear models. In this framework, the transition probabilities
πkj(t) are modeled as a function of a covariate vector xt and a parameter vector
β such that

πkj(t, β) = h(xt
tβ), k, j = 0, . . . ,K,

where h(·) is an appropriate link function. In the cases where the covariate
vector x is constant with t, the resulting Markov chain will be homogeneous. In
the cases where the covariate vector x varies with t, the resulting Markov chain
will be inhomogeneous.

The Markov model used by Hegre et al. (2013) to study of civil war is on
this elegant form of generalized linear models. These authors use a multinomial
Markov model with logit link. Statistical theory for this model is developed
in Kaufmann (1987), Fahrmeir and Kaufmann (1987), and more recently in
Fokianos and Kedem (1998, 2003) and Kedem and Fokianos (2002). Letting the
number of states be K = 3, defining level 2 as a baseline category and letting
β = (βt

0, β
t
1)t be the total parameter vector, the transition probabilities may be

expressed as

πtj(β) = exp(zt
tβj)

1 + exp(zt
tβ0) + exp(zt

tβ1) . (1.1)

Here zt is a vector that may consist of elements from a vector of covariates
xt, but also elements from the vector of interaction with past values xtyt−1,k,
where k = 0, 1, 2.

Other versions of multinomial Markov chain models may be found by
choosing different link functions than the logit function. Przeworski, Alvarez,
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Cheibub, and Limongi (2000) for example, suggest using a multinomial Markov
model with probit link to analyze the relationship between development and
democracy. Kedem and Fokianos (2002) present an overview of common link
functions that may be used within the framework. Brillinger (1996) considers
the case for ordinal data.

There are also regression models for inhomogeneous Markov chains other
than the multinomial models. In the case of survival data a non-parametric
model is suggested by Aalen and Johansen (1978). A healthy variety of para-
metric Hazards Models is presented in Martinussen and Scheike (2006). Other
examples of parameteric regression models for Markov chains are Mixture Tran-
sition Distribution models proposed in Berchtold and Raftery (2002) and Time
transformed Markov models proposed in Hubbard, Inoue, and Fann (2008).
Brillinger, Morettin, Irizarry, and Chiann (2000) devevlop a Wavelet-based
approach.

In this thesis we restrict ourselves to the multinomial regression model with
logit link. Generalizations should be possible to reach.

1.3 Statistical Inference for Markov Chain Models

We will fit the dynamic multinomial logit model with maximum likelihood
estimation. Given data yobs, a model may be constructed which has joint
distribution fjoint(y|θ), where θ is the model parameter to be estimated. The
maximum likelihood estimate θ̂ of this constructed parametric model is the
parameter value that maximizes the likelihood

L(θ|yobs) = f(yobs|θ).

This means that θ̂ is the point in the parameter space at which the observed
sample is the most likely. The invariance property of the maximum likelihood
estimator ensures that for any function τ(θ), the maximum likelihood estimate
of τ(θ) is τ(θ̂). See Casella and Berger (2002, pp. 320–1)

In the case of independent and identically distributed data, the maximum
likelihood estimator θ̂ is consistent under mild regularity conditions. Consistency
here means that when the number of observations n grows, the maximum
likelihood estimator converges almost surely to the true parameter value θtrue.
This we may write as

θ̂
a.s.→ θtrue.

Further, under the same mild regularity conditions, it is the case that

√
n(θ̂ − θ)→p N

(
0, J−1

)
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where J is the Fisher information matrix of the model. See Casella and Berger
(2002, Section 10.1). This crucial result implies that maximum likelihood
estimates are approximately normally distributed about the true value when
the sample size n is large.

Outside the assumptions of i.i.d. data, things are somewhat more compli-
cated. Billingsley (1961a, 1961b) and Basawa and Prakasa Rao (1980) show
that maximum likelihood estimation is applicable also to data from homoge-
neous Markov chains. Via Martingale arguments they show that asymptotic
consistency and normality is the case also in the situation of homogeneous
Markov chains.

Dobrushin (1956) develops a central limit theorem for inhomogeneous Markov
chains. This theorem is proven with Martingale arguments by Sethuraman
and Varadhan (2005). Kaufmann (1987) and Fahrmeir and Kaufmann (1987)
show that maximum likelihood estimation is applicable to the inhomogeneous
Markov Chain Model (1.1) under the condition of ergodicity.

All this is for the situation where the constructed parametric model is
correctly specified. The data-generating mechanism may however be different
from the parametric model chosen to analyze the data. In this case we have to
take model misspecification into consideration.

For i.i.d. data, White (1982) shows that the maximum likelihood estimators
θ̂ will be consistent and normally distributed asymptotically also under model
misspecification. The maximum likelihood estimator θ̂ now converges, not
to the true parameter value, but to the least false parameter value θ0 that
minimizes the Kullback-Leibler distance from the parametric model to the true
data-generating mechanism. This we may write as

θ̂
a.s.→ θ0.

For a misspecified model it is also the case that

√
n(θ̂ − θ0)→p N

(
0, J−1KJ−1

)
,

where the matrix K is the variance of the random score function. In the case
of correctly specified models K = J , but this is not the case when models are
misspecified. Thus the variance matrix will be a ‘sandwich’ matrix J−1KJ−1.
See also Claeskens and Hjort (2008b, Chapter 2).

The Focused Information Criterion is based on the asymptotic properties of
maximum likelihood estimators under misspecification. An important part of
this thesis will therefore be to show that the maximum likelihood estimator β̂
of dynamic multinomial logit models for Markov chains will be consistent and
normally distributed asymptotically also under model misspecification.
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1.4 The Focused Information Criterion

The main objective of this thesis is to develop a Focused Information Criterion
for dynamic multinomial logit models. The FIC is an information criterion
different in its essence from the well known and widely used criteria AIC, BIC
and DIC. Whereas the latter criteria aim at selecting the model closest to the
true data-generating mechanism, the FIC aims at selecting the model with the
most precise estimator of a focus parameter. The AIC and its relatives work
in an ‘overall’ modus, they are off the shelf methods prêt-à-porter. The FIC
takes on board the intended use of the models, it is a criterion tailored to the
modeling purpose, it is haute couture.

Which criterion to use depends on the goal of the selection procedure. If the
objective of model selection mainly is to understand the true data-generating
mechanism, the AIC, BIC and the DIC are proper choices of selection strategies.
These criteria are based on the likelihood `(n)(β) of the fitted models. As such
they are blessed with simple formulas that remain the same across all likelihood
based models. The formula for the AIC is for example AIC = 2`(n)(β̂)− 2p ,
where p is the number of parameters in the fitted model. The simplicity and
uniformity of these criteria contribute surely to their popularity and wide-spread
use.

The FIC is not based directly on the likelihood of the fitted models. Rather,
it is based on the estimated mean squared error of the maximum likelihood
estimator µ̂ of the focus parameter.

The mean squared error of µ̂ is given by

mse(µ̂) = Var µ̂+ (E µ̂− µ)2.

The second term is here the bias of µ̂. If a fitted model is far from the true data-
generating mechanism, this bias will typically (but not always) be considerable.
Still, if the model is simple it may render very little variance in estimates,
which will result in a low value of the mean squared error of µ̂, despite the bias.
On the other hand, a model close to the true data-generating mechanism will
typically have estimators µ̂ that are close to unbiased. But the model may be
so complex that it has high variance of µ̂. The resulting mean squared error of
µ̂ may be considerable, although the model involves no bias. So even though
models far from the true data-generating mechanism may be biased, they may
still be the models giving the most precise estimates of the focus parameter µ.
The FIC aims at selecting the model which strikes the best balance between
bias and variance.

The fic score is defined as

fic = m̂se(µ̂) = V̂ar µ̂+ b̂sq.

The model with the lowest fic score is the model estimated to give the most
precise estimates of µ and is thus the model selected by the FIC.
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To calculate the estimated mean squared error, a true model need to be
presumed. This should be a rather complex model, a model that includes
all effects of possible explanatory value to the response variable. In the FIC
literature, the model chosen to be the true model is called the wide model. We
follow this usage in this thesis. Models fitted to the data that are different from
the wide model are called candidate models. These models will be misspecified
under the true wide model. The m̂se µ̂ of candidate models is then calculated
based on the large-sample approximations of the maximum likelihood estimators
under this mispecification.

The FIC comes in two versions. The difference between the two resides in
how the misspecification context is defined. See, e.g., Claeskens, Cunen, and
Hjort (2019) for an presentation of both versions.

The first version, originally developed in N. L. Hjort and Claeskens (2003)
and Claeskens and Hjort (2008b), takes place in a local misspecification context.
In this context the wide model is considered to be only O(n− 1

2 ) away from a
narrow model. Thus, the wide model will change with sample size, coming
closer and closer to the narrow model. Candidate models are supposed to lie
between the narrow and the wide models.

The virtue of this original approach is that it results in clean mathematical
formulas for the fic values. On the other hand, it may place too heavy restrictions
on the class of potential candidate models. Candidate models need to be
submodels of the wide model, and for some model classes, this may exclude
many interesting cases. Nevertheless, this original FIC scheme has been applied
with success to a wide range of model types. It has for example been developed
for generalized linear models by Claeskens and Hjort (2008a), Cox regression
models by N. Hjort and Claeskens (2006) and generalized additive linear models
by Zhang and Liang (2011).

Recently a second, more flexible Information Criterion has been developed.
In this FIC scheme, a fixed model is considered to be the true, wide model.
Jullum and Hjort (2017) have developed such a version for i.i.d data where the
empirical distribution plays the role of the fixed true model. Ko, Hjort, and
Hobæk Haff (2019) use a fixed model approach in the development of FIC for
copulae models. Cunen, Walløe, and Hjort (2019) have developed a FIC with a
fixed true model for Linear Mixed Models.

The virtue of this second type of FIC with a fixed wide model is that
candidate models may be at any distance from the wide model. The possible
disadvantage is that expressions may get very complicated, as we will see.

According to Cunen, Walløe, and Hjort (2019) and Claeskens et al. (2019)
the misspecification of candidate models under the fixed wide model, should lead
to the approximate joint normal distribution of maximum likelihood estimates
on the form

( √
n(θ̂ − θtrue)√

n(θ̂M − θM,0,n)

)
≈d N

(
0,
(

J−1
n J−1

n CM,nJ
−1
M,n

J−1
M,nCM,nJ

−1
n J−1

M,nKM,nJ
−1
M,n

))
. (1.2)
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Here θ̂ is the ML estimator of the wide model, θ̂M is the ML estimator of the
misspecified candidate model, whereas θM,n,0 is the least false parameter value
of the candidate model. The matrices Jn, JM,n, CM,n and KM,n are appropriate
information matrices and variance matrices of random score functions.

The central point in the second FIC scheme, is that this approximate joint
distribution of maximum liklihood estimates, via delta arguments leads to the
following approximate joint distribution of maximum likelihood estimates of
focus parameters µ̂ of the wide model and µ̂M of the candidate model. This
approximate joint distribution will be on the form:

( √
n(µ̂− µtrue)√

n(µ̂M − µM,0,n)

)
≈d N

(
0,
(
νwide νM,c

νM,c νM

))
. (1.3)

where µM,n,0 is the least false focus parameter value and νwide and νM the
appropriate variances, and νM,c the appropriate covariance. This approximate
joint distribution of the focus parameter estimates enables estimation of mseµ̂
of the wide model as well as mseµ̂M of misspecified candidate models.

The Focused Information Criterion we develop in this thesis for dynamic
multinomial logit models will be a FIC with a fixed true model. This means
that we need to show that (1.2) and (1.3) hold also for misspecified dynamic
multinomial logit models. This will be no trivial undertaking. As a guide
through the wilderness, we will rely heavily on the proceedings in Cunen,
Walløe, and Hjort (2019).

1.5 Outline

The rest of the thesis is organized as follows:

Chapter 2 In this chapter, I describe the model setup of the thesis in detail.
Data are considered to be independent inhomogeneous Markov Chains
of order one. I describe how the dynamic multinomial logit model can
be used to model the transition matrices of such inhomogeneous Markov
Chains. I find expressions for log-likelihood, score function and Fisher
information Matrix of the dynamic multinomial logit model. I need to take
a somewhat different approach than Fokiamos and Kedem, Kaufmann and
Fahrmeir as the model must allow for misspecification. In this chapter, I
also state regularity assumptions that need to be in place for the large
sample theory under misspecification to go through.

Chapter 3 In this chapter, I work out the large sample theory for the dy-
namic multinomial logit model described in Chapter 2. This I do both
for correctly specified models and for misspecified models under a true
dynamic multinomial model. I show that maximum likelihood estimators
are consistent in that they tend to the least false parameter value and
I show that maximum likelihood estimates are approximately normally
distributed about this least false parameter.
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Chapter 4 In this chapter, I develop the Focused Information Criterion for the
dynamic multinomial Markov model. I show that the formula (1.3) holds
also in the case of this Markov model. I suggest an estimation strategy,
as the matrices involved are rather complicated.

Chapter 5 In this chapter, I illustrate the developed theory by simulation stud-
ies. I verify that maximum likelihood estimates are normally distributed
about the least false parameter value. I also show that the FIC procedure
succeeds in selecting the model with the lowest true mean squared error
in the estimator of the focus parameters.

Chapter 6 In this chapter, I analyze the MID data set. The focus parameter
of the analysis is the probability of conflict escalation. I do focused model
selection with two mathematical interpretations of this focus parameter.
We will see that the preferred model predicts a decline in escalation
probabilities with increasing democracy levels. The decline is however not
significant.

Chapter 7 In this chapter, I summarize the achivements of this thesis. I point
also to some additional topics that deserve to be further investigated.

Appendix A Proofs and expressions too comprehensive to be included in the
text are given in the appendix.
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CHAPTER 2

Dynamic Multinomial Models

Multinomial regression models are well-known tools in the statistician’s toolbox.
Particularly favored are multinomial models with a baseline category. These
models are elegantly formulated in the framework of generalized linear models.
See Agresti (2013, 2015) for an introduction. Such multinomial regression
models with logit link may also be used to analyze inhomogeneous Markov
chains. A GLM inspired class of dynamic multinomial regression models are
developed by Fahrmeir and Kaufmann (1987), Kaufmann (1987), Fokianos and
Kedem (1998, 2003) and Kedem and Fokianos (2002).

The dynamic multinomial regression model developed by these authors is
a false start for the objective of developing a Focused Information Criterion,
however. The FIC calls for the asymptotic distribution of ML estimates under
misspecification. Derivation of asymptotic distributions under misspecification
will be challenging in the setup of Kaufmann, Fahrmeir, Kedem and Fokianos.
These authors allow past responses to be treated as covariates. A sensible thing
to do when the model is correctly specified. Under misspecification, however,
the correlation between all responses in the chain needs to be accounted for.
That will be difficult in the scheme of autoregressive multinomial logit models.

In this chapter, I define a dynamic multinomial logit model in the framework
of generalized linear models, as do Kaufmann, Fahrmeir, Kedem and Fokianos. I
take a slightly different approach when it comes to the treatment of past values,
however.

In Section 2.1 I describe the general setup of inhomogeneous Markov chains.
In section Section 2.2 I define the dynamic multinomial logit model that allows
for large sample asymptotics under misspecification. In Section 2.3 I describe
the likelihood function, the score vector function and the Fisher Information
Matrix of the defined dynamic multinomial logit model. I also state regularity
conditions on the covariate distribution that will ensure ergodicity of the Markov
chain. In Section 2.4 I show that under these assumptions on the covariate
distribution, the dynamic multinomial logit model indeed is strongly ergodic,
even though it still constitutes an inhomogeneous Markov chain.
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2. Dynamic Multinomial Models

2.1 Setup

Consider Markov chains of order one and of length n+1 such that t = 0, 1, . . . , n.
Let there be m independent chains and let {yi,t} represent the i’th Markov
Chain, where i = 1, . . .m.

Let the Markov chains have K = 3 categories. Denote each categorical level
by j = 0, 1, 2. The particular observations yi,t may then be expressed as a 3× 1
vector yi,t = (yi,t,0, yi,t,1, yi,t,2)t. The elements of this vector are

yi,t,j =
{

1 if chain is in state j at time t,
0 else.

The categorical levels j = 0, 1, 2 of the chain are then represented by

yi,t = (1, 0, 0)t,

yi,t = (0, 1, 0)t,

yi,t = ((0, 0, 1)t,

respectively.
Markov chains {yi,t} are allowed to be in one and only one conflict level at

each time t. We therefore have that

2∑
j=0

yi,t,j = 1.

For each Markov chain {yi,t}, let there be a time series of covariates {xi,t}.
Assume that there are p different explanatory variables, such that each element
of xi,t will be a p× 1 vector (xi,t,1, . . . xi,t,p)t. The first element in this vector
may be an intercept such that xi,t,1 = 1. The remaining variables may either
be quantitative or qualitative.

Assume now that the transition probabilities of the Markov chains {yi,t}
depend on xi,t. Let πkj(xi,t) denote the transition probability from state k
at time t − 1 to state j at time t. For k = 0, 1, 2 and j = 0, 1 the transition
probability is then

πk,j(xi,t) = P (yi,t,j = 1 | yi,t−1,k = 1, xi,t).

The transition matrix of the chain is

P(xi,t) =

π0,0(xi,t) π0,1(xi,t) π0,2(xi,t)
π1,0(xi,t) π1,1(xi,t) π1,2(xi,t)
π2,0(xi,t) π2,1(xi,t) π2,2(xi,t)

 .
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2.2. The Dynamic Multinomial Logit Model

Each row in this matrix sum to one such that

2∑
j=0

πk,j(xi,t) = 1 k = 0, 1, 2.

As covariate values xi,t may change with time, P(xi,t) varies with t and the
resulting Markov chain is inhomogeneous.

2.2 The Dynamic Multinomial Logit Model

The multinomial regression model for inhomogeneous Markov chains developed
in Fahrmeir and Kaufmann (1987), Kaufmann (1987) and Kedem and Fokianos
(2002) is elegantly framed in the scheme of generalized linear models. With logit
link this class of models is expressed as

πtj(β) =
exp(zt

i,tβj)
1 + exp(zt

i,tβ0) + exp(zt
i,tβ1) , (2.1)

Here πtj(β) denotes the probability of yt,j = 1. The vector zi,t is a vector that
may include elements from covariate vector xi,t, but also elements from the
vector of interactions with past levels of observation xi,tyi,t−1 (See Kedem and
Fokianos (2002, p. 93).

A particular advantage of this autoregressive Markov chain model is its
potential sparsity. Typically, Markov chain models will be rather baroque.
Markov chain models typically need a high number of parameters to incorporate
the dependency of past observation level yi,t−1. For a first-order Markov chain
model, there will typically be a set of parameters βk for each past observation
level k.

The autoregressive multinomial model (2.1) allows for a drastic reduction in
the number of model parameters. In this model, not all effects of covariates need
to incorporate the Markov assumption. Covariates xi,t which are represented
in the vector zi,t without interaction xi,tyi,t−1 elements have effects that do
not change with past observation levels yi,t−1. We call these effects Markov
independent effects.

Covariates xi,t which are represented in zi,t with interaction element xi,tyi,t−1
do have effects which are dependent on past observation level yi,t−1. We call
these effects Markov dependent effects. Thus the resulting dynamic multinomial
logit model (2.1) may include both Markov dependent effects and Markov
independent effects.

This implies that the class of models on the form of (2.1) is comprehensive.
The widest models in the class are the models with full Markov dependency
in all effects. The most parsimonious models in the class are the models with
no Markov dependency in any effects. This is in fact the standard multinomial
model. Between those two extremes, there is a huge subclass of intermediate
models with a mixture of Markov dependent and Markov independent effects.
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2. Dynamic Multinomial Models

As a consequence of this, the model class renders particular flexibility in
the modeling process. We are not constrained by any Markov assumption. If
the Markov dependency is wrong, or if it is fully explained by the covariates,
the simple multinomial model may be chosen as the best model, although the
Markov assumption was fully reasonable a priori.

To develop a FIC for dynamic multinomial logit models, we need to take
a slightly different approach than Kedem, Fokianos, Kaufmann and Fahrmeir.
We need a model setup that allows for model misspecification. As mentioned in
the introduction to this chapter, this will be difficult when past observations are
allowed to be treated as covariates. But we would like our approach to render
the same flexibility as the model (2.1) defined by these authors. Our class of
dynamic multinomial models should also include all models from the widest
models with Markov dependency in all effects to the narrowes multinomial
model with no Markov dependency in any effects.

We approach the issue by first fitting a separate multinomial model to each
line in the transition matrix P(x) of the chain. Conditioned on past conflict
level yi,t−1,k and covariate values xi,t, the stochastic variable yi,t has then
a multinomial distribution with one trial. This conditional distribution may
consequently be expressed as

f(yi,t|xi,t, yi,t−1,k = 1) =
2∏
j=0

πk,j(xi,t)yi,t,jyi,t−1,k ,

where 0 < πkj(xt) < 1 and k = 0, 1, 2.
As there is three levels of past states, the total dynamic model of the time

series will be the composite model

f(yi,t|xi,t, yi,t−1) =
2∏
k=0

2∏
j=0

πk,j(xi,t)yi,t,jyi,t−1,k .

The conditional covariance of yi,t,j in this total dynamic model is

Cov
{(

yi,t,j

∣∣∣∣xi,t, yi,t−1

)
,

(
yi,t,j′

∣∣∣∣xi,t, yi,t−1

)}
=
{
πk,j

(
xi,t
)
(δjj′ − πk,j′(xi,t)) if k = k′

0 if k 6= k′,

for k, k′, j, j′ = 0, 1, 2. Expressed as a block matrix, we may also write this
conditional covariance

16



2.2. The Dynamic Multinomial Logit Model

Cov
{(

yi,t

∣∣∣∣xi,t, yi,t−1,k = 1
)
,

(
yi,t

∣∣∣∣xi,t, yi,t−1,k′ = 1
)}

=

Λ1 0 0
0 Λ2 0
0 0 Λ3

 ,

where the blocks are

Λk =

πk,0(1− πk,0) −πk,0πk,1 −πk,0πk,2
−πk,0πk,1 πk,1(1− πk,1) −πk,1πk,2
−πk,0πk,2 −πk,1πk,2 πk,2(1− πk,2)


and the probability πk,0 is an abbreviation for πk,0(xi,t).

Now, as the first step towards a general dynamic model, we fit the probability
vectors πk(xt) of each previous level k = 0, 1, 2 with a baseline category logit
model. We define j = 2 to be the baseline category. For each previous level k
of yi,t−1 we then have that

log
(
πk,j(xi,t)
πk,2(xi,t)

)
= xti,tβk,j k = 0, 1, 2, j = 0, 1,

where βk,j = (βk,j,1, . . . , βk,j,p)t is a p× 1 dimensional vector of parameters.
We set the parameter vector of the baseline category j = 2 to zero for each

k and rewrite

πk,j(xi,t) =
exp(xti,tβk,j)

1 +
∑1
h=0 exp(xti,tβk,h)

k = 0, 1, 2, j = 0, 1. (2.2)

Since the Markov chain {yi,t} has three previous levels k = 0, 1, 2, the total
model of the chain will consist of three such baseline category logit models.
The total parameter β of this composite model will be a 3 · 2 · p × 1 vector
β = (βt

0, β
t
1, β

t
2)t where βk = (βt

k,0, β
t
k,1)t for k = 0, 1, 2.

This dynamic logit model includes now only models with full Markov depen-
dency in all effects. To allow for more parsimonious models, we will consider
some of the effects to be independent of past level k.

If the effect of the r’th covariate is independent of past level k, it is the
case that β0,j,r = β1,j,r = β2,j,r for j = 0, 1. Let q be the number of covariates
in the model with such Markov independent effects. We denote the subset
of the covariate vector xi,t which has Markov dependent effects by ui,t =
(ui,t,1, . . . ui,t,q)t. The Markov independent effects of ui,t will be a 2 q× 1 vector
γ = (γt

0, γ
t
1)t, where γj = (γj1, . . . , γjq)t.

For a dynamic multinomial model which takes p covariates into consideration,
there will then be w = p − q covariates with Markov dependent effects. We
denote these covariate by zi,t = (zi,t,1, . . . zi,t,w)t. The Markov dependent effects
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2. Dynamic Multinomial Models

of zi,t will be a 2 · 3w × 1-vector b = (bt
0, b

t
1, b

t
2)t, where bk = (bt

k0, b
t
k1) and

bkj = (bkj1, . . . , bkjw)t.
In this extended framework, we may express the total covariate vector as

the q + w × 1 vector

xi,t =
(
ui,t
zi,t

)
.

The total parameter vector β of both Markov dependent and Markov inde-
pendent effects is the 2q + 2 · 3w × 1 vector

β =


γ0
γ1
b0
b1
b2

 .

