
 

 1 

  

Hybrid particle-field molecular dynamics simulations of charged 

amphiphiles in aqueous environment 
 

 

Hima Bindu Kolli,† Antonio de Nicola,‡ Sigbjørn Løland Bore,† Ken Schäfer,§ 

Gregor Diezemann, §  Jürgen Gauss,§  Toshihiro Kawakatsu,∥ Zhong-Yuan Lu,⊥ 

You-Liang Zhu,# Giuseppe Milano,*,‡ Michele Cascella*,† 

 

 

 

 

† Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 

1033 Blindern, 0315 Oslo, Norway 

‡ Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan Yonezawa, Yamagata-ken 992-

8510, Japan 

§ Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, 

Germany 

∥ Department of Physics, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan 

⊥ State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, 

Changchun 130023, China 

# State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese 

Academy of Sciences, Changchun 130022, China. 

 

 

 

 

* email to: gmilano@yz.yamagata-u.ac.jp, michele.cascella@kjemi.uio.no 

 

 

 

 

 



 

 2 

 

 

 

Abstract 

 

We develop and test specific coarse-grained models for charged amphiphilic systems such as 

palmitoyloleoyl phosphatidylglycerol (POPG) lipid bilayer, and sodium dodecyl sulphate (SDS) 

surfactant in aqueous environment, to verify the ability of the hybrid particle-field method to provide a 

realistic description of polyelectrolyte soft matter systems. According to the hybrid approach, the 

intramolecular interactions are treated by a standard molecular Hamiltonian and the non-electrostatic 

intermolecular forces are described by density fields. Electrostatics is introduced as an additional 

external field obtained by a modified particle-mesh Ewald procedure, as recently proposed in [Phys. 

Chem. Chem. Phys 2016, 18, 9799]. Our results show that, upon proper calibration of key parameters, 

electrostatic forces can be correctly reproduced. Molecular dynamics simulations indicate that the 

methodology is robust with respect to the choice of the relative dielectric constant, yielding the same 

correct qualitative behavior for a broad range of values. In particular, our methodology reproduces well 

the organization of the POPG bilayer, as well as the SDS concentration-dependent change in the 

morphology of the micelles from spherical to microtubular aggregates. The inclusion of explicit 

electrostatics with good accuracy and low computational costs paves the way for a significant extension 

of the hybrid particle field method to biological systems, where the polyelectrolyte component plays a 

fundamental role for both structural and dynamical molecular properties.  
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1. Introduction 
Amphiphiles are macromolecules characterized by well-defined hydrophobic and hydrophilic regions. 

Depending on the molecular shape and on the hydrophobic/hydrophilic balance, they tend to self-

assemble into a variety of aggregates, like micelles and vesicles, lamellar structures like mono- and 

bilayers and structures with high aspect ratio like nanotubes and nanofibers.1-4 These supramolecular 

structures are used in many industrial and biotechnological processes such as drug delivery systems,5 

micro- and nanoscale micellar reactors,6 dispersants, detergents, emulsifiers, and coatings. The 

determination of the supramolecular structural organization of the amphiphilic molecule depends on a 

variety of factors, including the shape and flexibility of the single molecular structure the interplay of 

intra- and inter-molecular forces, and external thermodynamic factors like temperature, pressure, 

concentration, or ionic strength. Due to such complexity, the prediction and determination of the shape 

and size of amphiphiles, as well as their aggregation mechanisms, remains a challenging task both for 

experimentalist and computational scientists.  

In recent times, scattering techniques such as small-angle X-ray scattering (SAXS)7 or small-angle 

neutron scattering (SANS)8,9 have been widely used for the quantitative characterization of the shape, 

internal structure, and interactions of macromolecular aggregates, like protein complexes in 

solution10,11 as well as for micellar transformation studies.12 Light scattering techniques are widely used 

to determine the shape of micelles in solution and Fluorescent spectroscopy is used to measure the 

aggregation number and the critical micelle concentration (CMC).  Unfortunately, these techniques, 

having shortest temporal resolutions in the order of the millisecond, are not fast enough to capture the 

structural changes during the aggregation process.13 Moreover, at lower concentrations, the interplay 

between shape variations and polydispersity complicates the data interpretation and could lead to 

ambiguous conclusions regarding the shape of surfactant micelles.   

