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Abstract

Precise wind power output predictions is of great importance for a
successful integration of wind power into the power grid and market
operations. A popular approach to short-term wind power prediction is to
use machine learning methods. Machine learning methods are data-drove,
and the data it utilize as input is significant to prediction performance.
There exits many proposed models in literature for short-term wind power
prediction, but a variation in choice of input is apparent. Particularly
a difference in the use of forecast weather data from numerical weather
predictions models is observed.

In this thesis a wide variety of input types is examined by measuring
their effect on prediction accuracy using a state of the art method for short-
term wind power prediction. The inputs examined stems from an in-depth
review of previous work on the subject. In addition, some input types
not commonly utilized is considered. In order to give a general account
on the importance of the specific feature types, experiments have been
done for two wind turbines in separate wind parks located in Scandinavia
using real world data measurements and correlating weather forecast data
from a publicly available numerical weather prediction model. Further, in
addressing the challenge of battling computation costs, this work compares
two strategies for predicting the wind power output for the whole wind
park. In the first, and expensive strategy, separate models are developed
for each turbine, and the final wind park power prediction is obtained by
summarizing the individual predictions from each turbine. The second
strategy treats the wind park as a single entity by aggregating the input
data from all turbines before model development.
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Chapter 1

Introduction and Overview

Reliable short-term wind power predictions are important for a successful
integration of wind power into the electricity grid. Popular approaches
for this task are machine learning methods. The success of such methods
depends greatly on the input they utilize. In this thesis we examine a
variety of both commonly and rarely used input types in literature in order
to measure their impact on prediction accuracy for both wind turbines and
wind parks.

1.1 Motivation

There is an increased demand for clean and renewable energy across the
globe. This was demonstrated with over 190 countries committing to
the Paris agreement back in 2016. Dire reports from the United Nations
climate panel tells us that renewable energy needs to make up somewhere
between 70 to 85 percent of the worlds energy sources by 2050, in order
to battle climate change [49]. It is expected that wind power will play a
major role in this transition. Moving from dirty energy sources to wind
is undoubtedly positive for the climate, but it also raises challenges which
traditional energy sources, such as coal and oil, did not have to consider.
Wind power is not a stored energy, and cannot be ramped up and down
on demand. It exists fully at the mercy of the weather. If the wind does
not blow, energy is not produced. This brings challenges to trade, which
in many markets happens prior to production. In order to effectively trade
energy, producers need reliable power predictions. An inaccurate power
prediction might cause a producer to sell more that it can produce. Further,
an increased integration of wind energy into the electricity grid introduces
challenges to transmission system operators (TSO). At any time, the grid
has to maintain a balance between energy generation and consumption. A
large imbalance can in the worst case cause a blackout. The TSOs impose
reporting requirements on expected energy generation from producers.
Inaccurate reports are usually penalized in form of cost by the TSO. As
more and more energy comes from non-dispatchable energy sources, such
as wind, it is clear that balancing the grid will become harder, and more
emphasis will be put on precise predictions.
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In this context, better predictions will ease operations and boost
revenue for the players in the energy market. Several methods exit for
doing short term wind power prediction. A popular approach is the use
of machine learning (ML) algorithms, which in literature has generally
shown good performance when compared to the more traditional models.
A vast number of ML-based models have been proposed through research
in the quest for improving forecast accuracy. ML-algorithms are data-
dependent and need to be trained. Consequently, the quality and selection
of data used in developing ML-based models are highly important. In
this scenario the question of which data should be used as input quickly
pops up. In machine learning jargon, the specific inputs to a model are
often referred to as a feature, and models for short-term wind power
prediction proposed in literature utilize varying feature sets. Although
present wind power is almost exclusively utilized as a feature, many
models include additional data types such as wind speed, wind direction
and other less obvious attributes. Other work considers lagged values as
input, which are measurements of some attribute recorded prior to the time
of prediction (e.g wind power measurement one and two hours ago), in
addition to the most recent recordings. Finally, some models also consider
data obtained from external numerical weather prediction (NWP) models
as input, although this is mostly used when we want to predict several
hours into the future. A tempting approach to chosen features is to just
input all of them, but uncritically increasing the feature space can cause a
model to become too complex and as a consequence, perform worse. It is
therefore of interest to examine how different data types effect prediction
accuracy, in order to discover which features are most useful for doing
short-term wind power prediction. Further, a large feature set increases
computation cost. In a real world application, new data becomes available
continuously and predictions need to be done and reported on the fly.
There is thus an incentive to have a time efficient model. Besides being
conservative with the number of features, one way to lower computation
cost is to treat the wind park as one entity, which means we only need to do
a single prediction when predicting the power output for a wind park, as
opposed to predicting each turbine individually. Both of these approaches
can be found in literature.

1.2 Scope of the thesis

This work concerns short-term wind power prediction for two wind parks
in the Nordic region. The choice of focusing on short-term predictions
stems from considering the existing requirements in the Nordic energy
domain. From talking to a commercial player in this market, short-term
predictions was recognized as the most critical time frame. One hour
ahead predictions was especially highlighted, since it addresses the need
for balancing reporting to the responsible TSO. More specifically, this work
looks at one to four hour ahead predictions. The Nordic market works on
a 60 minute resolution, and as a consequence sub-hour prediction horizon
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is not addressed in this work.
The main objective of this thesis is to acquire knowledge about which

features should be included for short-term wind power prediction by
investigating a range of possible input configurations and their effect on
prediction accuracy. This work considers hourly wind power predictions
up to four hours into the future. It examines both frequently used
and uncommonly used features in literature. From our perspective, a
comprehensive comparison of feature importance is lacking in research.
Knowledge on which features improve accuracy in prediction is useful
several ways. Firstly, data acquisition and formatting can be time
consuming. If, as an example, knowing that using data from NWP models
as input on short-term predictions does not improve accuracy of any
significance, then this is time saved from gathering the data and testing
yourself. Secondly, it can expose the effectiveness of less obvious features
which might not be considered by other developers of ML-models. Further,
as briefly mentioned above, using a large set of features increases the
complexity of the model, which can pose serious energy and time costs
on optimization and training of the model. This work sets out to give a
general account on which features should be considered when doing short-
term wind power prediction.

A secondary objective focuses on the need for time-efficient models. In
most cases we are only interested in the power output of the whole park,
and not for a single turbine. One way to approach this is to aggregate the
data from all wind turbines before deploying a single prediction model.
In another, and more costly approach we would predict each turbine
individually and add them up to get the final estimated power output. In
this thesis we compare these two strategies for predicting the wind power
output of a whole wind park. Finding out if, or how much, we lose in
prediction accuracy by doing it the simple way is useful in cases where
there are high constraints on computation time.

1.2.1 Research Questions

Specifically, this works seeks to answer the following questions:

RQ1: Which measured attributes should be included into the feature space
for short-term wind power prediction?

RQ2: Should lag values be included into the feature space for short-term
wind power prediction? In which case, how far back?

RQ3: Does the inclusion of data from neighbouring turbines improve
prediction accuracy for a single turbine? In which case, how many
neighbours should be included?

RQ4: Should NWP data be included into the feature space for short term
wind power prediction? If so, which attributes?
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RQ5: How does prediction of wind park power based on aggregated data
compare, in regard to prediction accuracy, to predicting wind power
of turbines individually and summing them up?

RQ1 regards the most recent measurement record at each turbine as input.
In addition, wind direction measurements are examined, which are recor-
ded at park level. The candidate features analysed in addressing this ques-
tion are wind power, wind speed, temperature, wind direction and yaw.
Besides yaw, these do all appear frequently in literature.

RQ2 concerns the inclusion of lag values into the feature and its effect on
prediction performance. To set a limit, this work considers lag values for
up to four hours back in time.

RQ3 concerns the use of measured data from neighbouring turbines in ad-
dition to the turbine in question as input. It further examines if increasing
the number of neighbors considered has a favorable effect on prediction ac-
curacy. We limit the scope to only considering the most significant features
from the neighbor turbines, which is past wind power and wind speed.

RQ4 examines the effect of including NWP data from an external source
into the feature set. The attributes examined are wind speed, wind speed
of gust, temperature, pressure, humidity and wind direction.

The last question looks at how doing a single prediction on the aggregate
of a wind park data performs when compared to predicting the power for
each individual turbine and summing them.

1.2.2 Approach

The choice of features examined is in this works is inspired by an extensive
survey done on proposed models in literature. In particular, the differences
exposed in using NWP data versus excluding NWP data for short-term
power predictions sparked curiosity, in addition to the inclusion, or exclu-
sion of other attributes.

In order to evaluate the effect of the different features, a prediction ap-
proach utilizing a mutual information method to do an initial ranking of
the candidate inputs was used to give an order on how candidate features
are added to the different input patterns evaluated. This was in order to
avoid having to test all possible combinations of feature candidates. The
machine learning method used for prediction in this work is the support
vector machine (SVM). Steps have been taken to optimize the prediction
models developed by finding suitable hyperparameters to the SVM by us-
ing k-fold cross validation. Finally the different models developed, based
on their input pattern, are evaluated with regards to prediction accuracy
using the root mean squared error metric. In addition the models are com-
pared against the persistence model, which is considered as a benchmark
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in the field of wind power prediction.

In applying this approach we show that NWP data are highly useful
in short-term power predictions even for one hour ahead predictions.
Other notable findings include the positive impact data from neighboring
turbines has on prediction accuracy when predicting for a single turbine,
however when this strategy is used for predicting all turbines, it is not
nearly as effective.

1.3 Structure of the thesis

In this section a short presentation of how this thesis is structured is given.

Part II: Foundations

Chapter 2: Machine Leaning

In this chapter, machine learning along with some of its key concepts
are introduced. Challenges concerning the choice of features and model
development are also touched upon. In addition SVM is explained along
with the importance of optimizing support SVM models by selecting
suitable parameters. We also introduce K-fold cross validation and mutual
information regression and how the two methods are used in this work.
The former is used for tuning the parameters of the SVM, and the latter
is used for ranking the candidate features. Finally, the root mean squared
error metric and the persistence model is introduced, which are used for
evaluating the different SVM models

Chapter 3: Wind Power Prediction

This chapter is a result of an extensive survey of the field of wind
power prediction. The concept of forecast horizon is introduced, and
a brief overview of existing approaches to wind power prediction is
given. Further, a more in-depth analysis is given on the use of machine
learning methods for short-term wind power prediction. Numerous
models proposed in literature are reviewed, both based on the method they
utilize and, more specifically related to this work, what features they utilize
and at what scale predictions are done (turbine level or park level).

Part III: Short-Term Wind Power Prediction

Chapter 4: Data Sets and Experimental Environment

This work relies on data from two wind parks located in Scandinavia and
forecast weather data from a publicly available NWP model. These data
sets are introduced in this chapter. The pre-processing steps done to the
data sets prior to experiments are also mentioned. Lastly, the experimental
environment is explained by laying out the prediction pipeline.
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Chapter 5: Effects of Measured Wind Park Data for Turbine Prediction

This chapter addresses RQ1, RQ2 and RQ3 from section 1.2.1, by doing
experiments for two wind turbines located in separate wind parks. The
first sections of the chapter examine the impact of the data recorded at
turbine level (except for wind direction which is recorded at park level)
has on prediction accuracy. The following sections look at how including
lag values to the input effects prediction performance, followed by using
data from neighboring turbines as part of the input. Finally, we combine
the best input configurations from the use of lag values and neighbor data
to see how this effects prediction performance

Chapter 6: Wind Park Prediction Using Measured Wind Park Data

In this chapter the two strategies examined in this work for doing power
prediction of wind parks are presented. Further, and concerning RQ5, the
two approaches are compared with regard to prediction accuracy. For both
strategies, several input patterns are examined based on findings in earlier
sections.

Chapter 7: Effects of External Weather Forecast Data

In this chapter we set out to answer RQ4 by introducing weather forecast
data from a NWP model into the input patterns. Experiments are done
for the same two turbines as in previous chapters. Altogether six different
candidate features are considered, and the input configurations tested are
partly based on an initial ranking of the candidates. We also revisit the two
strategies for wind park prediction, in order to see if inclusion of NWP data
has an impact on their performance.

Part IV: Summary

Chapter 8: Summary and Future Work

In this chapter the most important findings from this research are revisited.
In addition, suggestions for future work are layed out.
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Chapter 2

Machine Learning

In this chapter we look more closely at the concept of machine learning
and related concepts. In the first section the basic idea behind machine
learning will be presented through a well known example. The following
sections briefly introduce the concepts of supervised and unsupervised
learning and the difference between classification and regression in order
to establish which part of the machine learning universe this work resides
in. Also touched upon is the role of data and how the choice of features
can affect the effectiveness of a model, finally the concept of over- and
underfitting is introduced and how it relates to the bias-variance-trade-off.

The following sections introduces methods utilized in this work,
starting by first giving an introduction on support vector regression (SVR).
Subsequently a short description on K-fold cross validation, and how it is
used for optimizing the SVR models, is given. In relation to the feature
selection method used in this work, mutual information regression is also
briefly introduced. Finally, in relation to the evaluation of the SVR models,
the root mean square error metric and the persistence model is introduced.

2.1 The Basics of Machine Learning

Machine learning stems from the field of pattern recognition and learning
theory. The term was first coined by Arthur Samuel in 1959 in a paper in
which he developed one of the first successful self-learning programs to
solve the game of checkers [59]. As the names gives off, machine learning
is at its core the ability to "learn" tasks by detecting patterns in often huge
amounts of data not easily perceived by humans.

2.1.1 A Well Known Example

To explain the machine learning approach it is helpful to use an example.
A well known problem in which machine learning has been used involves
recognition of handwritten postal codes [74, Ch. 1]. Handwriting is indeed
personal, and how one person writes a specific digit varies to another.
The problem can be trivial to do manually, but not very time efficient.
We therefore want to develop a model which solve this problem fast and
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Figure 2.1: A few samples from the MNIST test dataset [67] .

automatically. To put it simply, we want a program that is fed a picture of a
digit and then outputs what digit this picture illustrates in a digital format.