When we also take Models with Markov dependent effects into consideration,
the multinomial logit model of each row in the transition matrix becomes

log πk,j(xi,t)
πk,2(xi,t)

= uti,tγj + zti,tbk,j k = 0, 1, 2, j = 0, 1.

or equivalently

πk,j(xi,t) =
exp(uti,tγj + zti,tbk,j)

1 +
∑1
h=0 exp(uti,tγj + zti,tbk,j)

k = 0, 1, 2, j = 0, 1. (2.3)

This class of models is just as flexible as the model defined by Kedem,
Fokianos, Kaufmann and Fahrmeir. If ui,t = ∅ and zi,t = xi,t we have a model
with full Markov dependency in all effects. Conversely, if ui,t = xi,t and zi,t = ∅
we have the standard multinomial model. Between those extremes lies the huge
class of models with both Markov dependent and Markov independent effects.

Notice that it is not possible to fit each of the three multinomial submodels
separately. As the γ-parameters are common across past levels, all submodels
have to be fitted simultaneously.

2.3 Conditional Likelihood, Score Vector and Fisher
Information Matrix

We now turn to the question of inference for this dynamic multinomial logit
model. We derive analytical expressions for the log-likelihood, the score vector
and the Fisher information matrix.

We choose to condition the inference on responses yi,t only. We assume that
the time series of covariates {xi,t} are generated by an underlying unknown
covariate distribution. We denote the marginal distribution of each observation
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xi,t by C(x). The joint distribution of all m · n covariate vectors xtot we denote
Cjoint(xtot).

To ensure nice behavior of the covariates, we assume the underlying distri-
bution C(x) implies that covariate vectors x almost surely lie in a non-random
compact subset Γ ⊂ Rp. We also assume that the marginal covariate distribu-
tion C(x) is such that for every continuous and bounded function f on Γ it is
the case that

∑n
t=1 f(xt)
n

→p

∫
f(x)dC(x).

It should also be that case that for any x in Γ it is the case that xxt is positive
definite.

These assumptions would have been sufficient to give asymptotic theory
for correctly specified models. They correspond to the assumptions made by
Kaufmann (1987) and Kedem and Fokianos (2002). We are however to develop
large sample asymptotics also for misspecified models. For this to be possible
we need also the assumption that for each finite N ∈ N and each N p× 1 vector
xN = ((x(1))t, . . . , (x(N))t) consisting of N covariate vectors, it is the case that
the joint distribution Cjoint,N (xN ) of xN is such that for each bounded function
f on Γ× . . .× Γ it follows that

∑n
t=N f(xi,t, . . . xi,t−N )

n−N
→p

∫
Rp×···×p

f(xN )dCjoint,N (xN ).

This stronger assumption will allow us to find non-stochastic limits of covariance
matrices under misspecification.

Now, with this assumption of an unknown, well-behaving covariate distribu-
tion, the joint distribution of all response variables ytot and covariate values
xtot may be expressed as

f(ytot, xtot) = f(ytot|xtot)Cjoint(xtot).

We base inference on the likelihood conditioned on the given covariate values
xtot. This conditional likelihood is given by

L(β|xtot) = f(yi,0|xtot)
m∏
i=1

f(yi,n, . . . , yi,1|xtot).

Under the regularity assumptions on the covariate distribution, the loss
of information by maximizing the conditional likelihood goes asymptotically
to zero in probability. See also Kaufmann (1987) for this point. In addition,
the logarithm of f(yi,0|xtot) will be small in comparison to the logarithm of
the subsequent joint distribution f(yi,1, . . . , yi,n|xtot) when the number n of
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2. Dynamic Multinomial Models

observation in every independent chain grows. We choose therefore to ignore
the first observations yi,0 and base inference regarding β on the observations
1, . . . n only.

We then get the following expression for the total conditional likelihood of
m chains, each with n observations :

L(β|xtot) =
m∏
i

f(yi,n, . . . , yi,1|xi)

=
m∏
i=1

n∏
t=1

f(yi,t|yi,t−1, xi,t)

=
m∏
i=1

n∏
t=1

2∏
k=0

2∏
j=0

πk,j(xi,t)yi,t,jyi,t−1,k .

Taking logarithms, and inserting (2.3) for πk,j(xi,t) we get the conditional
log-likelihood

`(m,n)(β) =
m∑
i=1

n∑
t=1

`
(m,n)
i,t (β)

=
m∑
i=1

n∑
t=1

2∑
k=0

{( 2∑
j=0

yi,t,j log πk,j(xi,t)
)
yi,t−1,k

}

=
m∑
i=1

n∑
t=1

2∑
k=0

{( 1∑
j=0

yi,t,j log
( exp(ut

i,tγj + zt
i,tbk,j)

1 +
∑1
h=0 exp(ut

i,tγh + zt
i,tbk,h)

)

− yi,t,2 log
(

1
1 +

∑1
h=0 exp(ut

i,tγh + zt
i,tbk,h)

))
yi,t−1,k

}

=
m∑
i=1

n∑
t=1

2∑
k=0

{( 1∑
j=0

(
ut
i,tγj + zt

i,tbk,j
)
yi,t,j

− log
(

1 +
1∑

h=0
exp(ut

i,tγh + zt
i,tbk,h)

))
yi,t−1,k

}
.

Strictly speaking, we should be writing `(m,n)(β|xtot) for the log-likelihood.
For readability we will nevertheless write `(m,n)(β) in the rest of the thesis.
The reader should keep in mind that we are talking about the conditional
log-likelihood.

The conditional score vector of the model is the (2 q + 6w)× 1- vector
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∂`(m,n)(β)
∂β

=
(
∂`(m,n)(β)

∂γ
∂`(m,n)(β)

∂b

)
.

The first element ∂`(m,n)(β)/∂γ is here a 2 · q × 1-vector. For each j = 0, 1 and
each r = 1, . . . , q the elements in this vector are given by

∂`(m,n)(β)
∂γj,r

=
m∑
i=1

n∑
t=1

2∑
k=0

{(
∂

∂γj,r

1∑
j=0

(
ut
i,tγj + zt

i,tbk,j
)
yi,t,j

− ∂

∂γj,r
log
(

1 +
1∑

h=0
exp(ut

i,tγh + zt
i,tbk,h)

))
yi,t−1,k

}

=
m∑
i=1

n∑
t=1

2∑
k=0

{(
yi,t,jui,t,r

−
ui,t,r exp(ut

i,tγj + zt
i,tbk,j)

1 +
∑1
h=0 exp(ut

i,tγh + zt
i,tbk,h)

)
yi,t−1,k

}

=
m∑
i=1

n∑
t=1

2∑
k=0

{(
yi,t,j − πk,j(xi,t)

)
ui,t,ryi,t−1,k

}
.

Similarly ∂`(m,n)(β)/∂b is a 2 · 3w× 1 vector where for each j = 0, 1, k = 0, 1, 2
and r = 1, . . . , w the elements are

∂`(m,n)(β)
∂bk,j,r

=
m∑
t=1

n∑
i=1

{(
yi,t,j − πk,j(xi,t)

)
zi,t,ryi,t−1,k

}
The defined dynamic multinomial logit model (2.3) consists of three sub-

models on the same form as the standard multinomial logit model. We know
that the log-likelihood of the standard multinomial logit model is a concave
function, see Agresti (2015, p. 206). As the log-likelihood of (2.3) consists of
the same functions as the log-likelihood of the standard multinomial function,
the log-likelihood `(m,n)(β) will be a concave function too. This implies that
`(m,n)(β) has a unique maximum.

The Hessian of the log-likelihood is given by the (2 q + 6w) × (2 q + 6w)
matrix

H(β) = ∇2`(m,n)(β) =
(
∂2`(m,n)(β)
∂γ∂γt

∂2`(m,n)(β)
∂γ∂bt

∂2`(m,n)(β)
∂ b∂γt

∂2`(m,n)(β)
∂b∂bt

)
.

The blocks in this matrix are found by partial derivation of the score vectors.
For all cases below i, i′ = 1, . . .m, k, k′ = 0, 1, 2, j, j′ = 0, 1, r, r′ = 1, . . . q and
s, s′ = 1, . . . w . The upper left 2 q × 2 q matrix has elements
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∂2`(m,n)(β)
∂γj,r∂γj,r′

= −
m∑
i=1

n∑
t=1

2∑
k=0

{
ui,t,rui,t,r′πk,j(xi,t)

(
δj,j′ − πk,j′(xi,t)

)
yi,t−1,k

}
,

the lower right 6w × 6w-matrix ∂2`(β)/∂b∂b′ has elements

∂2`(m,n)(β)
∂bk,j,sbk′,j′,s′

= −
m∑
i=1

n∑
t=1

{
zi,t,szi,t,s′πk,j(xi,t)

(
δj,j′ − πk,j′(xi,t)

)
yi,t−1,k

}
,

if k = k′, zero else.
The two remaining 2q × 6w-matrices are the transposed of each other and

has elements

∂2`(m,n)(β)
∂γj,r∂βk,j′,s′

= −
m∑
t=1

n∑
i=1

{
ui,t,rzi,t,s′πk,j(xi,t)

(
δj,j′ − πk,j′(xi,t)

)
yi,t−1,k

}
.

The Fisher information matrix is the negative mean of the Hessian matrix.
Thus the Fisher information matrix per observation conditioned on the covariates
is

Jm·n = − 1
m · n

E H(β),

which is a block matrix

Jm·n = 1
m · n


Jγ Jγb0 Jγb1 Jγb2

Jb0γ Jb0 0 0
Jb1γ 0 Jb1 0
Jb2γ 0 0 Jb2

 ,

where

Jγ =
m∑
t=1

n∑
i=1

2∑
k=0

(
ui,tu

t
i,tπk,0(1− πk,0) −ui,tut

i,tπk,0πk,1
−ui,tut

i,tπk,0πk,1 ui,tu
t
i,tπk,0(1− πk,0)

)
E yi,t−1,k,

Jbk =
m∑
t=1

n∑
i=1

(
zi,tz

t
i,tπk,0(1− πk,0) −zi,tzt

i,tπk,0πk,1
−zi,tzt

i,tπk,0πk,1 zi,tz
t
i,tπk,0(1− πk,0)

)
E yi,t−1,k,

and

Jγbk =
m∑
t=1

n∑
i=1

(
ui,tz

t
i,tπk,0(1− πk,0) −ui,tzt

i,tπk,0πk,1
−ui,tzt

i,tπk,0πk,1 ui,tz
t
i,tπk,0(1− πk,0)

)
E yi,t−1,k,
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where the probability πkj is an abbreviation for πkj(xt).
Notice that in the widest class of models with only Markov dependent effects,

the structure of the Fisher information matrix will simplify. It will then be
given by the block diagonal matrix

Jm·n = 1
m · n

Jb0 0 0
0 Jb1 0
0 0 Jb2 .


On the other side of the spectrum, the Fisher information matrix of the model
with only Markov independent effects, that is the standard multinomial model,
is simply Jm·n = Jγ .

2.4 Ergodicity

Under the regularity assumption of a decent covariate distribution made in
Section 2.3 the Markov chain {yi,t} generated by the dynamic multinomial logit
model with parameter value β will be a strongly ergodic Markov chain.

Recall from Section 1.1 that weak ergodicity means that in the limit the
state of a Markov chain {yi,t} is independent of the starting position of the
chain. For each j = 0, 1, 2 there exists a probability function πj(t) such that for
each k = 0, 1, 2 it is the case that

lim
s→∞

P
(s)
kj (t) = lim

s→∞
P

(s)
kj (xt+s, . . . xt+1)) = πj(t),

To show the weak ergodicity of {yi,t}, notice that the compactness of the
space of covariates Γ implies that there for each β exists a constant c for which
0 < c < 1. For every xi,t ∈ Γ, and every k, j = 0, 1, 2 it is then the case that

c < πk,j(xi,t) < 1− c.

This implies that the chain {yi,t} at any time t− 1 and regardless of the state
at t− 1 has a non-diminishing probability of making a transition to all other
states at time t.

In accordance with Dobrushin (1956) we define the ergodic coefficient of the
inhomogeneous Markov chain (See also Sethuraman and Varadhan (2005) on
this point). Given a covariate vector xi,t ∈ Γ let

κ(xi,t) = sup
k,j,j′

∣∣∣∣πk,j(xi,t)− πk,j′(xi,t)∣∣∣∣, k, j, j′ = 0, 1, 2.

We define the ergodic coefficient of the Markov chain {yi,t} to be
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κ = sup
xi,t∈Γ

κ(xi,t)

which exists due to the boundedness of Γ assumed in Section 2.3.

Lemma 2.4.1. Consider an inhomogeneous Markov chain {yi,t} with contraction
coefficient κ. For all k, k′, j, j′ = 0, 1, 2, for all s ≥ 0 and for all t > s it is the
case that

∣∣∣∣P (s)
kj (t)− P (s)

k′j (t)
∣∣∣∣ < κs.

Proof. We will prove the lemma inductively. The case for s = 0 is trivial and
the case for s = 1 is equivalent to the definition of the contraction coefficient.
Assume therefore that s > 1, and that the lemma holds for s − 1. Writing
P

(s)
kj = P

(s)
kj (t) and πkj = πkj(xt+s) for readability, we have for all given

covariates x0, x1, . . . , xt+s that

∣∣∣∣P (s)
kj − P

(s)
k′j

∣∣∣∣ =
∣∣∣∣π0jP

(s−1)
k0 + π1jP

(s−1)
k1 + π2jP

(s−1)
k2

− π0jP
(s−1)
k′0 − π1jP

(s−1)
k′1 − π2jP

(s−1)
k′2

∣∣∣∣
=
∣∣∣∣π0jP

(s−1)
k0 + π1jP

(s−1)
k1 + π2j(1− P (s−1)

k0 − P (s−1)
k1 )

− π0jP
(s−1)
k′0 − π1jP

(s−1)
k′1 − π2j(1− P (s−1)

k′0 − P (s−1)
k′1 )

∣∣∣∣
=
∣∣∣∣(π0j − π2j)P (s−1)

k0 + (π1j − π2j)P (s−1)
k1 + π2j

− (π0j − π2j)P (s−1)
k′0 − (π1j − π2j)P (s−1)

k′1 − π2j

∣∣∣∣
=
∣∣∣∣(π0j − π2j)(P (s−1)

k0 − P (s−1)
k′0 ) + (π1j − π2j)(P (s−1)

k1 − P (s−1)
k′1 )

∣∣∣∣
< κ

∣∣∣∣(P (s−1)
k0 − P (s−1)

k′0 ) + (P (s−1)
k1 − P (s−1)

k′1 )
∣∣∣∣

= κ

∣∣∣∣P (s−1)
k′2 − P (s−1)

k2

∣∣∣∣ < κκs−1 = κs,

which by induction proves the lemma. �

Now, we have that that 0 < κ < 1 − c. This implies that there for given
covariate values xi,0, xi,1, . . . , xi,t+s exists a function πj(t) such that

24



2.4. Ergodicity

πj(t) = lim
s→∞

P
(s)
kj (t) = lim

s→∞
P

(s)
k′j (t) k, k′ = 0, 1, 2,

which means that the inhomogeneous Markov chain {yi,t} conditioned on the
covariate values is a weakly ergodic Markov chain.

It follows immediately that the chain also is strongly ergodic. For any s > 0
and for k = 0, 1, 2 write

πj(0) = lim
t→∞

P tkj(0) =
2∑
r=0

P skr(0) lim
t→∞

P
(t−s)
rj (s) = πj(s)

2∑
r=0

P skr(0) = πj(s)

which implies that there exists a constant πj such that πj = πj(t) for all t ≥ 0.
This ergodic property of the inhomogeneous chain will be of importance in

the demonstrations of the large sample properties of the dynamic multinomial
logit model in the next chapter. The probability P (s)

kj (t)− P (s)
2j (t) will play an

important role in these demonstrations. We define therefore the variable

Φ(s)
kj (t) = P

(s)
kj (t)− P (s)

2j (t),

where k = 0, 1.
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CHAPTER 3

Large Sample Theory under
Misspecification

The Focused Information Criterion is based on the asymptotic mean squared
errors of focus parameter estimators. Hence, in this chapter I work out the
asymptotic properties of the dynamic multinomial logit models described in
Chapter 2. This I will do both for correctly specified models as well as for
misspecified models.

I assume that the true distribution of responses yt conditioned on covariates
xt and past observations yt−1, is a dynamic multinomial logit model with
only Markov dependent effects. That is, I assume that the true conditional
distribution of yt|yt−1 is on the form of (2.2). In concordance with Cunen,
Walløe, and Hjort (2019) I call this true model the wide model. Operators and
model parameters under this wide model are denoted with the subscript wide,
like this: βwide and Ewide . The true value of βwide is denoted βtrue.

Other dynamic multinomial logit models on the form of (2.3) are called
candidate models. These models are different from the true wide model and
will therefore involve misspecification. Parameters and covariates of these
misspecified models are denoted with a subscript M , like this: βM , xM,i,t and
πM (xM,i,t).

In Section 3.1 I show that maximum likelihood estimators are consistent when
data are Markov chains distributed according to the wide model. Consistency of
ML estimators is the case both for the correctly specified wide model as well as
for misspecified candidate models. In section Section 3.2 I define random score
vectors of the dynamic multinomial logit model (2.3) and I find expressions
for the covariance matrices of these random score vectors. I also show that
these covariance matrices have non-stochastic limits. In Section 3.3 I show
that the random score vectors of the wide model and the random score vector
of a candidate model have approximate joint normal distribution. This joint
normal distribution will allow me to find in Section 3.4 an expression for the
approximate joint distribution of the maximum likelihood estimators of the wide
model and the candidate model. In Section 3.5 I show that these results also
hold when data from multiple independent Markov chains are considered. In
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3. Large Sample Theory under Misspecification

Section 3.6 I show that standard procedures for testing and confidence intervals
are applicable to dynamic multinomial logit models on the form (2.3), even in
the case of model misspecification under the wide model.

To facilitate the discussion in this chapter, I restrict the discussion in
crefthreeone to Section 3.4 to the situation where we have observations from
only one Markov chain {yi,t}. In these sections I drop the subscript i. I denote
observations yi,t,j by yt,j and covariates xi,t by xt. After having established
large sample theory for data from one Markov chain, I consider the situation
with data from multiple independent chains again in Section 3.5.

3.1 Consistency of Maximum Likelihood Estimators

In this section I show that the maximum likelihood estimator β̂ of the correctly
specified wide model tends to the true parameter value βtrue. I also show that
the maximum likelihood estimator β̂M of any misspecified candidate model
under the wide model tends to the least false parameter value βM,0. This means
that maximum likelihood estimators of dynamic multinomial logit models are
consistent, both in case of a correctly specified wide model and in case of
misspecified models under the wide model.

To show this important large sample result, we first need to ensure that the
sum of correlations between the data in a Markov chain generated by the wide
model does not grow to infinity as the length n of the chain increases.

Define for any t ∈ N and k, j = 0, 1, 2 the functions f (t)
kj = fkj(xt),f∗(t)kj =

f∗kj(xt), g
(t)
kj = gkj(xt) and g∗(t)kj = gkj(xt). Let all these functions be uniformly

bounded. That is, for any t and k, j = 0, 1, 2 there exists an M > 0 such that

|f (t)
kj | < M, |g(t)

kj | < M,

|f∗(t)kj | < M, |g∗(t)kj | < M.

Define also composite functions

ψt,k,j = ψ(xt, yt, yt−1) =
(
f

(t)
kj ytj + g

(t)
kj

)
yt−1,k, (3.1)

ψ∗t,k,j = ψ∗(xt, yt, yt−1) =
(
f
∗(t)
kj ytj + g

∗(t)
kj

)
yt−1,k.

These functions will by the uniform boundedness of the functions f (t)
kj , f

∗(t)
kj , g

(t)
kj

and g∗(t)kj also be uniformly bounded.
The following theorem will be of central importance to the demonstrations

in this chapter:

Lemma 3.1.1. Let covariate vectors x0, x1, . . . , xt be generated by some unknown
covariate distribution C(x) in accordance with the assumptions in Section 2.3.
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3.1. Consistency of Maximum Likelihood Estimators

Given these covariate values, let {yi,t} be a Markov chain generated by the wide
model. Define functions ψt,k,j and ψ∗t,k,j as above. It is then the case for all
t > 0 that

lim
t→∞

t−1∑
s=0

Covwide

{
ψt,k,j , ψt−s,k′,j′

}
<∞.

The proof of this important lemma is given in Appendix A.1.
Express the conditional distribution of the true wide model by

fwide(yt | βtrue, x, yt−1),

and express the conditional distribution of a candidate model by

fM (yt | βM , x, yt−1).

The candidate model involves misspecification, it will therefore be at a
distance from the true wide model. Distance between parametric models may
be measured by the Kullback-Leibler distance (See Claeskens and Hjort (2008b)
for an introduction). Conditioned on covariate vector x ∈ Γ, the Kullback-
Leibler distance from the candidate model to the true wide model is

KLx
(
fwide(· | βtrue, x, ·), fM (·|βM , x, ·)

)
=

2∑
j=0

2∑
k=0

fwide(yt|βtrue, x, yt−1) log fwide(yt|βtrue, x, yt−1)
fM (yt|βM , x, yt−1)

= Ewide log fwide(yt|βtrue, x, yt−1)− Ewide log fM (yt|βM , x, yt−1).

The subscript x here denotes that the distance is conditioned on a covariate
value x.

An overall Kullback-Leibler distance may be obtained by integration over
the compact space Γ of covariates such that

KL
(
fwide(· | βtrue, ·), fM (·|βM , ·)

)
=
∫ 2∑

j=0

2∑
k=0

fwide(yt|βtrue, x, yt−1) log fwide(yt|βtrue, x, yt−1)
fM (yt|βM , x, yt−1) dC(x)

=
∫

Ewide log fwide(yt|βtrue, x, yt−1) dC(x)

−
∫

Ewide log fM (yt|βM , x, yt−1) dC(x). (3.2)

The least false parameter value βM,0 of the candidate model will be the value
of βM that minimizes the Kullback-Leibler distance to the true wide model.
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3. Large Sample Theory under Misspecification

As the true model parameter βtrue is fixed, close inspection of the expression
of the Kullback-Leibler distance reveals that this least false parameter value
will be the value of βM that maximizes the last term integral the expression
(3.2). Consequently, the least false parameter of candidate model M will be the
parameter value

βM,0 = argmax
βM

{∫
Ewide log fM (y|βM , x) dC(x)

}
. (3.3)

As the log-likelihood function of the dynamic multinomial logit model is concave
this least false parameter value will be unique.

In the following theorem we show that the maximum likelihood estimator
β̂M,n of the candidate model tends to the least false parameter value βM,0

Theorem 3.1.2. Let covariate vectors x0, x1, . . . , xt be generated by some un-
known covariate distribution C(x) in accordance with the assumptions in Sec-
tion 2.3. Given these covariate values, let {yi,t} be a Markov chain generated
by the wide model. Fit a candidate model M on the form of (2.3) to the data.
Denote the maximum likelihood estimate of this candidate model by β̂M . Let
βM,0 be the least false parameter value of the candidate model. It is then the
case that

β̂M,n →p βM,0,

Proof. The variance of the log-likelihood function conditioned on covariates
x0, x1, . . . , xn is given by

Varwide `
(n)(βM ) = Covwide

n∑
t=1

`
(n)
t (βM )

= 2
n∑
t=1

t−1∑
s=0

Covwide

{
`
(n)
t (βM ), `(n)

t−s(βM )
}

−
n∑
t=1

Varwide `
(n)
t (βM )

< 2
n∑
t=1

t−1∑
s=0

Covwide

{
`
(n)
t (βM ), `(n)

t−s(βM )
}
.

From Section 3.2 we have that

`
(n)
t (βM ) =

2∑
k=0

{( 1∑
j=0

yt,j
(
ut
tγj + zt

tbk,j
)

− log
(

1 +
1∑

h=0
exp
(
ut
tγh + zt

tbk,h
)))

yt−1,k

}
.
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3.1. Consistency of Maximum Likelihood Estimators

Each term in this function is on the form of the general function ψtkj defined
in Equation (3.1). Define

ψtk0 = yt,0(ut
tγ0 + zt

tbk,0)yt−1,k,

ψtk1 = yt,1(ut
tγ1 + zt

tbk,1)yt−1,k,

ψtk2 = − log
(

1 +
1∑

h=0
exp
(
ut
tγh + zt

tbk,h
))
yt−1,k,

and write

Covwide

{
`t(βM ), `t−s(βM )

}
=

2∑
r,r′=0

2∑
k,k′=0

Covwide

{
ψt,k,r, ψt−s,k′,r′

}
.

It follows from Lemma 3.1.1 that for all t > 0

t−1∑
s=0

Covwide

{
`
(n)
t (βM ), `(n)

t−s(βM )
}

=
2∑

r,r′=0

2∑
k,k′=0

t−1∑
s=0

Covwide

{
ψt,k,r, ψt−s,k′,r′

}
<∞.