 The picture is even more complex when studying biological amphiphilic systems like bio-membranes.  

Such bilayer structures present a chemically complex composition, being mostly formed by mixtures of 

phospholipids, with the addition, at very diverse stoichiometric ratios, of a variety of sphingolipids, 

cholesterol and the presence of both peripheral and transmembrane proteins.14,15 Due to both their 

chemical complexity and their disordered nature, it is hardly possible to follow their dynamics and 

interactions in detail at the atomistic level.16,17 

Computer modeling offers, in principle, an effective complementary way of exploring self-assembly 

processes at molecular resolution, and at highly controlled thermodynamic and stoichiometric 

conditions.  Unfortunately, the assembling process occurs at the mesoscopic time- (>µs) and length- 
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scales (>100 nm), which are computationally expensive in a molecular dynamics framework employing 

explicit all-atom models.18-24 For this reason, the use of coarse-grained (CG) simulations has become an 

alternative that aims to bridge the time and length scales involved in self-assembly phenomena.  

The underlying assumption for the study of self-assembly phenomena at the CG scale is that neither the 

molecular structure at atomistic length scales nor its fast motion are relevant to the dynamics of the 

slow aggregation process. Therefore, molecular moieties can be conveniently described by a smaller 

number of order parameters considering just key properties like the amphiphilic nature of the individual 

molecular segments. CG models in both explicit and implicit solvent display a great potential for 

capturing critical phase behaviour of surfactants, phospholipid bilayers and generally of soft matter, as 

demonstrated, for example, in several studies available in the literature.25-35 

However, standard CG approaches are subject to analogous technical computational bottlenecks of all 

atom models, produced by the need of the evaluation of distance-dependent intermolecular 

interactions.36 As a consequence, unless massively parallel architectures are available, common CG 

simulations are limited to systems with sizes not larger than 100 nm length- and ~1-100 µs time 

scales.37,38 These numbers are still too small compared to mesoscopic dimensionalities with length 

scales in the order of 100-1000 nm and time scales in the order of the millisecond.39 

An alternative approach which is not bound to such limitation is the continuous field representation. In 

the framework of self-consistent field theory, the model systems are not represented by particles but by 

density fields and the mutual interactions between segments are decoupled and replaced by interactions 

with static external fields. These field-based approaches allow to simulate materials on scales much 

larger than the ones attainable with particle-based simulations. In recent years, the hybrid particle-field 

(hPF) approach combining a microscopic molecular representation to density-based potential has been 

introduced.40-42 In particular, the determination of an analytical expression for local potential energy 

gradients, and consequently for the forces acting on the individual particles, allowed Milano and 

Kawakatsu to reformulate the hPF method within a molecular dynamics (MD) framework (hPF-MD 

hereafter).43,44 The hPF-MD method was validated for different molecular models including molecular 

surfactants, atomistic models of polymers and bio membranes.45-51 

More recently, an efficient electrostatic treatment based on the Ewald summation in the framework of 

hPF-MD has been proposed by Zhu et al.52 Like for the density field, charged molecules are interacting 

with an external electrostatic field derived from the charge density. The long-range part of the Coulomb 

interaction is evaluated in reciprocal space using Fourier series just like in the standard particle-mesh 

Ewald method. The short-range part is evaluated by collecting the contributions of short range energy 

from the surrounding charges and matching with the Flory Huggins interaction parameter.  

