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Abstract

We propose the first model of a polypeptide chain based on a hybrid-particle field

approach. The intramolecular potential is built on a two-bead coarse grain mapping

for each amino acid. We employ a combined potential for the bending and the torsional

degrees of freedom that ensures the stabilization of secondary structure elements in

the conformational space of the polypeptide. The electrostatic dipoles associated to

the peptide bonds of the main-chain are reconstructed by a topological procedure.

The intermolecular interactions comprising both the solute and the explicit solvent

are treated by a density functional-based mean-field potential. Molecular dynamics

simulations on a series of test systems show how the model here introduced is able to

capture all the main features of polypeptides. In particular, homopolymers of different

lengths yield a complex folding phase diagram, covering from the collapsed to swollen

state. Moreover, simulations on models of a four-helix bundle and of an alpha+beta

peptide evidence how the collapse of the hydrophobic core drives the appearance of

both folded motifs and the stabilization of tertiary or quaternary assemblies. Finally,
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the polypeptide model is able to structurally respond to the environmental changes

caused by the presence of a lipid bilayer.

1 Introduction

Field-based approaches where molecules are represented by density-fields offer today a

rigorous and computationally efficient way of simulating condensed-phase systems at

the mesoscopic scale.1 Particularly popular in polymer science are the self consistent

field (SCF) approaches originating from the work by Edwards2 and Helfand.3,4 In SCF,

the polymer segments composing a melt are treated as non interacting systems coupled

to an external field responsible for the deviation from the ideal behavior. In analogy

to Kohn-Sham equations for quantum density functional theory,5 the external field is

computed self consistently from a statistical average of the spatially inhomogeneous

segment density distributions interacting with the external field. Applications ranging

from polymer brushes,6,7 polymer composites,8 block copolymers melts,9,10 to colloid

particles,11 demonstrate the usefulness of the method.

The central step in density-based approaches is the definition of a mesoscopic den-

sity associated to a microscopic molecular configurations of the system. For molecules

of complex architecture, this step can be challenging. Recently, Müller et al12 pro-

posed a hybrid particle-field scheme (hPF hereafter) which retained computational

advantages of SCF-theory while keeping the molecular detail of the polymer chains.

In this approach, a polymeric system is modeled as an ensemble of independent chains

in a fluctuating external field. The external field models instantaneous interactions

between chains and is computed from spatial inhomogeneous densities of particles.

Configurations of the system are sampled through a Monte Carlo procedure.13 hPF

methods has been successfully applied on various polymer and soft matter systems

including homopolymers, block-polymers or nanocomposites13–18 .

The extension of the hPF formalism to the calculation of density gradients and

forces led to the possibility of coupling the hPF method with molecular dynamics
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protocols (hPF-MD).19 Calculation of potential energy terms and forces from local

densities results in much more efficient simulation than ordinary molecular dynamics.20

Firstly, by computing forces from the density field, the expensive non-bonded pair

interactions of ordinary MD are avoided. Secondly, by only storing the density and not

pair list in the memory, the time propagation algorithm for the motion of the individual

particles is de facto embarrassingly parallel.20

First application studies on homopolymers and block copolymers19,21 demonstrated

the effectiveness of hPF-MD in describing soft-matter and polymeric materials both at

the mesoscale and atomistic resolution.22 More recently, hPF-MD was used to describe

the morphology and dynamics of amphiphilic systems in the aqueous environment, in

particular of phospholipids23–26 and surfactants,27,28 paving the way to the possibility

of using hPF-MD to investigate biological systems.29

Among the biological polymers, the development of computational multi-scaling

approaches for proteins is particularly challenging, but of great interest. In fact, bi-

ologically active polypeptide chains can be as short as few tens of amino acids (aa

hereafter), or comprise single chains of tens of thousands of aa, like for example in

titin.30 Moreover, individual proteins can aggregate or assemble in organized multi-

mers yielding nanofibers and nanotubules,31,32 as well as give rise to crowded functional

structures, for example, in several membrane-interfering antimicrobial peptides.33 The

computational investigation of such phenomena at a computational level relies on the

ability of models to describe both the local interactions determining structural features

of each protein-protein assembly, and the interplay among different proteins and the

environment that yields to the formation of complex nanostructures.

Molecular-resolution approaches based on parameterized potentials, and in par-

ticular the representation at all-atom resolution, are in principle the best models for

describing molecular interactions.34 Unfortunately, their computational costs are still

too high to allow their use for the investigation of the dynamics of protein complexes

at the mesoscale.