As ψt,k,r is uniformly bounded, there exists then a constant G > 0 such that
for all t > 0 it is the case that

t−1∑
s=0

Covwide

{
`
(n)
t (βM ), `(n)

t−s(βM )
}
< G.

It follows then that

Varwide `
(n)(βM ) < 2

n∑
t=1

t−1∑
s=0

Covwide

{
`
(n)
t (βM ), `(n)

t−s(βM )
}
< 2nG.

Looking now at the variance of the likelihood per observation conditioned
on the covariates x0, x1, . . . , xn, it is easy to see that this goes to zero as the
number of observations n from the Markov chain grows:

Varwide

{
1
n
`(n)(βM )

}
= 1
n2 Varwide `

(n)(βM ) < 2G
n
→ 0.

This implies that we may write
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3. Large Sample Theory under Misspecification

1
n
`(n)(βM ) = 1

n
Ewide `

(n)(βM ) + op(1)

= 1
n

n∑
t=1

Ewide `
(n)
t (βM ) + op(1).

where op(1) here denotes a random term that converges to zero in probability.
Remembering that `(n)

t (βM ) is an abbreviation for `(n)
t (βM |xt), we get from

the regularity assumptions on the covariate distribution C(x) in Section 2.3
that

1
n

n∑
t=1

Ewide `
(n)
t (βM ) =

∫
Ewide log fM (yt|βM , xt−1) dC(x) + op(1)

which again implies that

1
n
`(n)(βM )→p

∫
Ewide log fM (yt|βM , x, yt−1) dC(x)

From Equation (3.3) we know that the least false parameter value βM,0 of
the candidate model is defined as the parameter value of βM that maximizes
this limit. Thus, the maximum likelihood estimator tends to the least false
parameter value βM,0, which is what we set out to prove. �

From Section 2.2 we know that the wide model is a special case of the
more general model (2.3). The result, therefore, holds also for the maximum
likelihood estimator β̂wide of the wide model. As the wide model is correctly
specified, the least false parameter of this model will be the true parameter
value βtrue. It follows then from Theorem 3.1.2 that

β̂wide→p βtrue.

The maximum likelihood estimator of the true wide model tend to the true
parameter value of the data-generating mechanism.

Thus maximum likelihood estimators of the dynamic multinomial logit
models are consistent both in the case of the correctly specified wide model and
misspecified candidate models.

3.2 Variance of Random Score Vectors

The conditional score function of the wide model is given by the 6 p× 1 vector
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3.2. Variance of Random Score Vectors

u(yt|β, x, yt−1) = ∂

∂β
log fwide(yt|β, xt, yt−1)

Examining the partial derivative of the log-likelihood function given in Sec-
tion 2.2, we see that under the true model

Ewide u(yt|βtrue, xt, yt−1) = 0

The conditional score functions of a candidate model is given by the (2 q+6w)×1
vector

uM (yt|βM , xt, yt−1) = ∂

∂βM
log fM (yt|βM , xt, yt−1)

Let βM,0,n be the least false parameter of the candidate model conditioned
on the covariates x0, x1, . . . xn. Since the candidate model is misspecified, it is
not the case that Ewide uM (yt|βM,0,n, xt, yt−1) = 0. We have instead that

1
n

n∑
t=1

Ewide u(y|βM,0,n, xt, yt−1)

= 1
n

n∑
t=1

Ewide
∂

∂βM
log f(yt|βM,0,n, xt, yt−1)→p 0. (3.4)

This is the case because we from the assumptions in Section 3.3 have that

1
n

n∑
t=1

Ewide log f(yt|βM,0,n, xt, yt−1)→p

∫
Ewide log f(yt|βM,0) dC(x),

and the definition of the least false parameter βM,0 in (3.3) this limit is global
maximum point.

Define now random score vectors Un and UM,n, where Un is the 6 p × 1
vector function

Un = 1√
n

∂`(βtrue)
∂β

= 1√
n

n∑
t=1

∂`t(βtrue)
∂β

= 1√
n

n∑
t=1

u(yt|βtrue, xt, yt−1),

and where UM,n is the (2 q + 6w)× 1 vector function

UM,n = 1√
n

∂`(n)(βM,0,n)
∂βM,n

= 1√
n

n∑
i=1

∂`
(n)
i (βM,0,n)
∂βM,n

= 1√
n

n∑
i=1

uM (yt|βM,0,n, xt, yt−1).
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3. Large Sample Theory under Misspecification

Define further matrices

Jn = Varwide Un,

KM,n = Varwide UM,n,

CM,n = Covwide

{
Un, UM,n

}
,

JM,n = − 1
n

n∑
t=1

Ewide HM (βM,0,n).

The last matrix is the Fisher information matrix of the candidate model. The
expression of this matrix is given in Section 2.3.

Let us find an expression for Jn. The wide model random score vector Un
may be written as

Un =


υ00
υ01
υ10
υ11
υ20
υ21

 ,

where υkj = ∂`(n)(βtrue)/∂βkj .
Write

υkj =
n∑
t=1

υkjt, k = 0, 1, 2, j = 0, 1,

where

υkjt = 1√
n

(
yt − πkj(xt)

)
xtyt−1,k.

Define for each t ≤ n and each k, j = 0, 1, 2, the functions f (t)
kj = 1√

n
xt and

g
(t)
kj = 1√

n
πkj(xt). These functions are uniformly bounded by 1. Thus υkjt is

on the form of the general function ψtkj defined in (3.1), and υkj is a sum of
such functions.

Define for all t ≤ n the quantity

λ
(t)
kj = Ewide

{
1√
n

(
yt − πkj(xt)

)
xtyt−1,k

∣∣∣∣yt−1

}
= 0.

34



3.2. Variance of Random Score Vectors

It then follows from (A.1) in Appendix A.1 that

Covwide

{
υkj , υk′j

}
=

n∑
t=1

Covwide

{
υkj,t, υk′j,t

}
,

and that for t ≤ n

Covwide

{
υkj,t, υk′j,t

}
= 1
n

n∑
t=1

xtx
t
t Covwide

{
yt,jyt,j′ | yt−1,k′=1

}
δkk′ Ewide yt−1,k′

=

 1
n

∑n
t=1 xtx

t
tπkj(xt)

(
δjj′ − πkj(xt)

)
Ewide yt−1,k if k = k′

0 if k 6= k′.

Hence

Varwide Un = 1
n

n∑
t=1

Jβ0(xt) 0 0
0 Jβ1(xt) 0
0 0 Jβ2(xt)

 ,

where for k = 0, 1, 2

Jβk(xt) =
(
xtx

t
tπk,0(1− πk,0) −xtxt

tπk,0πk,1
−xtxt

tπk,0πk,1 xtx
t
tπk,1(1− πk,1)

)
Ewide yt−1,k

abbreviating πk,j for πk,j(xt).
Comparing this expression with the Fisher Information matrix Jn described

in Section 2.3, we see that

Varwide Un = − 1
n

Ewide H(βtrue)

which is the result we would expect from Bartlett’s second identity.
With reference again to the proof of Lemma 3.1.1 in Appendix A.1, we may

show in a parallel manner to the derivation of the expression of Jn that CM,n

is a 6 p× (2 q + 6w)-matrix on the form

CM,n = 1
n

n∑
t=1

CM,γ,0(xt) CM,b,0(xt) 0 0
CM,γ,1(xt) 0 CM,b,1(xt) 0
CM,γ,2(xt) 0 0 CM,b,2(xt)

 ,
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3. Large Sample Theory under Misspecification

where for k = 0, 1, 2 the left blocks are 2 p× 2 q-matrices

CM,γ,k(xt) =
(
xtu

t
M,tπk,0(1− πk,0) −xtut

M,tπk,0πk,1
−xtut

M,tπk,0πk,1 xtu
t
M,tπk,0(1− πk,0)

)
Ewide yt−1,k,

and the other blocks are 2 p× 2w-matrices

CM,b,k(xt) =
(
xtz

t
M,tπk,0(1− πk,0) −xtzt

M,tπk,0πk,1
−xtzt

M,tπk,0πk,1 xtz
t
M,tπk,0(1− πk,0)

)
Ewide yt−1,k.

For readability, we have abbreviated πkj(xt) = πkj .
Finally, we find an expression for the variance of the candidate random

score function, Varwide UM,n. The expression for this variance matrix will be
much more complicated than the rather orderly matrices Jn, JM,n and CM,n.
The reason for this is the misspecification of the candidate model. Because the
candidate model is not the correct model, we need to account for correlation
between every pair of observations in the chain. This will complicate matters
considerably.

The candidate random score vector UM,n may be written as

UM,n =



υγ0
υγ1
υb00
υb01
υb10
υb11
υb20
υb21


,

where

υγj = ∂`(n)(βM,0,n)
∂γj

,

and

υbkj = ∂`(n)(βM,0,n)
∂bkj

.

Write for j = 0, 1

υγj =
n∑
t=1

υγjt,
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3.2. Variance of Random Score Vectors

where

υγjt =
2∑
k=0

1√
n

(
yt,j − πMkj(xM,t)

)
uM,tyt−1,k j = 0, 1.

Similarily, write for k = 0, 1, 2 and j = 0, 1

υbkj =
n∑
t=1

υbkjt

where

υbkjt = 1√
n

(
yt,j − πMkj(xM,t)

)
zM,tyt−1,k k = 0, 1, 2, j = 0, 1.

Now, define f (t)
kj = 1√

n
dM,t and g

(t)
kj = 1√

n
πMkj(xM,t)dM,t, where dM,t is

either uM,t or zM,t. From this we see that the elements in UM,n may be
expressed as sums where the terms are on the form of the general function ψtkj
in (3.1).

Let now

φkj(xt) = πk,j(xt)− πM,k,j(xM,t), k = 0, 1, 2 j = 0, 1,

and define

λ
(t)
kj = Ewide

{
1√
n

(
yt − πMkj(xM,t)

)
dtyt−1,k

∣∣∣∣yt−1

}
= 1√

n
φkj(xM,t)dtyt−1,k.

We may then use results from Appendix A to find an expression for the
KM,n matrix. Define

UM,n,t = 1√
n

∂`M,t(βM,0,n)
∂βM

such that

UM,n =
n∑
t=1

UM,n,t

We then have that
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3. Large Sample Theory under Misspecification

KM,n = Varwide UM,n

=
n∑
t=1

Varwide UM,n,t +
n∑
t=2

t−1∑
s=1

Covwide

{
UM,n,t, UM,n,t−s

}

+
n∑
t=2

t−1∑
s=1

Covwide

{
UM,n,t−s, UM,n,t

}
. (3.5)

As all random vectors UM,n,t are on the general form of ψtkj in (3.1) we
may use (A.4) in (A.1) to find expressions for each of these sums. Inserting the
appropriate functions f (t)

kj , g
(t)
kj and λ(t)

kj in (A.4), we may write the first sum in
(3.5) as

n∑
t=1

Varwide UM,n,t = 1
n
J∗M,n + 1

n
Vn

Expressions for the elements of these matrices are given in Appendix A.4. Here
we emphasize only that J∗M is not the same matrix as the Fisher Information
matrix JM,n of the candidate model, although they look very similar. The J∗M,n

uses the true probabilities of the correct wide model, whereas JM,n uses the
probabilities of the candidate model.

By inserting appropriate functions f (t)
kj , g

(t)
kj and λ(t)

kj in (A.4) in Appendix A.1,
we may write the second term in (3.5) as

1
n

n∑
t=2

t−1∑
s=1

Covwide

{
UM,n,t, UM,n,t−s

}
= 1
n
QM,n + 1

n
WM,n,

Expressions for the rather complicated matrices QM,n and WM,n are given
in Appendix A.4. Here we emphasize only that neither QM,n or WM,n are
symmetric. Considerable care must therefore be shown by the calculation of
these matrices.

The last term of sums in (3.5) is the transposed of the middle term. Conse-
quently, we get the following expression for the variance matrix KM,n of the
candidate score function:

KM,n = 1
n

{
J∗M,n + VM,n + (WM,n +W t

M,n) + (QM,n +QtM,n)
}

(3.6)

Under the assumption of a proper covariate distribution in Section 2.4, the
matrices Jn, JM,n, CM,n and KM,n all converge asymptotically to well-defined
limit matrices.
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3.2. Variance of Random Score Vectors

Theorem 3.2.1. Let covariate vectors x0, x1, . . . , xt be generated by some un-
known covariate distribution C(x) in accordance with the assumptions in Sec-
tion 2.3. Given these covariate values, let {yi,t} be a Markov chain generated
by the wide model. It is then the case that

Jn →p J,

JM,n →p JM,n,

CM,n →p CM ,

KM,n →p KM ,

where J , JM,n, CM and KM are well-defined non-stochastic matrices.

Proof. We prove convergence in probability of KM,n. The proofs of convergence
in probability of JM , JM,n and CM will be equivalent.

From the above discussion, we know that the elements in UM,n,t are on the
general form of the function ψt,k,j in (3.1). Write therefore ψ(a)

t,k,j and ψ
(b)
t,k,j

for any two elements in the vector UM,n,t. Let kM,n be any element in KM,n.
From (3.5) we may express kM,n as

kM,n = 1
n

n∑
t=1

Covwide

{
ψ

(a)
t,k,j , ψ

(b)
t,k′,j′

}
+ 1
n

n∑
t=2

t−1∑
s=1

Covwide

{
ψ

(a)
t,k,j , ψ

(b)
t−s,k′,j′

}

+ 1
n

n∑
t=2

t−1∑
s=1

Covwide

{
ψ

(a)
t−s,k,j , ψ

(b)
t,k′,j′

}
.

As ψ(a)
t,k,j and ψ

(b)
t,k,j are functions on the general form of ψt,k,j , we may use

the result from Lemma A.3.1. Thus for any ε > 0 we may find a finite N ∈ N
such that there are functions fi(xt, . . . xt−N ), i = 1, 2, 3, for which it is the case
that for all series of covariates x0, x1, . . . , xt we have for all t ≥ 1 that

lim
t→∞

P

(∣∣∣∣Covwide

{
ψ

(a)
t,k,j , ψ

(b)
t,k′,j′

}
− f1(xt, . . . , xt−N )

∣∣∣∣ > ε

6

)
= 0,

and for all t ≥ 2 that

lim
t→∞

P

(∣∣∣∣t−1∑
s=1

Covwide

{
ψ

(a)
t,k,j , ψ

(b)
t−s,k′,j′

}
− f2(xt, . . . , xt−N )

∣∣∣∣ > ε

6

)
= 0,

lim
t→∞

P

(∣∣∣∣t−1∑
s=1

Covwide

{
ψ

(b)
t,k,j , ψ

(a)
t−s,k′,j′

}
− f3(xt, . . . , xt−N )

∣∣∣∣ > ε

6

)
= 0.
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3. Large Sample Theory under Misspecification

Defining the composite function f(x1, . . . xt−N ) =
∑3
i=1 fi(xt, . . . , xt−N ),

we get by repeated use of the triangle equality that

lim
n→∞

P

(∣∣∣∣kM,n −
1
n

n∑
t=2

f(x1, . . . xt−N )
∣∣∣∣ > 1

n

n∑
t=1

ε

2 = ε

2

)
= 0. (3.7)

From the assumption on the covariate distribution C(x) in Section 2.3 we have
that

1
n

n∑
t=N

f(x1, . . . xt−N )→
∫
f(xt, . . . , xt−N ) dCjoint,,N (xN )

Writing for this limit κM,n =
∫
f(xt, . . . , xt−N ) dCjoint,,N (xN ), we have then

that

lim
n→∞

P

(∣∣∣∣ 1n
n∑
t=2

f(x1, . . . xt−N )− κM,N

∣∣∣∣ > 1
n

n∑
t=1

ε

2 = ε

2

)
= 0. (3.8)

Consequently, using the triangle equality results (3.7) and (3.8), we get that
for each ε there exists a finite N and a constant κM,n such that

lim
n→∞

P

(∣∣∣∣kM,n − κM,n

∣∣∣∣ > ε

)
= 0.

For any two integers m,n such that m > n, it is now the case that for each
ε there is an N∗ ∈ N such that for all m,n > N∗

P

(
|κM,m − κM,n| > ε

)
≤ lim
t→∞

P

(∣∣∣∣κM,n − kM,t

∣∣∣∣ > ε

2

)
+ lim
t→∞

P

(∣∣∣∣κM,m − kM,t

∣∣∣∣ > ε

2

)
= 0.

Thus, the series {κM,n} is a Cauchy-series in R. As κM,n ∈ R and R is a
complete space, this implies that κM,n is a convergent series converging to a
constant κM . Thus

kM,n →p κM .

As this result holds for all elements in KM,n, the matrix KM,n converges to a
non-stochastic matrix KM , as is what we set out to prove.

�
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3.3. Asymptotic Normality

3.3 Asymptotic Normality

In this section, I prove that the random score vector UM,n of the candidate
model is normally distributed in the limit. As the wide model is a special
case of the more general model (2.3), the result will follow also for the random
score function Un of the wide model. I will prove the normality of UM,n with
the Martingale Central Limit theorem of Hall and Heyde (1980). The first
task in this section is therefore to show that UM,n constitutes a martingale
asymptotically.

Let y0:k denote every observation in the Markov chain up to time k inclusive.
With Sethuraman and Varadhan (2005), define for 0 ≤ k ≤ n the random
variables

Z
(n)
k =

n∑
t=k

Ewide

{
∂`

(n)
t,M (βM,0,n)
∂βM,n

∣∣∣∣y0:k

}
.

A few values of these random variable are

Z(n)
n = ∂`

(n)
n (βM,0,n)
∂βM

Z
(n)
n−1 =

∂`
(n)
n−1(βM,0,n)
∂βM

+ Ewide

{
∂`

(n)
n (βM,0,n)
∂βM

∣∣∣∣y0:n−1

}
Z

(n)
n−2 =

∂`
(n)
n−2(βM,0,n)
∂βM

+ Ewide

{
∂`

(n)
n−1(βM,0,n)
∂βM

∣∣∣∣y0:n−2

}
+ Ewide

{
∂`

(n)
n (βM,0,n)
∂βM

∣∣∣∣y0:n−1

}
.

We see from the first few values that Z(n)
k may be expressed alternatively as

Z
(n)
k =


∂`(n)
n (βM,0,n)
∂βM

if k = n

∂`
(n)
k

(βM,0,n)
∂βM

+
∑n
r=k+1 Ewide

{
∂`(n)
r (βM,0,n)
∂βM

∣∣∣∣y0:r

}
else.

(3.9)

Taking expectations under the wide model, we may write further

Ewide

{
Z

(n)
k+1

∣∣∣∣yk} = Ewide

{
∂`

(n)
k+1(βM,0,n)
∂βM

∣∣∣∣y0:k

}
+

n∑
r=k+2

Ewide

{
∂`

(n)
r (βM,0,n)
∂βM

∣∣∣∣y0:r−1

}

=
n∑

r=k+1
E
{
∂`

(n)
r (βM,0,n)
∂βM

∣∣∣∣y0:r−1

}
. (3.10)
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3. Large Sample Theory under Misspecification

This result will allow us to give a decomposition of the partial derivative of the
log-likelihood. Inserting (3.10) in (3.9), we get

∂`k(βM,0,n)
∂βM,n

= Z
(n)
k − Ewide

{
Z

(n)
k+1

∣∣∣∣y0:k

}
(3.11)

Writing

∂`k(βM,0,n)
∂βM,n

= Z
(n)
k − Ewide

{
Z

(n)
k

∣∣∣∣y0:k

}
+ Ewide

{
Z

(n)
k

∣∣∣∣y0:k

}
− Ewide

{
Z

(n)
k+1

∣∣∣∣y0:k

}

we get by telescoping the alternative expression for the log-likelihood

∂`(n)(βM,0,n)
∂βM

=
n∑
k=1

∂`k(βM,0,n)
∂βM

=
n∑
k=2

{
Z

(n)
k − Ewide

{
Z

(n)
k

∣∣∣∣y0:k−1

}}
+ Z

(n)
1 .

For 0 ≤ k ≤ n, define further with Sethuraman and Varadhan (2005) the
random variable

Mk =
k∑
l=2

{
Z

(n)
l − Ewide

{
Z

(n)
l

∣∣∣∣y0:l−1

}}
.

Taking expectation we get

Ewide

{
Mk

∣∣∣∣y0:k−1

}
= Mk−1,

which implies that Mk is a martingale with regards to the history y0:k−1 at
time k.

This means that the candidate score function UM,n can be decomposed into
a Martingale plus a term Z

(n)
1 .

UM,n = 1√
n

∂`(n)(βM,0,n)
∂βM,n

= 1√
n
Mn + 1√

n
Z

(n)
1 .

Until now we have followed the general proceedings in Sethuraman and
Varadhan (2005). To show that the UM,n has the same limit as n− 1

2Mn and

42



3.3. Asymptotic Normality

therefore constitutes a martingale asymptotically, we need to show that the
term Z

(n)
1 is bounded for the case of a misspecified model on the form of (2.3)

Define for a finite k < n the (2 q + 6w)× 1 vector

Ωk =
n∑

t=k+1
Ewide

{
∂`

(n)
t (βM,0,n)
∂βM

∣∣∣∣y0:k

}
and write (3.9) as

Z
(n)
k = ∂`

(n)
k (βM,0,n)
∂βM

+ Ωk

We know from Section 2.3 that ∂`(n)
k (βM,0,n)/∂βM is bounded for each k. We

need to show that Ωk is bounded for each k too.
For l = 1, . . . , 2q + 6w let ωk,l denote the elements in Ωk. For a candidate

model M with q > 0, the first element in Ωk is

ωk,1 =
n∑

t=k+1
Ewide

{ 2∑
r=0

(
yt,0 − πMr0(xt)

)
utyt−1,r

∣∣∣∣y0:k

}

=
n∑

t=k+1

2∑
r=0

{
φr0(xt)ut Ewide

{
yt−1,r

∣∣∣∣y0:k

}}

=
n∑

t=k+1

2∑
r=0

{
φr0(xt)ut

2∑
r′=0

{
P

(t−k−1)
r′r (k)yk,r′

}}
.

As the inhomogeneous Markov chain {yt} is strongly ergodic (see Section 2.4),
we have that limt→∞ P

(t)
kj (k) = Ewide yt+k,j . Thus for each finite k there exists

a constant ε ∈ (0, 1) such that for t > k and for r, r′ = 0, 1, 2 it is the case that

P
(t−k−1)
r′r (k) < Ewide (yt−1,r) + εt−k−1.

We may therefore write

ωk,1 <

n∑
t=k+1

2∑
r=0

{
φr0(xt)ut

2∑
r′=0

(
Ewide (yt−1,r) + εt−k−1

)
yk,r′

}

=
n∑

t=k+1

2∑
r=0

{
φr0(xt)ut Ewide yt−1,r

}
+

n∑
t=k+1

2∑
r=0

{
φr0(xt)utεt−k−1

}
,

where we in the last line have used that
∑2
r′=0 yk,r′ = 1.
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3. Large Sample Theory under Misspecification

The second double sum in this expression is a convergent series, thus bounded.
For the first double sum, write

n∑
t=k+1

2∑
r=0

{
φr0(xt)ut Ewide yt−1,r

}

=
n∑
t=1

2∑
r=0

{
φr0(xt)ut Ewide yt−1,r

}
−

k∑
t=1

2∑
r=0

{
φr0(xt)ut Ewide yt−1,r

}
.

(3.12)

Recall that γ0,0 is the first element in βM,n. We have therefore that

Ewide

{
∂`(n)(βM,0,n)

∂γ0,0

}
=

n∑
t=1

2∑
r=0

Ewide

{(
yt,0 − πMr0(xt)

)
utyt−1,r

}

=
n∑
t=1

2∑
r=0

Ewide

{
Ewide

{(
yt,0 − πMr0(xt)

)
utyt−1,r

∣∣∣∣y0:t−1

}}

=
n∑
t=1

2∑
r=0

φr0(xt)ut Ewide yt−1,r

We may therefore write (3.13) as
n∑

t=k+1

2∑
r=0

{
φr0(xt)ut Ewide yt−1,r

}

= Ewide
∂`(n)(βM,0,n)

∂γ0,0
− Ewide

k∑
t=1

∂`
(n)
t (βM,0,n)
∂γ0,0

. (3.13)

From (3.4) we may show that the expected score vector of the candidate model
is bounded asymptotically at the least false parameter βM,0,n. Thus the first
term in (3.13) is bounded for all n. Since ∂`(n)

t (βM,0,n)/∂γ0,0 is bounded for
any t ≤ n and since k is a finite integer, we have that the second sum in (3.13)
is bounded too. Thus ωk,1 is bounded.