The explicit treatment of electrostatics opens up the possibility of using hPF schemes to investigate 
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major biological processes that are dominated by such interactions – for example ion-membrane 

permeation, membrane electroporation, protein/protein and protein/membrane interactions, or assembly 

and dynamics of nucleic acids. In fact, the hPF-MD method with electrostatics has been validated 

against particle-based simulations for model polyelectrolytes only.52 In this work, we present the first 

application of hPF-MD to realistic soft matter models. The aim of the paper is to validate the models 

for charged amphiphile systems. Specifically, we investigated the ability of hPF-MD in describing both 

the structural properties of a constituted charged palmitoyloleoyl phosphatidylglycerol (POPG) bilayer, 

and the aggregation dynamics of sodium dodecyl-sulphate (SDS) in water. Our analysis provides a 

critical assessment of the quality performances of hPF-MD as a function of different external 

parameters, like the dielectric constant and χ parameters defining the effective interactions between 

particles and density field. The hPF-MD has been implemented in both serial and parallel versions of 

the OCCAM code.47 

 

In section 2.1, a brief description of hPF-MD method is given. The treatment of the short- and long-

range parts of the electrostatics interaction in hPF-MD is shown in the section 2.2. In section 2.3, the 

POPG and SDS models along with simulation details are given respectively. We discuss the calibration 

of the Ewald convergence parameter in section 3.1 and the simulation results on POPG bilayer and 

SDS aggregation are presented and discussed in sections 3.2 and 3.3. Final remarks and conclusions are 

presented in section 4. 

 

2. Methods 
 

2.1 The Hybrid Particle-Field approach  

 

The hPF-MD method and its application to coarse-grained and atomistic models has been introduced in 

a series of former publications.43-48,50,51 Here we only briefly recall the main ideas. In hPF-MD, a 

discrete particle-based representation of several molecules interacting through pair forces between non-

bonded particles, is formally transformed into a set of decoupled molecules subject to an external 

potential depending on density fields.  

Under this transformation and considering the following functional form for the potential energy, 

  

  𝑊 𝜙 𝒓 = !
!!

𝑑𝒓 !!!
!

𝜒!"𝜙!!" 𝒓 𝜙! 𝒓 +  !
!!

 ( 𝜙!(𝒓)! −  𝜙!)!                     (1) 

  



 

 6 

applying the saddle point approximation, by functional differentiation it is possible to obtain the mean-

field external potential 𝑉!!"# 𝒓  acting on an individual particle of type i at position 𝒓, which takes the 

form: 

 

           𝑉!!"# 𝒓 = !" ! 𝒓
!!! 𝒓

 = !
!!

𝑘!𝑇 𝜒!"𝜙! 𝒓! + !
!

𝜙! 𝒓 −!  𝜙!                        (2) 

 

In equations 1, 2 kB is the Boltzmann constant, T is the temperature of the system, 𝜙!(𝒓) is the coarse-

grained number density of the species i at position r, 𝜒!" is the mean field interaction strength between 

particles of type i and j, κ is a compressibility parameter acting against local density inhomogeneity, 

and 𝜙! is the total number density of the system. 

The forces acting on the individual particles are computed as the spatial gradients of the same potential 

in equation 2. The density field and its gradient are computed on a spatial grid and updated with a time 

interval τ > Δt, where Δt is the MD time-step. This ensures fast computation of forces, in an 

embarrassingly parallel implementation. More details about the derivation of equation 2 and its 

implementation in MD simulations are reported in references 43,44,47.  

 

2.2 The hybrid Particle-Field method with electrostatics  

The electrostatic potential 𝜓 𝒓  produced by a distribution of charges 𝜌(𝒓) is computed by solving the 

Poisson equation: 

−∇!𝜓 𝒓  =  ! 𝒓
!!!!

                                                                         (3) 

where 𝜀! is the vacuum permittivity, and 𝜀! is the relative dielectric constant of the medium. Adopting 

periodic boundary conditions, the solution of the equation 3 yields the potential field 𝜓 𝒓 : 

       𝜓 𝒓 = !
!!!!!!

!!
𝒓!𝒓𝒋!𝒏𝑳

!
!!!𝒏                                            (4) 

Here, the vector L = (𝐋𝟏,𝐋𝟐,𝐋𝟑) defines the simulation box, and n𝐋 =  n!𝐋𝟏 +  n!𝐋𝟐 + n!𝐋𝟑  is the 

translation over a generic periodic image. Recently, an efficient method based on the particle-mesh 

Ewald summation was implemented in hybrid particle field simulations to compute the electrostatic 

potential shown in equation 4.47 The short-range and long-range parts of the electrostatic potential in 

conventional Ewald sum are written as: 

                                                     𝜓!(𝒓) = !
!!!!!!