Here, we introduce a first hPF-MD approach to study protein dynamics. hPF-
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MD requires an underlying molecular model at coarse-grained (CG) resolution. To

ensure good performance and high accuracy of hPF-MD, the CG model has to posses

a series of features. First, the intra-molecular potential driving the conformational

changes of the molecule has to reproduce, at the pure CG level, the main features of

interest of the conformational space. Second, the CG mapping should represent all the

molecular moieties with a similar resolution, with the fewest possible bead types. This

is necessary in order to have numerical stability with the grid size used for the density

evaluation, and the highest computational efficiency for hPF-MD.

The simplest approach to model a protein can be one single ellipsoid or spherical

bead which is matched to the hydrodynamic radius of the overall chain. This approach

has been applied to study phenomena on very large diffusion scales where the pro-

tein can be approximated by a single diffusing entity.35 Retaining a molecular-detailed

description, several CG potentials have been proposed in the past,36–39 aiming for a

direct physical representation of the interactions driving the motion of the peptide

chains. The functional forms and the corresponding parameters available today are

derived from either bottom-up or top-down strategies,40 by calibrating parameters on

thermodynamic experimental data like partition coefficients in water/oil phases,41,42

or from higher-resolution all-atom simulations.43,44 For example, force-matching tech-

niques have been developed by Voth and coworkers45–47 and successfully been applied

on peptides,48 protein assemblies49,50 and protein-membrane interactions.51,52

The definition of the intra-molecular terms is a key issue for the reliability of CG

models in describing the conformational landscape of a polypeptide. In fact, some of

the most successful potentials either make use of molecular Hamiltonians character-

ized by very complex functional forms53 or adopt simpler potential energy functions

where the local configurations and secondary structure elements are restrained to a

given reference.41 At present, it is understood that, in order to correctly describe the

complexity of the conformational landscape of polypeptides, the introduction of direc-

tional contact interactions mimicking the formation of H-bonds between peptide bonds

is required.37,54,55
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Explicit treatment of electrostatic interactions is usually avoided in CG simula-

tions,37 due to its very high computational costs in the condensed phase.56 In fact,

long-range electrostatics is a key ingredient of the physics of proteins.57 Several CG

models for proteins have progressively introduced it at different levels of complex-

ity.41,58–66

Among others, in the past decade Cascella and co-workers introduced a model

where the orientation of the backbone dipoles are directly reconstructed starting from

the geometry of the Cα’s.67 This protocol gives CG electrostatics in agreement with

atomistic simulations,67 and is able to stabilize protein secondary structures.68,69 Start-

ing from this approach, here we propose a poly-peptide model based on a two-bead

mapping, where the hPF-MD formalism is used to describe intermolecular interactions.

The functional form of the intra-molecular terms for this model is designed to describe

the complex conformational landscape of peptide chains.

Using a series of test cases, we show how the presented model represents well the

main physics of a polymer chain, including the existence of marginally stable folded

regions between collapsed and swollen structures, the stabilization of folded structures

by formation of a hydrophobic core, and the occurrence of local and global structural

changes upon variation of the environmental conditions.

2 The Polypeptide Model and its Potential Func-

tion

2.1 Coarse-Grained structural model of the polypeptide

chain

We introduce here a two bead CG model (Figure 1), were each aa composing the peptide

chain is represented by one bead centered at its Cα (CA, hereafter), and one bead for

its side chain (CB). Additionally, one electrostatic dipole µ that mimics the presence
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Figure 1: Model of the polypeptide chain. Top: Definition of the internal coordinate system
of three consecutive CAs used for the reconstruction of the CB beads and the peptide dipoles.
Bottom: Constitutional elements of the CG model for the peptide chain. the CA beads
mapping the all-atom polypeptide main-chain (thin licorice) are in cyan spheres. The CB
beads representing the side-chains of the amino acids are depicted in green spheres. The
green arrows represent the electrostatic dipoles mimicking the peptide bond moieties. Both
CB positions and dipole orientations are determined from the positions of the CAs. The
figure shows the bending angle γ and the torsional angle φ entering as variables in the
combined bending-torsional potential.

of the peptide bond is added at the midpoint of each CA-CA bond. The positions of

the CA beads are the only degrees of freedom of the systems. This mapping has some

analogy to the UNRES model,53 where an effective term is used to map the Hydrogen-

bond interactions at contact distance between peptide moieties. The location and

orientations of the CB’s and the dipoles are determined from the coordinates of the

CA’s, according to the procedure described in the following paragraphs.