The situation is parallel for every element in Ωk since each of these elements
are on the same general form as ωk,1. The same argument holds therefore for
these other elements in Ωk too. Thus every element in Ωk is bounded for a
finite k, which again implies that Z(n)

k is bounded for any finite k.
We therefore have that UM,n and 1√

n
Mn have the same limit, which implies

that the candidate score function UM,n is a Martingale asymptotically.
To investigate this limit we use the Martingale Central Limit Theorem

stated in Hall and Heyde (1980):
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3.3. Asymptotic Normality

Lemma 3.3.1. For each n ≥ 1 let
{

(W (n)
i ,F (n)

i ) | 0 ≤ i ≤ n
}
be a martingale

relative to the nested family F (n)
i ⊂ F (n)

i+1 withW (n)
0 = 0. Let ξ(n)

i = W
(n)
i −W

(n)
i−1

be their differences. Suppose that

max
1≤i≤n

| ξ(n)
i | → 0 and

n∑
i=1

E
{

(ξ(n)
i )2 | F (n)

i−1

}
→ η

Then

W (n)
n →d N(0, η)

Following Sethuraman and Varadhan (2005), we define W (n)
t = 1√

n
Mt for t ≥ 2.

To be in full accordance with the theorem, we define W (n)
1 = W

(n)
0 = 0 . The

history F (n)
t in our situation is y0:t. Obviously y0:t ⊂ y0:t+1. We define also

ξ
(n)
t = ∆Mt√

n
= 1√

n

{
Z

(n)
t − E

{
Z

(n)
t

∣∣∣∣y0:t−1

}}
, (3.14)

where ∆Mt = Mt −Mt−1.
To show that the first condition in the Martingale Central Limit Theorem

is fulfilled, notice that we may write by inserting (3.11) in (3.14)

Z
(n)
t − E

{
Z

(n)
t

∣∣∣∣y0:t−1

}
= ∂`

(n)
t (βM,0,n)
∂βM

+ Ewide

{
Zt+1

∣∣∣∣y0:t

}
− Ewide

{
Zt

∣∣∣∣y0:t−1

}
= ∂`

(n)
t (βM,0,n)
∂βM

+
n∑

r=t+1
Ewide

{
∂`

(n)
r (βM,0,n)
∂βM

∣∣∣∣y0:r−1

}

−
n∑
r=t

Ewide

{
∂`

(n)
r (βM,0,n)
∂βM

∣∣∣∣y0:r−1

}

= ∂`t(βM,0,n)
∂βM

− Ewide

{
∂`

(n)
t (βM,0,n)
∂βM

∣∣∣∣y0:t−1

}
, (3.15)

which clearly is bounded. Thus we have that ξ(n)
t →p 0 for each t ≤ n.

To show that the second condition in the Martingale central limit theorem
is fulfilled, first notice that

n∑
t=1

Ewide

{
(ξ(n)
t )2

∣∣∣∣y0:t−1

}
=

n∑
t=1

Varwide

{
ξ

(n)
t

∣∣∣∣y0:t−1

}
,

45



3. Large Sample Theory under Misspecification

since Ewide {ξ(n)
t |y0:t−1} = 0. Further we have by inserting (3.15) in (3.14)

n∑
t=1

Varwide

{
ξ

(n)
t

∣∣∣∣y0:t−1

}

= 1
n

n∑
t=1

Varwide

{
∂`

(n)
t (βM,0,n)
∂βM

− Ewide

{
∂`

(n)
t (βM,0,n)
∂βM

∣∣∣∣y0:t−1

}∣∣∣∣y0:t−1

}

= 1
n

n∑
t=1

Varwide

{
∂`

(n)
t (βM,0,n)
∂βM

∣∣∣∣y0:t−1

}

We know that ∂`(n)
t (βM,0,n)/∂βM,n is a bounded function of random variables

yt and yt−1. For each element in
∑n
t=1 Varwide {ξ(n)

t |y0:t−1} we may therefore
define uniformly bounded functions f (t)

k = f
(t)
k (x), k = 0, 1, 2 such that the any

element ωxi in this matrix may be written as

ωxi = 1
n

n∑
t=1

2∑
k=0

f
(t)
k yt−1,k.

Again, f (t)
k yt−1,k is on form of the general function ψt,k,j in (3.1). We may

thus use Lemma 3.1.1 in the same manner as in the proof of Theorem 3.1.2 to
show that there for each element in

∑n
t=1 Varwide {ξ(n)

t |y0:t−1} exist a constant
G such that

Varwide
1
n

n∑
t=1

2∑
k=0

f
(t)
k yt−1,k <

G

n
,

which implies that

Varwide
1
n

n∑
t=1

2∑
k=0

f
(t)
k yt−1,k →p 0.

Since this is the case for each element in
∑n
t=1 Varwide {ξ(n)

t |y0:t−1}, it follows
that there exists a constant vector η such that

n∑
t=1

Varwide

{
ξ

(n)
t

∣∣∣∣y0:t−1

}
→p η.

Thus the second condition in the Martingale Central Limit theorem is fulfilled.
It follows that there exists a non-random vector UM such that

46



3.3. Asymptotic Normality

Mn√
n
→p UM ∼ N(0, η) (3.16)

Now, we want to show that η = KM . We know that

KM,n = Varwide UM,n = Varwide

{ n∑
t=1

ξ
(n)
t + Z

(n)
1√
n

}
.

As the limit KM of KM,n is well-defined and Z(n)
1 is bounded, it must be the

case that

lim
n→∞

Varwide

{ n∑
t=1

ξ
(n)
t

}
= KM

Martingales have uncorrelated increments, we may therefore write

Varwide

{ n∑
t=1

ξ
(n)
t

}
=

n∑
t=1

Varwide ξ
(n)
t .

Also, since Ewide {ξ(n)
t |y0:t−1} = 0, we get from the law of total covariance

Varwide ξ
(n)
t = Ewide Varwide

{
ξ

(n)
t

∣∣∣∣y0:t−1

}
.

From this, it follows that

η = lim
n→∞

n∑
t=1

Varwide

{
ξ

(n)
t

∣∣∣∣y0:t−1

}
= lim
n→∞

n∑
t=1

Varwide ξ
(n)
t = KM . (3.17)

Combining (3.17) and (3.16), we get then from the Martingale central limit
theorem that

Mn√
n
→p UM ∼ N

(
0,KM

)
.

Since the candidate random score vector UM,n has the same limit as Mn√
n
, it

follows that the random score vector UM,n of the candidate model is normally
in the limit:

UM,n →p UM ∼ N
(

0,KM

)
.
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3. Large Sample Theory under Misspecification

As the wide model is a special case of the general model (2.3), it follows
from the same arguments, that Un →d N(0, J). The joint limit distribution of
the random score vectors will therefore be

(
Un
UM,n

)
→d N

(
0,
(
J CM
CM KM

))
.

This is an important result. It will make us able to find the joint asymptotic
distribution of maximum likelihood estimators, which is what I will do in the
next section.

3.4 Approximate Normality of MLEs

With the asymptotic normality of the random score vectors assured, we are
now in the position to show that maximum likelihood estimators β̂ of the wide
model and β̂M of the candidate model are approximately normally distributed.
The following theorem, proved in N. L. Hjort and Pollard (1993), will be of
central importance to the demonstration:

Lemma 3.4.1. Suppose An(s) is convex and can be represented as 1
2s
tV s+U tns+

Cn + rn(s) where V is symmetric and positive definite, Un is stochastically
bounded, Cn is arbitrary, and rn(s) goes to zero in probability for each s. Then
αn, the argmin of An, is only op(1) away from βn = −V −1Un, the argmin of
1
2s
tV s+ U tns+ Cn. If also Un →d U then αn →d −V −1U .

Define first the function

An(h) = `
(n)
M (βM,0,n + h)− `(n)

M (βM,0,n)

where βM,0,n is the least false parameter of the parametric class of the candidate
model M given covariates x0, x1, . . . xn. We know from Section 2.3 that the
likelihood of the dynamic multinomial logit function is a concave function. Thus
the function An(h) is a concave function, with the maximizer β̂M,n − βM,0,n.

By exact Taylor expansion, An(h) may be reformulated as

An(h) = `
(n)
M (βM,0,n + h)− `(n)

M (βM,0,n)

= ∂`
(n)
M (βM,0,n)
∂βM

t

h+ 1
2h

t ∂
2`

(n)
M (βM,0,n)
∂βM∂βt

M

h

+ 1
6
∑
q

∑
r

∑
w

∂3`
(n)
M (βM,0,n + h∗)

∂βM,q∂βM,r∂βM,w
hqhrhw,

where h∗ is a (2 q+6w)×1 vector such that 0 < |h∗| < |h|. The partial derivate
operator ∂/∂βM,r here denotes derivation with respect to the r ’th element of
βM,n. The variable hr is the corresponding r’th element of h, and

∑
r is an

abbreviation for summing over all 2q + 6w elements in βM .
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3.4. Approximate Normality of MLEs

Define for every 1 ≤ t ≤ n the entity

Rt(yt, yt−1, h) = 1
2h

t ∂
2`

(n)
M,t(βM,0,n)
∂β∂βt

M

h

+ 1
6
∑
q

∑
r

∑
w

∂3`
(n)
M,t(βM,0,n + h∗)

∂βM,q∂βM,r∂βM,w
hqhrhw.

and rewrite

An(h) = ∂`
(n)
M (βM,0,n)
∂βM

t

h+
n∑
t=1

Rt(yt, yt−1, h)

Now, let

vt,0(h) = Ewide
1
6
∑
q

∑
r

∑
w

∂3`M,t(βM,0,n + h∗)
∂βM,r∂βM,s∂βM,v

hqhrhw,

rn(h) =
n∑
t=1

vt,0(h)

and

rn,0(h) =
n∑
t=1

{
Rt(yt, yt−1, h)− Ewide Rt(yt, yt−1, h)

}
.

Consider for h = s√
n

An(s) = ∂`
(n)
M (βM,0,n)
∂βM

t
s√
n

+
n∑
t=1

Rt(yt, yt−1,
s√
n

)

= ∂`
(n)
M (βM,0,n)
∂βM

t
s√
n

+
n∑
t=1

Ewide Rt(yt, yt−1,
s√
n

)

+
n∑
t=1

{
Rt(yt, yt−1,

s√
n

)− Ewide Rt(yt, yt−1,
s√
n

)
}

= ∂`(n)(βM,0,n)
∂βM

t
s√
n

+ Ewide

{ n∑
t=1

1
2

1
n
st ∂

2`
(n)
M,t(βM,0,n)
∂βM∂βt

M

s

}

+
n∑
t=1

vt,0( s√
n

) +
n∑
t=1

{
Rt(yt, yt−1,

s√
n

)− Ewide Rt(yt, yt−1,
s√
n

)
}

= U t
M,ns−

1
2s

tJM,ns+ rn(s) + rn,0(s),
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3. Large Sample Theory under Misspecification

where we in the last line have used that the Fisher information matrix JM,n of
the candidate model is the negative mean of the candidate Hessian matrix.

We know that JM,n is negative definite due to the concavity of `(n)(βM ).
We know also that UM,n is stochastically bounded. Thus JM,n and UM,n fulfill
the conditions in Lemma 3.4.1. To show that we are in full accordance with
the conditions in lemma we need to show that rn(s) + rn,0(s) goes to zero in
probability for each s.

Consider the case for rn(s) first. We have that

vt,0(s) = 1
6
∑
q

∑
r

∑
w

Ewide

{∂3`
(n)
M,t(βM,0,n + s∗√

n
)

∂βM,q∂βM,r∂βM,w

sqsrsw
n
√
n

}
.

We may show that for each third partial derivative of `(n)
M,t(βM,n) there exists

uniformly bounded function fq,r,w,k(xt) such that |fq,r,w,k(xt)| < 1. We may
write

∂3`t(βM,0,n + s√
n

)
∂βq∂βr∂βw

= dt,qdt,rdt,w(
2∑
k=0

fq,r,w,k(xt)yt−1,k), (3.18)

where dt denotes either ut or zt, depending on the candidate model and the
value of the indexes q, r, w.

Since the space of covariates is bounded and Ewide yt,k < 1 for all t and k,
there exists a constant G such that for all s and all q, r, w it is the case that

Ewide
∂3`M,t(βM,0,n + s∗√

n
)

∂βM,q∂βM,r∂βM,w
< G.

From the boundedness of the covariate space Γ, assumed in Section 2.3, it
follows that there exists a constant G′ such that for each t we have that

vt,0(s) < G

6

p∑
q=1

p∑
r=1

p∑
w=1

sqsrsw
n
√
n

<
G′

n
√
n
.

From this it follows that

rn(s) =
n∑
t=1

vt,0(s) <
n∑
t=1

G′

n
√
n

= G′√
n

= op(1)

which means that rn(s) goes to zero in probability.
Consider then rn,0(s). Clearly E rn,0(s) = 0, so if Var rn,0(s)→ 0, it follows

that rn,0(s)→p 0 too.
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3.4. Approximate Normality of MLEs

Write

Varwide rn,0(s) = Varwide

{ n∑
t=1

{
Rt(yt, yt−1,

s√
n

)− Ewide Rt(yt, yt−1,
s√
n

)
}}

= Varwide

n∑
t=1

Rt(yt, yt−1,
s√
n

)

= Varwide

{ n∑
t=1

{
1
2

1
n
st ∂

2`
(n)
M,t(βM,0,n)
∂βM∂βt

M

s

+ 1
6
∑
q=1

∑
r=1

∑
w=1

∂3`
(n)
M,t(βM,0,n + s∗√

n
)

∂βM,q∂βM,r∂βM,w

sq√
n

sr√
n

sw√
n

}}

= Varwide

{ n∑
t=1

1
2

1
n
st ∂

2`
(n)
M,t(βM,0,n)
∂βM∂βt

M

s

}

+ Covwide

{ n∑
t=1

1
2

1
n
st ∂

2`
(n)
M,t(βM,0,n)
∂βM∂βt

M

s, ?

}

+ Covwide

{
? ,

n∑
t=1

1
2

1
n
st ∂

2`
(n)
M,t(βM,0,n)
∂βM∂βt

M

s

}
+ Varwide

{
?

}
where

? = 1
6

n∑
t=1

p∑
q,r,w=1

∂3`
(n)
M,t(βM,0,n + s∗√

n
)

∂βM,q∂βM,r∂βM,w

sq√
n

sr√
n

sw√
n

We may show with the same techniques as in Theorem 3.1.2 and Theorem 3.2.1,
that

n∑
t=1

1
n

∂2`
(n)
t (βM,0,n)

∂βM∂βt
M,n

→ JM .

The three first terms in the expression of Varwide rn,0(s) will therefore go to
zero in probability. We need to show that this is the case also for the last term.

Define

ω
(n)
t (s) =

p∑
q,r,w=1

∂3`
(n)
M,t(βM,n + s∗√

n
)

∂βM,q∂βM,r∂βM,w
sqsrsw,

Rewriting the third partial derivative in the same manner as in (3.18), we see
that ωt(s) is a finite sum of functions on the general form ψtkj . Proceeding in
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3. Large Sample Theory under Misspecification

the same manner as in the proof of Theorem 3.1.2, we may show that there
exists a constant G such that

n∑
t=1

n∑
t′=1

Covwide

{
ω

(n)
t (s), ω(n)

t′ (s)
}
< nG

Consequently, we have that

Varwide

{ n∑
t=1

2∑
k=0

p∑
q,r,w=1

∂3`
(n)
M,t(βM,0,n + s∗√

n
)

∂βM,q∂βM,r∂βM,w

sqsrsw
n
√
n
yi−1,k

}

= 1
n3

n∑
t=1

n∑
t′=1

Covwide

{
ωt(s), ωt′(s)

}
<
nG

n3

which goes to zero asymptotically. Thus E rn,0(s) = 0 and Varwide rn,0(s)→ 0,
which means that rn,0(s) = op(1).

We have then that both rn →p 0 and rn,0 →p 0 which means that we may
write

An(s) = −1
2s

tJMs+ U t
ns+ op(1)

in line with the conditions stated in Lemma 3.4.1.
As
√
n(β̂M,n − βM,0,n) is the maximizer of the concave function An(s), it

follows from Lemma 3.4.1 that

√
n(β̂M − βM,0,n) = J−1

M,nUM,n + op(1). (3.19)

The wide model is a special case of the general candidate model (2.3). It
will therefore also be the case that

√
n(β̂ − βtrue) = J−1

n Un + op(1). (3.20)

We know from Theorem 3.2.1 that Jn → J and that JM,n → JM . From
Section 3.3 we know that Un →p U and that UM,n →p UM . Using Slutsky’s
theorem we may then write

J−1
n Un + op(1)→p J

−1U

J−1
M,nUM,n + op(1)→p J

−1
M UM

We have from Section 3.3 the limiting distribution

(
J−1U
J−1
M UM

)
∼ N

(
0,
(

J−1 J−1CMJ
−1
M

J−1
M CMJ

−1 J−1
M KMJ

−1
M

))
,
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which means that

(
J−1
n Un

J−1
M,nUM,n

)
≈d N

(
0,
(

J−1
n J−1

n CM,nJ
−1
M,n

J−1
M,nCM,nJ

−1
n J−1

M,nKM,nJ
−1
M,n

))
,

From (3.19) and (3.20) it then follows that the maximum likelihood estima-
tors β̂ of the wide model and β̂M of the candidate model have the approximate
joint distribution

( √
n(β̂ − βtrue)√

n(β̂M − βM,0,n)

)
≈d N

(
0,
(

J−1
n J−1

n CM,nJ
−1
M,n

J−1
M,nCM,nJ

−1
n J−1

M,nKM,nJ
−1
M,n

))
. (3.21)

This result constitutes the foundation upon which the FIC-procedure will be
built. We have thus established the crucial result that will allow us to do focused
model selection for our dynamic multinomial Markov Chain models.

3.5 Extension to multiple dyads

The developed theory may be extended to observations yi,t from more than one
Markov chain. Assume that there are m independent Markov chains where the
observations yi,t conditioned on covariates xi,t are generated by the same true
wide model in every chain.

Define now the random score vector of the wide model as

U (m)
n = 1√

m · n
∂`(m,n)(βtrue)

∂β
.

Define also the random score vector of the candidate model

U
(m)
M,n = 1√

m · n
∂`

(m,n)
M (βM,0,n)

∂βM
.

Denote the random score vectors of the i’th dyad only as Ui,n and UM,i,n

for the wide model and the candidate model respectively. Denote also the
corresponding log-likelihood function for the i’th chain only as `(m,n)

i (βtrue) and
`
(m,n)
M,i (βM,0,n). We may then write

U (m)
n = 1√

m

m∑
i=1

1√
n

∂`
(m,n)
i (βtrue)

∂β
= 1√

m

m∑
i=1

Ui,n

U
(m)
M,n = 1√

m

m∑
i=1

1√
n

∂`
(m,n)
i (βM,0,n)

∂βM
= 1√

m

m∑
i=1

UM,i,n
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3. Large Sample Theory under Misspecification

In a similar manner, let Jn,i,KM,i,n and CM,i,n denote the random score
variance and covariance matrices of the data from the i’th dyad only. We then
have that

J (m)
n = Varwide U

(m)
n = Varwide {

1√
m

m∑
i=1

Ui,n}

= 1
m

m∑
i=1

Varwide Ui,n = 1
m

m∑
i=1

Ji,n

and similarily

K
(m)
M,n = 1

m

m∑
i=1

KM,i,n,

C
(m)
M,n = 1

m

m∑
i=1

CM,i,n.

From Section 3.3 we know that there for each Markov chain i exists limits
Ji, KM,i and CM,i, such that for each i ≤ m

Ji,n → Ji,

Ki,n → KM,i,

CM,n → CM,i.

As the covariate distribution C(x) is the same for every chain i, we have that
Ji = J , KM,i = KM and that CM,i = CM . Thus

J (m)
n → 1

m

m∑
i=1

Ji = J,

K
(m)
M,n →

1
m

m∑
i=1

KM,i = KM ,

C
(m)
M,n →

1
m

m∑
i=1

CM,i = CM .

From Section 3.3 we know that Ui,n and UM,i,n are normally distributed in
the limit for each i ≤ m. Using the well-known result for the sum of independent
normally distributed random variables, we then get the limit distribution

U (m)
n →d N

(
0, J

)
U

(m)
M,n →d N

(
0,KM

)
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With just minor adjustments to the arguments in Section 3.4, we may show
that the maximum likelihood estimators β̂ and βM of wide model and candidate
models respectively have approximately joint distribution

( √
m · n(β̂ − βtrue)√

m · n(β̂M − βM,0,n)

)
∼ N

(
0,
(

J−1 J−1CMJ
−1
M

J−1
M CMJ

−1 J−1
M KMJ

−1
M

))
.

Thus the developed theory also holds when we have data from multiple
Markov chains.

3.6 Testing and Confidence intervals

The approximate large sample normal distributions of µ̂ and µ̂M allow testing
of Hnull : µ = µnull against Ha : µ 6= µnull using the Wald statistic.

Define

SEwide = (ĉtĴ−1
n ĉ) 1

2

and

SEM = (ĉt
M Ĵ
−1
M,nK̂M,nĴ

−1
M,nĉM ) 1

2

For the correctly specified wide model, the Wald test statistic for testing
H0 : µtrue = µnull is

Z = (µ̂− µnull)
SEwide

which is approximately standard normally distributed.
For a candidate model misspecified under the wide model, the Wald statistic

for testing H0 : µM,0 = µnull is

ZM = µ̂M − µnull

SEM

which is approximately standard normally distributed. See White (1982) for
this misspecification result.

The approximate standard normal distributions of the Wald statistic allows
construction of approximate pointwise confidence intervals for the focus param-
eters. Let zα denote the (1− α) quantile of the standard normal distribution.
A (100 − α)% confidence interval based on the Wald statistic is then for the
wide model
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3. Large Sample Theory under Misspecification

µ̂± zα
2
SEwide.

For the misspecified candidate model, a (100− α)% confidence interval based
on the Wald statistic is

µ̂M ± zα2 SEM

These results for pointwise confidence intervals enable plots of focus parameters
with pointwise confidence bands.
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CHAPTER 4

The Focused Information Criterion
for the Dynamic Multinomial Logit

Model

The Focused Information Criterion aims at selecting the model which best
estimates a parameter µ of interest, the focus parameter. This will be the model
with the lowest mean squared error of the estimator µ̂. The FIC score of a
model is defined as

fic = m̂se µ̂ = V̂ar µ̂+ b̂sq

where bsq stands for squared bias.
To be able to calculate the fic score, a true distribution needs to be assumed.

This true distribution is chosen in different ways in the two versions of the FIC.
The first version of the FIC, formulated in Claeskens and Hjort (2008b), is
situated in a local misspecification context. Here, the true model is such that it
is only O(n− 1

2 ) away from a narrow model. In the second version of the FIC,
developed in Jullum and Hjort (2017) and Cunen, Walløe, and Hjort (2019),
the true model is considered to be fixed and can be at any distance from all
candidate models.

In this chapter I develop a FIC for dynamic multinomial logit models. This
FIC will be of the second version, with a fixed true model. The proceedings in
this chapter follow Cunen, Walløe, and Hjort (2019) closely.

The model that in this chapter will play the role as the fixed true model
is the wide model as defined in (2.2). This model will be used to estimate
true parameters. Reflection on which which covariates to include is therefore
important. The performance of the FIC will depend on how close this model is
to the actual data-generating mechanism, so any covariates that are likely to
have an effect on the response variable should be included. Ideally, this should
be done before analyzing the data. The reflection requires therefore some prior
knowledge of the phenomenon to be analyzed. Often, this is subjectspecific
knowledge the statistician do not possess. The choice of wide model should
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4. The Focused Information Criterion for the Dynamic Multinomial Logit Model

therefore be done with guidance from researchers in the field of analysis. In the
case of conflict modeling, these are the researchers of international relations.

Candidate models are listed M1 . . .Mr. In the FIC with a fixed wide model,
these can be at any distance from the wide model. The candidate models do not
need to be submodels of the wide model, but can be model on the form of (2.3).
They may include all, less or even more covariates than the wide model. For
computational feasability, the list of candidate models should not be too long.
It should only include relevant models, or models that are of special interest in
some other respect.

In this chapter, I describe the FIC procedure of the dynamic multinomial
logit model in more detail. In section 4.1 I describe the distribution of the
maximum likelihood estimators of the focus parameter µ. In section 4.2 I
develop the FIC for a single focus parameter. In section 4.3 I extend the
selection mechanism to a range of focus parameters, a selection mechanism
called the Average-FIC, or the AFIC. In section 4.4 I present an estimation
strategy for the FIC and the AFIC.

4.1 The Focus Parameter

The Focused Information Criterion aims at selecting the model which gives
the most precise estimate of the focus parameter µ. Before launching the FIC
machinery therefore, the focus parameter needs to be chosen.