To build a prediction model in a machine learning setting we first need
to collect appropriate data. In our example the MNIST data sets, which
contains 70 000 handwritten digit samples, is suitable. Some samples of
the data set can be seen in Figure 2.1. Next, the data are divided into two
sets, a train set Xtrain and a test set Xtest. Each sample is represented a 28x28
matrix of pixels, where each pixel contains a gray-scale value ranging from
0 to 255. Each sample can therefore be viewed as a vector consisting of
28x28 = 784 features. Each sample is provided a corresponding label value,
which is the digital solution to the handwritten sample. The label values
are often referred to as targets. Let the corresponding targets be denoted by
Ytrain and Ytest. Next we choose a learner denoted by function A. The learner
can be any sort of machine learning algorithm. A is given the training set
S where S = (xtrain1, ytrain1), ..., (xtrainN , ytrainN) and returns a prediction rule
h : X → Y [60, Ch. 2, Se. 1]. This function is also called a predictor or,
depending on the problem, more precisely a classifier or a regressor. In plain
language what happens in this stage, called the training phase is that our
learner algorithm gets tweaked to best capture the correlating structures of
the data set to give a good approximation of new data. The output from
the training phase is called a predictor. We can now present the predictor
with unseen data to in order to classify the digit. Finally, we score the
developed predictor by comparing the Ytest to our predicted values Ypred
given by h : Xtest → Ypred to see how well our developed prediction model
h generalize to the unseen data in Xtest.
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2.1.2 Supervised and Unsupervised Learning

At its most fundamental level machine learning is usually categorized
into two types: Supervised and unsupervised learning. In the example
described in section 2.1.1 the target values are known, which means that the
machine learning algorithm can adjust the weights of the prediction model
by looking at the target, or solution, for each specific train sample. This
is called supervised learning and can be described as learning by example
[74, Ch. 2, Se. 6.2]. We can picture us a teacher involved in the training
process responding back to the algorithm telling it if it got to the correct
answer, or in other cases how close it got to it. Based on the response from
the teacher for each train sample, the algorithm "fits" the model in order
to accurately predict the correct answer for future observations.[26, Ch. 2,
Se. 1.4].

In contrast, in unsupervised learning the are no associated responses
to the observations and can therefore be described as "learning without
a teacher" [74, Ch. 14, Se. 1]. This makes the task of predicting more
challenging since we do not have a clear way of measuring its success
with the help of a target value. Unsupervised learning is mainly used for
clustering and dimensionality reduction. In clustering the goal is to sort
observations into distinct groups from which further information can be
drawn. An example can be to group customers based on spending habits
in a market study. If information about each customers spending is not
available, a supervised analysis is not possible. What can be done however
is to identity distinct groups on other available data, such as zip code and
income, to identify interest groups [26, Ch. 2, Se. 1.4].

In this thesis we only consider supervised learning. Algorithms and
challenges specifically related to unsupervised learning is therefore not
further examined.

2.1.3 Regression and Classification Problems

A response variable can either be qualitative or quantitative in nature. A
qualitative variables are discrete and can take form as yes or no answers, a
persons gender or a medical diagnosis as examples. In the handwritten
digit problem the response values are qualitative, since its responses
are limited to discrete digits (0-9). Problems working with qualitative
responses are referred to as classification problems [26, Ch. 2, Se. 1.5]. On
the other hand, when our responses takes form of a continuous numerical
values (quantitative) we are dealing with a regression problem. The type of
problem being addressed has consequence on how we evaluate our model
and also in selection of suitable machine learning methods.

In this work we want to predict the wind power output of wind farms,
meaning our task is a regression problem.
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2.1.4 Features and Feature Selection

As mentioned, machine learning is purely data driven, which gives much
emphasis on the amount and quality of data used as basis for training our
predictive model. In machine learning the specific inputs to a model is
often referred to as a feature, which is a numeric representation of raw
data. The number of features is important in order to successfully adopt
machine learning. If there are not enough informative features, then the
model will not be able to perform well. If there are too many features, or
if many features included are not relevant to the ultimate task, then the
model will be more expensive and tricky to train [87, Ch. 2]. Putting some
thought into which features to include when building a predictive model is
therefore important. In one article the following reasons for doing feature
selection were highlighted [5]:

• Reduces Overfitting: Less redundant data means less opportunity to
make decisions based on noise

• Improves Accuracy: Less misleading data means modeling accuracy
improves

• Reduces Training Time: fewer data points reduce algorithm complex-
ity and algorithms train faster

But being able to locate which features has a negative or positive effect on
accuracy is not necessarily easy. A variable that is presumably redundant
can contribute to noise reduction and consequently better performance of
our model. Further, a variable that is completely useless by itself can
provide a significant improvement to performance when included with
other variables. In addition, two useless variables can become useful when
they are used together [30]. There exits many methods for feature selection,
and in this work we have used a filter method named mutual information
for doing a ranking of the available variables as a pre-processing step. This
method will be covered in section 2.4.

2.1.5 Over- and underfitting

(a) Underfitted (b) Overfitted (c) Good fit

Figure 2.2: Simplified illustrations showing how over- and underfitting
affect a learning curve. Adopted from [6].

When evaluation the performance of a model on the new unseen data
we can sometimes encounter poor accuracy. A possible explanation to this
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is that our developed model is either under- or overfitting. This can be
related to the data used in the training phase. Data sets often contains
noisy data and outliers, and as a consequence of excessive training our
model might pick up on this noise and give it explanatory value. This
affects the models ability to generalize, leading the model to fit too much
to the training data. Another possible source of overfitting is the inclusion
of features which does not provide any predictive value. This is not easily
avoidable, since which data might have an underlying relationship to the
target is not easy to pinpoint. Machine learning models can also suffer from
the underfitting if the model is too simple to capture the complexities of the
data, but the former is by far the most common reason. Figure 2.2 shows
some simplified illustration on how over- and underfitting can affect the
learning curve.

The Bias-Variance Trade Off

A concept closely related to the over- and underfitting problem is the bias-
variance-trade-off. Apart from irreducible error of a model, meaning error
which can not be improved, we in machine learning terms often talk about
bias error and variance error of a model. Bias refers to the error that occurs
when the underlying machine learning method which tries to predict a
complicated real-life problem is too simple [26, Ch. 2, Se. 2.2]. A simple
linear regression method will undoubtedly not be able to successfully
predict a complicated problem because of its lack of flexibility, leading
the model to underfit. The solution in this case is to rather utilize a more
flexible, model which is more suited to capture complex dependencies in
the data. We can see from Figure 2.3 as model complexity rises, bias is
reduced and the model error decreases, but after a point the error increases.
At this point our model has become too complex, or in terms of this
discussion the variance has become too high. By variance we mean the
amount the prediction estimates will change if different training data was
used in training the model [26, Ch. 2, Se. 2.2]. A model with high variance
will put too much emphasis on the training data, leading to a model that
does not generalize well to unseen data. Ideally the estimates should
not vary too much between training sets. The goal for any successful
deployment of a supervised machine learning is to balance the amount of
bias and variance. This is referred to as a trade-off. It is easy to develop a
model with low bias and high variance (for instance, by drawing a curve
that passes through every single training observation) or a model with very
low variance but high bias (by fitting a horizontal line to the data). The
challenge lies in developing a model which balances good. Many machine
learning algorithms provides means of balancing the bias and variance
by configuring hyperparameters of the algorithm. This will be further
elaborated on in the next section.
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Figure 2.3: Bias and variance error in relation to model complexity.
Adopted from [24]..

2.2 Support Vector Regression

In this thesis support vector machines (SVM) are used for prediction.
More specifically, a regression variant of SVM are utilized, which has been
shown to be successful in several fields of research, including time series
forecasting [68].

Figure 2.4: Graphic showing the maximum separating hyperplane and the
margin [18] .

SVM are machine learning models using supervised learning. The
SVM was first formulated back in the nineteen-sixties by Vapnik and
Chervonenkis and was restricted to only doing linear classification [75].
It has since been extended to both handle non-linear modelling and
regression. The basic idea of SVM is to represent the data as point in
space and then find a function that correctly separates the data. The
development of this function, or hyperplane, responds to the learning
phase. The function is then used to predict new unseen data by mapped
it onto the same space and classify the data points according to which
category, or on which side of the hyperplane, it falls in. Figure 2.4 shows
the hyperplane with the margin illustrated by the stippled lines. The
same principle is adopted when using SVM for regression (SVR). Several
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SVR algorithms have been proposed, and in this work the ε-sensitive SVR
algorithm proposed by Cortes and Vapnik is utilized [17]. The ε parameter
defines an area around the hyperplane in which samples labeled as correct
even though they deviate from the actual target, allowing the model too
loosen up demands on accuracy.

In SVR modelling the goal is to find weights w by solving the
problem formulated in 2.2. Basically we are searching for two things:
a hyperplane with the largest minimum margin which at the same time
correctly describes the target data. These are two competing objectives,
since when our margin gets larger, the chance of misrepresenting the
data increases. This is where the C parameter in formula 2.2 comes into
play. The C parameter controls the penalty imposed on observations
that lie outside the ε margin. In simpler terms it controls how much we
desire a correct representation. Figure 2.5 illustrates the impact of on the
decision boundary with different values of C . Decreasing the C parameter
allows for a large margin, but at the same time amount for a less accurate
description of the data. Increasing our C parameter on the other hand
gives a much better representation, but can have the consequence fitting
too well to the training data and making the model worse at generalization.
Preferably, we would like to generate models that represent the training
data accurately, but not so much that it causes the model to overfit.

minimize
1
2
||w||2 + C

N

∑
i=1

(ξi + ξ∗i ) (2.1)

subject to


yi − 〈w, xi〉 − b ≤ ε + ξi

〈w, xi〉+ b− yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0

2.2.1 Radial Basis Function Kernel

As mentioned, SVR has the ability to do non-linear modeling which is
preferable when dealing with complex data sets. This is achieved by
applying the kernel trick, which maps the data to a higher dimension space
by the use of a kernel function. In this higher dimension a linear regression
can be performed [74, Ch. 12, Se. 3] [68]. I will not go in depth into how
this works mathematically as it is outside of scope of this work, however
how the choice of kernel function can have an effect the model is worth
pointing out. It exists several different choices for kernel function, where
the polynomial and the radial basis function (RBF) are among the most
popular.

K(x, x′) = exp (−γ||x− x′||2) (2.2)

In this work the RBF kernel function, shown in 2.2, is used. This kernel
introduces the gamma parameter γ. γ needs to be considered with care, as

17



C = 0.01 C = 0.1

C = 1.0 C = 10.0

Figure 2.5: Effect of C on margin and decision boundary

it defines the area of influence of a single training example. A high γ value
shrinks the distance of influence of a single training sample, leading to
greater definition power of that particular sample over the fitting function
in its close region, but at the same time limiting its influence over other
training samples nearby [26, Ch. 9, Se. 3.2]. As a consequence the fitting
function experiences high variances since few samples contribute to the
curvature. Too low γ values will result in the smoother decision function by
expanding the region of training samples who contribute to the curvature
of our fitting function

2.2.2 SVR and the Bias-Variance-Trade-Off

Going back to the challenge of balancing the bias-variance described in
section 2.1.5, we mention that many methods allow parameters to be set
by the user to find a balance in which low bias and low variance can be
achieved. In SVR, the most influential hyperparameter in this regard is the
C parameter, which also is called the regularization parameter. In addition,
we also mentioned how γ affects the curvature in the decision function.
If γ is too high we can risk that no values C will prevent overfitting. We
therefore have to consider both C and γ when optimizing the SVR model.
In figure 2.6 we can see how different settings of two parameters effects
the decision boundary. Since these hyperparameters controls how well
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Figure 2.6: Example: Effect of C and γ on decision boundary

SVR generalize, finding suitable values is of utter importance. There exists
many approaches in literature for finding suitable values of C and γ, and
the strategy deployed in this thesis is discussed in the following section.

2.3 K-Fold Cross Validation

Cross-validation (CV) is probably the most used method for estimating
prediction error of statistical learning methods [74, Ch. 7, Se. 10]. It
is a technique for assessing how the results of a statistical analysis will
generalize to an independent data set, and is used for both finding the
suitable ML-methods for a problem, and for tuning the hyperparameters
of a selected machine learning method. In the machine learning process it
is common practice to leave the designated test set out of this process, since
we want to treat this data as unseen samples and not have any influence
on the choices in developing our model. In CV we therefore introduce a
third set. The idea is simple: Put aside a part of the training samples in a
hold-out set. The model is then trained on the remaining training set and
validated by estimating its performance against the hold-out set.

Simple CV has two potential drawbacks. First, the error estimation can
become highly variable depending on which part, and how much of the
training samples are included in the hold-out set. Secondly, if our test
data are limited in size, allocating parts of it to a independent hold out
set might make our model to preform worse [26, Ch. 5, Se. 1]. To address
these drawbacks the more refined k-fold CV is often preferred. In k-fold
CV the training data is randomly divided into k subset of equal size. Then,
in turn, each of the k subsets are treated as hold-out set and the rest rest as
training set, leading to k error estimations with a unique training and hold
out set. The idea is illustrated in figure 2.7. The final K-fold CV estimate
is obtained by averaging all the k error estimations. The value of k can
potentially have a major impact on the resulting estimates, and research
has empirically shown that using k of size 5 or 10 shows test error rate
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estimates that suffer neither from excessively high bias nor from very high
variance [26, Ch. 5, Se. 1].

Figure 2.7: Illustration showing how the hold-out set (test set) is allocated
for k = 5

For the purpose of optimizing a SVR model we can then define a
range of possible hyperparameter configurations. By using k-fold cross
validation we then validate the models using different C and γ settings in
order to find the most suitable pair.

2.4 Mutual Information

Since the main focus of this thesis is the effect of different types of features,
how I go about testing this must be addressed. The most solid strategy
would be to just try out all the different combinations of the candidate
features, but when the numbers of possible features becomes large, this
strategy gets very time consuming. Instead a prior ranking of all the feature
candidates is done. Then, based on their ranking, each feature is added on
to the feature space to see how they affect the model. In work the ranking is
done by finding the mutual information between a given candidate feature
and the target.

Mutual information (MI) is a measure of the amount of information that
one random variable contains about another random variable [69, Ch. 2,
Se. 3]. The method has the advantage of being sensitive to dependencies
which are do not manifest themselves in co-variance [37]. In other words it
measures any relationship between variables, and not only linear relations.
The MI between two variables is zero if and only if they are statistically
independent of each other. A high MI score between a feature and the
target would then mean that the feature is relevant. This method has been
used in literature for selecting features for wind power prediction [37].
When using MI for feature selection directly, we typically set a predefined
limit of of how many features we wish to use and then extract the highest
ranked. However, in this work we only use MI as a guiding tool for how to
expand the feature space in order to avoid testing all possible combinations.
A potential drawback with this ranking procedure is that features that are
relevant together but useless individually is not accurately spotted, so we
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have to avoid putting too much trust into their ranking.

2.5 Root Mean Squared Error

In order to evaluate the performance of a machine learning model, we need
a way to measure how well its predictions actually match the observed
data (test data). For regression tasks, the most common measure used is
the mean squared error (MSE) [26, Ch. 2, Se. 2.1]. In this work a closely
related measure is used, namely root mean squared error (RMSE). RMSE is
easier to interpret since calculating the root brings back the measure to the
actual unit. We can see from the equation 2.3 that the difference between
the actual values and the predicted values are squared. This is in order
to penalize larger differences more than smaller ones. When evaluation
the performance of a model we seek a small RMSE, meaning the predicted
value are very close to the true observations.