Internal coordinate system Following ref.,67 given three consecutive CA’s

in a peptide chain, we define a local reference system with orthonormal basis vectors

v̂, n̂ and m̂ (shown in Figure 1) with its origin at the central CA2 bead. The first

unit vector v̂ is oriented along the CA2-CA3 bond, the second unit vector n̂ is oriented

along the normal direction to the CA1-CA2-CA3 plane, and the third orthogonal unit

vector m̂ is determined from the first two using the right-hand rule.
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Dipole reconstruction The dipoles of the backbone {µ} are represented by

two charges q± = ±0.25 au positioned at:

r±(γ) =
1

2
r3 ± δ d̂µ(γ) (1)

where γ is the CA1-CA2-CA3 angle, r3 is the position of CA3, d̂µ(γ) is the unit vector

indicating the direction of dipole moment, and δ=0.3 nm. d̂µ(γ) is parametrized by

fitting on structural data based on a set of non-redundant structures from the PDB-

databank, as in ref.;68 See Supplementary information (SI) for additional details.

CB reconstruction The positions of the centroids CB representing the side

chains of the amino acids are obtained by a procedure similar to that introduced for

the backbone dipoles, and by Levitt.70 In this case, the unit vector d̂CB pointing at

the CB bonded to CA2 is expressed as a function of the bending angle γ:

rside-chain = d0d̂CB(γ) (2)

where d0 = 0.38 nm is the distance to the side chain centroid. In this work, we choose

to identify the position of the CB along the atomic Cα − Cβ direction, as previously

done in other general models.70,71 The parametrization was optimized by a weighted

least-square fitting on relative orientations of the Cβ atom gathered from statistics of

non-redundant PDB-databank structures (full details on parametrization are given in

SI).

2.2 hPF potential

In the hPF method, individual polymers are described as a non-interacting systems

with hamiltonianH0({r}) coupled via a density-dependent interaction functionalW [ρ(r)]:19,23,24,72–74

H = H0({r}) +W [ρ(r)]. (3)
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For a system made by a number of different particle types, the density dependent

functional W takes the form of:19

W [{ρn}] =
1

ρ0

∫
dr


kbT

2

∑

ij

χijρi(r)ρj(r) +
1

2κ


∑

j

ρj − ρ0




2
 . (4)

Where ρi is the number density of the ith particle type, χij is the mean field coupling

term between particles of type i and j, κ is the compressibility of the system, and ρ0 is

the average number density of the system. The external potential V ext
i (r) felt by any

individual particle of a generic type i at position r is given by:

V ext
i (r) =

δW [{ρi}]
δρi(r)

=
1

ρ0


kBT

∑

j

χijρj(r) +
1

κ


∑

j

ρj(r)− ρ0




 . (5)

2.3 Intramolecular potential energy function

The potential energy in hPF model is defined as the sum of the intra-molecular terms,

which are based on particle interactions, and the intermolecular ones, determined by

the particle density.

Here, the intramolecular term Vintra takes the form:

Vintra =
∑

bonds

1

2
kr(r − r0)2 +

∑

bend,torsional

Vγ,φ +
∑

CA-pairs

VLJ +
∑

dipoles-pairs

Vµi,µj (6)

the first term is the harmonic stretching potential between two consecutive CA, Vγ,φ is

a combined bending and torsional potential acting on the CA chain, VLJ is a Lennard-

Jones potential taking into account the excluded volume between the CA beads along

the chain and Vµi,µj is the electrostatic dipole-dipole interaction potential. As a result,

all the terms in the potential function are a function of the positions of the CA’s, as

the positions and orientations of the CB’s and the dipoles are both a function of the

positions of the CA’s.
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Figure 2: Derivation of the combined bending, torsional potential Vγ,φ. Top left: Potential
of mean force of an alanine tetrapeptide from all-atom simulations. The γ0(φ) line from
equation 7 is marked in black. Bottom left: Model spring function k(φ) in equation 8 used in
this work. Right: Model propensity potentials Vprop(φ) (red lines) for aa’s with α-propensity
(top panel), β-propensity (middle-panel), or no propensity (bottom panel), as obtained by
iterative Boltzmann inversion. The corresponding potentials of mean force (blue lines) map
the ideal target free-energy plots (green lines).
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Bending-torsional potential Vγ,φ As originally described by Warshel and