There is a wide range of parameters that can be chosen to be focus parameters.
The focus parameter can be a mean, a quantile, a model parameter β or
something very different. It needs however to be a parameter that has the same
interpretation across all candidate models. If this is not the case, one is doing
the famous comparison of apples and pears. The focus parameter must also
be a smooth function µwide = µwide(β) in the wide model, and µM = µ(βM ) in
the candidate model.

The focus parameter chosen should be the parameter that reflects the
research question at best. Practitioners should spend some time thinking about
which parameter this is. After all, the FIC is only focused with regard to the
purpose of the analysis. If the purpose of the analysis is unclear, or if the focus
parameter is wrongly chosen, the selection procedure will be out of focus from
the beginning.

In accordance with Cunen, Walløe, and Hjort (2019), we introduce the
column vectors

c = ∂µ(βtrue)
∂β

,

cM = ∂µM (βM,n,0)
∂βM

.

We also let µtrue = µwide(βtrue) denote the true focus parameter value and we
let µM,n,0 = µM (βM,0,n) the least false parameter value of the candidate model
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4.2. FIC

based on given covariates x0, x1, . . . xn.
As we have from (3.21) that the model parameters β and βM have an

approximate joint normal distribution, we get via delta method arguments, as
in Cunen, Walløe, and Hjort (2019), that the maximum likelihood estimators
µ̂wide = µ(β̂) of the wide model and µ̂M = µM (β̂M ) of the candidate model
have approximate joint normal distribution too:

(√
n(µ̂wide − µtrue)√
n(µ̂M − µM,0,n)

)
≈d N

(
0,
(
νwide νM,c

νM,c νM

))
, (4.1)

where

νwide = ctJ−1
n c,

νM,c = ctJ−1
n CM,nJ

−1
M,ncM ,

νM = ct
MJ
−1
M,nKM,nJ

−1
M,ncM . (4.2)

From this joint distribution, we see that estimators µ̂wide and µ̂M are
consistent, both tending to the least false parameter, which in the case of the
wide model is the true parameter value µtrue. Thus the estimator µ̂wide is
unbiased. The least false parameter βM,0,n may be different from βtrue, thus
the estimator µ̂M of the candidate model is biased. The variance νM/

√
n of

µ̂M may however be smaller than the variance νwide/
√
n of µ̂. Thus, even if

candidate models are biased it may nevertheless be the case that this candidate
model gives the most precise estimate of the focus parameter µ.

4.2 FIC

The Focused Information Criterion ranks models according to the estimated
mean squared error of the focus parameter estimator. As described above,
the fic score is defined to be the estimated mean squared error of the focus
parameter estimator.

The mean squared error of an estimator θ̂ is given by

mse = Varwide θ̂ + (Ewide θ̂ − θ)2

= Varwide θ̂ + bsq

The fic score of the unbiased wide model is therefore

ficwide = V̂ar wideµ̂ = ν̂wide

n
.

The candidate estimator of a biased candidate model is
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4. The Focused Information Criterion for the Dynamic Multinomial Logit Model

ficM = V̂ar wideµ̂M + max
{
b̂sqM , 0

}
= ν̂M

n
+ max

{
b̂sqM , 0

}
It may seem strange that we truncate the squared bias term to zero. The

squared bias must necessarily be positive. The estimate b̂sq on the other hand,
may take negative values. To avoid negative estimates of a positive quantity
we choose to truncate the estimates to zero. There is no agreement on this
procedure in the literature, however. Jullum and Hjort (2017) truncate b̂sq to
zero as we do. Cunen, Walløe, and Hjort (2019)argue that one should allow
the estimated squared bias to take on negative values, as this may enhance
the practical performance of the FIC. This really depends on the model class,
however. Simulations of the FIC selection with the dynamic multinomial model
show that the performance of the FIC is slightly better when the estimated
bias squared terms are truncated to zero.

The model with the lowest fic score is the model deemed to give the most
precise estimate of the focus parameter and is therefore the model selected by
the FIC selection mechanism. At a first glance, it may seem that this should
be the wide model, as the wide model does not have a squared bias term. As
the wide model has a high number of parameters however, the variance of µ̂
may be too high. There may be simpler models that are somewhat biased, but
that have so much lower variance of µ̂M that the resulting mean squared error
of µ̂M will be lower than the mean squared error of µ̂ in the wide model. The
FIC chooses the model with the most precise parameter estimator and this is
the model which is deemed to strike the best balance between bias and variance
in the estimation of the focus parameter.

To visualize the selection procedure, one may plot the results in a FIC-plot
in the same manner as Cunen, Walløe, and Hjort (2019). Such a plot consists
of the points

(fic1/2
M , µ̂M )

The model with the lowest fic value will be the model which is the furthest to
the left in the plot. The root FIC score is the preferred value on the x-axis, as
this value is on the same scale as the estimates µ̂M .

4.3 AFIC

The FIC procedure is valid for any focus parameter that fulfills the conditions
stated discussed in Section 4.1. The criterion thus allows for model selection
with regards to many different purposes. Often, however, what we want to
estimate is not a single focus parameter, but a set of more or less different focus
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parameters. An extension of the FIC procedure to such situations is the Average
Weighted Focused Information Criterion, or AFIC for short, as introduced in
Claeskens and Hjort (2008b) and Jullum and Hjort (2017).

Consider a list of focus parameters {µl}, where l is in some index set. Assume
that each focus parameter µl in the set qualifies as a focus parameter in its own
right. For each l there is an estimtor µ̂wide,l of the wide model that aims at the
true value µl. There is also for each l an estimator µ̂M,l of candidate models
that aims at µ̂M,l,0,n.

To quantify the overall risk of all parameters µl in the set, consider the risk
function

L =
∫

(µ̂l(β)− µl)2dW (l).

Here the function W (l) is a cumulative weight function which reflects the
relative importance of the different focus parameters in the set. Possible choices
of this cumulative weight function is discussed in Claeskens and Hjort (2008b).

The expected aggregated risk under the wide model is the weighted mean
squared error

Ewide (L) =
∫

Ewide (µ̂l(β)− µl)2dW (l) =
∫

mseldW (l).

The AFIC-method selects the model with the lowest weighted mean squared
error. In parallel with the fic score Claeskens and Hjort (2008b) and Jullum
and Hjort (2017) define the afic-score. The afic score of the wide model is

aficwide =
∫
ν̂l,wide

n
dW (t).

The afic score of the candidate model is

aficM =
∫ (

b̂sql,M + max
{
ν̂l,M
n

, 0
})

dW (l).

In the case of the dynamic multinomial logit model, which is the model
discussed in this thesis, the AFIC procedure will often be the preferred selection
mechanism. In cases where the focus parameter is a function of covariates, such
that µ = µ(x, β), what is of interest is typically not to find the best estimate of
µ for a single covariate value x∗. Rather, what is of interest is typically to find
the best estimate of µ value over a subset X ⊆ Γ of covariate values. The focus
parameter is in this case rather the aggregated focus parameter

µX =
∫
X

µ(x)dC(x)
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As we know nothing about the covariate distribution C(x), the way to select
models with regards to this aggregated focus parameter is to use the AFIC with
the empirical distribution of covariates as weight function, W (t). In the case
where X = Γ, afic-scores are in this case given by

aficwide =
m∑
i=1

n∑
t=1

{
ν̂wide(xi,t)

n

}

aficM =
m∑
i=1

n∑
t=1

{
ν̂M (xi,t)

n
+ max

{
b̂sqM (xi,t), 0

}}
.

for the wide model and candidate models respectively. In the cases where X
is a proper subset of Γ we sum only over covariate values that are elements in
this subset X.

To visualize the AFIC selection procedure, I invent the AFIC-plot. This
plot parallels the FIC plot in that it consists of the points

(afic1/2
M , µ̂l,M )

where l is a particular element in the index set. Only one estimate m̂ul,M
can be chosen among the list of focus parameters in the set. The AFIC plot
will allow visualization of the AFIC ordering of the models, but the reader
should keep in mind that the vertical ordering of estimates may be different if
another focus parameter in the list were chosen for plotting. The important
point nevertheless that the horizontal ordering is the same for all parameters in
the list. Regardless of which l is choosen, the model furthest to the left in the
AFIC-plot is the model selected by the AFIC.

4.4 FIC score and Estimation

To calculate FIC and AFIC scores, the mean squared errors of the focus
parameters in the wide model and in candidate models need to be estimated.
This involves estimating squared bias as well as quantities νwide,n, νM,n and
νM,c,n. From the expressions in (4.2) we see that these quantities are functions
of random score variances Jn, JM,n, KM,n and CM,n. Calculation of FIC and
AFIC scores therefore first requires estimation of these matrices. Formulas
for Jn, JM,n, CM,n and KM,n are given in Section 3.2 and in Appendix A.4.
A glance at these formulas reveals quickly that this estimation task will not
be easy. In this section, I propose an estimation strategy that will make this
estimation possible.

Notice first that Jn is a function of βtrue,n and that JM,n, CM,n and KM,n

are functions of both βtrue,n and βM,n,0. ML estimates of these matrices are
then
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Ĵn = Jn(β̂),
ĴM,n = JM,n(β̂, β̂M ),
ĈM,n = CM,n(β̂, β̂M ),
K̂M,n = KM,n(β̂, β̂M ),

which imply that estimation of these matrices amounts to plugging in

π̂kj(xi,t) = πkj(xi,t, β̂) for πkj(xi,t),

and

π̂Mkj(xi,t) = πMkj(xi,t, β̂M ) for πMkj(xi,t),

and

P̂(t) = P̂(t|β̂, β̂M ) for P(t).

Under the mild assumption that the chain moderately fast finds it equilibrium
distribution, a moderately high integer S may be chosen so that Ewide yitj may
be estimated with

Ê wide(yitj) =
{
P̂

(S)
kj (t− S) if t ≥ S∑2
k=0 P̂

(t)
kj (0) if 1 ≤ t < S

These estimators may be plugged in in the formulas given in Section 3.2 for
the orderly matrices Ĵn, ĴM,n and CM,n. With this plug-in procedure, these
matrices may be cumbersome, but not too difficult to calculate.

The calculation of the K̂M,n matrix is a different story. This matrix will
consist of a huge number of terms as it takes into account the correlation
between every observation in the chain due to misspecification. Recall from
(3.6) that the KM,n matrix consists of four matrices J∗M,n, Vn,Wn and Qn. Each
of these matrices may be estimated in turn. The J∗M,n matrix is the easiest one.
This matrix has the same structure as Jn and JM,n and should not cause any
problems. The matrices Vn, Qn and Wn are the troublemakers. If the Markov
chain is moderately long, these matrices have an astronomical number of terms.
Taking them all into account will be computationally impossible.

Fortunately, there is a way around this brutal problem. By close inspection
of the formulas for these matrices in Appendix A.4, we see that elements of
these matrices are given by
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vn =
m∑
i=1

n∑
t=1

t−2∑
w=0

1∑
q,r=0

?Φ(w)
rk (t− 1)Φ(w)

qk′ (t− 1),

qn =
m∑
i=1

n∑
t=1

t−1∑
s=0

1∑
r=0

?Φ(s−1)
rk (t− 1),

wn =
m∑
i=1

n∑
t=1

t−2∑
s=0

t−s−2∑
w=0

1∑
r,q=0

?Φ(s+w)
rk (t− 1)Φ(w)

qk′ (t− s),

where vn denotes any element in Vn, qn denotes any element in Qn and wn
denotes any element in Wn. The parameter Φkj(s)(t) denotes |P (s)

kj (t)−P (s)
2j (t)|

as described in Section 2.4, and ? denotes the remaining parts of the expressions,
which is not important for detecting the convergence structure.

Under the additional mild assumptions that the Markov chain moderately
fast finds its equilibrium distribution, we may choose a moderately large integer
S, such that for each s ≥ S it is the case that

P
(s)
0j (t) ≈ P (s)

1j (t) ≈ P (s)
2j (t) ≈ Pj(t),

which is equivalent to

Φ(s)
rj (t) =

∣∣∣∣P (s)
rj (t)− P (s)

2j (t)
∣∣∣∣ ≈ 0.

Under this assumption, we may find also a small integer L such that Vn,
Qn and Wn may be estimated by only calculating the terms w < L and s < S.
This will in no way make the estimation process easy, but at least it will
make it computationally feasible. The strategy is so much the better as the
contributions to KM,n from Vn, Qn and Wn will be small compared to the
contribution from J∗M,n. Testing with different integers L and S shows that this
strategy is satisfying, as the difference between K̂M,n estimated with L and S
terms and K̂M,n estimated with 2L and 2S terms is microscopic when L and S
are properly chosen.

The ML estimators of vectors c and cM are

ĉ = ∂µ(β̂)/∂β,
ĉM = ∂µM (β̂M )/∂βM .

If we have expressions for the partial derivative of the focus parameter
µ, we may calculate the estimates by the plug-in of ML-estimates in these
expressions. A quicker method is to calculate these estimates numerically. We
may, for example, use the numDeriv()-function in R to do this. This is also
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a reliable method in the cases where we have no analytical expression of the
partial derivatives.

With estimates of variance matrices of random score vectors and partial
derivatives on board we then find ML estimates of νwide,n, ν̂M,n and ν̂C,M,n by
plugging in the estimated values described above in (4.2) such that

ν̂wide = ĉ
′
Ĵ−1
n ĉ,

ν̂M,c = ĉ
′
Ĵ−1
n ĈM,nĴ

−1
M,nĉM ,

ν̂M = ĉ
′

M Ĵ
−1
M,nK̂M,nĴ

−1
M,nĉM .

Finally, the squared bias needs to be estimated. We have that a consistent
estimator of the bias of a candidate model is b̂n = µ̂M,n − µ̂. We could then
easily have been led to estimate squared bias by b̂2n. This will not constitute a
consistent estimator, however. We see from

E b̂2M,n = (E b̂M,n)2 + Var b̂M,n

that this estimator tends to overestimate the true squared bias. From Cunen,
Walløe, and Hjort (2019) we have that a consistent estimator of the squared
bias is

b̂sqM = (µ̂M − µ̂)2 − V̂ar b̂M ,

= (µ̂M − µ̂)2 − 1
n

(ν̂wide + ν̂M − 2ν̂M,c).

From this expression, we see that the estimated squared bias may be zero, as
discussed above.
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CHAPTER 5

Simulations

In this chapter, I illustrate the developed methodology by simulation studies.
It will be shown that the simulations confirm the developed methodology.

I start out in Section 5.1 by simulating Markov chains from a wide dynamic
multinomial logit model. For each simulation round, I fit a wide model and
a candidate model to the simulated data and I retrieve maximum likelihood
estimators β̂ and β̂M for each round. These simulated maximum likelihood esti-
mators are shown to be approximately normally distributed with the appropriate
standard deviations.

In the subsequent sections, I do focused model selection on simulated Markov
chains. In Section 5.2 I describe the general setup of these FIC simulations.
I show then that the FIC indeed aims at selecting the model with the lowest
true mean squared error of the focus parameter. I illustrate this result for
three different classes of focus parameters. In Section 5.3 I simulate the FIC
procedure for the transition matrix π12(x). In Section 5.4 I simulate the FIC
procedure for the more involved parameter f12, a parameter that I describe
more closely in this section. In Section 5.5 I illustrate the AFIC procedure
by choosing as focus parameter the effect of the r’th covariate when the past
level of the chain is 1. This aggregated focus parameter is constituted by the
parameters β1,0,r and β1,1,r.

5.1 Normality of Simulated Maximum Likelihood
Estimators

The first simulation study aims to illustrate the normal distribution of estimators
β̂n and β̂M,n of the wide model and candidate models respectively.

I consider the case where given covariate vectors are on the simple form
xi,t = (1, xi,t,1)t. For each i ≤ m we draw a start value x1,i,0 from a uniform
distribution on [0, 1]. For each 0 < t ≤ n I then draw xi,t,1 from a normal
distribution with mean x1,i,t−1.

Conditioned on these simulated covariate values, I let the true distribution
of response variables yi,t be a wide model on the form (2.2). I let the true
parameter values be
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β00 = (0.3, 0.2)t,

β01 = (0.25, 0.1)t,

β10 = (0.11, 0.01)t,

β11 = (0.09, 0.03)t,

β20 = (0.1, 0.14)t,

β21 = (0.08, 0.05)t.

I consider also a candidate model. This will be a dynamic multinomial logit
model on the form of (2.3) with ui,t = xi,t,1 and zi,t = 1. From this we see that
it is a model where the effect of the covariate value xi,t,1 is independent of past
observation level yi,t−1 in the chain, but where the intercepts of the model are
dependent on past observation level.

I set the number of simulated rounds to sim = 104. To reduce the running
time of each simulation round, I make an assumption cruder than the one
described in Section 4.4. Recall that the integers L and S decide the number of
terms we take into consideration when calculating the K̂M,n matrix. To reduce
the running time of each round I let L = 0 and S = 40. A few simulation
rounds where L and S were chosen considerably higher show that the crude
approximation is without any practical consequences in this simulation setup.

I consider first the situations with observation yt from a single, long Markov
chain. I set the number of chains to m = 1 and the number of subsequent
observations in the chain to n = 5000. Simulating 104 such chains from the
true distribution, I fit for each chain the wide model and the candidate model
using the nlm-algorithm in R. The simulation procedure then results in a list of
ten thousand vectors β̂ and a list of ten thousand vectors β̂M . For each round
of simulations, I calculate estimates Ĵn and KM,n as well as the estimated
candidate Information matrix ĴM,n. To avoid computation overload I hold off
on the calculation of K̂M,n.

I first present the results for the simulated β̂ parameter of the wide model.
According to (3.21), these estimated parameter values are approximately nor-
mally distributed with standard deviations n− 1

2 diag(J−1
n ), where Jn is the

true information matrix as defined in Section 2.3. For each k = 0, 1, 2, each
j = 0, 1 and each r = 1, . . . p, it is then the case that the standardized parameter
estimates are approximately normally distributed such that

√
n(β̂k,j,r − βk,j,r)

σk,j,r
≈d N(0, 1).

Here βk,j,r is an element in βtrue, β̂k,j,r is the corresponding element in β̂ and
σk,j,r is the root of the corresponding element in diag{J−1

n }.
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5.1. Normality of Simulated Maximum Likelihood Estimators

Figure 5.1: Histograms of standardized simulated maximum likelihood estimates
of the wide model in the case of data from one Markov chain of length 5000.
The two upper panels use true standard deviations for standardization. The two
lover panels use estimated standard deviations.

In the upper panel of Figure 5.1 are presented histograms of standardized
versions of the simulated β̂000 and β̂201. We see that both histograms have the
form of normal distributions. The situation for the remaining ten parameter
estimates is similar. This is a clear indication that the maximum likelihood
estimates really are normally distributed.

We need to examine that the estimates β̂ are distributed with the right
variances. As each simulation round is independent, it is the case that the
means of the simulated parameter values are distributed according to

Z =
√
sim
√
n(
∑sim
i=1 β̂i,k,j,r − βk,j,r)

σk,j,r
≈d N(0, 1),

In the left plot of Figure 5.2 are plotted the z-values of the mean of the
ten thousand simulated maximum likelihood estimators. The dotted lines are
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Figure 5.2: Standardized values of the mean of simulated maximum likelihood
estimates of each of the twelve parameters in the wide model. Simulated data
are here from one Markov chain at length 5000. In the left panel true standard
deviations are used for standardization. In the right panel estimated standard
deviations are used. The lower dotted line is the 0.025 quantile. The upper
plotted line is the 0.975 quantile.

the 0.025 quantile and the 0.975 quantile of the standard normal distribution.
We see that the z-values of all simulated means are within the 95% confidence
bands. We conclude that the simulations show that the maximum likelihood
estimates indeed are approximately normally distributed.

It should also be the case that the approximate normal distribution holds
with estimated standard deviations. When σ̂k,j,r is the root of the corresponding
element in diag{Ĵ−1

n }, it should for the corresponding parameter in β̂ and βtrue
be the case that

√
n(β̂k,j,r − βk,j,r)

σ̂k,j,r
∼ N(0, 1).

In the lower panels of Figure 5.1 we see that this indeed is the case for β̂000
and β̂201. The situation is parallel for the other ten parameters. The right
panel of Figure 5.2 shows the z-values of the mean of the maximum likelihood
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Figure 5.3: Histograms of standardized simulated maximum likelihood estimates
of the candidate model in the case of data from one Markov chain of length
5000

estimates calculated with estimates σ̂k,j,r. We see that all standardized values
are within the 95% confidence band, as expected.

I consider next the simulated maximum likelihood estimates of the candidate
model. In this case, we do not know the ‘true’ least false parameter value βM,0,
so we have used the mean values of the MLE’s from another 104 simulated
chains. We use this estimated least false value to calculate the ‘true’ least false
KM,n-matrix. This procedure should be permissible as we know that β̂M is a
consistent estimator of βM,0.

As was the case for the maximum likelihood estimates of the wide model, it
should be the case that the true standardized values of the simulated candidate
parameter estimates are approximately normally distributed, both in the case of
Markov independent parameters γ as well as the Markov dependent parameters
b. It should therefore be the case that

√
n(γ̂M,j,r − γM,j,r)

σγ,j,r
≈d N(0, 1),

√
n(b̂M,k,j,r − bM,k,j,r)

σb,k,j,r
≈d N(0, 1).

Histograms of standardized simulated maximum likelihood estimates γ̂0 and b̂20
are plotted in Figure 5.3. We see that the form of the histograms in this plot
is close to a normal distribution. The situation is parallel for the maximum
likelihood estimates of the remaning elements in βM . The standardized value
of the simulated estimates is for an element r now given by
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Figure 5.4: Histograms of standardized simulated maximum likelihood estimates
of the wide model in the case of data from 100 Markov chain of length 50. The
two upper panels use true standard deviations for standardization. The two
lover panels use estimated standard deviations.

β̂M,r − βM,0,r

σM,r
,

where σM,r is the root of the corresponding element in diag{KM,n}.
The empirical standard deviations for these standardized simulated variables

are for each of the elements r

(0.999, 1.002, 1.014, 1.006, 1.000, 1.011, 0.995, 0.998)t.

All estimated standard deviations are very close to one, indicating that the true
variance matrix of random score vector of the candidate model is in fact the
KM,n matrix developed in Chapter 3.

The results should be similar for simulated models fitted to data from
multiple independent chains, as explained in Section 3.5. To verify that this
is the case, we simulate sim = 105 rounds where the number of independent
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Figure 5.5: Standardized values of the mean of simulated maximum likelihood
estimates of each of the twelve parameters in the wide model. Simulated data
are here from 100 Markov chains at length 50. In the left panel true standard
deviations are used for standardization. In the right panel estimated standard
deviations are used. The lower dotted line is the 0.025 quantile. The upper
plotted line is the 0.975 quantile.

chains is m = 100 and the length of each chain is n = 50. We plot histograms
of the resulting standardized β̂ values of the wide model in Figure 5.4. From
these plots, we see that the simulated maximum likelihood estimates of the
wide model are approximately normally distributed.

In Figure 5.5 we have plotted the z-values of the mean value of simulated
maximum likelihood estimates of the wide model. In the left panel are plotted
the case of true standard deviations. We see in this plot that there are three
values that lie somewhat outside the 95%-confidence band. However none of
these three z-values are extreme, so I conclude that the simulations verify that
the β̂ parameters are approximately normally distributed with the right variance
also in the case of multiple chains.

We also calculate the standardized maximum likelihood estimates of the
candidate model in a similar manner as above. Figure 5.6 shows histograms
for two of these standardized estimates. We see also in this case that the
estimates are approximately normally distributed. The situation is similar for
the other elements in β̂M . The empirical standard deviations of the standardized
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Figure 5.6: Histograms of standardized simulated maximum likelihood estimates
of the candidate model in the case of data from 100 Markov chain of length 50

simulated parameters are now

(0.996, 1.008, 1.002, 1.012, 0.999, 1.005, 0.998, 1.007)t,

confirming in this case too, that the variance matrix KM,n of the candidate
model is correctly identified in chapter 3.

For this simulation setup, we also consider the case of estimated standard
deviations for the candidate model. We should have

√
n(γ̂M,j,r − γM,j,r)

σ̂γ,j,r
∼ N(0, 1),

√
n(b̂M,k,j,r − bM,k,j,r)

σ̂b,k,j,r
∼ N(0, 1).