!!!"#$(!|𝒓!𝒓𝒋!!𝑳|)
|𝒓!𝒓𝒋!!𝑳|

 
!!                                              (5) 

                                𝜓!(𝒓) =  𝜓! 𝐦 exp(𝑖 𝒎 ⋅ 𝒓)!!!                                                 (6) 

where 𝜓! is the short-range part, and 𝜓! is the long-range part of the electrostatic potential. 𝜓!  
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denotes  𝜓! in the reciprocal space, and it is given by:  

𝜓!(𝒎)  =   !"#(!𝐦
!/!!!)

!!!!!𝐦!  𝑞!  exp(−𝑖 𝒎 ⋅ 𝑟!)!
!!!                     (7) 

where V is the volume of the simulation box, m is the reciprocal space vector, and α is the Ewald’s 

convergence parameter. 

In hPF-MD, the charge density is expressed in terms of Q(l) = 𝑄(𝑙!, 𝑙!, 𝑙!)  , the distribution of charges 

at the lattice points. The long-range part of the electrostatic potential at the lattice point  𝒍, is computed 

using forward (F) and backward (F-1) discrete Fourier transforms:  

 

   𝜓! 𝒍 =   𝜓! 𝒎 exp 2𝜋𝑖 !!!!
!!

+ !!!!
!!

+ !!!!
!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!         

    

                                      = 𝐹!!
!"# !𝒎

!

!!!

!!!!!𝒎!  𝐹𝑄  (𝑙!,𝑙!,𝑙!)                                                        (8) 

 

 The short-range part of the electrostatic potential at the lattice point of spatial position l is given by: 

 

                  𝜓!(𝒍) =  !!"
!!!!!!

!"#$(!")
!

𝑄(𝒍)                                             (9) 

 

where the parameter zCN is the coordination number which takes a value of 6 for a three-dimensional 

cubic lattice and σ is the particle diameter. Instead of the pairwise short-range electrostatic interactions 

like in classic Ewald summation, the interactions are now transmitted through the mean field. 

  

The performance of the hPF-MD method has been studied thoroughly and documented in ref. 47. Since 

the density fields vary slowly with respect to the particle motions, they are, with negligible errors, 

updated in the intervals of multiple time steps.  Several benchmark studies were performed changing 

the density update frequency and the grid size. Compared to MARTINI simulations, the hPF-MD 

method performs ~15 times faster with an update frequency of 100 MD steps and 32,768 grid points. In 

the new implementation, the additional computational costs are due to the fast Fourier transform (FFT) 

routine, and add roughly 7% to the total simulation time. 

 

2.3 Simulation Details   

 

2.3.1 POPG bilayer The POPG bilayer model was composed of 1216 POPG lipids (608 lipids for each 
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layer), 64448 water beads, each with a density of 4 water molecules, and 1216 Na+ counterions 

necessary for charge neutralization in a 20.18×20.18×23.29 nm3 periodic box. The CG mapping of 

POPG is explained in Figure 1. Each POPG has a polar head (P) with net charge -1. The bead type D 

mimics the presence of a double-bond in one of the aliphatic tails. The intramolecular parameters for 

POPG were taken from the literature.25,53 

 

First, the POPG bilayer was relaxed over 2 µs of particle-particle (PP) CG simulations, using the 

MARTINI force field.53 The CG simulations were run in the NPT ensemble at 301.15K and 1 bar, 

using semi-isotropic pressure coupling. Electrostatic interactions were computed via particle-mesh 

Ewald summation, using a dielectric constant ɛr = 15, and a grid of 0.3 nm mesh. A cut-off of 1.5nm 

was used to truncate the van der Waals terms. The PP-CG simulations were run using the GROMACS 

4.5.4 package.54 

 

Figure 1. CG model and particle field interaction parameters of POPG/water and SDS/water. Top left: Structure of 

POPG and CG mapping. Top right: Table showing the particle–field interaction parameters for the POPG/ water 

system. Bottom left: Structure of SDS and CG mapping. Bottom right: Table showing the particle–field interaction 

parameters for the SDS/water system. 