RMSE =

√
∑N

i=1(ypred − ytrue)2

N
(2.3)

2.6 The Persistence Model

In addition to comparing the RMSE of the developed SVR models, in this
thesis we also evaluate our models in comparison to the persistence model.
In wind power prediction the persistence method, also referred to as the
naive approach, is often used as a benchmark. Although the model is
extremely simple in nature it can be difficult to beat, especially on the short-
term [86]. The model simply works by setting the future value to be the
same as the current value, assuming that the future will hold the same as
the present, hence persistence.
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Chapter 3

Wind Power Prediction

The increased focus on wind energy in recent years has resulted in vast
research on how to accurately predict energy output. In this chapter wind
power prediction is introduced. Wind power prediction models can be
classified by several factors, and in order to establish where this work
resides in the landscape of wind power prediction, several of these factors
will be briefly introduced. Later sections will dwell more into proposed
models from literature in our specific scope of research, considering the
methods utilized, the input they consider and on what scale they predict.

3.1 Forecast Horizons

The forecast horizon denotes how far into the future we wish to predict. It
can typically vary from ten minutes up to several days depending on the
case that it is used for. If the purpose of the prediction is to balance the
grid of a power system we might need an estimation in a short time frame,
while if the purpose of prediction is to better plan future maintenance it
would make more sense to produce predictions reaching far longer into
the future. Forecast horizons are usually classified into very-short-, short-,
medium- and long-term predictions. Which prediction time-frame we are
considering might influence the choice of methods and input. There exists
no exact definition which also includes typical use-cases within each time-
frame category. In this work we predict one to four hours ahead, which
falls into the short-term category.

3.2 Prediction Approach

Roughly speaking there exists two main approaches to doing wind power
prediction, namely the physical approach and the statistical approach.
They differ in the sense of which input they take in and what kind of
computation they do.
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Table 3.1: Classification of Forecast Horizons

Class Range Applications

Very short-
term

Few seconds
to 30 minutes
ahead

Electricity Market Clearing, Regu-
lation Actions

Short-term
30 minutes to
6 hours ahead

Economic Load Dispatch Plan-
ning, Load Increment/Decrement
Decisions

Medium-
term

6 hours to 1
day ahead

Generator Online/Offline De-
cisions, Operational Security in
Day-Ahead Electricity Market

Long-term
1 day to 1
week or more
ahead

Unit Commitment Decisions,
Reserve Requirement Decisions,
Maintenance Scheduling to Obtain
Optimal Operating Cost

Adopted from [58]

3.2.1 The Physical Approach

Physical approaches to wind power prediction is closely related to
numerical weather prediction (NWP) models. NWP models are dependent
on rich atmospheric data typically gathered from satellites, weather
balloons and aircrafts. The gathered data is then used to model the
initial atmospheric state on a three-dimensional grid from which the NWP
model solves complex mathematical equations, based on physical laws, to
produce the final forecast. As a consequence large NWP models are often
drifted by governments and run only a few times a day. How accurate the
forecast produced by NWP models is depends highly on the horizontal grid
resolution it uses. Having a low grid resolution means that it will not be
able to express local terrain variations, which might play a significant role
for a single point forecast. As an example, the global intergovernmental
NWP model ECMWF Integrated Forecasting System provides forecast with
a 9 km horizontal resolution [52].
Physical models for wind power prediction are themselves NWP models,
but they do forecasting on a much smaller scale, which covers only the
area of interest. Typically this is done by using the outputs from global
or regional NWP models to do a numerical down-scaling, which means
producing a forecast on a higher grid resolution. This requires a detailed
mapping of the geographical terrain of the area that has to be put into
the model. The end result is a more reliable weather forecast. To finally
predict the wind power, forecast wind speed is used as input to power
curve functions. A model that uses this approach is the Prediktor[28]
which utilizes the wind speed and direction forecasts from the NWP model
HIRLAM(High Resolution Limited Area Model) and uses the WAsP model
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to convert the wind to the local conditions. The converted wind values
are finally converted to power output using the power curve . Another
example is the Preventio[57] model which produces several wind power
predictions in time intervals from 15 minutes up to 10 hours by integrating
weather forecasts from several NWP models to the conditions in the
wind farm’s local environment. The final estimation is then optimized by
combining the separate predictions.

3.2.2 The Statistical Approach

The basic idea of statistical models is to find a mapping between
explanatory variables and the actual wind power [38]. This approach
is typically less expensive, both considering computational costs and the
building of the model. Mapping the local environment, which can be a
complicated task, is not necessary in the statistical approach. However,
statistical models depend on historical data, which is not the case for
physical models [45]. Physical methods typically offer advantages in long-
term prediction while statistical methods do well in short-term prediction
[41]. Statistical models are often sub-classified into traditional methods
based on time-series forecasting and learning methods based on machine
learning [45] [38]. In addition, it is common to classify methods in to
two additional classes, namely hybrid and ensemble methods. Hybrid
methods try to combine the strengths of several different methods in order
to improve prediction accuracy. The basic idea behind ensemble methods
is to train multiple weak prediction units and then calculate the final wind
power estimate based on all of the individual predictions.

Traditional Methods

The objective in traditional methods and machine learning methods are
similar. They both aim to improve prediction accuracy by minimizing
some loss function. Their difference lies in how the minimization is done.
Typically traditional methods use linear processes while ML methods use
non-linear algorithms [44]. Further, traditional statistical modeling was
designed for a small number of input variables which demands more
assumptions about the data and its distributions [8].

Several traditional models have been used in wind power prediction
with success. Among the more popular choices is autoregressive moving
average (ARMA), which has been successfully used to predict short-term
wind power for wind farms in the US [50] and a single wind turbine
[29]. The method has also been used to predict wind power in short
time-frames [10]. The AR part involves regressing based on the recent
values, while the MA part helps to filter out noise from short fluctuations
by considering values further back in time. Another popular approach is
autoregressive integrated moving average(ARIMA), in which data points
are replaced with the difference between the actual value and the previous.
[3][9][1][88][70]. Another similar method used for wind power prediction
is the generalized autoregressive conditional heteroskedasticity (GARCH)
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model [88][89]. The GARCH model differs from ARMA and ARIMA in
that it considers the variance error, and not the mean error, making use
of the assumption that there are periods in the time series of stability and
periods with high volatility. One paper combined ARIMA and GARCH for
predicting power for a wind park, showing improved accuracy [70] over
simply using ARIMA and GARCH. The mentioned models are all aimed
at either very-short or short-term prediction, which is the case for most
traditional models.

Machine Learning Methods

In contrast to the traditional methods, machine learning(ML) methods
make use of general-purpose learning algorithms to find patterns in often
rich and complex data, which makes them less sensitive to the quality of
data [8]. ML-methods are widely used for wind power prediction, and can
be utilized for predictions in all time frames. Popular methods for wind
power prediction include artificial neural network (ANN), support vector
machines (SVM), k-nearest neighbors (kNN) and gaussian process (GP). A
wider account on the use of ML-methods will be given in section 3.3.

Hybrid and Ensemble Methods

Both hybrid and ensemble methods typically show good performance in
research and are normally used for short-term and medium-term wind
power predictions. As mentioned, hybrid methods combine several dif-
ferent methods to predict. The methods typically consist of a traditional
statistical prediction model for the linear element of the time series, and
a nonlinear prediction model for the nonlinear element.[14] Such an ap-
proach was used in [14] by combining ARMA and a radial basis function
neural network (RBFNN) showing superiority over using ARMA and RB-
FNN individually. In [13] a hybrid model combining wavelet transform
(WT), particle swarm optimization (PSO) and adaptive neuro-fuzzy infer-
ence system(ANFIS) was shown to outperform several other simpler ap-
proaches. WT is a filter technique used in several proposed models for
transforming the data before prediction. PSO is a machine learning tech-
nique which tries to mimic the social behaviour of birds in flocks to do
classification, and was used in this case to set the parameters of the ANFIS
unit. In another proposed model, four different methods were hybridized,
namely WT, fuzzy artmap network (FA), firefly (FF) and SVM [32].

Ensemble methods build on the assumption of strength in numbers by
training several weak models for prediction and then using a strategy for
getting the final prediction based on the individual models. One such
method is boosting, in which the accuracy of an individual model effects
the next model, in other words learning is done in sequence [31]. Another
popular ensemble method is bootstrap aggregation (bagging). In this
approach, models are trained independently and predictions from each
independent model are aggregated in order to lower variance [31]. In [78] a
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bagging method consisting of ten individual SVR models was used. Other
work has considered ensembles consisting of six individual NNs using the
boosting strategy [31]. Another proposed model did not use boosting or
bagging, but rather used the single predictions from six different NNs as
input to a final GP unit [4].

3.3 Machine Learning Based Models for Short-Term
Wind Power Prediction

We have seen that wind power prediction can be categorized by which fore-
cast horizons they consider and the type of approach. This thesis focuses
on the short-term wind power prediction and the use of machine learning
methods, particularly support vector machines. This section goes into more
detail on which methods are used in this category. Their use of features
are also examined, looking at both historic measured attributes, lag fea-
tures, attributes from neighboring turbines and external atmospheric data,
as this thesis addresses the usefulness on all of these feature types. Finally,
the thesis reviews on what scale they forecast, in other words if they predict
turbines individually or for the whole wind park.

There exists a large number of machine learning based models proposed
for short-term wind power prediction, and the majority of them build upon
well established machine learning methods. The most common approach is
using some kind of derivative from the concept of artificial neural networks
(ANN). An ANN is a machine learning method which is based on the
nervous system by having nodes that "fire off" information through the
network as they get activated, or in other words if the input value to a
node exceeds over a set threshold [60, Ch. 20].

The most "traditional" neural network is called the multilayer per-
ceptron (MLP) which is a three-layered feed-forward ANN (FNN) which
utilizes a sigmoid function in the activation step. Such a model was suc-
cessfully developed to predict short term wind power output for a wind
farm in Portugal by showing improvement over the persistence method
[12]. The same approach has also been used to predict for wind farms in
India [63]. Other works use the method of a radial basis function neural
network [39][33]. RBFNN refers to a three layer FNN which uses a RBF as
an activation function. The authors in [39] argued for the use of RBFNN
on the fact that RBFF has shown advantages in learning speed and local
minimum problem compared to the use of a sigmoid function. Other work
has proposed using a wavelet function for the activation function for short
term predictions [16][77]. In [16] such a neural network was used to predict
up to 6 hours into the future. In this work they also compared the WNN
against RBFNN and MLP, showing improvement over both methods.

Another popular class of neural networks are the so-called Recurrent
neural networks. These differ from the three-layered feed-forward
methods already mentioned in that their inner architecture contains loops.
One such RNN is the Elman Network. In an Elman Network there
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is a feedback from the first-layer output to the first-layer input. This
approach has been used in several works [35][83]. In [83] an Elman-
based approach showed better performance compared to an RBFNN and
WNN. Another recurrent architecture used in short term prediction is a
Nonlinear Autoregressive Exogenous Neural Network (NARX NN), which
uses feedback connections from several layers of the network. NARX has
successfully been deployed to predict power output of wind farms located
in the US [76]. A NARX NN was also used in [40] for doing short term
predictions.

In recent years a deep learning approach based on RNNs, the Long-
Term-Short-Memory network (LSTM) has become popular for wind power
prediction [62][79][80][25]. LSTM replaces the nodes in the neural network
with LSTM units, which have the ability to learn both long and short-
term dependencies of the input data [79]. Several studies have shown its
effectiveness for short-term wind power prediction prediction. In [79] the
proposed LSTM model significantly improved accuracy when compared
to ARIMA, a simple RNN and a NN. Similar improvements were shown in
[79] against a SVM model and NN, and in [25] compared to a SVM and a
ARIMA model.

Other approaches based on neural nets include the Adaptive neuro
fuzzy inference system (ANFIS) architecture. ANFIS combines the con-
cepts NN and fuzzy logics. Fuzzy logics consists of if-then rules based on
human knowledge and membership functions. Combined with NN, the
fuzzy rules can be learned automatically. Its use is seen in several works
[55][56][20][41]. In [41] ANFIS was used to predict power output for a
single turbine. The model was compared against a Feed forward neural
network showing better accuracy for the ANFIS approach. In [20] ANFIS
was used in a two step manner, first predicting wind speed based on NWP
quantities, and then using this predicted wind speed into the final ANFIS
for doing the wind power prediction. The proposed model showed effect-
iveness in predicting a single wind turbine in China.

The other main machine learning approach used for short term wind
power prediction is support vector machines, which were introduced
in section 2.2. Numerous studies have proposed models based on this
method [84][46][61][48][19][42][34]. In [34] an SVM approach was com-
pared against several other often used approaches, including a RNN, and
FFNN, showing that the SVM approach yields better accuracy. In [19] the
proposed SVM model showed better results when compared to an Elman
network and the same was shown in [48] where their model gave better
results than a BPNN (back propogation network). As discussed in section
(LINK), an important step in developing a SVM model is the choice of ker-
nel function. A clear majority of the SVR models utilize the Radial basis
function as kernel. In [48] they justify this choice because of its effective-
ness in power system load prediction. In [34] both RBF and a polynominal
kernel fuction are used as they tend to perform better in real-world applic-
ations. Using a wavelet kernel has also been suggested in [42], but in this
case it did not show improvement over the use of RBF.
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Less popular machine learning approaches for short-term wind power
prediction includes k-nearest neighbours (kNN). The kNN algorithm
predicts by measuring the similarity of new unseen data to all available
data. Based on the degree of similarity to other data points, a value is given.
A kNN based model was used in [71] and [22]. Mainly, however, learning
based short-term wind power prediction models are based on either the
concepts of neural networks or support vector machines. Either as stand
alone prediction units, as a hybridization with other methods, or as part of
an ensemble approach.

3.3.1 Input Patterns for Short-Term WPP

As discussed above, a major contributing part to the effectiveness of a
machine learning algorithm is its choice of input. By reviewing a vast
number of proposed models we wanted to discover which attributes
are commonly used for the task of short-term wind power prediction.
In contrast to conventional time-series models, such as ARIMA and its
extensions, most machine learning methods allow several features as input
to the model.

For short term wind power prediction, the most common feature
is historical measured wind power. Several models based on neural
networks[16][2][56], SVM[85] [90] and kNN[71] utilized only this attribute
as input. Another commonly used attribute is wind speed, and throughout
literature both these quantities, both alone and in conjunction are widely
used. In [91] and [81] they only predict the wind speed using past
measured values, and then use a power curve to get the final wind power
output. In [33] however, wind speed and wind power together were used
as input. They found that using both attributes improved the accuracy of
their model. Both wind speed and wind power were also used in [61], [82]
and [7].