Due to the complexity of the KM,n-matrix, the running time of each simulation
round is high when also K̂M,n is calculated. I therefore restrict the number
of simulations to sim = 1000 in this case. The number of chains is m = 100,
but the length only n = 30. In figure Section 5.1 I have plotted histograms
of the ensuing standardized maximum likelihood estimates. There is too few
simulations to expect that the histograms have the forms of proper normal
distributions. Nevertheless, we see the contours of normal distributions for both
of the two selected elements. The situation is parallel for the other elements in
β̂M . The standard deviations of the normalized variables are in this case

(0.996, 0.997, 0.985, 1.016, 0.996, 0.990, 0.974, 1.016)t,
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Figure 5.7: Histograms of standardized simulated maximum likelihood estimates
of the candidate model in the case of data from 100 Markov chain of length
30. The standardization is here calculated with estimated standard deviations in
each round.

which is close to the theoretical values of 1, considering that we have only
thousand simulation rounds.

I conclude that the simulation study in this section confirms the theory
developed in Chapter 3.

5.2 Setup for FIC Simulation

In the rest of this chapter, I simulate to illustrate the FIC machinery developed
in Chapter 4. I now let there be m = 30 independent dyads, each with
n = 100 observations. The covariate vectors I now extend to be on the form
xi,t = (1, xi,t,1, xi,t,2)t. I let xi,t,1 be a quantitative variable with values between
zero and one, and I let xi,t,2 be a qualitative variable which may take values
zero or one.

For each i ≤ m I draw values xi,t,1 from a normal distribution with mean
xi,t−1,1 in the same manner as in Section 5.1. The values xi,t,2 I draw from a
Bernoulli distribution, where the probabilities depend on the past value xi,t−1,1.

Conditioned on these simulated covariates, I let the true distribution of
dependent observations yi,t be the wide model with parameters
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β00 = (0.4, 0.2, 1.8)t,

β01 = (0.4, 0.3,−0.5)t,

β10 = (0.1, 0.01,−0.41)t,

β11 = (0.1, 0.03, 0.02)t,

β20 = (0.2,−0.14, 0.008)t,

β21 = (−0.2,−0.01,−0.002)t.

This true wide model has thus p = 6 · 3 = 18 parameters.
I define covariate vector xhigh = (1, 0.70, 1)t. At this specific covariate value

the transition matrix is

P(xhigh) =

0.831 0.089 0.080
0.256 0.398 0.346
0.381 0.278 0.342

 .

Comparing each row, we see that the Markov dependency at this covariate
value is considerable: The transition probability from level 0 to level 2 is close
to zero, whereas the transition to level 2 from levels 0 or 1, is about 0.34.

I also define xlow = (1, 0.30, 0)t. The transition matrix is for this specific
covariate value

P(xlow) =

0.376 0.387 0.237
0.344 0.346 0.310
0.390 0.273 0.335


We see that transition probabilities now are more even at different rows. At
xlow the Markov dependency is therefore smaller. Thus for the inhomogeneous
Markov chain generated by the wide model, the degree of Markov dependency
is a function of where one is situated in the space of covariates Γ.

For data simulated from this true wide model, I fit the following list of
models:

• M0: ui,t = 1 zi,t = (x1,i,t, x2,i,t)t

• M1: ui,t = 1 zi,t = (x1,i,t, x2,i,t)t

• M2: ui,t = 1 zi,t = x1,i,t

• M3: ui,t = (x1,i,t, x2,i,t)t zi,t = 1

• M4: ui,t = (1, x1,i,t, x2,i,t)t zi,t = ∅
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The vector ui,t here denotes covariates corresponding to effects that are Markov
independent, whereas zi,t denotes covariates corresponding to effects that are
Markov dependent, as explained in Chapter 2. The first model M0 is the wide
model, the last model M4 is the standard multinomial model. The remaining
three candidate models are intermediate models with different combinations of
Markov-dependent and Markov-independent effects.

For a specific focus parameter µ the true value µtrue = µwide(βtrue) and the
true fic value of the wide model, are found by directly inserting the known value
βtrue into the relevant expressions.

To find the corresponding values µM = µM (βM,0) and true fic values for
each of the candidate models, I simulate 750 rounds chains {yi,t} from the true,
wide model. For each simulation round, I fit candidate models M1, . . .M4 and
get a list of maximum likelihood estimates β̂M for each of the candidate models.
The ‘true’ βM,0 values of each candidate model I estimate by taking the mean
of the simulated maximum likelihood estimates β̂M of the model. I then find
‘true’ values of µM and the true fic value of each candidate model by insertion
of this ‘true’ least false parameter value in the relevant expressions.

Having found for each candidate model the least false values of the focus
parameter and the fic value, I then simulate m = 100 chains of length n = 30 for
sim = 100 rounds. For each round, I fit the wide model and candidate models
to the simulated data and calculate corresponding fic = m̂se values. In the end
I get a list of hundred fic values for each candidate model.

5.3 First Focus Parameter: A Transition Probability

In this section, I illustrate the FIC apparatus for the focus parameter π12(x). I
simulate sim = 100 rounds and proceed as described above in Section 5.2.

I first take π12(xhigh) as focus parameter. As we saw above, this is a covariate
value for which the true matrix P(xhigh) shows considerable Markov dependency.
Because of this Markov dependency, we would expect the multinomial model to
be a bad model for this focus parameter.

The results of the simulations for this focus parameter are shown in Figure 5.8.
Inspired by (Cunen, Walløe, & Hjort, 2019) I show the variance part of the mean
squared error in the left panel of this figure and the squared bias part of the
mean squared error in the right panel of the figure. The red lines show the ‘true’
values for the models M0, . . . ,M4, where the ‘true’ values are calculated from
βtrue in the case of the wide model, and from the least false values estimated
from 750 simulation rounds in the case of the candidate models. The grey
crosses are the estimated ν̂M and b̂sqM in each of the 100 simulation rounds
(the crosses are plotted without truncation to zero). The black line shows the
mean values of these 100 estimates, where negative values of ˆbsqM are truncated
to zero.

The true root mean squared errors of π̂12(xhigh) are 0.0328, 0.0329, 0.0281,
0.0803, 0.1632 for the models M0,M1,M2,M3,M4 respectively. We see that the
second candidate modelM2 gives the lowest mean squared error of this estimate.
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Figure 5.8: Simulation results for µ = π12(xhigh). The variance part of the mse
is given in the left panel. The squared bias part is given in the right panel. The
red lines are the true values, the grey crosses are the variance and squared bias
part in each of the 100 simulation rounds. The black lines are the average scores
of the variance part and the squared bias part.

The multinomial modelM4 is a particularly bad model as we would expect. The
wide modelM0 andM1 are equally good, but somewhat behind the winner. The
mean values of the estimated

√
fic values are 0.0329,0.0329,0.0307,0.0776,0.1621.

The best model M2 is selected in 70% of the runs. The wide model and M1,
which are not that far behind, are selected in 11% of the runs, and 17% of the
runs respectively. Reassuringly, the multinomial model is never selected. The
FIC thus tends to identify the correct model for the focus parameter π12(xhigh).

Next, I consider π12(xlow) as focus parameter. That is: the same transition
probability, but at another covariate value. Recall that at xlow the transition
matrix P(x) showed less Markov dependency. We would therefore expect the
multinomial model to give a more precise estimate of the focus parameter at
this covariate value.

The simulation results for focus parameter π12(xlow) are shown in Figure 5.9.
We see on the scales of the plots in this figure that both variance and squared
bias is less for this focus parameter. The true root mean squared errors of
π̂12(xlow) are 0.0183, 0.0165, 0.0128, 0.0315, 0.0232. The second candidate model
M2 is still the best model. The multinomial model M4 is somewhat behind,

78



5.4. Second Focus Parameter: Long Term Probability

Figure 5.9: Simulation results for µ = π12(xlow). The variance part of the mse
is given in the left panel. The squared bias part is given in the right panel. The
red lines are the true values, the grey crosses are the variance and squared bias
part in each of the 100 simulation rounds. The black lines are the average scores
of the variance part and the squared bias part.

but not that much worse. The average
√
fic-values of the hundred simulations

are 0.0182, 0.0186, 0.0152, 0.0298, 0.0224. The second candidate model M2 is
correctly selected in 51% of the runs. The multinomial model is however selected
in 36% of the runs. This is due to the very low variance of this model. In the
simulation rounds where the multinomial model has zero estimated bias, it will
be considered to be the winner. Still, the correct model is selected as the FIC
winner in the majority of runs also for this focus parameter.

5.4 Second Focus Parameter: Long Term Probability

I then change the focus parameter. We will find the best estimate of the
probability of the chain entering state two before entering state zero when it
starts in state one at time t. We denote this probability f12(x).

This parameter needs some further explanation. In accordance with assump-
tions in Section 2.3 we do not know anything about the covariance distribution
C(x). To calculate f̂12 we need to assume that the covariate vector is constant
at xt in the future. The parameter f12 is then more correctly interpreted as
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the probability of the chain entering state two before entering state zero when
it start in state one at time t, and the world stays the same in every other
respect for all time after t. The probability f12(x) is the long term probability
of entering state two before zero at a specific covariate value x.

As constant covariate value x is assumed, we may use standard theory of
homogenous Markov chains to calculate f12(x). The first state j = 0 is to be
considered as an absorbing state. In accordance with Ross (2014) we define the
probability matrix of only transient states j = 1, 2 as

PT (xi,t) =
(
π11(xi,t) π12(xi,t)
π21(xi,t) π22(xi,t)

)
.

For k, j = 1, 2, let skj denote the expected number of time periods that
the homogenous Markov chain is in state j, given that it starts in state k. We
define the matrix of the expected number of time periods in each transient state

S(xi,t) =
(
s11(xi,t) s12(xi,t)
s21(xi,t) s22(xi,t)

)
This matrix may be found by

S(xi,t) =
(
I − PT (xi,t)

)−1

The probability f12(x) of the chain entering state 2 before entering state 0
when starting in state 1 is then given by

f12(xi,t) = s12(xi,t)
s22(xi,t)

.

In the simulation study, I first consider f12(xhigh) as focus parameter. The
results of the FIC simulations for this focus parameter are given in Figure 5.10.
The true root mean squared errors of f̂12(xhigh) are 0.0493, 0.0493, 0.0592,
0.2183, 0.3501. The wide model M0 and the first candidate model M1 are
equally good models. In fact, M1 is a tiny bit better than M0 in that its root
mean squared error is 0.00005 lower. The worst model is again the multinomial
model. The average

√
fic-values of the hundred simulation rounds are 0.0439,

0.0439, 0.0565, 0.2154, 0.3490, which reflect nicely the true values. The model
chosen the most often is however the model M2! This model is chosen in 43%
of the runs, due to lower bias and a moderately low squared bias. In the runs
where it is considered unbiased, it will be the winner. The wide model M0 and
M1 are chosen in 19% and 38% of the runs respectively. As these two models
are practically identical for f12, the FIC chooses one of the winner models in
57% of the runs so we may conclude that also in this simulation setup, the FIC
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Figure 5.10: Simulation results for µ = f12(xhigh). The variance part of the
mse is given in the left panel. The squared bias part is given in the right panel.
The red lines are the true values, the grey crosses are the variance and squared
bias part in each of the 100 simulation rounds. The black lines are the average
scores of the variance part and the squared bias part.

tends to select the correct model. We remark that although M1 is just a tiny
amount better than the M0, the FIC still selects this model twice as often.

I then consider f12(xlow) as the focus parameter. The results of the FIC
simulations for this focus parameter are given in Figure 5.11. The true root
mean squared errors of f̂12(xlow) are 0.0244, 0.0246, 0.0196, 0.0837, 0.0373. The
second candidate model M2 is now the best model. The average values of the
simulation runs are 0.0243, 0.0266, 0.0211, 0.0819, 0.0365. The best model M2 is
selected in 62% of the runs. The multinomial is selected in 30% of the runs.
Again, this is due to the low variance of the multinomial model, and that it in
some runs will have an estimated bias of zero.

5.5 Third Focus Parameter: Model Parameters

Finally, I choose as focus parameter the effect of covariate xi,t,1 when past level
yi,t−1 is 1. Strictly speaking, this will be an example of the AFIC procedure.
As the effect of xi,t,1 at past level k = 1 consists of βM101 and βM111 we have a
set of focus parameter for which we need to calculate the aggregated estimated
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Figure 5.11: Simulation results for µ = f12(xlow). The variance part of the
mse is given in the left panel. The squared bias part is given in the right panel.
The red lines are the true values, the grey crosses are the variance and squared
bias part in each of the 100 simulation rounds. The black lines are the average
scores of the variance part and the squared bias part.

mean squared error as described in section Section 4.3.
The AFIC results for this composite focus parameter are given in Figure 5.12.

The true aggregated root mean squared errors are 0.458, 0.469, 0.523, 0.304, 0.358.
Surprisingly, the model M3, which deemed amongt the worst models in all the
above settings, is now considered to be the best model. The multinomial model
is considered the second best, only somewhat behind. The average values of
the simulation runs are 0.463, 0.500, 0.551, 0.399, 0.420. The correct model M3
is chosen in 62% of the runs.

This last simulation round illustrates nicely the point that a model may be
give precise estimates of a focus parameter at the same as it is not very precise
in the estimates of a different focus parameter. The FIC is an excellent method
for detecting such varying performance of a model. The simulations studies in
this chapter illustrate that the FIC for dynamic multinomial logit models tends
to select the model which best estimates the focus parameter.
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Figure 5.12: Simulation results for focus parameter set {βM101, βM111}. The
variance part of the mse is given in the left panel. The squared bias part is
given in the right panel. The red lines are the true values, the grey crosses are
the variance and squared bias part in each of the 100 simulation rounds. The
black lines are the average scores of the variance part and the squared bias part.
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CHAPTER 6

Applications to conflict data

As an application of the developed methodology, I analyze the Militarized
Interstate Dispute (MID) data set from the Correlates of War project (Maoz
et al., 2018). This data set contains information on every militarized conflict
between states in the period from 1816 to 2010. The interstate conflicts in MID
are categorized according to the level of severity, thus the data set constitutes
dyadic time series of conflict in concordance with the setup in Chapter 2. I
restrict the analysis in this section to the years 1950 to 2010.

The focus of the analysis will be the effect of democracy on conflict escalation.
As mentioned in the introduction, it is a firmly established result in the study
of international relations that democracies rarely fight each other. Among the
researchers in the field, there is considerable agreement that the ‘absence of war
between democratic states comes as close as anything we have to an empirical
law in international relations’ (Levy, 1989). But are democracies also less prone
to let conflicts escalate? It may be that democracies rarely enter minor conflicts
in the first place, but when states already are in a minor conflict does the level
of democracy have any lowering effect on the probability of escalation into
full-scale war?

I construct ten multinomial Markov models on the form of (2.3) to model
the conflict dynamics between states. With the purpose of finding the model
that best estimates the effect of democracy on escalation, I do model selection
with the Focused Information Criterion.

I use two focus parameters. The first focus parameter is the probability
π12(x), which in this setting means the probability of escalation from minor
conflict in year t to war in year t + 1. The second focus parameter is the
probability f12(x) described in Chapter 5, which in this setting means the
probability of a minor conflict developing into war, before a state of peace is
entered. We learn from this FIC analysis, that democracy does in fact seem to
have a lowering effect on escalation probability. However, the results are not
significant, as would be expected.

In section 6.1 I describe the MID data set more in detail. We describe here
also covariates to be used in the analysis, as well as the data sources of these. In
section 6.2 I argue that the model setup of chapter 2 is appropriate to analyze
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the data. We describe the wide model together with nine candidate models.
In section 6.3 I do ‘traditional’ model selection with the AIC. In section 6.4 I
take on the question of conflict escalation specifically and we do focused model
selection for π12(x). In section 6.5 I do focused model selection for the more
involved parameter f12(x). A summary of the analysis is given in section 6.6.

6.1 The Data

The MID data set contains information on all instances when one state threat-
ened, displayed, or used force against another state in the period from 1816
to 2010. The conflict instances in the data set are categorized according to
hostility levels on a scale from one to five. On this scale level 1 represents no
militarized conflict, level 2 represents a threat, the levels 3, 4 and 5 represent a
display of force, use of force and interstate war, respectively.

The MID data set contains only instances of militarized conflict between
states. Civil wars, however violent, are not included. Neither are state-led
operations on foreign territory, if the operations are not directed against the
foreign state itself. It may be for example, that a country use force in foreign
countries by invitation, as France does in Mali since 2013. Another example
is the American-led invasion of Afghanistan in 2010. This invasion was an
interstate war with a registry of level 5 in 2001 in the MID data set. The Taliban
state was quickly conquered and it was replaced by a US friendly regime that
led the country in the following years. The militarized incidents in Afghanistan
after 2001 were therefore not between states and are not included in the MID
data set.

We will restrict the analysis to the years 1950 to 2010. In this period
there is m = 1089 politically relevant pairs of countries, or dyads. Lemke
and Reed (2001) define a politically relevant dyad to be a dyad consisting of
two neighboring countries or at least one major power. We define neighboring
countries according to the COW data set of contiguous countries (Stinnett,
Tir, Schafer, Diehl, & Gochman, 2002). Thus to take Switzerland an example,
this country constitutes politically relevant dyads with each of its neighboring
countries France, Italy, Austria and Germany. The major powers in the period
are considerd to be the USA, England, France, Russia/USSR, and China.
(Correlates of War Project, 2017) As major powers, they have the capability to
engage in military operations all over the globe and will constitute politically
relevant dyads with every country in the world.

Countries too small, like Monaco, St.Kitts or Solomon Islands are omitted
from the analysis. Countries with missing covariate values, like Surinam, Fiji
or South Vietnam are also omitted from the analysis. Generally, these omitted
countries are countries whose status typically is unclear. However, we have
omitted West Germany and East Germany due to missing GDP. values in the
period.

For each politically relevant pair of countries in the period, we construct a
time series of conflict {yi,t} from the MID data set. Each politically relevant
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Figure 6.1: Conflict levels in four dyads. From above are shown dyads USA -
North Korea, India - Pakistan, United Kingdom - Russia/USSR, Egypt - Israel.

pair of countries are indexed with i = 1, . . .m. The variable t is the number
of years after 1950, such that t = 0 in 1950 and t = 60 in 2010. The length of
the conflict series is ni = 61 if the two countries in the dyad existed over the
whole period. If a country came into existence after 1950, the conflict series
with the country will have its first observation in the year the newest country
in the dyad was founded.

As in Chapter 2, we define three levels of conflict j = 0, 1, 2 for the response
variable yi,t. These three conflict levels are

• 0 - No Conflict: no observation in the MID data set between the two
countries in the dyad in the t’th year. Observations at level 1 in the MID
data set are also included here.1

• 1 - Minor Conflict: An observation at level 2-4 in the MID between the
two countries in the t’th year.

• 2 - Major Conflict: An observation at level 5 (War) in the MID between
the two countries in the t’th year.

With this categorization, the data consists of 50465 observations at the
level zero, 1923 observations at the level one as well as 147 observations at the

1There are no observations at level 1 in the MID data set.
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level two. Not surprisingly the huge majority of observations are at level zero.
Countries are normally at peace with each other. We see that major conflicts
are very rare events. In Section 6.1 we have plotted the conflict series in four
rather conflict-riven dyads.

When it comes to the data for covariate vectors, these are taken from a
variety of sources. The following variables are considered:

• Democracy. As a measure of democracy level in a given country in a
given year, we use the polity score from the Polity IV data set. (Marshall
& Jaggers, 2003) The polity score is a number on the scale from -10 to
10, where 10 means that that the country is fully democratized and -10
means that the country is not democratic at all. We standardize this
variable by adding ten to each polity score and then dividing by twenty.
As each dyad consists of two countries, the covariates used in the analysis
are demhigh and demlow which report highest and lowest democracy scores
in the dyad.

• Gross Domestic Product. Economic development is a factor which influ-
ences a state’s capacity to project power. To measure the difference in
economic development in a dyad, we use data from the 2018 version of
the Maddison project database. (Bolt, Inklaar, de Jong, & van Zanden,
2018) This data set consists of data on GDP pr. capita in each country.
We define covariate GDP.ratio as the logarithm of the ratio between
the highest and the lowest gdp pr. capita in the dyad at each year. We
normalize the variable such that it is on the scale (0,1).

• Military Capacity. The difference in military capacity may affect the
conflict level in a dyad. We use the National Material Capabilities,version
5.0, of the Correlates of War project (J. D. Singer, Bremer, & Stuckey,
1972; J. Singer, 1987) as a measure of the (potential) military strength of
a country. The variable cinc.ratio is the logarithm of the ratio between
the highest and the lowest cinc value in the dyad at each year.

• Major Power. The variable major is an indicator of whether China,
France, Great Britain, Russia/USSR or the USA is a country in the dyad
(Correlates of War Project, 2017). The variable has the value of 1 if this
is the case, 0 otherwise.

• Alliances. The variable alliance is an indicator of whether the countries
in the dyad are allied. The variable has the value of 1 if the countries
have a defense pact, neutrality pact or entente according to the Correlates
of War Alliances dataset. Data on alliances taken from version 4.1 of the
Formal Alliances data set of the COW project. (Gibler, 2009)

• Contiguity. The variable contiguity is an indicator of whether the
countries in the dyad are neighboring countries, according to the Correlates
of War Direct Contiguity data set (Stinnett et al., 2002). Two countries
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are neighboring countries if they have a shared land border, or if a straight
line of maximum 400 miles can be drawn across open water between points
on the border of the two states in the dyad.

6.2 The wide model and candidate models

We will use the multinomial Markov chain models with a logit link to analyze
the conflict time series {yi,t} as a response to the time series of covariate vectors
{xi,t}.

A central assumption is thus that the dyadic conflict chains {yi} are Markov
chains of order one. This is a reasonable assumption. The willingness of war
in a dyad may evidently be different if the dyad saw conflict the previous year
(Beck & Katz, 1998). Given the persistence of war in some dyads however, one
could argue that the Markov dependency should extend further back than just
to past conflict level at t− 1. Some dyadic relationships resemble feuds, whose
origins go even further back than 1950. In figure Section 6.1 we see that the
relationship between India and Pakistan has been tense the whole period. Such
an extension would have complicated the model setup considerably however,
increasing the number of parameters greatly. We do not, therefore, consider
this option.

Another central assumption is that the chains {yi,t} are independent. In
the setting of the MID data, this means that the conflicts in every dyad of
countries are independent. This is of course a simplification. In the age of
globalization, violence in one corner of the world has an effect on the probability
of violence in another corner. It should be reasonable, however, to assume
that the conflict process between countries A and B has no influence on the
conflict process between countries C and D. More problematic is the assumption
that the conflict process between countries A and B is independent of the
conflict process between countries A and C. The Markov chain model defined
in Chapter 2 does not take interdependence between dyads into consideration.
We will discuss this simplification further in Chapter 7.

To do model selection with the FIC, we define a wide model that is to play
the role as the true data-generating mechanism in the analysis. As mentioned in
Chapter 3, this model should include all covariates that a priori are thought to
have some effects on the response variable. Consulting the international relations
literature we find that the covariates defined in Section 6.1 are considered
to be central explanatory variables to dyadic conflict levels. As mentioned
above, it is widely agreed that democracy has an effect on the probability of
conflict. Gartzke (2007) argues that also economic development has an effect
on the probability of war, more advanced economies being, on the one hand,
less dependent on conquerable resources, whereas, on the other hand, highly
developed economies have a higher military capacity and therefore a greater
potential of power projection. Russet and Oneal (2001) include a measure for
alliances in their analysis, and Gowa (1999) claims that much of the ´long peace’
after the second world war is explained by the alliance system of the cold war.
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In accordance with the theoretical framework in this thesis, we let the
wide model have only Markov-dependent effects and also Markov-dependent
intercepts. In the notation of chapter two then, we write the wide model as

M0 : ui,t : ∅
zi,t : 1, demhigh, demlow, gdp.ratio, cinc.ratio,

major, alliance, contiguity.

As there are three conflict levels and two parameters for each covariate at each
level, the wide model has a total of 6 · 8 = 48 parameters.

The candidate models to be considered are the following:

• M1: A model with only Markov-dependent effects, but no indicators.

ui,t : ∅
zi,t : 1, demhigh, demlow, gdp.ratio, cinc.ratio,

• M2 : A model with only democracy variables considered. Markov-
dependent effects and intercept.

ui,t : ∅
zi,t : 1, demhigh, demlow

• M3: A model with only democracy variables considered. Markov inde-
pendent effects, with Markov dependent intercept.

ui,t : demhigh, demlow

zi,t : 1

• M4: Multinomial model.

ui,t : 1, demhigh, demlow, gdp.ratio, cinc.ratio,

major, alliance, contiguity

zi,t : ∅
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• M5: A model with all variables considered, but only Markov indpendent
effects. Markov dependent intercept.

ui,t : demhigh, demlow, gdp.ratio, cinc.ratio,

major, alliance, contiguity

zi,t : 1

• M6: A model with all variables considered. Indicators Markov-independent.

ui,t : major, alliance, contiguity
zi,t : 1, demhigh, demlow, gdp.ratio, cinc.ratio.