 Interaction matrix 𝝌!𝒊𝒋  =   𝝌𝒊𝒋.𝑹𝑻  (kJ mol-1) for 
POPG/water system 

Interaction matrix  𝝌!𝒊𝒋  =   𝝌𝒊𝒋.𝑹𝑻 (kJ mol-1) for 
SDS/water system 
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The final configuration, obtained from the PP-CG run, was used as the starting configuration for the 

hPF-MD simulations. All intramolecular interactions were treated in the same manner as in the PP-CG 

simulations. The particle field parameters  𝜒!"  =   𝜒!"𝑅𝑇 (where R is the gas constant) needed to 

calculate the intermolecular interactions between particle types i and j are listed in figure 1. The value 

of the incompressibility parameter κ-1 was set to 4 RT, in agreement with previous simulations of 

water/lipid mixtures.45,46,48 We consider the same grid size (32×32×36) for both particle and charge 

fields. The size of the grid has been chosen to keep the cell length, b ≈ 0.65nm and the explanation for 

this choice is given in section 3.1. The hPF-MD simulations were run using a time step of 0.03 ps in 

NVT ensemble, at a temperature of 301.15 K using an Andersen thermostat55 with collision frequency 

of 7 ps-1.  A density-field update time interval τ = 100 Δt was employed for both particle and charge 

densities.  

 

2.3.2 SDS aggregation The SDS molecules were represented by a chain of four beads as shown in 

Figure 1.  Each chain consists of one hydrophilic polar head bead (S) with a charge of -1 charge units 

and three hydrophobic beads (C1, C2 and C3), each one representing four CH2/CH3 units. The SDS 

bonded parameters are taken from ref. 56 The interaction matrix 𝜒!" used for hPF-MD is given in Figure 

1. The value of the compressibility was set to κ-1 = 4 RT. The density update was set to τ  = 100 Δt. 

The hPF-MD simulations were performed at four different SDS concentrations: CSDS = 50 mM, 72 

mM, 182 mM and 400 mM, using a cubic periodic box of edge 33.2 nm, containing 1120, 1600, 4000, 

and 8815 SDS molecules, respectively. The chosen concentrations are all significantly higher than the 

CMC for SDS, which is 8 mM. An equal number of Na+ beads were added to act as counterions; 

roughly ~300,000 water beads were used in all simulations. All the four systems and their compositions 

are shown in table 1. We consider a grid size of 50×50×50 for both charge and particle fields. 

Initially, SDS, Na+, and water were placed at random positions in the simulation box. This initial 

condition resembles the ideal limit of the experimental condition in which fast mixing techniques are 

used in preparing the system.  All MD runs were performed in the NVT ensemble using Δt = 0.03 ps 

keeping the temperature constant at 298 K using the Andersen thermostat55 with a collision frequency 

of 7 ps-1.  

All the hPF-MD simulations of both POPG and SDS systems were run using the parallel version of 

OCCAM code.47 
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Table 1. SDS systems simulated and the composition of the systems 

 

 

 

 

 

 

 

 

3. Results and discussion 
3.1 Calibration of Ewald parameters and grid size 

The hPF-MD implementation relies on a modified particle-mesh Ewald treatment to determine the 

short- and long-range components of the electrostatic potential. The accuracy of this approach is 

dependent on the grid spacing and the spread of the auxiliary Gaussian charge distribution α (equation 

7). To assess this dependence, we used a model system comprised of two oppositely unit charged 

particles at a distance d along the z-axis in a large simulation box of edge L= 20.0 nm. Figure 2 reports 

the intensity of the electrostatic forces acting on the two charges as a function of the grid spacing and 

α, as well as the theoretical Coulomb force FC. The profiles indicate that for values of α larger than 

2.35 nm-1, our implementation consistently reports similar values of the forces. For a grid of 0.65 nm, 