Other work has utilized additional atmospheric attributes. In [63]
historic humidity measures, in addition to wind speed and wind power,
was used as input. Because of low variations in temperature and air
pressure, they excluded these attribute from the input. In [76] they
included past wind direction and temperature measures along with wind
power and wind speed. The NN model proposed in [40] was trained and
tested using measured wind speed, temperature, pressure and air density.
The LSTM proposed in [80] considered, in addition to historic wind power,
wind speed, wind direction and temperature, a large set of operational
attributes such as yaw angle. However, they found that after including
ten separate attributes, the influence on prediction was constant.

Use of Lag Features

Another type of features used in several models reviewed are lag values.
In other words, measured values not only at the time of prediction, but also
close in history are used in predicting to the future. Both SVR models, and
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NN models reviewed utilize lag features. However, this is not commonly
used for RNN-based models, such as LSTM, since the information carried
by previous inputs can be held inside the network when subsequent inputs
are being processed [80]. One study compared using only the most recent
wind power and wind speed measures to expanding the lag window up
to 4, ending up with a feature vector of 8 features [39]. They found
that increasing the feature vector boosted accuracy. In [82] they used lag
features of both wind speed and wind power with a window width of
five, ending up with ten inputs. An even wider lag window of size seven
was utilized in [34], and in [61] the three last measures of wind speed and
wind power, in addition to the most present, were considered as input. The
majority of models, however, do not consider lag features.

Use of Neighbor Data

Not much research has been done on the impact of using data from
neighboring turbines to predict a single turbine, but there exists two
papers which examine this approach [72] [73]. In [73] they used power
measurements of ten neighboring turbines as input in addition to the actual
power measurement of the target turbine to predict the power output for a
single turbine using support vector regression. The inclusion of neighbor
turbines was shown to have a positive effect on accuracy.

Use of External NWP Data

All the work mentioned in this section up to this point only use past
measured data as input to their prediction models. This seems to be the
general approach for short-term wind power prediction. In one paper they
write that learning methods based on historic data alone are used for short-
term prediction of wind power within a six hour time frame [62]. Further,
in a review of short-term models it was stated that prediction models using
NWP forecasts outperform time series approaches after about three to six
hours look-ahead time [27]. In [16] the authors deliberately did not choose
to include NWP data into their model for short-term prediction, based on
the assumption that this does not significantly improve accuracy. Despite
this, some studies do consider NWP data for forecast horizons as short as
one hour ahead. [62][25][20][19][21]. The obvious input candidate from
NWP models is forecast wind speed, which all these models include, but
other less explanatory attributes have also been considered. The LSTM
model proposed in [79] for four hour ahead predictions included forecast
pressure and temperature, in addition to forecast wind speed, as features
with success. In [19] they expand the feature space even further by
including forecast humidity. Other work has also included wind direction
[21] as input in addition to wind speed, air pressure, temperature and
humidity.
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3.3.2 Difference in Scale of Predictions

The models reviewed differ regarding on what scale they do predic-
tions. Several studies focus on single turbine prediction [39][33][35],
[20][41][21][19][90]. However, in a real world application we are at most
times interested in the predicted power output of a whole wind park. We
therefore need a strategy to scale up to wind park level. In [23] they do this
up-scaling by predicting each turbine individually and then sum them up
to obtain the final wind park power output prediction. This approach was
also examined in [73]. In addition, they compared the approach against
just using one aggregate time series of the whole wind park. They found
that when including lag values and corresponding differences between the
lags, the latter strategy showed better results. Most models predict wind
park power output by using aggregated data [7][12] [76][62][42][2][56][79].
How they go about calculating the aggregate and why they do not predict
each turbine individually are in most cases not specified. A simple reason
for this can be that the data sets used for testing were aggregated when
obtained, or that measurements for individual turbines are not recorded.
Another strategy for wind park prediction was deployed in [61]. In this
case, they predicted wind power for a wind park consisting of 23 turbines
by first finding the most correlating wind turbine to the aggregate wind
power output. The most correlating turbine was then used to predict the
power output for the whole wind park by using samples from turbine data,
and aggregate data as targets.

3.4 Summary and Discussion

In this chapter, several approaches for wind power prediction have been
introduced. Emphasis has been put on statistical methods, and particularly
machine learning methods, for this task. We saw that combining several
different methods into a hybrid model has shown to be effective.

The scope of this thesis, however, is machine learning methods
for short-term wind power predictions, and in later sections models
considering these constraints were further analysed. We saw that the vast
majority of models in this scope are either based on a NN or a SVM method.
It is difficult to single out one method that is better than others. The
effectiveness of a model is highly dependent on the quality on the data used
in training it, and the data sets used for testing the presented approaches
are not the same. We saw that some of these reviewed works did compare
their proposed model to other frequently used methods, but it is not always
made clear how the models they are compared against are developed with
regards to how and if they are optimized to be as effective as possible.

We also saw variation when analysing the input used for the reviewed
models. Should only wind power measures be included, or only wind
speed, or both? Should other attributes, such as wind direction, humidity
and air pressure be included? Should lag values be included, or even data
from neighbor turbines? We have seen that some studies compare different
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feature sets, but far from all. Our general perception is that most work does
not reflect much around the choice of inputs. Most works only consider
either wind power, wind speed or both as input. A simple explanation to
this may be that additional attributes are not available.

Variation is also observed when examining the use of external NWP
data as input to ML-based models. The vast majority of the work reviewed
only considers measured historic data as input, and the general assumption
seems to be that NWP data are not useful when predicting for the first
couple of hours. However, we have seen that some studies include NWP
data for forecast horizons as short as one hour with success. A reason
for this "disagreement" might simply be that a reliable NWP model is not
available in all cases. We briefly discussed how grid resolution affects the
precision of NWP forecasts. It is not unlikely that if forecast weather data
is extracted from a NWP model with a large grid resolution, the impact on
prediction accuracy would be insignificant. Among the models utilizing
NWP data we also saw a variation in terms of which attributes are used as
input.

Finally, we compared the models reviewed on what scale they predict.
Although a significant number of them considered wind power prediction
for single turbines, most of the works regarded power output for the whole
wind park. Different approaches to the latter scale of prediction were
exposed. The majority of the works utilize aggregate data from the wind
park, but we also reviewed a few papers using an approach of predicting
each turbine individually and then summing them up to get the final wind
power prediction for the whole wind park. Finally, in one paper data from
a single turbine was used to predict power output for the whole park by
using the aggregate wind power as target values. From analyzing the
papers, our perception is that the choices of strategy are in general not
argued for. One reason for this might be that data at wind turbine level
is not available in the data sets utilized in the different works, in which
case the choice of strategy is simple. Only one of the reviewed papers do a
comparison of different strategies for wind park prediction.

This thesis is a results of the differences exposed particularly concerning
the choice of input. Most interesting is the difference in use of NWP data.
Our immediate intuition tells us that NWP would have a positive impact on
prediction accuracy, even for predictions considering just a couple of hours
ahead. Additionally, the use of data form neighbor turbines is interesting
since this approach has not been much researched. Furthermore, since we
have access to data recorded at turbine level, two of the strategies for doing
predictions for a whole wind park are investigated.
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Part III

Short-Term Wind Power
Prediction
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Chapter 4

Data Sets and Experimental
Environment

In order to answer the questions raised in section 1.2.1, data has been
acquired from two sources. The real measured wind park data from two
wind parks has been provided by Statkraft and weather forecasts has been
retrieved from the Norwegian Meteorological Institute’s websites.
In the following sections a description of both these data sets will be
provided.

4.1 Measured Wind Park Data

Measured data from two wind parks located in different parts of Scand-
inavia is utilized in this work. From the map in Figure 4.1 we can see that
wind park I is located on an island close to the coast of Norway, and the
second one is located inland in Sweden. The choice of these two wind
parks is not coincidental. We assume that their differences in geograph-
ical location also reflects differences in weather conditions which gives us a
better basis for giving a more general account on the effects of features. In
addition to location, the two wind parks differ in size and capacity of tur-
bines. Wind park 1 consists of 24 turbines with a full production capacity of
2.3 MW each, adding up to a total capacity 55 MW. The second wind park
has a total capacity of 99 MW and is made up of 33 wind turbines with a
capacity of 3.2 MW each.

Both data sets covers a time frame of two years and is recorded in ten
minute intervals. It consists of the following variables:

• Wind Power Production

• Wind Speed

• Temperature

• Yaw Drive

• Wind Direction
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Variables are recorded uniquely for each wind turbine with the exception of
wind direction, which is only recorded at one spot in both wind parks. The
variables listed are assumed self-explanatory, except for yaw drive which
might need a further explanation. Yaw drive represents the position of
the wind turbine head, which is typically rotated according to the wind
direction in order to maximize energy production.

Figure 4.1: Location of wind parks. Case 1 refers to wind park I and case 2
refers to wind park II. The map is obtained from Google

4.1.1 Cleaning and Transformation of Measured Wind Park Data

Most data sets contains anomalies, and the data used in this thesis is of
no exception. Therefore some simple preprocessing steps has been done
before presenting it to the machine learning algorithm.

Cleaning

First, all instances which does not contain data are dropped. Also,
obviously wrong records are removed from the data set (i.e a wind power
measurement is larger than the total capacity of a turbine).

Another source of bad data is the fact that turbines can be shut off for
a varying amount of time for several reasons (e.g maintenance). Steps
have been done in attempting to recognize and remove these instances
by comparing it with the measurements of neighboring turbines and
considering the power curve of the turbine. From the scatter plot in Figure
4.2 we can see that if a record of a turbine shows zero output in power
at the same time it records wind speed between 7 m/s and 18 m/s, then
it is most likely shut off. From these analysis, some turbines have been
considered unusable, and are removed from the data set entirely based on
the frequency and length of shut down time. This concerns four turbines at
wind park I and eleven turbines at wind park II. As a consequence, when

36



wind power prediction for the whole park is performed, we are predicting
in all for twenty turbines at wind park I and twenty-two at wind park II.

Figure 4.2: Scatter plot of wind speed and wind power

Transformation

When performing hourly predictions there is no need for all the ten minute
measurements available in the acquired data sets. The data is therefore
down sampled to the preferred frequency domain. There are two main ap-
proaches on how to do this. One way is to calculate an average from all
the inter-hourly data-points for each hour hour. The other approach is to
simply remove all the measurements recorded at times of no interest. In
this work the latter option is used, which was based on some initial testing
on which of the two approaches gave the most promising prediction res-
ults.

The final preprocessing step done is scaling of the input data. This is
important since the different attributes are given in different units. The
consequence of not doing this step is that some attributes gets emphasized
more than others in the machine learning algorithm, This is especially true
for the SVR-algorithm which is not scale invariant. The scaling approach
used in this work is normalization, which simply transforms the data to the
range between zero and one. Samples of the transformed data is shown in
Figure ??
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normalized wind power

normalized wind speed

normalized temperature

normalized yaw drive

normalized wind direction

Samples of normalized measured data from wind park I
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4.2 Weather Forecast Data

Weather forecast data has been gathered from https://thredds.met.no
which is run by the Norwegian meteorological institutes. The forecast data
utilized in this work is produced by the Arome MetCoOp (Meteorological
Cooperation on Operational Numerical Weather Prediction) model, which
is a bilateral cooperative effort between the Norwegian Meteorological
Institute and the Swedish Meteorological and Hydrological Institute [51].
This is a mesoscale NWP model which covers both the concerning wind
parks. The model is run four times a day and forecasts for every hour for
up to 66 hours ahead.

As mentioned in section 3.2.1, the point accuracy of NWP models is
related to their horizontal grid resolution. The smaller the grid points, a
more accurate description of the geographical terrain is possible. Arome
MetCoOp works on a horizontal resolution of 2.5 kilometers. Since both
wind parks spans a bigger area than 2.5 km, weather data from several grid
points has been collected by a simple algorithm developed for the purpose
of finding the grid points closest to any given turbine. For wind park I,
weather data from three grid points was gathered and for wind park II six
points. The NWP model offers a large variety of attributes. In this work
I have not considered all of the available data, but limited myself to the
following:

• Zonal 10 meter wind at 10 meters

• Meridional 10 meter wind at 10 meters

• Wind Speed of Gust at 10 meters

• Temperature at 2 meters

• Air Pressure at Surface

This limitation is made on the basis of input types commonly by
proposed models in literature for doing wind power prediction. Zonal
wind denotes the wind blowing along the axis west-east axis. This value
is positive if the wind blows from the west and vice versa [65]. Similarly
meridional wind denotes the wind blowing from north to south [64].

4.2.1 Cleaning and Transformation of Weather Forecast Data

Cleaning

Similar with measured wind park data, simple steps has been done to
remove outliers and anomalies from the NWP data sets. In addition,
weather forecasts past six hours ahead from each run of the NWP model
is removed such that there is an overlap to the next run. The forecast for
the seventh hour is then acquired from a "fresher" model run, illustrated
in figure 4.4. Its is worth noting that if wind power predictions with a
forecast horizon past six hours in this scenario was considered it could be
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considered cheating, since the new model run most likely produces a more
accurate weather forecast. However, since this work limits itself up to four
hours it is in agreement with a real world scenario.

Figure 4.4: Only weather forecast up to six hours from each run of the NWP
model is included in the final data set

Transformation

Zonal and meridional wind is not included in the final data set, rather wind
speed and wind direction is calculated from these wind components using
the following equations:

wind speed =
√

u2 + v2 (4.1)

wind direction = atan2(u, v) (4.2)

Where u is the zonal wind component and v is the meridional wind com-
ponent

Finally, the data sets are normalized in range from zero to one. Samples
from the data is shown in Figure 4.5.
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*
(a) normalized forecast wind speed

*
(b) normalized forecast wind speed of gust

*
(c) normalized forecast temperature

*
(d) normalized forecast wind direction

*
(e) normalized forecast air pressure

*
(f) normalized forecast humidity

Figure 4.5: Samples of normalized weather forecast data from NWP model
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4.3 Experimental Environment

All the code written for this thesis is done so in Python (v. 2.7.12) primarily
utilizing the following libraries:

• Pandas (v. 0.22.0)

• NumPy (v. 1.13.3)

• Scikit-learn (v. 0.19.1)

• Maplotlib (v. 3.0.3)

Pandas is used for loading and categorizing the data sets which are
stored in csv files (comma separated values) [47]. NumPy is a library for
handling and doing operations on matrices, which is much more memory
effective compared to the native Python list [53]. Scikit-learn provides lib-
raries for both the machine learning algorithms and grid search for optim-
izing their hyper parameters. It also provides tools scaling of data and
ranking of potential features through mutual info regression [54]. Graphs
presented in the following chapters is produced using matplotlib [36].