• M7: A model with all covariates, except gdp.ratio. Markov dependent
effects and intercept.

ui,t :
zi,t : 1, demhigh, demlow, cinc.ratio, major, alliance, contiguity

• M8: A model with no indicators. Intercept and dem.high Markov-
dependent.

ui,t : demlow, gdp.ratio, cinc.ratio

zi,t : 1, demhigh

• M9: A model with no democracy effects.

ui,t : ∅
zi,t : 1, demhigh, demlow, gdp.ratio, cinc.ratio,

major, alliance, contiguity

6.3 Model Selection with the AIC

Before launching the FIC machinery, I do model selection with the traditional
Aikake Information Criterion (AIC). I do this for the sake of comparison with
the FIC. The AIC-score of a model with parameter β is given by the formula

AIC = 2 `M,n(β̂M,n)− 2 p.
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Figure 6.2: AIC scores of wide model and candidate models. The y-axis shows
the AIC-score. The x-axis has no values as it gives a listing of the models. The
red square is the AIC score of the wide model. The black circles are the AIC
scores of the candidate models. The multinomial model has an AIC score below
the scale of the y-axis and is not in the plot.

Models are ranged after the likelihood minus a penalty term for parameters.
The model with the lowest AIC is deemed to be the model closest to the true
data generating mechanism.

In figure Figure 6.2 I have plotted the AIC score for the wide model and
the candidate models. The y-axis shows the AIC score. In the x-direction, the
models are listed in order of the candidate number, so the x-axis has no values.
We see from the plot that the wide model and M7 are considered approximately
equally good models. In fact, the wide model is considered to be closest to the
true data-generating mechanism in that its AIC score is -11598, whereas the
AIC score of M7 is -11609. The model M7 differs from the wide model only in
that it has no effects of GDP per capita included.

The other candidate models are somewhat behind these two preferred models.
Notice especially that the models M2 and M3 are judged to be rather far away
from the true data-generating mechanism by the AIC. These two models have
only effects of democracy variables included, in addition to an intercept. Worst
ranked of all the candidate models is however the multinomial model. This
model has an AIC score of -16168, way less than all the other models. As
this is the only model that treats the data as independent, the exceedingly
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bad performance of the multinomial model is a sure sign that there is some
Markov-dependency among the data.

6.4 Model selection with the AFIC, first focus parameter

We then select models with regard to the research question. First, we choose
the transition probability π12(x) as the focus parameter. We use the developed
FIC with this focus parameter to select the model deemed best at estimating
π12(x).

Strictly speaking, the selection mechanism is now the Average-FIC, the
AFIC. We are not interested in finding the best estimate of π12(x) for a specific
value of x, but in finding the best estimate of π12(x) over the whole space Γ of
covariates. That is, the aggregated focus parameter is actually

π12 =
∫
π12(x)dC(x)

As the cumulative weight function W (t) discussed in Section 4.3 we use the
empirical distribution of covariates.

Methodologically there is of course nothing wrong in selecting models with
regards to a single covariate value. If we were mainly interested in giving an
estimate of the probability of conflict for a specific dyad in a specific year,
this would have been the right thing to do. If we were interested in giving
the best estimate of π12(x) only for a subset of countries, for example only
for democratic countries, we could have used the AFIC with respect to only
the subset of democratic countries. As the research question is universal in its
scope, we are asking about the effect of democracy on any interstate conflict
at any time. We are thus interested in selecting the model that best estimates
π12(x) over the whole range of covariates. The π12 parameter is, therefore, the
correct choice of focus parameter.

This being said, we need to choose an individual value of x for the purpose
of visualization. We choose the covariate values in the dyad USA- North Korea
in 2010 as our reference. We denote these particular covariate values x∗. The
reason for choosing these values as the reference for visualization is that in 2010
the USA and North Korea were at the opposite extremes of democracy values.
Being fully democratic, USA had a Polity score of 10. Being fully autocratic,
North Korea, had a Polity score of -10. Thus demhigh = 1 and demlow = 0 in
x∗. When reading the plots one needs in keep in mind that π12(x∗) is only
the reference value for plotting, not the only focus parameter of the AFIC
procedure.

Now to the model selection. The FIC chooses the model which strikes the
best balance between estimated variance and bias of the focus parameter. A
model with many relevant parameters will typically have a small bias.On the
other hand, the more parameters a model has, the more variability does it have
in its estimates. We saw above that the vast majority of observations in the
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Figure 6.3: Root-AFIC score and π12(x∗) estimates of wide model and candidate
models. The red square is the wide model. The blue triangle is the model
M7. The green circle is the multinomial model M4. The black circles are the
remaining candidate models.

dyadic time series are at the peace level. There were some observations at the
minor conflict level, and only a few observations at the major conflict level.
As the observations of conflict are so few it would therefore be reasonable to
expect that a model with many parameters include too much variance to give
precise estimates of π12(x). Although the wide model is selected by the AIC to
be the model closest to the true data-generating mechanism, we would not be
surprised if this model, with 48 parameters, was deemed by the FIC to be too
wide for estimation of π12.

This is indeed the case. In Section 6.4 is an AFIC-plot of the wide model
and candidate models. The x-axis in the plot is the

√
AFIC value. The y-axis

is the value of the reference parameter π12(x∗) of the dyad USA-North Korea in
2010. The red square and the blue triangle are the wide model and the model
M7 which was deemed almost as good by the AIC. We see from the plot that
neither of these are considered by the AFIC to give very good estimates of the
focus parameter. Both are unbiased, but they have huge aggregated variances,
423.9 for the wide model and 409.4 for the model M7. The model with the
smallest variance is the standard multinomial model M4. This model is the
green circle in the AFIC plot. The aggregated variance of this model is only
47.1. But its aggregated squared bias is much too high: 11.0. The multinomial
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Figure 6.4: Probability curves of π̂12(x∗) with varying democracy levels. The
black whole line is the estimate of FIC winner M3. The red dotted line is
the estimate of the wide model. The green dotted line is the estimate of the
multinomial model. In the left panel, covariate values are held at x∗ but with
demlow varying. The middle panel has the same setup, but with demhigh varying.
In the right panel covariate values are held at x∗ but with both demlow = demhigh
varying.

model is therefore considered also by the FIC to be the worst model.
We see from the plot that the model chosen by the FIC is actually the very

simple model M3. This model takes only democracy effects demlow and demhigh
into consideration, and it considers these effects to be Markov independent.
In this model, the Markov-dependency is taken care of by the intercept. This
model is considered to have a very low aggregated bias (0.09) for π12, but
due to its simpleness, it has a much lower aggregated variance (202.2) than
the wide model. It is therefore considered to be much more precise for the
estimation of π12. The model M2 is also deemed good. Interestingly, both M2
and M3 were considered by the AIC to be models at some distance from the
true data-generating mechanism.

In Figure 6.4 we have plotted the transition probability of π12(x) for the
value of x∗, but where the democracy-variables are varying. In the left panel,
the curve of π12(x∗) is plotted when the value of demlow is varying. This
corresponds to the counter-factual situation where North Korea had a higher
democracy level in 2010, but all other covariate values in x∗ remained unchanged.
In the middle panel the curve of π12(x∗) is plotted for changing values of
demhigh. This correspond to the counter-factual situation where the USA had a
lower democracy level in 2010, but all other covariate values in x∗ remained
unchanged. In the right panel the probability curve of π12(x∗) is plotted when
demlow = demhigh. This corresponds to the counter-factual situation where
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North Korea and the USA had the same democracy level in 2010, but all other
covariate values in x∗ remained unchanged. The black line is the estimates
π̂12(x∗) of the FIC-winnerM3, the red dotted line is the corresponding estimates
of the wide model. The green dotted line is the estimates of the multinomial
model.

In the left panel of Figure 6.4 , we see that all models estimate a drop in
probability when the country with the lowest democracy score becomes more
democratic. The drop is somewhat greater in the wide model than in the FIC
winner. The two models agree on the estimates for high values of demlow. For
low values of demlow, the wide model seems to overestimate the probability
of escalation π12. The multinomial model underestimates the probability of
escalation for all values, which is not surprising as it does distinguish between
escalation to war and escalation to minor conflict.

The middle panel of Figure 6.4 is interesting. The wide model estimates a
considerable increase in escalation probability π12 when the democracy level of
the most democratic country in the dyad drops. In other words, according to the
wide model, probabilities of escalation rise also if the most democratic country
becomes less democratic. The FIC-winner gives another conclusion, however.
According to this model, the democracy level demhigh has no considerable effect
on escalation probability π12.

When it comes to the right panel of Figure 6.4, both the wide model
and the FIC winner M3 predicts a drop in escalation probability π12 when
demlow = demhigh increases. This drop is less marked in the M3 model since
demlow is the only value with a considerable effect on π12.

In figure Figure 6.5 we have plotted the corresponding curves of π̂12(x∗) of
M3 with 95% pointwise probability bands. See Section 3.6. In the left plot, we
see that there seems to be a significant effect of demlow on π12(x). However, we
can draw no proper conclusion, as the confidence bands are not simultaneous.
On the other hand, it is perfectly warranted to conclude that demhigh has no
effect on π12(x) according to the model M3.

6.5 Model selection with the AFIC, second focus
parameter

Let us now do model selection with the more involved focus parameter f12(x).
Recall from Section 5.4 that this parameter is the probability that the Markov
chain will enter state 2 before it enters state 0, when the chain starts in state 1.
In the context of conflict modeling, this translates into being the probability
that a minor conflict between two countries will develop into a war before peace
is obtained. In many ways, this focus parameter f12 reflects better the focus
question. When we ask about the probability of escalation, we are not merely
interested in the probability of a minor conflict developing into war next year,
but the probability of the minor conflict being the beginning of a chain of
conflicts that in the end will lead to war.
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Figure 6.5: Probability curves of π̂12(x∗) with 95% pointwise confidence bands
for the FIC-winner M3. In the left panel, covariate values are held at x∗ but with
demlow varying. The middle panel has the same setup, but with demhigh varying.
In the right panel covariate values are held at x∗ but with both demlow = demhigh
varying

In the same manner as in Section 6.4, we use the AFIC as we are not merely
interested in f12 for a specific covariate value, but for the whole covariate space
Γ. We use the empirical distribution of covariates as the cumulative weight
function. Also for f12 we use the covariate value x∗ of USA-North Korea in
2010 for visualization.

The AFIC plot of the selection process is given in Figure 6.6. In the plot, we
see that neither the wide model nor the model M7 are considered by the AFIC
to give very precise estimates of f12 . As was the case for π12 these models are
unbiased, but they are estimated to have much too high aggregated variance to
be the preferred models. The model which is the preferred model is model M5.
This model has the same structure as the AFIC-winner M3 for π12, in that it
has only Markov independent effects and Markov dependent intercepts. It is a
more complex model however, as it takes all covariates into consideration. The
very simple model M3 is however considered to give only somewhat less precise
estimates of f12. As in the case above, the multinomial model is considered to
have a huge bias, thus being a very bad model, also for the focus parameter f12.

In Figure 6.7 we have plotted curves for the value f12(x∗) with democracy
values changing in the same manner as in Figure 6.4. We see from the left
panel where we let demlow change that both the FIC-winner M5 and the wide
model estimate a considerable drop in f12 when the least democratic state in
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Figure 6.6: Root-AFIC score and f12(x∗) estimates of wide model and candidate
models. The red square is the wide model. The blue triangle is the model
M7. The green circle is the multinomial model M4. The black circles are the
remaining candidate models.

the dyad becomes more democratic. In the range of high values of demlow they
agree in their estimates. In the range of low values f demlow the wide model
seems to be overestimating the probability of escalation. In the middle panel,
we see that the probability curves are almost parallel for the wide model and
the FIC-winner M5, meaning that they agree in their estimates on the effect of
demhigh. When the most democratic state gets less democratic, the probability
f12 increases. The right panel shows curves for demlow = demhigh, showing the
same pattern of a clear lowering of escalation probabilities when democracy
scores increase.

In figure Figure 6.8 the curves of f12 are plotted with 90% pointwise confi-
dence bands for the AFIC winnerM5. A more conservative story is told in these
plots. Although there is a clear tendency of lowering escalation probabilities f12
with increasing democracy scores, we see from these plots that the effect is not
significant. Concentrating on the rightmost plot, we see that there is a small
set of values (0.42,0.45) that are inside the confidence bands for all democracy
values. The bands are pointwise confidence bands, but as the simultaneous
confidence will be wider than the pointwise bands, we may draw the conclusion
that although there is a clear tendency to lowering probabilities with increasing
democracy scores, the effect of democracy on f12 is not significant, not even at
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Figure 6.7: Probability curves of f12(x∗) with varying democracy democracy
levels. The black whole line is the estimate of FIC winner M5. The red dotted
line is the estimate of the wide model. The green dotted line is the estimate of
the multinomial model. In the left panel, covariate values are held at x∗ but with
demlow varying. The middle panel has the same setup, but with demhigh varying.
In the right panel covariate values are held at x∗ but with both demlow = demhigh
varying.

the α = 0.1 level.

6.6 Summary of the MID Analysis

To summarize what we have learned from the analysis of the MID data set.
First, we have seen that the models deemed by the FIC to give the best

estimates of escalation probabilities π12 and f12 are much simpler models than
the wide model prefered by the AIC. Whereas the wide model has Markov-
dependency in all effects, the modelsM3 andM5 chosen by the FIC have Markov
dependency only in the intercepts, the other effects are Markov independent.
This is not least due to the scarceness of conflict observations compared to
the abundance of peace observations. The wide model is good at estimating
transitions at the 0-1 level, it is too wide to analyze transitions at the 1-2 level.

When it comes to the results of the analysis, there seems to be a clear
tendency of lowering probabilities with increasing democracy scores. This is
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Figure 6.8: Probability curves of f̂12(x∗) with 90% pointwise confidence bands
for the FIC-winner M5. In the left panel, covariate values are held at x∗ but with
demlow varying. The middle panel has the same setup, but with demhigh varying.
In the right panel, covariate values are held at x∗ but with both demlow = demhigh
varying.

the case both for the probability π12 of direct escalation and the more involved
but also more interesting probability f12 of long term escalation. There may be
sufficient evidence that there is a significant effect of demlow on the probability
of war next year, but we need simulataneous confidence bands to conclude with
confidence. When it comes to the more interesting question of f12, the lowering
effect of democracy scores is not significant.
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CHAPTER 7

Concluding Remarks

The achievements of this thesis are fourfold. First, I have defined a dynamic
multinomial logit model for inhomogenous Markov chains. This model is closely
related to the model developed by Kaufmann (1987), Fahrmeir and Kaufmann
(1987), Fokianos and Kedem (1998, 2003) and Kedem and Fokianos (2002). It
differs however in the way past values of the Markov chains are treated. An
advantage of the dynamic multinomial model as it is defined in this thesis is
that it allows for asymptotic theory of maximum likelihood estimators under
misspecification.

The second achievement of the thesis has been the development of this
asymptotic theory of maximum likelihood estimators under misspecification. I
have shown that maximum likelihood estimates β̂ and β̂M of the wide model and
the candidate model respectively, have approximate joint normal distribution

( √
n(β̂ − βtrue)√

n(β̂M − βM,0,n)

)
≈d N

(
0,
(

J−1
n J−1

n CM,nJ
−1
M,n

J−1
M,nCM,nJ

−1
n J−1

M,nKM,nJ
−1
M,n

))
for large samples. I have found expressions for the variance matrices Jn, KM,n

and CM,n and I have proposed a strategy for estimation of these matrices.
The third achievement of this thesis has been the development of a Focused

Information Criterion for the defined dynamic multinomial logit models. I
have done this in the scheme of the FIC with a fixed wide model. On the
basis of the joint distribution of maximum likelihood estimators β̂ and β̂M I
have demonstrated that also maximum likelihood estimates µ̂ and µ̂M of focus
parameters in the wide model and the candidate model have approximate joint
normal distribution

( √
n(µ̂− µtrue)√

n(µ̂M − µM,0,n)

)
≈d N

(
0,
(
νwide νM,c

νM,c νM

))
for large samples. This approximate normal distribution of focus parameter
estimates makes it possible to estimate mean squared errors of µ̂ and µ̂M . It
thus allows ranking of the wide model and candidate models by their precision
in estimators of the focus parameter µ, which is the essence of the FIC.
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Finally, I have used the developed FIC for dynamic multinomial logit models
to analyze the Militarized Interstate Dispute data set. The focus parameter of
the analysis was the probability of conflict escalation. The analysis showed a
clear tendency towards reduction of escalation probability when countries are
more democratic. Results did not turn out to be significant, however.

Through simulations and the analysis of the MID data set we have learned
that the FIC is indeed a fruitful selection strategy when it comes to dynamic
modeling. We have seen that the FIC may select different models depending
on which focus parameter we are interested in estimating. With the FIC we
may discover modeling aspects of the dynamic process that are lost of sight
when global criteria like the AIC is used. We have seen that surprisingly simple
models are preferred by the FIC for estimation of conflict escalation although a
much more complex model is selected by the AIC.

We have however also encountered considerable estimation challenges. An
indisputable weak point of the developed FIC with a fixed wide model is the
complexity of the covariance matrix KM,n of the random score vector under
misspecification. This complexity makes the calculation of estimates very hard
and time consuming. The KM,n consists of an astronomical number of terms
and taking them all in account is computationally infeasible. We have argued
that we may reduce the number of terms drastically under the mild assumption
that the Markov chain moderately fast finds its equilibrium distribution over the
whole covariate space Γ. The estimation of the matrix will still be a complicated
affair however.

I finish this thesis by proposing some additional themes that deserve to be
further explored.

7.1 Alternative Data

I have used the developed methodology to analyze armed conflict data from the
MID data set. Conflict research is however only one of many fields where the
developed methodology model may find its application. The defined multinomial
logit model and its associated FIC may be used to analyze any kind of dynamic
systems where the Markov assumption is reasonable. As long as data from
different chains are assumed to be independent, the developed methodology is
a promising alternative to traditional methods.

The examples of dynamic systems that fulfills such criteria are numerous. In
the introduction we mentioned that Markov chain models are used in a healthy
diversity of fields. Medicine, genetics, engineering, economics and meteorology
were mentioned. Concrete examples of data sets are given in Kedem and
Fokianos (2002). These authors use dynamic multinomial models to analyze
DNA sequence data, to make soccer predictions, to analyse sleep phases of
humans.

The developed FIC should definitely be used to analyze data also from these
diverse fields.

102



7.2. Alternative Modeling

7.2 Alternative Modeling

The methodology in this thesis may be extended.
First, I have assumed throughout the thesis that the number of categories of

the Markov chains is K = 3. It should not be difficult to generalize the theory
to other choices of K. The case of K = 2 would even simplify matters. The
choice of two categories would reduce the multinomial distribution to a binomal
distribution and the binomial distribution is even simpler mathematically. It
should also be possible to increase the number K of categories. An increase of
categories would however increase the number of parameters extensively and the
dreadful KM,n matrix would pose even greater estimation challenges. Formally
however, the theory would have remained the same.

Secondly, I have developed the dynamic multinomial model within the
framework of generalized linear models. As link function I have used the logit
function. This has ensured the crucial property of a concave likelihood function,
which guarantees unique least false parameter values. Not least beacuse of this
mathematicall finesse the logit is a popular choiche.

It is possible to use other link functions for the dynamic multinomial model.
A reasonable choice could for example be to consider the probit link. This would
have changed the concrete mathematical expressions of matrices, score functions,
likelihood and the like, but the general framework of the development would
have remained the same. With the same proceedings we could hopefully have
developed large sample distributions of ML estimates under misspecification
and a FIC for dynamic multinomial probit models too. Other link functions
should also be tried.

7.3 FIC in a Local Misspecification Context

The Focused Information Criterion developed in thesis assumes a fixed true
model. Originally however the FIC was developed by N. L. Hjort and Claeskens
(2003) and Claeskens and Hjort (2008b) in a local misspecification context. In
this original version of the FIC, the true model is considered to be changing
with sample size. The true multinomial logit model would in this version have
been on the form

f(y|x, θ0, γ0 + δ√
n

).

This model would only be O(n− 1
2 ) away from a narrow model on the form

f(y|x, θ0, γ0).

In the orignial FIC, candidate models are considered to lie between these two
models, which means that they need to be submodels of the true wide model.

The potential advantage of this orignal FIC approach is that we may get
rid of the dreadful KM,n matrix. The variance matrices of random score
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vectors should in this local misspecification setting be attainable simply through
manipulations of the comparatively simple matrix Jwide, which in the original
FIC denotes the information matrix of the wide model, evaluated at the narrow
model.

The development of such an original FIC for the dynamic mulitnomial logit
model should be tried. It would surely be no easy undertaking. Plausibly it
would be just as elaborate as the present development. But the rewards could
be considerable in that the resulting expressions in this original FIC scheme
could be simpler.

On the other hand, the original FIC approach involves reduced flexibility. As
candidate models need to be submodels of the wide model, we may loose many
of the interesting candidate models. In the MID analysis, we saw for example
that the FIC winners had no Markov-dependent effects. These models were not
submodels of the wide model, which had only Markov dependent effects. The
multinomial model would also be excluded in this scheme. Thus in the original
FIC scheme we would have lost the attractive of the dynamic multinomial logit
model defined in this thesis, which consits in the accomodation of models with
different Markov structure in the effects. Only by working out this original
FIC for dynamic multinomal logit models could we assess the advantages and
drawbacks however.

7.4 Interaction between Chains

Another issue for discussion is potential interaction effects between Markov
chains. A central assumption of the methodology developed in this thesis is the
assumption that different Markov chains are independent. This is not always a
reasonable assumption for real dynamic systems. Often there is a considerable
interaction effect between chains. Could the developed methodology be extended
to allow for such interaction effects between Markov chains?

In the context of conflict modelling this is a pressing matter. We discussed
the problem briefly in Section 6.2. In the analysis of the MID data set we
assumed that each chain of observations of conflict between two countries are
independent. This implied that the conflict observations between countries A
and B were treated as independent from conflict observations between countries
A and C, clearly a crude assumption.

With this interaction challenge in mind Cranmer, Desarmais, and Menninga
(2016) argue that conflict researchers should abandon dyadic designs completely.
As a response to this Poast (2016) argues that dyadic designs are reasonable
as long as relevant variables which account for interaction between dyads are
included in the model setup. Such a relevant variable could for example be an
indicator of whether there was conflict time t− 1 in any of the chains in which
country A is one of the parts.

Could such an inclusion of interaction effects be achieved in the framework of
this thesis? Probably not. That is, under correct model specification interaction
would plausibly pose no problem. We have seen in Section 3.2 that the matrix
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Jn involves no terms including t− 1, and this would probably not change if we
included past interaction in the model.

Under model misspecification the matter would have been different. In-
cluding past interaction effects would here break all the gates of Mordor wide
open. The resulting correlation structure would result in a candidate random
score variance matrix that would make the dreadful KM,n matrix look like an
annoying little gamin in comparison.

However, the problem of interaction effects could maybe be alleviated in the
original FIC approach. As we in this FIC scheme only consider the information
matrix of the wide model, it would plausibly be the case that past interaction
effects would case no extra complexity. This constitutes definitely another
argument for investigating the original FIC version with regard to the dynamic
multinomial logit model defined in this thesis. The loss in flexibility in the
choice of candidate models could maybe be outweighed by inclusion of models
which take interaction into consideration. The answer to this question only
future research can reveal.
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APPENDIX A

Appendix

In this appendix I give proofs and expressions that are too comprehensive to
be included in the text. For readability, I write

Φ(s)
kj (t) =

∣∣∣∣P (s)
kj (t)− P (s)

2j (t)
∣∣∣∣.

I also write in this appendix

Σrj|k(t) = Covwide

{
yt,r, yt,j

∣∣∣∣yt−1,k = 1
}

In Appendix A.1 I give a proof of Lemma 3.1.1 in Section 3.1. In Ap-
pendix A.2 I find an expression for the unconditional variance of yt. In Ap-
pendix A.3 I prove that for functions on the general form ψtkj the sum of
covariances is only op(1) away from an N -dimensional function of covariate
values. In Appendix A.4 I give expressions for matrices VM,n, QM,n and WM,n

which together with KM,n constitute the complex covariate matrix KM,n. In
Appendix A.5 I give a short note on R scripts used in this thesis.

A.1 Proof of the Correlation Structure.

We first prove Lemma 3.1.1 given in Section 3.1

Lemma A.1.1. Let covaritate vectors x0, x1, . . . , xt be generated by some un-
known covariate distribution C(x) in accordance with the assumptions in Sec-
tion 2.3. Given these covariate values, let {yi,t} be a Markov chain generated by
the wide model. Define functions ψt,k,j and ψ∗t,k,j as defined in Equation (3.1).
It is then the case for all t > 0 that

lim
t→∞

t−1∑
s=0

Covwide

{
ψt,k,j , ψt−s,k′,j′

}
<∞.
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Proof. Define first

λ
(t)
kj = Ewide

{
f

(t)
kj ytj + g

(t)
kj

∣∣∣∣yt−1,k = 1
}

= f
(t)
kj πkj(xt) + g

(t)
kj ,

and

λ
∗(t)
kj = Ewide

{
f
∗(t)
kj ytj + g

∗(t)
kj

∣∣∣∣yt−1,k = 1
}

= f
∗(t)
kj πkj(xt) + g

∗(t)
kj .