CSDS Total no. of 

particles in the box 

Number of 

SDS molecules 

 No. of 

Na+ ions 

 No. of 

water beads 

50 mM 309600 1120 1120 304000 

72 mM 304000 1600 1600 296000 

182 mM 306000 4000 4000 286000 

400 mM 317075 8815 8815 273000 

Figure 2. Electrostatic forces acting on two unit charges as a function of the distance between charges 
using different α values, and different grid spacing as reported in the legend. Top: electrostatic force for α = 
0.75 nm-1. Middle: electrostatic force for α = 2.35 nm-1. Bottom: electrostatic force for α = 4.5 nm-1. All 
values are compared to the theoretical Coulomb force FC.  
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the corresponding average relative errors are 4%, while for smaller α, the error on the forces increases 

to 10 %. This is due to the fact that the Gaussian spread of the charge is inconsistently represented by 

the actual distribution of the charges on the mesh points.  Furthermore, by grid refinement to a spacing 

of 0.45 nm, greater accuracy, especially at short distances, is achieved with an average relative error of 

3%. In agreement with these findings, all the simulations were run using a value of grid spacing of 0.65 

nm and α = 2.35 nm-1. 

 

3.2 POPG bilayer 

 

The bilayer structure of POPG was simulated using different values of the relative dielectric constant εr 

in the NVT ensemble by hPF-MD simulations. Figure 3 shows the number density profile of the 

POPG/water system at ɛr = 5, 15 and 80 obtained from the last 1µs out of a 2 µs long hPF-MD run 

along the direction normal to the plane of the bilayer. For very small values of εr, we observed the 

formation of strong ion pairs between the positively charged Na+ ions and the negatively charged P 

beads of POPG. The localization of Na+ in the neighborhood of the lipid heads reduced drastically the 

effective charge at the surface of the lipids, thus enhancing the tendency of POPG to aggregate. As a 

result, the lateral tension of the membrane produced poration of the membrane.  

In fact, the organization of POPG in a self-assembled structure is the result of the balance among 

competing interactions, in particular, the attractive collapse of the hydrophobic tails, the electrostatic 

Figure 3. Left: The number density profile of POPG, Na+ and water obtained from 1 µs long hPF-MD 
simulations with ɛr = 5, 15, and 80. Right: Snapshots with top and side-view of the bilayers. Water is not 
shown for clarity. The green circles evidence the formation of pores.  
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repulsion of the charged heads, and the entropy. The electrostatic repulsion is screened by the 

formation of ion pairs, thus favoring the collapse of the lipids. At NVT conditions, and in periodic 

boundary conditions, stable flat bilayers are observed only if the global free-energy balance between 

such interactions produces POPG aggregates characterized by a surface area-per-lipids close to a value 

A=NPOPG/(LiLj), where NPOPG is the number of lipids in one leaflet, and Li, Lj are the lengths of two 

edges of the box.  

Values of ɛr higher than 10 yielded a stable bilayer structure. In these cases, the lipid moiety showed an 

organized lamellar structure, with a symmetric distribution of the components in the two leaflets.  

Overall, the thickness of the bilayer DHH appears less pronounced than in other molecular models,57-60 

and in very good agreement with experimental data (Table S1, in Supporting Information (SI)).  The 

rather broad distribution of the G beads indicates that the membrane is quite disordered, with appearing 

fast-dissipating undulations, clearly observable by visual inspection of the simulation trajectory. The 

appearance of local distortions is correlated to the binding dynamics of the Na+ counterions on the 

membrane surface. As expected, the increase in the dielectric constant, and the consequent weakening 

of the electrostatic forces, results into a reduced adsorption of the counterions (Figure S1, SI), and a 

different binding dynamic for the ions.  

At very low value of the dielectric constant, we observe different shape fluctuations of the membrane.  

A quantitative measure of such distortions can be obtained using the Helfrich continuum model61-65, as 

explained in detail in SI.  

 

Figure 4. Frequency spectrum of POPG undulations. Intensity of the 
fluctuation  frequencies as a function of the wave number q obtained from 
hPF-MD simulations using three different values of ɛr = 5, 15, 80. 
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Figure 4 reports the fluctuation spectrum of the POPG membrane computed over the last 100 ns of the 

simulations. In all systems, undulations dominate at wavenumbers q smaller than 1.5 nm-1. 