Levitt,54 CG bending and torsional angles (γ and φ in Figure 1) are strongly correlated,

being both order parameters that signal the local coiling of the peptide into different

secondary structure elements.37

Figure 2 reports the free-energy map for a simple tetra-alanine peptide obtained

from metadynamics simulations (See SI 2.1 for technical details). The map evidences

the existence of two basins corresponding to helical (φ ' 50◦) and extended (φ '

−180◦) conformations. The correlation line proposed by Levitt and Warshel:54

γ0(φ) = 106◦ − 13◦ cos (φ− 45◦) (7)

falls very close to the variational path connecting the minima of the two basins. It is

expected that the qualitative shape of the free energy map is conserved for a generic aa

sequence, excluding glycine or proline.75 Here, we use the following general functional

form for Vγ,φ:

Vγ,φ = Vprop(φ) +
1

2
k (φ) (γ − γ0(φ))2 . (8)

where k (φ) regulates the harmonic deformations of the chain with respect to γ0(φ),

and Vprop(φ) is a secondary-structure propensity potential that sculpts the presence

and the relative height of any potential energy minimum along φ.

Functional forms of k(φ), Vprop(φ) Both k(φ), and Vprop(φ) functions are ex-

pressed as cosine series of the torsional angle:

k(φ) =
4∑

n=0

cn (1 + cos(nφ− dn)) (9)

Vprop(φ) =

4∑

m=0

cm (1 + cos(mφ− dm)) (10)

In the present model, we define cn, dn to obtain a model profile for k(φ) as in Figure

2, which guarantees the localization of the harmonic fluctuations of the two main

basins of stability corresponding to helical and extended conformations, while excluding
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unphysical combinations of bending and torsional angles. Values for the coefficients

are given in Tables S5-S7.

The coefficients cm and the phases dm can be optimized to describe the relative

thermodynamic stability of local structural features, like coiled versus extended con-

figurations.The propensity toward α/β or other coiling geometries is the result of the

free-energy balancing of all the contributions coming from all energy terms, and the

entropy. The propensity potential may be calibrated over all atom free energy calcu-

lations,41,76,77 or from experimental data.78

For the purposes of this work, we pre-sculpted different model propensities, defined

by ideal Helmholtz free-energy profiles A(φ). We then derived the Vprop yielding a po-

tential of mean force (PMF ) close to the target A(φ) performing Iterative Boltzmann

Inversion.43 The procedure guarantees excellent agreement for the PMF compared to

the target A(φ), with a mean error of 0.4 kJ mol−1, and a maximum error or 1.4

kJ mol−1, anyway below kT. Technical details of the procedure are given in SI. Fig-

ure 2, shows the three model propensities used in this work: Vα (φ) , Vβ (φ) , V0 (φ),

corresponding to aa’s with ideal α- or β-propensity, or to aa’s with no propensity.

Intermediate model propensity potentials were built using the following linear combi-

nation:

Vprop(λ, φ) =
1

2
(|λ| − λ)Vα (φ) +

1

2
(|λ|+ λ)Vβ (φ) + (1− |λ|)V0(φ) (11)

where λ ∈ [−1, 1]. λ < 0 values yield α-propense peptides, and λ > 0 values yield

β-propense peptides.

2.4 Force calculation

Forces acting on dipoles and on CBs are projected onto the CA, whose positions are

the only degrees of freedom that are propagated during the molecular dynamics steps.

Specifically, F aij , the ath Cartesian component of the force acting on the ith CA due
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to the jth virtual site (either a dipole charge, or a CB), is:

F aij = −∂V (rj)

∂ai
= −∂V (rj)

∂rj

∂rj
∂ai

=
∑

b=x,y,z

F bj
∂bj
∂ai

(12)

where rj is the position of the jth virtual site, bj is one of its Cartesian components

and F bj is the force on site j in direction b. Additional details on the derivation of the

terms in equation (12) are given in SI.

2.5 Simulation details

Table 1: Interaction matrix χ̃ = χ ·RT (in kJ mol−1) for an individual aa of the polypetide
chain. α ≥ 0 is a control parameter that describes the hydrophobicity of the same aa.

χ̃ij CA CBP CBH H2O

CA 0 0 0 0
CBP 0 0 α 0
CBH 0 α 0 α
H2O 0 0 α 0

hPF parameters The hPF potential controls solute-solute, solute-solvent and solvent-

solvent intermolecular interactions. The size of the mesh separation in the grid for the

evaluation of the particle-field potential terms was set to 0.65 nm, consistently with the

values previously used in simulations of DOPC membranes,24 where the bond lengths

are in the same order of magnitude to that of the peptide model used in this study.