Figure 4.6: Simplified flowchart of the prediction process

Figure 4.6 shows a basic flowchart of the experimental environment. In
the first step, measured wind park data is merged with the forecast weather
data. Depending on the turbine and features chosen in the configuration,
data is further extracted from the merged data set. Forecast weather data
is only extracted from the grid point closest to the chosen turbine. Over-
all, eighteen months of data is used. The first twelve months is used for
optimizing and training the models, and the remaining six months is used
for testing. From the flowchart we can see that the test data is completely
withheld from the training phase.

In the training phase the C and γ parameter of the SVR model are
chosen from doing a 5-fold grid search on a predefined set of possible
values. The computation cost to doing grid search can quickly become
substantial based on the length of the training data and the range of
possible hyper parameters. Since the inclusion of new features can effect
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the choice of hyper parameters, this has to been done for all the tests
performed. To combat time consumption to some degree, grid search is
only done on half of the training data. More specifically on every other
record, such that data from all months is included. Initial experiments were
done in order to find a suitable set of possible C and gamma values ending
up with the following grid:

C = [0.01, 0.1, 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0]

γ = [0.00001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0]

The kernel function utilized in all the tests is Radial Basis Function
(RBF). This choice is based on its popularity in literature.

After fitting hyper parameters have been chosen, the SVR model
(configured with these parameters) are trained on the whole training set
and then gets applied the unseen test data.

4.4 Initial Ranking of Features

Some shortcuts have been done when exploring the research questions
which this thesis sets out to address. As an example, doing wind power
forecasting regression using temperature alone as an explanatory feature
would probably not yield satisfying results. Drawing from the intuition
that excluding some features, such as past wind power output and past
wind speed, from our feature vector will worsen our prediction accuracy,
not all combinations are examined. This assumption is also reinforced by
exploring the research done on the subject. We have not found a proposed
ML-based model for doing short-term wind power prediction which does
not either use past wind power output or past wind speed as feature.
An initial mutual information (MI) regression analysis has been done to
rank the available features after how much information they share with the
target. Features are then in turn added to the feature space based on their
ranking.
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Chapter 5

Effects of Measured Wind Park
Data for Turbine Prediction

Choosing appropriate features for the machine learning algorithm is
essential for achieving good accuracy of predictions. When dealing with
short term predictions, historic values are usually considered. As explained
in chapter 3 there are differences in which features has been used as input
for short-term wind power prediction throughout research. Intuitively,
historic wind power is a critically important feature when predicting on
short horizons with a statistical approach. Secondly, historic wind speed
are in many cases included in the input. All work on this subject known
to the author utilizes at least one of these two attributes, but from this
point we have seen variation on whether other historic variables are used
for prediction. In chapter 5 we saw that some work take into account
wind direction, while others considers temperature as an input. Several
work also includes several measurements further back in time of these
attributes, called lag values and finally we saw a couple of proposed
models which considered historic data from neighboring turbines as
input. What motivates the choice, and for this matter, the exclusion of
some attributes is not necessarily accounted for. It can be a question of
availability of different types of attributes, intuition or testing.

In this chapter RQ1, RQ2 and RQ3 from section 1.2.1 are addressed by
exploring different input configurations selected from the wind park data
sets and their effect on prediction accuracy. For each wind park we examine
one turbine chosen at random.

In section 5.1 we examine the effects that five different attributes have
on prediction accuracy for two turbines in order to determine which
attributes should be included as input when doing short term wind power
prediction. The five attributes are wind power, wind speed, wind direction,
temperature and yaw drive. Besides yaw drive, these are all attributes
which have been used for this purpose.

In section 5.2 we explore the effects of using lag values of wind power
and wind speed for the same two turbines. The maximum lag window
width explored is limited to four, meaning wind power and wind speed
measurements further back than four hours ago are not considered.
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In section 5.3 we look at the effects of adding wind power and wind
speed measurements from neighboring turbines to the input by varying
the numbers of neighbors considered.

In the last section we combine the best configurations from previous
sections, using both lag values and measures from neighboring turbines to
see if further improvement in prediction accuracy is gained.

All results is compared against the persistence model, should we will
refer to as the naive approach.

5.1 Present Measured Data

In this section we examine the effects of using all available attributes in
the measured data sets on prediction accuracy for two wind turbines, one
located at each park. Twelve months of hourly sampled data is used
for training the models, and half of this data is used for finding suitable
hyper parameters. The following six months of data is used for testing the
performance of the models. In all, twenty models are trained and tested,
ten for each turbine.

As mentioned in section 4.4, an initial MI regression analysis is done
to determine which order the attributes is added to the input space. The
result from this analysis for the turbines at wind park I and II is shown
in Figure 5.1 and 5.2. Not surprisingly past wind speed and wind power
gets a significantly higher score than the remaining attributes. For both
turbines, wind power is ranked first, followed by wind speed and yaw dir-
ection. For the two remaining attributes we can see that wind direction is
ranked before temperature for the turbine at wind park I, but not for the
other turbine. Therefore, the order in which features are added to the input
space is not the same for both turbines. Further we can see that temper-
ature surpasses yaw direction in importance for the turbine at wind park
II when the forecast horizon increases. For simplicity however, the feature
ranking for forecast horizon 1 is followed for all test cases.

5.1.1 Turbine at Wind Park I

Table 5.1: Input Configurations - Turbine at Wind Park I

I wp_0
II wp_0, ws_0
III wp_0, ws_0, yaw_0
IV wp_0, ws_0, yaw_0, wd_0
V wp_0, ws_0, yaw_0, wd_0, temp_0

The ranking from the MI regression analysis for the first turbine gives
the input configurations shown in Table 5.1. The zero digit which follows
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Forecast horizon 1 Forecast horizon 2

Forecast horizon 3 Forecast horizon 4

Figure 5.1: Mutual information scores of attributes for turbine at wind park
I

Forecast horizon 1 Forecast horizon 2

Forecast horizon 3 Forecast horizon 4

Figure 5.2: Mutual information scores of attributes for turbine at wind park
II

47



the underscore on each feature tells us it is the most recent measurement
available at the time. Prediction accuracy, using the different input config-
urations is scored by the RMSE metric. Scores are shown in Table 5.2 with
the best results highlighted in bold.

Table 5.2: RMSE - Turbine at Wind Park I (KW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
I 307.4 375.3 429.1 469.3
II 300.2 365.3 423.1 461.8
III 305.2 370.4 423.1 461.9
IV 302 370.6 423.5 461.9
V 305.1 370.4 423.6 462.6

naive 313.1 386.9 449.4 499.8

From the results we can see that including wind speed as a feature in
addition to wind power has a positive effect on prediction accuracy for all
considered forecast horizons. When compared to only using wind power
as input, we see that improvement is most evident in one and two hour
ahead predictions. A decrease in RMSE of 2.34% is obtained for one hour
ahead prediction and 2.66% for two hour ahead prediction. For three and
four hour ahead predictions the improvement is less evident, a decrease
of 1.4% and 1.6%. Expanding the feature space further however shows no
additional improvement. We can see that adding yaw to the feature space
actually increases the error of the model in forecast horizon one, two and
four. For input configuration IV, where, wind direction is included, there is
a decrease in RMSE of 1.04% compared to the previous input configuration.
However, it still performs worse compared to only using wind power
and wind speed as input. This is also the case when predicting using all
available attributes.

Further we can see that all feature configurations outperform the naive
approach by a good margin. Not surprisingly this margin decrease when
the horizon gets shorter, since it is in shortest time frames the persistence
model can be difficult to beat. The best best performing input configuration
II shows a decreases in RMSE of 4.12%, 5.58%, 5.85% and 7.6% in one,
two, three and four hour ahead predictions when compared to the naive
approach.

5.1.2 Turbine at Wind Park II

As mentioned in section 5.1, the attributes ranking from the MI analysis for
the turbine at wind park II differs slightly from the turbine at wind park
I. As a consequence we include wind direction last, and not temperature
which was previously the case (shown in table 5.3). Besides from this,
experiments are identical, using the same amount of training and testing
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Table 5.3: Input Configurations - Turbine at Wind Park II

I wp_0
II wp_0, ws_0
III wp_0, ws_0, yaw_0
IV wp_0, ws_0, yaw_0, temp_0
V wp_0, ws_0, yaw_0, temp_0, wd_0

data, and setting the hyperparameters of the SVR-models based on cross
validation.

Table 5.4: RMSE - Turbine at Wind Park II (KW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
I 430.2 528.1 602 645.9
II 425.6 525.8 595.5 641.5
III 425.5 525.5 595.4 640.7
IV 425.5 525.4 595.5 640.5
V 425.4 525.2 595 640.6

naive 437.8 549.5 633.3 690

For the turbine at wind park II we can see from table 5.4 that using
wind speed in addition to wind power as input also in this case results
in a more accurate model. For one hour ahead a decrease in RMSE of
1.07% is obtained. Two, three and four hours ahead predictions shows
a 0.44%, 1.08% and 0.68% decrease. In contrast to the turbine at wind
park I, we can see that by including yaw to the feature space, accuracy
is improved even further in all forecast horizon. A slight improvement is
also obtained when temperature is introduced. This configuration gave the
best performing model for four hour ahead prediction. Finally, using all the
available attributes as input resulted in the best performing model for the
three shortest time frames. However, the amount of improvement gained
beyond input configuration II is small. Between configuration II and V for
one, two and three hours ahead there is a decrease in RMSE of 0.05%, 0.11%
and 0.08%. The best model for four hours ahead, using configuration IV,
decreased RMSE by 0.16% from the model utilizing only wind power and
wind speed as input. Finally, we can also in this case see that all developed
models performed better than the persistence model. The best performing
models for each forecast horizon decrease RMSE by 2.83%, 4.42%, 6.04%
and 7.17% for one to four hours ahead compared to the naive approach.
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5.1.3 Summary and Discussion

For both tested turbines we can observe that including wind speed into
the feature space has a positive effect on prediction accuracy in all forecast
horizons. The improvement is most evident for the turbine at wind park I,
and more specifically in the two first forecast horizons. The effects of yaw,
temperature and wind direction as features is less clear. For the second
turbine we observe a slight improvement as these attributes are added to
the input, but for the first turbine they have a negative effect in all forecast
horizons. From these results it seems reasonable to include measured wind
speed as input, in addition to measured wind power. It is harder to give a
general account on the effects of yaw, wind direction and temperature. For
the turbine at wind park II one could argue they should be included. But
even though these attributes had a positive effect on prediction accuracy
in one of the tested turbines, the amount of improvement is small. In both
cases we can see an improvement in accuracy over the persistence model
with a comfortable margin, and as prediction horizon expands this gets
even more evident.

5.2 Including Lag Values

Figure 5.3: Included lag values with a sliding window width of four

Another frequently used feature when performing short term wind power
prediction are lag values. The intuition behind the use of lag values is
that by providing the machine learning algorithm with knowledge of what
happened in recent history, and not just at the present moment, will give
the model more context. The use of lag values is often referred to as the
sliding window method. Figure 5.3 illustrates the basic idea.

In these experiments the maximum sliding window is limited to a
width of four, meaning lag values further than four hours back in time is
not examined. This decision is based on the assumption that a window of
this size is sufficient enough to see if there is a trend in performance as the
sliding window expands. and also the fact that we do not predict further
than four hours into the future. Also, lags of which attributes to included
in the window needs to determined. Based on the results from section 5.1,
which showed little no improvement with the use of yaw, wind direction
and temperature, only lags of wind power and wind speed is considered.
Input configuration II is set as the initial features for both turbines, since
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this configuration gave successful results in both cases. All the tested lag
configurations are shown in table 5.5.

Table 5.5: Input Configurations - Including Lag Values

i wp_1
ii wp_1, wp_2
iii wp_1, wp_2, wp_3
iv wp_1, wp_2, wp_3, wp_4
v wp_1

ws_1
vi wp_1, wp_2

ws_1, ws_2
vii wp_1, wp_2, wp_3

ws_1, ws_2, ws_3
viii wp_1, wp_2, wp_3, wp_4

ws_1, ws_2, ws_3, ws_4

5.2.1 Turbine at Wind Park I

The results for the turbine at wind park I is displayed in Table 5.6. For
one hour ahead prediction we can observe that prediction accuracy was
improved for two input configurations. In both these cases, the sliding
window width is set to one. The best performing configuration, II + v
includes lag values of both wind speed and wind power and gave av
decrease in RMSE of 1.13% when compared to the initial II configuration.
Using only lags of wind power shows a decrease of 0.77%. Using a
wider sliding window increased RMSE for all cases. For two hours ahead,
tests show no improvement in any of the lag configurations. The best
performing models had an increase in RMSE of 0.82% compare to using
only present values as input. This score is shared by three different
configurations. In all the three cases lag values of wind power only was
included. For the two remaining forecast horizons, we see that lag values
gave a positive effect on accuracy. For both three and four hour ahead
prediction, including lag values has a positive effect on accuracy. In
both forecast horizons, the best configurations did not include lag values
further back than one hour ago. For three hour ahead prediction the best
performing model included lags of both wind speed and wind power and
gave a decrease in RMSE of 0.26% over the initial configuration. For four
hour ahead, the best configuration gave a decrease in RMSE of 0.84%, but
used lag of wind power only.
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Table 5.6: RMSE - Turbine at Wind Park I - Including Lag Values (KW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
II + i 297.9 368.3 422.2 457.9
II + ii 300.4 368.3 422.3 461.3
II + iii 300.4 368.3 422.3 461.2
II + iv 300.4 368.4 422.4 460.9
II + v 296.8 368.5 422 460.9
II + vi 300.8 368.6 422.3 461
II + vii 300.8 368.7 422.3 460.9
II + viii 300.8 369 422.3 461

II 300.2 365.3 423.1 461.8
naive 313.1 386.9 449.4 499.8

5.2.2 Turbine at Wind Park II

For the turbine at wind park II, the first thing that can be noted from the
results shown in Table 5.7 is that the inclusion of lag values improves
accuracy in all forecast horizons. We can further observer that the best
model in each time frame does only include lag values of wind power. For
one hour ahead prediction, a decrease in RMSE of 0.33% is gained when
using wind power lags up to three hours back in time. For the remaining
forecast horizons we can observe that the best giving configuration uses a
sliding window of width four. This suggests that using a sliding window
wider than four, which I have set as a limit in these tests, could improve
the accuracy even further for these time frames. For two hour ahead the
best gave decrease in RMSE of 0.26% compared to the model based on
configuration II. For three and four hours ahead, prediction accuracy is
improvement by an even larger margin, showing a decrease of 0.50% (3h
ahead) and 0.57% (4h ahead) in RMSE.