Nonetheless, simulations at εr = 5 show a suppression of the low-frequency modes, and some activation 

of modes at higher frequency compared to simulations at εr = 15, and 80. Simulations at εr = 15 and 80 

show instead a different distribution of the amplitude in the low-frequency regions, in particular, with 

the activation of fluctuations at wavenumbers (q < 2 nm-1), with similar values of the amplitudes. This 

confirms that the morphology of the membrane is stable in a broad range of dielectric values, with the 

increased screening of the dielectric compensating for the unbinding of the ions from the membrane 

surface.   

 

3.3 SDS Self-assembly 

 

We simulated four different SDS/water systems with SDS concentrations CSDS = 50 mM, 72 mM, 182 

mM, and 400 mM for different values of ɛr, over up to 5 µs, starting from a randomly dispersed 

distribution of the SDS molecules and the Na+ ions in water.  Figure 5 shows the average aggregation 

number of SDS 𝑁!""  plotted with respect to time. Nagg is computed by counting the number of 

micelles and the molecules in each micelle with cut-off distance 1.7 σ for each configuration using the 

linked list algorithm. The cut-off distance was defined as 0.8 nm, corresponding to the first minimum 

of the radial distribution function between the P-N species. In all cases, we observed an almost 

instantaneous formation of small SDS aggregates, corresponding to a continuous increase of Nagg. With 

time, such small moieties fuse together to form progressively larger and larger micelles. These events 

correspond to a continuous rather than step-wise increase of the Nagg value.  

The size and the shape of the micelle are directly dependent on the SDS concentration and the value of 

the dielectric constant. In particular, for medium values of the dielectric constant (ɛr = 45), regular 

spherical micelles were formed when the concentration of SDS was relatively low (CSDS = 50, 72 mM). 

Increasing the SDS concentration (CSDS = 182 mM) led to spheroidal micelles with a prolate character, 

and eventually to the formation of nanotubular structures (CSDS = 400mM), in agreement with 

experiment, and previous calculations using different CG models.66-70 In particular, the morphological 

transformation from spherical to microtubular micelles observed in our simulations reproduces the one 

previously observed using the MARTINI CG model, both with explicit or implicit solvation,68-69 as 

well as dissipative particle dynamics simulations.70 SDS aggregation is sensitive to the choice of the 

dielectric constant. In fact, higher values of the dielectric constant (ɛr = 80) yielded smaller micelles 
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that are of spherical shape also at higher concentrations of SDS. For smaller values of ɛr (~15), the hPF-

MD simulations did not produce regular assemblies, but systematically predicted a phase of irregularly-

dispersed aggregated surfactants, which does not correspond to any experimentally observed assembly. 

Direct influence of the choice of the dielectric on the aggregation properties of SDS was also found in 

previous studies with the MARTINI force field.68-69   

 

The aggregation mechanism of SDS observed in our simulations is in qualitative agreement with the 

kinetic mechanism proposed by Lund et al.71 First individual SDS units rapidly accumulate to form 

small assemblies. The fast depletion of monomeric SDS from the solution leads to formation of rather 

regular spherical micelles, of diameter 0.3 nm - 0.4 nm, corresponding to roughly twice the contour 

length of a single SDS molecule. At this point, further growth of the micelle occurs by fusion of such 

aggregates rather than by accumulation of individual SDS units. The growth produces prolate 

spheroidal micelles that eventually fuse to form nano-tubular structures. This mechanism can be 

quantified following the evolution of the asphericity parameter δ of the micelle introduced by Rudnick 

and Gaspari.72 This value is bounded between 0 and 1, with δ taking the values close to 0 for spherical 

assemblies, and reaching 1 if all the particles lie on a line (see SI).  

21

Figure 5. Average aggregation number versus time for CSDS = 50 mM, 72 mM, and 182 mM. 〈𝑁𝑎𝑔𝑔〉 is plotted for each 
concentration at ɛr  = 45 (dashed lines), and ɛr  = 80 (solid lines). The inset shows the aggregation behaviour at high SDS 
concentration CSDS = 400mM. 
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Figure 6. Final snapshots taken after 5µs of the simulations for CSDS = 50 mM, 72 mM, 182 mM, and 
400mM at ɛr = 45 and 80. Water is not shown for visual clarity. 