The density potential was updated every ∆t = 10 δt. The compressibility was set to

κ−1 = 33.3 kJ mol−1. The hydrophobic character of each aa was defined by the values

of the χ̃ matrix χ̃ = χ · RT as in table 1 and equation 5. Specifically, we defined

two types of CB’s. Type CBP is strictly polar, CBH is general, and can switch from

hydrophilic (α = 0) to very hydrophobic aa’s(α � 0). Any value of χ̃ij = 0 implies

that the two types interact only through the compressibility term.
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Force-field parameters All systems are described at CG level, with explicit sol-

vent beads. The mass of each CA bead and of the water are all set to 72 amu. The bond-

potential has equilibrium distance r0= 0.38 nm and spring constant kr= 50000 kJ nm−1.

Lennard-Jones parameters σ = 0.447 nm and ε= 3.5 kJ mol−1 are taken from ref.68 A

relative dielectric constant εr = 5 is used. Additional details on the evaluation of the

electrostatic interactions are given in SI.

hPF-MD simulations All simulations are performed in the NVT-ensemble with a

density ρ0= 1.0 g cm−3, at a temperature of 300 K, using a Andersen thermostat with

collision frequency fcol= 7 ps−1. The velocity Verlet algorithm is used to integrate the

equations of motion with time-step δt= 10 fs. A cutoff rcut= 3.5 nm is used for van der

Waals interactions between CA’s. Additional force-field parameters are given in SI.

We present three sets of simulations. The first set is on homo-polypeptides of

length 15, 30 and 60 aa using type H CB’s (CBH). The second set of simulations

focuses on amphiphilic polypeptides. The third set regards interaction of polypeptides

with DOPC bilayer. In these sets, we use mixed H, P types for the CB’s. Unless

differently stated, in all the simulations the initial geometries of the peptides were set

as a random coils. The peptide model was implemented in the OCCAM code, and

the same code was used for all the simulations.72 Details on the setup of the different

systems, and the MD parameter sets, are given in SI.

3 Results and discussion

3.1 Phase diagram of the homopolymer-chain

Within the present model, folding occurs as a balance between the intramolecular po-

tential, driving the local coiling, and the intermolecular forces (hydrophobicity and

electrostatics) responsible for the global collapse of the polymer. Figure 3 reports the

phase diagrams of homo-polymeric chains as a function of their hydrophobicity and

flexibility, obtained by inspecting the statistically relevant stable protein conforma-
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i: Random coil ii: α-helix iii: β-hairpin iv: Extended v: Helix-coil-helix vi: β-floor/helix vii: Helical bundle

Figure 3: Phase diagrams for homo-peptide sequences. Top: Phase diagrams as a function
of the coiling propensity parameter λ, and the hydrophobicity parameter α (in kJ mol−1)for
15 aa, 30 aa and 60 aa long sequences. The regions of stability of different structural motifs
are evidenced in different colors and labels. Bottom: Structural elements corresponding to
the different regions of the phase diagrams.

tions along the MD trajectories. The hydrophobicity was modulated by varying the α

parameter in the χ̃ matrix (Table 1) from a value of -10 kJ mol−1 (very hydrophilic)

to 30 kJ mol−1 (very hydrophobic). The flexibility was modulated by varying the

λ parameter in equation 11. λ = -1 describes peptides very prone to coiling, λ =

0 ideally flexible peptides, and λ = 1 very stiff ones. The phase diagram of short

peptides composed by 15 aa is characterized by a simple diagram with four regions of

stability corresponding to the α-helix, the β-hairpin, extended peptide and the random

coil configurations (Figure 3a). The structural parameters of the secondary structure

elements are presented in Table 2. The 1− 4 and 1− 5 CA-distances of helical struc-

tures are in excellent agreement with average values of helices from the PDB databank.

The β-hairpin inter-strand distance and orientation ω are also in very good agreement

with experimental values (Table 2). The relatively large fluctuations from the average

values have to be attributed to the soft hPF potential compared to particle-particle
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distance-dependent ones.

Table 2: Structural parameters for α-helix and β-structures.