Table 5.7: RMSE - Turbine at Wind Park II - Including Lag Values (KW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
II + i 424.7 525.7 595 639.9
II + ii 424.7 525.1 594.1 638.4
II + iii 424.2 525 592.8 637.9
II + iv 424.9 524.4 592.5 637.8
II + v 425 525.8 594.8 639.5
II + vi 425.9 525.6 594.3 638.4
II + vii 424.8 525.5 593.4 638.1
II + viii 425.7 525.3 593.1 637.9

II 425.6 525.8 595.5 641.5
naive 437.8 549.5 633.3 690
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5.2.3 Summary and Discussion

When comparing the results from the two turbines it gets difficult to give
a general account on the use of lag values. For the turbine at wind park
I, including lag values from further back than one hour was fruitless.
This is not the case for the second turbine, in which three out of the four
best performing models has the sliding window width set to the limit of
four. Another difference between the two turbines is in the use of only
wind power or both wind power and wind speed values as lags. For the
first turbine, the best result at forecast horizon 1 and 3, both attributes
are utilized, while for two and four hour ahead predictions, only lags of
wind power is used. For the turbine at wind park II however, it seems
safe to say that only lags consisting of wind power should be included
into the feature space. Overall, taking into account that in seven out of
eight cases the inclusion of lag values improved accuracy over using only
present measures, lags should be considered as an input in short term wind
prediction. Which attributes should be lagged, and how wide the sliding
window should be is difficult to say.
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5.3 Including Measurements From Neighboring Tur-
bines

Figure 5.4: selection of the closest neighbors with a limit of four

In this section we examine the effect of incorporating measures from
neighboring turbines to the input. The basic idea is illustrated in Figure 5.4.
In this scenario we need to determine both what type of data we should
include from the neighboring turbines, and from how many neighboring
turbines. To address the former, we rely upon the findings from section
5.1 by only considering wind power and wind speed measurements. In
order to determine the number of neighbors, six different sizes is examined
by using measures from two to twelve neighbors, excluding odd numbers.
The Selection of neighbors is based on their geographical positioning to the
target turbine, such that the closest turbine is selected first. As in previous
sections, present wind speed and wind power (input configuration II) is
used as initial input on which the neighboring measures are added to.

5.3.1 Turbine at Wind Park I

The results for the turbine at wind park I is shown in 5.8. It is clear
that using neighbor turbines is a successful strategy in this case. All
configurations considered improves accuracy compared to only using
measurements from the target turbine as input. We can further observe
a steady decreases of RMSE as the neighborhood is expanded. In three
of the four tested forecast horizons, the limit of twelve neighbors is
considered in the input space, which suggest that considering an even
bigger neighborhood could improve accuracy additionally. For one
hour ahead the configuration including ten neighbors shows a significant
improvement in RMSE with a decrease of 3.2% compared to configuration
II. For two to four hours ahead, a decrease of 3.45%, 4.66% and 4.29% is
obtained using wind power and wind speed measurements from twelve
neighbors. The success of using data from neighbors is further emphasized
when compared to the naive approach, which show a decrease in RMSE of
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7.18%, 8.84%, 10.23% and 11.56% for forecast horizon one to four.

Table 5.8: RMSE - Turbine at Wind Park I - Including Neighbors (KW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
II + 2 neighbors 298 362.6 415.2 453.8
II + 4 neighbors 294.8 355.9 407.5 449.9
II + 6 neighbors 292.4 354.7 405.4 443.7
II + 8 neighbors 292.3 355.8 407.6 446

II + 10 neighbors 290.6 353.8 404.7 442.9
II + 12 neighbors 293.2 352.7 403.4 442

II 300.2 365.3 423.1 461.8
naive 313.1 386.9 449.4 499.8

5.3.2 Turbine at Wind Park II

Including measurements from neighboring turbines also has a positive
effect on the turbine located in wind park II. All except one configuration
outperforms the use of only present wind power and wind speed as
input. For one hour ahead we can see a steady decrease in RMSE up
to using ten neighbors, with a slight increase when twelve neighbors are
used. This steady decrease is not apparent for the remaining forecasts
horizons, although the trend seems to be that accuracy is improved when
the neighborhood is expanded. In the four hour ahead case, the model
using ten neighbors actually gave the worse results, even worse than
not using data from neighbors at all, while including twelve neighbors
yield the best RMSE score. The effect of neighbor data is most apparent
in the shorter forecast horizons. The best performing models shows a
decrease in RMSE of 2.04%, 1.65%, 1.36% and 0.88 for one to four hour
ahead predictions. This amounts a significant decrease in RMSE over the
persistence model by 4.77%, 5.89%, 7.24% and 7.85%

Table 5.9: RMSE - Turbine at Wind Park II - Including Neighbors (KW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
II + 2 neighbors 420.8 519.1 592.2 640.1
II + 4 neighbors 422 521.6 592.8 642.8
II + 6 neighbors 419.9 522.1 593.9 638.4
II + 8 neighbors 418.8 521.5 592.3 640.3

II + 10 neighbors 416.9 517.1 587.8 647.4
II + 12 neighbors 417.2 517.3 587.4 635.8

II 425.6 525.8 595.5 641.5
naive 437.8 549.5 633.3 690
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5.3.3 Summary and Discussion

It is clear that including of neighbor features has a positive effect on
prediction performance for both turbines. From all the potential feature
types analyzed in this work up to this point, it has the most profound effect
on performance. The improvement is especially apparent for the turbine
at wind park I. Accuracy seems to be further improved with the increase
of neighbors included into the input space. From all the eight cases, five
of the best input configurations includes the limit of twelve neighbors,
while the remaining three cases incorporates data from ten neighbors. It
seems that forecast horizon influence the appropriate size of neighborhood,
considering that in both cases using twelve neighbors did not improve
performance in one hour ahead prediction. For the longer time frames the
performance gained by using the limit of twelve neighbors suggest an even
wider neighborhood than twelve could improve accuracy even further in
these forecast horizons.
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5.4 Combination of Lag Values and Neighboring Tur-
bines

Up to this point we have treated the potential feature types partly
separated. When the effect of neighboring measurements was examined,
lag values of the target turbine was not included in the input and vice versa,
even though they overall showed to have a positive effect on prediction
accuracy for both turbines. In this section we use the results drawn from
the previous three sections to see if accuracy can be improved even further
by combining the different input types. Intuition may probably tell us that
it will, but this is not necessarily the fact. We recall that for each test run
a grid search is done to find suitable hyper parameters for the SVR model.
The input utilized obviously has an effect on the hyper parameters chosen.
Therefore, a suitable pair of hyper parameters for one type of input data
might not be suitable for other input types, and could potentially lead to a
worse performing model.

The input patterns tested in this section combines the best performing
input configurations from section 5.2 and 5.3. For the turbine at wind park
II, we saw that including yaw drive, wind direction and temperature gave
a slight improvement in accuracy, but for the sake of comparison, these
attributes is not utilized in this section. Secondly, for the turbine at wind
park I we have included one lag value for two hour ahead predictions even
though this did not yield improvement in accuracy compared to using only
present measurements. The exact input configurations tested can be seen
in Table 5.10 for the turbine at wind park I and in Table 5.12 for the turbine
at wind park II.

5.4.1 Turbine at Wind Park I

Table 5.10: Input Configurations - Turbine at Wind Park I - Combination

1h ahead wp_0, ws_0, wp_1, ws_1,
10 neighbors(wp_0 & ws_0)

2h ahead wp_0, ws_0, wp_1,
12 neighbors (wp_0 & ws_0)

3h ahead wp_0, ws_0, wp_1, ws_1,
12 neighbors (wp_0 & ws_0)

4h ahead wp_0, ws_0, wp_1,
12 neighbors (wp_0 & ws_0)

By combining data from neighbors and lag values we can see from table
5.11 that accuracy is improved even further for one hour and two hour
ahead predictions. For one hour ahead we can observe a decrease of
0.62% in RMSE compared to the previous best performing model. For
two hour ahead a slight decrease of 0.11% in RMSE is obtained, but for
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the remaining two forecast horizons no further improvement is gained.
Recalling the results from section 5.2, which showed little improvement
with the inclusion of lags for forecast horizon two to four, these results
is not very surprising. A bit unexpected however is the fact that a slight
increase in RMSE for four hour ahead prediction is observed, considering
both input types showed improvement in isolation.

In figure 5.5 a sample from the prediction results in each forecast
horizon is displayed along with the actual observed values. We can
see in the results that the models including data from neighbor turbines
generalizes better than the other models. Both the neighbor model and the
combination model is less sensitive to the fluctuations in the power output,
which can vary by a large amount from one hour to the next.

Table 5.11: RMSE - Turbine at Wind Park I - Combination (KW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
initial (wp_0 & ws_0) 300.2 365.4 423.1 461.8

with lags 296.8 368.3 422 457.9
with neighbors 290.6 352.7 403.4 442

combination 288.8 352.3 403.4 442.3
naive 313.1 386.9 449.4 499.8
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(a) 1h ahead

(b) 2h ahead

(c) 3h ahead

(d) 4h ahead

Figure 5.5: Sample data from prediction results for wind turbine at park I
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5.4.2 Turbine at Wind Park II

Table 5.12: Input Configurations - Turbine at Wind Park II - Combination

1h ahead wp_0, ws_0, wp_1, wp_2, wp_3
10 neighbors(wp_0 & ws_0)

2h ahead wp_0, ws_0, wp_1, wp_2, wp_3, wp_4
10 neighbors (wp_0 & ws_0)

3h ahead wp_0, ws_0, wp_1, wp_2, wp_3, wp_4
12 neighbors (wp_0 & ws_0)

4h ahead wp_0, ws_0, wp_1, wp_2, wp_3, wp_4
12 neighbors (wp_0 & ws_0)

From the results in table 5.13 we can see additional improvement in
all forecast horizons by combining lag values and neighbor turbines for
the turbine in wind park II. The improvement is most evident in four
hour ahead prediction, showing a decrease in RMSE of 0.72%. Less
significant is the improvement for one hour ahead, which decreased RMSE
by 0.01%, although this is not very surprising considering the amount of
improvement the inclusion of lag values had in isolation. For forecast
horizon two and three, the decrease in RMSE amount to 0.25% and 0.18%.

Samples from the prediction results for each model is shown in figure
5.6. As for the turbine at park I, we can also in this case see that the models
utilizing neighbor data are less sensitive to the high variance in power
output, resulting in better prediction results.

Table 5.13: RMSE - Turbine at Wind Park II - Combination (KW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
initial (wp_0 & ws_0) 425.6 525.8 595.5 641.5

with lags 424.2 524.4 592.5 637.8
with neighbors 416.9 517.1 587.4 635.8

combination 416.5 515.8 586.3 631.2
naive 437.8 549.5 633.3 690
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(a) 1h ahead

(b) 2h ahead

(c) 3h ahead

(d) 4h ahead

Figure 5.6: Sample data from prediction results for wind turbine at park II
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5.4.3 Summary and Discussion

Combining data from neighbor turbines with lag values of the target
turbine seems to be a reasonable strategy for both tested turbines. In six out
of the eight cases (four horizons for each turbine), further improvement in
accuracy is achieved. In the remaining two cases, one case shows a slight
decrease in accuracy, while the other had no effect in either positive of
negative direction. However, the amount of improvement is small. This
is not unexpected considering the impact of lag values alone, addressed
in section 5.2, had on performance. Nonetheless, these results do seem to
tell us that data from neighbor turbines and lag values can safely be part
of the same input pattern, even if the positive effect is even so slightly.
Recalling the bias-variance trade off and its relation to model complexity,
discussed in section 2.1.5, these results show that input size of well over
twenty features does not make the model too complex. The combination
model for the turbine at wind park II relies on as many as thirty inputs.

5.5 Conclusion

In this chapter we set out to answer RQ1, RQ2 and RQ from 1.2.1 by
examining the effect a wide variety of feature candidates has on prediction
accuracy using a machine learning method.

In the first section of this chapter we examined if including less obvi-
ous attributes recorded at a turbine to the input for our machine learning
algorithm could help boost prediction accuracy. The attributes considered
were wind power, wind speed, yaw drive, temperature and wind direction.
For both turbines, including wind speed proved to be a positive addition to
the input pattern along with present wind power. The two turbines had a
differing effect on the rest of the attributes. While all the candidate features
generally had a slight positive effect on the turbine at the second wind park,
for the first turbine prediction accuracy got worse by their introduction.
From this fact its not possible to give a general account on the use of these
less explanatory attributes. Considering the small amount of improvement
gained for the second turbine, it is tempting to conclude that their effect is
too small to bother. What is clear however is that these attributes should
not uncritically be added to the feature space without consideration. What
seems conclusive from this section is that wind speed should be included
in the input pattern if available.

In section 5.2 we examined the inclusion of lag values to the input pat-
tern referencing RQ2 from section 1.2.1. Results showed that lag values had
a positive effect in all tested cases expect for two hour ahead prediction for
the turbine at wind park I. It is worth noting that the effect of lag values
are in most cases not of big significance. In only one case, one hour predic-
tion for the turbine at wind park I, the decrease in RMSE exceeded 1%. A
part of RQ2 was also to see discover which data types should be should be
lagged, and wide the lag window should be. These question are difficult
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to answer based on the present results. We saw that for the first turbine,
only the most recent lag value had a positive effect on accuracy, while for
the second turbine, a width of three and four seemed most promising. Dif-
ferences in the two examined turbines were also apparent in the choice of
lagged data types. For the first turbine, the best results for two forecast ho-
rizons, lag values of both wind speed and wind power were utilized. In the
second turbine however, only lag values of wind power were included for
the best yielding input configurations. From this it can be argued that from
a general perspective at least lags of wind power should be considered as
a part of the input pattern, but if lags of wind speed and how wide the lag
window should be, needs to be examined for the specific turbine or park.

RQ3 concerned the use of data from neighboring turbines. This ques-
tion was examined in section 5.3 for the two turbines using present wind
speed and wind power measures for up to twelve neighbors in vicinity.
For both turbines this had a positive effect on prediction accuracy, with im-
provements most apparent for the turbine at wind park I. For the second
turbine improvement were most significant in the shortest time frame, with
a decreased effect as the forecast horizon expanded. Results suggests that
this strategy should be deployed when predicting the power output of a
turbine. For both turbines, using neighbor data had a greater effect com-
pared to using lag values. In addition, using neighbor turbines decreased
by a greater margin than the inclusion of present wind speed. Further we
discovered a trend which showed that predictions were further improved
as data from a larger number of incorporated neighbors. By analyzing the
results there seems to be a tipping point at ten neighbors for one hour ahead
prediction for both turbines, while for three and four hour ahead the max
limit of twelve neighbors yield the best result for both turbines. The last
observations eludes to that for longer forecast horizons data from an even
larger number of neighbors can improve prediction accuracy even further.