Figure 7. Asphericity parameter δ with respect to time for CSDS = 50mM, 
72mM, 182 mM, and 400 mM  at ɛr = 45 (top panel) and ɛr = 80 (bottom 
panel). 
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Regardless of the dielectric, at all concentrations δ rapidly develops to values close to 0, indicating the 

initial formation of regular spherical structures (Figure 7); for higher concentrations, with ɛr = 45, δ 

increases over time, signaling the metamorphosis from spherical to spheroidal (δ ~ 0.2, CSDS = 182 

mM) or nano-tubular aggregates (δ ~ 0.4, CSDS = 400 mM). This phenomenon occurs by fusion of 

smaller spherical units rather than by continuous aggregation of monomeric SDS. The mechanism of 

fusion into tubular moieties occurs at the poles of the prolate axis of the SDS micelle, as also proposed 

by Lund et al.71,73 

  

The average aggregation number of the spherical SDS micelles predicted by our model is somewhat 

smaller than the experimentally measured one (Nagg = 54 for CSDS = 50mM, and Nagg = 68 for CSDS = 

72mM).68 In fact, our samples were constituted by a very broad dispersion of micelles of different size, 

as evident from Figure 8 including micelles as big as those reported by the experiment, which formed 

in the last microseconds of simulations. It is thus likely that the smaller sizes of the micelles that we 

observed is a consequence of both the initial conditions (random dispersion of SDS) very far from the 

thermodynamic equilibrium, and the relatively short sampling time, which promotes the formation of 

smaller metastable micelles, which may require some activation, in order to fuse into larger aggregates. 

 

4. Final remarks and conclusion 

This work showed how our new implementation of grid-based electrostatic solvers for particle-field 

simulations can be used to investigate realistic models of polyelectrolyte soft matter systems. In 

Figure 8. Probability distribution of number of micelles versus micelle size for 
different concentrations of SDS and value of the relative dielectric constant. 
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particular, we demonstrated that the hPF-MD approach is capable of treating amphiphilic systems 

either in extended aggregates, like a lipid bilayer, or in finite micellar forms. In particular, the model 

predicts in a qualitatively correct manner the effect of charge interactions over the morphology of the 

aggregates in terms of either area per lipid in bilayers, or shape and size of micelle aggregates. The 

predicted results are affected by the appropriate choice of the relative dielectric constant, as previously 

reported in other coarse-grained simulations. In fact, the behavior of these systems is dominated by the 

formation of ion pairs and their stability, which strongly depends on the relative hydration of the region 

where they occur.   

The behavior of the two POPG and SDS systems is influenced by the choice of the relative dielectric 

constant in different ways. In particular, the assembly of the POPG bilayer seems to be loosely 

influenced by the choice of ɛr, yielding very good results already at relatively low values of ɛr. On the 

contrary, the assembly dynamics and the stability of different phases of SDS seem to be strongly 

dependent on the values of ɛr, and requiring relatively high ɛr values to avoid the appearance of 

gelatinous phases that are inconsistent with experiment. Thus, depending on the system and the 

property of interest, different values of εr should be used. This is a common problem encountered in 

coarse grained molecular dynamics simulations when using a uniform dielectric in systems with 

multiple phase. Estimates of the effective dielectric corresponding to specific experimental conditions 

may be either calibrated on specific properties of interest, or derived by particle models as proposed in 

the literature.74,75 

The ability of hPF models to treat explicit electrostatics in good agreement with experiment opens up 

the possibility of simulating efficiently biological moieties where the polyelectrolyte character is 

dominant; for example, combining it to proposed models for polypeptides with explicit electrostatics.76-

79 Finally, our analysis points to the importance of carefully calibrating ɛr in studies that aim to 

determine dynamic or structural properties of soft matter assemblies, especially in very specific 

thermodynamic conditions.   
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