α-helix d1−4 /nm d1−5 /nm

d1-4                                d1-5          

ω
d	

hPF-MD 0.51± 0.05 0.59± 0.07
Ref. (PDB)68 0.51± 0.01 0.62± 0.01

β-hairpin d /nm ω/ deg
hPF-MD 0.53± 0.04 92± 36

Ref. (PDB)68 0.48± 0.01 90± 6

The formation of helical structures is intrinsically determined by the likelihood of

peptides to coil. On the contrary, the stabilization of β-hairpins requires a certain

degree of hydrophobicity of the chain, which promotes folding by screening from the

solvent compensating for the local distortions in the loop region. More hydrophilic pep-

tides are characterized by longer persistence lengths, yielding fully extended structures

(Figure 3).

The elongation of the chain to 30 aa produces a complication of the phase di-

agram, with the appearance of other regions characterized by more complex super-

secondary structure assemblies. Similarly for the β-hairpin, the formation of helical

super-secondary structures like the helix-coil-helix and super β-structures, is facilitated

by more hydrophobic sequences. This is because, with progressively longer sequences,

the energy gain due to solvent screening overcomes the costs of introducing a local

deformation, for example, at a loop region.

For 60 aa, the length of the polypeptide is beyond the persistence length of individ-

ual secondary structure elements in most regions of the diagram. The simple β-hairpin

is no longer found, while the single helix is only stable for the most hydrophilic regions

and helix-coil-helix has a smaller area of stability.

In all cases, values of λ ≈ 0, which corresponds to a flexible ideal-like polymer chain,

yield collapsed or elongated structures, while secondary structures appear whenever

some preference for either coiling or elongation is introduced. The qualitative features

of the phase diagrams here presented are in agreement with previous studies based
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on toy models, proposing that flexibility and hydrophobicity, as well as the presence

of a directional contact potential, are the three fundamental ingredients required to

describe the global folding features of peptides.79–81

3.2 Amphiphilic peptides
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Figure 4: Folding of a four-helix bundle. Top: Contact map of the folded structure from
hPF-MD simulations, for α = 20 kJ mol−1, using a cut-off threshold of 1 nm for the CA-
CA distance. The drawing highlights the packing of the hydrophobic CB’s in the sequence.
Hydrophobic aa’s are colored in cyan, hydrophilic ones are colored in yellow. Hydrophilic
CB’s are not drawn for clarity. Bottom: radius of gyration as a function of time for two
sequences with different α values (in kJ mol−1).

Helical peptide – Tertiary-structure assembly A peptide composed by four

segments with strong helical propensity (λ= -1, equation 11) and amphiphilic sequence,

linked by short hydrophilic loops with no propensity (λ = 0) folded locally, as expected,
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into four helical moieties. The formation of a compact tertiary assembly was promoted

by the collapse of a hydrophobic core, as signaled by the stabilization to a low value

(1.7 nm) of the radius of gyration RG, when increasing the hydrophobic character from

α=10 kJ mol−1 to α=20 kJ mol−1 (Figure 4). The folded assembly was stable as a

four-helix-bundle, evidenced by the contact map in Figure 4.

The hydrophobic CB’s localized in the core of the assembly, where the screening

of the solvent is more effective (Figure 4). Solvent screening can be quantified by

comparing the water density at the hydrophobic CB’s for different values of α to the

bulk water density. The values reported in Table 3 indicate that the stabilization of

compact conformations is determined by the tendency of the more hydrophobic CB’s

to separate from the solvent.

Figure 5: Assembly of four helical amphiphilic peptides. Top: Radius of gyration of the
four amphiphilic polypeptides for different α (in kJ mol−1) values as a function of time.
Middle: Relative abundance of aggregates at different α’s. Bottom: relevant structures of
the dimeric, trimeric and tetrameric assemblies

Helical peptide – Quaternary-structure assembly The same system was

simulated removing the loops linking the four helical regions. As evident from Figure

17



5, also in this case the association of the peptides increased progressively according

to the hydrophobic nature of the side-chains. Nonetheless, due to the larger entropic

costs for the aggregation of four independent segments, the formation of fully-stable

aggregates was observed only for strongly hydrophobic values (α = 30 kJ mol−1),

higher than those necessary in the monomeric sequence. For intermediate values of α,

dimeric and trimeric sequences were observed.

The four-helix complex showed higher conformational disorder than the monomeric

peptide, with the co-existence of two quaternary assemblies taking the form of a four

(anti)-parallel-helical bundle, or a two+two helical sandwich. This last finding is con-

sistent with former experimental studies on for helix bundles, which demonstrated that

folding into one single, well-defined structure can be obtained only in the presence of

some chemical variance of the aa sequence.82–84

Table 3: Relative water density (nH2O) at the hydrophobic CB positions compared to the bulk
water density for different values of α (in kJ mol−1), for the different amphiphilic systems
investigated.