Consider for s = 0

Covwide

{
ψt,k,j , ψ

∗
t,k′,j′

}
= Covwide

{(
f

(t)
kj ytj + g

(t)
kj

)
yt−1,k,

(
f
∗(t)
k′j′ ytj′ + g

∗(t)
k′j′

)
yt−1,k′

}
.

By the law of total covariance, we may write this as

= Ewide Covwide

{(
f

(t)
kj ytj + g

(t)
kj

)
yt−1,k,

(
f
∗(t)
k′j′ ytj′ + g
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}
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f
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k′j′ ytj′ + g

∗(t)
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)
yt−1,k′
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}}
= Ewide Covwide
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δkk′ Ewide yt−1,k′

+ λ
(t)
kj λ
∗(t)
k′j′ Covwide

{
yt−1,k, yt−1,k′

}
. (A.1)

We know that

∣∣∣∣Covwide {yt,k, yt,k′}
∣∣∣∣ =

∣∣∣∣Ewide yt,kyt,k′ − Ewide yt,k Ewide yt,k′

∣∣∣∣ < 1.

As f (t)
kj , f

∗(t)
kj , λ

(t)
kj and λ∗(t)kj are uniformly bounded functions for all k, j, t, there

exists an upper bound G, such that
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Covwide

{
ψt,k,j , ψ

∗
t,k′,j′

}
<

∣∣∣∣f (t)
kj f

∗(t)
k′j′ + λ

(t)
kj λ
∗(t)
k′j′

∣∣∣∣ < G.

Thus the lemma holds for s = 0.
Consider then s > 0 and t > s. Let y0:t−1 denote all observations in the

chain y until t− 1. We may then use the law of total covariance to write

Covwide

{
ψt,k,j , ψ

∗
t−s,k′,j′

}
= Covwide
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f

(t)
kj ytj + g

(t)
kj

)
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,
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(
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)}
= Covwide

{
λ

(t)
kj yt−1,k, ψ

∗
t−s,k′,j′

}
.

The last equation follows since ψ∗t−s,k′,j′ is a constant when we condition y0:t−1.
Now, if s > 1 we may use the law of total covariance again. This time

conditioning on y0:t−2. We have that

Ewide
(
yt−1,k | yt−2,r = 1

)
=

2∑
r=0

πrk(xt−1)yt−2,r.

With the same procedure of conditioning as in the last case, we get when we
condition on y0:t−2

Covwide
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P
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}
.
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Using this strategy of conditioning a total of s times, we will get

Covwide

{
ψt,k,j , ψ

∗
t−s,k′,j′

}
= Covwide
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kj
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yt−s−1,k′

}
.

Conditioning again on yt−s−1, we reach the expression

Covwide

{
ψt,k,j , ψ

∗
t−s,k′,j′

}
= λ

(t)
kj f
∗(t−s)
k′j′

2∑
r=0

P
(s−1)
rk (t− s)Σrj′|k′(t− s) Ewide yt−s−1,k′

+ λ
(t)
kj λ

(t−s)
k′j′

2∑
r=0

P
(s)
rk (t− s− 1) Covwide

{
yt−s−1,r, yt−s−1,k′

}
. (A.2)

Now, we have that

2∑
r=0

P
(s−1)
rk (t− s− 1) Covwide

{
yt−s−1,r, yt−s−1,k′

}

=
1∑
r=0

P
(s−1)
rk (t− s− 1) Covwide

{
yt−s−1,r, yt−s−1,k′

}
+ P

(s−1)
2k (t− s− 1) Covwide

{
1− yt−s−1,0 − yt−s−1,1, yt−s−1,k′

}
=

1∑
r=0

(
P

(s−1)
rk (t− s− 1)− P (s−s−1)

2k (t− 1)
)

Covwide

{
yt−s−1,r, yt−s−1,k′

}

=
1∑
r=0

Φ(s−1)
rk (t− s− 1) Covwide

{
yt−s−1,r, yt−s−1,k′

}
. (A.3)

Inserting this in (A.2) , we get
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Covwide

{
ψt,k,j , ψ

∗
t−s,k′,j′

}
= λ

(t)
kj f
∗(t−s)
k′j′

1∑
r=0

Φ(s−1)
rk (t− s)Σrj′|k′(t− s) Ewide yt−s−1,k′

+ λ
(t)
kj λ

(t−s)
k′j′

1∑
r=0

Φ(s)
rk (t− s− 1) Covwide

{
yt−s−1,r, yt−s−1,k′

}
. (A.4)

We know from Section 2.4 that |Φ(s)
rk (t)| < κs for all t, s, where κ is the

ergodic coefficient of the inhomogenous Markov chain. Taking absolute values
of (A.4), we have that there for all given covariates x0, x1, . . . xt and for each
s < t, there is a constant G such that

∣∣∣∣Covwide

{
ψt,k,j , ψ

∗
t−s,k′,j′

}∣∣∣∣ ≤ 2
∣∣∣∣λ(t)
kj f
∗(t−s)
k′j′ κs−1

∣∣∣∣+ 2
∣∣∣∣λ(t)
kj λ

(t−s)
k′j′ κ

s

∣∣∣∣ < Gκs−1.

Thus

lim
t→∞

∣∣∣∣t−1∑
s=0

Covwide

{
ψt,k,j , ψ

∗
t−s,k′,j′

}∣∣∣∣ < G+G

∞∑
s=1

κs−1 <∞

as κ < 1. This proves the theorem.
�

A.2 Unconditional Variance of Response Variables

In this section we find exact expressions for the covariance between ψt,k,j and
ψt,k′,j′ .

Lemma A.2.1. Let covaritate vectors x0, x1, . . . , xt be generated by some un-
known covariate distribution C(x) in accordance with the assumptions in Sec-
tion 2.3. Given these covariate values, let {yi,t} be a Markov chain generated
by the wide model. For all given covariates x0, x1, . . . xt, it is for each s such
that 0 ≤ s < t the case that

Covwide

{
yt−s,j , yt−s,j′

}
=
t−s−1∑
w=0

2∑
l=0

1∑
k=0

1∑
k′=0

Φ(w)
kj (t− s− w)Φ(w)

k′j′(t− s− w)

· Σkk′|l(t− s− w) Ewide yt−s−w−1,l

+
1∑
k=0

1∑
k′=0

Φ(t−s)
kj (0)Φ(t−s)

k′j′ (0) Covwide

{
y0,k, y0,k′

}
. (A.5)
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Proof. We use the law of total covariance to write

Covwide

{
yt−s,j , yt−s,j′

}
= Ewide Covwide

{
yt−s,j , yt−s,j′

∣∣∣∣yt−s−1

}
+ Covwide

{
Ewide

{
yt−s,j

∣∣∣∣yt−s−1

}
,Ewide

{
yt−s,j′

∣∣∣∣yt−s−1

}}
.

For the first term write

Ewide Covwide

{
yt−s,j , yt−s,j′

∣∣∣∣yt−s−1

}
=

2∑
k=0

Σjj′|k(t− s) Ewide yt−s−1,k.

For the second term write

Covwide

{
Ewide

{
yt−s,j

∣∣∣∣yt−s−1,k

}
,Ewide

{
yt−s,j′

∣∣∣∣yt−s−1,k′

}}
= Covwide

{ 2∑
k=0

πkj(xt−s)yt−s−1,k,

2∑
k′=0

πk′j′(xt−s)yt−s−1,k′

}

=
2∑
k=0

2∑
k′=0

P
(1)
kj (t− s− 1)P (1)

k′j′(t− s− 1)

· Covwide

{
yt−s−1,k, yt−s−1,k′

}
.

Conditioning further, we get

Covwide

{
yt−s,j , yt−s,j′

}
=
t−s−1∑
w=0

2∑
l=0

2∑
k=0

2∑
k′=0

P
(w)
kj (t− s− w)P (w)

k′j′(t− s− w)

· Σkk′|l(t− s− w) Ewide yt−s−w−1,l

+
2∑

k′=0

2∑
k=0

P
(t−s)
kj (0)P (t−s)

k′j′ (0) Covwide

{
y0,k, y0,k′

}
.

From (A.3) we know that this is equivalent to the expression stated in the
lemma. �

Inserting (A.5) into (A.1), we we get the following general expression for
s=0:
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Covwide

{
ψt,k,j , ψ

∗
t,k′,j′

}
= f

(t)
kj f

∗(t)
kj Σjj′|k(t)δkk′ Ewide yt−1,k′

+ λ
(t)
kj λ
∗(t)
k′j′

t−s−1∑
w=0

2∑
l=0

1∑
r=0

1∑
r′=0

Φ(w)
rk (t− s− w)Φ(w)

r′k′(t− s− w)

· Σrr′|l(t− s− w) Ewide yt−s−w−1,l

+ λ
(t)
kj λ
∗(t)
k′j′

1∑
r=0

1∑
r′=0

Φ(t)
rk (0)Φ(t)

r′k′(0) Covwide

{
y0,r, y0,r′

}
,

Inserting (A.5) into (A.4), we we get the following general expression for s > 0:

Covwide

{
ψt,k,j , ψ

∗
t,k′,j′

}
= λ

(t)
kj f
∗(t−s)
k′j′

2∑
r=0

P
(s−1)
rk (t− s)Σrj′|k′ Ewide yt−s−1,k′

+ λ
(t)
kj λ
∗(t−s)
k′j′

t−s−1∑
w=0

2∑
l=0

1∑
r=0

1∑
r′=0

Φ(s+w)
rk (t− s− w)Φ(w)

r′k′(t− s− w)

· Σrr′|l(t− s− w) Ewide yt−s−w−1,l

+ λ
(t)
kj λ
∗(t−s)
k′j′

1∑
r=0

1∑
r′=0

Φ(t)
rk (0)Φ(t−s)

r′k′ (0) Covwide

{
y0,r, y0,r′

}
.

Both for s = 0 and s > 0 the last term is negligible when t is of moderate size
or higher.

A.3 Closeness to Finite Functions

The following lemma is used in the proof of Theorem 3.2.1.

Lemma A.3.1. Let covaritate vectors x0, x1, . . . , xt be generated by some un-
known covariate distribution C(x) in accordance with the assumptions in Sec-
tion 2.3. Given these covariate values, let {yi,t} be a Markov chain generated
by the wide model. Let ψt,k,j be a function in accordance with the definition
above. For each ε > 0 there exists an N and a function fN (xt, . . . , xt−N ) such
that for all covariates x0, x1, . . . xt it is the case that

lim
t→∞

P

(∣∣∣∣ ∞∑
s=1

Covwide
{
ψt,k,j , ψ

∗
t−s,k′,j′

}
− fN (xt, . . . xt−N )

∣∣∣∣ ≥ ε) = 0.
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Proof. Let N1, N2, N3, N4 be integers. Define N = max(N1 +N2, N1 +N3 +N4).
Define for readability the variables tpast,1 = t−s−N2, tpast,2 = t−s−w−2−N4
and tsw = t− s− w. Define for k, k′, j, j′ = 0, 1, 2 the function

f(xt, . . . xt−N )

=
N1∑
s=1

{
λ

(t)
kj f
∗(t−s)
k′j′

1∑
r=0

Φ(s−1)
rk (t− s)Σrj′|k′(t− s)P (N2)

k′k′ (tpast,1)

+ λ
(t)
kj λ
∗(t−s)
k′j′

N3∑
w=0

2∑
l=0

2∑
q=0

1∑
r=0

Φ(s+w)
rk (tsw − 1)Φ(w)

qk′ (tsw − 1)

· Σrq|l(tsw − 1)P (N4)
ll (tpast,2)

}
.

Consider for each t ≥ N

∣∣∣∣ ∞∑
s=1

Covwide
{
ψt,k,j , ψ

∗
t−s,k′,j′

}
− fN (xt, . . . xt−N )

∣∣∣∣
=
∣∣∣∣ ∞∑
s=N1+1

Covwide
{
ψt,k,j , ψ

∗
t−s,k′,j′

}
+

N1∑
s=1

λ
(t)
kj f
∗(t−s)
k′j′

1∑
r=0

Φ(s−1)
rk (t− s)Σrj′|k′(t− s)

·
{

Ewide yt−s−1,k′ − P (N2)
k′k′ (tpast,1)

}
+

N1∑
s=1

λ
(t)
kj λ
∗(t−s)
k′j′

∞∑
w=N3+1

2∑
l=0

2∑
q=0

1∑
r=0

Φ(s+w)
rk (tsw − 1)Φ(w)

qk′ (tsw − 1)

· Σrq|l(tsw − 1) Ewide ytsw−2,l

+
N1∑
s=1

λ
(t)
kj λ
∗(t−s)
k′j′

N3∑
w=0

2∑
l=0

2∑
q=0

1∑
r=0

Φ(s+w)
rk (tsw − 1)Φ(w)

qk′ (tsw − 1)

· Σrq|l(tsw − 1)Ewide ytsw−2,l − P (N4)
ll (tpast,2)

∣∣∣∣.
By repetead us of the triangle equality, we get
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∣∣∣∣ ∞∑
s=1

Covwide
{
ψt,k,j , ψ

∗
t−s,k′,j′

}
− f(xt, . . . xt−N )

∣∣∣∣
≤
∣∣∣∣ ∞∑
s=N1+1

Covwide
{
ψt,k,j , ψ

∗
t−s,k′,j′

}∣∣∣∣
+

N1∑
s=1

∣∣∣∣λ(t)
kj f
∗(t−s)
k′j′

1∑
r=0

Φ(s−1)
rk (t− s)Σrj′|k′

∣∣∣∣∣∣∣∣Ewide yt−s−1,k′ − P (N2)
k′k′ (tpast,1)

∣∣∣∣
+

N1∑
s=1

∣∣∣∣λ(t)
kj λ
∗(t−s)
k′j′

∞∑
w=N3+1

2∑
l=0

2∑
q=0

1∑
r=0

Φ(s+w)
rk (tsw − 1)Φ(w)

qk′ (tsw − 1)

· Σrq|l(tsw − 1) Ewide ytsw−2,l

∣∣∣∣
+

N1∑
s=1

∣∣∣∣λ(t)
kj λ
∗(t−s)
k′j′

N3∑
w=0

2∑
l=0

2∑
q=0

1∑
r=0

Φ(s+w)
rk (tsw − 1)Φ(w)

qk′ (tsw − 1)Σrq|l(tsw − 1)
∣∣∣∣

·
∣∣∣∣Ewide ytsw−2,l − P (N4)

ll (tpast,2)
∣∣∣∣.

We know that f∗kj(t),λkj(t) and λ∗kj(t) are uniformly bounded for all k, j, t. In
accordance with the assumptions on C(x) in Section 2.3 we may then for each
ε > 0 find an N1 ∈ N such that

lim
t→∞

P

(∣∣∣∣ t−1∑
s=N1+1

Covwide
{
ψt,k,j , ψ

∗
t−s,k′,j′

}∣∣∣∣ ≥ ε

4

)
= 0.

For such a pair ε and N1, we may also find N3 ∈ N such that for each s ≤ N1
it is the case that

lim
t→∞

P

(∣∣∣∣λ(t)
kj λ
∗(t−s)
k′j′

t−s−2∑
w=N3+1

2∑
l=0

2∑
q=0

1∑
r=0

Φ(s+w)
rk (tsw − 1)Φ(w)

qk′ (tsw − 1)

Σrq|l(tsw − 1) Ewide ytsw−2,l

∣∣∣∣ < ε

4N1

)
= 0.

From Section 2.4 we know that limt→∞ Ewide yt,k is the limiting proba-
bility πk which exists as the chain is strongly ergodic. We have that πk =
lims→∞ P(s)

kk (t) for all t.
From the assumptions on the covariate distribution in REF in Section 2.3,

we see that this implies that for all x0, x1, . . . xt it is the case for every k = 0, 1, 2
there exists for each ε∗ > 0 an N∗ ∈ N such that

lim
t→∞

P

(∣∣∣∣Ewide yt,k − P (N∗)
kk (t−N∗)

∣∣∣∣ ≥ ε∗) = 0.
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By using the triangle inequality, it follows that there for each ε > 0 is an integer
N2 ∈ N such that

lim
t→∞

P

(∣∣∣∣λ(t)
kj f
∗(t−s)
k′j′

1∑
r=0

Φ(s−1)
rk (t− s)Σrj′|k′(t− s)

∣∣∣∣∣∣∣∣Ewide yt−s−1,k′ − P
(N2)(tpast,1
k′k′

∣∣∣∣ ≥ ε

4N1

)
= 0.

Equivalently, there exists an integer N4 ∈ N such that

lim
t→∞

P

(∣∣∣∣λ(t)
kj λ
∗(t−s)
k′j′

N3∑
w=0

2∑
l=0

2∑
q=0

1∑
r=0

Φ(s+w)
rk (tsw − 1)Φ(w)

qk′ (tsw − 1)Σrq|l(tsw − 1)
∣∣∣∣

·
∣∣∣∣Ewide ytsw−2,l − P (N4)

ll (tpast2)
∣∣∣∣ ≥ ε

4N1

)
= 0.

Using the the triangle equality repeatedly, it then follows that there for each
ε > 0 there exist and N ∈ N such that

lim
t→∞

P

(∣∣∣∣ ∞∑
s=1

Covwide
{
ψt,k,j , ψ

∗
t−s,k′,j′

}
− fN (xt, . . . xt−N )

∣∣∣∣ ≥ ε) = 0.

as is what we set out to prove.
�

A.4 Expressions for covariance matrices

In this section we give expressions of the KM,n matrix defined in Section 3.2.
Recall that this matrix is on the form

KM,n = J∗M,n + VM,n + (WM,n +W t
M,n) + (QM,n +QtM,n).

Using the expressions in Appendix A.2 we may now, nicht ganz ohne mühe,
find expressions for each of these matrices.
The first matrix J∗M,n is the matrix

J∗M,n = 1
n

t∑
t=1


J∗M,γ,t J∗M,γb0,t

J∗M,γb1,t
J∗M,γb2,t

J∗M,b0γ,t
J∗M,b0,t

0 0
J∗M,b1γ,t

0 J∗M,b1,t
0

J∗M,b2γ,t
0 0 J∗M,b2,t

 ,

with blocks
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J∗M,γ,t =
2∑
k=0

(
uM,tu

t
M,tπk,0(1− πk,0) −uM,tu

t
M,tπk,0πk,1

−uM,tu
t
M,tπk,0πk,1 uM,tu

t
M,tπk,0(1− πk,0)

)
Ewide yt−1,k,

and for k = 0, 1, 2

J∗M,bk,t
=
(
zMz

t
Mπk,0(1− πk,0) −zMzt

Mπk,0πk,1
−zMzt

Mπk,0πk,1 zMz
t
Mπk,0(1− πk,0)

)
Ewide yt−1,k,

J∗M,γbk,t
=
(
uM,tz

t
Mπk,0(1− πk,0) −uMzt

Mπk,0πk,1
−uM,tz

t
Mπk,0πk,1 uMz

t
Mπk,0(1− πk,0)

)
Ewide yt−1,k,

and J∗M,bkγ
(xM ) = J∗M,γbk

(xt)t. The probability πkj is an abbreviation for
πkj(xt). The matrix J∗M,n resembles the Fisher information matrix JM,n of
the candidate model. It is however not the same. It is important that these
matrices are not mixed. The matrix J∗M,n uses the true probabilities πkj(xt),
whereas the candidate Fisher information matrix JM,n uses the probabilities
πM,kj(xM,t) of the candidate model.

The second matrix VM,n is

VM,n = 1
n

n∑
t=1


Vγ,t(xt) Vγb0,t Vγb1,t Vγb2,t

Vb0γ,t V00,t V01,t V02,t
Vb1γ,t V10,t V11,t V12,t
Vb1γ,t V20,t V21,t V22,t

 ,

where

Vγ,t =
2∑
k=0

2∑
k′=0

νk′,k′(uM,t, uM,t) Vγbk′ ,t =
2∑
k=0

νk,k′(uM,t, zM,t)

Vbkγ,t =
2∑

k′=0
νk′,k′(zM,t, uM,t) Vk,k′,t = νk′,k′(zM,t, zM,t),

and

νk,k′(dM,t, hM,t) =(
φk,0φk′,0(xM,t)dM,th

t
M,tξ

(t)
k,k′ φk,0φk′,1(xM,t)dM,th

t
M,tξ

(t)
k,k′

φk,1φk′,0(xM,t)dM,th
t
M,tξ

(t)
k,k′ φk,1φj,1(xM,t)dM,th

t
M,tξ

(t)
k,k′

)
.

The vectors dM,t,hM,t are here either uM,t or zM,t and ξk,k′(t) is
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ξ
(t)
k,k′ =

t−2∑
w=0

2∑
l=0

1∑
q,r=0

Φ(w)
rk (t− w − 1)Φ(w)

qk′ (t− w − 1)

· Σrq|l(t− w − 1) Ewide yt−w−2,l.

The third matrix WM,n is

WM,n = 1
n

n∑
t=2

t−1∑
s=1


W

(s)
γ,t W

(s)
b0γ,t

W
(s)
b1γ,t

W
(s)
b2γ,t

W
(s)
γb0,t

W
(s)
00,t W

(s)
01,t W

(s)
02,t

W
(s)
γb1,t

W
(s)
10,t W

(s)
11,t W

(s)
12,t

W
(s)
γb2,t

W
(s)
20,t W

(s)
21,t W

(s)
22,t

 ,

with block matrices

W
(s)
γ,t =

2∑
k=0

2∑
k′=0

Ωk,k′(uM,t, uM,t−s),

W
(s)
bk′γ,t

=
2∑
k=0

Ωk,k′(uM,t, zM,t−s),

W
(s)
γbk,t

=
2∑

k′=0
Ωk,k′(zM,t, uM,t−s),

W
(s)
kk′,t = Ωk,k′(zM,t, zM,t−s),

where

Ωk,k′(dM,t, hM,t−s) =(
φk0(xM,t)dM,th

t
M,t−sω0,k,k′(t− s) φk0(xM,t)dM,th

t
M,t−sω1,k,k′(t− s)

φk1(xM,t)dM,th
t
M,t−sω0,k,k′(t− s) φk1(xM,t)dM,th

t
M,t−sω1,k,k′(t− s)

)
,

and

ωj,k,k′(t− s) =
1∑
r=0

Φs−1
rk (t− s)Σrj|k′(t− s)Ewideyt−s−1,k′ .

The last matrix QM,n is given by

QM,n = 1
n

n∑
t=2

t−2∑
s=1


Q

(s)
γ,t Q

(s)
b0γ,t

Q
(s)
b1γ

Q
(s)
b2γ,t

Q
(s)
γb0,t

Q
(s)
00,t Q

(s)
10,t Q

(s)
20,t

Q
(s)
γb1,t

Q
(s)
10,t Q

(s)
11,t Q

(s)
21,t

Q
(s)
γb2,t

Q
(s)
20,t Q

(s)
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(s)
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 ,
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with blocks

Q
(s)
γ,t =

2∑
k=0

2∑
k′=0

Θk,k′(uM,t, uM,t−s),

Q
(s)
k,k′,tΘk,k′(zM,t, zM,t−s),

Q
(s)
γbk′ ,t

=
2∑
k=0

Θk,k′(uM,t, zM,t−s),

Q
(s)
bkγ,t

2∑
k′=0

Θk,k′(zM,t, uM,t−s),

and

Θk,k′(dM,t, hM,t−s)

=
(
φk0(xM,t)φk′0(xM,t−s)ξ(t−s)

k,k′ φk0(xM,t)φk′1(xM,t−s)ξ(t−s)
k,k′

φk1(xM,t)φk′0(xM,t−s)ξ(t−s)
k,k′ φk1(xM,t)φk′1(xM,t−s)ξ(t−s)

k,k′

)
,

where

ξ
(t−s)
k,k′ = dM,th

t
M,t−ssum

t−s−2
w=0

2∑
l=0

1∑
q=0

1∑
r=0

Φ(s+w)
rk (t− s− w − 1)

Φ(w)
qk′ (t− s− w − 1)Σrq|l(t− s− w − 1) Ewide yt−s−w−2,l.

A.5 A Note on R Scripts

In this thesis I have used the statistical programming language R (R Devel-
opment Core Team, 2008) for simulations and analysis of the MID data. The
scripts I have used are too comprehensive to be included in the thesis. The
R-scripts are available upon request to j.k.haug@gmail.com.
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