In the last section we examined the effect of using both lag values and
neighbor turbines in the input pattern. Results showed that in all but one
of the cases prediction accuracy was improved even further.
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Chapter 6

Wind Park Prediction Using
Measured Wind Park Data

So far in this work we have only focused on predicting wind power
production for single turbines. For most use cases however we are
interested in estimated wind power production for the whole wind park.
In this chapter we look at how the feature configurations examined so far
performs when scaled up to park level. In addition RQ5 is addressed by
comparing two different strategies for predicting wind parks. In the first
approach each turbine is predicted individually and then summed up to
get the final wind power forecast. This strategy is illustrated in figure 6.1.
The second, and simpler, approach we aggregate the data from all turbines
and predict the power output using a single model. Figure 6.6 illustrates
the strategy.

As mentioned in 4.1.1 some turbines have been left out of these
experiments. This concerns four turbines at wind park I and eleven
turbines and wind park II. The reason being that analysis of the data
showed signs of some turbines being shut off for longer periods of time.
The turbines in question would contribute to a misleading result, based
on the assumption that in a real world scenario we would have prior
knowledge to when turbines will experience down time. Overall twenty
turbines is included for wind park I and twenty-two turbines for wind park
II.

6.1 Strategy 1 - Predicting Individual Turbines

For predicting each turbine at a wind park, I have used the same approach
as in chapter 5. To refresh, twelve months of hourly data is utilized for
training the models. One model for each turbine. Half of this training data
is used for finding suitable hyper parameters to the SVR model through
grid search, and finally tested on 6 months of data. The input patterns
chosen for each turbine is based on findings from chapter 5. The exact
input configurations used for all turbines in the different wind parks are
the same used in section 5.4 which can be found in Table 5.10 for wind
park I and 5.12 for wind park II.
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Figure 6.1: Strategy 1. Each turbine has its own predictive model. The
prediction from every model gets summarized to produce the final wind
park prediction

6.1.1 Wind Park I

Table 6.1: RMSE - Wind Park I - Strategy 1 (MW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
initial (wp_0 & ws_0) 4.79 6.313 7.473 8.346

with lags 4.771 6.31 7.48 8.381
with neighbors 4.793 6.338 7.497 8.359

combination 4.779 6.328 7.484 8.372
naive 4.878 6.528 7.844 8.898

From the results in Table 6.1 we can see that the success of using
data from neighboring turbines does not apply when scaled up to wind
park level. In all forecast horizons the introduction of neighbor turbines
actually decreases prediction performance. This is in direct contradiction
to the results in section 5.3. In order to get more insight to these rather
unexpected results, figure 6.2 shows the normalized RMSE (NRMSE) for
each of the tested input patterns and how they compare to each other as
the number of turbines included in the final one hour ahead prediction
output is increased. We can see that using neighbor data in the input
does provide a better performance when power output from fewer turbines
are considered. Although, as number of turbines is increased, the models
based on the simpler input patterns (lags or only present values) surpasses
in accuracy. For the approach using lags, the accuracy becomes better than
the neighbor approach when the final power forecast includes individual
predictions from nine turbines and more. The combination approach is
surpassed in accuracy after thirteen turbines.

The best prediction results was obtained by using lag values for the two
shortest forecast horizons, but for three and four hour ahead predictions
even this approach performs worse than using only present wind power
and wind speed as input. This not in agreement with the results from
turbine prediction in section 5.2. However, we can observe that all input
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Figure 6.2: NRMSE

configurations performs better than the naive approach. For one hour
ahead, there is an improvement of 2.19% with the use of lag values, and
for two hour ahead a decrease of 3.34% is obtained. We can see that this
margin increase the further we predict into the future. Using present wind
power and wind speed decreased RMSE by 4.73% and 6.2% for three and
four hours ahead predictions. Samples from predictions results of all input
pattern is displayed in figure 6.3.

1h ahead 2h ahead

3h ahead 4h ahead

Figure 6.3: Prediction samples for wind park I
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Table 6.2: RMSE - Wind Park II - Strategy 1 (MW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
initial (wp_0 & ws_0) 6.781 8.973 10.661 11.948

with lags 6.803 9.078 10.761 12.092
with neighbors 6.885 9.121 10.79 12.122

combination 6.862 9.118 10.819 12.143
naive 7.019 9.387 11.304 12.826

6.1.2 Wind Park II

Prediction results from wind park II shows similar results. From table
6.2 we observe that also in this case using neighbor turbines in the input
pattern has a negative effect on prediction accuracy compared to less
complex input patterns. The NRMSE scores plotted in figure 6.4 shows,
as was also the case for wind park I, that the approach using neighbor
data rises above the simpler input patterns in NRMSE as more turbines
are included in the overall prediction result. The fact that both wind park
shows similar results, it seems that the use of neighboring turbines is most
suitable for only predicting a single turbine, and not using this approach
when predicting for the whole wind park.

Figure 6.4: NRMSE

We can also see that the best performing input configuration in all
forecast horizons only includes present values of wind power and wind
speed, suggesting that lag values should not be included even for the
shortest forecast horizons for this case.
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1h ahead 2h ahead

3h ahead 4h ahead

Figure 6.5: Prediction samples for wind park II

6.2 Strategy 2 - Predicting the Aggregate of All Tur-
bines

Figure 6.6: Strategy 2. The aggregate of all turbines are used to train a single
prediction component for the whole wind park

A simple strategy for making our prediction process more effective time
and computation-wise is to treat our wind park as one single entity. Instead
of having to develop a model for each turbine, we instead train a single
model which takes the aggregate from all turbines as input. When applying
this strategy it makes no sense in using neighbor turbines, which we have
considered as input for single turbine prediction. In addition yaw has not
been included as a candidate feature, since this is an independent technical
attribute of turbines. For the remaining candidate features, the average
of all wind speed and temperature measure, and the sum of wind power
measurements is calculated before normalization. For wind direction,
which is only recorded at one spot in both wind parks, only normalization
is necessary.

In order to set the best ground for comparison of the two strategies,
I also in this section examine several input configurations. The patterns
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considered for both pars is displayed in table 6.3.

Table 6.3: Input Configurations - Strategy 2

I wp_0
II wp_0, avg_ws_0
III wp_0, avg_ws_0, wd_0
IV wp_0, avg_ws_0, avg_temp_0
V wp_0, avg_ws_0, wd_0, avg_temp_0

6.2.1 Wind Park I

From the results in table 6.4 similar effects to performance by the less
explanatory candidate features is observed. Using both wind speed and
wind power in the prediction is further established as a good approach.
A tiny improvement in accuracy is observed when temperature is also
included to the feature space, but hardly of much significance. Wind
speed and wind power in conjunction with lag values are also tested,
showing no further improvement. Lastly, and most interestingly, we
can see that strategy 1 outperforms strategy 2 in all forecast horizons.
RMSE is decreased by 0.50% (1h ahead), 0.20%(2h ahead), 0.17%(3h ahead)
and 0.22%(4h ahead) by adopting the method of predicting each turbine
individually.

Table 6.4: RMSE - Wind Park I - Strategy 2 (MW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
I 4.83 6.39 7.572 8.468
II 4.796 6.324 7.488 8.365
III 4.796 6.325 7.488 8.37
IV 4.795 6.323 7.486 8.365
V 4.796 6.324 7.488 8.367

II + lags (best) 4.833 6.365 7.507 8.394
strategy 1 (best) 4.771 6.31 7.473 8.346

naive 4.878 6.528 7.844 8.898
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6.2.2 Wind Park II

Small amounts of improvements can be observed in some of the forecast
horizons when including wind direction and temperature. In contrast
to wind park I, we can see that using lag values improve the model
further. Appropriate lags values where selected by examining the same
input patterns as in section 5.2. The best performing model includes lags of
wind power with a sliding window of width one. Also for this wind park,
strategy 1 outperforms strategy 2 in all forecast horizons. In this case this
with an even bigger margin, showing a decrease of 0.99% (1h ahead), 0.75%
(2h ahead), 0.37% (3h ahead) and 0.87% (4h ahead) in RMSE compared to
the best model using strategy 2.

Table 6.5: RMSE - Wind Park II - Strategy 2 (MW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
I 6.949 9.197 10.903 12.206
II 6.915 9.095 10.775 12.072
III 6.916 9.097 10.775 12.072
IV 6.914 9.09 10.776 12.06
V 6.914 9.096 10.777 12.06

II + lags (best) 6.849 9.041 10.701 12.053
strategy 1 (best) 6.781 8.973 10.661 11.948

naive 7.019 9.387 11.304 12.826

6.3 Summary and Conclusion

Recalling question five from 1.2.1, it seems clear that predicting each
turbine individually as opposed to treating the wind park as one entity
is a better strategy for wind power prediction. However, the difference
in RMSE is not substantial. In a scenario where the number turbines
in a wind park reaches far bigger numbers than the tested cases in this
work, deploying strategy 1 in an effective manner can potentially demand
huge computation powers and quickly become very costly. Considering
the difference exposed in these experiments, using a simpler and more
computationally efficient strategy might be more reasonable in such
scenarios.

71



72



Chapter 7

Effects of External Weather
Forecast Data

Surveying studies on wind power prediction, there seems to be an agree-
ment that data from NWP models should be used as input in statistical
models when the forecast horizons extends several hours. However, in
short-term prediction, and particularly for one hour ahead prediction, there
does not exist a consensus to the same extent on the usefulness of NWP
data. In section 3.3 we saw that some studies do consider forecast weather
data from external NWP models as input, although a majority of them do
not. In this chapter we examine this diversity by studying the impact of
external weather forecast data from a real world NWP model with respect
to prediction accuracy. Several input configurations are examined in order
to expose suitable features. The candidate features considered are forecast
wind speed, gust, wind direction, temperature, air pressure and humidity.
In the first two sections we examine the effect NWP data has on single tur-
bine prediction. Predictions are done for the same two turbines considered
in earlier chapters. In later sections, lag values and neighbor data are com-
bined with NWP data too see if accuracy can be further approved. Finally,
NWP data are used for predicting for the whole wind park, deploying both
types of strategies examined in the previous chapter.

Experiments are done using twelve months of data for training, and
six months of data for testing. Present wind power and wind speed
measurements are used as initial features, and a ranking of the candidate
attributes from the NWP model is done in advance to determine the
order of inclusion. The result of the MI regression analysis is shown
in figure 7.1. Not surprisingly, forecast wind speed is ranked in first
place, followed by wind speed of gust for both turbines. From this
point the order differs. At both turbines humidity is ranked last, but the
order of temperature, air pressure and wind direction is not in alignment.
Therefore, the input configurations used in this chapter ignore the ranking
for these three attributes, consequently allowing for a larger set of tested
input configurations. (shown in table 7.1).
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(a) Turbine at wind park I (b) Turbine at wind park II

Figure 7.1: Mutual information scores of NWP data for both turbines

Table 7.1: Input Configurations - NWP Data

ix f_ws
x f_ws, f_gust
xi f_ws, f_gust, f_wd
xii f_ws, f_gust, f_temp
xiii f_ws, f_gust, f_press
xiv f_ws, f_gust, f_wd, f_temp
xv f_ws, f_gust, f_wd, f_press
xvi f_ws, f_gust, f_temp, f_press
xvii f_ws, f_gust, f_wd, f_temp, f_press
xviii f_ws, f_gust, f_wd, f_temp

f_press, f_hum

7.1 Turbine at Wind Park I

Results for the turbine located at wind park I are displayed in table 7.2.
A significant improvement in accuracy is observed with the inclusion of
NWP data. In one hour ahead prediction, the best performing model
decreases RMSE by 9.26% when compared to using present wind speed
and wind power only, and 13% compared to the persistence model. As
expected, the significance of NWP data gets even more evident as forecast
horizon expands. Showing a decrease in RMSE from input configuration II
by 16.86% (two hours ahead), 23.09%(three hours ahead) and 27.50%(four
hours ahead).

When looking at the effect of distinct candidate features, we observe
that including gust improves accuracy in all horizons. Moreover, including
wind direction (II + xi) and temperature (II + xii) further improves accuracy
in all horizons. However, when using wind direction and temperature
together (II + xiv), a slight increase in error is recorded for horizon one and
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three. Adding air pressure to the input has a negative impact on accuracy
in all horizons, suggesting it is not suitable as a feature in this case. Finally
we can observe that adding humidity improves accuracy (II + xviii) in all
forecast horizons.

Table 7.2: RMSE - Turbine at Wind Park II - Including NWP (KW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
II + ix 273.1 309.5 334 351.3
II + x 273.3 311.8 330.3 346.8
II + xi 273.2 309.7 327.8 341.7
II + xii 272.4 308.2 326.4 340
II + xiii 275 312.1 334.1 347.6
II + xiv 277 303.7 329.2 339.8
II + xv 276 309 328.5 341.6
II + xvi 274.6 309.7 327.4 340.7
II + xvii 280.3 307.1 328.7 341.6
II + xviii 277.1 304.5 325.4 334.8

II 300.2 365.3 423.1 461.8
naive 313.1 386.9 449.4 499.8

7.1.1 Including Lags and Neighbor Data

Experiments have been done using combinations of the best NWP, lags and
neighbor configurations, to see if accuracy is further improved. From table
7.3 we see that this is not the case. The model utilizing only NWP data, in
addition to present wind speed and wind power, provides the best results
in all forecast horizons. This suggests that lag values and neighbor turbines
should only be considered when not using NWP data.

Table 7.3: RMSE - Turbine at Wind Park I - All Input Types (KW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
Initial (wp_0 & ws_0) 300.2 365.3 423.1 461.8

with NWP 272.4 303.7 325.4 334.8
with NWP and lags 277.8 310.6 329.2 336.1

with NWP and neighbors 281.4 322.4 338.3 345.2
with all 285 320 340.3 346.8
naive 313.1 386.9 449.4 499.8
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1h ahead

2h ahead

3h ahead

4h ahead

Figure 7.2: Sample data from prediction results using NWP data for wind
turbine at park I
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7.2 Turbine at Wind Park II

Similar to the turbine at wind park I, including NWP data shows
noteworthy improvement in accuracy for the turbine at wind park II. For
one hour ahead prediction the best NWP configuration (II + xvii) decreases
RMSE of 7.51% from only using wind speed and wind power as input. For
two hours ahead a decrease of 13.37% is registered, followed by 16.84% and
22.13% in for three and four hours ahead.

Including gust (II + x) further improves accuracy for all horizons also
for the second turbine, establishing itself as a suitable feature for short-
term wind power prediction. For the remaining candidate features, results
do not exclusively point in one direction. When wind direction forecasts
are first introduced (II + xi) accuracy is boosted for two- and four hour
ahead predictions, but worsen for the one- and three hour ahead. Including
forecast temperature (II + xii) has a positive impact on two, three and four
hours ahead predictions, while pressure improves accuracy for two and
three hours ahead (II + xiii). Finally, we see that including humidity (II +
xviii) decreases error in two forecast horizons. However, combining the
separate features seems have a positive effect on performance. In two
out of four forecast horizons, all candidate features were included in the
input. For the two remaining forecast horizons, humidity was left out of
the feature space. From these results all features show signs of having
some predictive value, although only gust was shown to exclusively give a
positive impact.