Helical peptide Four helices α+β peptide

α nH2O α nH2O α nH2O

0 0.45 0 0.42
10 0.27 10 0.34 10 0.29
20 0.11 20 0.23 20 0.20

30 0.13 30 0.13

α+β-peptide. Starting from a random-coil conformation, the two regions of the

polypeptide folded into their respective local secondary structures. Nonetheless, for

hydrophilic sequences, no tertiary organization was observed as indicated by the cor-

responding featureless contact map (Figure 6). The increase in the hydrophobic pa-

rameter value was accompanied to the appearance of more pronounced contact maps,

indicating the formation of more compact structures and more resilient contacts. Like

in the helical peptide, the formation of a clearly folded tertiary complex was found for

a value of α=20 kJ mol−1, where a single helix packs over a β-hairpin (Figure 6).
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Figure 6: Folding of α+β peptide. The three panels report the contact maps for different
values of α = 0, 10, 20 kJ mol−1, and the corresponding most abundant structures. Hy-
drophobic aa’s are colored in cyan, hydrophilic ones are colored in yellow. Hydrophilic CB’s
are not drawn for clarity.

At intermediate hydrophobicity (α=10 kJ mol−1), we observed the existence of

a molten globule-like structure, where the properly folded compact assembly was in

competition with a more solvent exposed assembly formed by a single helix packed

to a single β-strand (Figure 6). The appearance of assemblies of individual structure

elements characterized by longer persistence lengths is consistent with what observed

in the the phase diagram for homo-polymer sequences.

3.3 Interaction of peptides with a lipid bilayer

Hydrophobic peptide We considered two systems consisting of a 25 aa long

polypeptide with hydrophilic ends composed each by 3 aa and a hydrophobic (α =

30 kJ mol−1) central region. A weak or a medium helical propensity (λ = -0.25, -0.50

respectively) was attributed to either of the two sequences. Both peptides were either

fully solvated in water, or embedded into a DOPC bilayer. Consistently with the phase

diagrams of homopolymer sequences, the weakly helical peptide showed no structure

in water, while the peptide with more helical propensity folded into a helix-coil-helix

(Figure 7). These results show that, when in water, the hydrophobic region determines

the folding of the peptide, while the short hydrophilic ends do not affect the behavior
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A                                                B 

Figure 7: Interaction of an hydrophobic peptide with a DOPC bilayer. The left and right
panels report the structures in water and in the membrane of two peptides having the
propensity parameter λ = −0.25 and λ = −0.5, respectively. Hydrophobic residues are
colored in cyan, the hydrophilic ends are colored in yellow. The DOPC bilayer is represented
in spheres. Water beads are represented by dots.

of the peptide.

When the same peptides were inserted into a DOPC bilayer, we instead observed

a stable single helix over the 500 ns of MD (Figure 7). Interestingly, such conditions

helped the stabilization into a helical structure for a propensity value as low as (λ =

−0.25), for which the phase diagram in the homogeneous aqueous phase predicts no

stable helices regardless of the sequence hydrophobicity. The trans-membrane helical

folding is stabilized by the localization of the hydrophilic ends at the exterior of the

bilayer, while keeping the hydrophobic region of the peptide into the lipid core. In fact,

the length of the hydrophobic helical segment (3.8(2) nm) is similar to the distance

between the glycerol bead planes in the two leaflets (3.22(1) nm), which define the
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hydrophobic region of the DOPC bilayer.

A

B

C

C

B
A 

B 

C 

Figure 8: Interaction of an amphiphilic peptide with a DOPC bilayer. Left: the plots report
the distance of the center of mass of the peptide from the DOPC membrane plane, defined by
the G beads of the lipids (dmem, red line), and the N-to-C distance of the peptide (dN−C, black
line) as a function of time for three different peptides with different propensity parameter
λ. the A, B, C letters mark three snapshot taken for the simulation with λ=-0.25. Center:
Side-view of the three A, B, C geometries. Hydrophobic residues are colored in cyan, the
hydrophilic ones are colored in yellow. The DOPC bilayer is represented in spheres. Water
beads are represented by dots. Right: Top-view of the B, C snapshots. Hydrophobic CB’s
are drawn in cyan spheres, DOPC beads are in white spheres. The hydrophilic CB’s as well
as water are not shown for clarity.

Amphiphilic peptide A peptide with amphiphilic helical character was placed in

the aqueous phase in the neighborhood of the DOPC bilayer. Three simulations were

repeated varying the helical propensity from low (λ = -0.25) to medium (λ = -0.50), to

strong (λ = -0.75). In water, the peptides showed tendency to form compact structures,

either as a collapsed coil (λ = -0.25, Figure 8, A panels), or as helix-coil-helix (λ =

-0.50, -0.75), screening the hydrophobic side-chains from the solvent.

Figure 8 reports both the end-to-end distance, and the distance of the center of

mass of the peptide from the membrane plane, defined by the glycerol beads in the
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lipid monolayer closest to the peptide. In all cases, the peptides bound to the membrane

surface. The localization of the peptide was quantified by computing the density profile

along the axis normal to the membrane. The plot, reported in figure S3, shows that

the peptide lies in the region of the polar heads, with the hydrophobic CB’s pointing

toward the glycerol beads, and the hydrophilic CB’s remaining exposed to the solvent.

Binding to the membrane was associated to a rapid folding of all the peptides in a

helical structure, as indicated by the transition to high values of the end-to-end distance

(Figure 8). Interestingly, the interaction with the membrane promoted helical features

also for λ values smaller than the coil/helix transition threshold in the homogeneous

phase. Transversal deformations of the helix may be promoted either by fluctuations

of the membrane, or by the conformational entropy of the peptide peptide, leave the

peptide attached to the membrane plane, and thus do not affect the screening of the

hydrophobic chains. In fact, all helix-coil-helix structure, in competition with the

single-helix, were observed (Figure 8, panels B, C). for the three λ = -0.25, -0.50, -0.75

values, we found helix-coil-helix:single-helix probability ratios of 1:1.3, 1:6.8 and 1:18.1,

respectively, showing how the relative stability of single helix is promoted by a stronger

helical propensity of the sequence.

4 Concluding remarks

We developed and implemented a hydrophobic-polar model for polypeptides based on

a two-bead mapping of the amino acids, where the intermolecular interactions are

described by density-functional based hPF potentials. We simulated a series of test

systems verifying that the model here introduced reproduces the main structural and

dynamical features of polypeptide chains. In particular, we could observe: (i) the ex-

istence of separate regions of stability for folded, collapsed, and swollen structures as

a function of the flexibility and hydrophobicity of the sequence; (ii) the effect of the

hydrophobic core in driving the assembling of simple tertiary and quaternary struc-

tures, and (iii) that sequences with mixed hydrophobic/hydrophilic patterns localize
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and fold differently at water/lipid interfaces than in the bulk solvent.

The functional form for the peptide backbone ensures the presence of structural

minima for the canonical helical or extended conformations. At the same time, the

peptide chain is able to respond to environmental perturbations and to assume locally

distorted conformations, whenever the enthalpy/entropy balance is globally favorable.

With this respect, the use of an explicit solvent model guarantees that solvent release

is properly taken into account during chain-packing events. Our model showed good

capability of responding to environmental changes, like the presence of a lipid bilayer,

both by predicting the proper localization of the peptide, and by being able to predict

its membrane binding-dependent refolding.

Our model uses a topological reconstruction of the peptide electrostatic dipoles as

introduced in previous publications.67–69 These elements guarantee both the stabiliza-

tion of folded structures by mimicking H-bond formation, and a sound description of

long-range electrostatics,67 which may be a crucial ingredient for future studies on

macromolecular crowding. Given the low costs and high parallelization of the hPF

method,24 the computational efficiency of the present model is critically dependent

on the costs for the electrostatic term. The recent development of an electrostatic-

consistent hPF scheme85 ensures that the presence of explicit electrostatic terms in

the molecular Hamiltonian do not become a serious bottleneck for large-scale applica-

tions.29 Future assessment on the performance of hPF with electrostatics and related

developments on the same topic may be of greater help for hPF simulations of biological

systems, especially thinking to possible extension of the model to nucleic acids.

Finally, here we limited our exploration to model hydrophobic/hydrophilic peptide

sequences. Moreover, we have introduced ideal α/β propense potentials that do not

correspond to specific amino acid. Thus, the range of applicability of the model, at

present, limits to general biophysical studies, and should not be used to describe specific

biochemical sequences. Nonetheless, we remark that the bending-torsional potential,

and in particular, its propensity term Vprop(φ), can be calibrated to quantitatively

reproduce the secondary structure propensities of any specific amino acid. For this
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reason, the present model represents an important first step toward the establishment of

a new hPF-based CG force-field for proteins able to describe structural and dynamical

features with biochemical detail.
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