Table 7.4: RMSE - Turbine at Wind Park II - Including NWP (MW) (KW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
II + ix 397.5 465 499 512.3
II + x 394.6 462.8 495.9 510.4
II + xi 395 460.9 497.2 503.8
II + xii 395.9 459 495.6 503
II + xiii 396.5 460.9 495.4 510.5
II + xiv 396.3 459 495.5 500.5
II + xv 394.1 459.9 497.1 504.9
II + xvi 403.1 458.4 496.5 505.2
II + xvii 393.6 455.8 495.2 500.5
II + xviii 394.1 455.5 495.7 499.5

II 425.6 525.8 595.5 641.5
naive 437.8 549.5 633.3 690
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1h ahead

2h ahead

3h ahead

4h ahead

Figure 7.3: Sample data from prediction results using NWP data for wind
turbine at park II
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7.2.1 Including Lags and Neighbor Data

As also shown for the turbine at wind park I, combining NWP data with
lags and neighbor data does not seems to be an effective strategy. From
table 7.5 we can read that for all forecast horizons, using only NWP data,
in addition to present wind power and wind speed, gave the best results.

Table 7.5: RMSE - Turbine at Wind Park II - All Input Types (KW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
Initial (wp_0 & ws_0) 425.6 525.8 595.5 641.5

with NWP 393.6 455.5 495.2 499.5
with NWP and lags 394.1 459.5 513.1 521.4

with NWP and neighbors 397.7 466.1 510.1 523.5
with all 397.1 464.6 507.3 521.4
naive 437.8 549.5 633.3 690

7.3 Park Prediction with NWP Data

Finally, the impact of using NWP data when scaling prediction up to wind
park level is examined. Both strategy 1 (predict each turbine individually)
and strategy 2 (predict park from aggregate of turbines) from section 6.1
and 6.2 are followed and compared with respect to RMSE. For strategy
1, the best performing input configurations from section 7.1 and 7.2 are
chosen for each turbine. In order to give the two strategies an even playing
field, the same input patterns are examined for the strategy 2 approach as
for the two turbines. These configurations are listed in table 7.1.

7.3.1 Wind Park I

The impact of NWP data is also evident in power predictions for wind
park, showing a decrease in RMSE of 9.28%(1h ahead), 17.14%(2h ahead),
23.26%(3h ahead) and 27.57%(4h ahead) comparing the best model from
table 7.6 against input configuration II. We can see that strategy 1 gave
the best result in three out of four cases, suggesting that this is the best
approach, although the level of improvement gained by deploying strategy
1 over the simpler strategy 2 is minimal. For two and three hour ahead
predictions a decrease in RMSE of 0.26% and 0.12% is obtained compared
to the best results using strategy 2. The impact of strategy 1 is slightly
more evident for four hour ahead prediction, showing a decrease in RMSE
of 1.6%. For one hour ahead however, we can observe a slight increase
in RMSE of 0.09%. Considering the small differences between the two
approaches, it is difficult to see the advantage of following strategy 1 in
this case, taking into account the computation cost following it. One could
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think the two approaches gave almost exact predictions, but by looking at
figure 7.4 we observe that this is not the case.

From analyzing the effect of the specific candidate features when
utilizing strategy 2, the most interesting fact is that including gust increases
error in three of the four forecast horizons (II + x). This was not the case for
single turbine prediction.

Table 7.6: RMSE - Wind park I - Strategy 2 with NWP (MW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
Strat. 1 (best) 4.355 5.24 5.746 6.058

II + ix 4.376 5.298 5.809 6.184
II + x 4.395 5.328 5.805 6.274
II + xi 4.367 5.311 5.947 6.245
II + xii 4.364 5.246 5.753 6.148
II + xiii 4.384 5.337 5.986 6.188
II + xiv 4.393 5.254 5.879 6.157
II + xv 4.351 5.307 5.973 6.225
II + xvi 4.357 5.268 5.963 6.223
II + xvii 4.383 5.289 6.006 6.238
II + xviii 4.386 5.323 6.156 6.372

II 4.796 6.324 7.488 8.365
naive 4.878 6.528 7.844 8.898

1h ahead 2h ahead

3h ahead 4h ahead

Figure 7.4: Prediction samples with NWP data for wind park I
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7.3.2 Wind Park II

The prediction results for wind park II are displayed in table 7.7. RMSE are
decreased by 8.02% (1h ahead) 13.21% (2h ahead) 18.45% (3h ahead) 23.10%
(4h ahead) with the inclusion of NWP data compared to only using present
data of wind speed and wind power measurement. Further, we can observe
that the advantage of using strategy 1 over strategy 2 for wind park power
prediction is much more evident in this case, showing a decrease in RMSE
of 4.31% (1h ahead), 2.65% (2h ahead), 3.60% (3h ahead) and 2.90% (4h
ahead) when compared to the best performing model applying strategy 2.
Samples from the prediction results are displayed in figure 7.5. Regarding
the impact of the specific features for strategy II, we can observe, as in the
case of wind park I, that gust has a negative impact on prediction accuracy
for all four forecast horizons(II + x). The best performing model for one
and two hour ahead predictions using strategy 2 only included forecast
wind speed from the NWP data. However as forecast horizon is expanded,
including additional NWP data to the input showed to provide a better
accuracy. Similar behavior was registered in section 7.1 for predicting the
power output for the turbine at wind park I.

Table 7.7: RMSE - Wind park II - Strategy 2 with NWP (MW)

Input 1h ahead 2h ahead 3h ahead 4h ahead
Strat. 1 (best) 6.36 7.893 8.786 9.283

II + ix 6.647 8.108 9.383 9.926
II + x 6.766 8.294 9.448 10.031
II + xi 6.65 8.29 9.32 9.845
II + xii 6.66 8.349 9.344 9.88
II + xiii 6.762 8.379 9.538 10.063
II + xiv 6.636 8.366 9.115 9.575
II + xv 6.881 8.357 9.281 9.724
II + xvi 6.672 8.402 9.475 9.996
II + xvii 6.752 8.557 9.168 9.593
II + xviii 6.66 8.8 9.142 9.561

II 6.915 9.095 10.775 12.072
naive 7.019 9.388 11.304 12.826
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1h ahead 2h ahead

3h ahead 4h ahead

Figure 7.5: Prediction samples with NWP data for wind park II

7.4 Summary and Conclusion

In this chapter we sought out to address RQ4 from section 1.2.1 by utilizing
data from a NWP model in the prediction process. Results showed a
significant drop in error for both turbines. Not surprisingly, the impact on
accuracy increases as we predict further into the future. More interesting
is the fact that it also provided noteworthy improvement even for one
hour ahead predictions. Of all the feature types explored in this thesis,
NWP data has the most evident effect on performance. We conclude from
this that NWP data should definitely be included into the feature space,
even for one hour ahead predictions. The second part of RQ4 involved
exposing the specific attributes that should be included from the NWP
data. Apart for the obvious choice of wind speed, the gust attribute had a
positive impact in all cases for turbine power prediction. For the remaining
candidate features it is tougher to draw any clear conclusions, although for
the turbine at wind park I, all candidates were used as input for the best
performing model in three and four hour ahead predictions, suggesting
that wind direction, humidity, pressure and temperature are first useful
when considering predictions further into the future. Another interesting
observation was the fact that combining NWP data with lag values and
neighbor data decreased performance in all cases, suggesting that these
feature types should only be considered when NWP data is not available.

In this chapter we also revisited the task of predicting wind power for
the whole wind park. Similar to when only measured data was considered,
utilizing strategy 1 showed overall to be the best approach when applying
NWP data. For wind park I the difference in RMSE between the two
approaches was minimal, but for the second wind park, strategy 1 showed
a noteworthy improvement over strategy two. Why this is the case is not
clear, but it can be related to the fact that wind park II spans a larger

82



geographical area. Calculating the average forecast weather data in this
case for use in strategy 2 involved data from six different grid points from
the NWP model, as opposed to only three points for wind park I. The loss
of local precise forecast weather data is thereby more evident in the case of
wind park II when deploying strategy 2.

Finally, we could observe that the features having a positive impact
on turbine power prognosis do not necessarily do so when predicting
wind park power using strategy 2. Overall, there is not much to gain
in performance by including features beyond forecast wind speed. More
specifically, gust was shown to have a negative effect in all cases, which
contradicts with its influence on power prediction for the two turbines.

83



84



Part IV

Summary
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Chapter 8

Summary and Future Work

8.1 On the Use of Measured Wind Park Data

In this work we studied the impact of measured data for predicting two
turbines located in two different wind parks.

In addressing RQ1 the impact of wind power, wind speed, yaw
drive, temperature and wind direction was examined for predicting two
turbines located in different wind parks. We found that wind speed
had a positive effect on prediction accuracy for turbines, and therefore
should be considered as an input when doing short-term wind power
prediction. Including the remaining candidate features showed to have
a negative effect prediction accuracy for turbine located at wind park I and
a slight improvement for the turbine at wind park II. However, it is worth
pointing out that the increase in error experienced for the first turbine was
more significant than the decrease in error gained for the second turbine.
These findings nevertheless suggest that neither present measure of wind
direction, temperature and yaw drive has a valuable impact on short-term
wind power prediction.

In examining the use of lag values, referring to RQ2, we observed little
or no impact on prediction accuracy. In a couple of the forecast horizons
for the turbine at wind park I, using lag had a slight improvement on
performance. For the second turbine lag values improved accuracy in all
forecast horizons, although not by a significant factor. An inconsistency
was observed in trying to determine how wide a suitable lag window
should be. For the first turbine a window width of one gave the best result,
while for the second turbine a wider lag window seemed to be preferred.
Giving a general suggestion on the use of lag values, especially considering
window width, is hard from these findings. However, taking into account
that in most cases lag values did have a positive impact, although arguably
small, they should not be excluded by default.

We also examined including data from neighbor turbines in predicting
the wind power output of a single turbine. Experiments showed that this
strategy had a positive effect on prediction accuracy, giving a noteworthy
decrease in error, especially when considering data from ten or more
neighbors. However we later found that this approach did not scale well
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to wind park prediction, showing an increase in error for both wind parks.
This suggest that this approach should only be used when predicting a
single turbine.

8.2 On the Use of NWP data

RQ4 regarded the impact that data from numerical weather prediction
models have on short-term wind power prediction using a machine
learning approach. Experiments showed that the inclusion of NWP data
to the input had a significant effect on prediction accuracy. This fact was
not surprising with concern to three and four hour ahead predictions, but
results also showed a noteworthy impact on one and two hour ahead
predictions. Based on these findings, it is not difficult to suggest the use
of NWP data for this purpose. Which of the attributes to extract, however,
is less clear. Apart from the obvious choice of forecast wind speed, wind
speed of gust improved accuracy in all cases for turbine power prediction.
However, when deploying strategy 2 for wind park power prediction,
wind speed of gust had a negative impact for all tests. The remaining
candidate features examined did all show signs of usefulness, but results
showed that they tended to become more valuable when considering
predictions further into the future.

8.3 On Strategies for Wind Park Prediction

In addressing RQ5 from section 1.2.1 we in this work compared two
approaches for predicting the wind power output of a wind park. In the
first strategy, we predicted the power output for each turbine individually
and then summed up the predictions. This strategy is much more time
consuming, since we have to develop a prediction model for each turbine.
In the second strategy, we aggregated the data from each turbine before
prediction, meaning that we only developed a single prediction model for
the whole wind park. Experiments showed that the first strategy overall
performs better than the second, when using inputs from measured data.
The level of improvement, however, was shown to not be of a significant
character.

Both strategies were significantly improved by including NWP data,
and overall the first strategy showed better performance also in this
case. However for one hour ahead prediction at wind park I, a slight
improvement in accuracy was gained by deploying the second strategy.
For wind park II however, the first strategy showed significantly better
prediction results in all forecast horizons.

From these findings, predicting the wind power of each turbine
individually and summing them up seems the most promising and should
be considered, especially if the number of turbines in the wind park are
reasonable low. However, as mentioned earlier in this thesis, if the number
of turbines reaches hundreds, this approach might become too costly.
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8.4 Future Work

In this section, some of the questions sparked from working on this thesis
are presented and suggested for further research.

Improving Prediction by Focusing More on Method Selection

The main focus of this thesis was to look at the impact of input to prediction
accuracy to a generic machine learning method. As a consequence, the
prediction framework developed in this thesis can be regarded as rather
simple. It is expected that more emphasis on the prediction unit and not
only on the choice of input could further improve accuracy. It would
therefore be of interest to research more on this part of the prediction
process. Findings from other studies suggest that combining several
methods into a hybrid model is a promising strategy. Also, in recent years
deep-learning methods, particularly recurrent neural networks with long
short-term memory units(LSTM), has risen in popularity. Expanding the
knowledge on how well these types of methods perform at doing short-
term wind power predictions would be of interest.

Correction of NWP data

Besides a couple of transformation steps explained in section 4.2.1 no pre-
processing has been done on the NWP data utilized in this work. It is
expected that more emphasis on down-scaling and correction of NWP data
would further improve prediction accuracy, based on the assumption that
most NWP models contain a certain degree of systematic and stochastic
biases [15]. For correction purposes both gaussian process (GP) and kalman
filter have been utilized with success in earlier work [15][11][43]. In [15]
a GP was used to correct forecast wind speed with wind speed, wind
direction, temperature, humidity and pressure as input before training the
main prediction component. In [11] a kalman filter was used to correct 10
meter wind speed forecast with success. Exploring the impact correction
methods for NWP data, such as the two mentioned, can have on the final
prediction accuracy, would be a logical extension of this work.

Examining the impact of NWP data on very-short-term predictions

We have seen that much work in short-term predictions do not include
NWP, but when considering even shorter forecast horizons NWP data is
almost exclusively not used. Since the work on this thesis started, the
transmission system operators in the Nordic countries have confirmed that
a move from 60 to 15 minutes markets and settlement will be done by late
2020 [66]. This shift will demand reliable wind power predictions on even
shorter time frames than examined in this thesis. It would therefore be of
interest to see how NWP data impacts prediction accuracy for a statistical
approach in very-short wind power prediction.
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Examining Additional Strategies to Wind Park Prediction

This thesis was limited to examining two approaches for wind park
prediction. At the time of experiments we were not aware of the strategy
deployed in [61], in which case they trained the prediction model using
samples from a single turbine at the wind park and the aggregate wind
power for the whole park as target data. The specific turbine is chosen
by finding the most correlating, among all the turbines, to the aggregate
wind power. The most correlating turbine was then used to predict the
power output for the whole wind park by using input samples from turbine
measurements, and aggregated wind power data as targets. We were not
aware of this strategy at the time experiments were conducted. In future
research it would be interesting to compare this approach against the other
two strategies examined.
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